01 -202-Civil-Part-2

Published on May 2016 | Categories: Documents | Downloads: 44 | Comments: 0 | Views: 140
of 10
Download PDF   Embed   Report

Comments

Content

Heat engines
g
• Heat engines are cyclic devices and that the working fluid of a 
heat engine return to its initial state at the end of each cycle.
heat engine return to its initial state at the end of each cycle. 
• Work is done by working fluid during one part of the cycle and 
on the working fluid
h
ki fl id during another part. (Deference between 
d i
h
(D f
b
these two equal to network delivered by the heat engine).
• To maximize efficiency: deliver most work and required least 
work. 

Internal combustion Engines: History,
History engine types and operation
of 2 & 4 stroke engines

• Maximum efficiency is given by ideal reversible cycle.

Dr. Primal Fernando
[email protected]
d@ d
lk
Ph: (081) 2393608
1

History of internal combustion (IC) engines
y
g

2

History of IC Engines
History of IC Engines

• Both
Both power generation and refrigeration are usually accomplished 
power generation and refrigeration are usually accomplished
by systems that operate on a thermodynamic cycle: power cycles 
and refrigeration cycles.

1860  Lenoir’s engine (a converted steam engine) 
combusted natural gas in a double acting piston, 
using electric ignition. Efficiency = 5%  
i
l
i i ii
Effi i
5%

• Power producing devises: engines
• Refrigeration producing devices: refrigerators, air‐conditioners 
and heat pumps.
• Steam engine ‐ 1700 (external combustion engines)
l
b

3

4

History ‐ continued
History 

Classification of Engines
Classification of Engines

• 1876
1876  Nikolaus Otto  patented the 4 cycle engine, it used gaseous 
Nikolaus Otto patented the 4 cycle engine it used gaseous
fuel
• 1882 Gottlieb Daimler, an engineer for Daimler, left to work on 
his own engine His 1889 twin cylinder V was the first engine to
his own engine.  His 1889 twin cylinder V was the first engine to 
be produced in quantities. Used liquid fuel and Venturi type 
carburetor, engine was named “Mercedes” after the daughter of 
his major distributor
his major distributor
• 1893  Rudolf Diesel built successful CI engine which was 26% 
efficient (double the efficiency of any other engine of its time) 







External vs Internal Combustion
Spark Ignition SI  or Compression Ignition CI
Configuration
Valve Location
2 Stroke or 4 Stroke
2 Stroke or 4 Stroke

5

6

V Engine
g

Engine Configurations
Engine Configurations
In Line
(Automobile)

Horizontally
Opposed (Subaru)

Radial (Aircraft)

V
(Automobile)

Opposed Piston
(crankshafts geared
together)

7

8

Wankel Rotary Piston Engine
y
g

Rotary “Wankel”
Rotary 
Wankel  Engine
Engine

Ref. Internal combustion engines and air pollution, E. F. Obert
9

10

Basic considerations in the analysis of power cycles
y
p
y
• Cycles encountered in actual devices 
y
are difficult to analyze because of the 
presence of complicating effects such as 
friction etc.
friction etc. 
• Consider a cycle that resembles the 
actual cycle closely but it made up 
t l
l l l b t it
d
totally of internally reversible process 
(ideal cycle) 

Thermal efficiency,  th 
11

Wnet
Qin

or

wnet
qin
12

Net work of the cycle

Idealizations and simplifications 
p
• Cycle does not involve any 
fi i
friction: no pressure drop in the 
d
i h
working fluid.
• Expansion and compression 
process: quasi equilibrium.
• Pipes connecting various 
components are well insulated.
• Neglecting changers in KE and 
PE

13

14

Air‐standard assumption
p

Carnot cycle 
y

• Gas power cycles (working fluid gas): spark ignition engines, diesel 
engines, conventional gas turbines, etc.
• All these engines energy is provided by burning a fuel within the system 
boundary.
• Working fluid (air) mainly contains nitrogen and hardly undergoing any 
chemical reactions in the combustion chamber and can be closely 
resembles to air at all times in the chamber. 
– Assumptions: working fluid as air, behaves as ideal gas, internally 
y
p
p
y
p
reversible cycle, combustion process replace by heat addition process 
by a external source, exhaust process replace by heat rejection process 
that re‐stores initial state of working fluid, specific heat values 
determines at room temperatures (call cold‐air‐standard 
assumptions)
assumptions).

• The Carnot cycle is the most efficient cycle 
that can be executed between heat a source
that can be executed between heat a source 
and a heat sink. 

 th,Carnot  1 

TL
TH
15

16

Reciprocating Engines

Parts of an engine
g

Top Dead Center (TDC)
p
: Upper most position
pp
p
Bottom Dead Center (BDC) : Lower most position

Exhaust
valve

Intake
valve

Stroke : Length of piston travel
TDC
Stroke
Bore
BDC

Bore : Diameter of the cylinder
Clearance Volume (Vc) : V where piston is at TDC
Displacement Volume (Vd) :Swept Volume (V
Displacement Volume (V
) :Swept Volume (Vmax‐Vmin)
Compression Ratio (rv) = (Vmax/Vmin) = (VBDC/VTDC)
Mean Effective Pressure (MEP) :
Wnet = (MEP) x (Displacement Volume)

Reciprocating Engine is INTERNAL COMBUSTION ENGINE, and is Classified 
into 2 types:
1.
Spark Ignition (SI): Gasoline Engine, Mixing air‐fuel outside cylinder, 
ignites by a spark plug (Auto cycle)
2
2.
Compression Ignition (CI): Diesel engine fuel is injected into the
Compression Ignition (CI): Diesel engine,  fuel is injected into the 
cylinder, self ignited as a result of compression (Diesel cycle).
รศ.ดร.สมหมาย ปรี เปรม
17

Mean Effective Pressure, MEP Concept

18

Four Stroke Engine – spark ignition engine
Intake

Actual Processes
P

P

C
Compression
i

Power

Exhaust

Equivalent by MEP

Equivalent

Wnet

1. Intake Stroke piston moves from TDC to BDC,
drawing in fresh air-fuel mixture.
2. Compression Stroke piston moves from BDC to
TDC, compress air-fuel mixture.
3. Power Stroke piston at TDC, spark plug ignite
the air-fuel mixture. the combustion occur
very fast
f t that,
th t in
i theory,
th
the
th piston
i t still
till att
TDC. After that the piston is pushed to BDC.
4. Exhaust Stroke piston moves from BDC to TDC,
ppushes the combustion gases
g
out.

MEP

Wnet
vmin
TDC

vmax v

vmin

vmax

v

BDC

Wnet = (MEP) x (Displacement Volume)
= (MEP) x (Vmax-Vmin)

19

20

Actual and ideal cycle in spark ignition 
engine
i

Two Stroke Engine

Compression

Intake &
Exhaust

Power

1. Compression Stroke piston moves from 
BDC to TDC, compress air‐fuel mixture.
2. Power Stroke piston at TDC, spark plug 
p
p
p g
ignite the air‐fuel mixture. After the 
piston is pushed to BDC. Meanwhile, 
about half way, combustion gases are 
discharged and fresh air fuel mixture is
discharged and fresh air‐fuel mixture is 
drawing in .
g
g
y
2‐stroke engines generally less efficient than 4‐stroke 
engines since partial expulsion of unburned mixture 
with exhaust gas. It has higher power/weight ratio. 
21

Air Standard Otto Cycle (Nikolaus A. Otto 1876)

22

T
Energy balance –
gy
Otto cycle (I)
y

Ideal cycle of spark ignition engine, comprises of 44 Process:
Process 1-2 Isentropic Compression (piston moves from BDC to TDC)
Process 2-3 v = constant, heat added (piston stays still, represents combustion)
Process 3-4 Isentropic expansion (piston moves from TDC to BDC gives POWER)
Process 4-1 v = constant, heat rejection (piston stays still, represents EXHAUST and INTAKE stroke)

Neglecting changes in KE and PE
2

(qin  qout )  ( win  wout )  u (kJ
k / kg
k )

There are only 2-stroke of all 4-processes,
P

T

3

Heat transfer to/from the system is under 
constant volume (no work)

qin  u 3  u 2  c v (T3  T2 )

wout
2

2

win
v2=v3

TDC

1

1
v1=v4

v

s1=s2

q out  u 4  u 1  cv (T4  T1 )

4

4

qout

s3=s4

4

qout

1

3

qin

3

qin

 th ,Otto

s

BDC

w
q
 net  1  out
qin
qin

Evaluate at room 
tem: called cold air 
standard assumption
standard assumption

T  T1
 1 4
 1
T3  T2

s1=s2

P

s

s3=s4

3

wout

T

T1  4  1 
T
 1

 T3

T2   1
T
 2


2

4

win
v2=v3

1
v1=v4

v

What is the different of Otto cycle from Carnot cycle, the most efficient cycle
23

24

T
Energy balance –
gy
Otto cycle (II)
y

T

 th ,Otto



T1  4  1 
w
q
 net  1  out  1  T4  T1  1   T1 
qin
qin
T3  T2
 T3


2

T2   1 
 T2


Processes 1‐2 and 3‐4 are isentropic and v
Processes
1‐2 and 3‐4 are isentropic and v2=v3
and v4=v1 (Pvk=constant)

T1  v 2

T2  v1





k 1

v
  3
 v4





k 1



qout

1

s1=s2

P

s

s3=s4

3

T4
T3

wout

V
V
v
r  max  1  1
Vmin V2 v 2

 th ,Otto  1 

 th ,Otto  1 

4

2

Compression ratio
Compression ratio

Thermal efficiency of a Otto cycle (I)
y
y
()

3

qin

1

4

win
v2=v3

1

v

v1=v4

r k 1

1
r

k 1

• High compression ratios: temperature 
of air/fuel  mixture rises above auto 
ignition temperature (premature 
ignition)‐produces audible noise is 
k=1.4
called engine knock.
• Improvement of thermal efficiency 
was obtained utilizing higher 
compression ratios (up to 12) gasoline 
ble d ith tet aethyl lead (i
blend with tetraethyl lead (improving 
o i
octane rating) but it has been 
prohibited to use since the hazardous 
Octane rating = measure of fuel 
g
of lead to health
of lead to health. 
quality (measure of engines knock 
resistance)

25

Thermal efficiency of a Otto cycle (II)
y
y
( )

26

Compression Issues
p

Monatomic gas (He, Ar)

• Most
Most compression ratios are around 10:1, 
compression ratios are around 10:1,
meaning that the gas let into the cylinder is 
compressed to 1/10 times its original size.

air
CO2
k=1.2

• Efficiency is better with a higher 
compression ratio but only to the limits      
of the fuel quality.

ethane

Molecular weight of the 
working fluid increases

• Problems can occur during a cycle if there is:
Problems can occur during a cycle if there is:
– Lack of Compression caused from gasses leaking past the 
piston, a hole in the piston, or the intake or exhaust valves 
i t
h l i th i t
th i t k
h
t l
are not sealing properly.
– Lack of Spark caused by malfunctioning spark plugs, dirty 
spark plugs, mistimed firings, or bad connections between 
plugs and the battery.

Thermal efficiency of actual spark ignition 
efficiency of actual spark ignition
• Thermal
engine ~ 25‐30% 

27

28

How Fuel is Handled

Chemical Energy of Gasoline
gy

• Structure of Gasoline
– Is mostly comprised of hydrocarbon molecules having 
Is mostly comprised of hydrocarbon molecules having
from six to ten carbon atoms.

• The
The chemical energy of one gallon of gasoline is, on the average, 
chemical energy of one gallon of gasoline is on the average
125,000 BTU per gallon (132×106 J per 3.8 L). 

– Octane
Octane is a measure of the resistance to detonation. The 
is a measure of the resistance to detonation The
octane number assigned to gasoline (87,89, 93, 100, 114, 
120) represents the ratio of heptane, which easily 
detonates, to isooctane, which does not want to detonate
detonates, to isooctane, which does not want to detonate 
(better to say octane number above 100 as “performance 
number”. It is calculated by different way. Often itʹs done 
by pure extrapolation. ) . Eighty‐seven‐octane gasoline is 
yp
p
)
g y
g
gasoline that contains 87‐percent octane and 13‐percent 
heptane (or some other combination of fuels that has the 
same performance of the 87/13 combination of 
octane/heptane). 
t
/h t
)

• Only about 25% of chemical energy in gasoline is converted to 
mechanical energy.
• Basically out of a one dollar gallon of gasoline, 75 cents is 
wasted.

29

30

Diesel cycle: The ideal cycle for compression 
ignition (CI) engine (Rudolph Diesel 1890)
ignition (CI) engine (Rudolph Diesel 1890)

Cylinder
y
Configurations
g

• Similar to spark ignition engine differing mainly in the method 
of initiating combustion.
fi ii i
b i
• In spark ignition (SI) engines (gasoline engines), air fuel mixture 
p
g
g
g
g
compressed below auto ignition temperature of the air/fuel 
mixture and combustion starts by firing spark plugs.  
Straight Configuration

V Configuration

Flat
Configuration

• In combustion ignition (CI) engines (diesel engines) air 
compressed above the auto ignition temperature of the air fuel 
mixture and then fuel inject into the air. 

Displacement refers to
the volume inside each
piston chamber.
chamber For
example: a 3.0 Liter
engine with 6 cylinders
will have 0.5 liters per
cylinder.

• SI engines has a carburetor and diesel engine has a fuel pump.
• The compression ratio of diesel engines typically higher (12 ‐24)
31

32

Energy balance – Diesel engine (I)

Diesel engine
g

(qin  qout )  ( win  wout )  u (kJ / kg )

• The fuel injection starts when the 
p
piston reaches to TDC.

q in  P2 (v 3  v 2 )  (u 3  u 2 )  h3  h2  c p (T3  T2 )

• Combustion process takes place 
over longer interval.
over longer interval.

q out  u 4  u 1  c v (T4  T1 )

• Because of this longer period the 
heat addition process can be
heat addition process can be 
approximated as constant 
pressure heat addition process. 

 th , Diesel
Di l 

wnet
q
 1  out
qin
qin
(T  T1 )
 1 4
 1
k (T3  T2 )

• Other parts are common for both 
SI and CI engines.  

T

T1  4  1
T
 1

 T3

kT2   1
T
 2


33

Otto vs. Diesel

Energy balance – Diesel engine (II)
 th , Diesel

q
w
(T  T )
 net  1  out  1  4 1  1 
k (T3  T2 )
qin
qin

T

T1  4  1
T

 1
 T3

kT2   1
T
 2


 th ,Otto  1 

1
r k 1

 th, Diesel  1 

1  rck  1 


r  k (rc  1) 
k 1

 th ,Otto   th , Diesel (when both cycles operate on the same compressio n ratio)

V3 v3

Define new quantity; cutoff ratio rc 
Define new quantity; cutoff ratio
V2 v 2

• Limiting value of rc=1; when efficiencies of both Otto and Diesel 
cycles are identical.

Utilizing definition of isentropic ideal‐gas relations
g
p
g

 th, Diesel

34

• Di
Diesel cycle operates much higher compression ratios, therefore 
l
l
h hi h
i
i
h f
thermal efficiency of Diesel engines are usually higher than SI 
engines (35 to 40%). 

1  rk 1 

 1  k 1  c
r  k (rc  1) 

• Diesel engines burns fuels more completely than gasoline engines.
r is the compression ratio

Energy content of 1 gallon of diesel on average, 147,000 BTU per 
gallon (155×10
ll (155 106 J per 3.8 L).
J
3 8 L)
35

36

Dual cycle
y
• More
More realistic way to model:
realistic way to model:
Combination of heat transfer 
processes in gasoline and diesel 
cycles.
l
• The relative amount of heat 
transfer during each process can 
be adjusted to approximate 
actual cycle more closely.

37

Sponsor Documents

Or use your account on DocShare.tips

Hide

Forgot your password?

Or register your new account on DocShare.tips

Hide

Lost your password? Please enter your email address. You will receive a link to create a new password.

Back to log-in

Close