A Modern Formula One Car

Published on May 2017 | Categories: Documents | Downloads: 48 | Comments: 0 | Views: 350
of 9
Download PDF   Embed   Report

Comments

Content

A modern Formula One car is a single-seat, open cockpit, open-wheel racing car with substantial front and rear wings, and an engine positioned behind the driver. For a decade F1 cars had run with 3.0-litre naturally aspirated V10 engines; however, development had led to these engines producing between 980 and 1,000 hp (730 and 750 kW), and reaching top speeds of 370 km/h (230 mph) on the Monza circuit The V10 is essentially the result of mating two even-firing straight-5 engines together The straight-five engine or inline-five engine is an internal combustion engine with five cylinders aligned in one row or plane, sharing a single engine block and crankcase The engines produce over 100,000 BTU/min (1,750 kW)[citation needed] of heat which is dissipated via radiators and the exhaust, which can reach temperatures over 1,000 °C (1,830 °F).[citation needed] They consume around 450 l (15.9 ft3) of air per second.[4] Race fuel consumption rate is normally around 75 l/100 km travelled (3.1 US mpg, 3.8 UK mpg, 1.3 km/l). Nonetheless a Formula One engine is over 20% more efficient at turning fuel into power than most small commuter cars, considering their craftsmanship[citation needed]. The British thermal unit (symbol Btu or sometimes BTU) is a traditional unit of energy equal to about 1055 joules All cars have the engine located between the driver and the rear axle. The engines are a stressed member in most cars, meaning that the engine is part of the structural support framework; being bolted to the cockpit at the front end, and transmission and rear suspension at the back end As of the 2014 season, all F1 cars will be equipped with turbocharged 1.6-litre V6 engines. Turbochargers have been banned since 1988. This change may give an improvement of up to 35% fuel efficiency.[5] keeping the current V10 for another season, but with a rev limiter to keep them from being competitive with the most powerful V8 engines. A rev limiter is a device fitted to an internal combustion engine to restrict its maximum rotational speed. This is usually carried out to prevent damage to the engine, however sometimes these devices

Formula One cars use semi-automatic sequential gearboxes, with regulations stating a 4–7 forward gears and 1 reverse gear, using rear-wheel drive.[6] The gearbox is constructed of carbon titanium, as heat dissipation is a critical issue, and is bolted onto the back of the engine.[7] Full automatic gearboxes, and systems such as launch control and traction control, are illegal, to keep driver skill important in controlling the car.[7] The driver initiates gear changes using paddles mounted on the back of the steering wheel and electro-hydraulics perform the actual change as well as throttle control. Clutch control is also performed electro-hydraulically, except to and from a standstill, when the driver operates the clutch using a lever mounted on the back of the steering wheel.[8] A modern F1 clutch is a multi-plate carbon design with a diameter of less than 100 mm (3.9 in),[8] weighing less than 1 kg (2.2 lb) and handling around 720 hp (540 kW).[3] As of the 2009 race season, all teams are using seamless shift transmissions, which allow almost instantaneous changing of gears with minimum loss of drive. Shift times for Formula One cars are in the region of 0.05 seconds.[9] In order to keep costs low in Formula One, gearboxes must last four consecutive events, although gear ratios can be changed for each race. Changing a gearbox before the allowed time will cause a penalty of five places drop on the starting grid.[10] A semi-automatic transmission (also known as automated transmission, self-changing transmission, clutchless manual transmission, automated manual transmission, flappy-paddle gearbox, or paddleshift gearbox) is an automobile transmission that does not change gears automatically, but rather facilitates manual gear changes by dispensing with the need to press a clutch pedal at the same time as changing gears. It uses electronic sensors, pneumatics, processors and actuators to execute gear shifts on the command of the driver or by a computer. This removes the need for a clutch pedal which the driver otherwise needs to depress before making a gear change, since the clutch itself is actuated by electronic equipment which can synchronise the timing and torque required to make gear shifts quick and smooth. The system was designed by automobile manufacturers to provide a better driving experience, especially in cities where congestion frequently causes stop-and-go traffic patterns.

The cars' aerodynamics are designed to provide maximum downforce with a minimum of drag; every part of the bodywork is designed with this aim in mind. Like most open-wheel cars they feature large front and rear aerofoils,

Downforce is a downwards thrust created by the aerodynamic characteristics of a car. The purpose of downforce is to allow a car to travel faster through a corner by increasing the vertical force on the tires, thus creating more grip. drag (sometimes called air resistance or fluid resistance) refers to forces which act on a solid object in the direction of the relative fluid flow velocity.[1] [2] [3] [4] Unlike other resistive forces such as dry friction, which is nearly independent of velocity, drag forces depend on velocity.[5] Drag forces always decrease fluid velocity relative to the solid object in the fluid's path.

Ground effect F1 regulations heavily limit the use of ground effect aerodynamics which are a highly efficient means of creating downforce with a small drag penalty. The underside of the vehicle, the undertray, must be flat between the axles. A 10 mm[12] thick wooden plank or skid block runs down the middle of the car to prevent the cars from running low enough to contact the track surface; this skid block is measured before and after a race. Should the plank be less than 9 mm thick after the race, the car is disqualified. It is a flat rectangle, usually made of a wood composite, designed to impose a minimum ground clearance and to limit the use of ground effects to enhance handling

Construction The cars are constructed from composites of carbon fibre and similar ultra-lightweight materials. The minimum weight permissible is 640 kg (1,411 lb) including the driver, fluids and on-board cameras.[14] However, all F1 cars weigh significantly less than this (some as little as 440 kg (970 lb)[citation needed]) so teams add ballast to the cars to bring them up to the minimum legal weight. The advantage of using ballast is that it can be placed anywhere in the car to provide ideal weight distribution. This can help lower the car's center of gravity to improve stability and also allows the team to fine tune the weight distribution of the car to suit individual circuits.

Steering wheel
A Toyota F1 steering wheel, with a complex array of dials, knobs, and buttons. The driver has the ability to fine tune many elements of the race car from within the machine using the steering wheel. The wheel can be used to change gears, apply rev. limiter, adjust fuel/air mix, change brake pressure, and call the radio. Data such as engine rpm, lap times, speed, and gear is displayed on an LCD screen. The wheel hub will also incorporate gear change paddles and a row of LED Shift lights. The wheel alone can cost about £25,000,[15] and with carbon fibre construction, weighs in at 1.3 kilograms.

Fuel
The fuel used in F1 cars is fairly similar to ordinary petrol, albeit with a far more tightly controlled mix. Formula One fuel can only contain compounds that are found in commercial gasoline, in contrast to alcohol-based fuels used in American open-wheel racing. Blends are tuned for maximum performance in given weather conditions or different circuits. During the period when teams were limited to a specific volume of fuel during a race, exotic high-density

fuel blends were used which were actually heavier than water, since the energy content of a fuel depends on its mass density.

Tyres
Main article: Formula One tyres

A BMW Sauber's right-rear Bridgestone tyre. The 2009 season saw the re-introduction of slick tyres replacing the grooved tyres used from 1998 to 2008. Tyres can be no wider than 355 and 380 mm (14.0 and 15.0 in) at the rear, front tyre width reduced from 270 mm to 245 mm for the 2010 season. Unlike the fuel, the tyres bear only a superficial resemblance to a normal road tyre. Whereas a roadcar tyre has a useful life of up to 80,000 km (50,000 mi), a Formula One tyre is built to last just one race distance (a little over 300 km (190 mi)). This is the result of a drive to maximise the road-holding ability, leading to the use of very soft compounds (to ensure that the tyre surface conforms to the road surface as closely as possible). Since the start of the 2007 season, F1 had a sole tyre supplier. From 2007 to 2010, this was Bridgestone, but 2011 saw the reintroduction of Pirelli into the sport, following the departure of Bridgestone. Six compounds of F1 tyre exist; 4 are dry weather compounds (hard, medium, soft, and super-soft) while 2 are wet compounds (intermediates for damp surfaces with no standing water and full wets for surfaces with standing water). Two of the dry weather compounds (generally a harder and softer compound) are brought to each race, plus both wet weather compounds. The harder tyre is more durable but gives less grip, and the softer the converse. In 2009, the slick tyres returned as a part of revisions to the rules for the 2009 season; slicks have no grooves and give up to 18% more contact with the track. In the Bridgestone years, a green band on the sidewall of the softer compound was painted to allow spectators to distinguish which tyre a driver is on. With Pirelli tyres, the colour of the text and the ring on the sidewall varies with the compounds. Generally, the two dry compounds brought to the track are separated by at least one specification. This was implemented by the FIA to create more noticeable difference between the compounds and hopefully add more excitement to the race when two drivers are on different strategies. The exceptions are the Monaco GP and the Hungaroring, where soft and super-soft tyres are brought, because both are notably slow and twisty, and so additional grip is required.

Brakes
Brake discs on the Williams FW27.

Disc brakes consist of a rotor and caliper at each wheel. Carbon composite rotors (introduced by the Brabham team in 1976) are used instead of steel or cast iron because of their superior frictional, thermal, and anti-warping properties, as well as significant weight savings. These brakes are designed and manufactured to work in extreme temperatures, up to 1,000 degrees Celsius (1800 °F). The driver can control brake force distribution fore and aft to compensate for changes in track conditions or fuel load. Regulations specify this control must be mechanical, not electronic, thus it is typically operated by a lever inside the cockpit as opposed to a control on the steering wheel. An average F1 car can decelerate from 100 to 0 km/h (62 to 0 mph) in about 15 meters (48 ft), compared with a 2009 BMW M3, which needs 31 meters (102 ft). When braking from higher speeds, aerodynamic downforce enables tremendous deceleration: 4.5 g to 5.0 g (44 to 49 m/s2), and up to 5.5 g (54 m/s2) at the high-speed circuits such as the Circuit Gilles Villeneuve (Canadian GP) and the Autodromo Nazionale Monza (Italian GP). This contrasts with 1.0 g to 1.5 g (10 to 15 m/s2) for the best sports cars (the Bugatti Veyron is claimed to be able to brake at 1.3 g). An F1 car can brake from 200 km/h (124 mph) to a complete stop in just 2.21 seconds, using only 65 metres (213 ft).[16]

Tyres
Main article: Formula One tyres

A BMW Sauber's right-rear Bridgestone tyre. The 2009 season saw the re-introduction of slick tyres replacing the grooved tyres used from 1998 to 2008. Tyres can be no wider than 355 and 380 mm (14.0 and 15.0 in) at the rear, front tyre width reduced from 270 mm to 245 mm for the 2010 season. Unlike the fuel, the tyres bear only a superficial resemblance to a normal road tyre. Whereas a roadcar tyre has a useful life of up to 80,000 km (50,000 mi), a Formula One tyre is built to last just one race distance (a little over 300 km (190 mi)). This is the result of a drive to maximise the road-holding ability, leading to the use of very soft compounds (to ensure that the tyre surface conforms to the road surface as closely as possible). Since the start of the 2007 season, F1 had a sole tyre supplier. From 2007 to 2010, this was Bridgestone, but 2011 saw the reintroduction of Pirelli into the sport, following the departure of Bridgestone. Six compounds of F1 tyre exist; 4 are dry weather compounds (hard, medium, soft, and super-soft) while 2 are wet compounds (intermediates for damp surfaces with no standing water and full wets for surfaces with standing water). Two of the dry weather compounds (generally a harder and softer compound) are brought to each race, plus both wet weather compounds. The harder tyre is more durable but gives less grip, and the softer the converse. In 2009, the slick tyres returned as a part of revisions to the rules for the 2009 season; slicks have no grooves and give up to 18% more contact with the track. In the Bridgestone years, a green

band on the sidewall of the softer compound was painted to allow spectators to distinguish which tyre a driver is on. With Pirelli tyres, the colour of the text and the ring on the sidewall varies with the compounds. Generally, the two dry compounds brought to the track are separated by at least one specification. This was implemented by the FIA to create more noticeable difference between the compounds and hopefully add more excitement to the race when two drivers are on different strategies. The exceptions are the Monaco GP and the Hungaroring, where soft and super-soft tyres are brought, because both are notably slow and twisty, and so additional grip is required.

Performance
Grand Prix cars and the cutting edge technology that constitute them produce an unprecedented combination of outright speed and quickness for the drivers. Every F1 car on the grid is capable of going from 0 to 160 km/h (100 mph) and back to 0 in less than five seconds. During a demonstration at the Silverstone circuit in Britain, an F1 McLaren-Mercedes car driven by David Coulthard gave a pair of Mercedes-Benz street cars a head start of seventy seconds, and was able to beat the cars to the finish line from a standing start, a distance of only 3.2 miles (5.2 km).[17] As well as being fast in a straight line, F1 cars also have incredible cornering ability. Grand Prix cars can negotiate corners at significantly higher speeds than other racing cars because of the intense levels of grip and downforce. Cornering speed is so high that Formula One drivers have strength training routines just for the neck muscles . Former F1 driver Juan Pablo Montoya claimed to be able to perform 300 repetitions of 50 lb (23 kg) with his neck. Since most tracks are clockwise, most drivers have the neck muscles built up on one side of their neck,[citation needed] thus making counter-clockwise tracks (such as Imola, Istanbul Park and Interlagos) a much more testing race than even the high speed Monza or the tight and narrow Monaco. The combination of light weight (640 kg in race trim for 2011), power (950 bhp with the 3.0 L V10, 730 bhp (544 kW) with the 2007 regulation 2.4 L V8), aerodynamics, and ultra-highperformance tyres is what gives the F1 car its performance figures. The principal consideration for F1 designers is acceleration, and not simply top speed. Acceleration is not just linear forward acceleration, but three types of acceleration can be considered for an F1 car's, and all cars' in general, performance:
  

Linear acceleration (speeding up) Linear deceleration (braking) Lateral acceleration (turning)

All three accelerations should be maximised. The way these three accelerations are obtained and their values are:
[edit] Acceleration

The 2006 F1 cars have a power-to-weight ratio of 1,250 hp/t (0.93 kW/kg). Theoretically this would allow the car to reach 100 km/h (60 mph) in less than 1 second. However the massive power cannot be converted to motion at low speeds due to traction loss and the usual figure is 2

seconds to reach 100 km/h (60 mph). After about 130 km/h (80 mph) traction loss is minimal due to the combined effect of the car moving faster and the downforce, hence the car continues accelerating at a very high rate. The figures are (for the 2006 Renault R26):[citation needed]
  

0 to 100 km/h (62 mph): 1.7 seconds 0 to 200 km/h (124 mph): 3.8 seconds 0 to 300 km/h (186 mph): 8.6 seconds*

*Figures are heavily dependent on aerodynamic setup and gearing. The acceleration figure is usually 1.45 g (14.2 m/s2) up to 200 km/h (124 mph), which means the driver is pushed back in the seat at an acceleration 1.45 times gravity.[citation needed] There are also boost systems known as Kinetic Energy Recovery Systems (KERS). These devices recover the kinetic energy created by the car's braking process. They store that energy and convert it into power that can be called upon to boost acceleration. KERS adds 80 hp (60 kW) and weighs only 35 kg (77 lb) there are principally two types of systems, electrical and flywheel mechanical. Electrical systems use a motor-generator incorporated in the car's transmission which converts mechanical energy into electrical energy and vice versa. Once the energy has been harnessed, it is stored in a battery and released at will. Mechanical systems capture braking energy and use it to turn a small flywheel which can spin at up to 80,000 rpm. When extra power is required, the flywheel is connected to the car's rear wheels. In contrast to an electrical KERS, the mechanical energy doesn't change state and is therefore more efficient. There is one other option available, hydraulic KERS, where braking energy is used to accumulate hydraulic pressure which is then sent to the wheels when required.
[edit] Deceleration

The carbon brakes in combination with tyre technology and the car's aerodynamics produce truly remarkable braking forces. The deceleration force under braking is usually 4 g (39 m/s2), and can be as high as 5–6 g when braking from extreme speeds, for instance at the Gilles Villeneuve circuit or at Indianapolis. In 2007, Martin Brundle, a former Grand Prix driver, tested the Williams Toyota FW29 Formula 1 car, and stated that under heavy braking he felt like his lungs were hitting the inside of his ribcage, forcing him to exhale involuntarily. Here the aerodynamic drag actually helps, and can contribute as much as 1.0 g of braking force, which is the equivalent of the brakes on most road sports cars. In other words, if the throttle is let go, the F1 car will slow down under drag at the same rate as most sports cars do with braking, at least at speeds above 150 km/h (93 mph). The drivers do not utilise engine or compression braking, although it may seem this way. The only reason they change down gears prior to entering the corner is to be in the correct gear for maximum acceleration on the exit of the corner.[citation needed] There are three companies who manufacture brakes for Formula One. They are Hitco (based in the US, part of the SGL Carbon Group), Brembo in Italy and Carbone Industrie of France. Whilst Hitco manufacture their own carbon/carbon, Brembo sources theirs from Honeywell, and Carbone Industrie purchases their carbon from Messier Bugatti.

Carbon/carbon is a short name for carbon fibre reinforced carbon. This means carbon fibres strengthening a matrix of carbon, which is added to the fibres by way of matrix deposition (CVI or CVD) or by pyrolysis of a resin binder. F1 brakes are 278 mm (10.9 in) in diameter and a maximum of 28 mm (1.1 in) thick. The carbon/carbon brake pads are actuated by 6-piston opposed callipers provided by Akebono, AP Racing or Brembo. The callipers are aluminium alloy bodied with titanium pistons. The regulations limit the modulus of the calliper material to 80 GPa in order to prevent teams using exotic, high specific stiffness materials, for example, beryllium. Titanium pistons save weight, and also have a low thermal conductivity, reducing the heat flow into the brake fluid.
[edit] Lateral acceleration

F1 cars can accelerate to 300 km/h (190 mph) very quickly, due to its ability to gain RPM quickly. The top speeds, however, aren't much higher than 330 km/h (210 mph) on most circuits. The highest being at Monza 360 km/h (224 mph), Indianapolis (about 335 km/h (208 mph)) and Gilles Villeneuve (about 325 km/h (202 mph)). This is because the top speeds are sacrificed for the turning speeds; however, this paradox was cleverly circumvented during the 2010 F1 season as many teams were using the now banned F-duct system. An F1 car is designed principally for high-speed cornering, thus the aerodynamic elements can produce as much as three times the car's weight in downforce, at the expense of drag. In fact, at a speed of just 130 km/h (81 mph), the downforce equals the weight of the car. As the speed of the car rises, the downforce increases. The turning force at low speeds (below 70 to about 100 km/h) mostly comes from the so-called mechanical grip of the tyres themselves. At such low speeds the car can turn at 2.0 g. At 210 km/h (130 mph) already the lateral force is 3.0 g, as evidenced by the famous esses (turns 3 and 4) at the Suzuka circuit. Higher-speed corners such as Blanchimont (Circuit de SpaFrancorchamps) and Copse (Silverstone Circuit) are taken at above 5.0 g, and 6.0 g has been recorded at Suzuka's 130-R corner.[18] This contrasts with 1 g for the Enzo Ferrari, one of the best racing sports cars. The large downforce allows an F1 car to corner at amazing speeds. As an example of the extreme cornering speeds; the Blanchimont and Eau Rouge corners at Spa-Francorchamps are taken flatout at above 300 km/h (190 mph), whereas the race-spec touring cars can only do so at 150– 160 km/h (note that lateral force increases with the square of the speed). A newer and perhaps even more extreme example is the Turn 8 at the Istanbul Park circuit, a 190° relatively tight 4apex corner, in which the cars maintain speeds between 265 and 285 km/h (165 and 177 mph) (in 2006) and experience between 4.5 g and 5.5 g for 7 seconds—the longest sustained hard cornering in Formula 1.
[edit] Top speeds

Top speeds are in practice limited by the longest straight at the track and by the need to balance the car's aerodynamic configuration between high straight line speed (low aerodynamic drag) and high cornering speed (high downforce) to achieve the fastest lap time.[19] During the 2006 season, the top speeds of Formula 1 cars were a little over 300 km/h (185 mph) at highdownforce tracks such as Albert Park, Australia and Sepang, Malaysia. These speeds were down

by some 10 km/h (6 mph) from the 2005 speeds, and 15 km/h (9 mph) from the 2004 speeds, due to the recent performance restrictions (see below). On low-downforce circuits greater top speeds were registered: at Gilles-Villeneuve (Canada) 325 km/h (203 mph), at Indianapolis (USA) 335 km/h (210 mph), and at Monza (Italy) 360 km/h (225 mph). In the Italian Grand Prix 2004, Antônio Pizzonia of the BMW WilliamsF1 team recorded a top speed of 369.9 km/h (229.8 mph).[20] Away from the track, the BAR Honda team used a modified BAR 007 car, which they claim complied with FIA Formula One regulations, to set an unofficial speed record of 413 km/h (257 mph) on a one way straight line run on 6 November 2005 during a shakedown ahead of their Bonneville 400 record attempt. The car was optimised for top speed with only enough downforce to prevent it from leaving the ground. The car, badged as a Honda following their takeover of BAR at the end of 2005, set an FIA ratified record of 400 km/h (249 mph) on a one way run on 21 July 2006 at Bonneville Salt Flats.[21] On this occasion the car did not fully meet FIA Formula One regulations, as it used a moveable aerodynamic rudder for stability control, breaching article 3.15 of the 2006 Formula One technical regulations which states that any specific part of the car influencing its aerodynamic performance must be rigidly secured.[22]

Sponsor Documents

Or use your account on DocShare.tips

Hide

Forgot your password?

Or register your new account on DocShare.tips

Hide

Lost your password? Please enter your email address. You will receive a link to create a new password.

Back to log-in

Close