Microstrip Circuits Design and Fabrication

Published on January 2017 | Categories: Documents | Downloads: 107 | Comments: 0 | Views: 1050
of 427
Download PDF   Embed   Report

Comments

Content

‫ﺗﺼﻤﻴﻢ و ﺗﺼﻨﻴﻊ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ‬
‫‪Microstrip Circuits Design and Fabrication‬‬

‫ﺗﺄﻟﻴﻒ‬
‫دآﺘﻮر ‪ /‬هﺸﺎم اﺑﺮاهﻴﻢ ﻣﺤﻤﺪ اﻻﻧﻮر‬

‫© ﺣﻘﻮق اﻟﻄﺒﻊ و اﻟﻨﺸﺮ و اﻟﺘﻮزﻳﻊ ﻣﺤﻔﻮﻇﺔ ﻟﻠﻤﺆﻟﻒ‬
‫رﻗﻢ اﻹﻳﺪاع ‪:‬‬

‫‪٢٠٠٩/٢٤٥٩٠‬‬

‫ﺗﺤﺬﻳﺮ‬
‫ﺣﻘﻮق اﻟﻨﺸﺮ و اﻟﻄﺒﻊ و اﻟﺘﻮزﻳﻊ ﻣﺤﻔﻮﻇﺔ ﻟﻠﻤﺆﻟﻒ‬
‫و ﻻ ﻳﺠ ﻮز ﻧﺸ ﺮ ﺟ ﺰء ﻣ ﻦ ه ﺬا اﻟﻜ ﺘﺎب أو إﻋ ﺎدة‬
‫ﻃ ﺒﻌﻪ أو اﺧﺘﺼ ﺎرﻩ ﺑﻐ ﺮض اﻟﻄ ﺒﺎﻋﺔ أو اﺧﺘﺰان أو‬
‫ﻧﻘ ﻞ أي ﺟ ﺰء ﻣﻦ ﻣﺤﺘﻮﻳﺎﺗﻪ ﺑﺄي ﻃﺮﻳﻘﻪ ﺳﻮاء آﺎﻧﺖ‬
‫إﻟﻜﺘﺮوﻧﻴﻪ أو ورﻗﻴﻪ أو ﻏﻴﺮ ذﻟﻚ دون ﻣﻮاﻓﻘﺔ ﻣﺴﺒﻘﺔ‬
‫و آﺘﺎﺑﻴﻪ ﻣﻦ اﻟﻤﺆﻟﻒ‪.‬‬

‫ﺑﺴﻢ اﷲ اﻟﺮﺣﻤﻦ اﻟﺮﺣﻴﻢ‬
‫هﺬا آﺘﺎب ﻋﻤﻠﻰ ﻳﺤﺘﻮى ﻋﻠﻰ اﻟﻤﻌﻠﻮﻣﺎت اﻟﻼزﻣﻪ ﻟﺘﺼﻤﻴﻢ و ﺗﺼﻨﻴﻊ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ‬
‫اﻟﺪﻗﻴﻘﻪ وهﻰ أﺣﺪ أﻧﻮاع دواﺋﺮ اﻟﺘﺮددات اﻟﻌﺎﻟﻴﻪ و اﻟﻤﻴﻜﺮووﻳﻒ اﻟﺘﻰ ﺗﺴﺘﺨﺪم ﻓﻰ ﺗﺼﻨﻴﻊ‬
‫أﺟﻬﺰة اﻻرﺳﺎل و اﻻﺳﺘﻘﺒﺎل ﻓﻰ أﻧﻈﻤﺔ اﻻﺗﺼﺎﻻت و اﻟﻬﺎﺗﻒ اﻟﻤﺤﻤﻮل و ﺷﺒﻜﺎت‬
‫اﻟﺤﺎﺳﺐ اﻟﻼﺳﻠﻜﻴﻪ و أﻧﻈﻤﺔ اﻻﺳﺘﺸﻌﺎر ﻋﻦ ﺑﻌﺪ و اﻻﻗﻤﺎر اﻟﺼﻨﺎﻋﻴﻪ و ﻣﺤﻄﺎﺗﻬﺎ‬
‫اﻻرﺿﻴﻪ و اﻻﺟﻬﺰة اﻟﻄﺒﻴﺔ اﻟﺤﺪﻳﺜﺔ و أﻧﻈﻤﺔ اﻟﺪﻓﺎع ﻣﺜﻞ أﻧﻈﻤﺔ اﻟﺮادار و ﻣﺤﻄﺎت ﺗﻮﺟﻴﻪ‬
‫اﻟﺼﻮارﻳﺦ و أﻧﻈﻤﺔ اﻟﺤﺮب اﻻﻟﻜﺘﺮوﻧﻴﻪ‪.‬‬
‫ﻳﻔﻴﺪ هﺬا اﻟﻜﺘﺎب ﻃﻠﺒﺔ ﻣﺮﺣﻠﺔ اﻟﺒﻜﺎﻟﻮرﻳﻮس و اﻟﺪراﺳﺎت اﻟﻌﻠﻴﺎ ﻓﻰ آﻠﻴﺎت اﻟﻬﻨﺪﺳﻪ‬
‫ﺗﺨﺼﺺ اﺗﺼﺎﻻت و اﻟﻜﺘﺮوﻧﻴﺎت و اﻟﺒﺎﺣﺜﻴﻦ و اﻟﻤﻬﻨﺪﺳﻴﻦ اﻟﻌﺎﻣﻠﻴﻦ ﻓﻰ ﻣﺠﺎﻻت‬
‫اﻟﺘﺮددات اﻟﻌﺎﻟﻴﻪ و اﻟﻤﻴﻜﺮووﻳﻒ اﻟﻤﺬآﻮرﻩ أﻋﻼﻩ‪.‬‬
‫ﺑﻘﺮاءة هﺬا اﻟﻜﺘﺎب ﻳﺴﺘﻄﻴﻊ اﻟﻤﻬﻨﺪس ) أو ﻃﺎﻟﺐ آﻠﻴﺔ اﻟﻬﻨﺪﺳﻪ أو اﻟﺒﺎﺣﺚ ( ﺗﺼﻤﻴﻢ أﻧﻮاع‬
‫ﻋﺪﻳﺪﻩ ﻣﻦ اﻟﺪواﺋﺮ ﺑﺎﺳﺘﺨﺪام ﺗﻜﻨﻮﻟﻮﺟﻴﺎ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ ﻟﺠﻤﻴﻊ اﻟﺘﻄﺒﻴﻘﺎت اﻟﺴﺎﻟﻔﺔ‬
‫اﻟﺬآﺮ ﺳﻮاء آﺎﻧﺖ ﻟﺪﻳﻪ ﺑﺮاﻣﺞ اﻟﺤﺎﺳﺐ اﻟﺠﺎهﺰﻩ ﻟﺬﻟﻚ أو اﺳﺘﻐﻞ اﻟﺒﺮاﻣﺞ اﻟﻤﻜﺘﻮﺑﻪ ﺑﺎﻟﻜﺘﺎب‬
‫أو ﻗﺎم ﺑﻌﻤﻞ ﺑﺮاﻣﺞ اﻟﺘﺼﻤﻴﻢ ﻣﻦ اﻟﻤﻌﺎدﻻت و اﻟﻤﻌﻠﻮﻣﺎت اﻟﺘﻰ ﺑﺎﻟﻜﺘﺎب آﻤﺎ ﻳﻤﻜﻨﻪ اﻟﻘﻴﺎم‬
‫ﺑﺘﺼﻨﻴﻊ هﺬﻩ اﻟﺪواﺋﺮ اذا ﺗﻮﻓﺮت ﻟﺪﻳﻪ وﺳﺎﺋﻞ اﻟﺘﺼﻨﻴﻊ‪.‬‬
‫ﻻ ﻳﻮﺟﺪ آﺘﺎب ﺣﺘﻰ اﻵن ﻟﺘﺼﻤﻴﻢ اﻟﺪواﺋﺮ ﺑﺎﺳﺘﺨﺪام ﺗﻜﻨﻮﻟﻮﺟﻴﺎ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ‬
‫ﺑﺎﻟﻠﻐﻪ اﻟﻌﺮﺑﻴﻪ ﺑﺎﻟﺮﻏﻢ ﻣﻦ وﺟﻮد اﻟﻌﺪﻳﺪ ﻣﻦ اﻟﻤﺮاﺟﻊ اﻻﺟﻨﺒﻴﻪ اﻟﻘﺪﻳﻤﻪ و اﻟﺤﺪﻳﺜﻪ ﻓﻰ هﺬا‬
‫اﻟﻤﺠﺎل ‪ ،‬و ﻋﻠﻰ ﺳﺒﻴﻞ اﻟﻤﺜﺎل ﻻ اﻟﺤﺼﺮ اﻟﻤﺮاﺟﻊ اﻟﻤﺪرﺟﻪ ﺑﺎﻟﺠﺪول اﻟﺘﺎﻟﻰ ‪:‬‬
‫اﻟﻤﺆﻟﻒ‬

‫اﺳﻢ اﻟﻜﺘﺎب‬

‫‪Gunter Kompa‬‬

‫دار اﻟﻨﺸﺮ‬

‫اﻟﺴﻨﻪ‬

‫‪Artech House‬‬

‫‪2005‬‬

‫‪Practical Microstrip Design And‬‬
‫‪Applications‬‬
‫‪John Wiley & T. C. Edwards ,‬‬
‫‪Foundations of Interconnect and‬‬
‫‪Sons‬‬
‫‪M. B. Steer‬‬
‫‪Microstrip Design‬‬
‫‪Artech House‬‬
‫‪Gupta , K. C., Microstrip Lines and Slotlines , (2nd‬‬
‫) ‪Garg , Ramesh , edition‬‬
‫‪and Bahl, I. J.‬‬
‫‪John Wiley & T. C. Edwards‬‬
‫‪Foundations for Microstrip Circuit‬‬
‫‪nd‬‬
‫‪Sons‬‬
‫)‪Design (2 edition‬‬
‫‪Prentice Hall‬‬
‫‪Fooks , E. H., and Microwave‬‬
‫‪Engineering‬‬
‫‪Using‬‬
‫‪Zakarevicius , R. Microstrip Circuits‬‬
‫‪A.‬‬
‫‪Artech House‬‬
‫‪Hoffmann, R. K.‬‬
‫‪Handbook of Microwave Integrated‬‬
‫‪Circuits‬‬

‫‪1‬‬

‫‪2001‬‬
‫‪1996‬‬
‫‪1992‬‬
‫‪1990‬‬
‫‪1987‬‬

‫اﻟﻰ ﻏﻴﺮ ذﻟﻚ ﻣﻦ اﻟﻤﺮاﺟﻊ اﻟﺘﻰ ﺳﻴﺄﺗﻰ ذآﺮهﺎ ﺗﺒﺎﻋﺎ ﻓﻰ اﻟﻜﺘﺎب ﻣﻊ اﻻﺷﺎرﻩ ﻻﺳﺘﺨﺪاﻣﻬﺎ و‬
‫ﻗﺪ وﺟﺪ اﻟﻤﺆﻟﻒ أن ﻋﺪم وﺟﻮد اﻟﻤﺮاﺟﻊ اﻟﻌﺮﺑﻴﻪ ﻻ ﻳﺨﺪم اﻟﺘﻌﻠﻴﻢ و اﻟﺼﻨﺎﻋﻪ ﻓﻰ ﻣﺠﺎﻻت‬
‫اﻟﺘﻜﻨﻮﻟﻮﺟﻴﺎ اﻟﻌﺎﻟﻴﻪ و أن اﺳﺘﺨﺪام آﺘﺎب أو أآﺜﺮ ﺑﺎﻟﻠﻐﻪ اﻟﻌﺮﺑﻴﻪ ﻓﻰ هﺬﻩ اﻟﻤﺠﺎﻻت اﻟﻰ‬
‫ﺟﺎﻧﺐ اﻟﻤﺮاﺟﻊ اﻻﺟﻨﺒﻴﻪ ﻗﺪ ﻳﺆدى اﻟﻰ ﺗﺒﺴﻴﻂ اﻟﺪراﺳﻪ و اﻟﻮﺻﻮل اﻟﻰ ﻧﺘﺎﺋﺞ ﺳﺮﻳﻌﻪ ﻓﻰ‬
‫اﻟﺘﺼﻤﻴﻢ و اﻟﺘﺼﻨﻴﻊ و ﺗﺤﻘﻴﻖ ﻣﺴﺘﻮى أﻓﻀﻞ ﻓﻰ هﺬﻩ اﻟﻤﺠﺎﻻت‪.‬‬
‫وﻗﺪ ﺗﻢ ﺗﺄﻟﻴﻒ هﺬا اﻟﻜﺘﺎب ﻟﻴﻜﻮن ﻣﺤﺘﻮﻳﺎ ﻋﻠﻰ اﻟﻤﻌﺎدﻻت و اﻻﺛﺒﺎﺗﺎت اﻟﺮﻳﺎﺿﻴﻪ‬
‫اﻟﻀﺮورﻳﻪ ﻓﻘﻂ و اﻟﺸﺮح اﻟﻼزم ﻟﻌﻤﻠﻴﺎت ﺗﺼﻤﻴﻢ و ﺗﺼﻨﻴﻊ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ أى‬
‫اﻟﻤﻌﻠﻮﻣﺎت اﻟﻤﺆدﻳﻪ ﻟﻬﺬا اﻟﻐﺮض ﻓﻘﻂ دون ادراج اﻻﺛﺒﺎﺗﺎت اﻟﺮﻳﺎﺿﻴﻪ اﻟﺘﻰ ﻻ ﺗﺨﺪم‬
‫اﻟﻐﺮض ﻣﻦ اﻟﻜﺘﺎب ﻣﻊ اﻻﺷﺎرﻩ ﻟﻠﻤﺮاﺟﻊ اﻟﺘﻰ ﺗﺤﺘﻮى ﻋﻠﻰ هﺬﻩ اﻻﺛﺒﺎﺗﺎت ﻟﺨﺪﻣﺔ اﻟﻄﺎﻟﺐ‬
‫و اﻟﺒﺎﺣﺚ‪.‬‬
‫هﺬا اﻟﻜﺘﺎب ﻳﺄﺗﻰ ﺿﻤﻦ آﺘﺐ ﺳﻠﺴﻠﺔ ﺗﺒﺴﻴﻂ اﻟﺘﻜﻨﻮﻟﻮﺟﻴﺎ اﻟﻌﺎﻟﻴﻪ اﻟﺘﻰ ﺗﺤﺘﻮى ﻋﻠﻰ اﻟﺸﺮح‬
‫اﻟﻜﺎﻣﻞ ﺑﺎﻟﻠﻐﻪ اﻟﻌﺮﺑﻴﻪ ﻣﻊ ادراج اﻟﻤﺼﻄﻠﺤﺎت ﺑﺎﻟﻠﻐﺘﻴﻦ اﻟﻌﺮﺑﻴﻪ و اﻻﻧﺠﻠﻴﺰﻳﻪ ﺑﻐﺮض‬
‫اﻟﺘﺴﻬﻴﻞ ﻋﻠﻰ اﻟﻘﺎرئ اﻟﻤﻄﻠﻊ ﻋﻠﻰ اﻟﻤﺮاﺟﻊ اﻻﻧﺠﻠﻴﺰﻳﻪ و ﺗﺒﺴﻂ هﺬﻩ اﻟﻜﺘﺐ اﻟﻤﻮاﺿﻴﻊ‬
‫اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫ﺗﺼﻤﻴﻢ و ﺗﺤﻠﻴﻞ دواﺋﺮ اﻟﺘﺮدد اﻟﻌﺎﻟﻰ ﺑﺎﺳﺘﺨﺪام ﺗﻜﻨﻮﻟﻮﺟﻴﺎ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ ‪،‬‬
‫ﺗﺼﻤﻴﻢ و ﺗﺤﻠﻴﻞ دواﺋﺮ اﻟﻤﻜﺒﺮات ﻟﻠﺘﺮددات اﻟﻌﺎﻟﻴﻪ ‪ ،‬ﺗﺼﻤﻴﻢ و ﺗﺤﻠﻴﻞ دواﺋﺮ اﻟﻤﺬﺑﺬﺑﺎت‬
‫ﻟﻠﺘﺮددات اﻟﻌﺎﻟﻴﻪ ‪ ،‬ﺗﺼﻤﻴﻢ و ﺗﺤﻠﻴﻞ دواﺋﺮ اﻟﻤﺎزﺟﺎت ﻟﻠﺘﺮددات اﻟﻌﺎﻟﻴﻪ ‪ ،‬ﺗﺼﻤﻴﻢ و ﺗﺤﻠﻴﻞ‬
‫دواﺋﺮ ﻣﻀﺎﻋﻔﺎت و ﻣﻘﺴﻤﺎت اﻟﺘﺮدد اﻟﻌﺎﻟﻰ و ﻏﻴﺮهﺎ ﻣﻦ اﻟﺪواﺋﺮ ‪ ،‬ﺑﺎﻻﺿﺎﻓﻪ اﻟﻰ ﺗﺼﻤﻴﻢ‬
‫اﻟﻘﻤﺮ اﻟﺼﻨﺎﻋﻰ اﻟﻤﺴﺘﺨﺪم ﻓﻰ اﻻﺗﺼﺎﻻت و ﻣﺤﻄﺘﻪ اﻻرﺿﻴﻪ ‪ ،‬و ﺗﺼﻤﻴﻢ ﻧﻈﻢ‬
‫اﻻﺗﺼﺎﻻت اﻟﻤﻴﻜﺮووﻳﻪ و ﻏﻴﺮهﺎ ﻣﻦ اﻟﻨﻈﻢ ﻟﺘﺨﺪم هﺬﻩ اﻟﺴﻠﺴﻠﻪ ﻣﻦ اﻟﻜﺘﺐ دراﺳﺔ و‬
‫ﺗﺼﻤﻴﻢ و ﺻﻨﺎﻋﺔ دواﺋﺮ و ﻧﻈﻢ اﻟﺘﺮددات اﻟﻌﺎﻟﻴﻪ و اﻟﻤﻴﻜﺮووﻳﻒ ﻓﻰ ﻣﺨﺘﻠﻒ اﻟﺘﻄﺒﻴﻘﺎت‬
‫ﻟﻤﺴﺘﺨﺪﻣﻰ اﻟﻠﻐﻪ اﻟﻌﺮﺑﻴﻪ‪.‬‬
‫ﺟﻤﻴﻊ ﻣﺮاﺟﻊ اﻟﻜﺘﺎب هﻰ ﻣﺮاﺟﻊ أﺟﻨﺒﻴﻪ ﺑﺎﻻﺿﺎﻓﻪ اﻟﻰ رﺳﺎﺋﻞ اﻟﺪراﺳﺎت اﻟﻌﻠﻴﺎ و اﻷﺑﺤﺎث‬
‫اﻟﺨﺎﺻﻪ ﺑﻤﺆﻟﻒ اﻟﻜﺘﺎب وآﻠﻬﺎ ﻣﻜﺘﻮﺑﻪ ﺑﺎﻟﻠﻐﻪ اﻻﻧﺠﻠﻴﺰﻳﻪ ﻟﺬﻟﻚ ﺗﻢ اﺑﻘﺎء اﻟﺮﻣﻮز و‬
‫اﻟﻤﻌﺎدﻻت اﻟﻤﺪرﺟﻪ ﺑﺎﻟﻜﺘﺎب ﺑﺎﻟﻠﻐﻪ اﻻﻧﺠﻠﻴﺰﻳﻪ ﻟﻀﻤﺎن ﻋﺪم ﺣﺪوث أى اﺧﺘﻼف أو ﺷﻚ‬
‫ﻓﻰ أى ﻣﻌﻨﻰ ﻟﺮﻣﺰ ﻣﻦ اﻟﺮﻣﻮز و أﻳﻀﺎ ﻟﻴﺴﺘﻄﻴﻊ ﻣﺴﺘﺨﺪم اﻟﻜﺘﺎب اﻟﺘﻌﺎﻣﻞ ﻣﻊ اﻟﻜﺘﺎﻟﻮﺟﺎت‬
‫و ﺻﻔﺤﺎت اﻟﺒﻴﺎﻧﺎت اﻟﺘﻰ ﺗﺼﺪر ﻣﻌﻈﻤﻬﺎ ﺑﺎﻟﻠﻐﻪ اﻻﻧﺠﻠﻴﺰﻳﻪ ﻋﻦ اﻟﺸﺮآﺎت اﻟﻤﻨﺘﺠﻪ‬
‫ﻟﻠﺸﺮاﺋﺢ اﻟﺸﺮﻳﻄﻴﻪ و اﻟﻤﻜﻮﻧﺎت ‪.‬‬
‫هﺬا اﻟﻜﺘﺎب ﻳﻔﻴﺪ أﻳﻀﺎ اﻟﻤﺆﺳﺴﺎت و اﻟﻤﺼﺎﻧﻊ اﻟﺘﻰ ﺗﻘﻮم ﺑﻨﻘﻞ أو ﺑﺎﻧﺸﺎء ﺗﻜﻨﻮﻟﻮﺟﻴﺎ‬
‫اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ و اﻟﺪواﺋﺮ و اﻟﻨﻈﻢ اﻟﻌﺎﻣﻠﻪ ﻓﻰ ﺗﺮددات اﻟﺮادﻳﻮ و اﻟﻤﻴﻜﺮووﻳﻒ‬
‫و ذﻟﻚ ﻷن اﻟﻜﺘﺎب ﻳﺤﺘﻮى ﻋﻠﻰ ﻣﻌﻠﻮﻣﺎت آﺎﻓﻴﻪ ﻋﻦ اﻟﺸﺮاﺋﺢ و اﻟﻤﻜﻮﻧﺎت و اﻻﺟﻬﺰﻩ و‬
‫اﻟﻤﺎآﻴﻨﺎت و ﺑﺮاﻣﺞ اﻟﺤﺎﺳﺐ اﻵﻟﻰ اﻟﻼزﻣﻪ ﻟﺘﺼﻤﻴﻢ و ﺻﻨﺎﻋﺔ هﺬﻩ اﻟﺪواﺋﺮ ﻣﻊ أﺳﻤﺎء‬
‫اﻟﺸﺮآﺎت اﻟﻤﻨﺘﺠﻪ و ﻋﻨﺎوﻳﻨﻬﺎ و ﺑﺪاﺋﻠﻬﺎ و ﻣﻌﻠﻮﻣﺎت ﻋﻦ اﻻﻣﻜﺎﻧﻴﺎت اﻟﻼزﻣﻪ ﻟﻠﺘﺼﻤﻴﻢ و‬
‫اﻻﻧﺘﺎج و اﻻﺧﺘﺒﺎر و اﻟﻘﻴﺎس‪.‬‬

‫‪2‬‬

‫ﻓﻬﺭﺱ ﺍﻟﻜﺘﺎﺏ‬
‫ﺭﻗﻡ ﺍﻟﺼﻔﺤﻪ‬

‫ﺍﻟﻤﻭﻀﻭﻉ‬

‫ﻤﻘﺩﻤﺔ ﺍﻟﻜﺘﺎﺏ‬
‫ﺍﻟﻔﺼل ﺍﻻﻭل ‪ :‬ﻫﻨﺩﺴﺔ ﻭ ﺘﻜﻨﻭﻟﻭﺠﻴﺎ ﺍﻟﻤﻴﻜﺭﻭﻭﻴﻑ‬
‫‪Chapter 1 : Microwave Engineering and Technologies‬‬
‫‪7‬‬
‫)ﻤﻘﻁﻊ ‪ (١-١‬ﺘﻘﺴﻴﻡ ﺍﻟﻁﻴﻑ ﺍﻟﻜﻬﺭﻭﻤﻐﻨﺎﻁﻴﺴﻰ ﻭ ﺘﻁﺒﻴﻘﺎﺕ ﺍﻟﻤﻴﻜﺭﻭﻭﻴﻑ‬
‫‪9‬‬
‫)ﻤﻘﻁﻊ ‪ (٢-١‬ﺘﻜﻨﻭﻟﻭﺠﻴﺎﺕ ﺍﻟﻤﻴﻜﺭﻭﻭﻴﻑ‬
‫)ﻤﻘﻁﻊ ‪ (٣-١‬ﺸﺭﺍﺌﺢ ﺍﻟﺘﺭﺩﺩ ﺍﻟﻌﺎﻟﻰ )‪(High Frequency Laminates‬‬
‫ﺍﻟﻔﺼل‬
‫)ﻤﻘﻁﻊ‬
‫)ﻤﻘﻁﻊ‬
‫)ﻤﻘﻁﻊ‬

‫‪22‬‬

‫ﺍﻟﺜﺎﻨﻰ ‪ :‬ﺘﺤﻠﻴل ﺸﺒﻜﺎﺕ ﺍﻟﻤﻜﻭﻨﺎﺕ ﻭ ﺘﻌﺎﺭﻴﻑ ﺃﺴﺎﺴﻴﻪ‬
‫‪Chapter 2 : Network Analysis and Essential Definitions‬‬
‫‪33‬‬
‫‪ (١-٢‬ﺨﻁﻭﻁ ﺍﻹﺭﺴﺎل ﺍﻟﻤﺜﺎﻟﻴﺔ )‪(Ideal Transmission Lines‬‬
‫‪39‬‬
‫‪ (٢-٢‬ﺘﺤﻠﻴل ﺸﺒﻜﺎﺕ ﺍﻟﻤﻜﻭﻨﺎﺕ )‪(Network Analysis‬‬
‫‪50‬‬
‫‪ (٣-٢‬ﺘﻌﺎﺭﻴﻑ ﺃﺴﺎﺴﻴﻪ )‪(Essential Definitions‬‬

‫ﺍﻟﻔﺼل ﺍﻟﺜﺎﻟﺙ ‪ :‬ﺍﻟﺨﻁ ﺍﻟﺸﺭﻴﻁﻰ ﺍﻟﺩﻗﻴﻕ‬
‫)ﻤﻘﻁﻊ ‪ (١-٣‬ﻤﻘﺩﻤﻪ‬

‫‪Chapter 3 : Microstrip Transmission Line‬‬
‫‪55‬‬

‫)ﻤﻘﻁﻊ ‪ (٢-٣‬ﺨﺼﺎﺌﺹ ﻭ ﺘﻌﺎﺭﻴﻑ ﻟﺒﺎﺭﻤﺘﺭﺍﺕ ﺍﻟﺨﻁ ﺍﻟﺸﺭﻴﻁﻰ ﺍﻟﺩﻗﻴﻕ‬

‫‪57‬‬

‫)ﻤﻘﻁﻊ ‪ (٣-٣‬ﻤﻌﺎﺩﻻﺕ ﺘﺼﻤﻴﻡ ﻭ ﺘﺤﻠﻴل ﺍﻟﺨﻁ ﺍﻟﺸﺭﻴﻁﻰ ﺍﻟﺩﻗﻴﻕ‬

‫‪63‬‬

‫)ﻤﻘﻁﻊ ‪ (٤-٣‬ﺘﺄﺜﻴﺭ ﺍﻟﻐﻼﻑ ﻓﻰ ﺨﺼﺎﺌﺹ ﺍﻟﺨﻁ ﺍﻟﺸﺭﻴﻁﻰ ﺍﻟﺩﻗﻴﻕ‬

‫‪69‬‬

‫)ﻤﻘﻁﻊ ‪ (٥-٣‬ﺘﺄﺜﻴﺭ ﺍﻟﺘﺭﺩﺩ ﻓﻰ ﺨﺼﺎﺌﺹ ﺍﻟﺨﻁ ﺍﻟﺸﺭﻴﻁﻰ ﺍﻟﺩﻗﻴﻕ‬

‫‪72‬‬

‫)ﻤﻘﻁﻊ ‪ (٦-٣‬ﺤﺴﺎﺒﺎﺕ ﻓﻘﺩ ﺍﻟﻘﺩﺭﻩ ﻓﻰ ﺍﻟﺨﻁ ﺍﻟﺸﺭﻴﻁﻰ ﺍﻟﺩﻗﻴﻕ‬

‫‪74‬‬

‫)ﻤﻘﻁﻊ ‪ (٧-٣‬ﺒﺭﺍﻤﺞ ﺍﻟﺘﺼﻤﻴﻡ ﻭ ﺍﻟﺘﺤﻠﻴل ﻟﻠﺨﻁ ﺍﻟﺸﺭﻴﻁﻰ ﺍﻟﺩﻗﻴﻕ‬

‫‪75‬‬

‫)ﻤﻘﻁﻊ ‪ (٨-٣‬ﺃﻤﺜﻠﻪ ﺭﻗﻤﻴﻪ ﻟﺘﺼﻤﻴﻡ ﻭ ﺘﺤﻠﻴل ﺍﻟﺨﻁ ﺍﻟﺸﺭﻴﻁﻰ ﺍﻟﺩﻗﻴﻕ‬

‫‪90‬‬

‫ﺍﻟﻔﺼل‬
‫)ﻤﻘﻁﻊ‬
‫)ﻤﻘﻁﻊ‬
‫)ﻤﻘﻁﻊ‬

‫ﺍﻟﺭﺍﺒﻊ ‪ :‬ﺍﻟﻤﻜﻭﻨﺎﺕ ﺍﻟﺸﺭﻴﻁﻴﻪ ﻭ ﺍﻟﻼ إﺴﺘﻤﺭﺍﺭﻴﺎﺕ‬
‫‪Chapter 4 : Microstrip Components and Discontinuities‬‬
‫‪105‬‬
‫‪ (١-٤‬ﻤﻘﺩﻤﻪ‬
‫‪108‬‬
‫‪ (٢-٤‬ﺍﻟﻼﺍﺴﺘﻤﺭﺭﻴﺎﺕ‬
‫‪110‬‬
‫‪ (١-٢-٤‬ﻻ ﺍﺴﺘﻤﺭﺍﺭﻴﺔ ﺍﻟﻨﻬﺎﻴﻪ ﺍﻟﻤﻔﺘﻭﺤﻪ ‪open circuit end‬‬

‫)ﻤﻘﻁﻊ ‪ (٢-٢-٤‬ﺍﻟﻨﻬﺎﻴﻪ ﺍﻟﻤﻭﺼﻠﻪ ﺒﺎﻷﺭﺽ ‪short circuit end‬‬

‫‪113‬‬

‫)ﻤﻘﻁﻊ ‪ (٣-٢-٤‬ﻻ ﺍﺴﺘﻤﺭﺍﺭﻴﺔ ﺍﻟﻔﺠﻭﻩ ‪Gap discontinuity‬‬

‫‪115‬‬

‫‪3‬‬

‫ﻓﻬﺭﺱ ﺍﻟﻜﺘﺎﺏ‬
‫ﺍﻟﻤﻭﻀﻭﻉ‬
‫)ﻤﻘﻁﻊ ‪ (٤-٢-٤‬ﻻ ﺍﺴﺘﻤﺭﺍﺭﻴﺔ ﺍﻟﺸﻁﻔﻪ ﺃﻭ ﺍﻟﺸﻕ ﺍﻟﻌﺭﻀﻰ ) ‪Slit or‬‬

‫ﺭﻗﻡ ﺍﻟﺼﻔﺤﻪ‬
‫‪118‬‬

‫‪(transverse slit‬‬
‫)ﻤﻘﻁﻊ ‪ (٥-٢-٤‬ﻻ ﺍﺴﺘﻤﺭﺍﺭﻴﺎﺕ ﺍﻟﺜﻨﻴﻪ ) ‪(Bend Discontinuities‬‬

‫‪119‬‬

‫)ﻤﻘﻁﻊ ‪ (٦-٢-٤‬ﻻ ﺍﺴﺘﻤﺭﺍﺭﻴﺎﺕ ﻋﻠﻰ ﺸﻜل ﺩﺭﺠﺔ ﺍﻟﺴﻠﻡ ) ‪Step‬‬

‫‪124‬‬

‫‪(Discontinuities‬‬
‫)ﻤﻘﻁﻊ ‪ (٧-٢-٤‬ﺍﻟﻼ ﺍﺴﺘﻤﺭﺍﺭﻴﺎﺕ ﺍﻟﻤﺘﻜﻭﻨﻪ ﺒﻴﻥ ﺜﻼﺜﺔ ﺨﻁﻭﻁ ﺸﺭﻴﻁﻴﻪ‬

‫‪127‬‬

‫ﺩﻗﻴﻘﻪ‬
‫)ﻤﻘﻁﻊ ‪ (٣-٤‬ﺍﻟﻤﻜﻭﻨﺎﺕ ﺍﻟﺸﺭﻴﻁﻴﻪ )‪(microstrip components‬‬

‫‪131‬‬

‫)ﻤﻘﻁﻊ ‪ (٤-٤‬ﺍﻟﺨﻁﻴﻥ ﺍﻟﺸﺭﻴﻁﻴﻴﻥ ﺍﻟﻤﺯﺩﻭﺠﻴﻥ‬

‫‪139‬‬

‫ﺍﻟﻔﺼل ﺍﻟﺨﺎﻤﺱ ‪ :‬ﺒﺭﺍﻤﺞ ﺍﻟﺘﺼﻤﻴﻡ ﻭ ﺍﻟﺘﺤﻠﻴل ﺒﻭﺍﺴﻁﺔ ﺍﻟﺤﺎﺴﺏ‬
‫‪Chapter 5 : Computer Aided Design and Analysis Programs‬‬
‫‪158‬‬
‫)ﻤﻘﻁﻊ ‪ (١-٥‬ﻤﻘﺩﻤﻪ‬
‫‪159‬‬
‫)ﻤﻘﻁﻊ ‪ (٢-٥‬ﻁﺭﻕ ﺘﺤﻠﻴل ﺩﻭﺍﺌﺭ ﺍﻟﺘﺭﺩﺩ ﺍﻟﻌﺎﻟﻰ ﻭ ﺍﻟﻤﻴﻜﺭﻭﻭﻴﻑ ﻭ ﺘﻌﺎﺭﻴﻑ‬
‫ﻫﺎﻤﻪ‬

‫)ﻤﻘﻁﻊ ‪ (٣-٥‬ﺒﺭﺍﻤﺞ ﺘﺤﻠﻴل ﻭ ﺘﺼﻤﻴﻡ ﺩﻭﺍﺌﺭ ﺍﻟﺘﺭﺩﺩ ﺍﻟﻌﺎﻟﻰ ﻭ ﺍﻟﻤﻴﻜﺭﻭﻭﻴﻑ‬

‫‪163‬‬

‫ﺍﻟﺤﺩﻴﺜﻪ‬

‫ﺍﻟﻔﺼل ﺍﻟﺴﺎﺩﺱ ‪ :‬ﺍﻟﻤﺯﺩﻭﺠﺎﺕ ﺍﻟﻤﺨﺘﻠﻁﻪ ﻭ ﻤﻘﺴﻤﺎﺕ ﺍﻟﻘﺩﺭﻩ ﻭ ﺩﻭﺍﺌﺭ ﺍﻟﺘﻐﺫﻴﻪ‬
‫‪Chapter 6 : Hybrid Couplers, Power Splitters and Bias Networks‬‬
‫‪182‬‬
‫)ﻤﻘﻁﻊ ‪ (١-٦‬ﻤﻘﺩﻤﻪ‬
‫‪184‬‬
‫)ﻤﻘﻁﻊ ‪ (٢-٦‬ﺍﻟﻤﺯﺩﻭﺠﺎﺕ ﺍﻟﻤﺨﺘﻠﻁﻪ ‪Hybrid Couplers‬‬
‫‪186‬‬
‫)ﻤﻘﻁﻊ ‪ (١-٢-٦‬ﺍﻟﻤﺯﺩﻭﺠﺎﺕ ﺍﻟﻤﺨﺘﻠﻁﻪ ﻤﻥ ﻨﻭﻉ ‪Branch-Line Hybrid‬‬
‫‪Couplers‬‬
‫)ﻤﻘﻁـﻊ ‪ (٢-٢-٦‬ﺍﻟﻤـﺯﺩﻭﺠﺎﺕ ﺍﻟﻤﺨﺘﻠﻁﻪ ﻤﻥ ﻨﻭﻉ ‪Rat Race Hybrid‬‬
‫‪coupler‬‬
‫)ﻤﻘﻁﻊ ‪ (٣-٢-٦‬ﺍﻟﻤﺯﺩﻭﺠﺎﺕ ﺍﻟﻤﺨﺘﻠﻁﻪ ﻤﻥ ﻨﻭﻉ ﻻﻨﺞ ‪Lange coupler‬‬

‫‪192‬‬
‫‪198‬‬

‫)ﻤﻘﻁﻊ ‪ (٤-٢-٦‬ﺃﻨﻭﺍﻉ ﺃﺨﺭﻯ ﻤﻥ ﺍﻟﻤﺯﺩﻭﺠﺎﺕ ﺍﻟﻤﺨﺘﻠﻁﻪ‬

‫‪201‬‬

‫)ﻤﻘﻁـﻊ ‪ (٣-٦‬ﻤﻘﺴـﻤﺎﺕ ﻭ ﻤﺠﻤﻌـﺎﺕ ﺍﻟﻘﺩﺭﻩ ‪Power Splitters and‬‬
‫‪combiners‬‬
‫)ﻤﻘﻁﻊ ‪ (٤-٦‬ﺩﻭﺍﺌﺭ ﺍﻟﺘﻐﺫﻴﻪ ‪Bias Networks‬‬

‫‪210‬‬

‫‪4‬‬

‫‪253‬‬

‫ﺭﻗﻡ ﺍﻟﺼﻔﺤﻪ‬

‫ﺍﻟﻤﻭﻀﻭﻉ‬
‫ﺍﻟﻔﺼل ﺍﻟﺴﺎﺒﻊ ‪ :‬ﺩﻭﺍﺌﺭ ﺍﻟﻔﻠﺘﺭ ﻭ ﻤﻔﺭﻗﺎﺕ ﺍﻟﺘﺭﺩﺩ‬

‫‪Chapter 7 : Filters and Multiplexers‬‬
‫‪269‬‬

‫)ﻤﻘﻁﻊ ‪ (١-٧‬ﻤﻘﺩﻤﻪ‬

‫)ﻤﻘﻁﻊ ‪ (٢-٧‬ﺍﻟﻘﺎﻟﺒﺎﺕ ﻭ ﺘﺤﻭﻴﻼﺕ ﺸﺒﻜﺎﺕ ﺍﻟﻤﻜﻭﻨﺎﺕ‬

‫‪293‬‬

‫)ﻤﻘﻁﻊ ‪ (٣-٧‬ﻓﻠﺘﺭ ﻤﺭﻭﺭ ﺍﻟﺘﺭﺩﺩﺍﺕ ﺍﻟﻤﻨﺨﻔﻀﻪ ﻤﻥ ﻨﻭﻉ‬
‫‪Impedance‬‬
‫)ﻤﻘﻁـﻊ ‪ (٤-٧‬ﻓﻠﺘﺭ ﻤﺭﻭﺭ ﺍﻟﺘﺭﺩﺩﺍﺕ ﺍﻟﻤﻨﺨﻔﻀﻪ ﺒﺎﺴﺘﺨﺩﺍﻡ ﺨﻁﻭﻁ ﺸﺭﻴﻁﻴﻪ‬

‫‪313‬‬

‫‪Stepped‬‬

‫‪317‬‬

‫ﺫﺍﺕ ﻨﻬﺎﻴﻪ ﻤﻔﺘﻭﺤﻪ ﻤﺘﺼﻠﻪ ﻋﻠﻰ ﺍﻟﺘﻭﺍﺯﻯ‬
‫)ﻤﻘﻁﻊ ‪ (٥-٧‬ﻓﻠﺘﺭ ﻤﺭﻭﺭ ﺍﻟﺘﺭﺩﺩﺍﺕ ﺍﻟﻤﻨﺨﻔﻀﻪ ﻤﻥ ﺍﻟﻨﻭﻉ ﺍﻟﺸﺒﻪ ﻋﻴﻨﻰ‬

‫‪322‬‬

‫)ﻤﻘﻁﻊ ‪ (٦-٧‬ﻓﻠﺘﺭ ﻤﺭﻭﺭ ﺍﻟﺘﺭﺩﺩﺍﺕ ﺍﻟﻤﻨﺨﻔﻀﻪ ﻤﻥ ﻨﻭﻉ ‪Hairpin LPF‬‬

‫‪325‬‬

‫)ﻤﻘﻁﻊ ‪ (٧-٧‬ﻓﻠﺘﺭ ﻤﺭﻭﺭ ﺤﻴﺯ ﺘﺭﺩﺩﻯ ﻤﻌﻴﻥ ﻤﻥ ﻨﻭﻉ‬
‫‪BPF‬‬
‫)ﻤﻘﻁـﻊ ‪ (٨-٧‬ﻓﻠﺘﺭ ﻤﺭﻭﺭ ﺤﻴﺯ ﺘﺭﺩﺩﻯ ﻤﻌﻴﻥ ﻤﻥ ﻨﻭﻉ ‪Stub Loaded‬‬
‫‪Structure‬‬
‫)ﻤﻘﻁﻊ ‪ (٩-٧‬ﻓﻠﺘﺭ ﻤﺭﻭﺭ ﺤﻴﺯ ﺘﺭﺩﺩﻯ ﻤﻌﻴﻥ ﻤﻥ ﻨﻭﻉ ﺍﻟﺨﻁﻭﻁ ﺍﻟﻤﻘﺭﻭﻨﻪ ﻤﻥ‬

‫‪328‬‬

‫‪Coupled Lines‬‬

‫‪334‬‬
‫‪339‬‬

‫ﺍﻟﻨﻬﺎﻴﻪ‬
‫)ﻤﻘﻁﻊ ‪ (١٠ - ٧‬ﻓﻠﺘﺭ ﻤﺭﻭﺭ ﺤﻴﺯ ﺘﺭﺩﺩﻯ ﻤﻌﻴﻥ ﻤﻥ ﻨﻭﻉ ‪Hairpin BPF‬‬

‫‪341‬‬

‫)ﻤﻘﻁـﻊ ‪ (١١ - ٧‬ﻓﻠﺘﺭ ﻤﺭﻭﺭ ﺤﻴﺯ ﺘﺭﺩﺩﻯ ﻤﻌﻴﻥ ﻤﻥ ﻨﻭﻉ ‪Interdigital‬‬
‫‪BPF‬‬
‫)ﻤﻘﻁﻊ ‪ (١٢ - ٧‬ﻓﻠﺘﺭ ﻤﺭﻭﺭ ﺍﻟﺘﺭﺩﺩﺍﺕ ﺍﻟﻤﺭﺘﻔﻌﻪ ﺒﺎﺴﺘﺨﺩﺍﻡ ﺍﺴﺘﺒﺩﺍل‬

‫‪348‬‬
‫‪353‬‬

‫ﺍﻟﻤﻜﻭﻨﺎﺕ ﺍﻟﻌﻴﻨﻴﻪ‬
‫)ﻤﻘﻁﻊ ‪ (١٣ - ٧‬ﻓﻠﺘﺭ ﻤﺭﻭﺭ ﺍﻟﺘﺭﺩﺩﺍﺕ ﺍﻟﻤﺭﺘﻔﻌﻪ ﺒﺎﺴﺘﺨﺩﺍﻡ ﺍﻟﺨﻁﻭﻁ‬

‫‪356‬‬

‫ﺍﻟﺸﺭﻴﻁﻴﻪ‬
‫)ﻤﻘﻁﻊ ‪ (١٤ - ٧‬ﻓﻠﺘﺭ ﺍﻴﻘﺎﻑ ﺤﻴﺯ ﺘﺭﺩﺩﻯ ﻤﻌﻴﻥ ﻤﻥ ﻨﻭﻉ ﺍﻟﺤﻠﻘﻪ‬

‫‪360‬‬

‫)ﻤﻘﻁﻊ ‪ (١٥ - ٧‬ﻓﻠﺘﺭ ﺍﻴﻘﺎﻑ ﺤﻴﺯ ﺘﺭﺩﺩﻯ ﻤﻌﻴﻥ ﺒﺎﺴﺘﺨﺩﺍﻡ ﻋﻨﺎﺼﺭ ﺍﻟﺭﻨﻴﻥ‬

‫‪362‬‬

‫ﺍﻟﻤﻘﺭﻭﻨﻪ‬
‫)ﻤﻘﻁﻊ ‪ (١٦ - ٧‬ﻓﻠﺘﺭ ﺍﻴﻘﺎﻑ ﺤﻴﺯ ﺘﺭﺩﺩﻯ ﻤﻌﻴﻥ ﺒﺎﺴﺘﺨﺩﺍﻡ ‪Open Circuit‬‬
‫‪Stubs‬‬
‫)ﻤﻘﻁﻊ ‪ (١٧ -٧‬ﻤﻔﺭﻗﺎﺕ ﺍﻟﺘﺭﺩﺩ )‪(Multiplexers‬‬

‫‪5‬‬

‫‪365‬‬
‫‪371‬‬

‫ﺍﻟﻤﻭﻀﻭﻉ‬
‫ﺍﻟﻔﺼل‬
‫)ﻤﻘﻁﻊ‬
‫)ﻤﻘﻁﻊ‬
‫)ﻤﻘﻁﻊ‬

‫ﺭﻗﻡ ﺍﻟﺼﻔﺤﻪ‬

‫ﺍﻟﺜﺎﻤﻥ ‪ :‬ﺍﻟﺘﺼﻨﻴﻊ ﻭ ﺍﻻﺨﺘﺒﺎﺭ ﻭ ﺍﻟﻘﻴﺎﺱ‬
‫‪Chapter 8 : Fabrication, Test and Measurement‬‬
‫‪381‬‬
‫‪ (١-٨‬ﺍﻟﺘﺼﻤﻴﻡ ﻭ ﺍﻟﺘﺼﻨﻴﻊ ﺒﻭﺍﺴﻁﺔ ﺍﻟﺤﺎﺴﺏ ‪CAD/CAM‬‬
‫‪384‬‬
‫‪ (٢-٨‬ﺘﺼﻨﻴﻊ ﺍﻟﺩﺍﺌﺭﻩ ﺍﻟﻤﻁﺒﻭﻋﻪ ‪PCB Fabrication‬‬
‫‪391‬‬
‫‪ (٣-٨‬ﺍﻟﻤﻭﺼﻼﺕ ﺍﻟﻤﺤﻭﺭﻴﻪ ‪Coaxial Connectors‬‬

‫)ﻤﻘﻁﻊ ‪ (٤-٨‬ﻤﻌﺎﻤﻠﺔ ﺍﻟﻤﻜﻭﻨﺎﺕ ﻭ ﺍﻟﻠﺤﺎﻡ‬
‫)ﻤﻘﻁﻊ ‪ (٥-٨‬ﺍﻟﺘﻐﻠﻴﻑ ﻭ ﺍﻟﺘﺠﻤﻴﻊ‬

‫‪398‬‬

‫‪Packaging and Assembly‬‬

‫)ﻤﻘﻁﻊ ‪ (٦-٨‬ﺍﻻﺨﺘﺒﺎﺭ ﻭ ﺍﻟﻘﻴﺎﺱ ‪Test and Measurement‬‬

‫‪6‬‬

‫‪404‬‬
‫‪410‬‬

‫‪Chapter 1 : Microwave Engineering and Technologies‬‬
‫اﻟﻔﺼﻞ اﻻول ‪ :‬هﻨﺪﺳﺔ و ﺗﻜﻨﻮﻟﻮﺟﻴﺎ اﻟﻤﻴﻜﺮووﻳﻒ‬

‫)ﻤﻘﻁﻊ ‪ (١-١‬ﺘﻘﺴﻴﻡ ﺍﻟﻁﻴﻑ ﺍﻟﻜﻬﺭﻭﻤﻐﻨﺎﻁﻴﺴﻰ ﻭ ﺘﻁﺒﻴﻘﺎﺕ ﺍﻟﻤﻴﻜﺭﻭﻭﻴﻑ ‪:‬‬

‫ﺍﻟﻤﻭﺠﺎﺕ ﺍﻟﻜﻬﺭﻭﻤﻐﻨﺎﻁﻴﺴﻴﻪ ﺘﻨﺘﺸﺭ ﻓﻰ ﺍﻟﻔﺭﺍﻍ ﺒﻨﻔﺱ ﺴﺭﻋﺔ ﺍﻟﻀﻭﺀ ) ‪ ( c = 299792458 m/s‬ﻣﻘﺎﺳﻪ‬
‫ﺑﺎﻟﻤﺘﺮ ﻓﻰ اﻟﺜﺎﻧﻴﻪ ﻓﻰ ﺸﻜل ﻤﺠﺎل ﻤﻐﻨﺎﻁﻴﺴﻰ ﻤﺘﻌﺎﻤﺩ ﻤﻊ ﻤﺠﺎل ﻜﻬﺭﺒﻰ ﻴﺘﺫﺒﺫﺏ ﻜل ﻤﻨﻬﻤﺎ ﺒﺘﺭﺩﺩ ﻤﻘﺎﺱ ﺒﻭﺤﺩﺓ‬

‫ﻫﺭﺘﺯ ﺃﻭ ﺫﺒﺫﺒﻪ ﻓﻰ ﺍﻟﺜﺎﻨﻴﻪ )‪ (frequency f Hz‬و ﻴﻜﻭﻥ ﻁﻭل ﺍﻟﻤﻭﺠﻪ ﻤﻘﺎﺴﺎ ﺒﺎﻟﻤﺘﺭ ) ‪wavelength λ‬‬
‫‪ (m‬ﺤﻴﺙ ) ‪ ( λ = c/f‬و ﻳﻮﺿﺢ اﻟﺸﻜﻞ )‪ (١-١‬اﻧﺘﺸﺎر ﺍﻟﻤﻭﺠﺎﺕ ﺍﻟﻜﻬﺭﻭﻤﻐﻨﺎﻁﻴﺴﻴﻪ ﻓﻰ ﺍﻟﻔﺭﺍﻍ ‪.‬‬

‫ﺷﻜﻞ )‪ : (١-١‬اﻧﺘﺸﺎر ﺍﻟﻤﻭﺠﺎﺕ ﺍﻟﻜﻬﺭﻭﻤﻐﻨﺎﻁﻴﺴﻴﻪ ﻓﻰ ﺍﻟﻔﺭﺍﻍ ‪.‬‬

‫ﻭ ﺘﻐﻁﻰ ﺍﻟﻤﻭﺠﺎﺕ ﺍﻟﻜﻬﺭﻭﻤﻐﻨﺎﻁﻴﺴﻴﻪ ﺤﻴﺯ ﻭﺍﺴﻊ ﻤﻥ ﺍﻟﺘﺭﺩﺩﺍﺕ ﻴﺘﺭﺍﻭﺡ ﺒﻴﻥ ﺍﻟﺘﺭﺩﺩﺍﺕ ﺍﻟﻤﻨﺨﻔﻀﻪ ﺠﺩﺍ ﺍﻟﻰ ﺤﻴﺯ‬
‫ﺍﻟﻀﻭﺀ ﻭ ﻴﻭﻀﺢ ﺍﻟﺠﺩﻭل ‪ ١-١‬ﺘﻘﺴﻴﻡ ﺠﺯﺀ ﻤﻥ ﺤﻴﺯ ﺍﻟﻤﻭﺠﺎﺕ ﺍﻟﻜﻬﺭﻭﻤﻐﻨﺎﻁﻴﺴﻴﻪ ﻭ ﺍﻟﺫﻯ ﻴﻁﻠﻕ ﻋﻠﻴﻪ ﻤﻭﺠﺎﺕ‬
‫ﺍﻟﺭﺍﺩﻴﻭ‪.‬‬

‫‪7‬‬

‫اﻟﺘﺮددات )‪(Frequencies‬‬
‫‪3 – 30 KHz‬‬
‫‪30 – 300 KHz‬‬
‫‪300 – 3000 KHz‬‬
‫‪3 – 30 MHz‬‬
‫‪30 – 300 MHz‬‬
‫‪300 – 3000 MHz‬‬
‫‪3 – 30 GHz‬‬
‫‪30 – 300 GHz‬‬

‫اﺳﻢ اﻟﺤﻴﺰ اﻟﺘﺮددى و اﺧﺘﺼﺎرﻩ‬
‫)‪(Frequency Range and Abbreviation‬‬
‫ﺗﺮدد ﻣﻨﺨﻔﺾ ﺟﺪا )‪(Very low frequency - VLF‬‬
‫ﺗﺮدد ﻣﻨﺨﻔﺾ )‪(Low frequency - LF‬‬
‫ﺗﺮدد ﻣﺘﻮﺳﻂ )‪(Medium frequency - MF‬‬
‫ﺗﺮدد ﻣﺮﺗﻔﻊ )‪(High frequency - HF‬‬
‫ﺗﺮدد ﻣﺮﺗﻔﻊ ﺟﺪا )‪(Very high frequency - VHF‬‬
‫ﺗﺮدد ﻣﺘﻄﺮف اﻻرﺗﻔﺎع )‪(Ultra high frequency - UHF‬‬
‫ﺗﺮدد ﻣﻔﺮط اﻻرﺗﻔﺎع )‪(Super high frequency - SHF‬‬
‫ﺗﺮدد ﻣﺮﺗﻔﻊ ﻻﻗﺼﻰ ﺣﺪ )‪(Extremely high frequency - EHF‬‬

‫ﺠﺩﻭل ) ‪ : ( ١-١‬ﺘﻘﺴﻴﻡ ﻤﺠﺎل ﺘﺭﺩﺩﺍﺕ ﺍﻟﺭﺍﺩﻴﻭ )‪(Ranges of Radio Waves‬‬

‫ﺃﻤﺎ ﺍﻟﺠﺯﺀ ﻤﻥ ﺤﻴﺯ ﻤﻭﺠﺎﺕ ﺍﻟﺭﺍﺩﻴﻭ ﻭ ﺍﻟﺫﻯ ﻴﻘﻊ ﺒﻴﻥ ﻭﺍﺤﺩ ﻭ ﺃﺭﺒﻌﻴﻥ ﺠﻴﺠﺎﻫﺭﺘﺯ ﻴﻁﻠﻕ ﻋﻠﻴﻪ ﺍﻟﻤﻭﺠﺎﺕ ﺍﻟﺩﻗﻴﻘﻪ ﺃﻭ‬
‫ﺍﻟﻤﻴﻜﺭﻭﻭﻴﻑ ﻭ ﻴﻭﻀﺢ ﺍﻟﺠﺩﻭل ‪ ١-٢‬ﺘﻘﺴﻴﻡ ﺤﻴﺯ ﺍﻟﻤﻴﻜﺭﻭﻭﻴﻑ‪.‬‬

‫اﺳﻢ اﻟﺤﻴﺰ اﻟﺘﺮددى‬
‫)‪(Frequency Band‬‬
‫‪L band‬‬
‫‪S band‬‬
‫‪C band‬‬
‫‪X band‬‬
‫‪Ku band‬‬
‫‪K band‬‬
‫‪Ka band‬‬

‫اﻟﺘﺮددات )‪(Frequencies‬‬
‫‪1 - 2 GHz‬‬
‫‪2 - 4 GHz‬‬
‫‪4 - 8 GHz‬‬
‫‪8 - 12 GHz‬‬
‫‪12 - 18 GHz‬‬
‫‪18 - 26 GHz‬‬
‫‪26 - 40 GHz‬‬

‫ﺠﺩﻭل ) ‪ : ( ٢-١‬ﺘﻘﺴﻴﻡ ﻤﺠﺎل ﺘﺭﺩﺩﺍﺕ ﺍﻟﻤﻴﻜﺭﻭﻭﻴﻑ )‪(Ranges of Microwaves‬‬

‫و هﻨﺎك ﺗﻘﺴﻴﻢ أﻳﻀﺎ ﻟﻠﻤﻮﺟﺎت اﻟﻤﻠﻠﻴﻤﺘﺮﻳﻪ )‪ (millimeter waves‬و اﻟﺘﻰ ﺗﻘﻊ ﻓﻰ اﻟﺤﻴﺰ اﻟﺘﺮددى ﻣﺎ ﺑﻴﻦ )‪40-‬‬
‫‪ ، (300 GHz‬ﻋﻠﻰ ﺳﺒﻴﻞ اﻟﻤﺜﺎل ﻳﺴﻤﻰ اﻟﺤﻴﺰ ﻣﺎ ﺑﻴﻦ )‪ (40-75 GHz‬ﺑﺎﺳﻢ )‪ (V band‬و ﻳﺴﻤﻰ اﻟﺤﻴﺰ ﻣﺎ ﺑﻴﻦ‬
‫)‪ (75-110 GHz‬ﺑﺎﺳﻢ )‪... ... (W band‬‬
‫ﻳﻮﺟﺪ ﻋﺪد آﺒﻴﺮ ﻣﻦ ﺗﻄﺒﻴﻘﺎت اﻟﻤﻮﺟﺎت اﻟﺪﻗﻴﻘﻪ أو اﻟﻤﻴﻜﺮووﻳﻒ ﻓﻬﻨﺎك ﺍﻟﺘﻁﺒﻴﻘﺎﺕ ﺍﻟﺯﺭﺍﻋﻴﻪ ] ﻤﺜل ﻤﻌﺎﻟﺠﺔ ﺍﻟﺘﺭﺒﻪ‬
‫– ﺍﻻﻨﺒﺎﺕ )‪ – ( germination‬ﺍﻜﺘﺸﺎﻑ ﺒﺨﺎﺭ ﺍﻟﻤﺎﺀ – ﺤﻤﺎﻴﺔ ﺍﻟﻤﺤﺎﺼﻴل ﻤﻥ ﺍﻟﻁﻘﺱ ﺍﻟﺸﺘﻭﻯ [ ﻭ ﺍﻟﺘﻁﺒﻴﻘﺎﺕ‬

‫‪8‬‬

‫ﺍﻟﻁﺒﻴﻪ ] ﻤﺜل ﺍﻟﺘﻌﻘﻴﻡ )‪ – (sterilization‬ﺍﻟﺘﺼﻭﻴﺭ ﺒﺎﻟﻤﻴﻜﺭﻭﻭﻴﻑ )‪ – (Microwave Imaging‬ﻤﺤﺎﻜﺎﺓ‬
‫ﺍﻟﻘﻠﺏ )‪ – (Heart Simulation‬ﺍﻟﺘﺤﻜﻡ ﻓﻰ ﺍﻟﻨﺯﻴﻑ )‪ [ (hemorrhaging control‬ﻭ ﺘﻁﺒﻴﻘﺎﺕ ﺍﻻﺫﺍﻋﻪ‬
‫] ﻤﺜل ﺍﻻﺫﺍﻋﻪ ﺍﻟﻤﺒﺎﺸﺭﻩ ﻤﻥ ﺍﻟﻘﻤﺭ ﺍﻟﺼﻨﺎﻋﻰ – ﺍﻟﺘﻠﻔﺎﺯ ﺍﻟﻌﺎﻟﻰ ﺍﻟﺘﻌﺭﻴﻑ – ﺃﻨﻅﻤﺔ ﺍﻟﺭﺍﺩﻴﻭ ﺍﻟﻌﺎﻤﻪ [ ﻭ ﺗﻄﺒﻴﻘﺎت‬
‫اﻻﺗﺼﺎﻻت ] ﻤﺜل اﻧﻈﻤﺔ اﻻﺗﺼﺎﻻت اﻟﺸﺨﺼﻴﻪ – اﺗﺼﺎﻻت اﻟﺒﻴﺎﻧﺎت اﻟﻤﺒﻨﻴﻪ ﻋﻠﻰ اﻻﻗﻤﺎر اﻟﺼﻨﺎﻋﻴﻪ [ و‬
‫ﺍﻟﺘﻁﺒﻴﻘﺎﺕ ﺍﻟﻤﻼﺤﻴﻪ ] ﻤﺜل ﻨﻅﺎﻡ ﺘﺤﺩﻴﺩ ﺍﻟﻤﻜﺎﻥ ﺍﻟﻌﺎﻡ )‪ [ (GPS‬و ﺘﻁﺒﻴﻘﺎﺕ ﺼﻨﺎﻋﻴﻪ ] ﻤﺜل ﻗﻴﺎﺱ ﺒﺨﺎﺭ ﺍﻟﻤﺎﺀ –‬
‫ﺍﻟﺘﺼﻭﻴﺭ ﺒﺎﻟﻤﻴﻜﺭﻭﻭﻴﻑ – ﻗﻴﺎﺱ ﺨﻭﺍﺹ ﺍﻟﻤﻭﺍﺩ – ﺍﻜﺘﺸﺎﻑ ﻋﻴﻭﺏ ﺍﻟﺩﻭﺍﺌﺭ ﺍﻟﻤﺘﻜﺎﻤﻠﻪ – ﺤﻔﻅ ﺍﻻﻏﺫﻴﻪ ‪ -‬ﺍﻟﻤﺴﺎﻋﺩﻩ‬
‫ﻓﻰ ﺍﻨﺘﺎﺝ ﺍﻟﺴﻴﺭﺍﻤﻴﻙ – ﺍﻟﺘﺠﻔﻴﻑ ﺍﻟﺼﻨﺎﻋﻰ – ﺍﻟﺘﺤﻜﻡ ﻓﻰ ﺒﺨﺎﺭ ﺍﻟﻤﺎﺀ [ ﻭ ﺘﻁﺒﻴﻘﺎﺕ ﺍﻻﺴﺘﺸﻌﺎﺭ ﻋﻥ ﺒﻌﺩ ] ﻤﺜل‬
‫ﺘﺼﻭﻴﺭ ﺴﻁﺢ ﺍﻻﺭﺽ ﻭ ﺘﺤﺕ ﺴﻁﺢ ﺍﻻﺭﺽ ﻭ ﺘﺤﺕ ﺴﻁﺢ ﺍﻟﻤﺎﺀ – ﺍﻟﺘﺤﻜﻡ ﻓﻰ ﺍﻟﺘﻠﻭﺙ [ ﻭ ﺍﻟﺘﻁﺒﻴﻘﺎﺕ‬
‫ﺍﻟﻌﺴﻜﺭﻴﻪ ] ﻤﺜل أﻧﻈﻤﺔ اﻟﺮادار و ﻣﺤﻄﺎت ﺗﻮﺟﻴﻪ اﻟﺼﻮارﻳﺦ و أﻧﻈﻤﺔ اﻟﺤﺮب اﻻﻟﻜﺘﺮوﻧﻴﻪ و اﻻﻗﻤﺎر اﻟﺼﻨﺎﻋﻴﻪ‬
‫اﻟﻤﺴﺘﺨﺪﻣﻪ ﻓﻰ اﻟﺘﺠﺴﺲ أو اﻟﺘﻨﺼﺖ [ و ﺘﻁﺒﻴﻘﺎﺕ ﺃﺨﺭﻯ ] ﻤﺜل ﺸﺒﻜﺎﺕ ﺍﻟﺤﺎﺴﺏ ﺍﻟﻼﺴﻠﻜﻴﻪ – ﺍﻟﺘﺠﻔﻴﻑ‬
‫ﺒﺎﻟﻤﻴﻜﺭﻭﻭﻴﻑ – ﺍﻟﺘﺴﺨﻴﻥ ﺒﺎﻟﻤﻴﻜﺭﻭﻭﻴﻑ [ ‪ .‬ﻭ ﻴﻤﻜﻥ ﺍﻟﺭﺠﻭﻉ ﻟﻠﻤﺭﺍﺠﻊ ) ﻤﻥ ‪ ١‬ﺍﻟﻰ ‪ (٨‬ﻟﻤﻌﺭﻓﺔ ﺒﻌﺽ ﺘﻔﺎﺼﻴل‬
‫ﻋﻥ ﺍﻟﺘﻁﺒﻴﻘﺎﺕ ﺍﻟﻤﺫﻜﻭﺭﻩ ﻭ ﺍﻟﻤﺯﻴﺩ ﻤﻥ ﺍﻟﺘﻁﺒﻴﻘﺎﺕ‪.‬‬

‫)ﻤﻘﻁﻊ ‪ (٢-١‬ﺘﻜﻨﻭﻟﻭﺠﻴﺎﺕ ﺍﻟﻤﻴﻜﺭﻭﻭﻴﻑ ‪:‬‬

‫ﺗﺴﺘﺨﺪم ﺧﻄﻮط اﻻرﺳﺎل )‪ (Transmission Lines‬ﻟﻠﻨﻘﻞ و اﻟﺘﺤﻜﻢ ﻓﻰ اﻟﻤﻮﺟﺎت اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴﻴﻪ ﻋﻤﻮﻣﺎ ‪،‬‬
‫وﻣﻨﻬﺎ ﻣﻮﺟﺎت اﻟﻤﻴﻜﺮووﻳﻒ و اﻟﺘﻰ ﻟﻬﺎ ﺧﻄﻮط ارﺳﺎل ﻣﻌﻴﻨﻪ ﻣﺜﻞ ﻣﺮﺷﺪ اﻟﻤﻮﺟﻪ و ﺍﻟﻜﺎﺒﻼﺕ ﺍﻟﻤﺤﻭﺭﻴﻪ ﻭ ﺍﻟﺨﻁﻭﻁ‬
‫ﺍﻟﺸﺭﻴﻁﻴﻪ ﺍﻟﺩﻗﻴﻘﻪ ﻭ ﻏﻴﺭﻫﺎ ﻭ ﻴﻜﻭﻥ ﺍﻨﺘﺸﺎﺭ ﺍﻟﻤﻭﺠﺎﺕ ﺩﺍﺨل ﺨﻁﻭﻁ ﺍﻻﺭﺴﺎل ﺒﺘﺭﺘﻴﺒﺎﺕ ﻤﻌﻴﻨﻪ ﻟﻜل ﻤﻥ ﺍﻟﻤﺠﺎل‬
‫ﺍﻟﻜﻬﺭﺒﻰ ﻭ ﺍﻟﻤﻐﻨﺎﻁﻴﺴﻰ ﻭ ﻴﺴﻤﻰ ﻜل ﺘﺭﺘﻴﺏ )‪ ، (mode‬ﻭ ﺘﺴﺘﺨﺩﻡ ﺧﻄﻮط اﻻرﺳﺎل ﺠﻤﻴﻌﻬﺎ ﻓﻰ ﺼﻨﺎﻋﺔ ﺩﻭﺍﺌﺭ‬
‫ﻭ ﺃﻨﻅﻤﺔ ﺍﻟﻤﻴﻜﺭﻭﻭﻴﻑ ﺒﺄﻨﻭﺍﻋﻬﺎ ‪ ،‬ﻭ ﻗﺩ ﺘﻁﻭﺭﺕ ﺘﻜﻨﻭﻟﻭﺠﻴﺎﺕ ﻫﺫﻩ ﺍﻟﺼﻨﺎﻋﻪ ﻟﺘﺨﺩﻡ ﺘﻁﺒﻴﻘﺎﺕ ﺍﻟﻤﻴﻜﺭﻭﻭﻴﻑ‬
‫ﺍﻟﻤﺨﺘﻠﻔﻪ ﻋﻠﻰ ﻤﺩﻯ ﻋﺸﺭﺍﺕ ﺍﻟﺴﻨﻭﺍﺕ ‪.‬‬
‫ﻅﻬﺭﺕ ﺘﻜﻨﻭﻟﻭﺠﻴﺎ ﻤﺭﺸﺩ ﺍﻟﻤﻭﺠﻪ )‪ (Waveguide Technology‬ﻜﺄﻭل ﺘﻜﻨﻭﻟﻭﺠﻴﺎ ﺘﺤﻤل ﻤﻭﺠﺎﺕ ﺍﻟﻤﻴﻜﺭﻭﻭﻴﻑ‬
‫ﻓﻰ ﺍﻟﻌﺎﻟﻡ ‪ ،‬ﻭ ﺃﺜﻨﺎﺀ ﺍﻟﺤﺭﺏ ﺍﻟﻌﺎﻟﻤﻴﻪ ﺍﻟﺜﺎﻨﻴﻪ ﻅﻬﺭﺕ ﺘﻁﺒﻴﻘﺎﺘﻬﺎ ﺍﻟﻬﺎﻤﻪ ﻤﺜل ﻤﺤﻁﺎﺕ ﺍﻟﺭﺍﺩﺍﺭ ‪ ،‬ﻭ ﺒﻌﺩ ﻨﻬﺎﻴﺔ ﺍﻟﺤﺭﺏ‬
‫‪9‬‬

‫ﻅﻬﺭﺕ ﺍﻟﻤﺭﺍﺠﻊ ﺍﻟﺘﻰ ﺘﺸﺭﺡ ﺍﺴﺘﺨﺩﺍﻤﺎﺕ ﻭ ﺍﺒﺤﺎﺙ ﺘﻜﻨﻭﻟﻭﺠﻴﺎ ﻤﺭﺸﺩ ﺍﻟﻤﻭﺠﻪ )‪(Waveguide Technology‬‬
‫ﻭ ﻤﻨﺫ ﺫﻟﻙ ﺍﻟﺤﻴﻥ ﺃﺼﺒﺤﺕ ﻫﺫﻩ ﺍﻟﺘﻜﻨﻭﻟﻭﺠﻴﺎ ﻫﻰ ﺍﻻﻜﺜﺭ ﺸﻴﻭﻋﺎ ﻓﻰ ﻨﻅﻡ ﺍﻟﻤﻴﻜﺭﻭﻭﻴﻑ ﻭ ﺍﺴﺘﻤﺭ ﺫﻟﻙ ﺨﺼﻭﺼﺎ ﺃﻥ‬
‫ﺍﻟﻔﻘﺩ )‪ (losses‬ﻓﻴﻬﺎ ﻜﺎﻥ ﺃﻗل ﻤﻥ ﺍﻟﻔﻘﺩ ﻓﻰ ﺘﻜﻨﻭﻟﻭﺠﻴﺎ ﺍﻟﻜﺎﺒﻼﺕ ﺍﻟﻤﺤﻭﺭﻴﻪ )‪ (coaxial cables‬ﻭﺍﻟﺘﻰ ﻜﺎﻨﺕ ﻤﻥ‬
‫ﺃﻭﺍﺌل ﺘﻜﻨﻭﻟﻭﺠﻴﺎﺕ ﺍﻟﻤﻴﻜﺭﻭﻭﻴﻑ‪.‬‬
‫ﻤﻊ ﻅﻬﻭﺭ ﺘﻁﺒﻴﻘﺎﺕ ﺃﺨﺭﻯ ﻟﻠﻤﻴﻜﺭﻭﻭﻴﻑ ﻤﻨﺫ ﺍﻟﺨﻤﺴﻴﻨﺎﺕ ﻤﻥ ﺍﻟﻘﺭﻥ ﺍﻟﻌﺸﺭﻴﻥ ﻭ ﺤﺘﻰ ﺍﻵﻥ ﻭ ﻨﻅﺭﺍ ﻷﻥ ﺍﻟﺩﻭﺍﺌﺭ‬
‫ﺍﻟﻤﺼﻨﻭﻋﻪ ﻤﻥ )‪(Waveguides and coaxial cables‬‬

‫ﻜﺒﻴﺭﺓ ﺍﻟﺤﺠﻡ ﻭ ﺜﻘﻴﻠﺔ ﺍﻟﻭﺯﻥ‬

‫ﻓﻘﺩ ﺘﻡ ﺍﻀﺎﻓﺔ‬

‫ﺘﻜﻨﻭﻟﻭﺠﻴﺎﺕ ﺍﻟﻤﻴﻜﺭﻭﻭﻴﻑ ﺍﻟﺴﻁﺤﻴﻪ )‪ (Planar Microwave Technonogies‬ﻤﺜل ﺘﻜﻨﻭﻟﻭﺠﻴﺎﺕ ﺩﻭﺍﺌﺭ‬
‫ﺍﻟﻤﻴﻜﺭﻭﻭﻴﻑ ﺍﻟﻤﺘﻜﺎﻤﻠﻪ ﺍﻟﻤﺨﺘﻠﻁﻪ )‪ ، (Hybrid Microwave Integrated Circuits‬ﻭ ﺩﻭﺍﺌﺭ ﺍﻟﻤﻴﻜﺭﻭﻭﻴﻑ‬
‫ﺍﻟﻤﺘﻜﺎﻤﻠﻪ ﺍﻟﻤﻭﺤﺩﻩ )‪(Monolithic Microwave Integrated Circuits‬‬
‫)‪(Cofired Ceramic‬‬

‫‪،‬‬

‫ﻭ ﺘﻜﻨﻭﻟﻭﺠﻴﺎﺕ ﺍﻟﺴﻴﺭﺍﻤﻴﻙ‬

‫‪ ،‬ﻭ ﺘﻜﻨﻭﻟﻭﺠﻴﺎ ﺍﻟﻤﺭﻜﺒﺎﺕ ﻤﺘﻌﺩﺩﺓ ﺍﻟﺭﻗﺎﺌﻕ )‪(MCM‬‬

‫‪ ،‬ﻭ ﺘﻜﻨﻭﻟﻭﺠﻴﺎ ﺍﻻﻨﻅﻤﺔ‬

‫ﺍﻟﻜﻬﺭﻭﻤﻴﻜﺎﻨﻴﻜﻴﻪ ﺍﻟﺩﻗﻴﻘﻪ )‪ ، (MEMS‬ﻭ ﻏﻴﺭﻫﺎ ﻤﻥ ﺍﻟﺘﻜﻨﻭﻟﻭﺠﻴﺎﺕ ﺍﻻﺴﺎﺴﻴﻪ ﻟﺘﺼﻨﻴﻊ ﺩﻭﺍﺌﺭ ﻭ ﻨﻅﻡ ﺍﻟﻤﻴﻜﺭﻭﻭﻴﻑ‬
‫ﻭ ﻓﻴﻤﺎ ﻴﻠﻰ ﺘﻌﺭﻴﻑ ﻤﺨﺘﺼﺭ ﻟﺒﻌﺽ ﻫﺫﻩ ﺍﻟﺘﻜﻨﻭﻟﻭﺠﻴﺎﺕ ‪:‬‬

‫)ﺃ(‪ -‬ﺘﻜﻨﻭﻟﻭﺠﻴﺎ ﻤﺭﺸﺩ ﺍﻟﻤﻭﺠﻪ )‪(Waveguide Technology‬‬
‫ﻫﺫﻩ ﺍﻟﺘﻜﻨﻭﻟﻭﺠﻴﺎ ﺘﺴﺘﺨﺩﻡ ﻓﻰ ﺘﺼﻨﻴﻊ ﺩﻭﺍﺌﺭ ﻭ ﻨﻅﻡ ﺍﻟﻤﻴﻜﺭﻭﻭﻴﻑ ﻭ ﺍﻟﻤﻭﺠﺎﺕ ﺍﻟﻤﻠﻠﻴﻤﺘﺭﻴﻪ ‪millimeter waves‬‬
‫ﻭﻫﻰ ﺘﺘﻤﻴﺯ ﺒﺜﻘل ﺍﻟﻭﺯﻥ ﻭ ﻜﺒﺭ ﺍﻟﺤﺠﻡ ﺒﺎﻟﻨﺴﺒﻪ ﻟﻠﺘﻜﻨﻭﻟﻭﺠﻴﺎﺕ ﺍﻻﺨﺭﻯ ﻟﻜﻥ ﻨﻅﺭﺍ ﻟﺘﺤﻤﻠﻬﺎ ﻗﺩﺭﻩ )‪ (Power‬ﺃﻜﺒﺭ‬
‫ﻤﻥ ﻤﻌﻅﻡ ﺍﻟﺘﻜﻨﻭﻟﻭﺠﻴﺎﺕ ﺍﻻﺨﺭﻯ ﻭ ﻨﻅﺭﺍ ﻻﻨﺨﻔﺎﺽ ﺍﻟﻔﻘﺩ )‪ (losses‬ﻓﻴﻬﺎ ﻓﺎﻨﻬﺎ ﻤﺎﺯﺍﻟﺕ ﺘﺴﺘﺨﺩﻡ ﻭ ﺨﺎﺼﺔ ﻓﻰ‬
‫ﺍﻻﻨﻅﻤﻪ ﺍﻟﻤﺴﺘﺨﺩﻤﻪ ﻟﻠﻘﺩﺭﻩ ﺍﻟﻌﺎﻟﻴﻪ‪.‬‬
‫ﻭ ﻫﻨﺎﻙ ﺃﻨﻭﺍﻉ ﻤﻥ ﺨﻁﻭﻁ ﻤﺭﺸﺩ ﺍﻟﻤﻭﺠﻪ )‪ (Waveguide Transmission lines‬ﻭﻫﻰ ﻤﺭﺸﺩ ﺍﻟﻤﻭﺠﻪ‬
‫ﺍﻟﻤﺘﻭﺍﺯﻯ ﺍﻻﻀﻼﻉ )‪ (Rectangular Waveguide‬ﻭ ﻤﺭﺸﺩ ﺍﻟﻤﻭﺠﻪ ﺍﻟﻤﺴﺘﺩﻴﺭ )‪(Circular Waveguide‬‬
‫ﻭ ﻤﺭﺸﺩ ﺍﻟﻤﻭﺠﻪ ﺍﻟﻤﺸﻁﻭﻑ‬

‫)‪ (Ridged Waveguide‬ﻭ ﻤﺭﺸﺩ ﺍﻟﻤﻭﺠﻪ ﻤﺯﺩﻭﺝ ﺍﻟﺸﻁﻑ‬

‫) ‪double‬‬

‫‪ (Ridged Waveguide‬ﻭ ﻴﻭﻀﺢ ﺍﻟﺠﺩﻭل )‪ (٣-١‬ﺷﻜﻞ اﻟﻤﻘﻄﻊ ﻟﻬﺬﻩ اﻻﻧﻮاع ‪ .‬و ﻳﺒﻴﻦ اﻟﺸﻜﻞ )‪ (٢-١‬ﺑﻌﺾ‬
‫ﺧﻄﻮط ﻣﺮﺷﺪ اﻟﻤﻮﺟﻪ ‪ ،‬آﻤﺎ ﻳﺒﻴﻦ اﻟﺸﻜﻞ )‪ (٣-١‬ﺑﻌﺾ اﻟﺪواﺋﺮ )اﻟﻔﻼ ﺗﺮ( اﻟﻤﺼﻨﻮﻋﻪ ﺑﺎﺳﺘﺨﺪام ﺗﻜﻨﻮﻟﻮﺟﻴﺎ ﻣﺮﺷﺪ‬
‫اﻟﻤﻮﺟﻪ‪.‬‬

‫‪10‬‬

‫ﻨﻭﻉ ﺨﻁ ﻤﺭﺸﺩ ﺍﻟﻤﻭﺠﻪ‬

‫ﺸﻜل ﺍﻟﻤﻘﻁﻊ‬

‫ﻤﺭﺸﺩ ﺍﻟﻤﻭﺠﻪ ﺍﻟﻤﺘﻭﺍﺯﻯ ﺍﻻﻀﻼﻉ )‪(Rectangular Waveguide‬‬

‫ﻤﺭﺸﺩ ﺍﻟﻤﻭﺠﻪ ﺍﻟﻤﺴﺘﺩﻴﺭ )‪(Circular Waveguide‬‬

‫ﻤﺭﺸﺩ ﺍﻟﻤﻭﺠﻪ ﺍﻟﻤﺸﻁﻭﻑ )‪(Ridged Waveguide‬‬

‫ﻤﺭﺸﺩ ﺍﻟﻤﻭﺠﻪ ﻤﺯﺩﻭﺝ ﺍﻟﺸﻁﻑ )‪(double Ridged Waveguide‬‬

‫ﺠﺩﻭل )‪ : (٣-١‬ﺃﻨﻭﺍﻉ ﺨﻁﻭﻁ ﻤﺭﺸﺩ ﺍﻟﻤﻭﺠﻪ‪.‬‬

‫ﺷﻜﻞ )‪ : (٢-١‬ﺑﻌﺾ ﺧﻄﻮط ﻣﺮﺷﺪ اﻟﻤﻮﺟﻪ‬

‫ﺷﻜﻞ )‪ : (٣-١‬ﺑﻌﺾ اﻟﻔﻼ ﺗﺮ اﻟﻤﺼﻨﻮﻋﻪ ﺑﺎﺳﺘﺨﺪام ﺗﻜﻨﻮﻟﻮﺟﻴﺎ ﻣﺮﺷﺪ اﻟﻤﻮﺟﻪ‬

‫‪11‬‬

‫)ﺏ(‪ -‬ﺘﻜﻨﻭﻟﻭﺠﻴﺎ ﺍﻟﻜﺎﺒﻼﺕ ﺍﻟﻤﺤﻭﺭﻴﻪ )‪(coaxial cables‬‬
‫ﻫﺫﻩ ﺍﻟﺘﻜﻨﻭﻟﻭﺠﻴﺎ ﺸﺎﺌﻌﺔ ﺍﻻﻨﺘﺸﺎﺭ‬

‫ﻻﻨﻬﺎ ﺘﺴﺘﺨﺩﻡ ﻗﻰ ﻋﻤل ﺍﻟﻌﺩﻴﺩ‬

‫ﻤﻥ ﺍﻟﺩﻭﺍﺌﺭ‬

‫ﻤﺜل‬

‫ﻤﻘﺴﻤﺎﺕ‬

‫ﺍﻟﻘﺩﺭﻩ‬

‫)‪ (power splitters‬ﻭ ﺍﻟﻤﻭﻫﻨﺎﺕ )‪ (attenuators‬ﻭ ﻏﻴﺭﻫﺎ ﺒﺎﻻﻀﺎﻓﻪ ﺍﻟﻰ ﺃﻨﻭﺍﻉ ﻋﺩﻴﺩﻩ ﻤﻥ ﺍﻟﻘﻁﻊ ﺍﻟﺘﻜﻤﻴﻠﻴﻪ‬
‫)‪ (accessories‬ﻭ ﺍﻟﺭﻭﺍﺒﻁ )‪ (connectors‬ﻭ ﺍﻟﻜﺎﺒﻼﺕ ﺍﻟﻤﺭﻨﻪ )‪ (flexible cables‬ﻭ ﺍﻟﻜﺎﺒﻼﺕ ﺍﻟﻘﺎﺴﻴﻪ ﻭ‬
‫ﻏﻴﺭﻫﺎ ﻭ ﻴﺒﻴﻥ اﻟﺸﻜﻞ )‪ (٤-١‬ﺗﻮﺿﻴﺢ ﻟﻠﻜﺎﺑﻞ اﻟﻤﺤﻮرى و اﻟﺸﻜﻞ )‪ (٥-١‬ﺑﻪ ﺻﻮرﻩ ﻟﻤﻮهﻦ )‪(Attenuator‬‬
‫ﻣﺼﻨﻮع ﺑﻬﺬﻩ اﻟﺘﻜﻨﻮﻟﻮﺟﻴﺎ‪.‬‬
‫ﻭ ﻫﺫﻩ ﺍﻟﺘﻜﻨﻭﻟﻭﺠﻴﺎ ﻫﺎﻤﻪ ﺠﺩﺍ ﻓﻰ ﻜل ﺍﻟﺘﻁﺒﻴﻘﺎﺕ ﺤﺘﻰ ﻭ ﻟﻡ ﺘﺼﻨﻊ ﻤﻨﻬﺎ ﺩﻭﺍﺌﺭ ﻓﺎﻟﺭﻭﺍﺒﻁ ﻭ ﺍﻟﻘﻁﻊ ﺍﻟﺘﻜﻤﻴﻠﻴﻪ ﻭ‬
‫ﺍﻟﻜﺎﺒﻼﺕ ﻤﻬﻤﻪ ﻟﻠﺘﻭﺼﻴل ﺒﻴﻥ ﺍﻟﺩﻭﺍﺌﺭ ﺍﻟﻤﺨﺘﻠﻔﻪ ﻭﻫﻰ ﺃﺴﺎﺴﻴﻪ ﻟﻌﻤﻠﻴﺎﺕ ﺍﻻﺨﺘﺒﺎﺭ ﻭ ﺍﻟﻘﻴﺎﺱ‪.‬‬

‫ﻤﻘﻁﻊ ﻓﻰ ﺍﻟﻜﺎﺒل ﺍﻟﻤﺤﻭﺭﻯ‬

‫ﺭﺴﻡ ﺜﻼﺜﻰ ﺍﻻﺒﻌﺎﺩ ﻟﻠﻜﺎﺒل ﺍﻟﻤﺤﻭﺭﻯ‬

‫ﺸﻜل )‪ : (٤-١‬ﺘﻭﻀﻴﺢ ﻤﺒﺴﻁ ﻟﻠﻜﺎﺒل ﺍﻟﻤﺤﻭﺭﻯ‬

‫ﺷﻜﻞ )‪ : (٥-١‬ﻤﻭﻫﻥ ﻤﺼﻨﻊ ﺒﺘﻜﻨﻭﻟﻭﺠﻴﺎ ﺍﻟﻜﺎﺒل ﺍﻟﻤﺤﻭﺭﻯ )‪(Coaxial Attenuator‬‬

‫)ﺝ(‪ -‬ﺩﻭﺍﺌﺭ ﺍﻟﻤﻴﻜﺭﻭﻭﻴﻑ ﺍﻟﻤﺘﻜﺎﻤﻠﻪ ﺍﻟﻤﻭﺤﺩﻩ )‪(Monolithic Microwave Integrated Circuits‬‬

‫ﺩﻭﺍﺌﺭ ﺍﻟﻤﻴﻜﺭﻭﻭﻴﻑ ﺍﻟﻤﺘﻜﺎﻤﻠﻪ ﺍﻟﻤﻭﺤﺩﻩ )‪ (MMIC‬ﻫﻰ ﺩﻭﺍﺌﺭ ﻤﺘﻜﺎﻤﻠﻪ ﻤﺼﻨﻭﻋﻪ ﺒﻤﺎﺩﺓ ﺃﺭﺴﻴﻨﺎﺩ ﺍﻟﺠﺎﻟﻴﻭﻡ‬
‫)‪ (GaAs‬ﻭ ﻴﺘﻡ ﺘﺼﻨﻴﻊ ﻜل ﻤﻜﻭﻨﺎﺕ ﺍﻟﺩﺍﺌﺭﻩ ﺍﻟﺨﺎﻤﻠﻪ )‪ (passive‬ﻭ ﺍﻟﻨﺸﻴﻁﻪ )‪ (active‬ﻤﻥ ﻤﻘﺎﻭﻤﺎﺕ ﻭ‬

‫‪12‬‬

‫ﻤﻜﺜﻔﺎﺕ ﻭ ﺘﺭﺍﻨﺯﺴﺘﻭﺭﺍﺕ ﺍﻟﺦ ﻋﻠﻰ ﻨﻔﺱ ﺍﻟﺭﻗﺎﻗﻪ )‪ (chip‬ﺒﺎﺴﺘﺨﺩﺍﻡ ﻁﺭﻴﻘﺔ ﻁﺒﺎﻋﺔ ﺸﻌﺎﻉ ﺍﻻﻟﻜﺘﺭﻭﻨﺎﺕ‬
‫)‪ (electron-beam {e-beam} lithography technology‬ﺃﻭ ﺍﻟﻁﺒﺎﻋﻪ ﺍﻟﻀﻭﺌﻴﻪ ﺍﻟﻤﺘﻘﺩﻤﻪ ) ‪Advanced‬‬
‫‪ (photo-lithography technology‬ﻭ ﻫﻰ ﻨﻔﺱ ﻁﺭﻕ ﺼﻨﺎﻋﺔ ﺩﻭﺍﺌﺭ ﺍﻟﺴﻴﻠﻴﻜﻭﻥ ﺍﻟﻤﺘﻜﺎﻤﻠﻪ ﻤﻊ ﺍﺨﺘﻼﻑ‬
‫ﺍﻟﻤﻌﺎﻟﺠﻪ‪.‬‬
‫ﻫﺫﻩ ﺍﻟﺘﻜﻨﻭﻟﻭﺠﻴﺎ ﺘﺴﺘﺨﺩﻡ ﻓﻰ ﺘﺼﻨﻴﻊ ﺩﻭﺍﺌﺭ ﻭ ﻨﻅﻡ ﺍﻟﻤﻴﻜﺭﻭﻭﻴﻑ ﻭ ﺍﻟﻤﻭﺠﺎﺕ ﺍﻟﻤﻠﻠﻴﻤﺘﺭﻴﻪ ﻋﺎﻟﻴﺔ ﻭ ﻤﻨﺨﻔﻀﺔ ﺍﻟﻘﺩﺭﻩ‬
‫ﻭ ﺘﻤﺘﺎﺯ ﻫﺫﻩ ﺍﻟﺩﻭﺍﺌﺭ ﺒﺼﻐﺭ ﺍﻟﺤﺠﻡ ﻭ ﺍﻟﻭﺯﻥ ﻭ ﻴﺒﻴﻥ ﺍﻟﺸﻜل )‪ (٦-١‬ﻣﻘﻄﻊ ﻓﻰ داﺋﺮﻩ ﻣﺼﻨﻮﻋﻪ ﺑﺘﻜﻨﻮﻟﻮﺟﻴﺎ‬
‫)‪ (MMIC‬ﻴﻭﻀﺢ ﺍﻟﻤﻜﻭﻨﺎﺕ ﺍﻟﻤﺨﺘﻠﻔﻪ ﻭ ﺴﻤﻙ ﺍﻟﺩﺍﺌﺭﻩ ‪ ،‬ﻭ ﻴﺒﻴﻥ ﺍﻟﺸﻜل )‪ (٧-١‬ﺻﻮرﻩ ﻟﺪاﺋﺮﻩ ﻣﺼﻨﻮﻋﻪ ﺑﻬﺬﻩ‬
‫اﻟﺘﻜﻨﻮﻟﻮﺟﻴﺎ‪.‬‬

‫ﺸﻜل )‪ : (٦-١‬ﻣﻘﻄﻊ ﻓﻰ داﺋﺮﻩ ﻣﺼﻨﻮﻋﻪ ﺑﺘﻜﻨﻮﻟﻮﺟﻴﺎ )‪(MMIC‬‬

‫ﺸﻜل )‪ : (٧-١‬ﺻﻮرﻩ ﻟﺪاﺋﺮﻩ ﻣﺼﻨﻮﻋﻪ ﺑﺘﻜﻨﻮﻟﻮﺟﻴﺎ )‪(MMIC‬‬

‫‪13‬‬

‫)ﺩ(‪ -‬ﺩﻭﺍﺌﺭ ﺍﻟﺴﻴﺭﺍﻤﻴﻙ )‪(Cofired Ceramic‬‬
‫ﺃﻭ ﺩﻭﺍﺌﺭ ﺍﻟﺴﻴﺭﺍﻤﻴﻙ ﺍﻟﻤﺤﺘﺭﻗﻪ ﻭ ﻫﻰ ﺩﻭﺍﺌﺭ ﻤﺘﻌﺩﺩﺓ ﺍﻟﻁﺒﻘﺎﺕ ﺘﺼﻨﻊ ﻤﻥ ﻁﺒﻘﺎﺕ ﻋﻭﺍﺯل )‪(dielectric layers‬‬
‫ﻋﻠﻰ ﺸﻜل ﺸﺭﺍﺌﻁ ﺴﻴﺭﺍﻤﻴﻜﻴﻪ ﻏﻴﺭ ﻤﺤﺘﺭﻗﻪ )‪ (unfired ceramic tapes‬ﻭ ﻴﻁﻠﻕ ﻋﻠﻴﻬﺎ ﻤﺠﺎﺯﺍ ﺍﻟﺸﺭﺍﺌﻁ‬
‫ﺍﻟﺨﻀﺭﺍﺀ )‪ (green tapes‬ﻭ ﺘﺘﻡ ﻓﻰ ﻫﺫﻩ ﺍﻟﻁﺒﻘﺎﺕ ﻋﻤﻠﻴﺎﺕ ﺍﻟﺘﺠﻭﻴﻑ ﻭ ﺍﻟﺘﺜﻘﻴﺏ ) ‪blanking and punching‬‬
‫‪ (vias‬ﻭ ﻋﻤﻠﻴﺎﺕ ﻁﺒﺎﻋﺔ ﺍﻟﻤﻭﺼﻼﺕ )‪ (conductor screen printing‬ﺜﻡ ﻴﺘﻡ ﺘﺠﻤﻴﻊ ﺍﻟﻁﺒﻘﺎﺕ ﻭ ﻗﻰ ﺍﻟﻨﻬﺎﻴﻪ‬
‫ﺘﺘﻡ ﻋﻤﻠﻴﺔ ﺍﻟﺤﺭﻕ )‪.(firing‬‬
‫ﻓﻰ ﺤﺎﻟﺔ ﺍﺴﺘﺨﺩﺍﻡ ﻤﻭﺍﺩ ﺴﻴﺭﺍﻤﻴﻜﻴﻪ ﻤﻌﻴﻨﻪ ﻴﺘﻡ ﺍﻟﺤﺭﻕ ﻋﻨﺩ ﺩﺭﺠﺎﺕ ﺤﺭﺍﺭﻩ ﻤﺎﺒﻴﻥ ) ‪ ( 1600 –1500‬ﺩﺭﺠﻪ ﻤﺌﻭﻴﻪ‬
‫ﻭ ﺘﺴﻤﻰ ﺍﻟﺩﻭﺍﺌﺭ ﺩﻭﺍﺌﺭ ﺍﻟﺴﻴﺭﺍﻤﻴﻙ ﺍﻟﻤﺤﺘﺭﻗﻪ ﻓﻰ ﺩﺭﺠﺔ ﺤﺭﺍﺭﻩ ﻋﺎﻟﻴﻪ ) ‪High Temperature Cofired‬‬
‫‪ (Ceramic - HTCC‬ﺒﻴﻨﻤﺎ ﻟﻭ ﺘﻡ ﺍﻟﺤﺭﻕ ﻋﻨﺩ ﺩﺭﺠﺎﺕ ﺤﺭﺍﺭﻩ ﻤﺎﺒﻴﻥ )‪ (900 - 850‬ﺩﺭﺠﻪ ﻤﺌﻭﻴﻪ ﺘﺴﻤﻰ‬
‫ﺍﻟﺩﻭﺍﺌﺭ ﺩﻭﺍﺌﺭ ﺍﻟﺴﻴﺭﺍﻤﻴﻙ ﺍﻟﻤﺤﺘﺭﻗﻪ ﻓﻰ ﺩﺭﺠﺔ ﺤﺭﺍﺭﻩ ﻤﻨﺨﻔﻀﻪ ) ‪Low Temperature Cofired Ceramic‬‬
‫‪ (- LTCC‬ﻭ ﺍﻟﺘﻰ ﺘﺘﻤﻴﺯ ﺒﻌﺩﺩ ﺍﻟﻁﺒﻘﺎﺕ ﺍﻟﻐﻴﺭ ﻤﺤﺩﻭﺩ‪.‬‬
‫ﻭﻴﺘﻡ ﺼﻨﺎﻋﺔ ﺠﻤﻴﻊ ﺍﻟﻤﻜﻭﻨﺎﺕ ﻤﻥ ﻤﻘﺎﻭﻤﺎﺕ ﻭ ﻤﻜﺜﻔﺎﺕ ﻭ ﻤﻠﻔﺎﺕ ﻭ ﺨﻁﻭﻁ )‪ (Transmission lines‬ﻓﻰ ﺠﻤﻴﻊ‬
‫ﺍﻟﻁﺒﻘﺎﺕ ﻤﻊ ﺍﻤﻜﺎﻨﻴﺔ ﻟﺤﺎﻡ ﻤﻜﻭﻨﺎﺕ ﻭ ﺩﻭﺍﺌﺭ ﻤﺘﻜﺎﻤﻠﻪ ﻋﻠﻰ ﺍﻟﻁﺒﻘﻪ ﺍﻟﻌﻠﻴﺎ‪.‬‬
‫ﻭ ﻴﻌﻴﺏ ﻫﺫﻩ ﺍﻟﺘﻜﻨﻭﻟﻭﺠﻴﺎ ﻀﻌﻑ ﺍﻟﺘﻭﺼﻴل ﺍﻟﺤﺭﺍﺭﻯ )‪ (poor thermal conductivity‬ﻤﻤﺎ ﻴﺘﻁﻠﺏ ﺍﺴﺘﺨﺩﺍﻡ‬
‫ﻤﻭﺯﻋﺎﺕ ﻟﻠﺤﺭﺍﺭﻩ )‪ (heat spreaders‬ﻤﻊ ﻤﻜﻭﻨﺎﺕ ﺍﻟﻘﺩﺭﻩ ﺍﻟﻌﺎﻟﻴﻪ )‪ (power devices‬ﻭﻴﺒﻴﻥ ﺍﻟﺸﻜل )‪(٨-١‬‬
‫ﻣﻘﻄﻊ ﻓﻰ داﺋﺮﻩ ﻣﺼﻨﻮﻋﻪ ﺑﺘﻜﻨﻮﻟﻮﺟﻴﺎ )‪ (LTCC‬ﻭ ﻴﻭﻀﺢ ﺘﺭﻜﻴﺏ ﺍﻟﻤﻜﻭﻨﺎﺕ ﺍﻟﺴﻁﺤﻴﻪ ﻭ ﺍﻟﺭﻗﺎﺌﻕ ﻋﻠﻴﻬﺎ‪.‬‬

‫ﺸﻜل )‪ : (٨-١‬ﻣﻘﻄﻊ ﻓﻰ داﺋﺮﻩ ﻣﺼﻨﻮﻋﻪ ﺑﺘﻜﻨﻮﻟﻮﺟﻴﺎ )‪(LTCC‬‬

‫‪14‬‬

‫)ﻫـ(‪ -‬ﺘﻜﻨﻭﻟﻭﺠﻴﺎ ﺍﻟﻤﺭﻜﺒﺎﺕ ﻤﺘﻌﺩﺩﺓ ﺍﻟﺭﻗﺎﺌﻕ )‪(Multichip Module - MCM‬‬

‫ﺩﻭﺍﺌﺭ ﺍﻟﻤﺭﻜﺒﺎﺕ ﻤﺘﻌﺩﺩﺓ ﺍﻟﺭﻗﺎﺌﻕ ﻫﻰ ﺩﻭﺍﺌﺭ ﻴﺘﻡ ﻓﻴﻬﺎ ﺘﺠﻤﻴﻊ ﺍﻟﻌﺩﻴﺩ ﻤﻥ ﺍﻟﺭﻗﺎﻗﺎﺕ ﺍﻟﻤﻨﻔﺼﻠﻪ ﻟﺘﻭﻀﻊ ﻤﻌﺎ ﻓﻰ ﻨﻔﺱ‬
‫ﺍﻟﺤﺯﻤﻪ )‪.(several bare die chips are mounted on a single package‬‬
‫ﻭ ﺘﻨﻘﺴﻡ ﺍﻟﻤﺭﻜﺒﺎﺕ ﻤﺘﻌﺩﺩﺓ ﺍﻟﺭﻗﺎﺌﻕ )‪ (MCM‬ﺍﻟﻰ ﺜﻼﺙ ﺘﻜﻨﻭﻟﻭﺠﻴﺎﺕ ﺭﺌﻴﺴﻴﻪ ﻭﻫﻰ ﺍﻟﻤﺭﻜﺒﺎﺕ ﻤﺘﻌﺩﺩﺓ ﺍﻟﺭﻗﺎﺌﻕ‬
‫ ﺍﻟﺸﺭﺍﺌﺢ )‪ (MCM-L‬ﻭ ﺍﻟﻤﺭﻜﺒﺎﺕ ﻤﺘﻌﺩﺩﺓ ﺍﻟﺭﻗﺎﺌﻕ ﺍﻟﺴﻴﺭﺍﻤﻴﻜﻴﻪ )‪ (MCM-C‬ﻭ ﺍﻟﻤﺭﻜﺒﺎﺕ ﻤﺘﻌﺩﺩﺓ ﺍﻟﺭﻗﺎﺌﻕ‬‫ﺍﻟﻤﺭﺴﺒﻪ )‪ (MCM-D‬ﻭ ﺘﺭﻤﺯ ﺍﻟﺤﺭﻭﻑ )‪ (L , C and D‬ﺍﻟﻰ )‪(Laminate , Ceramic and Deposited‬‬
‫ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ‪.‬‬
‫ﺩﻭﺍﺌﺭ ﺍﻟﻤﺭﻜﺒﺎﺕ ﻤﺘﻌﺩﺩﺓ ﺍﻟﺭﻗﺎﺌﻕ‪ -‬ﺍﻟﺸﺭﺍﺌﺢ )‪ (MCM-L‬ﻴﺘﻡ ﺘﺼﻨﻴﻌﻬﺎ ﺒﺘﻜﻨﻭﻟﻭﺠﻴﺎﺕ ﻁﺒﺎﻋﺔ ﺍﻟﺩﻭﺍﺌﺭ ) ‪printed‬‬
‫‪(circuit board PCB technologies‬‬

‫ﺃﻤﺎ ﺍﻟﻤﺭﻜﺒﺎﺕ ﻤﺘﻌﺩﺩﺓ ﺍﻟﺭﻗﺎﺌﻕ ﺍﻟﺴﻴﺭﺍﻤﻴﻜﻴﻪ )‪ (MCM-C‬ﻓﻴﺘﻡ‬

‫ﺘﺼﻨﻴﻌﻬﺎ ﺒﻨﻔﺱ ﻁﺭﻕ ﺘﺼﻨﻴﻊ ﺩﻭﺍﺌﺭ ﺍﻟﺴﻴﺭﺍﻤﻴﻙ ﺍﻟﻤﺤﺘﺭﻗﻪ )‪ (Cofired Ceramic‬ﺍﻟﻤﺫﻜﻭﺭﻩ ﺃﻋﻼﻩ ﺃﻤﺎ ﺍﻟﻤﺭﻜﺒﺎﺕ‬
‫ﻤﺘﻌﺩﺩﺓ ﺍﻟﺭﻗﺎﺌﻕ ﺍﻟﻤﺭﺴﺒﻪ )‪ (MCM-D‬ﻓﻴﺘﻡ ﺘﺼﻨﻴﻌﻬﺎ ﺒﻁﺭﻕ ﺘﺼﻨﻴﻊ ﺘﻜﻨﻭﻟﻭﺠﻴﺎﺕ ﺍﻟﺴﻴﻠﻴﻜﻭﻥ ﺃﻭ ﺴﻴﺭﺍﻤﻴﻜﺎﺕ ﺍﻟﻔﻴﻠﻡ‬
‫ﺍﻟﺭﻗﻴﻕ )‪. (thin film ceramic‬‬
‫ﻭ ﺘﻘﺩﻡ ﺘﻜﻨﻭﻟﻭﺠﻴﺎ ﺍﻟﻤﺭﻜﺒﺎﺕ ﻤﺘﻌﺩﺩﺓ ﺍﻟﺭﻗﺎﺌﻕ‪ -‬ﺍﻟﺸﺭﺍﺌﺢ )‪ (MCM-L‬ﺤﻠﻭﻻ ﻤﻨﺨﻔﻀﺔ ﺍﻟﺘﻜﺎﻟﻴﻑ ﻟﺘﺼﻨﻴﻊ ﺩﻭﺍﺌﺭ‬
‫ﻭ ﻨﻅﻡ ﺍﻟﻤﻴﻜﺭﻭﻭﻴﻑ ﻭ ﻴﺒﻴﻥ ﺍﻟﺸﻜل )‪ (٩-١‬ﻣﻘﻄﻊ ﻓﻰ داﺋﺮﻩ ﻣﺼﻨﻮﻋﻪ ﺑﺘﻜﻨﻮﻟﻮﺟﻴﺎ )‪ (MCM-L‬ﻭ ﻴﻭﻀﺢ‬
‫ﺍﻟﻤﻜﻭﻨﺎﺕ ﺍﻟﻤﺒﻨﻴﻪ ﺩﺍﺨل ﺍﻟﺩﺍﺌﺭﻩ ﻭ ﺍﻟﻤﻠﺤﻭﻤﻪ ﻋﻠﻴﻬﺎ ‪ ،‬ﻜﻤﺎ ﻴﺒﻴﻥ ﺍﻟﺸﻜل )‪ (١٠-١‬رﺳﻢ ﺛﻼﺛﻰ اﻻﺑﻌﺎد ﻟﺪاﺋﺮﻩ‬
‫ﻣﺼﻨﻮﻋﻪ ﺑﻬﺬﻩ اﻟﺘﻜﻨﻮﻟﻮﺟﻴﺎ ‪.‬‬

‫ﺸﻜل )‪ : (٩-١‬ﻣﻘﻄﻊ ﻓﻰ داﺋﺮﻩ ﻣﺼﻨﻮﻋﻪ ﺑﺘﻜﻨﻮﻟﻮﺟﻴﺎ )‪(MCM-L‬‬

‫‪15‬‬

‫ﺸﻜل )‪ : (١٠-١‬رﺳﻢ ﺛﻼﺛﻰ اﻻﺑﻌﺎد ﻟﺪاﺋﺮﻩ ﻣﺼﻨﻮﻋﻪ ﺑﺘﻜﻨﻮﻟﻮﺟﻴﺎ )‪(MCM-L‬‬

‫)ﻭ(‪ -‬ﺘﻜﻨﻭﻟﻭﺠﻴﺎ ﺍﻻﻨﻅﻤﺔ ﺍﻟﻜﻬﺭﻭﻤﻴﻜﺎﻨﻴﻜﻴﻪ ﺍﻟﺩﻗﻴﻘﻪ )‪(Micro-Electro-Mechanical Systems MEMS‬‬

‫ﻫﺫﻩ ﺍﻟﺘﻜﻨﻭﻟﻭﺠﻴﺎ ﻫﻰ ﺩﻤﺞ ﻤﺎ ﺒﻴﻥ ﺘﻜﻨﻭﻟﻭﺠﻴﺎ ﺍﻟﻜﺘﺭﻭﻨﻴﺎﺕ ﺍﻟﺴﻴﻠﻴﻜﻭﻥ ﺍﻟﺩﻗﻴﻘﻪ )‪silicon-based‬‬
‫‪ (microelectronics‬ﻭ ﺘﻜﻨﻭﻟﻭﺠﻴﺎ ﺍﻟﺘﺼﻨﻴﻊ ﺍﻟﻤﻴﻜﺎﻨﻴﻜﻰ ﺍﻟﺩﻗﻴﻕ )‪ (micromachining technology‬ﻭﻓﻰ‬
‫ﺩﻭﺍﺌﺭ )‪ (MEMS‬ﻴﺘﻡ ﻋﻤل ﻤﻜﻭﻨﺎﺕ ﻤﺼﻐﺭﻩ ﻤﻴﻜﺎﻨﻴﻜﻴﻪ ﻭ ﻜﻬﺭﺒﻴﻪ ) ‪mechanical and electrical‬‬
‫‪ (miniature devices‬ﺴﻭﺍﺀ ﻓﻰ ﺼﻭﺭﺓ ﻤﻜﻭﻨﺎﺕ ﻋﻴﻨﻴﻪ )‪ (discrete components‬ﺃﻭ ﻤﺼﻔﻭﻓﺎﺕ ﻤﻥ‬
‫ﺍﻟﻤﻜﻭﻨﺎﺕ )‪ (array of devices‬ﻓﻰ ﺃﺒﻌﺎﺩ ﺘﺒﺩﺃ ﻤﻥ ﺍﻟﻨﺎﻨﻭﻤﺘﺭﺍﺕ ﺍﻟﻰ ﺍﻟﻤﻴﻜﺭﻭﻤﺘﺭﺍﺕ ﻭ ﺘﺘﻤﻴﺯ ﻫﺫﻩ ﺍﻟﺘﻜﻨﻭﻟﻭﺠﻴﺎ‬
‫ﺒﺎﻤﻜﺎﻨﻴﺔ ﺘﺼﻨﻴﻊ ﻤﻜﻭﻨﺎﺕ ﻤﻔﺎﺘﻴﺢ ﻤﻥ ﻨﻭﻉ )‪ (MEMS Switch‬ﻴﺘﻡ ﺍﻟﺘﺤﻜﻡ ﻓﻴﻪ ﺒﺎﻟﻔﻭﻟﺕ ﺍﻟﻤﺴﺘﻤﺭ ﻭ ﻴﻌﻁﻰ ﻗﻴﻤﺘﻰ‬
‫ﻤﻜﺜﻑ ﻤﺨﺘﻠﻔﺘﻴﻥ ﻓﻰ ﺤﺎﻟﺘﻰ ﺍﻟﻔﺘﺢ ﻭ ﺍﻻﻏﻼﻕ ﻭﺍﻟﺘﻰ ﺘﺩﺨل ﻓﻰ ﺩﻭﺍﺌﺭ ﻜﺜﻴﺭﻩ ﻤﺜل ﺍﻟﻔﻼﺘﺭ ﻭ ﺍﻟﻤﺫﺒﺫﺒﺎﺕ ﻭ ﻏﻴﺭﻫﺎ‬
‫ﻭﻓﻰ ﺸﻜل )‪ (١١-١‬رﺳﻢ ﺗﻮﺿﻴﺤﻰ ﻟﻤﻔﺘﺎح ﻣﻦ ﻧﻮع )‪ (MEMS Switch‬ﻜﻤﺎ ﻴﺒﻴﻥ ﺸﻜل )‪ (١٢-١‬ﺻﻮرﺗﺎن‬
‫ﻟﻤﻔﺘﺎﺣﺎن ﻣﻦ ﻧﻔﺲ اﻟﻨﻮع ‪ .‬ﻭ ﻴﻤﻜﻥ ﺘﺼﻨﻴﻊ ﻋﺩﺩ ﻜﺒﻴﺭ ﻤﻥ ﺍﻟﻤﻜﻭﻨﺎﺕ ﻟﺘﺘﻴﺢ ﺘﻜﻨﻭﻟﻭﺠﻴﺎ )‪ (MEMS‬ﺍﻨﺘﺎﺝ ﻨﻅﺎﻡ‬
‫ﻜﺎﻤل ﻋﻠﻰ ﺭﻗﻴﻘﻪ )‪ (complete system-on-a-chip‬ﺘﺘﻤﻴﺯ ﺒﺼﻐﺭ ﺍﻟﺤﺠﻡ ﻭ ﺍﻟﻭﺯﻥ ﻭ ﺘﻨﺎﺴﺏ ﻋﺩﺩ ﻜﺒﻴﺭ ﻤﻥ‬
‫ﺍﻟﺘﻁﺒﻴﻘﺎﺕ ‪.‬‬

‫‪16‬‬

‫ﺸﻜل )‪ : (١١-١‬رﺳﻢ ﺗﻮﺿﻴﺤﻰ ﻟﻤﻔﺘﺎح ﻣﻦ ﻧﻮع )‪(MEMS Switch‬‬

‫ﺸﻜل )‪ : (١٢-١‬ﺻﻮرﺗﺎن ﻟﻤﻔﺘﺎﺣﺎن ﻣﻦ ﻧﻮع )‪(MEMS Switch‬‬

‫)ﺯ(‪ -‬ﺘﻜﻨﻭﻟﻭﺠﻴﺎﺕ ﺩﻭﺍﺌﺭ ﺍﻟﻤﻴﻜﺭﻭﻭﻴﻑ ﺍﻟﻤﺘﻜﺎﻤﻠﻪ ﺍﻟﻤﺨﺘﻠﻁﻪ ) ‪Hybrid Microwave Integrated Circuits‬‬
‫‪(MIC‬‬

‫ﻫﻰ ﺘﻜﻨﻭﻟﻭﺠﻴﺎﺕ ﻟﺘﺼﻨﻴﻊ ﺩﻭﺍﺌﺭ ﺍﻟﻤﻴﻜﺭﻭﻭﻴﻑ ﺒﺎﺴﺘﺨﺩﺍﻡ ﺨﻁﻭﻁ )ﺨﻁﻭﻁ ﺍﻻﺭﺴﺎل ‪(Transmission Lines‬‬
‫ﺃﻏﻠﺒﻬﺎ ﻤﺼﻨﻌﻪ ﻤﻥ ﺸﺭﺍﺌﺢ )‪ (Substrates‬ﻤﻥ ﺍﻟﻌﺎﺯل )‪ (Dielectric‬ﻤﻐﻁﺎﻩ ﻤﻥ ﺠﺎﻨﺒﻴﻬﺎ ﺃﻭ ﺃﺤﺩ ﺠﻭﺍﻨﺒﻬﺎ‬
‫ﺒﻤﻭﺼل )‪ (Conductor‬ﻭ ﺘﺴﻤﺢ ﺒﺘﺭﻜﻴﺏ ﺃﻭ ﺍﻀﺎﻓﺔ ﺃﻭ ﻟﺤﺎﻡ ﺍﻟﻤﻜﻭﻨﺎﺕ ﺍﻟﻌﻴﻨﻴﻪ )‪(discrete components‬‬
‫ﻤﺜل ﺍﻟﻤﻘﺎﻭﻤﺎﺕ ﻭ ﺍﻟﻤﻠﻔﺎﺕ ﻭ ﺍﻟﻤﻜﺜﻔﺎﺕ ﻭ ﺍﻟﺘﺭﺍﻨﺯﻴﺴﺘﻭﺭ ﺍﻟﺦ ﻋﻠﻰ ﺍﻟﺩﺍﺌﺭﻩ‪.‬‬

‫‪17‬‬

‫ﻭ ﻫﻨﺎﻙ ﺃﻨﻭﺍﻉ ﻤﻥ ﺘﻜﻨﻭﻟﻭﺠﻴﺎﺕ ﺍﻟﺨﻁﻭﻁ )ﺨﻁﻭﻁ ﺍﻻﺭﺴﺎل ‪ (Transmission Lines‬ﺘﺴﺘﺨﺩﻡ ﻓﻰ ﻫﺫﻩ ﺍﻟﺩﻭﺍﺌﺭ‬
‫ﻤﺜل ﺍﻟﺨﻁ ﺍﻟﺸﺭﻴﻁﻰ )‪ (Strip Line‬ﻭ ﺍﻟﺨﻁ ﺍﻟﺸﺭﻴﻁﻰ ﺍﻟﺩﻗﻴﻕ )‪ (Microstrip Line‬ﻭ ﺨﻁ ﺍﻟﻔﺘﺤﻪ ) ‪Slot‬‬
‫‪ (Line‬ﻭ ﺨﻁ ﻤﺭﺸﺩ ﺍﻟﻤﻭﺠﻪ ﺍﻟﺴﻁﺤﻰ )‪ (Coplanar Waveguide CPW‬ﻭ ﺨﻁ ﻓﻴﻥ )‪ (Fin Line‬ﻭ‬
‫ﻏﻴﺭﻫﺎ ﻭ ﻴﻭﻀﺢ ﺠﺩﻭل )‪ (٤-١‬ﺒﻌﺽ ﺃﻨﻭﺍﻉ ﻫﺫﻩ ﺍﻟﺘﻜﻨﻭﻟﻭﺠﻴﺎﺕ ﺃﻭ ﺍﻟﺨﻁﻭﻁ ﻭ ﻓﻴﻪ ﺘﻡ ﺭﺴﻡ ﺸﺭﺍﺌﺢ ﺍﻟﻌﺎﺯل‬
‫)‪ (Dielectric‬ﺒﺎﻟﻠﻭﻥ ﺍﻟﻐﺎﻤﻕ ﻭ ﺍﻟﻤﻭﺼﻼﺕ )‪ (Conductors‬ﺒﺎﻟﻠﻭﻥ ﺍﻟﻔﺎﺘﺢ‪.‬‬
‫ﻭ ﻴﻤﻜﻥ ﺘﻘﺴﻴﻡ ﻫﺫﻩ ﺍﻟﺨﻁﻭﻁ )‪ (Transmission Lines‬ﺍﻟﻰ ﺜﻼﺙ ﺃﻨﻭﺍﻉ ‪ :‬ﺍﻻﻭل ﻴﺴﻤﺢ ﺒﻭﺠﻭﺩ ﻤﺭﻜﺒﺎﺕ ﻟﻠﻤﺠﺎل‬
‫ﺍﻟﻤﻐﻨﺎﻁﻴﺴﻰ ﻭ‪/‬ﺃﻭ ﺍﻟﻜﻬﺭﺒﻰ ﻓﻰ ﺍﺘﺠﺎﻩ ﺍﻨﺘﺸﺎﺭ ﺍﻟﻤﻭﺠﻪ ﻭ ﻴﺴﻤﻰ )‪ (non-TEM Transmission Lines‬ﻤﺜل ﺨﻁ‬
‫ﻓﻴﻥ )‪ ، (Fin Line‬ﺃﻤﺎ ﺍﻟﻨﻭﻉ ﺍﻟﺜﺎﻨﻰ ﻟﻠﺨﻁﻭﻁ ﻭﺍﻟﺫﻯ ﺘﻭﺠﺩ ﻓﻴﻪ ﺠﻤﻴﻊ ﻤﺭﻜﺒﺎﺕ ﺍﻟﻤﺠﺎﻟﻴﻥ ﺍﻟﻤﻐﻨﺎﻁﻴﺴﻰ ﻭ ﺍﻟﻜﻬﺭﺒﻰ‬
‫ﻟﻠﻤﻭﺠﻪ ﺩﺍﺨل ﺍﻟﻌﺎﺯل ) ﺃﻭ ﺩﺍﺨل ﺨﻁ ﺍﻻﺭﺴﺎل ( ﻓﻰ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻌﻤﻭﺩﻯ ﻋﻠﻰ ﺍﺘﺠﺎﻩ ﺍﻨﺘﺸﺎﺭ ﺍﻟﻤﻭﺠﻪ ﻭ ﻴﺴﻤﻰ‬
‫)‪ (TEM Transmission Lines‬ﻤﺜل ﺍﻟﺨﻁ ﺍﻟﺸﺭﻴﻁﻰ )‪.(Strip Line‬‬
‫ﺃﻤﺎ ﺍﻟﻨﻭﻉ ﺍﻟﺜﺎﻟﺙ ﻟﻠﺨﻁﻭﻁ ﻭ ﻴﺴﻤﻰ )‪ (Quasi-TEM Transmission Lines‬ﺘﻭﺠﺩ ﻓﻴﻪ ﺠﻤﻴﻊ ﻤﺭﻜﺒﺎﺕ‬
‫ﺍﻟﻤﺠﺎﻟﻴﻥ ﺍﻟﻤﻐﻨﺎﻁﻴﺴﻰ ﻭ ﺍﻟﻜﻬﺭﺒﻰ ﻟﻠﻤﻭﺠﻪ ﻓﻰ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻌﻤﻭﺩﻯ ﻋﻠﻰ ﺍﺘﺠﺎﻩ ﺍﻨﺘﺸﺎﺭ ﺍﻟﻤﻭﺠﻪ ﻭ ﻴﻜﻭﻥ ﺠﺯﺀ ﻤﻨﻬﺎ‬
‫ﻓﻰ ﺍﻟﻬﻭﺍﺀ ﺃﻭ ﺍﻟﻔﺭﺍﻍ ﻭ ﺍﻟﺠﺯﺀ ﺍﻵﺨﺭ ﺩﺍﺨل ﺍﻟﻌﺎﺯل ﻤﺜل ﺨﻁﻭﻁ ‪ :‬ﺍﻟﺨﻁ ﺍﻟﺸﺭﻴﻁﻰ ﺍﻟﺩﻗﻴﻕ )‪(Microstrip Line‬‬
‫ﻭ ﺨﻁ ﺍﻟﻔﺘﺤﻪ )‪ (Slot Line‬ﻭ ﺨﻁ ﻤﺭﺸﺩ ﺍﻟﻤﻭﺠﻪ ﺍﻟﺴﻁﺤﻰ )‪ (Coplanar Waveguide CPW‬ﺍﻟﺦ‬
‫ﻭ ﺴﺒﺏ ﺘﺴﻤﻴﺔ ﺍﻟﻨﻭﻉ ﺍﻟﺜﺎﻟﺙ )‪ (Quasi-TEM‬ﻫﻭ ﺃﻥ ﺨﻁﻭﻁ ﺍﻟﻤﺠﺎﻟﻴﻥ ﺍﻟﻤﻐﻨﺎﻁﻴﺴﻰ ﻭ ﺍﻟﻜﻬﺭﺒﻰ ﻟﻠﻤﻭﺠﻪ ﻻ‬
‫ﺘﺘﻭﺍﺠﺩ ﺠﻤﻴﻌﻬﺎ ﺩﺍﺨل ﻁﺒﻘﺔ ﺍﻟﻌﺎﺯل )‪ (dielectric substrate‬ﻭ ﺍﻨﻤﺎ ﻴﻭﺠﺩ ﺠﺯﺀ ﻤﻨﻬﺎ ﻓﻰ ﺍﻟﻬﻭﺍﺀ ﻭ ﻫﺫﺍ ﻟﻪ‬
‫ﺘﺄﺜﻴﺭﻩ ﻋﻠﻰ ﺍﻨﺘﺸﺎﺭ ﺍﻟﻤﻭﺠﻪ ﻭ ﺒﺎﻟﺘﺎﻟﻰ ﻋﻠﻰ ﺤﺴﺎﺒﺎﺕ ﺃﺒﻌﺎﺩ ﺍﻟﺨﻁﻭﻁ ‪.‬‬
‫ﻴﺘﻡ ﺍﺨﺘﻴﺎﺭ ﻨﻭﻉ ﺍﻟﺨﻁﻭﻁ )‪ (Transmission Lines‬ﺘﺒﻌﺎ ﻟﻠﺘﻁﺒﻴﻕ )ﺍﻟﻨﻅﺎﻡ ﺃﻭ ﺍﻟﺠﺯﺀ ﻤﻥ ﺍﻟﻨﻅﺎﻡ( ﻭ ﻨﻭﻉ ﺍﻟﺩﺍﺌﺭﻩ‬
‫ﻭ ﺍﻟﺤﻴﺯ ﺍﻟﺘﺭﺩﺩﻯ ﻭ ﺍﻤﻜﺎﻨﻴﺎﺕ ﺍﻟﺘﺼﻨﻴﻊ ﻭ ﺩﻗﺔ ﺍﻟﺘﺼﻨﻴﻊ ﺍﻟﻰ ﺁﺨﺭ ﺍﻻﻋﺘﺒﺎﺭﺍﺕ ﺍﻟﻤﺭﺘﺒﻁﻪ ﺒﺎﻟﺘﺼﻤﻴﻡ ﻭ ﺍﻟﺘﺼﻨﻴﻊ ﻤﻌﺎ‬
‫ﻋﻠﻰ ﺴﺒﻴل ﺍﻟﻤﺜﺎل ﻓﺎﻨﻪ ﻓﻰ ﺤﺎﻟﺔ ﺘﻭﻓﺭ ﺍﻤﻜﺎﻨﻴﺎﺕ ﺘﺼﻨﻴﻊ ﺍﻟﺩﻭﺍﺌﺭ ﺒﻁﺭﻴﻘﺔ ﻁﺒﺎﻋﺔ ﺍﻟﺩﻭﺍﺌﺭ ﺍﻟﻌﺎﺩﻴﻪ )‪PCB‬‬
‫‪ ، (Technology‬ﻭ ﻜﺎﻨﺕ ﺍﻟﺩﺍﺌﺭﻩ ﺍﻟﻤﺭﺍﺩ ﺘﺼﻤﻴﻤﻬﺎ ﺒﻬﺎ ﺨﻁﻭﻁ ﺫﺍﺕ ﻤﻌﺎﻭﻗﻪ )‪characteristic impedance‬‬
‫‪ (Zo‬ﺘﺘﺭﺍﻭﺡ ﻤﺎ ﺒﻴﻥ )‪ (20-150 Ω‬ﻓﺎﻨﻪ ﻤﻥ ﺍﻻﻓﻀل ﺃﻥ ﺘﺼﻤﻡ ﻭ ﺘﺼﻨﻊ ﺒﺎﺴﺘﺨﺩﺍﻡ ﺍﻟﺨﻁﻭﻁ ﺍﻟﺸﺭﻴﻁﻴﻪ ﺍﻟﺩﻗﻴﻘﻪ‬
‫)‪ (Microstrip Lines‬ﺒﻴﻨﻤﺎ ﻟﻭ ﺘﻁﻠﺏ ﺘﺼﻤﻴﻡ ﺍﻟﺩﺍﺌﺭﻩ ﺨﻁﻭﻁ ﺫﺍﺕ ﻤﻌﺎﻭﻗﻪ ) ‪characteristic impedance‬‬

‫‪18‬‬

‫‪ (Zo‬ﺘﺘﺭﺍﻭﺡ ﻤﺎ ﺒﻴﻥ )‪ (40-200 Ω‬ﻓﻤﻥ ﺍﻻﻓﻀل ﺃﻥ ﺘﺼﻤﻡ ﻭ ﺘﺼﻨﻊ ﺒﺎﺴﺘﺨﺩﺍﻡ ﺨﻁﻭﻁ ﻤﺭﺸﺩ ﺍﻟﻤﻭﺠﻪ ﺍﻟﺴﻁﺤﻰ‬
‫)‪ (Coplanar Waveguide CPW‬ﻭ ﺴﻴﺘﻀﺢ ﻫﺫﺍ ﺍﻟﻤﻔﻬﻭﻡ ﺘﻤﺎﻤﺎ ﺒﻘﺭﺍﺀﺓ ﺍﻻﺠﺯﺍﺀ ﺍﻟﺨﺎﺼﻪ ﺒﺎﻟﺘﺼﻤﻴﻡ ﻭ‬
‫ﺍﻟﺘﺼﻨﻴﻊ ﺍﻟﻼﺤﻘﻪ ﻓﻰ ﺍﻟﻜﺘﺎﺏ‪.‬‬
‫ﻭ ﻴﻭﻀﺢ ﺍﻟﺸﻜل )‪ (١٣-١‬ﺼﻭﺭﺓ ﺨﻁ ﻤﺭﺸﺩ ﺍﻟﻤﻭﺠﻪ ﺍﻟﺴﻁﺤﻰ )‪ (Coplanar Waveguide CPW‬ﻤﻠﺤﻭﻡ ﺒﻪ‬
‫ﻤﻭﺼﻼﺕ ﻤﺤﻭﺭﻴﻪ )‪ ، (SMA coaxial connectors‬ﻭ ﺩﻭﺭ ﺍﻟﻤﻭﺼﻼﺕ ﺍﻟﻤﺤﻭﺭﻴﻪ ﻫﻨﺎ ﻫﻭ ﺍﻟﺴﻤﺎﺡ ﺒﺭﺒﻁ‬
‫ﺍﻟﺩﺍﺌﺭﻩ ﺒﻜﺎﺒﻼﺕ ﺃﻭ ﺃﺠﺯﺍﺀ ﻤﺤﻭﺭﻴﻪ ﺒﻐﺭﺽ ﺘﻭﺼﻴل ﺍﻟﺩﺍﺌﺭﻩ ﺒﺩﻭﺍﺌﺭ ﺃﻭ ﺃﻨﻅﻤﻪ ﺃﺨﺭﻯ ‪.‬‬
‫ﻜﻤﺎ ﻴﻭﻀﺢ ﺍﻟﺸﻜل )‪ (١٤-١‬ﺼﻭﺭﺓ ﺨﻁ ﺸﺭﻴﻁﻰ ﺩﻗﻴﻕ )‪ (Microstrip Line‬ﻤﻠﺤﻭﻡ ﺒﻪ ﻤﻭﺼﻼﺕ ﻤﺤﻭﺭﻴﻪ‬
‫)‪ ، (SMA coaxial connectors‬ﻭ ﻴﻤﻜﻥ ﻤﻘﺎﺭﻨﺔ ﺍﻟﺸﻜﻠﻴﻥ )‪ (١٣-١‬ﻭ )‪ (١٤-١‬ﺒﺒﻌﻀﻬﻤﺎ ﻭ ﺒﺠﺩﻭل )‪(٤-١‬‬
‫ﻟﻔﻬﻡ ﺸﻜل ﺨﻁﻭﻁ ﺍﻻﺭﺴﺎل ﺒﻌﺩ ﺘﺼﻨﻴﻌﻬﺎ ‪.‬‬
‫ﻭ ﻜﻤﺜﺎل ﻋﻠﻰ ﺍﻟﺩﻭﺍﺌﺭ ﺍﻟﺸﺭﻴﻁﻴﻪ ﻤﻭﻀﻭﻉ ﺍﻟﻜﺘﺎﺏ ﻴﻭﻀﺢ ﺍﻟﺸﻜل )‪ (١٥-١‬ﺼﻭﺭﺓ ﻓﻠﺘﺭ ﻤﺼﻨﻭﻉ ﺒﺘﻜﻨﻭﻟﻭﺠﻴﺎ‬
‫ﺍﻟﺨﻁﻭﻁ ﺍﻟﺸﺭﻴﻁﻴﻪ ﺍﻟﺩﻗﻴﻘﻪ )‪ (Microstrip Low Pass Filter‬ﻤﻠﺤﻭﻡ ﺒﻪ ﻤﻭﺼﻼﺕ ﻤﺤﻭﺭﻴﻪ )‪SMA‬‬
‫‪ (coaxial connectors‬ﺒﻐﺭﺽ ﺍﻟﺘﻭﺼﻴل ‪ ،‬ﻭ ﺒﺎﻟﻨﻅﺭ ﻟﺼﻭﺭﺓ ﺍﻟﻔﻠﺘﺭ ﻨﺠﺩﻩ ﻴﺘﻜﻭﻥ ﻤﻥ ﺨﻤﺴﺔ ﺨﻁﻭﻁ ﺸﺭﻴﻁﻴﻪ‬
‫)‪ (5 microstrip lines‬ﻤﻨﻬﺎ ﺜﻼﺜﺔ ﺨﻁﻭﻁ )ﺫﺍﺕ ﺴﻤﻙ ﺭﻓﻴﻊ( ﻤﺸﺎﺭ ﺍﻟﻴﻬﺎ ﺒﺎﺭﻗﺎﻡ ﻓﺭﺩﻴﻪ ﻭ ﻫﺫﺍ ﻤﻌﻨﺎﻩ ﺃﻨﻬﺎ‬
‫ﺨﻁﻭﻁ ﺫﺍﺕ ﻤﻌﺎﻭﻗﻪ )‪ (characteristic impedance Zo‬ﻋﺎﻟﻴﻪ ﻭ ﺨﻁﻴﻥ ﺴﻤﻴﻜﻴﻥ ﻤﺸﺎﺭ ﺍﻟﻴﻬﻤﺎ ﺒﺎﻻﺭﻗﺎﻡ‬
‫ﺍﻟﺯﻭﺠﻴﻪ ﻭ ﻫﺫﺍ ﻤﻌﻨﺎﻩ ﺃﻨﻬﺎ ﺨﻁﻭﻁ ﺫﺍﺕ ﺫﺍﺕ ﻤﻌﺎﻭﻗﻪ ﻤﻨﺨﻔﻀﻪ ﻭ ﺴﻴﺘﻡ ﺸﺭﺡ ﺘﺼﻤﻴﻡ ﻫﺫﺍ ﺍﻟﻨﻭﻉ ﻤﻥ ﺍﻟﻔﻠﺘﺭ ﻻﺤﻘﺎ ‪.‬‬

‫‪19‬‬

‫ﺍﻟﺸـﻜـل ﺍﻟﻬـﻨـﺩﺴـﻰ‬

‫ﻨﻭﻉ ﺍﻟﺨﻁ‬
‫ﺍﻟﺨﻁ ﺍﻟﺸﺭﻴﻁﻰ‬
‫)‪(Strip Line‬‬

‫ﺍﻟﺨﻁ ﺍﻟﺸﺭﻴﻁﻰ ﺍﻟﺩﻗﻴﻕ‬

‫)‪(Microstrip Line‬‬

‫ﺭﺴﻡ ﺜﻼﺜﻰ ﺍﻻﺒﻌﺎﺩ‬

‫ﻤﻘﻁﻊ‬

‫ﺨﻁ ﺍﻟﻔﺘﺤﻪ‬
‫)‪(Slot Line‬‬

‫ﺭﺴﻡ ﺜﻼﺜﻰ ﺍﻻﺒﻌﺎﺩ‬

‫ﻤﻘﻁﻊ‬

‫ﺨﻁ ﻤﺭﺸﺩ ﺍﻟﻤﻭﺠﻪ‬

‫ﺍﻟﺴﻁﺤﻰ ) ‪Coplanar‬‬

‫‪(Waveguide CPW‬‬

‫ﺭﺴﻡ ﺜﻼﺜﻰ ﺍﻻﺒﻌﺎﺩ‬

‫ﻤﻘﻁﻊ‬

‫ﺨﻁ ﻓﻴﻥ‬

‫)‪(Fin Line‬‬

‫ﺠﺩﻭل )‪ : (٤-١‬ﺒﻌﺽ ﺃﻨﻭﺍﻉ ﺘﻜﻨﻭﻟﻭﺠﻴﺎﺕ ﺨﻁﻭﻁ ﺍﻻﺭﺴﺎل )‪(Transmission Lines‬‬

‫‪20‬‬

‫ﺸﻜل )‪ : (١٣-١‬ﺨﻁ ﻤﺭﺸﺩ ﺍﻟﻤﻭﺠﻪ ﺍﻟﺴﻁﺤﻰ ﻤﻠﺤﻭﻡ ﺒﻪ ﻤﻭﺼﻼﺕ ﻤﺤﻭﺭﻴﻪ )‪(SMA coaxial connectors‬‬

‫ﺸﻜل )‪ : (١٤-١‬ﺨﻁ ﺸﺭﻴﻁﻰ ﺩﻗﻴﻕ )‪ (Microstrip Line‬ﻤﻠﺤﻭﻡ ﺒﻪ ﻤﻭﺼﻼﺕ ﻤﺤﻭﺭﻴﻪ‬

‫ﺸﻜل )‪ : (١٥-١‬ﻓﻠﺘﺭ ﻤﺼﻨﻭﻉ ﺒﺘﻜﻨﻭﻟﻭﺠﻴﺎ ﺍﻟﺨﻁﻭﻁ ﺍﻟﺸﺭﻴﻁﻴﻪ ﺍﻟﺩﻗﻴﻘﻪ )‪(Microstrip Low Pass Filter‬‬
‫ﻤﻠﺤﻭﻡ ﺒﻪ ﻤﻭﺼﻼﺕ ﻤﺤﻭﺭﻴﻪ )‪(SMA coaxial connectors‬‬

‫‪21‬‬

‫)ﻤﻘﻁﻊ ‪ (٣-١‬ﺸﺭﺍﺌﺢ ﺍﻟﺘﺭﺩﺩ ﺍﻟﻌﺎﻟﻰ )‪: (High Frequency Laminates‬‬

‫ﻳﻮﺿﺢ اﻟﺸﻜﻞ )‪ (١٦-١‬رﺳﻢ ﺛﻼﺛﻰ اﻻﺑﻌﺎد ﻟﺸﺮﻳﺤﺔ ﺗﺮدد ﻋﺎﻟﻰ )‪ (High Frequency Laminate‬و ﺗﺘﻜﻮن ﻣﻦ‬
‫ﻃﺒﻘﻪ أو ﺷﺮﻳﺤﻪ ﻣﻦ اﻟﻌﺎزل )‪ (dielectric substrate‬ﻣﺮﺳﻮﻣﻪ ﺑﺎﻟﻠﻮن اﻟﻐﺎﻣﻖ ﻣﺤﺎﻃﻪ ﺑﻄﺒﻘﺘﻴﻦ ﻣﻦ اﻟﻤﻮﺻﻞ‬
‫)‪ (conductor‬ﻣﺮﺳﻮﻣﻪ ﺑﺎﻟﻠﻮن اﻟﻔﺎﺗﺢ ‪.‬‬

‫)أ(‬

‫)ب(‬

‫ﺷﻜﻞ )‪) : (١٦-١‬أ( ﺻﻮرﻩ ﻟﺒﻌﺾ ﺷﺮاﺋﺢ اﻟﺘﺮدد اﻟﻌﺎﻟﻰ ‪) -‬ب( رﺳﻢ ﺛﻼﺛﻰ اﻻﺑﻌﺎد ﻟﺸﺮﻳﺤﺔ ﺗﺮدد ﻋﺎﻟﻰ‬

‫هﻨﺎك أﻧﻮاع ﻋﺪﻳﺪﻩ ﻣﻦ ﺷﺮاﺋﺢ اﻟﺘﺮدد اﻟﻌﺎﻟﻰ اﻟﺘﻰ ﺗﺴﺘﺨﺪم ﻓﻰ ﺗﺼﻨﻴﻊ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ اﻟﻤﺘﻜﺎﻣﻠﻪ اﻟﻤﺨﺘﻠﻄﻪ‬
‫)‪ (Hybrid Microwave Integrated Circuits MIC‬ﺑﺠﻤﻴﻊ أﻧﻮاﻋﻬﺎ ﺑﻤﺎ ﻓﻴﻬﺎ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ‬
‫)‪ (microstrip circuits‬اﻟﺘﻰ ﺗﻤﺜﻞ ﻣﻮﺿﻮع اﻟﻜﺘﺎب اﻟﺮﺋﻴﺴﻰ ‪ ،‬و هﻨﺎك اﻋﺘﺒﺎرات آﺜﻴﺮﻩ ﻻﺧﺘﻴﺎر ﻣﺎدة اﻟﻌﺎزل‬
‫)‪ (dielectric‬اﻟﻤﻮﺟﻮدﻩ ﺑﺎﻟﺸﺮﻳﺤﻪ )‪ (laminate‬ﻣﻨﻬﺎ اﻋﺘﺒﺎرات ﻣﻴﻜﺎﻧﻴﻜﻴﻪ و ﺣﺮارﻳﻪ و اﻗﺘﺼﺎدﻳﻪ ﺑﺎﻻﺿﺎﻓﻪ اﻟﻰ‬
‫ﻃﺒﻴﻌﺔ اﻟﺪاﺋﺮﻩ اﻟﻤﺮاد ﺗﺼﻨﻴﻌﻬﺎ و اﻟﻨﻈﺎم )‪ (system‬أو ﺟﺰء اﻟﻨﻈﺎم )‪ (subsystem‬اﻟﺪاﺧﻠﻪ ﻓﻴﻪ ‪.‬‬
‫ﻓﺎﻟﻤﺼﻤﻢ ﻳﺤﺪد اﺧﺘﻴﺎرﻩ ﻟﻠﺸﺮﻳﺤﻪ ﺑﻨﺎء ﻋﻠﻰ ﻣﺠﻤﻮﻋﺔ ﻣﻦ اﻻﺳﺌﻠﻪ ‪ -‬ﻓﻤﺜﻼ هﻞ ﺛﻤﻦ اﻟﺸﺮﻳﺤﻪ ﻣﻨﺎﺳﺐ ﻟﺜﻤﻦ اﻟﻨﻈﺎم أو‬
‫اﻟﺪاﺋﺮﻩ اﻟﺘﻰ ﺳﺘﺼﻨﻊ ﻣﻨﻬﺎ ؟ ‪ -‬و ﻣﺎ هﻰ ﻃﺮﻳﻘﺔ و ﺗﻜﻨﻮﻟﻮﺟﻴﺎ اﻟﺘﺼﻨﻴﻊ اﻟﻤﺘﺎﺣﻪ )و اﻟﺪﻗﻪ اﻟﻤﻴﻜﺎﻧﻴﻜﻴﻪ اﻟﻤﺘﺎﺣﻪ( ؟ ‪-‬‬
‫و ﻣﺎ هﻰ أﻗﺼﻰ ﻣﺴﺎﺣﻪ )أو ﺣﺠﻢ( ﻣﺴﻤﻮح ﺑﻬﺎ ﻟﻜﻰ ﺗﺸﻐﻠﻬﺎ اﻟﺪاﺋﺮﻩ )و هﺬا ﻣﻬﻢ ﻣﺜﻼ ﻓﻰ اﻟﻨﻈﻢ اﻟﻤﺤﻤﻮﻟﻪ ﺟﻮا و‬
‫اﻻﻗﻤﺎر اﻟﺼﻨﺎﻋﻴﻪ( ؟ ‪ -‬و ﻣﺎ هﻮ اﻟﺤﻴﺰ اﻟﺘﺮددى اﻟﺬى ﺳﺘﻌﻤﻞ ﻓﻴﻪ اﻟﺪاﺋﺮﻩ )أو اﻟﻨﻈﺎم( ؟ ‪ -‬و هﻞ ﻧﻮع اﻟﺪاﺋﺮﻩ‬
‫ﻳﻌﻤﻞ ﺑﻘﺪرﻩ ﻋﺎﻟﻴﻪ )ﻣﺜﻞ ﻣﻜﺒﺮ اﻟﻘﺪرﻩ‬

‫‪ (power amplifier‬ﻓﺘﺤﺘﺎج اﻟﺪاﺋﺮﻩ ﻟﺘﺤﻤﻞ درﺟﺎت ﺣﺮارﻩ ﻣﺮﺗﻔﻌﻪ ؟‬

‫اﻟﻰ ﺁﺧﺮ اﻻﺳﺌﻠﻪ اﻟﺘﻰ ﺗﻔﺮﺿﻬﺎ ﻇﺮوف اﻟﺘﻄﺒﻴﻖ‪ .‬و ﻣﻦ ﺧﻼل ﻣﻌﻠﻮﻣﺎت اﻟﻜﺘﺎب اﻟﻼﺣﻘﻪ و أﻣﺜﻠﻪ اﻟﺪواﺋﺮ اﻟﺘﻰ ﺳﻴﺄﺗﻰ‬
‫ﺗﺼﻤﻴﻤﻬﺎ ﻳﻤﻜﻦ ﻟﻠﻤﺼﻤﻢ ﺗﻌﻠﻢ آﻴﻔﻴﺔ ﺗﺤﺪﻳﺪ هﺬﻩ اﻻﺧﺘﻴﺎرات ﺑﺎﻟﻨﺴﺒﻪ ﻟﻠﻌﺪﻳﺪ ﻣﻦ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ ) ‪microstrip‬‬
‫‪. (circuits‬‬

‫‪22‬‬

‫ﻣﻘﺪرة اﻟﻌﺎزل‬
‫اﻟﺘﻮﺻﻴﻞ اﻟﺤﺮارى‬
‫‪Dielectric‬‬
‫‪Thermal‬‬
‫‪Conductivity‬‬
‫‪strength‬‬
‫‪2 o‬‬
‫]‪(k) [W/cm / C] [kV/cm‬‬
‫‪0.0026‬‬
‫‪----‬‬

‫ﻣﻤﺎس اﻟﻔﻘﺪ‬
‫‪Loss tangent‬‬
‫)‪(tan δ‬‬
‫ﻣﻀﺮوﺑﺎ ﻓﻰ )‪(104‬‬
‫‪5-15‬‬

‫ﻣﺎدة اﻟﺸﺮﻳﺤﻪ‬
‫‪material‬‬

‫ﺛﺎﺑﺖ اﻟﻌﺰل‬
‫)ﺗﻘﺮﻳﺒﻰ(‬
‫‪dielectric‬‬
‫)‪constant (εr‬‬
‫‪2.16-2.24‬‬

‫‪----‬‬

‫‪0.0041‬‬

‫‪10-60‬‬

‫‪10.2-10.7‬‬

‫‪4 X 103‬‬

‫‪0.37‬‬

‫‪1-2‬‬

‫‪10‬‬

‫‪4 X 103‬‬

‫‪0.28‬‬

‫‪6‬‬

‫‪9‬‬

‫‪4 X 103‬‬

‫‪0.2‬‬

‫‪15‬‬

‫‪8‬‬

‫‪----‬‬

‫‪0.01‬‬

‫‪20‬‬

‫‪5‬‬

‫‪≈ 300‬‬

‫‪0.001‬‬

‫‪1‬‬

‫‪2.3‬‬

‫‪104‬‬

‫‪0.01‬‬

‫‪1‬‬

‫‪3.8‬‬

‫‪300‬‬

‫‪0.9‬‬

‫‪10-100‬‬

‫‪12‬‬

‫‪350‬‬

‫‪0.3‬‬

‫‪6‬‬

‫‪12.8-13‬‬

‫ﺗﻴﻔﻠﻮن )ﻣﺎدﻩ‬
‫ﺑﻼﺳﺘﻴﻜﻴﻪ(‬
‫‪PTFE or Teflon‬‬
‫ﺗﻴﻔﻠﻮن ﻣﺨﻠﻮط ﺑﻤﻮاد‬
‫ﺳﻴﺮاﻣﻴﻜﻴﻪ‬
‫اﻟﻮﻣﻴﻨﺎ )ﻣﺎدﻩ‬
‫ﺳﻴﺮاﻣﻴﻜﻴﻪ( )ﻧﺴﺒﺔ‬
‫أآﺴﻴﺪ اﻻﻟﻮﻣﻨﻴﻮم‬
‫‪(99.5%‬‬
‫‪Alumina‬‬
‫اﻟﻮﻣﻴﻨﺎ )ﻧﺴﺒﺔ أآﺴﻴﺪ‬
‫اﻻﻟﻮﻣﻨﻴﻮم ‪(96%‬‬
‫‪Alumina‬‬
‫اﻟﻮﻣﻴﻨﺎ )ﻧﺴﺒﺔ أآﺴﻴﺪ‬
‫اﻻﻟﻮﻣﻨﻴﻮم ‪(85%‬‬
‫‪Alumina‬‬

‫زﺟﺎج‬
‫‪Glass‬‬
‫ﺑﻮﻟىﺎوﻟﻴﻔﻴﻦ )ﻣﺎدﻩ‬
‫ﺑﻼﺳﺘﻴﻜﻴﻪ(‬
‫‪Polyolefin‬‬
‫آﻮارﺗﺰ‬
‫‪Quartz‬‬
‫ﺳﻴﻠﻴﻜﻮن‬
‫)‪Silicon (Si‬‬
‫أرﺳﻴﻨﺎد اﻟﺠﺎﻟﻴﻮم‬
‫)‪(GaAs‬‬

‫ﺠﺩﻭل )‪ : (٥-١‬ﺑﻌﺾ أﻧﻮاع ﻣﻮاد اﻟﺸﺮاﺋﺢ ) ‪ ( substrates‬و ﻣﻮاﺻﻔﺎﺗﻬﺎ‬

‫ﺠﺩﻭل )‪ (٥-١‬ﻳﻮﺿﺢ ﺑﻌﺾ أﻧﻮاع ﻣﻮاد اﻟﺸﺮاﺋﺢ ) ‪ ( substrates‬اﻟﻤﺴﺘﺨﺪﻣﻪ ﻓﻰ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ و‬
‫ﻣﻮاﺻﻔﺎﺗﻬﺎ ﻣﺜﻞ ﺛﺎﺑﺖ اﻟﻌﺰل )‪ (dielectric constant‬اﻟﺘﻘﺮﻳﺒﻰ ﻟﻠﻤﻮاد ‪ ،‬و ﺑﺎﻟﻨﺴﺒﻪ ﻟﻠﺸﺮاﺋﺢ اﻟﻤﺼﻨﻮﻋﻪ ﻣﻦ ﺣﺠﺮ‬
‫اﻟﺴﻔﻴﺮ )‪ (Sapphire‬و ﻏﻴﺮهﺎ ﻣﻦ اﻟﻤﻮاد اﻟﺘﻰ ﻳﺘﻐﻴﺮ ﻓﻴﻬﺎ ﺛﺎﺑﺖ اﻟﻌﺰل )‪ (dielectric constant εr‬ﻣﻊ اﻻﺗﺠﺎﻩ ‪،‬‬
‫و ﻣﻮاد اﻟﻔﺮراﻳﺖ )‪ (Ferrite materials - Garnet‬و اﻟﺘﻰ ﺗﺘﻐﻴﺮ ﻓﻴﻬﺎ اﻟﺴﻤﺎﺣﻴﻪ أو اﻟﻨﻔﺎذﻳﻪ ) ‪Permeability‬‬
‫‪ (µr‬ﻣﻊ اﻻﺗﺠﺎﻩ ﻓﻴﻤﻜﻦ اﻟﺮﺟﻮع اﻟﻰ اﻟﻤﺮﺟﻊ رﻗﻢ )‪ (٩‬ﻟﻤﻌﺮﻓﺔ ﺧﺼﺎﺋﺼﻬﺎ‪.‬‬
‫اﻟﺸﺮاﺋﺢ اﻟﻤﻨﺘﺠﻪ ﺗﺠﺎرﻳﺎ ﺗﺘﻜﻮن ﻓﻴﻬﺎ اﻟﺸﺮﻳﺤﻪ ) ‪ ( substrate‬اﻣﺎ ﻣﻦ ﻣﺎدﻩ واﺣﺪﻩ أو ﻣﻦ ﺧﻠﻴﻂ ﻣﻦ اﻟﻤﻮاد ﺑﻐﺮض‬
‫ﺗﻐﻴﻴﺮ ﻗﻴﻤﺔ ﺛﺎﺑﺖ اﻟﻌﺰل ﻟﻠﺸﺮﻳﺤﻪ ‪ ،‬ﻓﻤﺜﻼ ﺷﺮاﺋﺢ اﻟﺘﻴﻔﻠﻮن اﻟﻤﺼﻨﻮﻋﻪ ﻣﻦ ﻣﺎدﻩ ﺑﻼﺳﺘﻴﻜﻴﻪ هﻰ ﻣﺮآﺐ ﺑﻮﻟﻰ ﺗﺘﺮا‬

‫‪23‬‬

‫ﻓﻠﻮرو اﻳﺜﻴﻠﻴﻦ )‪ (PTFE‬ﺗﻨﺘﺞ ﻣﻨﻬﺎ اﻟﻌﺪﻳﺪ ﻣﻦ اﻟﺸﺮآﺎت ﺷﺮاﺋﺢ ذات ﺛﺎﺑﺖ ﻋﺰل ﻣﻨﺨﻔﺾ ﻧﺴﺒﻴﺎ ﻳﺘﺮاوح ﺑﻴﻦ ) ‪2.35‬‬
‫–‪ ( 2.1‬ﻟﻜﻦ هﻨﺎك أﻳﻀﺎ ﺷﺮاﺋﺢ ﻳﻜﻮن ﻓﻴﻬﺎ اﻟﺘﻴﻔﻠﻮن ﻣﺨﻠﻮط ﺑﻤﻮاد ﺳﻴﺮاﻣﻴﻜﻴﻪ )أو ﻳﻜﻮن ﻓﻴﻬﺎ اﻟﺘﻴﻔﻠﻮن ﻣﺨﻠﻮط‬
‫ﺑﻤﻮاد ﺳﻴﺮاﻣﻴﻜﻴﻪ و أﻧﺴﺠﻪ زﺟﺎﺟﻴﻪ( ﻳﻜﻮن ﻓﻴﻬﺎ ﺛﺎﺑﺖ اﻟﻌﺰل ﺑﻘﻴﻢ أﻋﻠﻰ و ﻳﺘﺮاوح ﺑﻴﻦ )‪ (3-10.2‬ﻟﺬﻟﻚ ﻓﺎﻧﻪ ﻋﻨﺪ‬
‫اﺧﺘﻴﺎر ﺷﺮﻳﺤﻪ ﻣﻌﻴﻨﻪ ﻟﺘﺼﻤﻴﻢ داﺋﺮﻩ أو ﻧﻈﺎم ﻳﻨﺒﻐﻰ دراﺳﺔ ﺻﻔﺤﺎت اﻟﺒﻴﺎﻧﺎت )‪ (datasheets‬ﻟﻠﺸﺮآﺎت اﻟﻤﻨﺘﺠﻪ و‬
‫اﻟﻤﻮزﻋﻪ ﻟﻠﺸﺮاﺋﺢ ﻣﺜﻞ دﻟﻴﻞ اﺧﺘﻴﺎر اﻟﺸﺮاﺋﺢ )‪ (laminate product selection guide‬ﻟﺘﺤﺪﻳﺪ اﻟﺸﺮﻳﺤﻪ‬
‫اﻟﻤﻨﺎﺳﺒﻪ اﻟﻤﺘﺎﺣﻪ ﺗﺠﺎرﻳﺎ ‪.‬‬
‫ﻋﻨﺪ ﺗﺼﻨﻴﻊ اﻟﺸﺮﻳﺤﻪ ﻳﺘﻢ اﺿﺎﻓﺔ ﻃﺒﻘﺘﻰ اﻟﻤﻮﺻﻞ ﻋﻠﻰ ﺟﺎﻧﺒﻰ ﺷﺮﻳﺤﺔ اﻟﻌﺎزل ﺑﻄﺮﻳﻘﺔ اﻟﻠﻒ اﻟﻤﻴﻜﺎﻧﻴﻜﻰ )‪(Rolling‬‬
‫أو ﺑﻄﺮﻳﻘﺔ اﻟﺘﺮﺳﻴﺐ اﻟﻜﻬﺮﺑﻰ )‪ (Electrodepositing‬و أﻧﻮاع اﻟﻤﻮﺻﻼت اﻟﻤﺴﺘﺨﺪﻣﻪ ﻓﻰ اﻟﺸﺮاﺋﺢ هﻰ )اﻟﻨﺤﺎس‬
‫‪ - Copper‬اﻟﺬهﺐ ‪ – Gold‬اﻟﻨﺤﺎس اﻻﺻﻔﺮ ‪ – brass‬اﻻﻟﻮﻣﻨﻴﻮم ‪ – Aluminum‬اﻟﻔﻀﻪ ‪ –Silver‬اﻟﻨﻴﻜﻞ‬
‫‪ (Nickel‬و ﻏﻴﺮهﺎ ‪ ،‬و اﻟﺸﺮاﺋﺢ اﻟﺘﺠﺎرﻳﻪ ﻋﺎدة ﻳﺘﺮاوح ﻓﻴﻬﺎ ﺳﻤﻚ ﻃﺒﻘﺔ اﻟﻤﻮﺻﻞ )‪ (conductor‬ﺑﻴﻦ )‪(9 µm‬‬
‫اﻟﻰ )‪ (70 µm‬ﺑﻴﻨﻤﺎ ﻳﺘﺮاوح ﻓﻴﻬﺎ ﺳﻤﻚ ﻃﺒﻘﺔ اﻟﻌﺎزل )‪ (dielectric substrate‬ﺑﻴﻦ )‪ (0.12 mm‬اﻟﻰ‬
‫)‪. (3.2 mm‬‬
‫ﻳﻤﻜﻦ اﺳﺘﻌﻤﺎل ﺷﺮاﺋﺢ اﻟﻤﻮاد اﻟﺒﻼﺳﺘﻴﻜﻴﻪ و اﻟﺰﺟﺎﺟﻴﻪ و اﻻﻟﻴﺎف اﻟﺰﺟﺎﺟﻴﻪ ﻓﻰ اﻟﺘﻄﺒﻴﻘﺎت ذات اﻟﻘﺪرﻩ اﻟﻤﻨﺨﻔﻀﻪ و‬
‫اﻟﻤﺘﻮﺳﻄﻪ ﺑﻴﻨﻤﺎ ﺗﺴﺘﻌﻤﻞ ﺷﺮاﺋﺢ اﻟﻤﻮاد اﻟﺴﻴﺮاﻣﻴﻜﻴﻪ ﻓﻰ اﻟﺘﻄﺒﻴﻘﺎت ذات اﻟﻘﺪرﻩ اﻟﻌﺎﻟﻴﻪ و ﺗﺤﺘﻮى ﺻﻔﺤﺎت اﻟﺒﻴﺎﻧﺎت‬
‫ﻟﻠﺸﺮآﺎت اﻟﻤﻨﺘﺠﻪ ﻋﻠﻰ ﻗﻴﻢ ﻣﻘﺪرة اﻟﻌﺎزل )‪ (Dielectric strength‬و اﻟﺘﻮﺻﻴﻞ اﻟﺤﺮارى ) ‪Thermal‬‬
‫‪ (Conductivity‬ﻟﺘﺤﺪﻳﺪ ذﻟﻚ ﺑﺎﻻﺿﺎﻓﻪ اﻟﻰ ﺑﺎﻗﻰ اﻟﺒﻴﺎﻧﺎت اﻟﻼزﻣﻪ ﻟﻤﻌﺮﻓﺔ آﻞ اﻟﺨﻮاص ﻟﻠﺸﺮﻳﺤﻪ و ﻣﻨﻬﺎ‬
‫اﻟﺨﻮاص اﻟﻤﻴﻜﺎﻧﻴﻜﻴﻪ و هﻰ ﺧﻮاص ﻣﻬﻤﻪ ﻟﻠﺘﺼﻨﻴﻊ ﻓﻤﺜﻼ ﺗﺘﺼﻒ ﺷﺮاﺋﺢ اﻻﻟﻮﻣﻴﻨﺎ )‪ (alumina‬آﻤﺮآﺐ‬
‫ﺳﻴﺮاﻣﻴﻜﻰ هﻰ و ﺟﻤﻴﻊ اﻟﺸﺮاﺋﺢ اﻟﺴﻴﺮاﻣﻴﻜﻴﻪ ﺑﺼﻌﻮﺑﺔ اﺟﺮاء اﻟﻌﻤﻠﻴﺎت اﻟﻤﻴﻜﺎﻧﻴﻜﻴﻪ )‪ (Machining‬ﻋﻠﻴﻬﺎ )ﻣﺜﻞ‬
‫اﻟﻘﻄﻊ و اﻟﺘﺜﻘﻴﺐ( ﻟﺬﻟﻚ ﻋﻨﺪ اﺧﺘﻴﺎرهﺎ ﻟﺘﺼﻤﻴﻢ داﺋﺮﻩ ﻣﻌﻴﻨﻪ ﻻﺑﺪ ﻣﻦ اﻟﺘﺄآﺪ أوﻻ ﻣﻦ وﺟﻮد اﻟﻤﺎآﻴﻨﺎت أو اﻻدوات‬
‫اﻟﻼزﻣﻪ ﻻﺟﺮاء اﻟﻌﻤﻠﻴﺎت اﻟﻤﻴﻜﺎﻧﻴﻜﻴﻪ ﻻﺗﻤﺎم اﻟﺘﺼﻨﻴﻊ ‪.‬‬
‫ﻋﺎدة ﺗﻨﺘﺞ اﻟﺸﺮآﺎت اﻟﺸﺮاﺋﺢ ﺑﺄرﻗﺎم أو ) أرﻗﺎم و ﺣﺮوف ﻣﻌﻴﻨﻪ ( أو اﺳﻢ ﺗﺠﺎرى ﻣﺨﺘﻠﻒ ﺗﻤﺎﻣﺎ ﻋﻦ اﺳﻢ ﻣﺎدة‬
‫اﻟﺸﺮﻳﺤﻪ اﻻﺻﻠﻴﻪ و آﺄﻣﺜﻠﻪ ﻋﻠﻰ ذﻟﻚ ‪:‬‬
‫ﺗﻨﺘﺞ ﺷﺮآﺔ روﺟﺮز اﻻﻣﺮﻳﻜﻴﻪ )‪ (Rogers‬ﺷﺮاﺋﺢ اﻟﺘﻴﻔﻠﻮن ﺑﺎﺳﻢ ﺗﺠﺎرى هﻮ )™‪ (Duroid‬ﻓﻬﻰ ﻣﺜﻼ ﺗﻨﺘﺞ‬
‫ﺷﺮﻳﺤﻪ ﺑﺎﺳﻢ ﺗﺠﺎرى هﻮ )‪ (RT/duroid™ 5880‬ﻟﺸﺮﻳﺤﺔ اﻟﺘﻴﻔﻠﻮن اﻟﻤﺨﻠﻮط ﺑﺎﻻﻟﻴﺎف اﻟﺰﺟﺎﺟﻴﻪ ﺍﻟﺫﻯ ﻴﻜﻭﻥ ﻓﻴﻪ‬
‫ﺛﺎﺑﺖ اﻟﻌﺰل )‪ ، (εr = 2.2 ± 0.02‬ﺒﻴﻨﻤﺎ ﺘﻨﺘﺞ ﻨﻔﺱ ﺍﻟﺸﺭﻜﻪ ﺷﺮاﺋﺢ ﺗﻴﻔﻠﻮن ﻣﺨﻠﻮط ﺑﻤﻮاد ﺳﻴﺮاﻣﻴﻜﻴﻪ ﺑﺎﺳﻢ ﺗﺠﺎرى‬
‫)™‪ (RO3003‬ﻴﻜﻭﻥ ﻓﻴﻪ ﺛﺎﺑﺖ اﻟﻌﺰل )‪ (εr = 3 ± 0.04‬ﻭﺸﺭﺍﺌﺢ ﺃﺨﺭﻯ ﻤﻥ اﻟﺘﻴﻔﻠﻮن اﻟﻤﺨﻠﻮط ﺑﻤﻮاد‬
‫ﺳﻴﺮاﻣﻴﻜﻴﻪ و أﻧﺴﺠﻪ زﺟﺎﺟﻴﻪ ﺑﺎﺳﻢ ﺗﺠﺎرى )™‪ (RO3210‬ﻴﻜﻭﻥ ﻓﻴﻪ ﺛﺎﺑﺖ اﻟﻌﺰل )‪. (εr = 10.2 ± 0.5‬‬
‫و هﻨﺎك أﻳﻀﺎ اﺧﺘﻼف ﻓﻰ اﻻﺳﻢ اﻟﺘﺠﺎرى ﻟﻤﺎدة اﻟﺸﺮﻳﺤﻪ ﺑﻴﻦ اﻟﺸﺮآﺎت ﻓﺸﺮآﺔ أرﻟﻮن )‪ (ARLON‬ﺗﻨﺘﺞ ﺷﺮاﺋﺢ‬
‫اﻟﺘﻴﻔﻠﻮن ﺑﺎﺳﻢ ﺗﺠﺎرى هﻮ )®‪ (DiClad‬ﻓﻬﻰ ﺗﻨﺘﺞ ﺷﺮاﺋﺢ اﻟﺘﻴﻔﻠﻮن اﻟﻤﺨﻠﻮط ﺑﺎﻻﻟﻴﺎف اﻟﺰﺟﺎﺟﻴﻪ ﺍﻟﺫﻯ ﻴﻜﻭﻥ ﻓﻴﻪ‬
‫ﺛﺎﺑﺖ اﻟﻌﺰل )‪ (εr =2.33‬ﺘﺤﺕ ﺍﺴﻡ ﺘﺠﺎﺭﻯ )‪... (DiClad® 870‬‬
‫ﻭ ﺗﺼﺪر آﻞ ﺷﺮآﻪ ﻣﻨﺘﺠﻪ ﻟﻠﺸﺮاﺋﺢ ﺟﺪوﻻ ﻣﺜﻞ ﺟﺪول )‪ (٥-١‬اﻟﺴﺎﺑﻖ ﻓﻴﻪ رﻗﻢ اﻟﺸﺮﻳﺤﻪ ) أو اﺳﻤﻬﺎ اﻟﺘﺠﺎرى ( و‬
‫ﺛﺎﺑﺖ اﻟﻌﺰل )‪ (dielectric constant εr‬و ﻣﻌﺎﻣﻞ اﻟﻔﻘﺪ أو ﻣﻤﺎس اﻟﻔﻘﺪ )‪ (Loss tangent‬أو )‪ (tan δ‬و‬
‫ﻣﻘﺪرة اﻟﻌﺎزل )‪ (Dielectric strength‬و اﻟﺘﻮﺻﻴﻞ اﻟﺤﺮارى )‪ (Thermal Conductivity‬و اﻣﺘﺼﺎص ﺑﺨﺎر‬
‫‪24‬‬

‫اﻟﻤﺎء )‪ (Moisture absorption‬و ﻣﻘﺎوﻣﺔ اﻟﺤﺠﻢ )‪ (volume resistivity‬و ﻣﻘﺎوﻣﺔ اﻟﺴﻄﺢ )‪surface‬‬
‫‪ (resistivity‬و ﻏﻴﺮهﺎ و ﻳﺤﺪد ﻣﻊ اﻟﺠﺪول اﻟﻄﺮﻳﻘﺔ أو اﻟﻤﻮاﺻﻔﻪ اﻟﻘﻴﺎﺳﻴﻪ اﻟﻤﺴﺘﺨﺪﻣﻪ ﻓﻰ ﻗﻴﺎس هﺬﻩ اﻟﺒﻴﺎﻧﺎت ﻣﺜﻞ‬
‫اﻟﻤﻮاﺻﻔﻪ اﻟﻘﻴﺎﺳﻴﻪ )‪ (IPC-TM-650 method 2.5.5.5‬ﻣﻊ ﺗﺤﺪﻳﺪ اﻟﺘﺮدد و درﺟﺔ اﻟﺤﺮارﻩ اﻟﻠﺬان ﺗﻢ ﻋﻨﺪهﻤﺎ‬
‫اﻟﻘﻴﺎس اﻟﻰ ﻏﻴﺮ ذﻟﻚ ﻣﻦ اﻟﺒﻴﺎﻧﺎت اﻟﺘﻰ ﺗﻌﺮف اﻟﺸﺮﻳﺤﻪ و ﺧﻮاص ﻣﺎدﺗﻰ اﻟﻤﻮﺻﻞ و اﻟﻌﺎزل و ﺳﻤﻚ آﻞ ﻣﻨﻬﻤﺎ ‪.‬‬
‫ﻟﺴﻨﻮات ﻃﻮﻳﻠﻪ آﺎﻧﺖ ﺷﺮاﺋﺢ اﻻﻟﻮﻣﻴﻨﺎ ﺷﺎﺋﻌﺔ اﻻﺳﺘﺨﺪام و ﺗﻮﺟﺪ ﺷﺮاﺋﺢ أﻟﻮﻣﻴﻨﺎ ﺗﺠﺎرﻳﺎ ذات ﺛﺎﺑﺖ ﻋﺰل‬
‫)‪ (dielectric constant εr‬ﻳﺘﺮاوح ﺑﻴﻦ )‪ ، (8-10‬ﻟﻜﻦ ﺛﺒﺖ أن ﺷﺮاﺋﺢ اﻻﻟﻮﻣﻴﻨﺎ )‪(Alumina substrates‬‬
‫ﺗﻤﺘﺎز ﺑﺘﻐﻴﺮ ﺛﺎﺑﺖ اﻟﻌﺰل اﻟﺨﺎص ﺑﻬﺎ ﻣﻊ درﺟﺔ اﻟﺤﺮارﻩ و ﺑﺎﻟﺮﻏﻢ ﻣﻦ هﺬا اﻟﻌﻴﺐ ﻓﺎن ﺷﺮاﺋﺢ اﻻﻟﻮﻣﻴﻨﺎ ﻣﺎ زاﻟﺖ‬
‫ﺗﺴﺘﺨﺪم ﻓﻰ اﻟﻌﺪﻳﺪ ﻣﻦ اﻟﺘﻄﺒﻴﻘﺎت و ﻣﻨﻬﺎ اﻟﻨﻈﻢ اﻟﺘﻰ ﻻ ﺗﺘﻌﺮض ﻟﺘﻐﻴﺮات آﺒﻴﺮﻩ ﻓﻰ درﺟﺔ اﻟﺤﺮارﻩ ‪.‬‬
‫و ﻗﺪ ﻗﺎﻣﺖ أﺣﺪ أهﻢ اﻟﺸﺮآﺎت اﻟﻤﻨﺘﺠﻪ ﻟﻠﺸﺮاﺋﺢ و هﻰ ﺷﺮآﺔ روﺟﺮز )‪ (Rogers Corporation‬اﻻﻣﺮﻳﻜﻴﻪ اﻟﺘﻰ‬
‫ﺗﻘﻮم ﺑﺘﻮرﻳﺪ اﻟﺸﺮاﺋﺢ ﻟﻮآﺎﻟﺔ اﻟﻔﻀﺎء اﻻﻣﺮﻳﻜﻴﻪ )‪ (NASA‬ﺑﺘﺼﻨﻴﻊ ﺷﺮاﺋﺢ ﺑﺪﻳﻠﻪ ﻟﺘﻼﻓﻰ هﺬا اﻟﻌﻴﺐ ﻣﻦ ﻣﺎدﻩ أﺧﺮى‬
‫ﻣﺼﻨﻮﻋﻪ ﻣﻦ )‪ (hydrocarbon thermoset plastic - ceramic filled‬ﺗﺤﺖ اﺳﻢ ﺗﺠﺎرى )®‪ (TMM‬آﺒﺪﻳﻞ‬
‫ﻟﺸﺮاﺋﺢ اﻻﻟﻮﻣﻴﻨﺎ ﻟﻼﺳﺘﻌﻤﺎل ﻓﻰ ﺗﺼﻨﻴﻊ دواﺋﺮ اﻟﺘﺮدد اﻟﻌﺎﻟﻰ ﺑﺎﻻﻗﻤﺎر اﻟﺼﻨﺎﻋﻴﻪ و ﺑﺎﻗﻰ ﺗﻄﺒﻴﻘﺎت اﻟﻔﻀﺎء ‪ .‬و ﻳﻤﻜﻦ‬
‫ﻣﺮاﺟﻌﺔ اﻟﻤﺮﺟﻊ رﻗﻢ )‪ (١٠‬ﻓﻰ هﺬا اﻟﺨﺼﻮص ‪.‬‬
‫و ﻓﻴﻤﺎ ﻳﻠﻰ ﺟﺪول ﻓﻴﻪ أﻣﺜﻠﻪ ﻋﻠﻰ ﺷﺮاﺋﺢ )®‪ (TMM‬و ﺛﺎﺑﺖ اﻟﻌﺰل ﻟﻜﻞ ﻣﻨﻬﺎ وﻳﺘﺮاوح ﺑﻴﻦ ) ‪: ( 3.27–9.8‬‬
‫ﺛﺎﺑﺖ اﻟﻌﺰل )‪(dielectric constant‬‬

‫رﻗﻢ اﻟﺸﺮﻳﺤﻪ‬

‫‪3.27 ± 0.032‬‬

‫‪TMM®3‬‬

‫‪4.5 ± 0.045‬‬

‫‪TMM®4‬‬

‫‪6 ± 0.08‬‬

‫‪TMM®6‬‬

‫‪9.2 ± 0.23‬‬

‫‪TMM®10‬‬

‫‪9.8 ± 0.245‬‬

‫‪TMM®10i‬‬
‫ﺠﺩﻭل )‪ : (٦-١‬ﺑﻌﺾ ﺷﺮاﺋﺢ )®‪(TMM‬‬

‫و ﻳﻤﻜﻦ اﺳﺘﻌﻤﺎل ﺷﺮاﺋﺢ أﺧﺮى ﻏﻴﺮ ﺷﺮاﺋﺢ )®‪ (TMM‬ﺗﻨﺘﺠﻬﺎ اﻟﻌﺪﻳﺪ ﻣﻦ اﻟﺸﺮآﺎت ﻣﻦ ﻣﻮاد ﺳﻴﺮاﻣﻴﻜﻴﻪ )أو‬
‫ﻣﺨﻠﻮﻃﻪ ﺑﻤﻮاد ﺳﻴﺮاﻣﻴﻜﻴﻪ( ﺗﻤﺘﺎز ﺑﺎرﺗﻔﺎع ﺛﺎﺑﺖ اﻟﻌﺰل )‪ (dielectric constant εr‬اﻟﺨﺎص ﺑﻬﺎ و اﻧﺨﻔﺎض‬
‫ﻣﻌﺪل ﺗﻐﻴﺮﻩ ﻣﻊ درﺟﺔ اﻟﺤﺮارﻩ آﺒﺪﻳﻞ ﻟﺸﺮاﺋﺢ اﻻﻟﻮﻣﻴﻨﺎ ﻓﻰ ﺗﺼﻨﻴﻊ دواﺋﺮ اﻟﺘﺮدد اﻟﻌﺎﻟﻰ ﺑﺎﻻﻗﻤﺎر اﻟﺼﻨﺎﻋﻴﻪ و‬
‫ﺗﻄﺒﻴﻘﺎت اﻟﻄﻴﺮان و اﻟﻔﻀﺎء ‪.‬‬

‫‪25‬‬

‫اﻟﺸﺮآﺎت اﻟﻤﻨﺘﺠﻪ ﻟﻠﺸﺮاﺋﺢ ﺗﻀﻊ ﻣﻠﺼﻖ ﻋﻠﻰ اﻟﺸﺮﻳﺤﻪ اﻟﻤﺒﺎﻋﻪ )‪ (Laminate‬ﻳﺤﻤﻞ ﺑﻴﺎﻧﺎت اﻟﺸﺮﻳﺤﻪ و ﻳﻜﻮن‬
‫ﻏﻴﺮ واﺿﺢ ﻓﻰ ﺑﻌﺾ اﻟﺤﺎﻻت و آﻤﺜﺎل ﻟﺬﻟﻚ ﻳﺒﻴﻦ ﺷﻜﻞ )‪ (١٧-١‬ﻣﺜﺎل ﻟﻤﻠﺼﻖ ﻋﻠﻰ ﺷﺮﻳﺤﺔ ﻣﻌﻴﻨﻪ ﻣﻦ اﻟﺘﻴﻔﻠﻮن‬
‫ﻣﻐﻄﻰ ﻣﻦ ﺟﺎﻧﺒﻴﻪ ﺑﻄﺒﻘﺘﻰ ﻧﺤﺎس ﻣﻦ اﻧﺘﺎج ﺷﺮآﺔ روﺟﺮز اﻻﻣﺮﻳﻜﻴﻪ ‪:‬‬

‫‪5880‬‬
‫‪DIEL+ − 0007‬‬
‫‪CU 2 SIDE‬‬

‫‪EDC‬‬

‫‪0100‬‬
‫‪OZ‬‬

‫‪1‬‬

‫‪11/24/02‬‬
‫ﺷﻜﻞ )‪ : (١٧-١‬ﻣﺜﺎل ﻟﻤﻠﺼﻖ ﻋﻠﻰ ﺷﺮﻳﺤﺔ ﺗﻴﻔﻠﻮن ﺗﺒﺎع ﺗﺠﺎرﻳﺎ‬
‫و ﺗﻮﺿﻴﺢ هﺬا ﺍﻟﻤﻠﺼﻕ ﻜﻤﺎﻴﻠﻰ ‪:‬‬
‫ ﻴﺤﻤل ﺍﻟﻤﻠﺼﻕ ﺭﻗﻡ ﺍﻟﺸﺭﻴﺤﻪ )‪ (Laminate‬ﺍﻟﺘﻰ ﺘﻨﺘﺠﻬﺎ ﺍﻟﺸﺭﻜﻪ ﻤﺜﺎل‬‫‪5880‬‬
‫ﻭﻫﺫﺍ ﻤﻌﻨﺎﻩ ﺃﻥ ﺍﻟﺸﺭﻴﺤﻪ ﻤﻥ ﻨﻭﻉ ) ‪ (RF/duroid™ 5880‬ﺍﻟﺫﻯ ﻴﻜﻭﻥ ﻓﻴﻪ )‪ (εr = 2.2 ± 0.02‬ﻭﻴﺘﻡ ﻤﻌﺭﻓﺔ‬
‫ﺫﻟﻙ ﻤﻥ ﺼﻔﺤﺎﺕ ﺍﻟﺒﻴﺎﻨﺎﺕ )‪ (datasheets‬ﺍﻟﺘﻰ ﺘﻨﺘﺠﻬﺎ ﺍﻟﺸﺭﻜﻪ‬
‫ ﻴﺤﻤل ﺍﻟﻤﻠﺼﻕ ﺘﺎﺭﻴﺦ ﺼﻨﺎﻋﺔ ﺍﻟﺸﺭﻴﺤﻪ )‪ (Laminate‬ﻤﺜﺎل‬‫‪11/24/02‬‬
‫ﻭ ﻫﺫﺍ ﻫﺎﻡ ﻷﻨﻪ ﻴﻭﺠﺩ ﻓﺘﺭﻩ ﺯﻤﻨﻴﻪ ﻻﺴﺘﺒﺩﺍل ﺍﻟﺸﺭﻴﺤﻪ ﺍﺫﺍ ﺤﺩﺙ ﻋﻴﺏ ﻓﻰ ﺍﻟﻨﻘل ﻭ ﻫﺫﺍ ﺍﻟﺘﺎﺭﻴﺦ ﻟﻪ ﻋﻼﻗﻪ ﺒﺼﻔﺤﺔ‬
‫ﺒﻴﺎﻨﺎﺕ ﺃﻤﺎﻥ ﺍﻟﻤﺎﺩﻩ )‪.(Material Safety datasheet‬‬
‫ ﻴﺤﻤل ﺍﻟﻤﻠﺼﻕ ﺴﻁﺭ ﻴﺒﻴﻥ ﺴﻤﻙ ﺍﻟﻌﺎﺯل ﺍﻟﻤﻭﺠﻭﺩ ﺒﺎﻟﺸﺭﻴﺤﻪ ﻤﺜﺎل‬‫‪DIEL+ − 0007‬‬

‫‪0100‬‬

‫ﻭ ﻫﺫﺍ ﻤﻌﻨﺎﻩ ﺃﻥ ﺴﻤﻙ ﺍﻟﻌﺎﺯل ﺍﻟﻤﻭﺠﻭﺩ ﺒﺎﻟﺸﺭﻴﺤﻪ ﺒﺎﻟﺒﻭﺼﻪ ﻴﺴﺎﻭﻯ )‪(h = 0.01 ± 0.0007 inch‬‬
‫ﻤﻠﺤﻭﻅﻪ )‪(1 inch = 25.4 mm‬‬

‫‪26‬‬

‫ ﻴﺤﻤل ﺍﻟﻤﻠﺼﻕ ﺴﻁﺭ ﻴﺒﻴﻥ ﺴﻤﻙ ﺍﻟﻨﺤﺎﺱ ﺒﺎﻟﺸﺭﻴﺤﻪ ﻤﺜﺎل‬‫‪EDC‬‬

‫‪CU 2 SIDE‬‬

‫‪OZ‬‬

‫‪1‬‬

‫ﻭﻫﺫﺍ ﻤﻌﻨﺎﻩ ﺃﻥ ﻁﺒﻘﺔ ﺍﻟﻌﺎﺯل ﺍﻟﻤﻭﺠﻭﺩ ﺒﺎﻟﺸﺭﻴﺤﻪ ﻤﻐﻁﺎﻩ ﺒﺎﻟﻨﺤﺎﺱ )‪ (CU‬ﻤﻥ ﺍﻟﺠﺎﻨﺒﻴﻥ )‪ (2 SIDE‬ﻭ ﺘﻤﺕ‬
‫ﺍﻟﺘﻐﻁﻴﻪ ﺒﺎﻟﺘﺭﺴﻴﺏ ﺍﻟﻜﻬﺭﺒﻰ )‪ (EDC ≡ Electrically Deposited‬ﺒﺤﻴﺙ ﻴﻜﻭﻥ ﺴﻤﻙ ﺍﻟﻨﺤﺎﺱ ﻴﻜﺎﻓﺊ ﻭﺯﻥ‬
‫ﺃﻭﻗﻴﻪ ﻭﺍﺤﺩﻩ ﻤﻭﺯﻋﻪ ﻋﻠﻰ ﺍﻟﻤﺴﺎﺤﻪ )‪OZ‬‬

‫‪ (1‬ﻭ ﻫﺫﺍ ﻤﻌﻨﺎﻩ ﺃﻥ ﺴﻤﻙ ﺍﻟﻨﺤﺎﺱ )‪ (t = 1.4 mils ≡ 1 OZ‬ﺃﻯ‬

‫ﺃﻥ ﺴﻤﻙ ﺍﻟﻨﺤﺎﺱ ) ‪(t = 1.4 x 0.001 x 25.4 mm = 0.03556 mm‬‬
‫ﻤﻠﺤﻭﻅﻪ ‪ (OZ ≡ Ounce) :‬ﺘﻌﻨﻰ ﺃﻭﻗﻴﻪ‪.‬‬
‫ﻭ ﻴﻤﻜﻥ ﻜﺘﺎﺒﺔ ﺴﻤﻙ ﺍﻟﻨﺤﺎﺱ ﻓﻰ ﺴﻁﺭ ﻴﺤﻤل ﻨﻔﺱ ﺍﻟﻤﻌﻨﻰ ﻟﻜﻨﻪ ﻤﻜﺘﻭﺏ ﺒﻁﺭﻴﻘﻪ ﺃﺨﺭﻯ ﻋﻠﻰ ﺍﻟﻤﻠﺼﻕ ﻭﻫﻰ‬
‫‪1.0E / 1.0E‬‬
‫ﻭﻫﺫﺍ ﻤﻌﻨﺎﻩ ﺃﻥ ﻁﺒﻘﺔ ﺍﻟﻌﺎﺯل ﺍﻟﻤﻭﺠﻭﺩ ﺒﺎﻟﺸﺭﻴﺤﻪ ﻤﻐﻁﺎﻩ ﺒﺎﻟﻨﺤﺎﺱ ﻤﻥ ﺍﻟﺠﺎﻨﺒﻴﻥ ﺒﺤﻴﺙ ﻴﻜﻭﻥ ﺴﻤﻙ ﺍﻟﻨﺤﺎﺱ ﻴﻜﺎﻓﺊ‬
‫ﻭﺯﻥ ﺃﻭﻗﻴﻪ ﻭﺍﺤﺩﻩ ﻤﻭﺯﻋﻪ ﻋﻠﻰ ﺍﻟﻤﺴﺎﺤﻪ )‪OZ‬‬

‫‪.(1‬‬

‫ﻭ ﺒﺎﻟﻤﺜل ﺒﺎﺘﺒﺎﻉ ﻫﺫﻩ ﺍﻟﻁﺭﻴﻘﻪ ﻟﻭ ﺃﻥ ﺸﺭﻴﺤﻪ ﺃﺨﺭﻯ ﻤﻐﻁﺎﻩ ﺒﺎﻟﻨﺤﺎﺱ ﻤﻥ ﺍﻟﺠﺎﻨﺒﻴﻥ ﺒﺤﻴﺙ ﻴﻜﻭﻥ ﺴﻤﻙ ﺍﻟﻨﺤﺎﺱ‬
‫ﻴﻜﺎﻓﺊ ﻭﺯﻥ ﻨﺼﻑ ﺃﻭﻗﻴﻪ ﻤﻭﺯﻋﻪ ﻋﻠﻰ ﺍﻟﻤﺴﺎﺤﻪ )‪ (0.5 OZ‬ﻟﻜﺘﺏ ﺍﻟﺴﻁﺭ ﺒﺎﺤﺩﻯ ﻁﺭﻴﻘﺘﻴﻥ‪:‬‬
‫‪CU 2 SIDE‬‬

‫‪EDC‬‬

‫‪OZ‬‬

‫‪0.5‬‬

‫ﺃﻭ‬
‫‪0.5E / 0.5E‬‬
‫ﻭ ﻴﻜﻭﻥ ﻫﺫﺍ ﻤﻌﻨﺎﻩ ﺃﻥ ﺴﻤﻙ ﺍﻟﻨﺤﺎﺱ )‪ (t = 0.7 mils ≡ 0.5 OZ‬ﺃﻯ ﺃﻥ ﺴﻤﻙ ﺍﻟﻨﺤﺎﺱ‬
‫) ‪(t = 0.7 x 0.001 x 25.4 mm = 0.01778 mm‬‬
‫ﻭ ﻫﺫﺍ ﺠﺩﻭل ﻤﻠﺨﺹ ﻟﺤﺴﺎﺏ ﺴﻤﻙ ﻁﺒﻘﺔ ﺍﻟﻨﺤﺎﺱ ﺍﻟﻤﻐﻁﻰ ﻟﻠﺸﺭﻴﺤﻪ ‪:‬‬

‫‪27‬‬

‫ﺍﻟﻭﺯﻥ ﺒﺎﻻﻭﻗﻴﻪ ﻟﻁﺒﻘﺔ ﺍﻟﻨﺤﺎﺱ‬

‫ﺴﻤﻙ ﺍﻟﻨﺤﺎﺱ ﺒﺎﻟﻤﻴﻜﺭﻭﻤﺘﺭ‬

‫ﺴﻤﻙ ﺍﻟﻨﺤﺎﺱ ﺒﺎﻟﻤﻴﻠﻠﻲ ﺒﻭﺼﻪ‬

‫‪0.25 OZ‬‬

‫‪9 µm‬‬

‫‪0.4 mils‬‬

‫‪0.5 OZ‬‬

‫‪17.5 µm‬‬

‫‪0.7 mils‬‬

‫‪1.0 OZ‬‬

‫‪35 µm‬‬

‫‪1.4 mils‬‬

‫‪2.0 OZ‬‬

‫‪70 µm‬‬

‫‪2.8 mils‬‬

‫ﺠﺩﻭل )‪ : (٧-١‬ﺴﻤﻙ ﻁﺒﻘﺔ ﺍﻟﻨﺤﺎﺱ ﺍﻟﻤﻐﻁﻴﻪ ﻟﻠﺸﺭﻴﺤﻪ ﻭ ﺍﻟﻭﺯﻥ ﺍﻟﻤﻜﺎﻓﺊ ﺍﻟﻤﻭﺯﻉ ﻋﻠﻰ ﺍﻟﻤﺴﺎﺤﻪ‬

‫ﺩﻭﺍﺌﺭ ﺍﻟﺘﺭﺩﺩ ﺍﻟﻌﺎﻟﻰ ﻻ ﻴﺼﺢ ﻤﻌﺎﻤﻠﺘﻬﺎ ﻤﻌﺎﻤﻠﺔ ﺍﻟﺩﻭﺍﺌﺭ ﺍﻟﻤﻁﺒﻭﻋﻪ ﺍﻟﻌﺎﺩﻴﻪ ﺍﻟﺘﻰ ﺘﻌﻤل ﻓﻰ ﺘﺭﺩﺩﺍﺕ ﻤﻨﺨﻔﻀﻪ ﻭ‬
‫ﻫﻨﺎﻙ ﺍﺤﺘﻴﺎﻁﺎﺕ ﻜﺜﻴﺭﻩ ﻟﻠﺘﻌﺎﻤل ﻤﻊ ﺍﻟﺸﺭﺍﺌﺢ )‪ (Laminates‬ﺍﻟﺘﻰ ﺘﺼﻨﻊ ﻤﻨﻬﺎ ﺍﻟﺩﻭﺍﺌﺭ‪ ،‬ﻭ ﻟﺫﻟﻙ ﺘﺼﺩﺭ ﺍﻟﺸﺭﻜﺎﺕ‬
‫ﺍﻟﻤﻨﺘﺠﻪ ﻟﻠﺸﺭﺍﺌﺢ ﻤﻁﺒﻭﻋﺎﺕ ﺃﻭ ﺻﻔﺤﺎت ﺑﻴﻨﺎت )‪ (data sheets‬ﻣﺜﻞ ﺻﻔﺤﺎت اﻟﺒﻴﻨﺎت اﻟﺨﺎﺻﻪ ﺑﺄﻣﺎن أو ﻣﻌﺎﻣﻠﺔ‬
‫اﻟﻤﻮاد اﻟﺪاﺧﻠﻪ ﻓﻰ اﻟﺸﺮﻳﺤﻪ )‪ (material safety data sheets‬و ﻣﻼﺣﻈﺎت اﻟﺘﻄﺒﻴﻖ )‪(Application Notes‬‬
‫و ﺗﻮﺟﻴﻬﺎت اﻟﺘﺼﻨﻴﻊ )‪ (Fabrication Guidelines‬ﻣﺜﻞ ﻣﺮاﺟﻊ )‪ ١١‬و ‪ (١٢‬و اﻟﻤﺮاﺟﻊ اﻟﺘﻰ ﻳﻤﻜﻦ ﺗﺤﻤﻴﻠﻬﺎ‬
‫)‪ (download‬ﻣﻦ ﻣﺮﺟﻊ اﻻﻧﺘﺮﻧﺖ رﻗﻢ )‪ (i2‬و آﻠﻬﺎ هﺎﻣﻪ ﺟﺪا ﺣﻴﺚ ﺗﺤﺘﻮى ﻋﻠﻰ ﻣﻌﻠﻮﻣﺎت ﻗﻴﻤﻪ ﺗﻔﻴﺪ ﻓﻰ ﺗﺨﺰﻳﻦ‬
‫اﻟﺸﺮاﺋﺢ و ﺗﺼﻨﻴﻊ اﻟﺪواﺋﺮ و ﻳﺠﺐ ﺗﻨﻔﻴﺬهﺎ ﻟﻼﺳﻬﺎم ﻓﻰ اﻟﺤﺼﻮل ﻋﻠﻰ ﻧﺘﺎﺋﺞ ﺟﻴﺪﻩ ﻋﻨﺪ اﻟﺘﺼﻨﻴﻊ ‪ ،‬و ﻓﻴﻤﺎ ﻳﻠﻰ أﻣﺜﻠﻪ‬
‫ﻋﻠﻰ هﺬﻩ اﻟﻤﻌﻠﻮﻣﺎت ‪:‬‬
‫)ﺃ( ‪ -‬ﺍﻟﺘﺨﺯﻴﻥ )‪ : (Storage‬ﺘﺨﺯﻴﻥ ﺍﻟﺸﺭﻴﺤﻪ ﺫﺍﺕ ﺍﻟﻌﺎﺯل ﻤﻥ ﺍﻟﺘﻴﻔﻠﻭﻥ ﻴﺠﺏ ﺃﻥ ﻴﻜﻭﻥ ﺒﻴﻥ ﺩﺭﺠﺎﺕ ﺤﺭﺍﺭﻩ‬
‫)‪ (65°F to 85°F -or- 18°C to 30°C‬ﺃﻭ ﺩﺭﺠﺔ ﺤﺭﺍﺭﺓ ﺍﻟﻐﺭﻓﻪ ﻓﻰ ﺍﻟﻅﺭﻭﻑ ﺍﻟﻌﺎﺩﻴﻪ ﻭ ﺍﻟﺘﻰ ﺘﻜﻭﻥ ﻓﻴﻬﺎ‬
‫ﺍﻟﻤﻭﺍﺩ ﺍﻟﻌﺎﺯﻟﻪ )‪ (dielectric materials‬ﺨﺎﻤﻠﻪ ﺃﻭ ﻏﻴﺭ ﻤﺘﺄﺜﺭﻩ ﺒﺎﻟﺭﻁﻭﺒﻪ ﺍﻟﻌﺎﻟﻴﻪ )‪ (high humidity‬ﻭ‬
‫ﺍﻟﻤﻠﻭﺜﺎﺕ ﺍﻟﺒﻴﺌﻴﻪ ﺃﻭ ﺍﻟﺠﻭﻴﻪ )‪ (atmospheric pollutants‬ﻤﺜل ﺍﻟﻐﺎﺯﺍﺕ ﺍﻟﺼﻨﺎﻋﻴﻪ )‪ (industrial gases‬ﻭ‬
‫ﺍﻻﻤﻼﺡ ﺍﻟﺒﺤﺭﻴﻪ )‪. (marine salts‬‬
‫ﺃﻤﺎ ﺍﻟﻁﺒﻘﻪ ﺍﻟﻤﻌﺩﻨﻴﻪ ﺒﺎﻟﺸﺭﻴﺤﻪ ﺴﻭﺍﺀ ﺍﻟﻨﺤﺎﺱ ﺃﻭ ﺍﻻﻟﻭﻤﻨﻴﻭﻡ ﻓﻴﻤﻜﻥ ﺃﻥ ﺘﺘﺄﻜﺴﺩ ﺃﻭ ﺘﺘﺂﻜل ﺨﻼل ﺍﻟﺘﻌﺭﺽ ﺍﻟﻤﺒﺎﺸﺭ‬
‫ﻟﻠﺭﻁﻭﺒﻪ ﺍﻟﻌﺎﻟﻴﻪ ﺃﻭ ﺍﻻﻤﻼﺡ ﺍﻟﺒﺤﺭﻴﻪ ﺃﻭ ﺃﻜﺎﺴﻴﺩ ﺍﻟﻜﺒﺭﻴﺕ ﻭ ﻟﺫﻟﻙ ﻴﺘﻡ ﺤﻤﺎﻴﺘﻬﺎ )ﺒﻨﺴﺒﻪ ﻜﺒﻴﺭﻩ( ﺒﻁﺒﻘﻪ ﻤﻥ ﻤﺎﺩﺓ‬
‫)‪ (polyethylene‬ﻤﻥ ﺍﻟﺘﺂﻜل ﻭ ﻤﺫﻜﻭﺭ ﻓﻰ ﺼﻔﺤﺔ ﺍﻟﺒﻴﺎﻨﺎﺕ ﻁﺭﻕ ﺍﻟﺘﻨﻅﻴﻑ ﺍﻟﻌﺎﺩﻴﻪ ﺍﻟﺘﻰ ﺘﺯﻴل ﺁﺜﺎﺭ ﺍﻟﺘﺂﻜل‬
‫ﻟﻠﻁﺒﻘﻪ ﺍﻟﻤﻌﺩﻨﻴﻪ ﻟﻠﺸﺭﺍﺌﺢ ﺍﻟﻤﺨﺯﻨﻪ ﺒﻁﺭﻴﻘﻪ ﺼﺤﻴﺤﻪ ‪.‬‬
‫)ﺏ( ‪ -‬ﺍﻟﻤﻌﺎﻤﻠﻪ ﻟﻠﺸﺭﻴﺤﻪ )‪ : (Handling‬ﻤﻌﺎﻤﻠﺔ ﺍﻟﺸﺭﻴﺤﻪ ﻴﻔﻀل ﺃﻥ ﺘﻜﻭﻥ ﺒﺎﺴﺘﺨﺩﺍﻡ ﻗﻔﺎﺯﺍﺕ ﻤﻥ ﺍﻟﻨﺎﻴﻠﻭﻥ‬
‫)‪ (knit nylon gloves‬ﺃﻭ ﻏﻴﺭﻫﺎ ﻤﻥ ﺍﻟﻤﻭﺍﺩ ﺍﻟﻐﻴﺭ ﻤﺎﺼﻪ )‪. (non-absorbent material‬‬
‫)ﺝ( – ﺗﺤﺘﻮى ﺻﻔﺤﺎت اﻟﺒﻴﺎﻧﺎت ﻋﻠﻰ اﻟﻤﻌﻠﻮﻣﺎت اﻟﺨﺎﺻﻪ ﺑﺘﻨﻈﻴﻒ و ﺗﺠﻬﻴﺰ ﺳﻄﺢ اﻟﺸﺮﻳﺤﻪ ﻟﻠﺘﺼﻨﻴﻊ ) ‪Surface‬‬
‫‪ (Preparation‬و ﻃﺮق و أدوات اﻟﺘﺜﻘﻴﺐ )‪ (Drilling‬و اﻟﺘﺠﻬﻴﺰ ﻟﻪ )‪ (Hole Preparation‬و اﻻداﻩ اﻟﻤﺴﺘﺨﺪﻣﻪ‬
‫ﻓﻰ اﻟﺘﺜﻘﻴﺐ )‪ (spindle‬و ﺣﺴﺎﺑﺎت ﺳﺮﻋﺔ دوران اﻻداﻩ )‪ (spindle speed in RPM‬اﻟﻤﻨﺎﺳﺒﻪ ﻟﺴﻤﻚ اﻟﺸﺮﻳﺤﻪ و‬
‫ﻗﻄﺮ اﻟﺜﻘﺐ و ﺗﻌﻠﻴﻤﺎت ﻃﺒﺎﻋﺔ اﻟﺪاﺋﺮﻩ ﺑﺎﻟﻄﺮق اﻟﻀﻮﺋﻴﻪ )‪ (photolithography‬و ﺗﺤﺴﻴﻦ ﻧﺘﻴﺠﺔ اﻟﻄﺒﺎﻋﻪ‬
‫‪28‬‬

‫آﺎﻟﺤﺼﻮل ﻋﻠﻰ ﺣﻮاف ذات ﺟﻮدﻩ ﻋﺎﻟﻴﻪ )‪ (improved edge quality‬و اﻟﻄﺮق اﻟﻤﻨﺎﺳﺒﻪ ﻟﻠﺤﺎم اﻟﻤﻜﻮﻧﺎت و‬
‫درﺟﺔ اﻟﺤﺮارﻩ اﻟﻘﺼﻮى اﻟﻤﺴﻤﻮح ﺑﻬﺎ ﻟﻠﺤﺎم اﻟﻰ ﺁﺧﺮ ذﻟﻚ ﻣﻦ اﻟﻤﻌﻠﻮﻣﺎت اﻟﺘﻰ ﻳﺠﺐ اﺳﺘﺨﺪاﻣﻬﺎ ﻓﻰ اﻟﺘﺨﺰﻳﻦ و‬
‫اﻟﻤﻌﺎﻣﻠﻪ و اﻟﺘﺼﻨﻴﻊ ‪.‬‬
‫)د( – هﻨﺎك أﺧﻄﺎر ﺻﺤﻴﻪ ﻳﺠﺐ اﻟﺤﺬر ﻣﻨﻬﺎ ﻋﻨﺪ ﺗﺼﻨﻴﻊ اﻟﺪواﺋﺮ و ﻣﻦ ﺿﻤﻨﻬﺎ اﺳﺘﺨﺪام ﺷﺮاﺋﺢ اﻟﺒﺮﻳﻠﻠﻴﺎ أو‬
‫أآﺴﻴﺪ اﻟﺒﺮﻳﻠﻠﻴﻮم )‪ (BeO‬و هﻰ ﻣﺎدﻩ ﺷﺪﻳﺪة اﻟﺴﻤﻴﻪ و أى ذرات ﻣﺘﻄﺎﻳﺮﻩ ﻣﻦ اﻟﺒﺮﻳﻠﻠﻴﺎ ﻧﺎﺗﺠﻪ ﻣﻦ اﺟﺮاء اﻟﻌﻤﻠﻴﺎت‬
‫اﻟﻤﻴﻜﺎﻧﻴﻜﻴﻪ ﻋﻠﻴﻬﺎ ﻳﻜﻮن ﺧﻄﺮ ﻋﻠﻰ ﺻﺤﺔ اﻟﻘﺎﺋﻢ ﺑﺬﻟﻚ و ﻟﻬﺬا ﻳﺴﺘﺤﺴﻦ ﺗﺠﻨﺐ اﺳﺘﻌﻤﺎل ﺷﺮاﺋﺢ اﻟﺒﺮﻳﻠﻠﻴﺎ ﻓﻰ ﺗﺼﻨﻴﻊ‬
‫دواﺋﺮ اﻟﺘﺮدد اﻟﻌﺎﻟﻰ ‪.‬‬
‫و ﺑﺸﻜﻞ ﻋﺎم ﻓﺎﻧﻪ اﺛﻨﺎء اﻟﻌﻤﻠﻴﺎت اﻟﻤﻴﻜﺎﻧﻴﻜﻴﻪ )‪ (Machining‬ﻋﻠﻰ أى ﻧﻮع ﻣﻦ أﻧﻮاع اﻟﺸﺮاﺋﺢ ﻻﺑﺪ ﻣﻦ ﺗﺠﻨﺐ اﺛﺎرة‬
‫ﻣﺴﺘﻮﻳﺎت ﻋﺎﻟﻴﻪ ﻣﻦ اﻟﺬرات اﻟﻤﺘﻄﺎﻳﺮﻩ ﻓﻰ اﻟﻬﻮاء )‪ (airborne dust levels‬و اﻻﻣﺘﻨﺎع ﺗﻤﺎﻣﺎ ﻋﻦ اﺳﺘﻨﺸﺎﻗﻬﺎ ﺣﺘﻰ‬
‫ﻓﻰ ﺷﺮاﺋﺢ اﻟﺒﻮﻟﻴﻤﺮات اﻟﺒﻼﺳﺘﻴﻜﻴﻪ و اﻟﺘﻰ ﺗﺴﺒﺐ ﺣﻤﻰ )‪. (Polymer Fume Fever‬‬
‫وﻳﺠﺐ ﺗﺠﻨﺐ اﺳﺘﺨﺪام اﻟﺤﺮارﻩ اﻟﻌﺎﻟﻴﻪ أآﺜﺮ ﻣﻦ اﻟﺪرﺟﻪ اﻟﻘﺼﻮى اﻟﻤﺴﻤﻮح ﺑﻬﺎ أﺛﻨﺎء ﻟﺤﺎم اﻟﻤﻜﻮﻧﺎت و هﻨﺎك ﺧﻄﺮ‬
‫ﻓﻰ ﺣﺎﻟﺔ اﺣﺘﺮاق ﺷﺮاﺋﺢ اﻟﺒﻮﻟﻴﻤﺮات اﻟﺒﻼﺳﺘﻴﻜﻴﻪ ﻻن ﺗﺤﻠﻠﻬﺎ ﻓﻰ اﻟﺤﺮﻳﻖ ﻳﺴﺒﺐ دﺧﺎن ﺳﺎم و ﻳﺠﺐ ﻗﺮاءة ﺻﻔﺤﺎت‬
‫اﻟﺒﻴﻨﺎت اﻟﺨﺎﺻﻪ ﺑﺄﻣﺎن أو ﻣﻌﺎﻣﻠﺔ اﻟﻤﻮاد اﻟﺪاﺧﻠﻪ ﻓﻰ اﻟﺸﺮﻳﺤﻪ )‪ (material safety data sheets‬وﺑﺎﻗﻰ‬
‫ﻣﻄﺒﻮﻋﺎت اﻟﺸﺮآﻪ اﻟﻤﻨﺘﺠﻪ ﻟﻠﺸﺮﻳﺤﻪ ﻓﻰ هﺬا اﻟﺨﺼﻮص ‪.‬‬
‫ان اﻟﻤﺆﺳﺴﺎت و اﻟﺸﺮآﺎت اﻟﻌﺎﻣﻠﻪ ﻓﻰ ﺗﺼﻨﻴﻊ أﻧﻈﻤﺔ و دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ ﺗﺤﺘﺎج ﻏﺎﻟﺒﺎ اﻟﻰ ﺗﻨﻮﻳﻊ ﻣﺼﺎدر‬
‫اﻟﺸﺮاﺋﺢ و اﻟﻤﻜﻮﻧﺎت وهﺬا ﻋﺎﻣﻞ هﺎم ﺟﺪا ﻟﻀﻤﺎن اﻻﺳﺘﻤﺮار ﻓﻰ اﻻﻧﺘﺎج ‪ ،‬و هﻨﺎك ﻣﺼﺎدر ﻻﻧﺘﺎج و ﺗﻮزﻳﻊ ﺷﺮاﺋﺢ‬
‫و ﻣﻜﻮﻧﺎت اﻟﺘﺮددات اﻟﻌﺎﻟﻴﻪ ﻓﻰ اﻟﻮﻻﻳﺎت اﻟﻤﺘﺤﺪﻩ و أوروﺑﺎ و دول ﺟﻨﻮب ﺷﺮق ﺁﺳﻴﺎ و ﺧﺎﺻﺔ اﻟﺼﻴﻦ و دول‬
‫اﻟﻜﻮﻣﻨﻮﻟﺚ اﻟﻤﻨﻔﺼﻠﻪ ﻋﻦ اﻻﺗﺤﺎد اﻟﺴﻮﻓﻴﺘﻰ اﻟﺴﺎﺑﻖ وﺧﺎﺻﺔ روﺳﻴﺎ ‪......‬‬
‫ﺟﺪول )‪ (٨-١‬ﻳﺤﻮى أﺳﻤﺎء و ﻋﻨﺎوﻳﻦ ﺑﻌﺾ اﻟﺸﺮآﺎت اﻟﻤﺼﻨﻌﻪ و اﻟﻤﻮزﻋﻪ ﻟﻠﺸﺮاﺋﺢ و ﻋﻨﺎوﻳﻨﻬﺎ ﻋﻠﻰ اﻻﻧﺘﺮﻧﺖ‬
‫و ﺟﺪول )‪ (٩-١‬ﻳﺤﺘﻮى ﻋﻠﻰ ﺑﻌﺾ أﺳﻤﺎء اﻟﺸﺮاﺋﺢ اﻟﻤﻨﺘﺠﻪ ﺗﺠﺎرﻳﺎ و اﺳﻤﺎء اﻟﺸﺮآﺎت و ﻣﻮاﺻﻔﺎت اﻟﺸﺮاﺋﺢ و‬
‫ﻳﻤﻜﻦ اﺳﺘﺨﺪام هﺬا اﻟﺠﺪول آﻤﻠﺨﺺ ﻟﻠﺒﺤﺚ اﻟﺴﺮﻳﻊ ﻋﻦ ﻧﻮع ﻣﻌﻴﻦ ﻣﻦ اﻟﺸﺮاﺋﺢ و ﻳﻮﺟﺪ ﻣﺜﻠﻪ ﻓﻰ ﺑﻌﺾ اﻟﻤﺮاﺟﻊ‬
‫ﻣﺜﻞ )ﻣﺮﺟﻊ ‪.(١٣‬‬

‫‪29‬‬

‫اﻟﺼﻔﺤﻪ ﻋﻠﻰ اﻻﻧﺘﺮﻧﺖ‬

‫اﺳﻢ اﻟﺸﺮآﻪ‬

www.rogers-corp.com

Rogers Corporation

http://www.taconic-add.com/en--index.php
http://www.4taconic.com/en/

Taconic Corporate

www.arlonmed.com
http://www.arlon-med.com/

Arlon

www.gilam.com

GIL

www.polyclad.com

Polyclad

http://sun-stone.en.alibaba.com/
http://shpri.en.alibaba.com/
http://omen.en.alibaba.com/
http://changrun.en.alibaba.com/
http://www.alibaba.com/company/10123273.html

Electrodeposited Copper Foil
(Sunstone International Industry
And Trade Co_, Ltd
Shanghai Plastics Research
Institute
Ningbo Jiangdong Chuangwei
Sealing Material Co., Ltd. (Omen)
Changzhou Changrun Imp. & Exp.
Co., Ltd.
Zhejiang Wanshun Group

. ‫ ﺑﻌﺾ اﻟﺸﺮآﺎت اﻟﻤﺼﻨﻌﻪ و اﻟﻤﻮزﻋﻪ ﻟﺸﺮاﺋﺢ ﺍﻟﺘﺭﺩﺩ ﺍﻟﻌﺎﻟﻰ‬: (٨-١) ‫ﺠﺩﻭل‬

30

‫اﺳﻢ اﻟﺸﺮآﻪ و رﻗﻢ‬

‫ﻣﺎدة اﻟﺸﺮﻳﺤﻪ‬

‫اﻟﺸﺮﻳﺤﻪ‬
Rogers RT/Duroid
5880
Rogers RT/Duroid
5870
Rogers RT/Duroid
6002
Rogers RO3003
Rogers RO4003
Rogers RO4350
Rogers RO3006
Rogers RO3010
Rogers RT/Duroid
6010
Arlon DiClad 880
Arlon AR320
Arlon 33N
Arlon 35N
Arlon AR600
Arlon DiClad 870
Taconic TLY5
Taconic TLT9
Taconic TLE95
Taconic RF30
Taconic TLC32
Taconic RF60
FR4

(εr) ‫ﺛﺎﺑﺖ اﻟﻌﺰل‬

‫( ﻭ‬tan δ) ‫ﻣﻤﺎس اﻟﻔﻘﺪ‬

‫ﻭ ﺍﻟﺘﺭﺩﺩ ﺍﻟﻤﻘﺎﺱ ﻋﻨﺩﻩ‬

‫ﺍﻟﺘﺭﺩﺩ ﺍﻟﻤﻘﺎﺱ ﻋﻨﺩﻩ‬

PTFE/glass fiber

2.2 @ 10 GHz

0.0009 @ 10 GHz

PTFE/glass fiber

2.33 @ 10 GHz

0.0012 @ 10 GHz

PTFE/ceramic

2.94 @ 1 GHz

0.0012 @ 1 GHz

PTFE/ceramic
Hydrocarbon/ceramic
woven glass
Hydrocarbon/ceramic
woven glass
PTFE/ceramic
PTFE/ceramic
PTFE/ceramic

3.0 @ 10 GHz
3.38 @ 10 GHz

0.0013 @ 10 GHz
0.0027 @10 GHz

3.48 @ 10 GHz

0.004 @ 10 GHz

6.15 @ 10 GHz
10.2 @ 10 GHz
10.2 @ 1 GHz

0.0025 @ 10 GHz
0.0035 @ 10 GHz
0.0028 @ 1 GHz

PTFE/woven
fiberglass
PTFE/woven
fiberglass
Polyimide/E-glass
Polyimide/E-glass
PTFE/woven
fiberglass/ceramic
filled
PTFE/woven
fiberglass
PTFE/woven glass
PTFE/woven glass
PTFE/woven glass
Glass reinforced
fluoro polymer
PTFE/woven glass
PTFE/ceramic
Epoxy/glass

2.2 @ 10 GHz

0.0009 @ 10 GHz

3.20 @ 10 GHz

0.003 @ 10 GHz

4.25 @ 1 MHz
4.39 @ 1 MHz
6.0 @ 10 GHz

0.009 @ 1 MHz
0.008 @ 1 MHz
0.0035 @ 10 GHz

2.3 @ 10 GHz

0.0013 @ 10 GHz

2.2 @ 10 GHz
2.5 @ 10 GHz
2.95 @ 10 GHz
3.0 @ 1.9 GHz

0.0009 @ 10 GHz
0.0006 @ 10 GHz
0.0028 @ 10 GHz
0.0014 @ 1.9 GHz

3.2 @ 10 GHz
6.15 @ 10 GHz
5.2 @ 1 MHz

0.003 @ 10 GHz
0.0028 @ 10 GHz
0.025 @ 1 MHz

Epoxy/glass

5.2 @ 1 MHz

0.025 @ 1 MHz

‫اﺳﻢ اﻟﺸﺮآﻪ ﻏﻴﺮ ﻣﺤﺪد‬

FR5
‫اﺳﻢ اﻟﺸﺮآﻪ ﻏﻴﺮ ﻣﺤﺪد‬

. ‫ ﺑﻌﺾ أﺳﻤﺎء اﻟﺸﺮاﺋﺢ اﻟﻤﻨﺘﺠﻪ ﺗﺠﺎرﻳﺎ و اﺳﻤﺎء اﻟﺸﺮآﺎت و ﻣﻮاﺻﻔﺎت اﻟﺸﺮاﺋﺢ‬: (٩-١) ‫ﺟﺪول‬

31

‫ﻤﺭﺍﺠﻊ ﺍﻟﻔﺼل ﺍﻻﻭل‬
‫اﻟﺴﻨﻪ‬
2003

‫ﻣﻜﺎن اﻟﻨﺸﺮ‬/‫دار اﻟﻨﺸﺮ‬
Artech House

‫اﻟﻨﺎﺷﺮﻳﻦ‬/‫اﻟﻤﺆﻟﻔﻴﻦ‬
Antti V. Raisanen
Arto Lehto

1994

John Wiley & Sons

Kai Chang

1992

McGraw-Hill

Robert Collins

2005

John Wiley & Sons

David M. Pozar

2005

John Wiley & Sons

Kai Chang

2003

John Wiley & Sons

2002

John Wiley & Sons

2001

CRC Press

Inder Bahl
Prakash Bhartia
Kai Chang
Vijay Nair
Inder J. Bahl
Mike Golio

1992

John Wiley & Sons

Terry Edwards

2002

Rogers Corporation USA
Application Note :
TM2.9.9
Rogers Corporation USA
Application Note:
Fabrication RO4.3.5

Rogers
Corporation
Rogers
Corporation

Preliminary Fabrication
Guidelines for RO4350®
High Frequency Circuit
Materials

11

Rogers Corporation USA
Application Note:
Fabrication
Guidelines RT4.1.0
Artech House

Rogers
Corporation

Fabrication Guidelines
RT/duroid® 5870/5880 and
ULTRALAM® 2000 High
Frequency Laminates

12

Noyan Kinayman
M. I. Aksun

Modern Microwave Circuits

13

1996

2003

2005

‫اﺳﻢ اﻟﻜﺘﺎب أو اﻟﻮﺛﻴﻘﻪ‬
Radio Engineering for
Wireless Communication
and Sensor Applications
Microwave Solid-State
Circuits and Applications
Foundations for Microwave
nd
Engineering (2 edition)
Microwave Engineering
rd
(3 edition)
Encyclopedia of RF and
Microwave Engineering
Microwave Solid State
nd
Circuit Design (2 edition)
RF and Microwave Circuit
and Component Design for
Wireless Systems
RF and Microwave
Handbook
Foundations for Microstrip
nd
Circuit Design (2 edition)
TMM® Temperature Stable
Microwave Materials as a
Replacement for Alumina
on Space Flight Hardware

1
2
3
4
5
6
7
8
9
10

‫ﻤﺭﺍﺠﻊ ﺍﻻﻨﺘﺭﻨﺕ‬
(٨ -١) ‫ﺟﺪول‬
: ‫اﺻﺪارات و ﺻﻔﺤﺎت ﺑﻴﺎﻧﺎت ﺷﺮآﺔ روﺟﺮز‬
http://www.rogers-corp.com/acm/litintbl.htm
: ‫ﻣﻮﻗﻊ ﻟﻠﺒﺤﺚ ﻋﻦ اﻟﻤﻨﺘﺠﺎت و اﻟﺸﺮآﺎت اﻟﺼﻴﻨﻴﻪ‬
http://www.alibaba.com

32

i1
i2
i3

‫‪Chapter 2 : Network Analysis and Essential Definitions‬‬
‫اﻟﻔﺼﻞ اﻟﺜﺎﻧﻰ ‪ :‬ﺗﺤﻠﻴﻞ ﺷﺒﻜﺎت اﻟﻤﻜﻮﻧﺎت و ﺗﻌﺎرﻳﻒ أﺳﺎﺳﻴﻪ‬

‫)ﻤﻘﻁﻊ ‪ (١-٢‬ﺨﻁﻭﻁ ﺍﻹﺭﺴﺎل ﺍﻟﻤﺜﺎﻟﻴﺔ )‪: (Ideal Transmission Lines‬‬

‫ﺧﻄ ﻮط اﻻرﺳ ﺎل ﺗﻤ ﺜﻞ ﻣﻜ ﻮﻧﺎت رﺋﻴﺴ ﻴﻪ ﻓ ﻰ ﻣﻌﻈﻢ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ ﺑﺎﻻﺿﺎﻓﻪ ﻟﻜﻮﻧﻬﺎ ﺗﺴﺘﺨﺪم ﻓﻰ اﻟﺘﻮﺻﻴﻞ ﺑﻴﻦ‬
‫اﻟﻤﻜ ﻮﻧﺎت و ﺑﻌﻀﻬﺎ أو ﺑﻴﻦ داﺋﺮﻩ و أﺧﺮى ‪ .‬ﺷﻜﻞ )‪ (١-٢‬ﻳﻮﺿﺢ رﺳﻢ رﻣﺰى )‪ (schematic‬ﻟﺨﻂ ارﺳﺎل ﻣﺜﺎﻟﻰ‬
‫)‪ (Ideal Transmission Line‬ﻃﻮﻟﻪ )‪ (∆z‬و ﺷﻜﻞ )‪ (٢-٢‬ﻳﻮﺿﺢ اﻟﺪاﺋﺮﻩ اﻟﻤﻜﺎﻓﺌﻪ ﻟﻬﺬا اﻟﺨﻂ ‪.‬‬

‫ﺷﻜﻞ )‪ : (١ -٢‬رﺳﻢ رﻣﺰى )‪ (schematic‬ﻟﺨﻂ ارﺳﺎل ﻣﺜﺎﻟﻰ )‪. (Ideal Transmission Lines‬‬

‫ﺷﻜﻞ )‪ : (٢ -٢‬اﻟﺪاﺋﺮﻩ اﻟﻤﻜﺎﻓﺌﻪ ﻟﻤﻘﻄﻊ ﻃﻮﻟﻪ )‪ (∆z‬ﻣﻦ ﺧﻂ ارﺳﺎل ﻣﺜﺎﻟﻰ‪.‬‬

‫‪33‬‬

‫ﻴﻨﺘﺸﺭ ﻜﻼ ﻤﻥ ﺍﻟﻔﻭﻟﺕ ﻭ ﺍﻟﺘﻴﺎﺭ ﻋﺒﺭ ﺧﻂ اﻻرﺳﺎل ﻓﻰ ﺍﺘﺠﺎﻩ ﺍﻻﻨﺘﺸﺎﺭ )‪ (z‬ﺤﺴﺏ ﻤﻌﺎﺩﻻﺕ ﺍﻻﻨﺘﺸﺎﺭ ﺍﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫‪+‬‬

‫)‪(2-1‬‬

‫‪V ( z ) = Vo+ e -γz + Vo− eγz‬‬

‫)‪(2-2‬‬

‫‪I o+ e -γz + Io− eγz‬‬

‫= )‪I ( z‬‬

‫‪+‬‬

‫ﺤﻴﺙ ) ‪ ( I o , Vo‬ﺜﺎﺒﺘﺎﻥ ﻴﻤﺜﻼﻥ ﻋﻠﻰ ﺍﻟﺘﻭﺍﻟﻰ ﻤﻘﺩﺍﺭ ﺍﻟﻔﻭﻟﺕ ﻭ ﺍﻟﺘﻴﺎﺭ ﺍﻟﺴﺎﻗﻁ ﺃﻯ ﺍﻟﺫﻯ ﻴﻨﺘﺸﺭ ﻓﻰ ﺍﺘﺠﺎﻩ )‪ (z‬ﺍﻟﺫﻯ‬
‫‪−‬‬

‫‪−‬‬

‫ﻫﻭ ﺍﺘﺠﺎﻩ ﺍﻨﺘﺸﺎﺭ ﺍﻟﻤﻭﺠﻪ ‪ ،‬ﻭ ) ‪ ( I o , Vo‬ﺜﺎﺒﺘﺎﻥ ﻴﻤﺜﻼﻥ ﻋﻠﻰ ﺍﻟﺘﻭﺍﻟﻰ ﻤﻘﺩﺍﺭ ﺍﻟﻔﻭﻟﺕ ﻭ ﺍﻟﺘﻴﺎﺭ ﺍﻟﻤﻨﻌﻜﺱ ﺃﻯ ﺍﻟﺫﻯ‬
‫ﻴﻨﺘﺸـﺭ ﻓـﻰ ﺍﺘﺠـﺎﻩ )‪ ، (− z‬ﻭ ﺜﺎﺒﺕ ﺍﻻﻨﺘﺸﺎﺭ ﺍﻟﻤﻌﻘﺩ )‪ (complex propagation constant γ‬ﻴﻌﺒﺭ ﻋﻨﻪ‬
‫ﺒﺎﻟﻤﻌﺎﺩﻟﻪ ﺍﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫) ‪γ = α + jβ = ( R + jωL)(G + jωC‬‬

‫)‪(2-3‬‬

‫ﺤـﻴﺙ )‪ (attenuation constant α‬ﻫﻭ ﺜﺎﺒﺕ ﺍﻟﺘﻭﻫﻴﻥ ﺒﻴﻨﻤﺎ )‪ (phase constant β‬ﻫﻭ ﺜﺎﺒﺕ ﺍﻟﻁﻭﺭ ﻭ‬
‫)‪ (R Ω/m‬ﻫﻰ ﺍﻟﻤﻘﺎﻭﻤﻪ ﻟﻜل ﻭﺤﺩﺓ ﻁﻭل ‪ ،‬ﻭ )‪ (L H/m‬ﻫﻰ ﻗﻴﻤﺔ ﺍﻟﻤﻠﻑ )‪ (inductance‬ﻟﻜل ﻭﺤﺩﺓ ﻁﻭل ‪،‬‬
‫ﻭ )‪ (C F/m‬ﻫﻰ ﻗﻴﻤﺔ ﺍﻟﻤﻜﺜﻑ )‪ (shunt capacitance‬ﻟﻜل ﻭﺤﺩﺓ ﻁﻭل ‪ ،‬ﻭ )‪ (G S/m‬ﻫﻰ ﻤﻘﻠﻭﺏ ﺍﻟﻤﻘﺎﻭﻤﻪ‬
‫ﻋﻠﻰ ﺍﻟﺘﻭﺍﺯﻯ )‪ (shunt conductance‬ﻟﻜل ﻭﺤﺩﺓ ﻁﻭل ﻜﻤﺎ ﻫﻭ ﻤﺒﻴﻥ ﻓﻰ ﺷﻜﻞ )‪. (٢ -٢‬‬
‫ﻭ ﻴﻤﻜﻥ ﺤﺴﺎﺏ ﺍﻟﻤﻌﺎﻭﻗﻪ ﺍﻟﻤﻤﻴﺯﻩ ﻟﺨﻁ ﺍﻻﺭﺴﺎل )‪ (characteristic impedance Zo‬ﺒﺎﻟﻤﻌﺎﺩﻟﻪ ﺍﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫)‪(2-4‬‬

‫‪Vo+ − Vo− R + jωL‬‬
‫‪R + j ωL‬‬
‫= ‪Zo = + = −‬‬
‫=‬
‫‪γ‬‬
‫‪G + j ωC‬‬
‫‪Io‬‬
‫‪Io‬‬

‫ﻭ ﻴﺘﻡ ﺤﺴﺎﺏ ﻁﻭل ﺍﻟﻤﻭﺠﻪ )‪ (wavelength λ‬ﺒﺎﻟﻤﻌﺎﺩﻟﻪ ﺍﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫‪2π‬‬

‫)‪(2-5‬‬

‫‪β‬‬

‫=‪λ‬‬

‫ﻭ ﺤﺴﺎﺏ ﺴﺭﻋﺔ ﺍﻟﻁﻭﺭ )‪ (phase velocity vp‬ﺒﺎﻟﻤﻌﺎﺩﻟﻪ ﺍﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫)‪(2-6‬‬

‫‪ω‬‬
‫‪=λ f‬‬
‫‪β‬‬

‫‪34‬‬

‫= ‪vp‬‬

‫ﺷﻜﻞ )‪ : (٣ -٢‬ﺨﻁ ﺍﺭﺴﺎل ﻴﻨﺘﻬﻰ ﺒﺤﻤل ﺃﻭ ﻤﻌﺎﻭﻗﻪ ﻤﻘﺩﺍﺭﻫﺎ )‪.(ZL‬‬

‫ﻓﻰ ﺤﺎﻟﺔ ﻭﻀﻊ ﺤﻤل )‪ (load‬ﻤﻘﺩﺍﺭﻩ )‪ (ZL‬ﻋﻨﺩ ﻨﻬﺎﻴﺔ ﺨﻁ ﺍﻻﺭﺴﺎل ﻜﻤﺎ ﻓﻰ ﺸﻜل )‪ (٣-٢‬ﻳﻤﻜﻦ اﻟﺘﻌﺒﻴﺮ ﻋﻦ ﻜﻼ‬
‫ﻤﻥ ﺍﻟﻔﻭﻟﺕ ﻭ ﺍﻟﺘﻴﺎﺭ ﻋﺒﺭ ﺧﻂ اﻻرﺳﺎل ﻓﻰ ﺍﺘﺠﺎﻩ ﺍﻻﻨﺘﺸﺎﺭ )‪ (z‬ﺤﺴﺏ ﻤﻌﺎﺩﻻﺕ ﺍﻻﻨﺘﺸﺎﺭ ﺍﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫)‪(2-7‬‬

‫) ‪V ( z ) = A ( e -γz + Γo eγz‬‬

‫)‪(2-8‬‬

‫‪A‬‬
‫) ‪( e -γz − Γo eγz‬‬
‫‪Zo‬‬

‫= )‪I ( z‬‬

‫ﺃﻤﺎ ﻤﻌﺎﻤل ﺍﻻﻨﻌﻜﺎﺱ ﻋﻨﺩ ﺃﻯ ﻁﻭل )‪ (z‬ﻤﻥ ﺨﻁ ﺍﻻﺭﺴﺎل ﻓﻴﻌﻁﻰ ﺒﺎﻟﻤﻌﺎﺩﻟﻪ ﺍﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫‪B 2γz‬‬
‫‪e = Γo e 2γz‬‬
‫‪A‬‬

‫)‪(2-9‬‬

‫= ) ‪Γ( z‬‬

‫ﺤﻴﺙ )‪ (Γo‬ﻫﻭ ﻤﻌﺎﻤل ﺍﻨﻌﻜﺎﺱ ﺍﻟﺤﻤل )ﺃﻭ ﻤﻌﺎﻤل ﺍﻻﻨﻌﻜﺎﺱ ﻋﻨﺩ ‪. (z = 0‬‬
‫ﻭ ﺘﻜـﻭﻥ ﻤﻌﺎﻭﻗﺔ ﺍﻟﻤﺩﺨل ﻟﺨﻁ ﺍﻻﺭﺴﺎل )‪ (input impedance of the transmission line‬ﻋﻨﺩ ﺃﻯ ﻤﻭﻗﻊ‬
‫)‪ (z‬ﻫﻰ ‪:‬‬
‫)‪(2-10‬‬

‫⎞‬
‫⎟⎟‬
‫⎠‬

‫‪⎛ e -γz + Γo eγz‬‬
‫)‪V ( z‬‬
‫‪= Z o ⎜⎜ -γz‬‬
‫‪γz‬‬
‫)‪I ( z‬‬
‫‪⎝ e − Γo e‬‬

‫‪35‬‬

‫= ) ‪Z IN ( z‬‬

‫ﻭ ﻴﻜـﻭﻥ ﺤﺴـﺎﺏ )‪ (Γo‬ﻤﻌﺎﻤل ﺍﻨﻌﻜﺎﺱ ﺍﻟﺤﻤل ﺒﺎﻟﺸﺭﻁ ‪ ZIN(0)=ZL‬ﻭ ﺍﻟﺫﻯ ﻨﺴﺘﻨﺘﺞ ﻤﻨﻪ ﺃﻥ ﻤﻌﺎﻭﻗﻪ ﺍﻟﺤﻤل‬
‫ﺘﻌﻁﻰ ﺒﺎﻟﻤﻌﺎﺩﻟﻪ ﺍﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫⎞ ‪⎛ 1 + Γo‬‬
‫⎟⎟‬
‫⎜⎜ ‪Z L = Z o‬‬
‫‪−‬‬
‫‪Γ‬‬
‫‪1‬‬
‫⎠ ‪o‬‬
‫⎝‬

‫)‪(2-11‬‬

‫ﻭ ﺒﺎﻋﺎﺩﺓ ﺼﻴﺎﻏﺔ ﻫﺫﻩ ﺍﻟﻤﻌﺎﺩﻟﻪ ﻨﺤﺼل ﻋﻠﻰ ﻗﻴﻤﺔ ﻤﻌﺎﻤل ﺍﻨﻌﻜﺎﺱ ﺍﻟﺤﻤل )‪: (Γo‬‬

‫‪Z L − Zo‬‬
‫‪Z L + Zo‬‬

‫)‪(2-12‬‬

‫= ‪Γo‬‬

‫ﻭ ﻤـﻥ ﻜـل ﻫﺫﺍ ﻴﻤﻜﻥ ﺤﺴﺎﺏ ﻤﻌﺎﻭﻗﺔ ﺍﻟﻤﺩﺨل ﻟﺨﻁ ﺍﻻﺭﺴﺎل ) ‪input impedance of the transmission‬‬
‫‪ (line‬ﻋﻨﺩ ﺃﻯ ﻤﺴﺎﻓﻪ )‪ (d‬ﻤﻥ ﺍﻟﺤﻤل ﺒﺠﻌل )‪: (z = − d‬‬

‫⎞ )‪⎛ Z + Z o tanh (γ d‬‬
‫⎟⎟‬
‫‪Z IN (d ) = Z o ⎜⎜ L‬‬
‫‪+‬‬
‫‪tanh‬‬
‫(‬
‫)‪d‬‬
‫‪Z‬‬
‫‪Z‬‬
‫‪γ‬‬
‫‪L‬‬
‫‪⎝ o‬‬
‫⎠‬

‫)‪(2-13‬‬

‫ﻭ ﻓـﻰ ﺘـﺭﺩﺩﺍﺕ ﺍﻟـﺭﺍﺩﻴﻭ ﻭ ﺍﻟﻤﻴﻜـﺭﻭﻭﻴﻑ ﻴﻤﻜﻥ ﺍﻫﻤﺎل ﻗﻴﻤﺘﻰ )‪ (R‬ﺍﻟﻤﻘﺎﻭﻤﻪ ﻟﻜل ﻭﺤﺩﺓ ﻁﻭل ﻭ )‪ (G‬ﻤﻘﻠﻭﺏ‬
‫ﺍﻟﻤﻘﺎﻭﻤﻪ ﻋﻠﻰ ﺍﻟﺘﻭﺍﺯﻯ )‪ (shunt conductance‬ﻟﻜل ﻭﺤﺩﺓ ﻁﻭل ﺤﻴﺙ ﺘﻘل ﻗﻴﻤﺘﻴﻬﻤﺎ ﺠﺩﺍ ﻋﻨﺩ ﺍﻟﺘﺭﺩﺩﺍﺕ ﺍﻟﻌﺎﻟﻴﻪ‬
‫ﻭ ﻋﻨﺩﻫﺎ ﻴﻌﺘﺒﺭ ﺨﻁ ﺍﻻﺭﺴﺎل ﻋﺩﻴﻡ ﺍﻟﻔﻘﺩ ﺃﻭ )‪.(lossless transmission line‬‬

‫ﻓـﻰ ﺨﻁﻭﻁ ﺍﻻﺭﺴﺎل ﻋﺩﻴﻤﺔ ﺍﻟﻔﻘﺩ ﻭ ﺒﺎﻋﺘﺒﺎﺭ ﺃﻥ )‪ (R ≈ 0 , G ≈ 0‬ﺘﺼﺒﺢ ﺒﺎﺭﺍﻤﺘﺭﺍﺕ ﺨﻁ ﺍﻻﺭﺴﺎل ﺒﺎﻟﻘﻴﻡ‬
‫ﺍﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫‪β =ω L C‬‬

‫‪,‬‬

‫= ‪Zo‬‬

‫‪,‬‬

‫‪L‬‬
‫‪C‬‬

‫‪γ=jβ‬‬

‫‪,‬‬

‫=‪λ‬‬

‫‪,‬‬

‫‪vp‬‬
‫‪f‬‬

‫‪α=0‬‬

‫‪1‬‬
‫‪LC‬‬

‫= ‪vp‬‬

‫ﻭ ﺘﺼﺒﺢ ﻤﻌﺎﻭﻗﺔ ﺍﻟﻤﺩﺨل ﻟﺨﻁ ﺍﻻﺭﺴﺎل ﻋﺩﻴﻡ ﺍﻟﻔﻘﺩ ) ‪input impedance of the lossless transmission‬‬
‫‪ (line‬ﻋﻨﺩ ﺃﻯ ﻤﺴﺎﻓﻪ )‪ (d‬ﻤﻥ ﺍﻟﺤﻤل ‪:‬‬

‫‪36‬‬

‫⎞ )‪⎛ Z + Z o tan ( β d‬‬
‫⎟⎟‬
‫‪Z IN (d ) = Z o ⎜⎜ L‬‬
‫‪Z‬‬
‫‪Z‬‬
‫‪β‬‬
‫‪+‬‬
‫‪tan‬‬
‫(‬
‫)‪d‬‬
‫‪o‬‬
‫‪L‬‬
‫⎠‬
‫⎝‬

‫)‪(2-14‬‬

‫ﻭ ﻴﻌﺭﻑ ﺍﻟﻁﻭل ﺍﻟﻜﻬﺭﺒﻰ ﻟﺨﻁ ﺍﻻﺭﺴﺎل )‪ (transmission line electrical length θ‬ﺒﺎﻟﻤﻌﺎﺩﻟﻪ ‪:‬‬
‫)‪(2-15‬‬

‫‪d‬‬

‫‪2π‬‬

‫‪λ‬‬

‫=‪θ =β d‬‬

‫ﺤﻴﺙ )‪ (d‬ﻫﻭ ﻁﻭل ﺍﻟﺨﻁ ﺒﺎﻟﻤﺘﺭ ﻭ )‪ (λ‬ﻫﻭ ﻁﻭل ﺍﻟﻤﻭﺠﻪ ﺒﺎﻟﻤﺘﺭ ﻭ )‪.(π=3.14159265‬‬
‫ﻭ ﺘﻌـﺭﻑ ﻨﺴـﺒﺔ ﺍﻟﻤـﻭﺠﻪ ﺍﻟﻤﻭﻗﻭﻓﻪ ﻟﻠﻔﻭﻟﺕ )‪ (voltage standing wave ratio VSWR‬ﻟﺨﻁ ﺍﻻﺭﺴﺎل‬
‫ﺒﺎﻟﻤﻌﺎﺩﻟﻪ ﺍﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫‪1 + Γo‬‬
‫‪1 − Γo‬‬

‫)‪(2-16‬‬

‫=‬

‫‪V ( z ) max‬‬
‫‪V ( z ) min‬‬

‫= ‪VSWR‬‬

‫ﻭ ﻴﻜﻭﻥ ﺤﺴﺎﺏ ﻤﻘﺩﺍﺭ ﻤﻌﺎﻤل ﺍﻻﻨﻌﻜﺎﺱ ) | ‪ ( |Γo‬ﺒﺎﺴﺘﺨﺩﺍﻡ ﻫﺫﻩ ﺍﻟﻤﻌﺎﺩﻟﻪ ‪:‬‬

‫‪VSWR − 1‬‬
‫‪VSWR + 1‬‬

‫)‪(2-17‬‬

‫= ‪Γo‬‬

‫ﻭ ﻴﻤﻜﻨﻨﺎ ﺍﺴﺘﺨﺭﺍﺝ ﺒﻌﺽ ﺍﻟﺨﺼﺎﺌﺹ ﻤﻥ ﻫﺫﻩ ﺍﻟﻤﻌﺎﺩﻻﺕ ‪ ،‬ﻓﻤﺜﻼ ﻋﻨﺩ ﺍﻨﺘﻬﺎﺀ ﺨﻁ ﺍﻻﺭﺴﺎل ﺒﺤﻤل )‪ (ZL‬ﻤﻭﺍﻓﻕ ﺃﻭ‬
‫ﻤﺴـﺎﻭﻯ ﻟﻠﻤﻌﺎﻭﻗـﻪ ﺍﻟﻤﻤﻴـﺯﻩ ﻟﺨﻁ ﺍﻻﺭﺴﺎل )‪ (Zo‬ﻭ ﻴﻁﻠﻕ ﻋﻠﻰ ﺨﻁ ﺍﻻﺭﺴﺎل ﻓﻰ ﻫﺫﻩ ﺍﻟﺤﺎﻟﻪ‬

‫) ‪properly‬‬

‫‪ (terminated or matched transmission line‬ﻭ ﺒﺎﻟﺘﻌﻭﻴﺽ ﺏ )‪ (ZL=Zo‬ﻓﻰ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻟﺜﻼﺜﻪ )‪(2-12‬‬
‫ﻭ )‪ (2-14‬ﻭ )‪ (2-16‬ﻴﺼﺒﺢ ‪:‬‬

‫‪VSWR = 1‬‬

‫‪,‬‬

‫‪ZIN(d) = Zo‬‬

‫‪37‬‬

‫‪,‬‬

‫‪Γo = 0‬‬

‫ﺃﻤﺎ ﻓﻰ ﺤﺎﻟﺔ ﺍﻨﺘﻬﺎﺀ ﺨﻁ ﺍﻻﺭﺴﺎل ﺒﺤﻤل )‪ (ZL = 0‬ﺃﻭ ﻤﻌﺎﻭﻗﻪ ﺘﺴﺎﻭﻯ ﺼﻔﺭ ﻴﻁﻠﻕ ﻋﻠﻴﻪ ) ‪shorted‬‬
‫‪ (transmission line‬ﻭ ﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻰ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻟﺜﻼﺜﻪ ﻨﻔﺴﻬﺎ ﻴﺼﺒﺢ ‪:‬‬
‫∞ = ‪VSWR‬‬

‫‪Γo = − 1‬‬

‫‪,‬‬

‫ﻭ ﻴﻤﻜﻥ ﻓﻰ ﻫﺫﻩ ﺍﻟﺤﺎﻟﻪ ﺤﺴﺎﺏ ﻤﻌﺎﻭﻗﺔ ﺍﻟﻤﺩﺨل ﻟﺨﻁ ﺍﻻﺭﺴﺎل ﻋﻨﺩ ﺃﻯ ﻤﺴﺎﻓﻪ )‪ (d‬ﻤﻥ ﺍﻟﺤﻤل ﺒﺎﻟﻤﻌﺎﺩﻟﻪ ﺍﻟﺘﺎﻟﻴﻪ‪:‬‬

‫)‪Z sc (d ) = j Zo tan ( β d‬‬

‫)‪(2-18‬‬

‫ﻭ ﺘﺭﻤﺯ )‪ (sc‬ﺍﻟﻰ ﺩﺍﺌﺭﻩ ﻤﻘﻔﻭﻟﻪ ﺃﻯ )‪.(short circuit‬‬

‫ﺃﻤـﺎ ﻓـﻰ ﺤﺎﻟﺔ ﺍﻨﺘﻬﺎﺀ ﺨﻁ ﺍﻻﺭﺴﺎل ﺒﺤﻤل ﺩﺍﺌﺭﻩ ﻤﻔﺘﻭﺤﻪ ﺃﻭ ﻤﻌﺎﻭﻗﻪ ﺘﺴﺎﻭﻯ ﻤﺎ ﻻ ﻨﻬﺎﻴﻪ )∞ = ‪(ZL‬‬
‫ﻴﻁﻠﻕ ﻋﻠﻴﻪ )‪ (open-circuited transmission line‬ﻭ ﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻰ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻟﺜﻼﺜﻪ ﻨﻔﺴﻬﺎ ﻴﺼﺒﺢ ‪:‬‬

‫∞ = ‪VSWR‬‬

‫‪,‬‬

‫‪Γo = 1‬‬

‫ﻭ ﻴﻤﻜﻥ ﻓﻰ ﻫﺫﻩ ﺍﻟﺤﺎﻟﻪ ﺤﺴﺎﺏ ﻤﻌﺎﻭﻗﺔ ﺍﻟﻤﺩﺨل ﻟﺨﻁ ﺍﻻﺭﺴﺎل ﻋﻨﺩ ﺃﻯ ﻤﺴﺎﻓﻪ )‪ (d‬ﻤﻥ ﺍﻟﺤﻤل ﺒﺎﻟﻤﻌﺎﺩﻟﻪ ﺍﻟﺘﺎﻟﻴﻪ‪:‬‬

‫)‪Z oc (d ) = − j Zo cot ( β d‬‬

‫)‪(2-19‬‬

‫ﻭ ﺘﺭﻤﺯ )‪ (oc‬ﺍﻟﻰ ﺩﺍﺌﺭﻩ ﻤﻔﺘﻭﺤﻪ ﺃﻯ )‪.(open circuit‬‬

‫ﻫـﻨﺎﻙ ﺤﺎﻟـﻪ ﺃﺨـﺭﻯ ﻫﺎﻤـﻪ ﻋﻨﺩﻤﺎ ﻴﻜﻭﻥ ﻁﻭل ﺨﻁ ﺍﻻﺭﺴﺎل ﻤﺴﺎﻭﻴﺎ ﻟﺭﺒﻊ ﻁﻭل ﺍﻟﻤﻭﺠﻪ ) ‪quarter wave‬‬
‫‪ (transmission line‬ﺃﻯ ﺃﻥ )‬

‫‪4‬‬

‫‪ ( d = λ‬ﻭ ﺒﺎﻟـﺘﻌﻭﻴﺽ ﻓـﻰ ﺍﻟﻤﻌﺎﺩﻟﻪ )‪ (2-14‬ﺘﺼﺒﺢ ﻤﻌﺎﻭﻗﺔ ﺍﻟﻤﺩﺨل‬

‫ﻟﺨﻁ ﺍﻻﺭﺴﺎل ‪:‬‬

‫‪λ Z2‬‬
‫‪Z IN ( ) = o‬‬
‫‪4 ZL‬‬
‫ﻫﺫﻩ ﺍﻟﻤﻌﺎﺩﻟﻪ ﺘﺴﺘﺨﺩﻡ ﻓﻰ ﺘﺼﻤﻴﻡ ﺨﻁ ﺍﻻﺭﺴﺎل ﺍﻟﺫﻯ ﻴﻘﻭﻡ ﺒﻌﻤل ﺘﻭﻓﻴﻕ ﺃﻭ ﻀﺒﻁ )‪ (matching‬ﺃﻯ )ﺍﻟﺫﻯ ﻴﺴﻤﺢ‬
‫ﺒﻨﻘل ﺃﻗﺼﻰ ﻗﺩﺭﻩ ﺒﻴﻥ ﺤﻤﻠﻴﻥ( ﺍﻟﺤﻤل ﺍﻻﻭل ﻤﻘﺩﺍﺭﻩ )‪ (ZL‬ﻭ ﺍﻟﺜﺎﻨﻰ ﻤﻘﺩﺍﺭﻩ )‪ Z IN (λ / 4‬ﻭ ﻜﻼ ﻤﻨﻬﻤﺎ ﺫﻭ ﻗﻴﻤﻪ‬
‫ﺤﻘﻴﻘﻴﻪ )‪ (real‬ﺃﻭ )ﻟﻴﺱ ﺒﻘﻴﻤﻪ ﻤﻌﻘﺩﻩ ‪ (not complex‬ﻓﻰ ﻫﺫﻩ ﺍﻟﺤﺎﻟﻪ ﻴﺘﻡ ﺤﺴﺎﺏ ﺍﻟﻤﻌﺎﻭﻗﻪ ﺍﻟﻤﻤﻴﺯﻩ ﻟﺨﻁ ﺍﻻﺭﺴﺎل‬
‫)‪ (characteristic impedance Zo‬ﺒﺎﻟﻤﻌﺎﺩﻟﻪ ﺍﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫)‪(2-20‬‬

‫)‪Z o = Z L Z IN (λ / 4‬‬

‫‪38‬‬

‫ﻭ ﻴﻁﻠﻕ ﻋﻠﻰ ﺨﻁ ﺍﻻﺭﺴﺎل ﻓﻰ ﻫﺫﻩ ﺍﻟﺤﺎﻟﻪ ﻤﺠﺎﺯﺍ ﺍﺴﻡ )‪ (quarter wave transformer‬ﺃﻭ ﺍﻟﻤﺤﻭل ﺫﻭ ﺍﻟﺭﺒﻊ‬
‫ﻤـﻭﺠﻪ‪ .‬ﻭ ﻟﻼﻁﻼﻉ ﻋﻠﻰ ﺍﻻﺜﺒﺎﺘﺎﺕ ﺍﻟﺭﻴﺎﻀﻴﻪ ﻟﻬﺫﻩ ﺍﻟﻤﻌﺎﺩﻻﺕ ﻭ ﻤﻌﻠﻭﻤﺎﺕ ﺍﻀﺎﻓﻴﻪ ﻴﻤﻜﻥ ﺍﻟﺭﺠﻭﻉ ﻟﻠﻤﺭﺍﺠﻊ ﺃﺭﻗﺎﻡ‬
‫)‪.(1,2,3,4‬‬

‫)ﻤﻘﻁﻊ ‪ (٢-٢‬ﺘﺤﻠﻴل ﺸﺒﻜﺎﺕ ﺍﻟﻤﻜﻭﻨﺎﺕ )‪: (Network Analysis‬‬

‫ﺷﻜﻞ )‪ : (٤ -٢‬ﺷﺒﻜﺔ ﻣﺘﻌﺪدة اﻟﻤﺨﺎرج )‪.(multiport network‬‬

‫ﺷ ﺒﻜﺔ اﻟﻤﻜ ﻮﻧﺎت ﺑﺸ ﻜﻞ ﻋ ﺎم ه ﻲ ﺷ ﺒﻜﺔ ﻣ ﺘﻌﺪدة اﻟﻤﺪاﺧﻞ أو )اﻟﻤﺨﺎرج( )‪ (multiport network‬ﻗﺪ ﺗﺤﺘﻮى ﻋﻠﻰ‬
‫ﻣﻜ ﻮﻧﺎت ﻋﻴﻨ ﻴﻪ )‪ (discrete components‬ﻣ ﺜﻞ اﻟﻤﻘﺎوﻣ ﺎت و اﻟﻤﻠﻔﺎت و اﻟﻤﻜﺜﻔﺎت و اﻟﺪﻳﻮدات و اﻟﺘﺮاﻧﺰﺳﺘﻮرات‬
‫اﻟﻰ ﺁﺧﺮﻩ ‪ ،‬و ﻣﻜﻮﻧﺎت ﻣﻮزﻋﻪ )‪ (distributed components‬ﻣﺜﻞ ﺧﻄﻮط اﻻرﺳﺎل‪.‬‬
‫ﻓ ﻰ اﻟﺘ ﺮددات اﻟﻤﻨﺨﻔﻀ ﻪ ﻳﺴ ﻬﻞ ﺗﻮﺻ ﻴﻒ ﺷ ﺒﻜﺎت اﻟﻤﻜ ﻮﻧﺎت )‪ (networks‬ﺑﺎﺳ ﺘﺨﺪام أﻧ ﻮاع ﻣ ﻦ اﻟﻤﺼ ﻔﻮﻓﺎت ﻣ ﺜﻞ‬
‫ﺼ ﻔُﻮﻓَﺔ اﻟﻤﻌﺎوﻗﻪ )‪ ، (impedance matrix‬و َﻣ ْ‬
‫َﻣ ْ‬
‫ﺼﻔُﻮﻓَﺔ اﻟﻤﺴﺎﻣﺤﻪ أو ﻣﻘﻠﻮب اﻟﻤﻌﺎوﻗﻪ )‪admittance matrix‬‬
‫ﺼﻔُﻮﻓَﺔ اﻟﻬﺠﻴﻦ )‪ (hybrid matrix or ABCD matrix‬اﻟﻰ ﺁﺧﺮ هﺬﻩ اﻻﻧﻮاع ﻣﻦ اﻟﻤﺼﻔﻮﻓﺎت‪.‬‬
‫( ‪ ،‬و َﻣ ْ‬
‫و ﻓ ﻲ ﺗ ﺮددات اﻟﻤﻴﻜ ﺮووﻳﻒ ﻳﻜ ﻮن ﻗ ﻴﺎس اﻟﻔﻮﻟﺖ و اﻟﺘﻴﺎر ﻓﻰ ﻣﻨﺘﻬﻰ اﻟﺼﻌﻮﺑﻪ ﺑﻴﻨﻤﺎ ﻳﺴﻬﻞ ﻗﻴﺎس اﻟﻘﺪرﻩ و ﻣﺘﻐﻴﺮات‬
‫اﻟﻤ ﻮﺟﻪ اﻟﻤ ﺘﻌﺎدﻟﻪ )‪ ، (normalized wave variables‬و ﺑﺎﻟﺘﺎﻟ ﻰ ﻳﻔﻀ ﻞ اﺳ ﺘﺨﺪام ﻣﺼ ﻔﻮﻓﺔ ]‪ [S‬أو ﺑﺎراﻣﺘ ﺮات‬
‫)‪ (S‬ﻓﻰ ﺗﻮﺻﻴﻒ ﺷﺒﻜﺎت ﻣﻜﻮﻧﺎت اﻟﻤﻴﻜﺮووﻳﻒ‪.‬‬

‫‪39‬‬

‫هﻨﺎك أﻧﻮاع آﺜﻴﺮﻩ ﻣﻦ ﺷﺒﻜﺎت اﻟﻤﻜﻮﻧﺎت و دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ ذات ﻣﺨﺮﺟﻴﻦ ﻓﻘﻂ )‪ (two-port networks‬ﻟﺬﻟﻚ‬
‫ﻳﻔﻀ ﻞ دراﺳ ﺔ اﻟﺘﻮﺻ ﻴﻒ ﺑﺎﻟﻤﺼ ﻔﻮﻓﺎت ﻟﻠﺸ ﺒﻜﺎت ذات اﻟﻤﺨ ﺮﺟﻴﻦ ﻓﻘ ﻂ و ﻳﺴ ﻬﻞ ﻋﻠ ﻰ اﻟ ﺪارس ﺑﻌ ﺪ ذﻟ ﻚ ﺗﻌﻤ ﻴﻢ ه ﺬا‬
‫اﻟﻤﺒﺪأ ﻋﻠﻰ ﺷﺒﻜﺎت ذات ﻋﺪد أآﺒﺮ ﻣﻦ اﻟﻤﺨﺎرج‪.‬‬

‫ﺷﻜﻞ )‪ : (٥ -٢‬ﺷﺒﻜﺔ ﻣﻜﻮﻧﺎت ذات ﻣﺨﺮﺟﻴﻦ‪.‬‬

‫ﻳﻮﺿ ﺢ اﻟﺸﻜﻞ )‪ (٥ -٢‬رﺳﻢ رﻣﺰى ﻟﺸﺒﻜﺔ ﻣﻜﻮﻧﺎت ذات ﻣﺨﺮﺟﻴﻦ )‪ (two port network‬و اﻟﻔﻮﻟﺖ و اﻟﺘﻴﺎر ﻋﻨﺪ‬
‫آﻞ ﻣﺨﺮج‪ .‬و ﻣﻦ هﺬا اﻟﺸﻜﻞ ﻳﻤﻜﻦ ﺗﻌﺮﻳﻒ ﺑﺎراﻣﺘﺮات اﻟﻤﻌﺎوﻗﻪ أو ﺑﺎراﻣﺘﺮات )‪ (z‬ﻣﻦ اﻟﻤﻌﺎدﻟﺘﻴﻦ اﻟﺘﺎﻟﻴﺘﻴﻦ ‪:‬‬

‫‪z12 i2‬‬

‫‪v1 = z11 i1 +‬‬

‫‪z22 i2‬‬

‫‪v2 = z21 i1 +‬‬

‫ﺼ ﻔُﻮﻓَﺔ اﻟﻤﻌﺎوﻗ ﻪ ]‪Z matrix) [Z‬‬
‫و ﻳﻤﻜ ﻦ ﺗﻌ ﺮﻳﻒ َﻣ ْ‬

‫‪or‬‬

‫‪ (impedance matrix‬ﻟﺸ ﺒﻜﺔ اﻟﻤﻜ ﻮﻧﺎت ذات‬

‫اﻟﻤﺨﺮﺟﻴﻦ ﺑﺎﻋﺎدة آﺘﺎﺑﺔ اﻟﻤﻌﺎدﻟﺘﻴﻦ ﻓﻰ ﺻﻮرة ﻣﺼﻔﻮﻓﺎت ‪:‬‬

‫⎤ ⎡‬
‫⎥ ‪= [Z] ⎢i1‬‬
‫⎦‪⎣i 2‬‬

‫)‪(2-21‬‬

‫⎤ ‪z12 ⎤ ⎡i1‬‬
‫⎥ ⎢‬
‫⎦‪z 22 ⎥⎦ ⎣i 2‬‬

‫‪⎡ v1 ⎤ ⎡ z11‬‬
‫⎢=⎥ ⎢‬
‫‪⎣v 2⎦ ⎣ z 21‬‬

‫ﺼ ﻔُﻮﻓَﺔ اﻟﻤﺴ ﺎﻣﺤﻪ أو ﻣﻘﻠ ﻮب اﻟﻤﻌﺎوﻗ ﻪ ]‪ (admittance matrix or Y matrix) [Y‬ﻟﺸ ﺒﻜﺔ‬
‫أﻣ ﺎ ﺗﻌ ﺮﻳﻒ َﻣ ْ‬
‫اﻟﻤﻜﻮﻧﺎت ذات اﻟﻤﺨﺮﺟﻴﻦ ﻓﻴﻜﻮن آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫)‪(2-22‬‬

‫⎤ ⎡‬
‫⎥ ‪= [Y] ⎢ v1‬‬
‫⎦‪⎣v 2‬‬

‫‪40‬‬

‫⎤ ‪y12 ⎤ ⎡ v1‬‬
‫⎥ ⎢‬
‫⎦‪y22 ⎥⎦ ⎣v 2‬‬

‫‪⎡ i1 ⎤ ⎡ y11‬‬
‫⎢=⎥ ⎢‬
‫‪⎣i 2 ⎦ ⎣ y21‬‬

‫ﺼ ﻔُﻮﻓَﺔ اﻟﻬﺠ ﻴﻦ )‪ ( (hybrid matrix or ABCD matrix‬ﻟﺸ ﺒﻜﺔ اﻟﻤﻜ ﻮﻧﺎت ذات اﻟﻤﺨ ﺮﺟﻴﻦ‬
‫و ﻳ ﺘﻢ ﺗﻌ ﺮﻳﻒ َﻣ ْ‬
‫آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫)‪(2-23‬‬

‫⎤ ‪⎡v1⎤ ⎡ A B ⎤ ⎡ v 2‬‬
‫⎢=⎥ ⎢‬
‫⎥‬
‫⎢⎥‬
‫⎦‪⎣ i1 ⎦ ⎣C D ⎦ ⎣−i 2‬‬

‫ﻣﺼ ﻔﻮﻓﺎت )‪ (S, Z , Y and ABCD‬ﺗﺴ ﻬﻞ ﻋﻤﻠ ﻴﺎت ﺗﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ ﺑﺎﻟﻄ ﺮق اﻟ ﺮﻗﻤﻴﻪ و اﻟﺘ ﻰ أﺻ ﺒﺤﺖ أﺳ ﺎس‬
‫ﺑﺮاﻣﺞ اﻟﺤﺎﺳﺐ اﻟﺨﺎﺻﻪ ﺑﺘﺤﻠﻴﻞ و ﻣﺤﺎآﺎة اﻟﺪواﺋﺮ )‪.(circuit analysis and simulation software‬‬

‫ﺷﻜﻞ )‪ : (٦ -٢‬رﺳﻢ رﻣﺰى ﻟﺸﺒﻜﺘﻴﻦ ﻣﻜﻮﻧﺎت ﻣﺘﺼﻠﺘﺎن ﻋﻠﻰ اﻟﺘﻮاﻟﻰ‬

‫و ﻻﻋﻄ ﺎء أﻣ ﺜﻠﻪ ﻋﻠ ﻰ ذﻟ ﻚ ﻳﺒ ﻴﻦ اﻟﺸ ﻜﻞ )‪ (٦ -٢‬رﺳ ﻢ رﻣ ﺰى ﻟﺸ ﺒﻜﺘﻴﻦ ﻣﻜﻮﻧﺎت ﻣﺘﺼﻠﺘﺎن ﻋﻠﻰ اﻟﺘﻮاﻟﻰ ﻳﺮﻣﺰ ﻟﻬﻤﺎ‬
‫ﺑﺤ ﺮوف )‪ (A , B‬ﺑﺤ ﻴﺚ ﻳﻜ ﻮن اﻟﺘ ﻴﺎر اﻟﺨ ﺎرج ﻣﻦ ﻣﺨﺮج )‪ (1‬ﻟﻠﺸﺒﻜﻪ )‪ (A‬ﻣﺴﺎوﻳﺎ ﻟﻠﺘﻴﺎر اﻟﺪاﺧﻞ اﻟﻰ ﻣﺨﺮج )‪(1‬‬
‫ﻟﻠﺸ ﺒﻜﻪ )‪ (B‬و ﻳﻜﻮن اﻟﺘﻴﺎر اﻟﺨﺎرج ﻣﻦ ﻣﺨﺮج )‪ (2‬ﻟﻠﺸﺒﻜﻪ )‪ (A‬ﻣﺴﺎوﻳﺎ ﻟﻠﺘﻴﺎر اﻟﺪاﺧﻞ اﻟﻰ ﻣﺨﺮج )‪ (2‬ﻟﻠﺸﺒﻜﻪ )‪(B‬‬
‫و ﺑﺎﻟﺘﺎﻟ ﻰ ﻳﻤﻜ ﻦ ﺣﺴ ﺎب ﻣﺼ ﻔﻮﻓﺔ اﻟﻤﻌﺎوﻗ ﻪ اﻟﻜﻠﻴﻪ )‪ (ZTotal‬ﻟﻠﺸﺒﻜﺘﻴﻦ اﻟﻤﺘﺼﻠﺘﻴﻦ ﻋﻠﻰ اﻟﺘﻮاﻟﻰ ﺑﺠﻤﻊ ﻣﺼﻔﻮﻓﺘﻰ )‪(Z‬‬
‫ﻟﻜﻞ ﻣﻨﻬﻤﺎ آﻶﺗﻰ ‪:‬‬

‫‪41‬‬

‫‪A‬‬
‫‪B‬‬
‫‪⎡ z11‬‬
‫⎞ ‪⎡ v1 ⎤ ⎛ v1A + v1B‬‬
‫⎤ ‪z A12 + z B12 ⎤ ⎡ i1‬‬
‫‪+ z11‬‬
‫⎢ = ⎟‬
‫‪⎢ ⎥ = ⎜⎜ A‬‬
‫⎟‪B‬‬
‫‪A‬‬
‫‪B‬‬
‫‪A‬‬
‫⎥ ⎢⎥ ‪B‬‬
‫‪v‬‬
‫‪v‬‬
‫‪+‬‬
‫‪⎣v 2⎦ ⎝ 2‬‬
‫⎦ ‪⎣z 21 + z 21 z 22 + z 22 ⎦ ⎣i 2‬‬
‫⎠ ‪2‬‬
‫⎤ ⎡‬
‫⎤ ⎡‬
‫⎥ ‪= [Z A + Z B ] ⎢ i1 ⎥ = [ZTotal ] ⎢ i1‬‬
‫⎦ ‪⎣i 2‬‬
‫⎦‪⎣i 2‬‬

‫و ﻳﺒ ﻴﻦ اﻟﺸ ﻜﻞ )‪ (٧ -٢‬رﺳ ﻢ رﻣ ﺰى ﻟﺸ ﺒﻜﺘﻴﻦ ﻣﻜ ﻮﻧﺎت ﻳﺮﻣ ﺰ ﻟﻬﻤ ﺎ ﺑﺤ ﺮوف )‪ (A , B‬ﻣﺘﺼ ﻠﺘﺎن ﻋﻠ ﻰ اﻟ ﺘﻮازى‬
‫ﺑﺤ ﻴﺚ ﻳﻜ ﻮن اﻟﻔ ﻮﻟﺖ اﻟﻮاﻗ ﻊ ﻋﻠﻰ اﻟﻤﺨﺮج )‪ (1‬ﻟﻠﺸﺒﻜﻪ )‪ (A‬ﻣﺴﺎوﻳﺎ ﻟﻠﻔﻮﻟﺖ اﻟﻮاﻗﻊ ﻋﻠﻰ اﻟﻤﺨﺮج )‪ (1‬ﻟﻠﺸﺒﻜﻪ )‪ (B‬و‬
‫ﻳﻜ ﻮن اﻟﻔ ﻮﻟﺖ اﻟﻮاﻗﻊ ﻋﻠﻰ اﻟﻤﺨﺮج )‪ (2‬ﻟﻠﺸﺒﻜﻪ )‪ (A‬ﻣﺴﺎوﻳﺎ ﻟﻠﻔﻮﻟﺖ اﻟﻮاﻗﻊ ﻋﻠﻰ اﻟﻤﺨﺮج )‪ (2‬ﻟﻠﺸﺒﻜﻪ )‪ (B‬و ﺑﺎﻟﺘﺎﻟﻰ‬
‫ﻳﻤﻜ ﻦ ﺣﺴ ﺎب ﻣﺼ ﻔﻮﻓﺔ اﻟﻤﺴ ﺎﻣﺤﻪ اﻟﻜﻠ ﻴﻪ )‪ (YTotal‬ﻟﻠﺸ ﺒﻜﺘﻴﻦ اﻟﻤﺘﺼ ﻠﺘﻴﻦ ﻋﻠ ﻰ اﻟﺘﻮازى ﺑﺠﻤﻊ ﻣﺼﻔﻮﻓﺘﻰ )‪ (Y‬ﻟﻜﻞ‬
‫ﻣﻨﻬﻤﺎ آﻶﺗﻰ ‪:‬‬
‫‪A‬‬
‫‪B‬‬
‫‪⎡ y11‬‬
‫⎞ ‪⎡ i1 ⎤ ⎛ i1A + i1B‬‬
‫⎤ ‪y A12 + y B12 ⎤ ⎡ v1‬‬
‫‪+ y11‬‬
‫⎥‬
‫‪⎢ ⎥ = ⎜⎜ A B ⎟⎟ = ⎢ A‬‬
‫‪B‬‬
‫‪A‬‬
‫⎢⎥ ‪B‬‬
‫⎠ ‪⎣i 2 ⎦ ⎝ i 2 + i 2‬‬
‫⎦ ‪⎣ y 21 + y 21 y 22 + y 22 ⎦ ⎣v 2‬‬
‫⎤ ⎡‬
‫⎤ ⎡‬
‫⎥ ‪= [YA + YB ] ⎢ v1 ⎥ = [YTotal ] ⎢ v1‬‬
‫⎦ ‪⎣v 2‬‬
‫⎦‪⎣v 2‬‬

‫ﺷﻜﻞ )‪ : (٧ -٢‬رﺳﻢ رﻣﺰى ﻟﺸﺒﻜﺘﻴﻦ ﻣﻜﻮﻧﺎت ﻣﺘﺼﻠﺘﺎن ﻋﻠﻰ اﻟﺘﻮازى‪.‬‬

‫‪42‬‬

‫ﺷﻜﻞ )‪ : (٨ -٢‬رﺳﻢ رﻣﺰى ﻟﺸﺒﻜﺘﻴﻦ ﻣﻜﻮﻧﺎت ﻣﺘﺼﻠﺘﺎن ﺑﻄﺮﻳﻘﺔ ﻣﺘﺴﻠﺴﻠﻪ )‪(cascade‬‬

‫و ﻳﺒ ﻴﻦ اﻟﺸ ﻜﻞ )‪ (٨ -٢‬رﺳﻢ رﻣﺰى ﻟﺸﺒﻜﺘﻴﻦ ﻣﻜﻮﻧﺎت ﻣﺘﺼﻠﺘﺎن ﺑﻄﺮﻳﻘﺔ ﻣﺘﺴﻠﺴﻠﻪ )‪ (cascade‬ﺑﺤﻴﺚ ﻳﻜﻮن اﻟﻔﻮﻟﺖ‬
‫ﺼﻔُﻮﻓَﺔ‬
‫اﻟﻮاﻗ ﻊ ﻋﻠ ﻰ اﻟﻤﺨﺮج )‪ (2‬ﻟﻠﺸﺒﻜﻪ )‪ (a‬ﻣﺴﺎوﻳﺎ ﻟﻠﻔﻮﻟﺖ اﻟﻮاﻗﻊ ﻋﻠﻰ اﻟﻤﺨﺮج )‪ (1‬ﻟﻠﺸﺒﻜﻪ )‪ ، (b‬و ﻳﺘﻢ ﺣﺴﺎب َﻣ ْ‬
‫اﻟﻬﺠ ﻴﻦ )‪ (hybrid matrix or ABCD matrix‬اﻟﻜﻠ ﻴﻪ ﻟﻠﺸ ﺒﻜﺘﻴﻦ ﺑﻀ ﺮب ﻣﺼ ﻔﻮﻓﺘﻰ اﻟﻬﺠ ﻴﻦ ﻟﻠﺸ ﺒﻜﺘﻴﻦ ﺣﺴ ﺐ‬
‫اﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫⎤ ‪Bb ⎤ ⎡ v2a ⎤ ⎡ A B ⎤ ⎡ v2a‬‬
‫⎢‬
‫=⎥‬
‫⎢‬
‫⎥‬
‫⎦ ‪Db ⎥⎦ ⎣− i2a ⎦ ⎢⎣C D ⎥⎦ ⎣− i2a‬‬

‫‪Ba ⎤ ⎡ Ab‬‬
‫‪Da ⎥⎦ ⎢⎣Cb‬‬

‫‪⎡v1a ⎤ ⎡ Aa‬‬
‫⎢=⎥‪⎢ a‬‬
‫‪⎣ i1 ⎦ ⎣Ca‬‬

‫ﺼﻔُﻮﻓَﺔ اﻟﻬﺠﻴﻦ‬
‫و ﻳﻤﻜ ﻦ ﺗﻌﻤ ﻴﻢ ه ﺬا اﻟﻤ ﺒﺪأ ﻟﻌ ﺪد )‪ (N‬ﻣ ﻦ ﺷ ﺒﻜﺎت اﻟﻤﻜ ﻮﻧﺎت اﻟﻤﺘﺼ ﻠﻪ ﺑﻄ ﺮﻳﻘﺔ ﻣﺘﺴﻠﺴ ﻠﻪ و ﺣﺴ ﺎب َﻣ ْ‬
‫اﻟﻜﻠﻴﻪ ﻟﻬﻢ ﺑﻀﺮب ﻣﺼﻔﻮﻓﺎت اﻟﻬﺠﻴﻦ ﻟﻬﻢ آﺎﻵﺗﻰ ‪:‬‬

‫⎤‪⎡A B⎤ ⎡A B⎤ ⎡A B‬‬
‫⎤‪⎡A B‬‬
‫=‬
‫‪..........‬‬
‫‪....‬‬
‫⎥ ‪⎢C D ⎥ ⎢C D ⎥ ⎢C D‬‬
‫⎥ ‪⎢C D‬‬
‫⎣‬
‫⎣ ⎦‬
‫⎣ ‪⎦1‬‬
‫‪⎦2‬‬
‫⎣‬
‫‪⎦N‬‬

‫آﻤﺎ ذآﺮﻧﺎ ﺳﺎﺑﻘﺎ ﻓﺎن اﺳﺘﺨﺪام ﺑﺎراﻣﺘﺮات )‪ (S‬ﻓﻰ ﺗﻮﺻﻴﻒ ﺷﺒﻜﺎت اﻟﻤﻜﻮﻧﺎت هﻮ اﻻآﺜﺮ ﺷﻴﻮﻋﺎ ﻓﻰ اﻟﺘﺮددات اﻟﻌﺎﻟﻴﻪ‬
‫و ﺗﺮددات اﻟﻤﻴﻜﺮووﻳﻒ ‪.‬‬

‫‪43‬‬

‫ﺷﻜﻞ )‪ : (٩ -٢‬ﺷﺒﻜﺔ ﻣﻜﻮﻧﺎت ذات ﻣﺨﺮﺟﻴﻦ و ﻣﺘﻐﻴﺮات اﻟﻤﻮﺟﻪ اﻟﻤﺘﻌﺎدﻟﻪ )‪(normalized wave variables‬‬

‫ﻳﺒ ﻴﻦ اﻟﺸ ﻜﻞ )‪ (٩ -٢‬ﺷ ﺒﻜﺔ ﻣﻜ ﻮﻧﺎت ذات ﻣﺨ ﺮﺟﻴﻦ و ﻣﺘﻐﻴ ﺮات اﻟﻤ ﻮﺟﻪ اﻟﻤ ﺘﻌﺎدﻟﻪ ) ‪normalized wave‬‬
‫‪ (variables‬اﻟﺴ ﺎﻗﻄﻪ و اﻟﻤﻨﻌﻜﺴ ﻪ ﻋ ﻨﺪ آ ﻞ ﻣﺨ ﺮج ﺣ ﻴﺚ ﻳ ﺘﻢ ﺗﻌ ﺮﻳﻒ ﻣﺘﻐﻴ ﺮ اﻟﻤ ﻮﺟﻪ اﻟﻤ ﺘﻌﺎدل اﻟﺴ ﺎﻗﻂ ﻋﻠ ﻰ آ ﻞ‬
‫ﻣﺨﺮج ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫)‪n=1,2‬‬

‫‪Zon‬‬

‫‪(where‬‬

‫‪an = Vn+ /‬‬

‫ﻭ ﻳﺘﻢ ﺗﻌﺮﻳﻒ ﻣﺘﻐﻴﺮ اﻟﻤﻮﺟﻪ اﻟﻤﺘﻌﺎدل اﻟﻤﻨﻌﻜﺲ ﻣﻦ آﻞ ﻣﺨﺮج ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫)‪n=1,2‬‬

‫‪Zon‬‬

‫‪(where‬‬

‫‪+‬‬

‫‪bn = Vn− /‬‬

‫‪−‬‬

‫ﺣ ﻴﺚ ) ‪ ( Vn‬ه ﻮ اﻟﻔﻮﻟﺖ اﻟﺴﺎﻗﻂ ﻋﻠﻰ ﺍﻟﻤﺨﺭﺝ ﺭﻗﻡ )‪ (n‬ﻭ ) ‪ ( Vn‬هﻮ اﻟﻔﻮﻟﺖ اﻟﻤﻨﻌﻜﺲ ﻣﻦ ﺍﻟﻤﺨﺭﺝ ﺭﻗﻡ )‪ (n‬ﻭ‬
‫)‪ (Zon‬ه ﻰ اﻟﻤﻌﺎﻭﻗـﻪ ﺍﻟﻤﻤﻴـﺯﻩ )‪ (characteristic impedance‬ﻋـﻨﺩ ﺍﻟﻤﺨـﺭﺝ ﺭﻗـﻡ )‪ (n‬ﻭ ﻴﻁﻠﻕ ﻋﻠﻴﻬﺎ‬
‫)‪ (normalizing impedance‬ﻭ ﻋـﺎﺩﺓ ﺘﺴـﺎﻭﻯ )‪ .(50 Ω‬ﻭ ﻓﻜـﺭﺓ ﺍﻟﻤـﻭﺠﻪ ﺍﻟﺴﺎﻗﻁﻪ ﻋﻠﻰ ﻤﺩﺨﻠﻲ )ﺃﻭ‬
‫ﻤﺨﺭﺠـﻲ( ﺍﻟﺩﺍﺌﺭﻩ ﻟﻴﺴﺕ ﺘﺨﻴﻠﻴﻪ ﻭ ﻜﻤﺜﺎل ﻋﻤﻠﻰ ﻋﻠﻰ ﺫﻟﻙ ﻟﻭ ﺃﻥ ﺩﺍﺌﺭﺓ ﻤﻜﺒﺭ ﻤﻴﻜﺭﻭﻭﻴﻑ ﺘﺩﺨل ﺍﻟﻴﻬﺎ ﺍﺸﺎﺭﻩ ﻤﻥ‬
‫ﺍﻟﻤﺩﺨل )‪ (1‬ﻭ ﺘﺨﺭﺝ ﻤﻜﺒﺭﻩ ﻤﻥ ﺍﻟﻤﺩﺨل )‪ (2‬ﻓﺎﻥ ﺠﺯﺀﺍ ﻤﻥ ﺍﻻﺸﺎﺭﻩ ﺍﻟﻤﻜﺒﺭﻩ ﻴﻨﻌﻜﺱ ﻤﻥ ﺍﻟﺤﻤل )ﺃﻭ ﻤﻥ ﺍﻟﺩﺍﺌﺭﻩ‬
‫ﺍﻟﻤﺘﺼـﻠﻪ ﺒﺎﻟﻤﺩﺨل ‪ ( 2‬ﻭ ﻴﻌﻭﺩ ﻟﻴﺩﺨل ﻤﻥ ﺍﻟﻤﺩﺨل )‪ ، (2‬ﻭ ﻤﻥ ﻫﻨﺎ ﺘﺄﺘﻰ ﺃﻫﻤﻴﺔ ﺒﺎﺭﺍﻤﺘﺭﺍﺕ )‪ (S‬ﻓﻰ ﺘﻘﻴﻴﻡ ﺃﺩﺍﺀ‬
‫ﺍﻟﺩﺍﺌـﺭﻩ‪ .‬ﻭ ﻓﻰ ﺍﻟﺸﻜل )‪ (١٠ -٢‬ﺘﻡ ﺭﺴﻡ ﺍﻟﻘﺩﺭﻩ ﺍﻟﺴﺎﻗﻁﻪ ﻋﻠﻰ ﺍﻟﻤﺩﺨل )‪ (1‬ﻴﻤﺜﻠﻪ ﺴﻬﻡ ﺒﺎﻟﻠﻭﻥ ﺍﻻﺴﻭﺩ ﻭ ﺍﻟﻘﺩﺭﻩ‬
‫ﺍﻟﺴـﺎﻗﻁﻪ ﻋﻠـﻰ ﺍﻟﻤﺩﺨل )‪ (2‬ﻴﻤﺜﻠﻪ ﺴﻬﻡ ﺒﺎﻟﻠﻭﻥ ﺍﻟﺭﻤﺎﺩﻯ ﻤﻊ ﺭﺴﻡ ﺠﺯﺀ ﺍﻟﻘﺩﺭﻩ ﺍﻟﻤﻨﻌﻜﺱ ﻋﻨﺩ ﻜل ﻤﺨﺭﺝ ﺒﺴﻬﻡ‬
‫ﺃﺒﻴﺽ‪.‬‬

‫‪44‬‬

‫ﺷﻜﻞ )‪ : (١٠ -٢‬رﺳﻢ رﻣﺰى ﻟﻠﻘﺪرﻩ اﻟﺴﺎﻗﻄﻪ و اﻟﻤﻨﻌﻜﺴﻪ ﻋﻠﻰ داﺋﺮة ﻣﻴﻜﺮووﻳﻒ ذات ﻣﺨﺮﺟﻴﻦ‪.‬‬

‫ﻴﻤﻜﻥ ﺘﻌﺭﻴﻑ ﺒﺎﺭﺍﻤﺘﺭﺍﺕ )‪ (S‬ﻟﺸﺒﻜﺔ ﺍﻟﻤﻜﻭﻨﺎﺕ ﺫﺍﺕ ﺍﻟﻤﺨﺭﺠﻴﻥ ﺒﺎﺴﺘﺨﺩﺍﻡ ﺍﻟﻤﻌﺎﺩﻟﺘﻴﻥ ﺍﻟﺘﺎﻟﻴﺘﻴﻥ ‪:‬‬

‫‪b1 = S11 a1 + S12a2‬‬
‫‪b2 = S21 a1 + S22a2‬‬
‫ﺼﻔﹸﻭﻓﹶﺔ ]‪ (Scattering matrix or S matrix) [S‬ﻟﺸﺒﻜﺔ ﺍﻟﻤﻜﻭﻨﺎﺕ ﺫﺍﺕ ﺍﻟﻤﺨﺭﺠﻴﻥ‬
‫ﻭ ﻴﻤﻜـﻥ ﺘﻌـﺭﻴﻑ ‪‬ﻤ ‪‬‬
‫ﺒﺎﻋﺎﺩﺓ ﻜﺘﺎﺒﺔ ﺍﻟﻤﻌﺎﺩﻟﺘﻴﻥ ﻓﻰ ﺼﻭﺭﺓ ﻤﺼﻔﻭﻓﺎﺕ ﻜﻶﺘﻰ ‪:‬‬

‫)‪(2-24‬‬

‫⎤ ‪S12 ⎤ ⎡ a1‬‬
‫⎤ ‪⎡ a1‬‬
‫[‬
‫]‬
‫‪S‬‬
‫=‬
‫⎥ ⎢‬
‫⎥ ⎢‬
‫⎦‪S 22 ⎥⎦ ⎣a 2‬‬
‫⎦ ‪⎣a 2‬‬

‫‪⎡ b1 ⎤ ⎡ S11‬‬
‫⎢=⎥ ⎢‬
‫‪⎣b 2 ⎦ ⎣ S 21‬‬

‫و ﻣ ﻦ ه ﺬﻩ اﻟﻤﻌﺎدﻟ ﻪ ﻧﺴ ﺘﻨﺘﺞ أن ﺑﺎراﻣﺘ ﺮات )‪ (S‬ﺗﻌﺒ ﺮ ﻋﻦ ﻣﻌﺎﻣﻼت اﻻرﺳﺎل و اﻻﻧﻌﻜﺎس ) ‪transmission and‬‬
‫‪ (reflection coefficients‬ﻟﺸ ﺒﻜﺔ اﻟﻤﻜ ﻮﻧﺎت و ﻳﻤﻜ ﻦ آ ﺘﺎﺑﺔ ﺗﻌ ﺮﻳﻒ ﺑﺎراﻣﺘ ﺮات )‪ (S‬ﻟﺸ ﺒﻜﺔ ﻣﻜ ﻮﻧﺎت ذات‬
‫ﻣﺨﺮﺟﻴﻦ آﻤﺎ ﻓﻰ اﻟﺠﺪول اﻟﺘﺎﻟﻰ ‪:‬‬

‫‪45‬‬

‫ﻣﻌﺎﻣﻞ اﻻﻧﻌﻜﺎس ﻋﻨﺪ اﻟﻤﺨﺮج رﻗﻢ )‪ (1‬ﻓﻰ ﺣﺎﻟﺔ ﺣﺪوث ﺿﺒﻂ أو ﺗﻮﻓﻴﻖ‬
‫)‪ (matching‬ﻋﻨﺪ اﻟﻤﺨﺮج رﻗﻢ )‪(2‬‬

‫‪2 =0‬‬

‫‪b1‬‬
‫‪a1 a‬‬

‫ﻣﻌﺎﻣﻞ اﻻرﺳﺎل ﻣﻦ اﻟﻤﺨﺮج رﻗﻢ )‪ (1‬اﻟﻰ اﻟﻤﺨﺮج رﻗﻢ )‪ (2‬ﻓﻰ ﺣﺎﻟﺔ ﺣﺪوث ﺿﺒﻂ‬
‫أو ﺗﻮﻓﻴﻖ )‪ (matching‬ﻋﻨﺪ اﻟﻤﺨﺮج رﻗﻢ )‪(2‬‬

‫‪a2 = 0‬‬

‫ﻣﻌﺎﻣﻞ اﻻﻧﻌﻜﺎس ﻋﻨﺪ اﻟﻤﺨﺮج رﻗﻢ )‪ (2‬ﻓﻰ ﺣﺎﻟﺔ ﺣﺪوث ﺿﺒﻂ أو ﺗﻮﻓﻴﻖ‬
‫)‪ (matching‬ﻋﻨﺪ اﻟﻤﺨﺮج رﻗﻢ )‪(1‬‬

‫‪a1 = 0‬‬

‫ﻣﻌﺎﻣﻞ اﻻرﺳﺎل ﻣﻦ اﻟﻤﺨﺮج رﻗﻢ )‪ (2‬اﻟﻰ اﻟﻤﺨﺮج رﻗﻢ )‪ (1‬ﻓﻰ ﺣﺎﻟﺔ ﺣﺪوث ﺿﺒﻂ‬
‫أو ﺗﻮﻓﻴﻖ )‪ (matching‬ﻋﻨﺪ اﻟﻤﺨﺮج رﻗﻢ )‪(1‬‬

‫‪a1 = 0‬‬

‫= ‪S11‬‬

‫‪b‬‬
‫‪S 21 = 2‬‬
‫‪a1‬‬
‫‪b‬‬
‫‪= 2‬‬
‫‪a2‬‬
‫‪b1‬‬
‫‪a2‬‬

‫‪S 22‬‬

‫= ‪S12‬‬

‫ﺟﺪول )‪ : (١ - ٢‬ﺗﻌﺮﻳﻒ ﺑﺎراﻣﺘﺮات )‪ (S‬ﻟﺸﺒﻜﺔ ﻣﻜﻮﻧﺎت ذات ﻣﺨﺮﺟﻴﻦ‪.‬‬

‫و ﻗ ﺪ ﺗﻢ ﺗﻌﺮﻳﻒ ﺑﺎراﻣﺘﺮات )‪ (S‬ﻓﻰ هﺬا اﻟﺠﺪول ﺑﺎﺳﺘﺨﺪام ﻣﺘﻐﻴﺮات اﻟﻤﻮﺟﻪ اﻟﻤﺘﻌﺎدﻟﻪ و اﻟﺘﻰ هﻰ ﻋﺒﺎرﻩ ﻋﻦ اﻟﻔﻮﻟﺖ‬
‫ﻣﻘﺴ ﻮﻣﺎ ﻋﻠ ﻰ ﺟ ﺬر )‪ (Zon‬أو )‪ (normalizing impedance‬ﻟ ﺬﻟﻚ ﻧﻘ ﻮل أن ه ﺬﻩ اﻟﺒﺎراﻣﺘ ﺮات ﻣ ﺘﻌﺎدﻟﻪ ﺑﺎﻟﻨﺴﺒﻪ‬
‫اﻟ ﻰ )‪ (Zo‬و ﻋ ﻨﺪ ﻗﻴﺎس ﺑﺎراﻣﺘﺮات )‪ (S‬ﻳﻜﻮن ذﻟﻚ ﺑﺎﺳﺘﺨﺪام ﺟﻬﺎز ﻗﻴﺎس أو ﻧﻈﺎم ﻗﻴﺎس ﻣﻌﺮوف )‪ (Zo‬ﺑﺎﻟﻨﺴﺒﻪ ﻟﻪ و‬
‫اﻟﺘ ﻰ ﺗﺴ ﺎوى )‪ (50 Ω‬ﻓ ﻰ ﻣﻌﻈ ﻢ أﻧﻈﻤ ﺔ اﻟﻘ ﻴﺎس ﻓ ﻰ اﻟﺘ ﺮددات اﻟﻌﺎﻟ ﻴﻪ و اﻟﻤﻴﻜ ﺮووﻳﻒ ﻣ ﺜﻞ أﺟﻬ ﺰة ﻣﺤﻠ ﻞ اﻟﺸ ﺒﻜﻪ‬
‫)‪ (Network Analyzer‬ﺑﺄﻧ ﻮاﻋﻪ اﻟﻤﺨ ﺘﻠﻔﻪ و اﻟﺘ ﻰ ﺗﺴ ﺘﺨﺪم ﻓ ﻰ ﻗ ﻴﺎس ﺑﺎراﻣﺘ ﺮات )‪ (S‬و ذﻟ ﻚ ﺑﻘﻴﺎﺳ ﻬﺎ ﻟﻠﻤ ﻮﺟﻪ‬
‫اﻟﺴﺎﻗﻄﻪ و اﻟﻤﻨﻌﻜﺴﻪ ﻣﻦ آﻞ ﻣﺨﺮج ﻟﻠﺪاﺋﺮﻩ ﺛﻢ ﺗﺤﺴﺐ اﻟﺒﺎراﻣﺘﺮات ﻣﻦ اﻟﻤﻌﺎدﻻت اﻟﺴﺎﺑﻖ ذآﺮهﺎ‪.‬‬
‫و ه ﻨﺎك ﺧﺼ ﺎﺋﺺ ﻣﻔ ﻴﺪﻩ ﻟﺒﺎراﻣﺘ ﺮات )‪ (S‬ﻓ ﻰ ﺗﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ و ﻣ ﻦ ﺑﻴ ﻨﻬﺎ أﻧ ﻪ ﻓ ﻰ ﺣﺎﻟ ﺔ اﻟﺪواﺋ ﺮ اﻟﻤ ﺘﻤﺎﺛﻠﻪ‬
‫)‪ (symmetrical‬و اﻟﺪواﺋﺮ اﻟﻤﺘﺒﺎدﻟﻪ )‪ (reciprocal‬ﻓﺎن ﻣﺼﻔﻮﻓﺔ ]‪ [S‬ﺗﺘﺼﻒ ﺑﺎﻵﺗﻰ‪:‬‬

‫‪[S ] = [S ]T‬‬
‫ﺣﻴﺚ )‪ (T‬ﺗﻌﻨﻰ ﻣﺼﻔﻮﻓﻪ )ﻣﺤﻮﻟﻪ ‪ (transposed‬أى أﻧﻪ ﺑﺎﻟﻨﺴﺒﻪ ﻟﻠﺪاﺋﺮﻩ اﻟﻤﺘﻤﺎﺛﻠﻪ ذات اﻟﻤﺨﺮﺟﻴﻦ ‪:‬‬
‫)‪(2-25‬‬

‫‪S11 = S 22‬‬

‫‪,‬‬

‫‪S 21 = S12‬‬

‫و ه ﺬﻩ اﻟﻤﻌﺎدﻟ ﻪ ﺗﻨﻄ ﺒﻖ أﻳﻀ ﺎ اذا آﺎﻧ ﺖ اﻟﺪاﺋ ﺮﻩ ﺑ ﻼ ﻓﻘ ﺪ )‪ (lossless‬أو ﻳﻤﻜ ﻦ اهﻤ ﺎل اﻟﻔﻘ ﺪ ﺑﻬ ﺎ ‪ ،‬و ﻳﻤﻜﻦ ﺗﻌﻤﻴﻢ هﺬا‬
‫اﻟﻤﺒﺪأ ﻟﻠﺪواﺋﺮ ذات ﻋﺪد )‪ (N‬ﻣﻦ اﻟﻤﺨﺎرج ﺑﻜﺘﺎﺑﺔ اﻟﻤﻌﺎدﻟﻪ ﻓﻰ ﺻﻮرة ﻋﺎﻣﻪ ‪:‬‬

‫‪Sij = S ji‬‬

‫‪i, j = 1,2,..., N‬‬

‫‪46‬‬

‫ﻭ ﺃﻴﻀـﺎ ﺒﺎﻟﻨﺴـﺒﻪ ﻟﺩﺍﺌﺭﻩ ﺃﻭ ﺸﺒﻜﺔ ﻤﻜﻭﻨﺎﺕ ﺨﺎﻤﻠﻪ ﻭ ﺑﻼ ﻓﻘﺪ )‪ (lossless passive network‬ﺫﺍﺕ ﻋﺩﺩ )‪ (N‬ﻤﻥ‬
‫ﺍﻟﻤﺨﺎﺭﺝ ﻫﻨﺎﻙ ﺨﺎﺼﻴﺘﺎﻥ ﺍﻻﻭﻟﻰ ﻫﻰ‪:‬‬

‫)‪where (i = 1, 2, . . .N‬‬

‫‪2‬‬

‫‪N‬‬

‫‪N‬‬

‫‪∑ S ni = ∑ S ni S ni = 1‬‬
‫*‬

‫‪n =1‬‬

‫‪n =1‬‬

‫و ﻣﻌ ﻨﺎهﺎ أن ﺣﺎﺻ ﻞ ﺿ ﺮب أى ﻋﻤ ﻮد )‪ (column‬ﻣﻦ ﻣﺼﻔﻮﻓﺔ ]‪ [S‬ﻣﻊ ﻣﺘﺮاﻓﻘﻪ )‪(conjugate of the column‬‬
‫ﻳﺴﺎوى واﺣﺪ‪ .‬أﻣﺎ اﻟﺨﺎﺻﻴﻪ اﻟﺜﺎﻧﻴﻪ ﻓﻬﻰ ‪:‬‬

‫)‪s≠r‬‬

‫‪(where s , r = 1,2,.....N ,‬‬

‫‪=0‬‬

‫*‬

‫‪N‬‬

‫‪∑ S ns S nr‬‬
‫‪n =1‬‬

‫و ﻣﻌ ﻨﺎهﺎ أن ﺣﺎﺻ ﻞ ﺿ ﺮب أى ﻋﻤ ﻮد )‪ (column‬ﻣ ﻦ ﻣﺼ ﻔﻮﻓﺔ ]‪ [S‬ﻣﻊ اﻟﻤﺘﺮاﻓﻖ ﻷى ﻋﻤﻮد ﺁﺧﺮ ﻓﻰ اﻟﻤﺼﻔﻮﻓﻪ‬
‫)‪ (conjugate of any other column‬ﻳﺴﺎوى ﺻﻔﺮ‪.‬‬
‫و آ ﻞ ه ﺬﻩ اﻟﺨﺼ ﺎﺋﺺ ﺗﻔ ﻴﺪ ﻓﻰ اﺧﺘﺼﺎر ﺧﻄﻮات ﺗﺤﻠﻴﻞ اﻟﺪواﺋﺮ أو ﺷﺒﻜﺎت اﻟﻤﻜﻮﻧﺎت و اﻟﺘﻰ ﻋﺎدة ﺗﺠﺮى ﺑﺎﺳﺘﺨﺪام‬
‫ﺑﺮاﻣﺞ اﻟﺤﺎﺳﺐ‪.‬‬
‫ﻫـﻨﺎﻙ ﺃﻴﻀـﺎ ﻨﻭﻉ ﺁﺨﺭ ﻤﻥ ﺍﻟﻤﺼﻔﻭﻓﺎﺕ ﻤﻔﻴﺩ ﺠﺩﺍ ﻓﻰ ﺘﺤﻠﻴل ﺸﺒﻜﺎﺕ ﺍﻟﻤﻜﻭﻨﺎﺕ ﻓﻰ ﺘﺭﺩﺩﺍﺕ ﺍﻟﻤﻴﻜﺭﻭﻭﻴﻑ ﻭ ﻫﻭ‬
‫ﺒﺎﺭﺍﻤﺘـﺭﺍﺕ ﺍﻟﺘﺸـﺘﻴﺕ ﺍﻟﻤﺘﺴﻠﺴـﻠﻪ )‪ (chain scattering parameters‬ﺃﻭ ﺒﺎﺭﺍﻤﺘﺭﺍﺕ )‪ (T‬ﻭ ﺒﺎﻟﻌﻭﺩﻩ ﻟﻠﺸﻜل‬
‫)‪ (٩ -٢‬ﻳﻤﻜﻦ آﺘﺎﺑﺔ ﻣﺼﻔﻮﻓﺔ ]‪ [T‬ﻟﺸﺒﻜﺔ ﻣﻜﻮﻧﺎت ذات ﻣﺨﺮﺟﻴﻦ آﻶﺗﻰ ‪:‬‬

‫)‪(2-26‬‬

‫⎤ ‪⎡b 2‬‬
‫⎤ ‪⎡a1⎤ ⎡T11 T12 ⎤ ⎡b 2‬‬
‫[‬
‫]‬
‫‪T‬‬
‫=‬
‫⎥‬
‫⎥ ⎢‬
‫⎢‬
‫⎢=⎥ ⎢‬
‫⎥‬
‫⎦ ‪⎣a 2‬‬
‫⎦ ‪⎣b1⎦ ⎣T21 T22 ⎦ ⎣a 2‬‬

‫ﺷﻜﻞ )‪ : (١١ -٢‬رﺳﻢ رﻣﺰى ﻟﺸﺒﻜﺘﻴﻦ ﻣﻜﻮﻧﺎت ﻣﺘﺼﻠﺘﺎن ﺑﻄﺮﻳﻘﺔ ﻣﺘﺴﻠﺴﻠﻪ )‪(cascade‬‬

‫‪47‬‬

‫و ﻳﺒ ﻴﻦ اﻟﺸ ﻜﻞ )‪ (١١ -٢‬رﺳ ﻢ رﻣ ﺰى ﻟﺸ ﺒﻜﺘﻴﻦ ﻣﻜ ﻮﻧﺎت ﻣﺘﺼ ﻠﺘﺎن ﺑﻄ ﺮﻳﻘﺔ ﻣﺘﺴﻠﺴ ﻠﻪ )‪ (cascade‬ﺑﺤ ﻴﺚ ﺗﻜ ﻮن‬
‫اﻟﻤ ﻮﺟﻪ اﻟﺴ ﺎﻗﻄﻪ ﻋﻠ ﻰ اﻟﻤﺨ ﺮج )‪ (1‬ﻟﻠﺸ ﺒﻜﻪ )‪ (B‬ه ﻰ ﻧﻔﺴ ﻬﺎ اﻟﻤ ﻮﺟﻪ اﻟﻤﻨﻌﻜﺴ ﻪ ﻣ ﻦ اﻟﻤﺨ ﺮج )‪ (2‬ﻟﻠﺸﺒﻜﻪ )‪ ، (A‬و‬
‫ﺗﻜ ﻮن اﻟﻤ ﻮﺟﻪ اﻟﺴﺎﻗﻄﻪ ﻋﻠﻰ اﻟﻤﺨﺮج )‪ (2‬ﻟﻠﺸﺒﻜﻪ )‪ (A‬هﻰ ﻧﻔﺴﻬﺎ اﻟﻤﻮﺟﻪ اﻟﻤﻨﻌﻜﺴﻪ ﻣﻦ اﻟﻤﺨﺮج )‪ (1‬ﻟﻠﺸﺒﻜﻪ )‪، (B‬‬
‫ﺼﻔُﻮﻓَﺔ ]‪ [T‬اﻟﻜﻠﻴﻪ ﻟﻠﺸﺒﻜﺘﻴﻦ ﺑﻀﺮب ﻣﺼﻔﻮﻓﺘﻰ ]‪ [T‬ﻟﻠﺸﺒﻜﺘﻴﻦ ﺣﺴﺐ اﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫و ﻳﺘﻢ ﺣﺴﺎب َﻣ ْ‬

‫‪[T ] = [T ]A [T ]B‬‬
‫ﺼﻔُﻮﻓَﺔ ]‪ [T‬اﻟﻜﻠﻴﻪ‬
‫و ﻳﻤﻜ ﻦ ﺗﻌﻤ ﻴﻢ ه ﺬا اﻟﻤ ﺒﺪأ ﻟﻌﺪد )‪ (N‬ﻣﻦ ﺷﺒﻜﺎت اﻟﻤﻜﻮﻧﺎت اﻟﻤﺘﺼﻠﻪ ﺑﻄﺮﻳﻘﺔ ﻣﺘﺴﻠﺴﻠﻪ و ﺣﺴﺎب َﻣ ْ‬
‫ﻟﻬﻢ ﺑﻀﺮب ﻣﺼﻔﻮﻓﺎت اﻟﻬﺠﻴﻦ ﻟﻬﻢ آﺎﻵﺗﻰ ‪:‬‬

‫‪[T ] = [T ]1 [T ]2 ... [T ]N‬‬

‫ﺑﺎراﻣﺘﺮات )‪ (S‬ﺑﺪﻻﻟﺔ ﺑﺎراﻣﺘﺮات )‪(z‬‬

‫ﺑﺎراﻣﺘﺮات )‪ (z‬ﺑﺪﻻﻟﺔ ﺑﺎراﻣﺘﺮات )‪(S‬‬

‫‪(1 + S11 )(1 − S 22 ) + S12 S 21‬‬
‫‪(1 − S11 )(1 − S 22 ) − S12 S 21‬‬

‫= ‪z11‬‬

‫‪( z11 − 1)( z 22 + 1) − z12 z 21‬‬
‫‪( z11 + 1)( z22 + 1) − z12 z21‬‬

‫= ‪S11‬‬

‫‪2 S12‬‬
‫‪(1 − S11 )(1 − S 22 ) − S12 S 21‬‬

‫= ‪z12‬‬

‫‪2 z12‬‬
‫‪( z11 + 1)( z22 + 1) − z12 z21‬‬

‫= ‪S12‬‬

‫‪2 S 21‬‬
‫‪(1 − S11 )(1 − S 22 ) − S12 S 21‬‬

‫= ‪z21‬‬

‫‪2 z 21‬‬
‫‪( z11 + 1)( z 22 + 1) − z12 z 21‬‬

‫= ‪S 21‬‬

‫‪(1 + S 22 )(1 − S11 ) + S12 S 21‬‬
‫‪(1 − S11 )(1 − S 22 ) − S12 S 21‬‬

‫= ‪z 22‬‬

‫‪( z11 + 1)( z22 − 1) − z12 z21‬‬
‫‪( z11 + 1)( z22 + 1) − z12 z21‬‬

‫= ‪S 22‬‬

‫ﺟﺪول )‪ : (٢ - ٢‬ﻤﻌﺎﺩﻻﺕ ﺍﻟﺘﺤﻭﻴل ﻤﻥ ﺒﺎﺭﺍﻤﺘﺭﺍﺕ )‪ (z‬ﺍﻟﻰ ﺒﺎﺭﺍﻤﺘﺭﺍﺕ )‪ (S‬ﻭ ﺍﻟﻌﻜﺱ ﻟﻠﺸﺒﻜﺎﺕ ﺫﺍﺕ ﺍﻟﻤﺨﺭﺠﻴﻥ‬

‫‪48‬‬

‫ﺑﺎراﻣﺘﺮات )‪ (S‬ﺑﺪﻻﻟﺔ ﺑﺎراﻣﺘﺮات )‪(y‬‬

‫ﺑﺎراﻣﺘﺮات )‪ (y‬ﺑﺪﻻﻟﺔ ﺑﺎراﻣﺘﺮات )‪(S‬‬

‫‪(1 + S 22 )(1 − S11 ) + S12 S 21‬‬
‫‪(1 + S11 )(1 + S 22 ) − S12 S 21‬‬

‫= ‪y11‬‬

‫‪(1 − y11 )(1 + y22 ) + y12 y21‬‬
‫‪(1 + y11 )(1 + y22 ) − y12 y21‬‬

‫= ‪S11‬‬

‫‪− 2 S12‬‬
‫‪(1 + S11 )(1 + S 22 ) − S12 S 21‬‬

‫= ‪y12‬‬

‫‪− 2 y12‬‬
‫‪(1 + y11 )(1 + y22 ) − y12 y21‬‬

‫= ‪S12‬‬

‫‪− 2 S 21‬‬
‫‪(1 + S11 )(1 + S 22 ) − S12 S 21‬‬

‫= ‪y21‬‬

‫‪− 2 y21‬‬
‫‪(1 + y11 )(1 + y22 ) − y12 y21‬‬

‫= ‪S 21‬‬

‫‪(1 + S11 )(1 − S 22 ) + S12 S 21‬‬
‫‪(1 + S11 )(1 + S 22 ) − S12 S 21‬‬

‫= ‪y22‬‬

‫‪(1 + y11 )(1 − y22 ) + y12 y21‬‬
‫‪(1 + y11 )(1 + y22 ) − y12 y21‬‬

‫= ‪S 22‬‬

‫ﺟﺪول )‪ : (٣ - ٢‬ﻤﻌﺎﺩﻻﺕ ﺍﻟﺘﺤﻭﻴل ﻤﻥ ﺒﺎﺭﺍﻤﺘﺭﺍﺕ )‪ (y‬ﺍﻟﻰ ﺒﺎﺭﺍﻤﺘﺭﺍﺕ )‪ (S‬ﻭ ﺍﻟﻌﻜﺱ ﻟﻠﺸﺒﻜﺎﺕ ﺫﺍﺕ ﺍﻟﻤﺨﺭﺠﻴﻥ‬

‫ﻭ ﺍﻟﺠـﺩﻭل )‪ (٢ - ٢‬ﻴﺤـﺘﻭﻯ ﻋﻠـﻰ ﻤﻌﺎﺩﻻﺕ ﺍﻟﺘﺤﻭﻴل ﻤﻥ ﺒﺎﺭﺍﻤﺘﺭﺍﺕ )‪ (z‬ﺍﻟﻰ ﺒﺎﺭﺍﻤﺘﺭﺍﺕ )‪ (S‬ﻟﻠﺸﺒﻜﺎﺕ ﺫﺍﺕ‬
‫ﺍﻟﻤﺨـﺭﺠﻴﻥ ﻭ ﺍﻟﻌﻜـﺱ ﺃﻤـﺎ ﺠـﺩﻭل )‪ (٣ - ٢‬ﻓﺒﻪ ﻤﻌﺎﺩﻻﺕ ﺍﻟﺘﺤﻭﻴل ﻤﻥ ﺒﺎﺭﺍﻤﺘﺭﺍﺕ )‪ (y‬ﺍﻟﻰ ﺒﺎﺭﺍﻤﺘﺭﺍﺕ )‪(S‬‬
‫ﻟﻠﺸﺒﻜﺎﺕ ﺫﺍﺕ ﺍﻟﻤﺨﺭﺠﻴﻥ ﻭ ﺍﻟﻌﻜﺱ ‪.‬‬
‫ﺃﻤـﺎ ﺟ ﺪول )‪ (٤ - ٢‬ﻓ ﺒﻪ ﻤﻌـﺎﺩﻻﺕ ﺍﻟﺘﺤﻭﻴل ﻤﻥ ﺒﺎﺭﺍﻤﺘﺭﺍﺕ )‪ (T‬ﺍﻟﻰ ﺒﺎﺭﺍﻤﺘﺭﺍﺕ )‪ (S‬ﻭ ﺍﻟﻌﻜﺱ ﻟﻠﺸﺒﻜﺎﺕ ﺫﺍﺕ‬
‫ﺍﻟﻤﺨﺭﺠﻴﻥ ‪.‬‬
‫ﺑﺎراﻣﺘﺮات )‪ (S‬ﺑﺪﻻﻟﺔ ﺑﺎراﻣﺘﺮات )‪(T‬‬

‫ﺑﺎراﻣﺘﺮات )‪ (T‬ﺑﺪﻻﻟﺔ ﺑﺎراﻣﺘﺮات )‪(S‬‬

‫‪1‬‬
‫‪S 21‬‬

‫= ‪T11‬‬

‫‪T21‬‬
‫‪T11‬‬

‫= ‪S11‬‬

‫‪− S 22‬‬
‫‪S 21‬‬

‫= ‪T12‬‬

‫‪T11T22 − T12T21‬‬
‫‪T11‬‬

‫= ‪S12‬‬

‫‪S11‬‬
‫‪S 21‬‬

‫= ‪T21‬‬

‫‪1‬‬
‫‪T11‬‬

‫= ‪S 21‬‬

‫) ‪− ( S11S 22 − S12 S 21‬‬
‫‪S 21‬‬

‫= ‪T22‬‬

‫‪− T12‬‬
‫‪T11‬‬

‫= ‪S 22‬‬

‫ﺟﺪول )‪ : (٤ - ٢‬ﻤﻌﺎﺩﻻﺕ ﺍﻟﺘﺤﻭﻴل ﻤﻥ ﺒﺎﺭﺍﻤﺘﺭﺍﺕ )‪ (T‬ﺍﻟﻰ ﺒﺎﺭﺍﻤﺘﺭﺍﺕ )‪ (S‬ﻭ ﺍﻟﻌﻜﺱ ﻟﻠﺸﺒﻜﺎﺕ ﺫﺍﺕ ﺍﻟﻤﺨﺭﺠﻴﻥ‬

‫‪49‬‬

‫ﺑﺎﻟﻨﺴ ﺒﻪ ﻟﻠﺪواﺋ ﺮ أو ﺷ ﺒﻜﺎت اﻟﻤﻜ ﻮﻧﺎت ﻣ ﺘﻌﺪدة اﻟﻤﺨ ﺎرج أو ذات ﻋ ﺪد )‪ (N‬ﻣ ﻦ اﻟﻤﺨ ﺎرج ﻓﻬ ﻨﺎك ﻣﻌ ﺎدﻻت ﺗﺤ ﻮﻳﻞ‬
‫ﺑﺎﺳ ﺘﺨﺪام اﻟﻤﺼ ﻔﻮﻓﺎت ‪ ،‬ﻋﻠ ﻰ ﺳ ﺒﻴﻞ اﻟﻤ ﺜﺎل ﻟﻠ ﺘﺤﻮﻳﻞ ﻣ ﻦ ﻣﺼ ﻔﻮﻓﺔ ]‪ [S‬اﻟ ﻰ ﻣﺼ ﻔﻮﻓﺔ ]‪ [Z‬ﻳ ﺘﻢ اﺳ ﺘﺨﺪام اﻟﻤﻌﺎدﻟ ﻪ‬
‫اﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫)]‪[ Z ] = [Zo ] ([I] + [S])([I] − [S‬‬

‫‪−1‬‬

‫)‪(2-27‬‬

‫أﻣﺎ ﻟﻠﺘﺤﻮﻳﻞ ﻣﻦ ﻣﺼﻔﻮﻓﺔ ] ‪ [ Z‬اﻟﻰ ﻣﺼﻔﻮﻓﺔ ]‪ [S‬ﻓﻴﺘﻢ اﺳﺘﺨﺪام اﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫)] ‪[ S ] = ([Z] + [Zo ]) ([Z] − [Zo‬‬
‫‪-1‬‬

‫)‪(2-28‬‬

‫ﺣ ﻴﺚ ]‪ [I‬ه ﻰ ﻣﺼ ﻔﻮﻓﺔ اﻟ ﻮﺣﺪﻩ )‪ (unit diagonal matrix‬أو اﻟﺘ ﻰ آ ﻞ ﻋﻨﺎﺻ ﺮهﺎ ﺗﺴ ﺎوى ﺻ ﻔﺮا ﻣ ﺎ ﻋ ﺪا‬
‫ﻋﻨﺎﺻ ﺮ اﻟﻘﻄ ﺮ اﻟﺮﺋﻴﺴ ﻰ و اﻟﺘ ﻰ ﺟﻤ ﻴﻌﻬﺎ ﺗﺴ ﺎوى واﺣ ﺪ أﻣ ﺎ اﻟﻤﺼ ﻔﻮﻓﻪ ]‪ [Zo‬ﻓﻬ ﻰ ﺗﺴ ﺎوى ﻗ ﻴﻤﺔ اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ‬
‫ﻣﻀﺮوﺑﻪ ﻓﻰ ﻣﺼﻔﻮﻓﺔ اﻟﻮﺣﺪﻩ أى ‪:‬‬

‫]‪[I‬‬

‫‪= Zo‬‬

‫]‪[Zo‬‬

‫ﻭ ﻟﺩﺭﺍﺴـﺔ ﺍﻟﻤـﺯﻴﺩ ﻤﻥ ﺍﻟﺨﺼﺎﺌﺹ ﻟﻜل ﺃﻨﻭﺍﻉ ﺍﻟﻤﺼﻔﻭﻓﺎﺕ ﺍﻟﻤﺴﺘﺨﺩﻤﻪ ﻓﻰ ﺘﺤﻠﻴل ﺸﺒﻜﺎﺕ ﺍﻟﻤﻜﻭﻨﺎﺕ ﻭ ﺍﻻﺜﺒﺎﺘﺎﺕ‬
‫ﺍﻟﺭﻴﺎﻀـﻴﻪ ﻭ ﻤﻌﺎﺩﻻﺕ ﺍﻟﺘﺤﻭﻴل ﺒﻴﻨﻬﻡ ﻴﻤﻜﻥ ﺍﻟﺭﺠﻭﻉ ﻟﻠﻤﺭﺍﺠﻊ ﻤﻥ )‪ (١‬ﺍﻟﻰ )‪ ، (٦‬و اﻟﻤ ﺮﺟﻊ )‪ (٣‬ﻳﺘﻤﻴ ﺰ ﺑﺎﺛﺒﺎﺗﺎت‬
‫واﻓﻴﻪ ﺗﺴﻬﻞ ﺷﺮح ﺗﺤﻠﻴﻞ اﻟﺸﺒﻜﺎت ﻟﻠﺪارﺳﻴﻦ‪.‬‬

‫)ﻤﻘﻁﻊ ‪ (٣-٢‬ﺘﻌﺎﺭﻴﻑ ﺃﺴﺎﺴﻴﻪ )‪: (Essential Definitions‬‬

‫ﻣﻌ ﻴﺎر اﻟﺪﻳﺴ ﻴﺒﻞ )‪ (The Decibel dB‬ه ﻮ ﻣﻌ ﻴﺎر ﻟﺘﻘﺪﻳ ﺮ آﻤ ﻴﺎت أو ﻧﺴ ﺐ ﻋﺪﻳ ﺪﻩ ﻣ ﺜﻞ ﻣﻌﺎﻣ ﻞ ﺗﻜﺒﻴ ﺮ اﻟﻔ ﻮﻟﺖ و‬
‫ﻣﻌﺎﻣ ﻞ ﺗﻜﺒﻴ ﺮ اﻟﻘ ﺪرﻩ و اﻟﻘ ﺪرﻩ و ﻧﺴ ﺐ ﻣﻌ ﺎﻣﻼت اﻟﺘﻜﺒﻴ ﺮ اﻟﻤﺨ ﺘﻠﻔﻪ و ﻣﻘﺎدﻳﺮ ﺑﺎراﻣﺘﺮات إس ) ‪S parameters‬‬
‫‪ (magnitude‬و ﻣﻘﺎدﻳ ﺮ اﻟﻔﻘ ﺪ ﻓ ﻰ اﻻدﺧ ﺎل )‪ (insertion loss‬و ﻣﻘﺎدﻳ ﺮ اﻟﻔﻘ ﺪ ﻓ ﻰ اﻟ ﺮﺟﻮع )‪ (return loss‬و‬
‫ﻏﻴﺮهﺎ‪.‬‬
‫ﻓﻠﻠﺘﻌﺒﻴﺮ ﻋﻦ اﻟﻘﺪرﻩ ﺑﺎﻟﻮات )‪ (PWatt‬ﺑﻤﻌﻴﺎر اﻟﺪﻳﺴﻴﺒﻞ ﻳﺘﻢ ذﻟﻚ ﺑﺎﺗﺒﺎع اﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫‪PdB = 10 log (PWatt) dB‬‬

‫‪50‬‬

‫ﺣﻴﺚ )‪ (log‬هﻮ ﻟﻮﻏﺎرﻳﺘﻢ ﻟﻸﺳﺎس )‪.(10‬‬
‫و ﻟﻠﺘﻌﺒﻴ ﺮ ﻋ ﻦ ﻧﺴ ﺒﺔ ﻓ ﻮﻟﺖ أو ﻣﻌﺎﻣ ﻞ ﺗﻜﺒﻴ ﺮ اﻟﻔ ﻮﻟﺖ )‪ (Gv‬اﻟﺨ ﺎص ﺑﺸ ﺒﻜﺔ ﻣﻜ ﻮﻧﺎت ذات ﻣﺨ ﺮﺟﻴﻦ ) ‪two-port‬‬
‫‪ (network‬آﺎﻟﻤﺒﻴﻨﻪ ﻓﻰ ﺷﻜﻞ )‪ (٥ -٢‬ﺑﻤﻌﻴﺎر اﻟﺪﻳﺴﻴﺒﻞ ﻳﻜﻮن ذﻟﻚ ﺑﺎﺗﺒﺎع اﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫‪dB‬‬

‫⎞ ‪⎛V‬‬
‫⎟⎟ ‪Gv = 20 log ⎜⎜ 1‬‬
‫⎠ ‪⎝ V2‬‬

‫ﺣﻴﺚ )‪ (V1‬هﻮ اﻟﻔﻮﻟﺖ ﻋﻨﺪ اﻟﻤﺨﺮج )‪ (1‬و )‪ (V2‬هﻮ اﻟﻔﻮﻟﺖ ﻋﻨﺪ اﻟﻤﺨﺮج )‪. (2‬‬
‫و ﻟﻠﺘﻌﺒﻴﺮ ﻋﻦ ﻣﻌﺎﻣﻞ ﺗﻜﺒﻴﺮ اﻟﻘﺪرﻩ )‪ (Gp‬أو ﻧﺴﺒﺔ اﻟﻘﺪرﻩ ﺑﻤﻌﻴﺎر اﻟﺪﻳﺴﻴﺒﻞ ﻳﻜﻮن ذﻟﻚ ﺑﺎﺗﺒﺎع اﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫‪dB‬‬

‫⎞ ‪⎛P‬‬
‫⎟⎟ ‪G p = 10 log ⎜⎜ 1‬‬
‫⎠ ‪⎝ P2‬‬

‫ﺣﻴﺚ )‪ (P1‬ﺗﻤﺜﻞ اﻟﻘﺪرﻩ ﻋﻨﺪ اﻟﻤﺨﺮج )‪ (1‬و )‪ (P2‬هﻰ اﻟﻘﺪرﻩ ﻋﻨﺪ اﻟﻤﺨﺮج )‪. (2‬‬

‫ﺷﻜﻞ )‪ : (١٢ -٢‬ﺷﺮح اﺗﺠﺎهﺎت اﻟﻘﺪرﻩ اﻟﺪاﺧﻠﻪ )‪ (PIN‬و اﻟﻘﺪرﻩ اﻟﺨﺎرﺟﻪ )‪ (PL‬و اﻟﻘﺪرﻩ اﻟﻤﻨﻌﻜﺴﻪ )‪ (PR‬ﻟﺪاﺋﺮﻩ‬
‫ذات ﻣﺨﺮﺟﻴﻦ‪.‬‬

‫و ﺑﺎﻟﻤ ﺜﻞ ﻋﻨﺪ ﺣﺴﺎب ﻣﻘﺪار اﻟﻔﻘﺪ ﻓﻰ اﻻدﺧﺎل )‪ (insertion loss IL‬و ﻣﻘﺪار اﻟﻔﻘﺪ ﻓﻰ اﻟﺮﺟﻮع ) ‪return loss‬‬
‫‪ ( RL‬ﺑﺪﻻﻟ ﺔ اﻟﻘ ﺪرﻩ آﻤ ﺎ ﻓ ﻰ اﻟﺸﻜﻞ )‪ (١٢ -٢‬ﺑﺎﻋﺘﺒﺎر أن اﻟﻘﺪرﻩ اﻟﺪاﺧﻠﻪ هﻰ )‪ (PIN‬و اﻟﻘﺪرﻩ اﻟﺨﺎرﺟﻪ هﻰ )‪ (PL‬و‬
‫اﻟﻘﺪرﻩ اﻟﻤﻨﻌﻜﺴﻪ هﻰ )‪ ) (PR‬ﻣﺮﺟﻊ ‪.(٣‬‬

‫‪51‬‬

‫‪PL‬‬
‫و ﺗﻌ ﺮﻳﻒ ﻣﻘ ﺪار اﻟﻔﻘ ﺪ ﻓ ﻰ اﻻدﺧ ﺎل )‪ (insertion loss IL‬ه ﻮ‬
‫‪PIN‬‬
‫‪PR‬‬
‫‪PIN‬‬

‫اﻟﺮﺟﻮع )‪ (return loss RL‬هﻮ‬

‫= ‪RL‬‬

‫= ‪ IL‬أﻣ ﺎ ﺗﻌ ﺮﻳﻒ ﻣﻘ ﺪار اﻟﻔﻘ ﺪ ﻓ ﻰ‬

‫و ﺗﺤﻮﻳﻠﻬﻤﺎ ﻟﻠﺪﻳﺴﻴﺒﻞ ﻳﺤﺴﺐ ﺑﺎﻟﻤﻌﺎدﻻت اﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫‪dB‬‬

‫⎞ ‪⎛P‬‬
‫⎟⎟ ‪IL = − 10 log ⎜⎜ L‬‬
‫⎠ ‪⎝ PIN‬‬

‫‪dB‬‬

‫⎞ ‪⎛P‬‬
‫⎟⎟ ‪RL = − 10 log ⎜⎜ R‬‬
‫⎠ ‪⎝ PIN‬‬

‫‪2‬‬

‫‪dB‬‬

‫⎞ ‪⎛ VSWR − 1‬‬
‫⎜ ‪RL = − 10 log‬‬
‫⎟‬
‫⎠ ‪⎝ VSWR + 1‬‬

‫‪RL = − 20 log ( Γo ) dB‬‬

‫‪or‬‬

‫‪dB‬‬

‫) ‪RL = − 10 log ( Γo‬‬

‫‪2‬‬

‫و اﻻﺷ ﺎرﻩ اﻟﺴ ﺎﻟﺒﻪ ﻓ ﻰ ﻣﻌﺎدﻻت )‪ (IL‬و )‪ (RL‬هﻰ ﻟﻠﺘﻌﺒﻴﺮ ﻋﻦ اﻟﻔﻘﺪ ﺑﻘﻴﻤﻪ ﻣﻮﺟﺒﻪ ) أى ﻟﺠﻌﻞ ﻗﻴﻤﺔ اﻟﻔﻘﺪ ﺑﺎﻟﺪﻳﺴﻴﺒﻞ‬
‫ﻗ ﻴﻤﻪ ﻣﻮﺟ ﺒﻪ ﺣ ﻴﺚ أن ﻟﻮﻏﺎرﻳ ﺘﻢ اﻟﻌ ﺪد اﻟﻨﺴ ﺒﻰ ﻳﻜ ﻮن ﺳ ﺎﻟﺒﺎ ( و ﻳﻼﺣ ﻆ اﺳ ﺘﺨﺪام )‪ (10 log‬ﻓﻰ اﻟﻤﻌﺎدﻟﻪ ﻟﻠﺘﺤﻮﻳﻞ‬
‫ﻟﻠﺪﻳﺴ ﻴﺒﻞ ﻣ ﻊ ) ﻧﺴ ﺒﺔ اﻟﻘ ﺪرﻩ و ﻣ ﺮﺑﻊ ﻣﻘ ﺪار ﻣﻌﺎﻣ ﻞ اﻻﻧﻌﻜ ﺎس( آﻤ ﺎ ﻳﻼﺣ ﻆ اﺳ ﺘﺨﺪام )‪log‬‬

‫‪ (20‬ﻓ ﻰ اﻟﻤﻌﺎدﻟ ﻪ‬

‫ﻟﻠﺘﺤﻮﻳﻞ ﻟﻠﺪﻳﺴﻴﺒﻞ ﻣﻊ ) ﻧﺴﺒﺔ اﻟﻔﻮﻟﺖ و ﻣﻘﺪار ﻣﻌﺎﻣﻞ اﻻﻧﻌﻜﺎس( ‪ ،‬آﻤﺎ ﻳﺴﺘﺨﺪم ﻣﻌﻴﺎر اﻟﺪﻳﺴﻴﺒﻞ أﻳﻀﺎ ﻓﻰ اﻟﺘﻌﺒﻴﺮ ﻋﻦ‬
‫ﻣﻘﺎدﻳﺮ ﺑﺎراﻣﺘﺮات )‪ (S‬و ﺟﻤﻴﻊ ﻣﻌﺎﻣﻼت اﻟﺘﻜﺒﻴﺮ و ﻏﻴﺮهﺎ اﻟﺨﺎﺻﻪ ﺑﺸﺒﻜﺎت اﻟﻤﻜﻮﻧﺎت ﻣﺘﻌﺪدة اﻟﻤﺨﺎرج ) ‪N-port‬‬
‫‪.(networks‬‬
‫أﻣﺎ ﻣﻌﻴﺎر اﻟﻨﻴﺒﺮ )‪ (The Neper Np‬ﻓﻬﻮ ﻋﻠﻰ ﻏﺮار ﻣﻌﻴﺎر اﻟﺪﻳﺴﻴﺒﻞ ﻳﺴﺘﺨﺪم ﻟﺘﻘﺪﻳﺮ آﻤﻴﺎت أو ﻧﺴﺐ ﻣﺨﺘﻠﻔﻪ ﻣﺜﻞ‬
‫ﻧﺴﺐ اﻟﻔﻮﻟﺖ ‪ ،‬ﻋﻠﻰ ﺳﺒﻴﻞ اﻟﻤﺜﺎل ﻓﺎن ﻣﻌﺎﻣﻞ ﺗﻜﺒﻴﺮ اﻟﻔﻮﻟﺖ ﺑﺎﻟﻨﻴﺒﺮ )‪ (GNp‬ﻳﺘﻢ اﻟﺘﻌﺒﻴﺮ ﻋﻨﻪ ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ‪:‬‬

‫‪Np‬‬

‫⎞ ‪⎛V‬‬
‫⎟⎟ ‪GNp = ln ⎜⎜ 1‬‬
‫⎠ ‪⎝ V2‬‬

‫ﺣﻴﺚ )‪ (ln‬هﻮ ﻟﻮﻏﺎرﻳﺘﻢ ﻟﻸﺳﺎس )‪(e = 2.7182818‬‬
‫و ﺣﻴﺚ ) ‪ ( 1Np = 8.6859 dB‬و ﻓﻴﻤﺎ ﻳﻠﻰ ﺟﺪول ﻣﻠﺨﺺ ﺑﺒﻌﺾ ﺗﻌﺮﻳﻔﺎت ﻣﻌﻴﺎر اﻟﺪﻳﺴﻴﺒﻞ و ﻣﻌﻴﺎر اﻟﻨﻴﺒﺮ‬
‫ﻟﺘﻘﺪﻳﺮ ﺑﻌﺾ اﻟﻜﻤﻴﺎت و اﻟﻨﺴﺐ اﻟﻤﺴﺘﺨﺪﻣﻪ ﻣﻊ ﺷﺒﻜﺎت اﻟﻤﻜﻮﻧﺎت و اﻟﺪواﺋﺮ ‪ ،‬و ﻟﻼﻃﻼع ﻋﻠﻰ اﻹﺛﺒﺎﺗﺎت اﻟﺮﻳﺎﺿﻴﺔ‬
‫ﻟﻠﻤﻌﺎدﻻت اﻟﻤﻮﺟﻮدﻩ ﻓﻰ اﻟﺠﺪول ﻳﻤﻜﻦ اﻟﺮﺟﻮع ﻟﻠﻤﺮاﺟﻊ )‪٥‬و‪٦‬و‪.(٧‬‬

‫‪52‬‬

‫اﻟﻮﺣﺪﻩ‬

‫اﻟﻜﻤﻴﻪ أو ﻣﻌﺎﻣﻞ اﻟﺘﻜﺒﻴﺮ‬
‫ﻣﻌﺎﻣﻞ ﺗﻜﺒﻴﺮ اﻟﻔﻮﻟﺖ )‪(Gv‬‬
‫أو ﻧﺴﺒﺔ اﻟﻔﻮﻟﺖ‬

‫ﻣﻌﺎدﻟﺔ اﻟﺘﺤﻮﻳﻞ‬

‫⎞ ‪⎛V‬‬
‫⎟⎟ ‪Gv = 20 log ⎜⎜ 1‬‬
‫⎠ ‪⎝ V2‬‬
‫⎞ ‪⎛P‬‬
‫⎟⎟ ‪G p = 10 log ⎜⎜ 1‬‬
‫⎠ ‪⎝ P2‬‬
‫)‪PdB = 10 log (PWatt‬‬

‫‪dB‬‬

‫‪dB‬‬
‫‪dB‬‬
‫‪or‬‬
‫‪dBW‬‬
‫‪dBm‬‬
‫‪dB‬‬

‫ﻣﻌﺎﻣﻞ ﺗﻜﺒﻴﺮ اﻟﻘﺪرﻩ )‪(Gp‬‬
‫أو ﻧﺴﺒﺔ اﻟﻘﺪرﻩ‬

‫)‪PdBm = 10 log (PmW‬‬
‫‪S ij [in dB] = 20 log S ij‬‬

‫)‪Where i,j = 1, 2, …,N & (N=No. of Ports‬‬
‫‪dB‬‬

‫)‪Gi,dB = 10 log (Gi,max‬‬
‫‪1‬‬

‫‪& i=1,2‬‬

‫‪DB‬‬

‫‪2‬‬

‫‪1 - Sii‬‬

‫= ‪Where Gi , max‬‬

‫)‪GT,dB = 10 log (GT‬‬
‫‪Where‬‬

‫‪2‬‬
‫‪2‬‬

‫‪dB‬‬

‫‪1 - ΓL‬‬

‫‪1 - S 22 ΓL‬‬

‫‪dB‬‬

‫‪2‬‬

‫‪S 21‬‬

‫‪2‬‬

‫‪1 - Γs‬‬

‫‪1 - ΓIN Γs‬‬

‫)‪GMSG,dB = 10 log (GMSG‬‬
‫‪S 21‬‬
‫‪S12‬‬

‫‪dB‬‬

‫‪2‬‬

‫= ‪Where GMSG‬‬

‫⎞ ‪⎛P‬‬
‫⎟⎟ ‪IL = − 10 log ⎜⎜ L‬‬
‫⎠ ‪⎝ PIN‬‬
‫⎞ ‪⎛P‬‬
‫⎟⎟ ‪RL = − 10 log ⎜⎜ R‬‬
‫⎠ ‪⎝ PIN‬‬

‫‪( )2‬‬
‫) ‪− 20 log ( Γo‬‬

‫= ‪GT‬‬

‫‪1‬‬

‫‪2‬‬

‫اﻟﻘﺪرﻩ ﺑﺎﻟﻮات )‪(PWatt‬‬

‫‪3‬‬

‫اﻟﻘﺪرﻩ ﺑﺎﻟﻤﻴﻠﻠﻴﻮات )‪(PmW‬‬
‫ﻣﻘﺎدﻳﺮ ﺑﺎراﻣﺘﺮات إس‬
‫) ‪S parameters‬‬
‫‪(magnitude‬‬
‫ﻣﻌﺎﻣﻞ ﺗﻜﺒﻴﺮ ﺷﺒﻜﺔ‬
‫اﻟﻤﻜﻮﻧﺎت ذات اﻟﻤﺨﺮﺟﻴﻦ‬
‫ﻓﻰ ﺣﺎﻟﺔ ﺣﺪوث ﺗﻮاﻓﻖ‬
‫)‪ (matching‬ﻋﻨﺪ‬
‫اﻟﻤﺨﺮج رﻗﻢ )‪(i‬‬
‫ﻣﻌﺎﻣﻞ ﺗﻜﺒﻴﺮ ﺷﺒﻜﺔ‬
‫اﻟﻤﻜﻮﻧﺎت ذات اﻟﻤﺨﺮﺟﻴﻦ‬
‫ﻓﻰ ﺣﺎﻟﺔ اﻧﺘﻬﺎء اﻟﻤﺨﺮج‬
‫رﻗﻢ )‪ (1‬ﻋﻨﺪ ﺣﻤﻞ ﺑﻤﻌﺎﻣﻞ‬
‫اﻧﻌﻜﺎس )‪ (Γs‬و اﻧﺘﻬﺎء‬
‫اﻟﻤﺨﺮج رﻗﻢ )‪ (2‬ﻋﻨﺪ‬
‫ﺣﻤﻞ ﺑﻤﻌﺎﻣﻞ اﻧﻌﻜﺎس‬
‫)‪(ΓL‬‬
‫ﻣﻌﺎﻣﻞ اﻟﺘﻜﺒﻴﺮ اﻷﻗﺼﻰ‬
‫اﻟﺜﺎﺑﺖ ﻟﺸﺒﻜﺔ اﻟﻤﻜﻮﻧﺎت‬
‫ذات اﻟﻤﺨﺮﺟﻴﻦ‬

‫‪4‬‬
‫‪5‬‬
‫‪6‬‬

‫‪7‬‬

‫‪8‬‬

‫ﻣﻘﺪار اﻟﻔﻘﺪ ﻓﻰ اﻻدﺧﺎل‬
‫)‪(Insertion Loss IL‬‬

‫‪9‬‬

‫ﻣﻘﺪار اﻟﻔﻘﺪ ﻓﻰ اﻟﺮﺟﻮع‬
‫)‪(Return Loss RL‬‬

‫‪10‬‬

‫‪or RL = − 10 log Γo‬‬

‫‪dB‬‬

‫‪Np‬‬

‫= ‪RL‬‬

‫⎞ ‪⎛V‬‬
‫⎟⎟ ‪GNp = ln ⎜⎜ 1‬‬
‫⎠ ‪⎝ V2‬‬

‫ﻣﻘﺪار اﻟﻔﻘﺪ ﻓﻰ اﻟﺮﺟﻮع‬
‫)‪(Return Loss RL‬‬

‫‪11‬‬

‫ﻣﻌﺎﻣﻞ ﺗﻜﺒﻴﺮ اﻟﻔﻮﻟﺖ‬
‫ﺑﺎﻟﻨﻴﺒﺮ )‪(GNp‬‬

‫‪12‬‬

‫ﺟﺪول )‪ : (٥ - ٢‬ﺑﻌﺾ ﺗﻌﺮﻳﻔﺎت ﻣﻌﻴﺎر اﻟﺪﻳﺴﻴﺒﻞ و ﻣﻌﻴﺎر اﻟﻨﻴﺒﺮ ﻟﻠﻜﻤﻴﺎت و اﻟﻨﺴﺐ اﻟﻤﺨﺘﻠﻔﻪ‪.‬‬

‫‪53‬‬

‫ﻤﺭﺍﺠﻊ ﺍﻟﻔﺼل ﺍﻟﺜﺎﻨﻰ‬
‫اﻟﺴﻨﻪ‬

‫ﻣﻜﺎن اﻟﻨﺸﺮ‬/‫دار اﻟﻨﺸﺮ‬

‫اﻟﻨﺎﺷﺮﻳﻦ‬/‫اﻟﻤﺆﻟﻔﻴﻦ‬

1992

McGraw-Hill

Robert Collins

2005

John Wiley & Sons

David M. Pozar

2004

John Wiley & Sons

Devendra K.
Misra

1984

Prentice Hall Inc

Guillermo
Gonzalez

1993

John Wiley & Sons

Allan W. Scott

2003

John Wiley & Sons

2003

Artech House

Inder Bahl
Prakash Bhartia
Les Besser
Rowan Gilmore

‫اﺳﻢ اﻟﻜﺘﺎب أو اﻟﻮﺛﻴﻘﻪ‬
Foundations for Microwave
nd
Engineering (2 edition)
Microwave Engineering
rd
(3 edition)
Radio Frequency and
Microwave Communication
Circuits Analysis and
nd
Design, (2 edition)
Microwave Transistor
Amplifiers Analysis and
Design
Understanding Microwaves
Microwave Solid State
nd
Circuit Design (2 edition)
Practical RF Circuit Design
for Modern Wireless
Systems (Volume I - Passive
Circuits and Systems)

1
2
3

4
5
6
7

‫ﻤﺭﺍﺠﻊ ﺍﻻﻨﺘﺭﻨﺕ‬
‫ﻣﻮﻗﻊ ﻟﻠﺒﺤﺚ ﻋﻦ اﻟﺘﻌﺮﻳﻔﺎت و اﻟﻤﻌﻠﻮﻣﺎت اﻷﺳﺎﺳﻴﻪ و ﻣﻌﺎدﻻت اﻟﺘﺤﻮﻳﻞ ﺑﻴﻦ ﻣﺨﺘﻠﻒ اﻟﻤﺼﻔﻮﻓﺎت و ﻏﻴﺮهﺎ‬

i1

http://www.edacafe.com
‫ﻣﻮﻗﻊ ﻣﻮﺳﻮﻋﺔ ﻟﻠﺒﺤﺚ ﻋﻦ اﻟﺘﻌﺮﻳﻔﺎت و اﻟﻤﻌﻠﻮﻣﺎت اﻷﺳﺎﺳﻴﻪ ﻓﻰ ﻣﺠﺎل اﻟﻤﻴﻜﺮووﻳﻒ‬

i2

http://www.microwaves101.com/encyclopedia/index.cfm#M
(S) ‫ﻣﻮﻗﻊ ﻟﺘﻌﺮﻳﻔﺎت ﺑﺎراﻣﺘﺮات‬
http://www.microwaves101.com/encyclopedia/sparameters.cfm

54

i3

‫‪Chapter 3 : Microstrip Transmission Line‬‬
‫اﻟﻔﺼﻞ اﻟﺜﺎﻟﺚ ‪ :‬اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ‬

‫)ﻤﻘﻁﻊ ‪ (١-٣‬ﻤﻘﺩﻤﻪ ‪:‬‬

‫ﺗﻜﻨﻮﻟﻮﺟ ﻴﺎ اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪ (microstrip line technology‬هﻰ اﻟﺘﻜﻨﻮﻟﻮﺟﻴﺎ اﻻﺳﻬﻞ و اﻻآﺜﺮ اﺳﺘﺨﺪاﻣﺎ‬
‫ﻓﻰ ﺗﺼﻤﻴﻢ و ﺗﺼﻨﻴﻊ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ‪.‬‬
‫و ﺗﺘﻤﻴ ﺰ ه ﺬﻩ اﻟﺘﻜﻨﻮﻟﻮﺟ ﻴﺎ ﺑﺴ ﻬﻮﻟﺔ اﻟﺘﺼ ﻨﻴﻊ ﺳ ﻮاء ﺑﺎﺳ ﺘﺨﺪام أﺳ ﻠﻮب ﻃ ﺒﺎﻋﺔ اﻟﺪواﺋ ﺮ أو ﺑﺎﺳ ﺘﺨﺪام ﻣﺎآﻴﻨﺎت ﻣﻦ ﻧﻮع‬
‫)‪ (Computer Numerically Controlled CNC‬و ﺻ ﻐﺮ ﺣﺠ ﻢ اﻟﺪواﺋ ﺮ اﻟﻤﺼ ﻨﻌﻪ ﺑﻬ ﺎ و ﺧﻔ ﺔ اﻟ ﻮزن‬
‫واﻧﺤﻔ ﺎض ﺗﻜﺎﻟ ﻴﻒ اﻻﻧﺘﺎج و ﺳﻬﻮﻟﺔ ﺗﻜﺮار أو اﻋﺎدة اﻻﻧﺘﺎج )‪ (repeatability and reproducibility‬و ﺳﻬﻮﻟﺔ‬
‫اﻻﻧ ﺘﺎج ﺑﻜﻤ ﻴﺎت آﺒﻴ ﺮﻩ )‪ (ease of mass production‬و ﺳ ﻬﻮﻟﺔ ﻟﺤ ﺎم ﻣﻜ ﻮﻧﺎت ﻋﻠ ﻴﻬﺎ ﻣ ﻦ ﻣﺨ ﺘﻠﻒ اﻻﻧ ﻮاع و‬
‫اﻟﺘﻜﻨﻮﻟﻮﺟﻴﺎت‪.‬‬
‫أﻣ ﺎ ﻋ ﻴﻮب ه ﺬﻩ اﻟﺘﻜﻨﻮﻟﻮﺟ ﻴﺎ ﻓ ﺒﺎﻟﻤﻘﺎرﻧﻪ ﺑﺘﻜﻨﻮﻟﻮﺟ ﻴﺎت ﻣ ﺜﻞ ﺗﻜﻨﻮﻟﻮﺟ ﻴﺎ ﻣﺮﺷ ﺪ اﻟﻤﻮﺟﻪ )‪ (waveguide‬ﻓﺎن اﻟﺪواﺋﺮ‬
‫اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﺪﻗ ﻴﻘﻪ ﻳﻌﻴﺒﻬﺎ زﻳﺎدة ﻓﻘﺪ اﻟﻘﺪرﻩ )‪ (higher loss‬و اﻧﺨﻔﺎض ﻣﺪى ﺗﺤﻤﻞ اﻟﻘﺪرﻩ اﻟﻌﺎﻟﻴﻪ ) ‪lower power‬‬
‫‪ (handling capability‬و ﻋﺪم اِﺳﺘﻘﺮار ﻣﻮاﺻﻔﺎﺗﻬﺎ ﻣﻊ ﺗﻐﻴﺮ درﺟﺔ اﻟﺤﺮارة )‪greater temperature insta-‬‬
‫‪. (bility‬‬
‫ﻳﻮﺿ ﺢ اﻟﺸ ﻜﻞ )‪ (١ - ٣‬رﺳﻢ ﺛﻼﺛﻰ اﻻﺑﻌﺎد ﻟﺨﻂ ﺷﺮﻳﻄﻰ دﻗﻴﻖ )‪ (Microstrip Line‬ﻋﺮﺿﻪ )‪ (w‬و ﻃﻮﻟﻪ )‪(L‬‬
‫ﻣﺼﻨﻮع ﻋﻠﻰ ﺷﺮﻳﺤﻪ )‪ (Microstrip Substrate‬ﺑﻬﺎ ﻃﺒﻘﺔ ﻋﺎزل ﻟﻬﺎ ﺛﺎﺑﺖ ﻋﺰل )‪(dielectric constant εr‬‬
‫و ﺳﻤﻚ ﻃﺒﻘﺔ اﻟﻌﺎزل ﻣﻘﺪارﻩ )‪ (h‬و ﺳﻤﻚ ﻃﺒﻘﺔ اﻟﻤﻮﺻﻞ ﻣﻘﺪارﻩ )‪ . (t‬آﻤﺎ ﻳﻮﺿﺢ اﻟﺸﻜﻞ )‪ (١ - ٣‬ﻃﺒﻘﺔ اﻟﻤﻮﺻﻞ‬
‫اﻷرﺿ ﻰ أو )‪ (ground plane‬و اﻟﺘ ﻰ ﺗﻮﺻ ﻞ ﺑ ﺎﻷرض أو ﺑﻔ ﻮﻟﺖ ﻣﻘ ﺪارﻩ ﺻ ﻔﺮ و ﻟ ﻴﺲ ﻟﺴ ﻤﻜﻬﺎ ﺗﺄﺛﻴ ﺮ ﻋﻠ ﻰ‬
‫ﺗﻮﺻﻴﻒ اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ‪.‬‬
‫ﺣ ﻴﺚ ﻳ ﺘﻢ ﺗﻮﺻ ﻴﻒ اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ )‪ (Microstrip Line‬ﺑﻄ ﻮﻟﻪ و ﻋﺮﺿ ﻪ )‪ (L , w‬و ﺑﻤﻮاﺻ ﻔﺎت‬
‫اﻟﺸﺮﻳﺤﻪ )‪. (εr , h , t , ...‬‬

‫‪55‬‬

‫ﺸﻜل )‪ : (١ - ٣‬ﺭﺴﻡ ﺜﻼﺜﻰ ﺍﻻﺒﻌﺎﺩ ﻟﺨﻁ ﺸﺭﻴﻁﻰ ﺩﻗﻴﻕ )‪(Microstrip Line‬‬

‫و ﻳﺒ ﻴﻦ اﻟﺸ ﻜﻞ )‪ (٢ - ٣‬رﺳ ﻢ ﻟﻤﻨﻈ ﺮ ﻓﻮﻗﻰ )‪ (top view‬ﻟﻨﻔﺲ اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ اﻟﻤﻮﺿﺢ ﺑﺎﻟﺸﻜﻞ )‪(١ - ٣‬‬
‫و ﻟﻠﺘﻴﺴ ﻴﺮ ﻓ ﺎن ﻣﻌﻈ ﻢ اﻟﻤ ﺮاﺟﻊ ﺗﺴﺘﺨﺪم ﻣﻨﻈﺮ ﻓﻮﻗﻰ ﻋﻨﺪ رﺳﻢ اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ أو اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ ﻋﻤﻮﻣﺎ‬
‫و ﻳﻌﻄﻰ اﻟﺸﻜﻞ )‪ (٣ - ٣‬ﺻﻮرة ﻟﻤﺜﻞ هﺬا اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ ﺑﻌﺪ ﺗﺼﻨﻴﻌﻪ و ﺗﻮﺻﻴﻠﻪ ﺑﻤﻮﺻﻼت ﻣﺤﻮرﻳﻪ‪.‬‬

‫ﺸﻜل )‪ : (٢ - ٣‬ﺭﺴﻡ ﻤﻨﻅﺭ ﻓﻭﻗﻰ ﻟﺨﻁ ﺸﺭﻴﻁﻰ ﺩﻗﻴﻕ )‪ (Microstrip Line‬ﻋﺭﻀﻪ )‪ (w‬ﻭ ﻁﻭﻟﻪ )‪.(L‬‬

‫‪56‬‬

‫ﺸﻜل )‪ : (٣ - ٣‬ﺻﻮرة ﺧﻂ ﺷﺮﻳﻄﻰ دﻗﻴﻖ )‪ (Microstrip Line‬ﻋﺮﺿﻪ )‪ (w‬و ﻃﻮﻟﻪ )‪ (L‬ﻣﻠﺤﻮم ﺑﻪ‬
‫ﻣﻮﺻﻼت ﻣﺤﻮرﻳﻪ )‪ (coaxial connectors‬ﻋﻨﺪ ﻃﺮﻓﻴﻪ‪.‬‬

‫)ﻤﻘﻁﻊ ‪ (٢-٣‬ﺨﺼﺎﺌﺹ ﻭ ﺘﻌﺎﺭﻴﻑ ﻟﺒﺎﺭﻤﺘﺭﺍﺕ ﺍﻟﺨﻁ ﺍﻟﺸﺭﻴﻁﻰ ﺍﻟﺩﻗﻴﻕ ‪:‬‬
‫ﻳﻮﺿ ﺢ اﻟﺸ ﻜﻞ )‪ (٤ - ٣‬ﺷ ﻜﻞ ﺧﻄ ﻮط اﻟﻤﺠﺎﻟ ﻴﻦ اﻟﻤﻐﻨﺎﻃﻴﺴ ﻰ )‪ (H‬و اﻟﻜﻬﺮﺑ ﻰ )‪ (E‬ﻟﻠﻤ ﻮﺟﻪ اﻟﻤﻨﺘﺸ ﺮﻩ ﻓ ﻰ اﻟﺨ ﻂ‬
‫اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ و ﻳﻼﺣ ﻆ أن ﺧـﻄ ﻮط اﻟﻤﺠﺎﻟ ﻴﻦ اﻟﻤﻐﻨﺎﻃﻴـﺴ ﻰ و اﻟﻜﻬﺮﺑ ﻰ ﻟﻠﻤ ﻮﺟﻪ ﻻ ﺗ ﺘﻮاﺟﺪ ﺟـﻤ ﻴﻌﻬﺎ داﺧﻞ ﻃﺒﻘﺔ‬
‫اﻟـﻌ ﺎزل )‪ (dielectric substrate‬و اﻧﻤ ﺎ ﻳ ﻮﺟﺪ ﺟ ﺰء ﻣ ﻨﻬﺎ ﻓ ﻰ اﻟﻬ ﻮاء و ه ﺬا ﻟ ﻪ ﺗﺄﺛﻴ ﺮﻩ ﻋﻠ ﻰ اﻧﺘﺸ ﺎر اﻟﻤ ﻮﺟﻪ و‬
‫ﺑﺎﻟﺘﺎﻟ ﻰ ﻋﻠ ﻰ ﺣﺴ ﺎﺑﺎت أﺑﻌ ﺎد اﻟﺨﻄ ﻮط اﻟﺸﺮﻳﻄﻴﻪ آﻤﺎ ﺗﻮﺟﺪ ﺟﻤﻴﻊ ﻣﺮآﺒﺎت اﻟﻤﺠﺎﻟﻴﻦ اﻟﻤﻐﻨﺎﻃﻴﺴﻰ و اﻟﻜﻬﺮﺑﻰ ﻟﻠﻤﻮﺟﻪ‬
‫ﻓ ﻰ اﻟﻤﺴ ﺘﻮى اﻟﻌﻤ ﻮدى ﻋﻠ ﻰ اﺗﺠ ﺎﻩ اﻧﺘﺸ ﺎر اﻟﻤ ﻮﺟﻪ )اﻟﻤﺴ ﺘﻮى اﻟﻤﺴ ﺘﻌﺮض( أو )‪ ، (Transverse Plane‬و ﻟﻬ ﺬا‬
‫ﻳﻌﺘﺒ ﺮ اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ ﺧ ﻂ ارﺳ ﺎل آﻬﺮوﻣﻐﻨﺎﻃﻴﺴ ﻰ ﺷ ﺒﻪ ﻣﺴ ﺘﻌﺮض ) ‪Quasi Transverse‬‬
‫‪ (electromagnetic Transmission Line‬أو )‪.(Quasi-TEM Transmission Line‬‬

‫‪57‬‬

‫اﻟﺸﻜﻞ )‪ : (٤ - ٣‬ﻣﻘﻄﻊ ﻓﻰ اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ ﻳﻮﺿﺢ ﺷﻜﻞ ﺧﻄﻮط اﻟﻤﺠﺎﻟﻴﻦ اﻟﻤﻐﻨﺎﻃﻴﺴﻰ )‪ (H‬و‬
‫اﻟﻜﻬﺮﺑﻰ )‪ (E‬ﻟﻠﻤﻮﺟﻪ اﻟﻤﻨﺘﺸﺮﻩ ﻓﻰ اﻟﺨﻂ ‪.‬‬

‫ﻳﻮﺿ ﺢ اﻟﺸ ﻜﻞ )‪ (٥ - ٣‬ﺷ ﻜﻠﻴﻦ ﻣﺨﺘﻠﻔ ﻴﻦ ﻟﺮﺳ ﻢ رﻣ ﺰى ﻟﺨ ﻂ ارﺳ ﺎل )‪ (Transmission Line‬ﻟ ﻪ ﻣﻌﺎوﻗﻪ ﻣﻤﻴﺰﻩ‬

‫)‪ (Zo‬و ﻃ ﻮل آﻬﺮﺑ ﻰ ) ‪L‬‬

‫‪2π‬‬

‫‪λ‬‬

‫= ‪ ( θ = β L‬و ﻟﻠﺘﺴ ﻬﻴﻞ ﺳ ﻮف ﻳﺴ ﺘﺨﺪم أى ﻣ ﻦ اﻟﺮﺳ ﻤﻴﻦ اﻟﺮﻣ ﺰﻳﻴﻦ ﻓ ﻰ ﻣﻌﻈﻢ‬

‫اﻟﺸ ﺮح اﻟﺘﺎﻟ ﻰ ﺑﺎﻟﻜ ﺘﺎب ﻟﻠﺘﻌﺒﻴ ﺮ ﻋﻦ ﺧﻄﻮط اﻻرﺳﺎل‪ .‬ﺑﻴﻨﻤﺎ ﻳﻮﺿﺢ ﺷﻜﻞ )‪ (٦ - ٣‬رﺳﻢ رﻣﺰى ﻟﺨﻂ ﺷﺮﻳﻄﻰ دﻗﻴﻖ‬
‫)‪ (Microstrip Line‬ﻋﺮﺿﻪ )‪ (w‬و ﻃﻮﻟﻪ )‪.(L‬‬

‫)أ(‬

‫)ب(‬

‫ﺷﻜﻞ )‪ : (٥ - ٣‬رﺳﻤﻴﻦ رﻣﺰﻳﻴﻦ ﻟﺨﻂ ارﺳﺎل ﻣﺜﺎﻟﻰ ﻟﻪ ﻣﻌﺎوﻗﻪ ﻣﻤﻴﺰﻩ )‪ (Zo‬و ﻃﻮل آﻬﺮﺑﻰ )‪.(θ‬‬

‫‪58‬‬

‫ﺷﻜﻞ )‪ : (٦ - ٣‬رﺳﻢ رﻣﺰى ﻟﺨﻂ ﺷﺮﻳﻄﻰ دﻗﻴﻖ )‪ (Microstrip Line‬ﻋﺮﺿﻪ )‪ (w‬و ﻃﻮﻟﻪ )‪.(L‬‬

‫ﺷﻜﻞ )‪ : (٧ - ٣‬ﻋﻤﻠﻴﺘﻰ ﺗﺼﻤﻴﻢ و ﺗﺤﻠﻴﻞ اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ‪.‬‬

‫و ﻋﻤﻠ ﻴﺔ ﺗﺄﻟ ﻴﻒ أو ﺗﺼ ﻤﻴﻢ اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪ (microstrip line synthesis‬هﻰ ﺣﺴﺎب ﻋﺮض و ﻃﻮل‬
‫اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ )‪ (L , w‬ﺑﺪﻻﻟ ﺔ آ ﻼ ﻣﻦ اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ )‪ (Zo‬و اﻟﻄﻮل اﻟﻜﻬﺮﺑﻰ )‪ (electrical length θ‬و‬
‫ﻣﻮاﺻﻔﺎت اﻟﺸﺮﻳﺤﻪ )‪. (εr , h , t , ...‬‬
‫أﻣﺎ اﻟﻌﻤﻠﻴﻪ اﻟﻌﻜﺴﻴﻪ و هﻰ ﺣﺴﺎب اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ )‪ (Zo‬و اﻟﻄﻮل اﻟﻜﻬﺮﺑﻰ )‪ (θ‬ﻟﻠﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ ﺑﺪﻻﻟﺔ آﻼ‬
‫ﻣ ﻦ ﻋ ﺮض و ﻃ ﻮل اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ )‪ (L , w‬و ﻣﻮاﺻ ﻔﺎت اﻟﺸ ﺮﻳﺤﻪ )‪ ، (εr , h , t , ...‬ﻓﺘﺴ ﻤﻰ ﻋﻤﻠ ﻴﺔ ﺗﺤﻠﻴﻞ‬
‫اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪ . (microstrip line analysis‬أﻧﻈﺮ اﻟﺸﻜﻞ )‪. (٧ - ٣‬‬

‫‪59‬‬

‫ﻓ ﻰ اﻟﻮاﻗ ﻊ ﻓﺎن ﻋﻤﻠﻴﺔ ﺗﺄﻟﻴﻒ أو ﺗﺼﻤﻴﻢ اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪ (microstrip line synthesis‬ﺗﺘﻢ ﺑﺤﺴﺎب ﻗﻴﻤﺔ‬

‫‪w‬‬
‫)‬
‫‪h‬‬

‫( أو ﻧﺴ ﺒﺔ ﻋﺮض اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﻰ ﺳﻤﻚ ﻃﺒﻘﺔ اﻟﻌﺎزل ﺑﺎﻟﺸﺮﻳﺤﻪ ) ‪normalized width -to- height‬‬

‫‪ (ratio‬ﺑﺎﻻﺿ ﺎﻓﻪ اﻟ ﻰ ﺣﺴ ﺎب آﻤ ﻴﻪ أﺧ ﺮى ﺗﺴﻤﻰ )‪ (effective microstrip permittivity εeff‬أو اﻟﺴﻤﺎﺣﻴﻪ‬
‫اﻟﻔﻌﺎﻟﻪ ﻟﻠﺨﻂ اﻟﺸﺮﻳﻄﻰ ‪ ،‬و ﺳﻴﺘﻢ ﺷﺮح ذﻟﻚ ﻻﺣﻘﺎ ﺑﻌﺪ ﺗﻮﺿﻴﺢ ﺑﻌﺾ اﻟﻤﻔﺎهﻴﻢ‪.‬‬
‫أى ﺧ ﻂ ارﺳ ﺎل ﻜﻬﺭﻭﻤﻐﻨﺎﻁﻴﺴـﻰ ﻤﺴﺘﻌﺭﺽ )‪ (TEM transmission line‬ﻴﺘﻡ ﺘﻌﺭﻴﻑ ﺍﻟﻤﻌﺎﻭﻗﻪ ﺍﻟﻤﻤﻴﺯﻩ ﻟﻪ‬
‫ﺒﺄﻯ ﻤﻥ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫‪L‬‬
‫‪C‬‬

‫) ‪( 3.1.a‬‬

‫= ‪Z0‬‬

‫)‪( 3.1.b‬‬

‫‪Z0 = v p L‬‬

‫)‪( 3.1.c‬‬

‫‪1‬‬
‫‪v pC‬‬

‫= ‪Z0‬‬

‫ﺣ ﻴﺚ )‪ (L H/m‬ﻫـﻰ ﻗـﻴﻤﺔ ﺍﻟﻤﻠـﻑ )‪ (inductance‬ﻟﻜل ﻭﺤﺩﺓ ﻁﻭل ‪ ،‬ﻭ )‪ (C F/m‬ﻫﻰ ﻗﻴﻤﺔ ﺍﻟﻤﻜﺜﻑ‬
‫)‪ (shunt capacitance‬ﻟﻜـل ﻭﺤـﺩﺓ ﻁﻭل ‪ ،‬ﺒﻴﻨﻤﺎ )‪ (phase velocity vp m/s‬هﻰ ﺳﺮﻋﺔ اﻟﻄﻮر ﻟﻠﻤﻮﺟﻪ‬
‫اﻟﻤﻨﺘﺸﺮﻩ ﻓﻰ ﺧﻂ اﻻرﺳﺎل و هﻰ ﺗﻌﺮف آﻶﺗﻰ ‪:‬‬

‫‪1‬‬
‫‪LC‬‬

‫)‪( 3.2‬‬

‫= ‪vp‬‬

‫ﻟﻨﻔ ﺮض أن ﻃ ﺒﻘﺔ اﻟﻌ ﺎزل اﻟﻤﻮﺟ ﻮدﻩ ﺑﺎﻟﺸ ﺮﻳﺤﻪ أﺳ ﺘﺒﺪﻟﺖ ﺑﺎﻟﻬﻮاء أو اﻟﻔﺮاغ ‪ ،‬ﻓﻰ هﺬﻩ اﻟﺤﺎﻟﻪ ﻳﻄﻠﻖ ﻋﻠﻰ اﻟﺨﻂ )‪air-‬‬
‫‪ (filled microstrip line‬ﻓ ﻰ ه ﺬﻩ اﻟﺤﺎﻟ ﻪ ﻓ ﺎن ﺳ ﺮﻋﺔ اﻧﺘﺸ ﺎر اﻟﻤ ﻮﺟﻪ ﻓ ﻰ اﻟﺨ ﻂ ﺗﻜﻮن هﻰ ﻧﻔﺴﻬﺎ ﺳﺮﻋﺔ اﻟﻀﻮء‬
‫)‪m/s‬‬

‫‪ (c‬و ﻓﻰ هﺬﻩ اﻟﺤﺎﻟﻪ ﻳﺘﻢ ﺗﻌﺮﻳﻒ ﺍﻟﻤﻌﺎﻭﻗﻪ ﺍﻟﻤﻤﻴﺯﻩ ﻟﻠﺨﻁ ﺍﻟﻤﻤﻠﻭﺀ ﺒﺎﻟﻬﻭﺍﺀ )‪ (Zo1‬ﺒﺎﻟﻤﻌﺎﺩﻻﺕ ﺍﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫‪L‬‬
‫‪C1‬‬

‫)‪( 3.3.a‬‬

‫= ‪Z 01‬‬

‫‪Z 01 = cL‬‬

‫)‪( 3.3.b‬‬

‫‪1‬‬
‫‪cC1‬‬

‫)‪( 3.3.c‬‬

‫‪60‬‬

‫= ‪Z 01‬‬

‫ﺣ ﻴﺚ )‪ (L H/m‬ﻫـﻰ ﻗـﻴﻤﺔ ﺍﻟﻤﻠـﻑ )‪ (inductance‬ﻟﻜل ﻭﺤﺩﺓ ﻁﻭل ‪ ،‬ﻭ )‪ (C1 F/m‬ﻫﻰ ﻗﻴﻤﺔ ﺍﻟﻤﻜﺜﻑ‬
‫)‪ (shunt capacitance‬ﻟﻜل ﻭﺤﺩﺓ ﻁﻭل ﻟﻠﺨﻁ ﺍﻟﻤﻤﻠﻭﺀ ﺒﺎﻟﻬﻭﺍﺀ‪.‬‬
‫و ﺑﺪﻣﺞ اﻟﻤﻌﺎدﻻت ) ‪ ( 3.1.a‬و )‪ ( 3.3.b‬و )‪ ( 3.3.c‬ﻧﺴﺘﻨﺘﺞ أن ‪:‬‬

‫‪1‬‬
‫‪c CC1‬‬

‫)‪( 3.4‬‬

‫= ‪Z0‬‬

‫و ه ﺬﻩ اﻟﻤﻌﺎدﻟﻪ ﺗﺜﺒﺖ أن ﺣﺴﺎب ﺍﻟﻤﻌﺎﻭﻗﻪ ﺍﻟﻤﻤﻴﺯﻩ ﻴﻌﺘﻤﺩ ﻋﻠﻰ ﺤﺴﺎﺏ ﻗﻴﻤﺔ ﺍﻟﻤﻜﺜﻑ ﻟﻜل ﻭﺤﺩﺓ ﻁﻭل ﻟﻠﺨﻁ ﺍﻟﻤﻤﻠﻭﺀ‬
‫ﺒﺎﻟﻌﺎﺯل )‪ (C‬ﻭ ﻗﻴﻤﺔ ﺍﻟﻤﻜﺜﻑ ﻟﻜل ﻭﺤﺩﺓ ﻁﻭل ﻟﻠﺨﻁ ﺍﻟﻤﻤﻠﻭﺀ ﺒﺎﻟﻬﻭﺍﺀ )‪. (C1‬‬
‫ﻭ ﺤﻴﺙ ﺃﻥ ﺴﺭﻋﺔ ﺍﻨﺘﺸﺎﺭ ﺍﻟﻤﻭﺠﻪ ﻓﻰ ﺍﻟﺨﻁ ﺍﻟﻤﻤﻠﻭﺀ ﺒﺎﻟﻬﻭﺍﺀ ﺘﻜﻭﻥ ﻫﻰ ﻨﻔﺴﻬﺎ ﺴﺭﻋﺔ ﺍﻟﻀﻭﺀ )‪ (c‬ﻨﺴﺘﻨﺘﺞ ﺃﻥ ‪:‬‬

‫‪1‬‬
‫‪LC1‬‬

‫)‪( 3.5‬‬

‫=‪c‬‬

‫و ﺑﻘﺴﻤﺔ اﻟﻤﻌﺎدﻟﻪ )‪ ( 3.5‬ﻋﻠﻰ اﻟﻤﻌﺎدﻟﻪ )‪ ( 3.2‬ﻳﻨﺘﺞ ‪:‬‬

‫‪C‬‬
‫‪= (c / v p ) 2‬‬
‫‪C1‬‬

‫)‪( 3.6‬‬

‫⎞‪⎛C‬‬
‫ه ﺬﻩ اﻟﻨﺴ ﺒﻪ ⎟⎟‬
‫‪C‬‬
‫⎠‪⎝ 1‬‬

‫⎜⎜ ﻳﻄﻠ ﻖ ﻋﻠ ﻴﻬﺎ )‪ (effective microstrip permittivity εeff‬أو اﻟﺴ ﻤﺎﺣﻴﻪ اﻟﻔﻌﺎﻟ ﻪ ﻟﻠﺨ ﻂ‬

‫اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ ‪ ،‬وه ﻰ ﻧﺴ ﺒﻪ ﻣﻬﻤ ﻪ ﻓ ﻰ ﺣﺴ ﺎﺑﺎت اﻟﺘﺼ ﻤﻴﻢ و اﻟﺘﺤﻠ ﻴﻞ ﻟﻠﺨ ﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ ‪ .‬و ﺗﻌﺒﻴﺮ اﻟﺴﻤﺎﺣﻴﻪ‬
‫اﻟﻔﻌﺎﻟ ﻪ ﻳﺎﺗ ﻰ ﻣ ﻦ أن ﺧـﻄ ﻮط اﻟﻤﺠﺎﻟ ﻴﻦ اﻟﻤﻐﻨﺎﻃﻴـﺴ ﻰ و اﻟﻜﻬﺮﺑ ﻰ ﻟﻠﻤ ﻮﺟﻪ ﻻ ﺗ ﺘﻮاﺟﺪ ﺟـﻤ ﻴﻌﻬﺎ داﺧ ﻞ ﻃ ﺒﻘﺔ اﻟـﻌ ﺎزل‬
‫)‪ (dielectric substrate‬و اﻧﻤﺎ ﻳﻮﺟﺪ ﺟﺰء ﻣﻨﻬﺎ ﻓﻰ اﻟﻬﻮاء آﻤﺎ هﻮ ﻣﺬآﻮر ﻣﻦ ﻗﺒﻞ ‪.‬‬

‫‪2‬‬

‫)‪(3.7‬‬

‫⎟⎞ ‪C ⎛⎜ c‬‬
‫=‬
‫=‬
‫⎠⎟ ‪C1 ⎜⎝ v p‬‬

‫‪ε eff‬‬

‫و ﻣﻦ ﻣﻌﺎدﻻت )‪ ( 3.1.c‬و )‪ ( 3.3.c‬و )‪ (3.7‬ﻳﻤﻜﻦ اﺛﺒﺎت أن ‪:‬‬

‫)‪(3.8‬‬

‫‪Z 01 = Z 0 ε eff‬‬

‫‪or‬‬

‫‪61‬‬

‫‪Z 01‬‬

‫‪ε eff‬‬

‫= ‪Z0‬‬

‫و ﻳﻤﻜ ﻦ ﺗﺤﺪﻳ ﺪ اﻟﻘ ﻴﻤﻪ اﻟﻌﻈﻤ ﻰ و اﻟﻘ ﻴﻤﻪ اﻟﺼ ﻐﺮى ﻟﻠﺴ ﻤﺎﺣﻴﻪ اﻟﻔﻌﺎﻟ ﻪ ﻟﻠﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ )‪ (εeff‬ﺑﺘﻘﻴ ﻴﻤﻬﻤﺎ ﻓ ﻰ‬
‫ﺣﺎﻟﺘ ﻰ اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ ذو اﻟﻌ ﺮض اﻟﻜﺒﻴ ﺮ ﺟﺪا و اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ ذو اﻟﻌﺮض اﻟﺼﻐﻴﺮ ﺟﺪا آﻤﺎ ﻳﺒﻴﻦ‬
‫اﻟﺸﻜﻞ )‪.(٨ - ٣‬‬

‫ﺷﻜﻞ )‪ : (٨ - ٣‬رﺳﻢ ﺗﻮﺿﻴﺤﻰ ﻟﻤﻘﻄﻌﻴﻦ ﻓﻰ ﺧﻂ ﺷﺮﻳﻄﻰ دﻗﻴﻖ ذو ﻋﺮض آﺒﻴﺮ و ﺧﻂ ﺷﺮﻳﻄﻰ دﻗﻴﻖ ذو ﻋﺮض‬
‫ﺻﻐﻴﺮ ﺟﺪا‪.‬‬

‫ﻓ ﻰ ﺣﺎﻟ ﺔ اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ ذو اﻟﻌ ﺮض اﻟﻜﺒﻴﺮ ﺟﺪا ﺗﻜﻮن ﺟﻤﻴﻊ ﺧﻄﻮط اﻟﻤﺠﺎل اﻟﻜﻬﺮﺑﻰ ﻣﻮﺟﻮدﻩ داﺧﻞ ﻃﺒﻘﺔ‬
‫اﻟﻌ ﺎزل ﺑﺎﻟﺸ ﺮﻳﺤﻪ ) آﻤ ﺎ ه ﻮ اﻟﺤ ﺎل ﺑﺎﻟﻨﺴ ﺒﻪ ﻟﻤﻜ ﺜﻒ ﻣﻜ ﻮن ﻣ ﻦ ﻃﺒﻘﺘﻰ ﻣﻮﺻﻞ ﺑﻴﻨﻬﻤﺎ ﻃﺒﻘﺔ ﻋﺎزل ( ﻓﻰ هﺬﻩ اﻟﺤﺎﻟﻪ‬
‫ﺗﺆول ﻗﻴﻤﺔ )‪ (εeff‬اﻟﻰ ﻧﻔﺲ ﻗﻴﻤﺔ ﺛﺎﺑﺖ اﻟﻌﺰل ﺑﺎﻟﺸﺮﻳﺤﻪ )‪. (dielectric constant εr‬‬
‫أﻣ ﺎ ﻓ ﻰ ﺣﺎﻟ ﺔ اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ ذو اﻟﻌ ﺮض اﻟﺼ ﻐﻴﺮ ﺟ ﺪا ﻓ ﺎن ﺧﻄﻮط اﻟﻤﺠﺎل اﻟﻜﻬﺮﺑﻰ ﻳﻜﻮن ﻧﺼﻔﻬﺎ ﻣﻮﺟﻮد‬
‫‪1‬‬
‫ﺑﺎﻟﻬﻮاء و اﻟﻨﺼﻒ اﻵﺧﺮ ﻣﻮﺟﻮد داﺧﻞ ﻃﺒﻘﺔ اﻟﻌﺎزل ﺑﺎﻟﺸﺮﻳﺤﻪ و ﻓﻰ هﺬﻩ اﻟﺤﺎﻟﻪ ﻳﻜﻮن ‪(ε r + 1) :‬‬
‫‪2‬‬

‫≈ ‪ε eff‬‬

‫و ﻣﻦ هﺬا ﻧﺴﺘﻨﺘﺞ أن ﻗﻴﻤﺔ )‪ (εeff‬ﺗﻨﺤﺼﺮ ﺑﻴﻦ ﻗﻴﻤﺘﻴﻦ ‪:‬‬

‫‪1‬‬
‫‪(ε r + 1) ≤ ε eff ≤ ε r‬‬
‫‪2‬‬

‫)‪(3.9‬‬
‫أو ﺑﺼﻮرﻩ أﺧﺮى ‪:‬‬

‫)‪ε eff = 1 + q(ε r − 1‬‬

‫)‪(3.10‬‬
‫ﺣﻴﺚ‬

‫)‪(0.5 ≤ q ≤ 1‬‬

‫و ﻳﺴﻤﻰ )‪ (filling factor q‬ﻣﻌﺎﻣﻞ اﻟﻤﻞء ‪.‬‬
‫ﻓ ﻰ اﻟﻬ ﻮاء أو اﻟﻔ ﺮاغ ﺗﻜﻮن ﺳﺮﻋﺔ اﻟﻤﻮﺟﻪ اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴﻴﻪ هﻰ ﻧﻔﺴﻬﺎ ﺳﺮﻋﺔ اﻟﻀﻮء ) ‪ ( c = f λo‬ﺣﻴﺚ )‪(f‬‬
‫ه ﻮ اﻟﺘ ﺮدد و )‪ (λo‬ه ﻮ ﻃ ﻮل اﻟﻤ ﻮﺟﻪ ﻓ ﻰ اﻟﻔ ﺮاغ أو اﻟﻬ ﻮاء أﻣ ﺎ داﺧ ﻞ اﻟﺨ ﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ ﻓﺴﺮﻋﺔ اﻟﻤﻮﺟﻪ أو‬
‫ﺳ ﺮﻋﺔ اﻟﻄ ﻮر ه ﻰ )‪ (vp = f λg‬ﺣ ﻴﺚ )‪ (λg‬ه ﻮ ﻃ ﻮل اﻟﻤ ﻮﺟﻪ ﻓ ﻰ اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ و ﻳﺴ ﻤﻰ ﻃ ﻮل‬

‫‪62‬‬

‫ﺟﻪ أو )‪ ، (guided wavelength‬و ﻳﻤﻜﻦ اﺳﺘﻨﺘﺎج ﻗﻴﻤﺔ )‪ (εeff‬ﻣﻦ هﺬﻩ اﻟﻤﻌﻠﻮﻣﺎت ﺑﺎﻟﺘﻌﻮﻳﺾ‬
‫اﻟﻤ ﻮﺟﻪ اﻟﻤ ﻮ ّ‬
‫ﻓﻰ اﻟﻤﻌﺎدﻟﻪ )‪: (3.7‬‬

‫‪λ0‬‬
‫‪ε eff‬‬

‫)‪(3.11‬‬

‫‪2‬‬

‫= ‪λg‬‬

‫‪or‬‬

‫⎞‬
‫⎟‬
‫⎟‬
‫⎠‬

‫‪⎛λ‬‬
‫‪=⎜ 0‬‬
‫‪⎜λ‬‬
‫‪⎝ g‬‬

‫‪ε eff‬‬

‫و ﻳﻤﻜﻦ اﻟﺮﺟﻮع اﻟﻰ اﻟﻤﺮاﺟﻊ ) ﻣﻦ ‪ ١‬اﻟﻰ ‪ (٦‬ﻟﻼﻃﻼع ﻋﻠﻰ هﺬﻩ اﻻﺛﺒﺎﺗﺎت و ﺗﻔﺎﺻﻴﻠﻬﺎ ‪.‬‬

‫)ﻤﻘﻁﻊ ‪ (٣-٣‬ﻤﻌﺎﺩﻻﺕ ﺘﺼﻤﻴﻡ ﻭ ﺘﺤﻠﻴل ﺍﻟﺨﻁ ﺍﻟﺸﺭﻴﻁﻰ ﺍﻟﺩﻗﻴﻕ ‪:‬‬
‫آﻤ ﺎ ذآ ﺮ ﺳ ﺎﺑﻘﺎ ﻓﺎن ﻋﻤﻠﻴﺔ ﺗﺄﻟﻴﻒ أو ﺗﺼﻤﻴﻢ اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪ (microstrip line synthesis‬هﻰ ﺣﺴﺎب‬
‫ﻋ ﺮض و ﻃ ﻮل اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ )‪ (L , w‬ﺑﺪﻻﻟ ﺔ آ ﻼ ﻣ ﻦ اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻤﻴ ﺰﻩ )‪ (Zo‬و اﻟﻄ ﻮل اﻟﻜﻬﺮﺑ ﻰ ﻋ ﻨﺪ ﺗﺮدد‬
‫ﻣﻌﻴﻦ )‪ (electrical length θ‬و ﻣﻮاﺻﻔﺎت اﻟﺸﺮﻳﺤﻪ )‪. (εr , h , t , ... , etc.‬‬
‫داﺧ ﻞ اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ ﻳﻤﻜ ﻦ اﻟﺘﻌﺒﻴ ﺮ ﻋ ﻦ )‪ (guided wavelength λg‬ﻃ ﻮل اﻟﻤ ﻮﺟﻪ أو ﻃﻮل اﻟﻤﻮﺟﻪ‬
‫ﺟﻪ ﺑﺎﻟﻤﻠﻠﻴﻤﺘﺮ ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫اﻟﻤﻮ ّ‬
‫)‪(3.12‬‬

‫‪300‬‬

‫)‪(in mm‬‬

‫‪F ε eff‬‬

‫= ‪λg‬‬

‫ﺣﻴﺚ )‪ (F‬ﻓﻰ هﺬﻩ اﻟﻤﻌﺎدﻟﻪ هﻮ اﻟﺘﺮدد ﺑﺎﻟﺠﻴﺠﺎهﺮﺗﺰ )‪.(GHz‬‬
‫ﺟﻪ )‪ (λg‬ﻳﻤﻜﻦ ﺣﺴﺎب اﻟﻄﻮل اﻟﺤﻘﻴﻘﻰ ﻟﻠﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪ (L‬ﺑﺴﻬﻮﻟﻪ ﺑﺪﻻﻟﺔ‬
‫ﺑﻌ ﺪ ﺣﺴ ﺎب ﻃ ﻮل اﻟﻤ ﻮﺟﻪ اﻟﻤ ﻮ ّ‬
‫اﻟﻄﻮل اﻟﻜﻬﺮﺑﻰ ﻟﻠﺨﻂ )‪ (electrical length θ in degrees‬اﻟﻤﻌﻄﻰ ﺑﺎﻟﺪرﺟﻪ ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫)‪(3.13‬‬

‫)‪(in degree‬‬

‫⎞‬

‫⎛‬

‫⎟ ‪2π‬‬
‫⎜⎜ = ‪θ = β L‬‬
‫‪L‬‬
‫⎟‬
‫⎠ ‪⎝ λg‬‬

‫ﻟﻴﺼﺒﺢ اﻟﻄﻮل اﻟﺤﻘﻴﻘﻰ ﻟﻠﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪: (L‬‬

‫⎞ ‪⎛ θ λg‬‬
‫⎟⎟‬
‫⎜⎜ = ‪L‬‬
‫‪360‬‬
‫⎝‬
‫⎠‬

‫)‪(3.14‬‬

‫و ﺗﻜﻮن وﺣﺪة اﻟﻄﻮل )‪ (L‬هﻰ ﻧﻔﺴﻬﺎ وﺣﺪة )‪ (λg‬اﻟﻤﺴﺘﺨﺪﻣﻪ ﻓﻰ اﻟﺘﻌﻮﻳﺾ ﻓﻰ اﻟﻤﻌﺎدﻟﻪ‪.‬‬

‫‪63‬‬

‫ه ﻨﺎك ﻋ ﺪة ﻃ ﺮق ﻟﺤﺴ ﺎب ﻋ ﺮض اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ )‪ (w‬اﻣ ﺎ ﺑﺎﺳ ﺘﺨﺪام ﺟ ﺪاول أو ﻣﻨﺤﻨ ﻴﺎت )‪ (curves‬أو‬
‫ﺑﺎﺳﺘﺨﺪام ﻃﺮق رﻗﻤﻴﻪ ﻣﻌﻴﻨﻪ ﺗﺼﻠﺢ ﻟﻠﺤﺴﺎب ﺑﺎﺳﺘﺨﺪام ﺑﺮاﻣﺞ اﻟﺤﺎﺳﺐ أو ﺑﺎﺳﺘﺨﺪام ﻣﻌﺎدﻻت ﻣﺜﺒﺘﻪ ﻟﻬﺬا اﻟﻐﺮض‪.‬‬
‫ﺑﻌ ﺾ اﻟﺸ ﺮآﺎت اﻟﻤﻨ ﺘﺠﻪ ﻟﻠﺸ ﺮاﺋﺢ اﻟﺸ ﺮﻳﻄﻴﻪ )‪ (microstrip laminates‬ﺗﻌﻄ ﻰ ﺟ ﺪاول ﻟﺤﺴ ﺎب ﻋ ﺮض اﻟﺨ ﻂ‬
‫اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ ﺑﺪﻻﻟ ﺔ ﻣﻌﺎوﻗ ﻪ اﻟﺨ ﻂ )‪ (Zo‬و ﺗﻌ ﺘﻤﺪ اﻟﺒ ﻴﺎﻧﺎت اﻟﻤﻮﺟ ﻮدﻩ ﺑﻬ ﺬﻩ اﻟﺠ ﺪاول ﻋﻠ ﻰ اﻟﻘﻴﺎﺳ ﺎت و ﺗﺤ ﺘﻮى‬
‫أﻋﻤ ﺪة اﻟﺠ ﺪول ﻋﻠ ﻰ ﻗ ﻴﻤﺔ ﻣﻌﺎوﻗ ﻪ اﻟﺨ ﻂ )‪ (Zo‬و ﻋ ﺮض اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ )‪ (w‬أو ﻧﺴ ﺒﺔ ﻋ ﺮض اﻟﺨ ﻂ‬

‫‪w‬‬
‫اﻟﺸﺮﻳﻄﻰ اﻟﻰ ﺳﻤﻚ ﻃﺒﻘﺔ اﻟﻌﺎزل ﺑﺎﻟﺸﺮﻳﺤﻪ )‬
‫‪h‬‬

‫(‪.‬‬

‫و ﺗﺬآ ﺮ اﻟﺸ ﺮآﻪ اﻟﻤﻨ ﺘﺠﻪ ﻃ ﺮﻳﻘﺔ و ﻣﻮاﺻ ﻔﺎت اﻟﻘ ﻴﺎس ﺣ ﻴﺚ ﻳﺤ ﺪد ﻣ ﻊ اﻟﺠ ﺪول اﻟﻄ ﺮﻳﻘﺔ أو اﻟﻤﻮاﺻ ﻔﻪ اﻟﻘﻴﺎﺳ ﻴﻪ‬
‫اﻟﻤﺴ ﺘﺨﺪﻣﻪ ﻓ ﻰ ﻗ ﻴﺎس ه ﺬﻩ اﻟﺒ ﻴﺎﻧﺎت ﻣ ﻊ ﺗﺤﺪﻳ ﺪ اﻟﺘ ﺮدد و درﺟﺔ اﻟﺤﺮارﻩ اﻟﻠﺬان ﺗﻢ ﻋﻨﺪهﻤﺎ اﻟﻘﻴﺎس و اﻟﻈﺮوف اﻟﺒﻴﺌﻴﻪ‬
‫)‪ (environmental conditions‬و ﻏﻴ ﺮ ذﻟ ﻚ ﻣ ﻦ اﻟﺒ ﻴﺎﻧﺎت اﻟﺘ ﻰ ﺗﻌ ﺮف اﻟﺸ ﺮﻳﺤﻪ و ﺧﻮاص ﻣﺎدﺗﻰ اﻟﻤﻮﺻﻞ و‬
‫اﻟﻌﺎزل ‪ ،‬و ﻳﻌﺪ اﺳﺘﺨﺪام هﺬﻩ اﻟﺠﺪاول ﻃﺮﻳﻘﻪ دﻗﻴﻘﻪ ﻟﻌﻤﻠﻴﺔ اﻟﺘﺼﻤﻴﻢ‪.‬‬
‫و ه ﻨﺎك أﻳﻀ ﺎ ﻣﻄ ﺒﻮﻋﺎت و ﺻ ﻔﺤﺎت ﺑ ﻴﺎﻧﺎت ﺗﺼ ﺪرهﺎ ﺑﻌ ﺾ اﻟﺸ ﺮآﺎت اﻟﻤﻨ ﺘﺠﻪ ﻟﻠﺸ ﺮاﺋﺢ اﻟﺸ ﺮﻳﻄﻴﻪ ﺗﺤ ﺘﻮى ﻋﻠﻰ‬
‫ﻣﻌﺎدﻻت اﻟﺘﺼﻤﻴﻢ و ﻣﻌﺎدﻻت ﺣﺴﺎب ﺑﻌﺾ ﺧﺼﺎﺋﺺ اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ و ﺟﺪاول ﻣﺒﻨﻴﻪ ﻋﻠﻰ هﺬﻩ اﻟﻤﻌﺎدﻻت ﻣﺜﻞ‬
‫اﻟﻤﺮﺟﻊ )‪. (٧‬‬
‫أﻣﺎ اﻟﻄﺮﻳﻘﻪ اﻟﺜﺎﻧﻴﻪ ﻟﺤﺴﺎب ﻋﺮض اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪ (w‬ﺑﺎﺳﺘﺨﺪام ﻣﻨﺤﻨﻴﺎت )‪ (curves‬و ﻓﻰ اﻟﻮاﻗﻊ ﻓﺎن هﺬﻩ‬
‫اﻟﻤﻨﺤﻨﻴﺎت ﺗﺼﻠﺢ ﻟﻌﻤﻠﻴﺘﻰ اﻟﺘﺼﻤﻴﻢ )ﺣﺴﺎب ‪ w‬ﺑﺪﻻﻟﺔ ‪ (Zo‬و اﻟﺘﺤﻠﻴﻞ )ﺣﺴﺎب ‪ Zo‬ﺑﺪﻻﻟﺔ ‪ (w‬ﻋﻠﻰ ﺣﺪ ﺳﻮاء‪.‬‬

‫‪w‬‬
‫ه ﺬﻩ اﻟﻤﻨﺤﻨ ﻴﺎت )‪ (curves‬اﻣ ﺎ أن ﺗﻜ ﻮن ﻣﺮﺳ ﻮﻣﻪ ﺑﻄ ﺮﻳﻘﻪ ﻣﺒﺎﺷ ﺮﻩ ﺑﺤ ﻴﺚ ﺗﻌﻄ ﻰ ﻗ ﻴﻢ )‪ (εeff‬و )‬
‫‪h‬‬

‫( ﻣﺒﺎﺷ ﺮة‬

‫ﺑﺪﻻﻟ ﺔ )‪ (Zo‬و اﻟﻌﻜ ﺲ وذﻟ ﻚ ﻟﺸ ﺮﻳﺤﻪ ذات ﻣﻮاﺻ ﻔﺎت ﻣﻌﻴﻨﻪ آﻤﺎ هﻮ اﻟﺤﺎل ﻓﻰ اﻟﺠﺪاول اﻟﻤﺬآﻮرﻩ أﻋﻼﻩ‪ .‬و اﻣﺎ أن‬

‫‪w‬‬
‫ﺗﻜ ﻮن اﻟﻤﻨﺤﻨ ﻴﺎت ﻣﺮﺳ ﻮﻣﻪ ﺑﺤ ﻴﺚ ﺗﻌﻄ ﻰ ﻗ ﻴﻢ )‬
‫‪h‬‬

‫( و )‪ (filling factor q‬ﻣﻌﺎﻣﻞ اﻟﻤﻞء اﻟﻤﺬآﻮر ﻓﻰ اﻟﻤﻌﺎدﻟﻪ‬

‫)‪ (3.10‬ﺑﺪﻻﻟ ﺔ ﺍﻟﻤﻌﺎﻭﻗﻪ ﺍﻟﻤﻤﻴﺯﻩ ﻟﻠﺨﻁ ﺍﻟﻤﻤﻠﻭﺀ ﺒﺎﻟﻬﻭﺍﺀ )‪(air-spaced characteristic impedance Zo1‬‬
‫و هﺬا ﻳﺠﻌﻞ ﻋﻤﻠﻴﺔ اﻟﺘﺼﻤﻴﻢ ﺗﺘﻢ ﺑﺎﺗﺒﺎع اﻟﺨﻄﻮات اﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫‪ -١-‬ﻣﻌﻄﻰ ﻗﻴﻤﺔ اﻟﻤﻌﺎوﻗﻪ ﻟﻠﺨﻂ )‪ ، (Zo‬ﻳﻔﺮض اﻟﻤﺼﻤﻢ أن ) ‪ε r‬‬

‫≅ ‪ ( ε eff‬ﻣﺒﺪﺋﻴﺎ‪.‬‬

‫‪ -٢‬ﺗﺤﺴ ﺐ ﺍﻟﻤﻌﺎﻭﻗﻪ ﺍﻟﻤﻤﻴﺯﻩ ﻟﻠﺨﻁ ﺍﻟﻤﻤﻠﻭﺀ ﺒﺎﻟﻬﻭﺍﺀ )‪ (air-spaced characteristic impedance Zo1‬ﻣ ﻦ‬‫اﻟﻤﻌﺎدﻟﻪ )‪. (3.8‬‬

‫‪w‬‬
‫‪w‬‬
‫‪ -٣‬ﻳ ﺘﻢ ﺣﺴﺎب آﻼ ﻣﻦ ) ( و )‪ (q‬ﺑﺎﺳﺘﺨﺪام ﻣﻨﺤﻨﻰ ﻗﻴﻢ )‬‫‪h‬‬
‫‪h‬‬
‫اﻟﻤﺮﺳﻮﻣﻪ ﺑﺪﻻﻟﺔ )‪ (Zo1‬اﻟﻤﺮﺟﻊ )‪.(١‬‬
‫‪ -٤-‬ﻳﺘﻢ ﺣﺴﻠﺐ ﻗﻴﻤﺔ ﺟﺪﻳﺪﻩ ﻟـ )‪ (εeff‬ﻣﻦ اﻟﻤﻌﺎدﻟﻪ )‪. (3.10‬‬

‫‪64‬‬

‫( اﻟﻤﺮﺳﻮﻣﻪ ﺑﺪﻻﻟﺔ )‪ (Zo1‬و ﻣﻨﺤﻨﻰ ﻗﻴﻢ )‪(q‬‬

‫‪ -٥‬ﻳﺘﻢ اﻋﺎدة اﻟﺨﻄﻮات ‪٢‬و‪٣‬و‪ ٤‬ﺑﺎﺳﺘﺨﺪام ﻗﻴﻤﺔ )‪ (εeff‬اﻟﺠﺪﻳﺪﻩ ﺣﺘﻰ ﻳﺠﺪ اﻟﻤﺼﻤﻢ أن اﻟﻔﺮق ﺑﻴﻦ ﻗﻴﻤﺘﻰ )‪(εeff‬‬‫اﻟﻘﺪﻳﻤ ﻪ و اﻟﺠﺪﻳ ﺪﻩ ﻻ ﻳ ﺘﻌﺪى )‪ (1 %‬واﺣ ﺪ ﺑﺎﻟﻤﺎﺋ ﻪ ‪ ،‬و ﻓ ﻰ ه ﺬﻩ اﻟﺤﺎﻟ ﻪ ﻳﻜ ﻮن اﻟﻤﺼﻤﻢ ﻗﺪ ﺣﺼﻞ ﻋﻠﻰ ﻗﻴﻢ )‪ (εeff‬و‬

‫‪w‬‬
‫)‬
‫‪h‬‬

‫( اﻟﻨﻬﺎﺋﻴﺘﻴﻦ و ﻣﻨﻬﻤﺎ ﻳﻌﺮف ﻗﻴﻤﺔ )‪ (w‬و ﻳﺤﺴﺐ ﻗﻴﻤﺔ )‪ (λg‬ﻣﻦ اﻟﻤﻌﺎدﻟﻪ )‪ (3.12‬و ﺑﺎﻟﺘﺎﻟﻰ ﻃﻮل اﻟﺨﻂ )‪.(L‬‬

‫و ﻳﻄﻠ ﻖ ﻋﻠ ﻰ ه ﺬﻩ اﻟﻌﻤﻠ ﻴﻪ اﻟﺘﺼ ﻤﻴﻢ اﻟﺘﻘﺮﻳﺒ ﻰ ﺑﺎﻟﺮﺳ ﻮﻣﺎت أو ﺑﺎﻟﻤﻨﺤﻨ ﻴﺎت أو ) ‪approximate graphical‬‬
‫‪ ، (synthesis‬و ه ﻰ ﻃ ﺮﻳﻘﻪ ﻗﺪﻳﻤ ﻪ ﻧﺴ ﺒﻴﺎ ﻟ ﻢ ﺗﻌ ﺪ ﺗﺴ ﺘﺨﺪم ﻋﻤﻠ ﻴﺎ اﻻ ﻷﻏ ﺮاض ﺗﻌﻠﻴﻤ ﻴﻪ أو ﻻﻋﻄ ﺎء ﻣﺆﺷ ﺮ ﻣﺒﺪﺋ ﻰ‬
‫ﻟﻨﺘﺎﺋﺞ اﻟﺘﺼﻤﻴﻢ و ﻳﻤﻜﻦ اﻟﺮﺟﻮع ﻟﻠﻤﺮﺟﻊ )‪ (١‬ﻟﻤﻌﺮﻓﺔ ﺑﺎﻗﻰ ﺗﻔﺎﺻﻴﻠﻬﺎ و اﺳﺘﻌﺮاض اﻟﻤﻨﺤﻨﻴﺎت‪.‬‬
‫أﻣ ﺎ اﻟﻄ ﺮق اﻷآﺜ ﺮ ﺣﺪاﺛ ﻪ ﻟﻠﺘﺼ ﻤﻴﻢ ﻓﻬ ﻰ ﺑﺎﺳ ﺘﺨﺪام ﻃ ﺮق رﻗﻤ ﻴﻪ ﻣﻌﻴ ﻨﻪ أو ﺑﺎﺳ ﺘﺨﺪام ﻣﻌ ﺎدﻻت ﻣﺜﺒ ﺘﻪ ﻟﻬ ﺬا اﻟﻐ ﺮض‬
‫ﺗﺼﻠﺢ ﻻدراﺟﻬﺎ ﻓﻰ ﺑﺮاﻣﺞ اﻟﺘﺼﻤﻴﻢ ﺑﺎﺳﺘﺨﺪام اﻟﺤﺎﺳﺐ‪.‬‬
‫اﺳ ﺘﺨﺪام اﻟﻤﻌ ﺎدﻻت اﻟﻤﺜﺒﺘﻪ ﻟﻠﺘﺼﻤﻴﻢ )‪ (design closed formulae‬هﻮ اﻟﺤﻞ اﻷﻣﺜﻞ ﺣﻴﺚ أن هﺬﻩ اﻟﻄﺮﻳﻘﻪ ﺗﺘﻤﻴﺰ‬
‫ﺑﺎﻟﺴ ﺮﻋﻪ و ﺑﺪﻗ ﻪ ﻋﺎﻟ ﻴﻪ ﻓ ﻰ اﻟﺤﺴ ﺎﺑﺎت و ﺳ ﻬﻮﻟﺔ اﻧ ﺘﺎج ﺑ ﺮاﻣﺞ ﺗﺼ ﻤﻴﻢ ﺑﺎﺳ ﺘﺨﺪام اﻟﺤﺎﺳ ﺐ )‪ (CAD‬ﺑﺎﺳ ﺘﺨﺪام ه ﺬﻩ‬
‫اﻟﻤﻌﺎدﻻت و ﺳﻬﻮﻟﺔ ﺗﻌﺎﻣﻞ ﻣﺼﻤﻢ اﻟﺪواﺋﺮ ﻣﻌﻬﺎ‪.‬‬
‫و ه ﻨﺎك اﻟﻌﺪﻳ ﺪ ﻣ ﻦ اﻟﻤﻌ ﺎدﻻت اﻟﻤﺜﺒ ﺘﻪ ﻟﻠﺘﺼ ﻤﻴﻢ ﺗﺨ ﺘﻠﻒ ﻓ ﻰ دﻗ ﺘﻬﺎ و أﻧ ﻮاع اﻟﺘﻘ ﺮﻳﺒﺎت أو اﻻﻓﺘﺮاﺿ ﺎت اﻟﺮﻳﺎﺿ ﻴﻪ‬
‫اﻟﻤﺴ ﺘﺨﺪﻣﻪ ﻓ ﻰ اﻻﺛ ﺒﺎﺗﺎت اﻟ ﻰ ﺁﺧﺮ ذﻟﻚ‪ .‬و هﻨﺎك ﻋﺪد آﺒﻴﺮ ﻣﻦ اﻟﻤﺮاﺟﻊ ﻳﻌﻄﻰ و ﻳﺸﺮح هﺬا اﻟﻨﻮع ﻣﻦ اﻟﻤﻌﺎدﻻت و‬

‫‪w‬‬
‫اﻻﺛ ﺒﺎﺗﺎت )اﻟﻤ ﺮاﺟﻊ ﻣ ﻦ ‪ ١‬اﻟﻰ ‪ ٦‬و ‪ . (٨‬و ﻓﻴﻤﺎ ﻳﻠﻰ ﺑﻌﺾ اﻟﻤﻌﺎدﻻت اﻟﺘﻰ ﺗﺤﺴﺐ ﻗﻴﻢ )‬
‫‪h‬‬

‫( و )‪ (εeff‬ﻣﺒﺎﺷﺮة و‬

‫ﻣﻨﻬﻤﺎ ﻳﻤﻜﻦ ﺣﺴﺎب آﻼ ﻣﻦ )‪ (w‬و )‪ (L‬ﻟﻠﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ‪.‬‬
‫ﻟﻨﻔ ﺮض أن آ ﻼ ﻣ ﻦ ﻗ ﻴﻤﺔ اﻟﻤﻌﺎوﻗ ﻪ ﻟﻠﺨ ﻂ )‪ (Zo‬و ﺛﺎﺑ ﺖ اﻟﻌ ﺰل )‪ (εr‬ﻣﻌﻄ ﻰ ‪ ،‬ه ﻨﺎك ﺣﺎﻟ ﺘﺎن اﻻوﻟ ﻰ ﻟﻠﺨﻂ ذو‬
‫اﻟﺴﻤﻚ اﻟﻘﻠﻴﻞ اﻟﺬى ﺗﻜﻮن اﻟﻤﻌﺎوﻗﻪ ﺑﻪ ﻓﻰ اﻟﻤﻌﺪل اﻟﺘﺎﻟﻰ ‪:‬‬

‫‪Zo > ( 44 − 2 εr ) Ω‬‬

‫‪When‬‬

‫‪w‬‬
‫ﺗﻌﻄﻰ ﻧﺴﺒﺔ ﻋﺮض اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﻰ ﺳﻤﻚ ﻃﺒﻘﺔ اﻟﻌﺎزل ﺑﺎﻟﺸﺮﻳﺤﻪ )‬
‫‪h‬‬
‫‪−1‬‬

‫)‪(3.15‬‬

‫( ﺑﺎﻟﻤﻌﺎدﻟﻪ ‪:‬‬

‫⎞‬
‫‪1‬‬
‫‪w ⎛ exp H′‬‬
‫⎟‬
‫⎜⎜ =‬
‫‪−‬‬
‫‪h ⎝ 8‬‬
‫⎠⎟ ‪4 exp H′‬‬

‫ﺣﻴﺚ‬
‫)‪(3.16‬‬

‫⎞ ‪Z o 2(ε r + 1) 1 ⎛ ε r − 1 ⎞⎛ π 1 4‬‬
‫⎟ ‪⎟⎜ ln + ln‬‬
‫⎜⎜ ‪+‬‬
‫‪119.9‬‬
‫⎠⎟ ‪2 ⎝ ε r + 1 ⎟⎠⎜⎝ 2 ε r π‬‬

‫‪65‬‬

‫= ‪H′‬‬

‫اذا آﺎن ] ‪ [ w/h < 1.3‬ﻓﺎن اﻟﺴﻤﺎﺣﻴﻪ اﻟﻔﻌﺎﻟﻪ ﻟﻠﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪ (εeff‬ﺗﺤﺴﺐ ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫‪−2‬‬

‫)‪(3.17‬‬

‫⎧ ‪εr‬‬

‫‪1 ⎛ ε r − 1 ⎞⎛ π 1‬‬
‫⎫⎞ ‪4‬‬
‫⎬⎟⎟ ‪⎟⎟⎜⎜ ln + ln‬‬
‫⎜⎜‬
‫‪= ⎨1 −‬‬
‫⎭⎠ ‪2 ⎩ 2 H ′ ⎝ ε r + 1 ⎠⎝ 2 ε r π‬‬

‫‪ε eff‬‬

‫‪w‬‬
‫ﺣﻴﺚ ﺗﺤﺴﺐ ) ‪ ( H ′‬ﻣﻦ اﻟﻤﻌﺎدﻟﻪ )‪ (3.16‬ﺑﺪﻻﻟﺔ )‪ (Zo‬أو ﺗﺤﺴﺐ ) ‪ ( H ′‬ﻣﻦ اﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ﺑﺪﻻﻟﺔ )‬
‫‪h‬‬

‫( ‪:‬‬

‫‪2‬‬
‫‪⎡ 4h‬‬
‫⎤‬
‫⎞‪h‬‬
‫⎛‬
‫⎥ ‪H ′ = ln ⎢ + 16⎜ ⎟ + 2‬‬
‫⎠‪⎝ w‬‬
‫‪⎢⎣ w‬‬
‫⎦⎥‬

‫)‪(3.18‬‬

‫هﻨﺎك أﻳﻀﺎ ﻣﻌﺎدﻟﻪ ﺑﺪﻳﻠﻪ ﻟﺤﺴﺎب )‪ (εeff‬ﺑﺪﻻﻟﺔ )‪ (Zo‬وهﻰ ‪:‬‬
‫‪2‬‬

‫)‪(3.19‬‬

‫‪0.5‬‬
‫⎪⎫⎞ ‪ε r + 1 ⎧⎪ 29.98 ⎛ 2 ⎞ ⎛ ε r − 1 ⎞⎛ π 1 4‬‬
‫⎜‬
‫⎜ ⎟‬
‫⎬⎟ ‪⎟⎜ ln + ln‬‬
‫=‬
‫‪⎨1 +‬‬
‫⎪⎠⎟ ‪Z o ⎜⎝ ε r + 1 ⎟⎠ ⎜⎝ ε r + 1 ⎟⎠⎜⎝ 2 ε r π‬‬
‫⎪ ‪2‬‬
‫⎭‬
‫⎩‬

‫‪ε eff‬‬

‫أﻣﺎ اﻟﺤﺎﻟﻪ اﻟﺜﺎﻧﻴﻪ ﻓﻬﻰ ﺣﺎﻟﺔ أن ﻳﻜﻮن اﻟﺨﻂ ذو ﺳﻤﻚ آﺒﻴﺮ و ﺗﻜﻮن اﻟﻤﻌﺎوﻗﻪ ﺑﻪ ﻓﻰ اﻟﻤﻌﺪل اﻟﺘﺎﻟﻰ ‪:‬‬

‫‪Zo < ( 44 − 2 εr ) Ω‬‬

‫‪When‬‬

‫‪w‬‬
‫ﺗﻌﻄﻰ ﻧﺴﺒﺔ ﻋﺮض اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﻰ ﺳﻤﻚ ﻃﺒﻘﺔ اﻟﻌﺎزل ﺑﺎﻟﺸﺮﻳﺤﻪ )‬
‫‪h‬‬

‫( ﺑﺎﻟﻤﻌﺎدﻟﻪ ‪:‬‬

‫⎧ ‪ε −1‬‬
‫‪w 2‬‬
‫⎫ ‪0.517‬‬
‫‪= {(d ε − 1) − ln(2d ε − 1)} + r‬‬
‫‪⎨ln(d ε − 1) + 0.293 −‬‬
‫⎬‬
‫‪h π‬‬
‫⎩ ‪ε rπ‬‬
‫⎭ ‪εr‬‬
‫)‪(3.20‬‬
‫ﺣﻴﺚ‬

‫‪59.95π 2‬‬
‫‪Zo ε r‬‬

‫)‪(3.21‬‬

‫=‪d‬‬

‫اذا آﺎن ] ‪ [ w/h > 1.3‬ﻓﺎن اﻟﺴﻤﺎﺣﻴﻪ اﻟﻔﻌﺎﻟﻪ ﻟﻠﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪ (εeff‬ﺗﺤﺴﺐ ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫‪−0.555‬‬

‫)‪(3.22‬‬

‫⎛‪εr +1 εr −1‬‬

‫⎞ ‪10h‬‬
‫‪⎜1 +‬‬
‫⎟‬
‫⎠ ‪w‬‬
‫⎝‬

‫‪66‬‬

‫‪2‬‬

‫‪+‬‬

‫‪2‬‬

‫= ‪ε eff‬‬

‫أو ﺑﺪﻻﻟﺔ )‪ (Zo‬ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫)‪(3.23‬‬

‫‪εr‬‬

‫}‪0.96 + ε r (0.109 − 0.004ε r ){log(10 + Z 0 ) − 1‬‬

‫‪w‬‬
‫أﻣ ﺎ ﺑﺎﻟﻨﺴ ﺒﻪ ﻟﻌﻤﻠ ﻴﺔ اﻟﺘﺤﻠ ﻴﻞ أى ﺣﺴ ﺎب )‪ (Zo‬ﺑﺪﻻﻟ ﺔ )‪ (w‬أو )‬
‫‪h‬‬
‫‪⎡w‬‬
‫⎤‬
‫اﻟﺬى ﺗﻜﻮن ﺑﻪ اﻟﻨﺴﺒﻪ ⎦⎥‪⎢⎣ h < 3.3‬‬

‫( ﻓﻬﻨﺎك ﺣﺎﻟﺘﺎن ‪ ،‬اﻷوﻟﻰ ﻟﻠﺨﻂ ذو اﻟﺴﻤﻚ اﻟﻘﻠﻴﻞ‬

‫و ﻓﻰ هﺬﻩ اﻟﺤﺎﻟﻪ ﻳﺘﻢ ﺣﺴﺎب )‪ (Zo‬ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫‪2‬‬
‫⎤⎞‬
‫‪119.9 ⎡⎢ ⎛⎜ 4h‬‬
‫⎞‪⎛h‬‬
‫‪ln‬‬
‫⎥⎟ ‪+ 16⎜ ⎟ + 2‬‬
‫⎥⎟‬
‫⎜‬
‫‪w‬‬
‫⎢ )‪2(ε r + 1‬‬
‫⎠‪⎝ w‬‬
‫⎦⎠‬
‫⎝ ⎣‬

‫)‪(3.24‬‬

‫= ‪ε eff‬‬

‫⎤‬

‫= ‪Z0‬‬

‫‪⎡w‬‬

‫أﻣﺎ اﻟﺤﺎﻟﻪ اﻟﺜﺎﻧﻴﻪ ﻓﻬﻰ ﺣﺎﻟﺔ أن ﻳﻜﻮن اﻟﺨﻂ ذو ﺳﻤﻚ آﺒﻴﺮ اﻟﺬى ﺗﻜﻮن ﺑﻪ اﻟﻨﺴﺒﻪ ⎥‪ ⎢ > 3.3‬و ﻓﻰ هﺬﻩ اﻟﺤﺎﻟﻪ‬
‫‪⎣h‬‬
‫⎦‬
‫ﻳﺘﻢ ﺣﺴﺎب )‪ (Zo‬ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫‪−1‬‬

‫‪) ⎛⎜ ε‬‬

‫‪− 1 ⎞ ε r + 1 ⎧ eπ‬‬
‫⎤⎫ ⎞‬
‫‪⎛w‬‬
‫⎟‬
‫‪+‬‬
‫‪+‬‬
‫‪+‬‬
‫‪ln‬‬
‫‪ln‬‬
‫‪0‬‬
‫‪.‬‬
‫‪94‬‬
‫⎥⎬ ⎟‬
‫⎜‬
‫⎨‬
‫‪2‬‬
‫‪⎜ ε ⎟ 2ε π‬‬
‫⎦⎭ ⎠‬
‫‪⎝ 2h‬‬
‫‪⎩ 2‬‬
‫‪r‬‬
‫⎠ ‪⎝ r‬‬
‫‪r‬‬

‫(‬

‫‪⎡ w ln 4 ln eπ 2 / 16‬‬
‫‪+‬‬
‫‪⎢ +‬‬
‫‪h‬‬
‫‪π‬‬
‫‪2‬‬
‫‪2π‬‬
‫⎣‬

‫‪119.9π‬‬
‫= ‪Z0‬‬
‫‪2 εr‬‬

‫)‪(3.25‬‬
‫ﺣﻴﺚ )‪. (exponential base e = 2.7182818‬‬
‫اﺳ ﺘﺨﺪام هﺬﻩ اﻟﻤﻌﺎدﻻت أو أى ﻣﻦ اﻟﻤﻌﺎدﻻت اﻟﻤﺜﺒﺘﻪ ﻟﻠﺘﻌﺒﻴﺮ ﻋﻦ اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ )‪ (Zo‬ﻣﺮاﺟﻊ)ﻣﻦ‪ ١‬اﻟﻰ ‪ ٦‬و ‪(٨‬‬
‫ﻳﻌﺘﺒﺮ ﻃﺮﻳﻘﻪ ﺳﺮﻳﻌﻪ ﻟﻠﺤﺼﻮل ﻋﻠﻰ اﻟﻨﺘﺎﺋﺞ ﻓﻰ ﻋﻤﻠﻴﺔ اﻟﺘﺤﻠﻴﻞ ﻟﻜﻦ ﻣﻦ اﻟﻤﻤﻜﻦ اﺳﺘﺨﺪام ﻣﻌﺎدﻻت اﻟﺘﺤﻠﻴﻞ اﻟﻌﺎﻣﻪ ﻓﻰ‬
‫ﺗﺤﺪﻳ ﺪ ﻗ ﻴﻤﺔ اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻤﻴ ﺰﻩ )‪ (Zo‬و ه ﻨﺎك ﻃ ﺮق ﻟﻠﺘﺤﻠ ﻴﻞ ﺗﻌ ﺘﻤﺪ ﻋﻠﻰ اﻟﻄﺮق اﻟﺮﻗﻤﻴﻪ و اﺳﺘﺨﺪام ﺑﺮاﻣﺞ اﻟﺤﺎﺳﺐ‬
‫ﺑﺎﺳ ﺘﺨﺪام اﻟﻤﻌ ﺎدﻻت اﻷﺻ ﻠﻴﻪ ﻟﺤﺴ ﺎب )‪ (Zo‬ﺑﺪﻻﻟ ﺔ ﻗ ﻴﻤﺔ اﻟﻤﻜ ﺜﻒ ﻟﻜ ﻞ وﺣ ﺪة ﻃ ﻮل ﻟﻠﺨ ﻂ اﻟﻤﻤﻠﻮء ﺑﺎﻟﻌﺎزل )‪ (C‬و‬
‫ﻗﻴﻤﺔ اﻟﻤﻜﺜﻒ ﻟﻜﻞ وﺣﺪة ﻃﻮل ﻟﻠﺨﻂ اﻟﻤﻤﻠﻮء ﺑﺎﻟﻬﻮاء )‪ (C1‬ﻜﻤﺎ ﺫﻜﺭ ﻤﻥ ﻗﺒل ﻓﻰ ﺍﻟﻤﻌﺎﺩﻟﻪ )‪.(3.4‬‬

‫‪1‬‬
‫‪c CC1‬‬

‫)‪(3.26‬‬

‫= ‪Z0‬‬

‫و ﻳﺘﻢ ﺣﺴﺎب ﻗﻴﻤﺔ اﻟﻤﻜﺜﻒ ﺑﺪﻻﻟﺔ اﻟﺸﺤﻨﻪ )‪ (Q‬و اﻟﻔﻮﻟﺖ ﻋﻠﻰ اﻟﻤﻜﺜﻒ )‪ (VT‬آﺎﻵﺗﻰ ‪:‬‬

‫‪Cx = Q / VT‬‬

‫)‪(3.27‬‬

‫ﺣﻴﺚ ﺗﻘﻴﻢ اﻟﺸﺤﻨﻪ )‪ (Q‬ﺑﺎﺳﺘﺨﺪام ﻧﻈﺮﻳﺔ ﺟﺎوس )‪ (Gauss‬ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫‪67‬‬

‫‪Q = ∫ D.ds‬‬

‫)‪(3.28‬‬

‫ﺣ ﻴﺚ )‪ (displacement D‬ه ﻰ اﻻزاﺣ ﻪ و )‪ (surface enclosing the strip conductor S‬ه ﻰ ﺳ ﻄﺢ‬
‫ﻣﻮﺻﻞ اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ‪.‬‬
‫أﻣﺎ اﻟﻔﻮﻟﺖ ﻓﻴﻌﺒﺮ ﻋﻨﻪ ﺑﻤﻌﺎدﻟﺔ ﻻﺑﻼس )‪: (Laplace's equation‬‬

‫‪∇2 V = 0‬‬

‫)‪(3.29‬‬

‫ﺣ ﻴﺚ )‪ (v is a point voltage‬ه ﻮ اﻟﻔ ﻮﻟﺖ ﻟﻜ ﻞ ﻧﻘﻄ ﻪ و اﻟ ﺬى ﻳﺤﺴ ﺐ ﺑﺪﻻﻟﺘﻪ ﻗﻴﻤﺔ اﻟﻤﺠﺎل اﻟﻜﻬﺮﺑﻰ )‪ (E‬ﺛﻢ ﻳﺘﻢ‬
‫ﺗﻘﻴﻴﻢ اﻻزاﺣﻪ )‪ (D‬ﻣﻦ ﺧﻼل اﻟﻤﻌﺎدﻟﻪ ‪:‬‬

‫‪D= εE‬‬

‫)‪(3.30‬‬

‫ﺛ ﻢ ﻳ ﺘﻢ اﻟ ﺘﻌﻮﻳﺾ ﺑﻘ ﻴﻤﺔ )‪ (D‬ﻓ ﻰ اﻟﻤﻌﺎدﻟ ﻪ )‪ (3.28‬و ﻋ ﺎدة ﻳ ﺘﻢ ﺣ ﻞ ﺟﻤﻴﻊ هﺬﻩ اﻟﻤﻌﺎدﻻت ﻣﻦ )‪ (3.26‬اﻟﻰ )‪(3.30‬‬
‫ﺑﺎﻟﻄ ﺮق اﻟﺮﻗﻤﻴﻪ ﺑﺎﺳﺘﺨﺪام ﺑﺮاﻣﺞ اﻟﺤﺎﺳﺐ ﻟﺤﺴﺎب )‪ (Zo‬ﺑﺪﻻﻟﺔ ﻗﻴﻢ اﻟﻤﻜﺜﻔﺎت )‪ (C‬و )‪ (C1‬ﺛﻢ ﻳﺘﻢ ﺣﺴﺎب اﻟﺴﻤﺎﺣﻴﻪ‬
‫اﻟﻔﻌﺎﻟﻪ ﻟﻠﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪ (εeff‬ﻣﻦ اﻟﻤﻌﺎدﻟﻪ ‪:‬‬

‫‪C‬‬
‫‪C1‬‬

‫)‪(3.31‬‬

‫= ‪ε eff‬‬

‫و ﺗﺤﻘﻖ هﺬﻩ اﻟﻄﺮﻳﻘﻪ اﻟﻌﺎﻣﻪ دﻗﻪ ﻋﺎﻟﻴﻪ ﻟﻌﻤﻠﻴﺔ اﻟﺘﺤﻠﻴﻞ‪.‬‬
‫ﺟﻤ ﻴﻊ ﻣﻌ ﺎدﻻت اﻟﺘﺼﻤﻴﻢ و اﻟﺘﺤﻠﻴﻞ اﻟﺴﺎﺑﻘﻪ ﺗﻌﺘﻤﺪ ﻋﻠﻰ اهﻤﺎل ﺗﺄﺛﻴﺮ ﺳﻤﻚ ﻃﺒﻘﺔ اﻟﻤﻮﺻﻞ )‪ ، (t‬ﻟﻜﻦ ﻋﻤﻠﻴﺎ ﻓﺎن ﺗﻐﻴﺮ‬
‫ﺳ ﻤﻚ ﻃ ﺒﻘﺔ اﻟﻤﻮﺻ ﻞ ﻳﺆﺛ ﺮ ﻋﻠ ﻰ ﺗﻮزﻳ ﻊ ﺧﻄ ﻮط اﻟﻤﺠﺎل اﻟﻜﻬﺮﺑﻰ ﻟﻠﻤﻮﺟﻪ اﻟﻤﻨﺘﺸﺮﻩ ﺧﻼل اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ و‬
‫ﺑﺎﻟﺘﺎﻟ ﻰ ﻳﺆﺛ ﺮ ﻋﻠ ﻰ ﺧﺼ ﺎﺋﺺ اﻟﺨﻂ ﻣﺜﻞ اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ )‪ (Zo‬و اﻟﺴﻤﺎﺣﻴﻪ اﻟﻔﻌﺎﻟﻪ ﻟﻠﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪(εeff‬‬
‫‪ ،‬و ﻓﻴﻤﺎ ﻳﻠﻰ اﻋﺎدﻩ ﻟﻤﻌﺎدﻻت هﺬﻩ اﻟﺨﺼﺎﺋﺺ ﺑﺪﻻﻟﺔ ﺳﻤﻚ ﻃﺒﻘﺔ اﻟﻤﻮﺻﻞ )‪. (t‬‬
‫‪⎡w‬‬
‫⎤‬
‫ﻓﻰ ﺣﺎﻟﺔ ⎦⎥‪⎢⎣ h ≤ 1‬‬

‫ﻳﺘﻢ ﺣﺴﺎب )‪ (Zo‬ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫⎤⎞ ‪60 ⎡ ⎛ 8 h we‬‬
‫⎥⎟‬
‫‪+‬‬
‫⎜‪⎢ln‬‬
‫⎦⎠⎟ ‪ε eff ⎣ ⎜⎝ we 4 h‬‬

‫)‪(3.32‬‬

‫= ‪Z0‬‬

‫‪⎡w‬‬
‫⎤‬
‫أﻣﺎ ﻓﻰ ﺣﺎﻟﺔ ⎥‪ ⎢ ≥ 1‬ﻳﺘﻢ ﺣﺴﺎب )‪ (Zo‬ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫‪⎣h‬‬
‫⎦‬
‫‪−1‬‬

‫)‪(3.33‬‬

‫‪120 π ⎡ we‬‬
‫‪⎛ we‬‬
‫⎤⎞‬
‫= ‪Z0‬‬
‫⎥⎟ ‪⎢ h + 1.393 + 0.667⎜ h + 1.444‬‬
‫⎣ ‪ε eff‬‬
‫⎝‬
‫⎦⎠‬

‫‪68‬‬

‫‪w‬‬
‫‪⎡w‬‬
‫⎤‬
‫ﺣﻴﺚ هﻨﺎك ﻗﻴﻤﺘﺎن ﻟـ ‪ e‬اﻷوﻟﻰ ﻋﻨﺪ ⎥ ‪: ⎢ ≤ 0.5 π‬‬
‫‪h‬‬
‫‪⎣h‬‬
‫⎦‬

‫⎛ ‪we w 1.25 t‬‬
‫⎞ ‪4π w‬‬
‫‪= +‬‬
‫‪⎜1 + ln‬‬
‫⎟‬
‫⎠ ‪t‬‬
‫‪h h‬‬
‫⎝ ‪πh‬‬

‫)‪(3.34‬‬

‫‪w‬‬
‫‪⎡w‬‬
‫⎤‬
‫و اﻟﻘﻴﻤﻪ اﻟﺜﺎﻧﻴﻪ ﻟـ ‪ e‬ﻋﻨﺪ ⎥ ‪: ⎢ ≥ 0.5 π‬‬
‫‪h‬‬
‫‪⎣h‬‬
‫⎦‬

‫⎛ ‪we w 1.25 t‬‬
‫⎞‪2h‬‬
‫‪= +‬‬
‫‪⎜1 + ln‬‬
‫⎟‬
‫‪h h‬‬
‫⎠ ‪t‬‬
‫⎝ ‪πh‬‬

‫)‪(3.35‬‬

‫أﻣ ﺎ ﻗ ﻴﻤﺔ اﻟﺴ ﻤﺎﺣﻴﻪ اﻟﻔﻌﺎﻟﻪ ﻟﻠﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ ﺑﺎدﺧﺎل ﺗﺄﺛﻴﺮ ﺳﻤﻚ ﻃﺒﻘﺔ اﻟﻤﻮﺻﻞ ) ‪ ε eff (t‬ﻓﻴﻤﻜﻦ اﻟﺘﻌﺒﻴﺮ ﻋﻨﻬﺎ‬
‫ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫)‪(3.36‬‬

‫)‪(ε r − 1 ) (t/h‬‬
‫‪4.6 w/h‬‬

‫‪ε eff (t ) = ε eff − ∆ε eff (t ) = ε eff −‬‬

‫ﺣﻴﺚ )‪ (We = Weff‬و ﻳﻄﻠﻖ ﻋﻠﻰ هﺬﻩ اﻟﻜﻤﻴﻪ اﻟﻌﺮض اﻟﻔﻌﺎل أو )‪. (effective width Weff‬‬
‫‪⎡t‬‬
‫⎤‬
‫و ﻋﻤﻠ ﻴﺎ ﻓﺎﻧ ﻪ اذا آ ﺎن ⎥‪ ⎢ ≤ 0.005‬و ]‪2 ≤ ε ≤ 10‬‬
‫‪⎣h‬‬
‫⎦‬

‫[‬

‫‪⎡w‬‬
‫⎤‬
‫و ⎥‪ ⎢ ≥ 0.1‬ﻓ ﺎن ﺗﺄﺛﻴ ﺮ ﺳ ﻤﻚ ﻃ ﺒﻘﺔ اﻟﻤﻮﺻ ﻞ‬
‫‪⎣h‬‬
‫⎦‬

‫ﻋﻠ ﻰ ﺧﺼ ﺎﺋﺺ اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ ﻳﻤﻜﻦ اهﻤﺎﻟﻪ أﻣﺎ اذا ﻟﻢ ﺗﺘﺤﻘﻖ هﺬﻩ اﻟﺸﺮوط ﻓﻴﺠﺐ ﺣﺴﺎب اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ‬
‫و اﻟﺴ ﻤﺎﺣﻴﻪ اﻟﻔﻌﺎﻟ ﻪ ﻟﻠﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ ﺑﺎﺳ ﺘﺨﺪام اﻟﻤﻌ ﺎدﻻت ﻣ ﻦ )‪ (3.32‬اﻟ ﻰ )‪ (3.36‬و اﻟﺘﻌﻮﻳﺾ ﺑﻬﺬﻩ اﻟﻘﻴﻢ‬
‫ﻟﺤﺴ ﺎب ﺑﺎﻗ ﻰ ﺧﺼ ﺎﺋﺺ اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ‪ .‬و ﻳﻤﻜﻦ اﻟﺮﺟﻮع ﻟﻠﻤﺮاﺟﻊ )‪١‬و‪٥‬و‪٦‬و‪ (٨‬ﻟﻤﺰﻳﺪ ﻣﻦ اﻟﻤﻌﻠﻮﻣﺎت ﻋﻦ‬
‫هﺬا اﻟﻤﻮﺿﻮع‪.‬‬

‫)ﻤﻘﻁﻊ ‪ (٤-٣‬ﺘﺄﺜﻴﺭ ﺍﻟﻐﻼﻑ ﻓﻰ ﺨﺼﺎﺌﺹ ﺍﻟﺨﻁ ﺍﻟﺸﺭﻴﻁﻰ ﺍﻟﺩﻗﻴﻕ ‪:‬‬
‫ﻓ ﻰ ﻣﻌﻈ ﻢ اﻟﺤ ﺎﻻت اﻟﻌﻤﻠ ﻴﻪ ﺗﻜ ﻮ ن اﻟﺪاﺋ ﺮﻩ اﻟﺸ ﺮﻳﻄﻴﻪ داﺧ ﻞ ﻏ ﻼف ﻣﻌﺪﻧ ﻰ )‪ (metallic enclosure‬أو ﻳﺴ ﻤﻰ‬
‫ﻣﺠ ﺎزا ﺑﺎﻟﻌﻠ ﺒﻪ )‪ (package‬وﺗﻜ ﻮن اﻟﺪاﺋ ﺮﻩ ﻣﻠﺤ ﻮم ﺑﻬ ﺎ ﻣﻮﺻ ﻼت ﻣﺤﻮرﻳﻪ ﻣﺘﺼﻠﻪ ﺑﺎﻟﺪاﺋﺮﻩ اﻟﺸﺮﻳﻄﻴﻪ و ﻣﺜﺒﺘﻪ ﻓﻰ‬
‫اﻟﻌﻠﺒﻪ ﻣﻦ اﻟﺨﺎرج آﻤﺎ ﻓﻰ اﻟﺸﻜﻞ )‪.(٩ - ٣‬‬
‫ﻳﻔ ﻴﺪ اﻟﻐ ﻼف اﻟﻤﻌﺪﻧ ﻰ ﻓ ﻰ ﺳ ﻬﻮﻟﺔ اﻟ ﺘﻌﺎﻣﻞ ﻣ ﻊ اﻟﺪاﺋ ﺮﻩ )‪ (ease of handling‬وﺣﻤﺎﻳ ﺘﻬﺎ و ﻳﻮﻓ ﺮ اﻟﻐ ﻼف ﻃ ﺮﻳﻘﺔ‬
‫ﺗﺜﺒ ﻴﺖ ﻣﺘﻴ ﻨﻪ ﺳ ﻮاء ﻟﻠﺪاﺋ ﺮﻩ أو اﻟﻤﻮﺻ ﻼت اﻟﻤﺤ ﻮرﻳﻪ‪ .‬آﻤ ﺎ ﻳﻮﻓ ﺮاﻟﻐﻼف اﻟﻤﻌﺪﻧ ﻰ اﻟﻤﺤﻜ ﻢ اﻟﻘﻔ ﻞ ِوﻗَﺎ َﻳ ﺔ‬
‫آﻬﺮوﻣﻐﻨﺎﻃﻴﺴ ﻴّﺔ )‪ (electromagnetic shielding‬ﻣ ﻦ اﻟﻤ ﻮﺟﺎت اﻟﻤﻨﺘﺸ ﺮﻩ ﻓﻰ اﻟﻬﻮاء أو اﻟﻔﺮاغ ‪ ،‬و ﻟﻜﻦ وﺟﻮد‬

‫‪69‬‬

‫اﻟﻐﻄ ﺎء )ﺳﻘﻒ اﻟﻌﻠﺒﻪ( و اﻟﺤﻮاﺋﻂ اﻟﺠﺎﻧﺒﻴﻪ ﻟﻠﻌﻠﺒﻪ ﻳﺰﻳﺪ ﻣﻦ آﺜﺎﻓﺔ ﺧﻄﻮط اﻟﻤﺠﺎل اﻟﻜﻬﺮﺑﻰ ﻟﻠﻤﻮﺟﻪ اﻟﻤﻨﺘﺸﺮﻩ ﺑﺎﻟﺨﻄﻮط‬
‫اﻟﺸ ﺮﻳﻄﻴﻪ ﻓ ﻰ اﻟﻬ ﻮاء أو اﻟﻔ ﺮاغ اﻟﻤﻮﺟ ﻮد داﺧ ﻞ ﺣﻴ ﺰ اﻟﻌﻠﺒﻪ و ﺑﺎﻟﺘﺎﻟﻰ ﻳﻘﻠﻞ ﻗﻴﻤﺔ آﻞ ﻣﻦ اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ )‪ (Zo‬و‬
‫اﻟﺴﻤﺎﺣﻴﻪ اﻟﻔﻌﺎﻟﻪ )‪ (εeff‬ﻟﻠﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ ﺑﺎﻟﺪاﺋﺮﻩ‪.‬‬

‫ﺷﻜﻞ )‪ : (٩ - ٣‬ﺷﻜﻞ ﻏﻼف ﻣﻌﺪﻧﻰ )‪ (metallic enclosure‬ﻟﺪاﺋﺮﻩ ﺷﺮﻳﻄﻴﻪ ذات ﻣﺨﺮﺟﻴﻦ ﻣﻠﺤﻮم ﺑﻬﺎ‬
‫ﻣﻮﺻﻼت ﻣﺤﻮرﻳﻪ )‪.(SMA coaxial connectors‬‬

‫و ﻳﻮﺿ ﺢ ﺷ ﻜﻞ )‪ (١٠ - ٣‬ﻣﻘﻄ ﻊ ﻋﺮﺿ ﻰ ﻓ ﻰ داﺋ ﺮﻩ ﺷ ﺮﻳﻄﻴﻪ دﻗ ﻴﻘﻪ أو ﺧ ﻂ ﺷ ﺮﻳﻄﻰ دﻗﻴﻖ داﺧﻞ ﻏﻼف ﻣﻌﺪﻧﻰ‬
‫ﻋﺮﺿﻪ )‪ (b‬و ارﺗﻔﺎﻋﻪ )‪. (a‬‬
‫ﻟ ﻮ أﻃﻠﻘ ﻨﺎ ﻋﻠ ﻰ ﻗ ﻴﻤﺔ اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻤﻴ ﺰﻩ ﻟﻠﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ اﻟﻤﺤﺴ ﻮﺑﻪ ﺑﺎﻟﻤﻌ ﺎدﻻت اﻟﻤﻌﻄ ﺎﻩ ﺳ ﺎﺑﻘﺎ ﻣﺼ ﻄﻠﺢ‬
‫اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻤﻴ ﺰﻩ ﻏﻴ ﺮ اﻟﻤﻌ ﺰوﻟﻪ )‪ Zo(unshielded‬ﻧﺴ ﺒﺔ ﻟﻌ ﺪم وﺟ ﻮد ﻏ ﻼف ﻋ ﺎزل ﻟﻠﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ و‬
‫أﻃﻠﻘﻨﺎ ﻋﻠﻰ اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ ﻟﻠﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ اﻟﻤﻮﺟﻮد داﺧﻞ ﻏﻼف ﻋﺎزل ﻣﺼﻄﻠﺢ )‪ Zo (shielded‬ﻓﺎن‬

‫⎤‬

‫‪⎡w‬‬

‫ﻗﻴﻤﺔ اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ اﻟﺠﺪﻳﺪﻩ ﺗﻌﻄﻰ ﺑﺤﺎﻟﺘﻴﻦ ‪ ،‬اﻷوﻟﻰ ﻋﻨﺪﻣﺎ ﻳﻜﻮن ⎥‪: ⎢ ≤ 1.3‬‬
‫‪⎣h‬‬
‫⎦‬
‫)‪(3.37‬‬

‫‪Zo( shielded ) = Zo( unshielded ) - ∆ Zos1‬‬

‫ﺷﻜﻞ )‪ : (١٠ - ٣‬ﻣﻘﻄﻊ ﻋﺮﺿﻰ ﻓﻰ داﺋﺮﻩ ﺷﺮﻳﻄﻴﻪ أو ﺧﻂ ﺷﺮﻳﻄﻰ داﺧﻞ ﻏﻼف ﻣﻌﺪﻧﻰ‪.‬‬

‫‪70‬‬

‫‪⎡w‬‬

‫⎤‬

‫و اﻟﺜﺎﻧﻴﻪ ﻋﻨﺪﻣﺎ ﻳﻜﻮن ⎥‪: ⎢ ≥ 1.3‬‬
‫‪⎣h‬‬
‫⎦‬
‫‪Zo( shielded ) = Zo( unshielded ) - ∆ Zos2‬‬

‫)‪(3.38‬‬
‫ﺣﻴﺚ‬

‫⎤⎟⎞ ‪∆Z 0 S1 = 270⎡1 − tanh⎛⎜ 0.28 + 1.2 h′‬‬
‫⎦⎥⎠ ‪h‬‬
‫⎣⎢‬
‫⎝‬

‫)‪(3.39‬‬

‫)‪(3.40‬‬

‫⎤ ‪0.5‬‬
‫⎡‬
‫⎛‬
‫⎞‬
‫‪w‬‬
‫⎧‬
‫⎫‬
‫⎛‬
‫⎞‬
‫‪e‬‬
‫⎜‬
‫‪−‬‬
‫‪0‬‬
‫‪.‬‬
‫‪48‬‬
‫‪1‬‬
‫⎢‬
‫⎥⎟ ⎬ ⎟ ‪⎨⎜ h‬‬
‫⎥⎟ ⎭ ⎠‬
‫⎜‬
‫⎝⎩‬
‫‪= ∆Z 0 S1 ⎢1 − tanh⎜1 +‬‬
‫‪2‬‬
‫⎥⎟‬
‫⎢‬
‫‪h′‬‬
‫‪+‬‬
‫‪1‬‬
‫⎜⎜‬
‫⎥⎟⎟‬
‫‪h‬‬
‫⎢‬
‫⎝‬
‫⎦⎠‬
‫⎣‬

‫)} { (‬

‫‪∆Z 0 S 2‬‬

‫أﻣﺎ اﻟﻘﻴﻤﻪ اﻟﺠﺪﻳﺪﻩ ﻟﻠﺴﻤﺎﺣﻴﻪ اﻟﻔﻌﺎﻟﻪ ﻟﻠﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ اﻟﻤﻮﺟﻮد داﺧﻞ ﻏﻼف ﻋﺎزل ﻓﺘﻌﻄﻰ ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫⎧‬
‫⎫‬
‫⎪ ‪0.415‬‬
‫⎪‬
‫‪′‬‬
‫‪h‬‬
‫‪R ⎟ tanh ⎨0.18 + 0.237‬‬
‫‪−‬‬
‫⎬ ‪h h′ 2‬‬
‫⎠‬
‫⎪‬
‫⎪‬
‫⎭ ‪h‬‬
‫⎩‬

‫) (‬

‫) (‬

‫⎞ ‪ε r +1 ⎛ ε r −1‬‬
‫⎜‪+‬‬
‫‪⎝ 2‬‬

‫‪2‬‬

‫‪shielded ε eff = ε eff +‬‬

‫)‪(3.41‬‬

‫‪h′ = a − h‬‬

‫ﺣﻴﺚ‬

‫‪for w/h ≤ 1‬‬
‫‪for w/h ≥ 1‬‬

‫‪⎧ {1 + 12(h/w)}−0.5 + 0.04{1 − ( w / h)}2‬‬
‫⎨=‪R‬‬
‫‪− 0 .5‬‬
‫})‪⎩{1 + 12(h/w‬‬

‫ﻳﺠ ﺐ أن ﻧﺘﺬآ ﺮ أن اﻟﺪاﺋ ﺮﻩ اﻟﺸ ﺮﻳﻄﻴﻪ داﺧ ﻞ اﻟﻐ ﻼف اﻟﻤﻌﺪﻧ ﻰ ﺗﻌﺪ آﺄﻧﻬﺎ ﻣﻮﺿﻮﻋﻪ ﻓﻰ ﺧﻂ ارﺳﺎل ﻣﻦ ﻧﻮع ﻣﺮﺷﺪ‬
‫ﻣ ﻮﺟﻪ )‪ (waveguide‬أﺑﻌ ﺎدﻩ )‪ (a x b‬و ﻟ ﺬﻟﻚ ﻳﺠ ﺐ أن ﻧﺠﻌ ﻞ اﺧﺘ ﻴﺎر أﺑﻌ ﺎد اﻟﻐ ﻼف اﻟﻤﻌﺪﻧ ﻰ ﻻ ﻳﺜﻴ ﺮ ﺗ ﺮﺗﻴﺒﺎت‬
‫ﻣﻌﻴ ﻨﻪ ﻣ ﻦ اﻟﻤﺠﺎل اﻟﻜﻬﺮﺑﻰ و اﻟﻤﻐﻨﺎﻃﻴﺴﻰ )‪ ، (waveguide modes‬و اﻻ ﺳﻨﺤﺼﻞ ﻋﻠﻰ أداء ﻧﻬﺎﺋﻰ ﻟﻠﺪاﺋﺮﻩ ﺑﻌﻴﺪ‬
‫ﺗﻤﺎﻣﺎ ﻋﻦ اﻟﻤﻄﻠﻮب و ﻏﻴﺮ ﻣﺘﻮﻗﻊ ‪.‬‬
‫ﻳﺘﻌ ﻴﻦ ﻋﻠ ﻰ اﻟﻤﺼ ﻤﻢ اﺧﺘ ﻴﺎر ﺑﻌ ﺪ اﻟﺤ ﻮاﺋﻂ اﻟﺠﺎﻧﺒ ﻴﻪ ﻟﻠﻐ ﻼف اﻟﻤﻌﺪﻧ ﻰ ﻋ ﻦ اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ ﺑﺎﻟﺪاﺋﺮﻩ ﺑﺤﻴﺚ ﻳﻜﻮن‬
‫أآﺒ ﺮ ﻣ ﻦ ﺛﻼﺛ ﺔ أو ﺧﻤﺴ ﺔ أﺿ ﻌﺎف ﻋﺮض اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ اﻟﻘﺮﻳﺐ ﻣﻦ اﻟﺤﺎﺋﻂ و ذﻟﻚ ﻟﻠﺘﻘﻠﻴﻞ ﻣﻦ اﻟﺘﺄﺛﻴﺮات‬
‫اﻟﻄﻔﻴﻠﻴﻪ )‪ (parasitic effects‬ﻋﻠﻰ أداء اﻟﺪاﺋﺮﻩ اﻟﺸﺮﻳﻄﻴﻪ‪.‬‬

‫‪71‬‬

‫و ﻳﻤﻜ ﻦ ﻟﻠﻤﺼ ﻤﻢ أن ﻳﺨ ﺘﺎر ارﺗﻔ ﺎع ﺳ ﻘﻒ أو ﻏﻄ ﺎء اﻟﻐ ﻼف اﻟﻤﻌﺪﻧ ﻰ ﻋ ﻦ اﻟﺪاﺋ ﺮﻩ اﻟﺸ ﺮﻳﻄﻴﻪ أآﺒ ﺮ ﻣﻦ ‪ ١٢‬أو ‪١٥‬‬
‫ﺿ ﻌﻒ ﺳ ﻤﻚ ﻃ ﺒﻘﺔ اﻟﻌ ﺎزل أى‬

‫‪h′ ≥ 12 h‬‬

‫أو‬

‫‪h′ ≥ 15 h‬‬

‫ﻻهﻤ ﺎل ﺗﺄﺛﻴ ﺮ اﻟﻐ ﻼف اﻟﻤﻌﺪﻧﻰ ﻓﻰ ﺣﺎﻟﺔ أن‬

‫ﺗﻜﻮن اﻟﻌﻠﺒﻪ ﻣﺼﻨﻮﻋﻪ ﻣﻦ ﻣﻮاد ﻣﻮﺻﻠﻪ ﻓﻘﻂ و ﻟﻴﺴﺖ ﻣﺒﻄﻨﻪ ﺑﻤﻮاد ﻣﺎﺻﻪ )‪ ، (absorbing materials‬ﻟﻜﻦ ﺑﻌﺾ‬
‫اﻟﻤ ﺮاﺟﻊ اﻟﺤﺪﻳ ﺜﻪ ذآ ﺮت أﻧ ﻪ ﻟﺠﻌ ﻞ ﺗﺄﺛﻴﺮ اﻟﻐﻼف اﻟﻤﻌﺪﻧﻰ ﻋﻠﻰ أداء اﻟﺪاﺋﺮﻩ اﻟﺸﺮﻳﻄﻴﻪ ﺷﺒﻪ ﻣﻌﺪوم ﻳﻜﻔﻰ أن ﻳﻜﻮن‬

‫‪h′ ≥ 5 h‬‬

‫‪.‬‬

‫و اﺧﺘ ﺒﺎر ﻧﺠ ﺎح اﺧﺘ ﻴﺎرات اﻟﻤﺼ ﻤﻢ ﻟ ﺒﻌﺪ اﻟﺤ ﻮاﺋﻂ ﻋ ﻦ اﻟﺪاﺋ ﺮﻩ و ارﺗﻔ ﺎع اﻟﻐﻄ ﺎء ﺳ ﻮاء آﺎﻧ ﺖ اﻟﺤ ﻮاﺋﻂ و اﻟﻐﻄ ﺎء‬
‫ﻣﺼ ﻨﻮﻋﻪ ﻣ ﻦ ﻣ ﻮاد ﻣﻌﺪﻧ ﻴﻪ )و ه ﻰ اﻟﺤﺎﻟ ﻪ اﻟﺸ ﺎﺋﻌﻪ( أو ﻣﺒﻄ ﻨﻪ ﺑﻤ ﻮاد ﻣﺎﺻ ﻪ )‪ (absorbing materials‬ﻳﻜ ﻮن‬
‫ﺑﺎﺳ ﺘﺨﺪام ﺑ ﺮاﻣﺞ ﺗﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ اﻟﺘ ﻰ ﺗﺴ ﺘﺨﺪم ﻃ ﺮق ﺗﺤﻠ ﻴﻞ آﻬﺮوﻣﻐﻨﺎﻃﻴﺴ ﻴﻪ أﻣ ﺎ اذا ﺗﻌﺬر هﺬا اﻻﺧﺘﺒﺎر ﺳﻮاء ﻟﻌﺪم‬
‫ﺗﻮﻓ ﺮ ه ﺬﻩ اﻟﺒ ﺮاﻣﺞ أو وﺟ ﻮد ﻣﻜ ﻮﻧﺎت ﺑﺎﻟﺪاﺋ ﺮﻩ ﻳﺼ ﻌﺐ ﺗﺤﻠ ﻴﻠﻬﺎ ﺑﻬ ﺬﻩ اﻟﻄ ﺮﻳﻘﻪ أو ﺑﻄ ﺊ اﻟﺒ ﺮاﻣﺞ اﻟﺸ ﺪﻳﺪ ﻓﻰ ﺣﺎﻻت‬
‫ﻣﻌﻴ ﻨﻪ ﻓﻤ ﻦ اﻟﺴ ﻬﻞ ﺑﻌﺪ ﺗﺼﻨﻴﻊ اﻟﺪاﺋﺮﻩ ﺗﺠﺮﺑﺘﻬﺎ داﻏﻞ أﻏﻠﻔﻪ ذات أﺑﻌﺎد و ارﺗﻔﺎﻋﺎت ﻣﺨﺘﻠﻔﻪ و اﺳﺘﺨﺪام أﺟﻬﺰة اﻟﻘﻴﺎس‬
‫ﻟﻠﺘﺄآﺪ ﻣﻦ أن اﻟﺪاﺋﺮﻩ ﺗﻌﻄﻰ اﻷداء اﻟﻤﻄﻠﻮب داﺧﻞ اﻟﻐﻼف اﻟﺬى ﺳﺘﻮﺿﻊ ﻓﻴﻪ ﻟﻼﺳﺘﺨﺪام ‪.‬‬
‫و ه ﻨﺎك ﺑ ﺮاﻣﺞ ﺗﺤﻠ ﻴﻞ ﺣﺪﻳ ﺜﻪ ﺗ ﺒﺎع ﺗﺠﺎرﻳ ﺎ ﺳ ﻴﺄﺗﻰ اﻟﺤ ﺪﻳﺚ ﻋ ﻨﻬﺎ ﺑﺎﻟﺘﻔﺼ ﻴﻞ ﺑﻬ ﺎ ﻧﻤﺎذج )‪(closed form models‬‬
‫ﺣﺪﻳ ﺜﻪ ﻟﻠﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ اﻟﻤﻐﻄ ﻰ ﺑﺴ ﻘﻒ ﻣﻌﺪﻧ ﻰ و ﻋ ﺪد آﺒﻴﺮ ﻣﻦ ﻣﻜﻮﻧﺎت اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ ‪ ،‬ﺗﺴﺘﺨﺪم هﺬﻩ‬
‫اﻟﺒ ﺮاﻣﺞ ﻓ ﻰ ﺗﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ اﻟﺸ ﺮﻳﻄﻴﻪ ﺑﺎﺳ ﺘﺨﺪام ﻃ ﺮق أﺧ ﺮى أﺳ ﺮع ﺑﻜﺜﻴﺮ ﻣﻦ ﻃﺮق اﻟﺘﺤﻠﻴﻞ اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴﻴﻪ و‬
‫ﻳﻤﻜﻦ أن ﺗﺴﺘﺨﺪم ﻓﻰ ﺣﺴﺎب أداء اﻟﺪاﺋﺮﻩ ﻣﻊ ادﺧﺎل ﺗﺄﺛﻴﺮ اﻟﻐﻼف ‪.‬‬

‫)ﻤﻘﻁﻊ ‪ (٥-٣‬ﺘﺄﺜﻴﺭ ﺍﻟﺘﺭﺩﺩ ﻓﻰ ﺨﺼﺎﺌﺹ ﺍﻟﺨﻁ ﺍﻟﺸﺭﻴﻁﻰ ﺍﻟﺩﻗﻴﻕ ‪:‬‬
‫ﻓ ﻰ ﺟﻤ ﻴﻊ اﻟﻤﻌ ﺎدﻻت اﻟﺴﺎﺑﻘﻪ اﻋﺘﺒﺮت ﺳﺮﻋﺔ اﻟﻄﻮر ﻟﻠﻤﻮﺟﻪ اﻟﻤﻨﺘﺸﺮﻩ ﻓﻰ اﻟﺨﻂ )‪ (phase velocity vp‬ﺛﺎﺑﺘﻪ ﻟﻜﻦ‬
‫ﻓ ﻰ اﻟﺤﻘ ﻴﻘﻪ ﻓ ﺎن )‪ (vp‬ﺗﺘﻐﻴ ﺮ ﻣ ﻊ اﻟﺘ ﺮدد و ﻳﻤﻜ ﻦ اﻟﺘﻌﺒﻴﺮ ﻋﻨﻬﺎ آﺪاﻟﻪ ﻓﻰ اﻟﺘﺮدد و ﺑﺎﻟﺘﺎﻟﻰ ﻳﻤﻜﻦ اﻋﺎدة آﺘﺎﺑﺔ اﻟﻤﻌﺎدﻟﻪ‬
‫)‪ (3.7‬آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫‪2‬‬

‫)‪(3.42‬‬

‫⎞ ‪⎛ c‬‬
‫⎟‬
‫⎜⎜ = )‪ε eff (f‬‬
‫⎟‬
‫‪v‬‬
‫‪f‬‬
‫(‬
‫)‬
‫‪⎝ p‬‬
‫⎠‬

‫ﺣ ﻴﺚ ) ‪ v p ( f‬ه ﻰ ﺳ ﺮﻋﺔ اﻟﻄ ﻮر آﺪاﻟ ﻪ ﻓ ﻰ اﻟﺘ ﺮدد و )‪ε eff (f‬‬

‫ه ﻰ اﻟﻘ ﻴﻤﻪ اﻟﻔﻌﻠ ﻴﻪ ﻟﻠﺴ ﻤﺎﺣﻴﻪ اﻟﻔﻌﺎﻟ ﻪ ﻟﻠﺨ ﻂ‬

‫اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ آﺪاﻟ ﻪ ﻓ ﻰ اﻟﺘﺮدد و هﻰ ﺗﺆول اﻟﻰ ﻧﻔﺲ ﻗﻴﻤﺔ )‪ (εeff‬ﻓﻰ اﻟﻤﻌﺎدﻻت اﻟﻤﺬآﻮرﻩ ﺳﺎﺑﻘﺎ ﻋﻨﺪ اﻟﺘﺮددات‬
‫اﻟﻤﻨﺨﻔﻀﻪ ﺑﻴﻨﻤﺎ ﺗﺆول اﻟﻰ ﻗﻴﻤﺔ )‪ (εr‬ﻋﻨﺪ اﻟﺘﺮددات اﻟﻌﺎﻟﻴﻪ ‪.‬‬
‫و ﻳﻤﻜ ﻦ اﻋ ﺎدة آ ﺘﺎﺑﺔ ﺟﻤﻴﻊ اﻟﻤﻌﺎدﻻت اﻟﺴﺎﺑﻘﻪ اﻟﺘﻰ ﺗﻌﺘﻤﺪ ﻋﻠﻰ اﻟﺴﻤﺎﺣﻴﻪ اﻟﻔﻌﺎﻟﻪ ﻟﻠﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ ﺑﺪﻻﻟﺔ اﻟﻘﻴﻤﻪ‬

‫اﻟﻔﻌﻠ ﻴﻪ )‪ε eff (f‬‬

‫ﺟﻪ ﺑﺼ ﻮرﻩ‬
‫ﻓﻤ ﺜﻼ ﻳﻤﻜ ﻦ اﻟﺘﻌﺒﻴ ﺮ ﻋ ﻦ )‪ (guided wavelength λg‬أو ﻃ ﻮل اﻟﻤ ﻮﺟﻪ اﻟﻤ ﻮ ّ‬

‫أدق ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫‪72‬‬

‫‪c‬‬

‫)‪(3.43‬‬

‫) ‪f ε eff ( f‬‬

‫ه ﻨﺎك ﻋ ﺪد آﺒﻴ ﺮ ﻣ ﻦ اﻟﻤﺮاﺟﻊ ﻟﻤﻌﺎدﻻت )‪ε eff (f‬‬
‫‪w‬‬
‫ﻣﻌ ﺪل )‪ (εr‬و )‬
‫‪h‬‬

‫)‪ε eff (f‬‬

‫= ‪λg‬‬

‫و اﺛﺒﺎﺗﻬﺎ ‪ ،‬ﺗﺨﺘﻠﻒ ﻓﻰ ﻃﺮﻳﻘﺔ اﻻﺛﺒﺎت و اﻟﺘﻘﺮﻳﺒﺎت اﻟﺮﻳﺎﺿﻴﻪ و‬

‫( و ﻣﻌ ﺪل اﻟﺘ ﺮدد اﻟ ﺬى ﺗﻜ ﻮن دﻗ ﻴﻘﻪ ﻓ ﻴﻪ و ﻓ ﻴﻤﺎ ﻳﻠ ﻰ ﻣ ﺜﺎل ﻻﺣ ﺪ اﻟﻤﻌ ﺎدﻻت اﻟﺪﻗ ﻴﻘﻪ ﻟﻠﺘﻌﺒﻴﺮ ﻋﻦ‬

‫‪:‬‬

‫‪ε r − ε eff‬‬

‫)‪(3.44‬‬

‫‪m‬‬

‫⎞ ‪⎛ F‬‬
‫⎟⎟ ⎜⎜ ‪1 +‬‬
‫⎠ ‪⎝ fa‬‬

‫‪ε eff ( f ) = ε r‬‬

‫‪−‬‬

‫ﺣﻴﺚ‬

‫‪w‬‬
‫‪h‬‬

‫‪fb‬‬
‫) ‪0.75 + ( 0.75 − 0.332 ε r-1.73‬‬

‫⎤ ‪ε eff − 1‬‬
‫⎥‬
‫⎦ ‪ε r − ε eff‬‬

‫⎡‬
‫‪tan -1 ⎢ ε r‬‬
‫⎣‬

‫‪when m o m c ≤ 2.32‬‬
‫‪when m o m c > 2.32‬‬
‫‪−3‬‬

‫‪w‬‬
‫‪≤ 0.7‬‬
‫‪h‬‬
‫‪w‬‬
‫‪> 0.7‬‬
‫‪h‬‬

‫⎞‬
‫⎟⎟‬
‫⎠‬

‫‪w‬‬
‫‪h‬‬

‫‪when‬‬
‫‪when‬‬

‫= ‪fa‬‬

‫‪c‬‬
‫‪2πh ε r − ε eff‬‬

‫= ‪fb‬‬

‫‪⎧m m‬‬
‫‪m=⎨ o c‬‬
‫‪⎩ 2.32‬‬

‫⎛‬
‫‪1‬‬
‫‪mo = 1 +‬‬
‫‪+ 0.32 ⎜⎜1 +‬‬
‫‪1 + w/h‬‬
‫⎝‬

‫)‬

‫(‬

‫‪1.4‬‬
‫⎧‬
‫) ‪- 0.45 (F/f a‬‬
‫‪+‬‬
‫‪1‬‬
‫‪⎪ 1 + (w/h ) 0.15 − 0.235 e‬‬
‫⎨ = ‪mc‬‬
‫‪⎪ 1‬‬
‫⎩‬

‫ﺣ ﻴﺚ )‪ (F‬ﻓ ﻰ ه ﺬﻩ اﻟﻤﻌﺎدﻟ ﻪ ه ﻮ اﻟﺘ ﺮدد ﺑﺎﻟﺠﻴﺠﺎهﺮﺗ ﺰ )‪ (GHz‬و ﻳﻤﻜ ﻦ اﻟ ﺮﺟﻮع ﻟﻠﻤ ﺮاﺟﻊ )‪١‬و‪٥‬و‪٦‬و‪ (٨‬ﻟﻤ ﺮاﺟﻌﺔ‬
‫اﻟﻌﺪﻳﺪ ﻣﻦ اﻟﻤﻌﺎدﻻت و اﻻﺛﺒﺎﺗﺎت اﻟﺨﺎﺻﻪ ﺑـ )‪. ε eff (f‬‬

‫‪73‬‬

‫)ﻤﻘﻁﻊ ‪ (٦-٣‬ﺤﺴﺎﺒﺎﺕ ﻓﻘﺩ ﺍﻟﻘﺩﺭﻩ ﻓﻰ ﺍﻟﺨﻁ ﺍﻟﺸﺭﻴﻁﻰ ﺍﻟﺩﻗﻴﻕ ‪:‬‬
‫ه ﻨﺎك أرﺑﻌ ﺔ ﻣﺴ ﺒﺒﺎت ﻟﻠﻔﻘ ﺪ ﻓ ﻰ اﻟﻘ ﺪرﻩ )‪ (power losses‬و اﻟﺘﺄﺛﻴ ﺮات اﻟﻄﻔﻴﻠ ﻴﻪ )‪ (parasitic effects‬ﻓ ﻰ اﻟﺨ ﻂ‬
‫اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ ؛ أوﻻ اﻟﻔﻘ ﺪ ﻓﻰ اﻟﻤﻮﺻﻞ و ﺛﺎﻧﻴﺎ اﻟﻔﻘﺪ أو اهﺪار اﻟﻘﺪرﻩ )‪ (dissipation‬ﻓﻰ اﻟﻌﺎزل و ﺛﺎﻟﺜﺎ اﻟﻘﺪرﻩ‬
‫اﻟﻤﻬ ﺪرﻩ ﺑﺎﻻﺷ ﻌﺎع )‪ (radiation losses‬ﻧﺘ ﻴﺠﺔ اﻟﺘﺸ ﺘﻴﺖ أو اﻟﺘﺴ ﺮب ﻓ ﻰ اﻟﻬ ﻮاء و راﺑﻌ ﺎ اﻧﺘﺸ ﺎر اﻟﻤ ﻮﺟﻪ ﻋﺒ ﺮ‬
‫اﻟﺴﻄﺢ ‪.‬‬
‫و اﻟﻤﺴ ﺒﺒﻴﻦ اﻷﺧﻴﺮﻳﻦ ﻳﻄﻠﻖ ﻋﻠﻴﻬﻤﺎ )‪ (parasitic phenomena‬أﻣﺎ اﻟﻤﺴﺒﺒﻴﻦ اﻷول و اﻟﺜﺎﻧﻰ ﻓﻴﻤﺜﻼن ﻋﻮاﻣﻞ اﻟﻔﻘﺪ‬
‫)‪ (dissipative effects‬و ﻳ ﺘﻢ ﺟﻤ ﻊ اﻟﻔﻘ ﺪ ﻓ ﻰ اﻟﻤﻮﺻﻞ )‪ (αc‬و اﻟﻔﻘﺪ ﻓﻰ اﻟﻌﺎزل )‪ (αd‬ﻟﻴﻌﻄﻰ ﻣﺠﻤﻮﻋﻬﻤﺎ ﻗﻴﻤﺔ‬
‫ﻣﻌﺎﻣﻞ اﻟﻔﻘﺪ ﻓﻰ اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪. (attenuation coefficient α‬‬
‫و ﻳﻌﻄﻰ ﻣﻌﺎﻣﻞ اﻟﻔﻘﺪ ﻓﻰ اﻟﻤﻮﺻﻞ ﻟﻠﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪ (αc‬ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫⎞ ⎪⎫ ‪⎧ ⎛ ∆ ⎞ 2‬‬
‫⎜⎛ ⎞‬
‫⎛‬
‫‪F‬‬
‫‪2‬‬
‫⎪ ‪−1‬‬
‫‪α c = ⎜⎜ 0.072‬‬
‫‪λg ⎟⎟ 1 + tan ⎨1.4 ⎜⎜ ⎟⎟ ⎬ ⎟ dB/microstrip wavelength‬‬
‫‪w Zo ⎠ ⎜ π‬‬
‫⎠⎟ ⎭⎪ ⎠ ‪⎪⎩ ⎝ δ s‬‬
‫⎝‬
‫⎝‬
‫)‪(3.45‬‬
‫ﺣ ﻴﺚ )‪ (F‬ﻓﻰ هﺬﻩ اﻟﻤﻌﺎدﻟﻪ هﻮ اﻟﺘﺮدد ﺑﺎﻟﺠﻴﺠﺎهﺮﺗﺰ )‪ (GHz‬و ‪ (r.m.s. surface roughness ∆) ،‬هﻮ ﺧﺸﺎﻧﺔ‬
‫ﺳ ﻄﺢ اﻟﻤﻮﺻ ﻞ ‪ ،‬و )‪ (surface resistance Rs‬ه ﻰ ﻣﻘﺎوﻣ ﺔ اﻟﺴ ﻄﺢ ﺑﺎﻷوم ‪ ،‬و ﻣﻌﺎﻣﻞ ﺗﻮﺻﻴﻞ ﻃﺒﻘﺔ اﻟﻤﻮﺻﻞ‬
‫ه ﻮ )‪ ، (metal film conductivity σ‬أﻣ ﺎ )‪(the skin depth at the operating frequency δs‬‬
‫ﻓﺘﻌﻄﻰ ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫)‪δs= 1/( Rs σ‬‬
‫و ﻳﻌﻄﻰ ﻣﻌﺎﻣﻞ اﻟﻔﻘﺪ ﻓﻰ اﻟﻌﺎزل ﻟﻠﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪ (αd‬ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫)‪(3.46‬‬

‫‪dB/microstrip wavelength‬‬

‫‪74‬‬

‫‪ε r (ε eff − 1) tan δ‬‬
‫)‪ε eff (ε r − 1‬‬

‫‪α d = 27.3‬‬

‫ﻣﻌﺎﻣ ﻞ اﻟﻔﻘ ﺪ ﻓ ﻰ اﻟﻌ ﺎزل ﻟﻠﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ )‪ (αd‬أﻗ ﻞ ﺑﻜﺜﻴ ﺮ ﻣ ﻦ ﻣﻌﺎﻣ ﻞ اﻟﻔﻘ ﺪ ﻓ ﻰ اﻟﻤﻮﺻﻞ )‪ (αc‬ﻟﻠﻌﺪﻳﺪ ﻣﻦ‬
‫أﻧ ﻮاع اﻟﺸ ﺮاﺋﺢ ﻣ ﺜﻞ ﺷ ﺮاﺋﺢ اﻷﻟﻮﻣﻴ ﻨﺎ و اﻟﺴﻔﻴﺮ ﺑﻴﻨﻤﺎ ﻳﺤﺪث اﻟﻌﻜﺲ و ﻳﻜﻮن ﻣﻌﺎﻣﻞ اﻟﻔﻘﺪ ﻓﻰ اﻟﻌﺎزل )‪ (αd‬أآﺒﺮ ﻣﻦ‬
‫ﻣﻌﺎﻣ ﻞ اﻟﻔﻘ ﺪ ﻓ ﻰ اﻟﻤﻮﺻ ﻞ )‪ (αc‬ﻓ ﻰ ﺷ ﺮاﺋﺢ اﻟﺴ ﻴﻠﻴﻜﻮن و أرﺳ ﻴﻨﺎد اﻟﺠﺎﻟ ﻴﻮم و اﻟﺸ ﺮاﺋﺢ اﻟﺒﻼﺳ ﺘﻴﻜﻴﻪ ﻣ ﺜﻞ ﺷ ﺮاﺋﺢ‬
‫اﻟﺘﻴﻔﻠﻮن ‪ .‬و ﻳﻤﻜﻦ اﻟﺮﺟﻮع ﻟﻠﻤﺮاﺟﻊ )‪١‬و‪٥‬و‪٦‬و‪ (٨‬ﻟﻤﺮاﺟﻌﺔ اﻟﻤﻌﺎدﻻت و اﻻﺛﺒﺎﺗﺎت و ﻗﻴﻢ اﻟﻔﻘﺪ ﻟﻤﺨﺘﻠﻒ اﻷﻣﺜﻠﻪ ‪.‬‬

‫)ﻤﻘﻁﻊ ‪ (٧-٣‬ﺒﺭﺍﻤﺞ ﺍﻟﺘﺼﻤﻴﻡ ﻭ ﺍﻟﺘﺤﻠﻴل ﻟﻠﺨﻁ ﺍﻟﺸﺭﻴﻁﻰ ﺍﻟﺩﻗﻴﻕ ‪:‬‬
‫ﺗ ﺘﻌﺪد ﺑ ﺮاﻣﺞ اﻟﺘﺼ ﻤﻴﻢ و اﻟﺘﺤﻠﻴﻞ ﻟﻠﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ و ﻏﻴﺮﻩ ﻣﻦ أﻧﻮاع ﺗﻜﻨﻮﻟﻮﺟﻴﺎت ﺧﻄﻮط اﻻرﺳﺎل ‪ .‬ﻓﻤﻨﻬﺎ ﻣﺎ‬
‫ﻳ ﺒﺎع ﺗﺠﺎرﻳ ﺎ و ﻣ ﻨﻬﺎ ﻣ ﺎ ه ﻮ ﻣﺠﺎﻧ ﻰ و ﻣﺘﻮﻓ ﺮ ﻟﻠﺘﺤﻤ ﻴﻞ ﻣ ﻦ اﻻﻧﺘ ﺮﻧﺖ ﺑ ﺪون ﻣﻘﺎﺑ ﻞ و ﻣﻨﻬﺎ ﻣﺎ ﻳﻮﺟﺪ ﻓﻰ ﺑﻌﺾ اﻟﻜﺘﺐ‬
‫ﻣﻜ ﺘﻮﺑﺎ )‪ (source code‬ﺑﻠﻐ ﺔ ﺑ ﺮﻣﺠﻪ ﻣﻌﻴ ﻨﻪ )ﻣ ﺜﻞ اﻟﻤ ﺮﺟﻊ رﻗ ﻢ ‪ (١١‬و اﻟﺬى ﻳﺤﺘﻮى ﻋﻠﻰ ﺑﺮاﻣﺞ ﻟﻬﺬﻩ اﻟﺤﺴﺎﺑﺎت‬
‫ﺑﻠﻐ ﺔ )‪ (BASIC‬و ه ﻨﺎك ﻣﻮاﻗ ﻊ ﻋﻠ ﻰ اﻻﻧﺘ ﺮﻧﺖ ﺗﻘ ﻮم ﺑﻬ ﺬا اﻟﻌﻤ ﻞ ﻣ ﺜﻞ ﻣﻮﻗ ﻊ )ﻣﺮﺟﻊ اﻻﻧﺘﺮﻧﺖ ‪ (i6‬آﻤﺎ أن ﺑﺮاﻣﺞ‬
‫ﺗﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ و اﻟ ﻨﻈﻢ اﻟﻤ ﺒﺎﻋﻪ ﺗﺠﺎرﻳ ﺎ ﺗﺤ ﺘﻮى ﻓ ﻰ ﻣﻌﻈ ﻢ اﻻﺣ ﻴﺎن ﻋﻠ ﻰ )اﺧﺘﻴﺎر( أو اﻣﻜﺎﻧﻴﻪ ﺗﺴﻤﺢ ﺑﻌﻤﻞ ﺣﺴﺎﺑﺎت‬
‫اﻟﺘﺼﻤﻴﻢ و اﻟﺘﺤﻠﻴﻞ ﻟﻠﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ ‪.‬‬
‫ﺑﻌ ﺾ اﻟﺸ ﺮآﺎت اﻟﻤﻨ ﺘﺠﻪ ﻟﺒ ﺮاﻣﺞ ﺗﺤﻠ ﻴﻞ اﻟﺪواﺋﺮ و اﻟﻨﻈﻢ ﺗﻮزع ﻧﺴﺨﻪ ﻣﺠﺎﻧﻴﻪ أو ﺗﻌﻠﻴﻤﻴﻪ ﻟﻬﺬﻩ اﻟﺒﺮاﻣﺞ و ﻳﻜﻮن ﻣﻦ‬
‫ﺿ ﻤﻦ اﻣﻜﺎﻧ ﻴﺎت ه ﺬﻩ اﻟﻨﺴ ﺨﻪ اﻟﻤﺠﺎﻧ ﻴﻪ أداﻩ أو اﺧﺘ ﻴﺎر ﻳﺴ ﻤﺢ ﺑﻌﻤ ﻞ ﺣﺴ ﺎﺑﺎت اﻟﺘﺼ ﻤﻴﻢ و اﻟﺘﺤﻠ ﻴﻞ ﻟﻠﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ‬
‫اﻟﺪﻗ ﻴﻖ و ﻏﻴﺮ ذﻟﻚ ﻣﻦ أﻧﻮاع اﻟﺤﺴﺎﺑﺎت و ﻣﻦ أﻣﺜﻠﺔ هﺬﻩ اﻟﺒﺮاﻣﺞ )‪ (APLAC SV, Ansoft Designer SV‬و‬
‫ه ﻰ ﺑ ﺮاﻣﺞ ﺗﻮزﻋﻬﺎ ﺷﺮآﺘﻰ )‪ (APLAC, Ansoft‬ﻣﺠﺎﻧﺎ ﺑﻐﺮض اﻟﺪﻋﺎﻳﻪ ﻋﻠﻰ اﻋﺘﺒﺎر أﻧﻬﺎ ﻧﺴﺨﺔ ﻟﻠﻄﻠﺒﻪ ﻣﺨﻔﻀﺔ‬
‫اﻟﺨﻴﺎرات ﻟﺘﺤﻠﻴﻞ اﻟﺪواﺋﺮ و اﻟﻨﻈﻢ ‪ .‬راﺟﻊ ﻣﺮاﺟﻊ اﻻﻧﺘﺮﻧﺖ )‪.(i2, i3‬‬
‫ﻋ ﻨﺪ اﺳ ﺘﺨﺪام أى ﻣ ﻦ اﻟﺒ ﺮاﻣﺞ ﺳ ﻮاء اﻟﺘ ﻰ ﺗ ﺒﺎع ﺗﺠﺎرﻳ ﺎ أو اﻟﺘ ﻰ ﺗ ﻮزع ﻣﺠﺎﻧ ﺎ أو اﻟﻤﻌﻄ ﺎﻩ داﺧ ﻞ ﻣ ﺮاﺟﻊ ﻓﺎﻧ ﻪ ﻳﺠ ﺐ‬
‫اﻻﻧﺘ ﺒﺎﻩ اﻟ ﻰ أن اﺳ ﺘﺨﺪام اﻟﻤﻌ ﺎدﻻت اﻟﻤﺨ ﺘﻠﻔﻪ ﻓ ﻰ اﻟﺘﺼ ﻤﻴﻢ و اﻟﺘﺤﻠ ﻴﻞ ﻟﻠﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ و اﺟ ﺮاء اﻟﻌﻤﻠ ﻴﺎت‬
‫اﻟ ﺮﻗﻤﻴﻪ اﻟﺘ ﻰ ﻳ ﺘﺨﻠﻠﻬﺎ أﺧﻄ ﺎء ﺗﻘ ﺮﻳﺐ )‪ (truncation or round errors‬ﻗ ﺪ ﻳﺤ ﺪث اﺧ ﺘﻼف ﺑﺴ ﻴﻂ ﺟ ﺪا ﻓ ﻰ ﻧﺘﺎﺋﺞ‬
‫اﻟﺤﺴ ﺎﺑﺎت ﺑ ﻴﻦ ﺑ ﺮﻧﺎﻣﺞ و ﺁﺧ ﺮ و ه ﺬا ﻻ ﻳﺠ ﺐ أن ﻳﺸ ﻜﻚ اﻟﻤﺼ ﻤﻢ ﻓ ﻰ اﻟﻨ ﺘﺎﺋﺞ ‪ ،‬و اﻟﺤﻜ ﻢ اﻟﻨﻬﺎﺋﻰ ﻋﻠﻰ اﻟﻨﺘﺎﺋﺞ ﻳﻜﻮن‬
‫ﺑﺎﺳﺘﺨﺪام ﺑﺮاﻣﺞ ﺗﺤﻠﻴﻞ اﻟﺪواﺋﺮ آﻤﺎ ﺳﻴﻮﺿﺢ ﻻﺣﻘﺎ ﻓﻰ ﻓﺼﻮل ﺗﺼﻤﻴﻢ اﻟﺪواﺋﺮ‪.‬‬
‫ﻳﺤﺘﻮى اﻟﺠﺪول )‪ (١ - ٣‬ﻋﻠﻰ أﻣﺜﻠﻪ ﻟﻠﺒﺮاﻣﺞ اﻟﺘﻰ ﺗﺒﺎع ﺗﺠﺎرﻳﺎ و ﻋﺎدة ﺗﻜﻮن ﺟﺰءا )‪ (module or utility‬ﺿﻤﻦ‬
‫ﺑ ﺮﻧﺎﻣﺞ ﻟﺘﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ أو ﺑ ﺮﻧﺎﻣﺞ ﻳﻘ ﻮم ﺑﻌ ﺪد ﻣ ﻦ اﻟﻮﻇﺎﺋﻒ و هﻰ ﺗﻘﻮم ﺑﻌﺪة ﺣﺴﺎﺑﺎت ﻣﻦ ﺿﻤﻨﻬﺎ ﺗﺼﻤﻴﻢ و ﺗﺤﻠﻴﻞ‬
‫اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ‪.‬‬

‫‪75‬‬

‫اﺳﻢ اﻟﺒﺮﻧﺎﻣﺞ‬
LINECALC

‫اﻟﻤﻮزع أو اﻟﻤﻨﺘﺞ‬
Agilent

TLINE or
Advanced TLINE

Agilent
Eagleware-Elanix

Module with Agilent-Genesys
http://www.agilent.com

LineComp

WAVECON

http://www.waveconsoft.com/

winLINE

Agilent
Noble Publishing
Artech House

Winlin

‫ﻣﻼﺣﻈﺎت و ﻣﻮﻗﻊ اﻻﻧﺘﺮﻧﺖ‬
Module with Agilent -ADS
http://www.agilent.com

http://www.scitechpublishing.com/
Module with C/NL2 software
http://www.artechhouse.com

.‫ أﻣﺜﻠﻪ ﻟﻠﺒﺮاﻣﺞ اﻟﺘﻰ ﺗﺒﺎع ﺗﺠﺎرﻳﺎ و ﺗﻘﻮم ﺑﺤﺴﺎﺑﺎت ﺗﺼﻤﻴﻢ و ﺗﺤﻠﻴﻞ اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ‬: (١ - ٣) ‫ﺟﺪول‬

‫( ﻋﻠ ﻰ أﻣ ﺜﻠﻪ ﻟﻠﺒ ﺮاﻣﺞ اﻟﻤﺠﺎﻧ ﻴﻪ اﻟﺘ ﻰ ﺗﻘ ﻮم ﺑﺤﺴ ﺎﺑﺎت ﻣ ﻦ ﺿ ﻤﻨﻬﺎ ﺗﺼ ﻤﻴﻢ و ﺗﺤﻠﻴﻞ اﻟﺨﻂ‬٢ - ٣) ‫و ﻳﺤ ﺘﻮى اﻟﺠ ﺪول‬
.‫اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ ﻣﻊ ذآﺮ ﻣﻮاﻗﻊ اﻻﻧﺘﺮﻧﺖ و رواﺑﻂ اﻟﺘﺤﻤﻴﻞ‬

‫اﺳﻢ اﻟﺒﺮﻧﺎﻣﺞ‬
TXLINE

‫اﻟﻤﻮزع أو اﻟﻤﻨﺘﺞ‬
AWR

‫ﻣﻮﻗﻊ اﻻﻧﺘﺮﻧﺖ و راﺑﻂ اﻟﺘﺤﻤﻴﻞ‬
http://web.awrcorp.com/
http://web.awrcorp.com/products/txline.html
http://web.awrcorp.com/Products/Microwave_Office/TXLine.zip

AppCAD
Line
or
Transmission
Line
Calculator

Agilent
Fritz
Dellsperger
Professor for
RF and
Microwave
Engineering

http://www.hp.woodshot.com
http://www.hp.woodshot.com/appcad/version302/setup.exe
http://www.fritz.dellsperger.net/

http://www.fritz.dellsperger.net/Downloads/line.zip

.‫ أﻣﺜﻠﻪ ﻟﻠﺒﺮاﻣﺞ اﻟﻤﺠﺎﻧﻴﻪ اﻟﺘﻰ ﺗﻘﻮم ﺑﺤﺴﺎﺑﺎت ﻣﻦ ﺿﻤﻨﻬﺎ ﺗﺼﻤﻴﻢ و ﺗﺤﻠﻴﻞ اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ‬: (٢ - ٣) ‫ﺟﺪول‬

76

‫ﺷﻜﻞ )‪ : (١١ - ٣‬آﻴﻔﻴﺔ اﺳﺘﺨﺪام ﻣﻌﻈﻢ ﺑﺮاﻣﺞ ﺗﺼﻤﻴﻢ و ﺗﺤﻠﻴﻞ اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ اﻟﻤﺘﻮﻓﺮﻩ ﺗﺠﺎرﻳﺎ و‬
‫اﻟﻤﺠﺎﻧﻴﻪ‪.‬‬

‫و هﺬﻩ اﻟﺒﺮاﻣﺞ ﺗﻤﺘﺎز ﺑﺴﻬﻮﻟﺔ اﻻﺳﺘﺨﺪام ‪ .‬و ﻳﺤﺘﻮى اﻟﺸﻜﻞ )‪ (١١ - ٣‬ﻋﻠﻰ ﻣﻠﺨﺺ ﻟﻔﻜﺮة ﻋﻤﻞ ﻣﻌﻈﻢ هﺬﻩ اﻷدوات‬
‫أو اﻟﺒﺮاﻣﺞ و هﻰ آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫ﻳ ﺘﻢ آ ﺘﺎﺑﺔ ﺑﻴﺎﻧﺎت اﻟﺸﺮﻳﺤﻪ ﻣﺜﻞ ﻧﻮع اﻟﻌﺎزل )‪ (dielectric‬و ﺛﺎﺑﺖ اﻟﻌﺰل )‪ (dielectric constant‬و ﻣﻤﺎس اﻟﻔﻘﺪ‬
‫)‪ (loss tangent‬و ﺳ ﻤﻚ ﻃ ﺒﻘﺔ اﻟﻌ ﺎزل )‪ (dielectric thickness h‬و ﻧ ﻮع اﻟﻤﻮﺻﻞ )‪ (conductor‬و ﻣﻌﺎﻣﻞ‬
‫اﻟﺘﻮﺻ ﻴﻞ )‪ (conductivity‬و ﺳ ﻤﻚ ﻃ ﺒﻘﺔ اﻟﻤﻮﺻ ﻞ )‪ (conductor thickness t‬ﺑﺎﻻﺿ ﺎﻓﻪ اﻟ ﻰ اﻟﺘ ﺮدد )‪ (f‬و‬
‫ذﻟﻚ ﻓﻰ ﺣﺎﻟﺘﻰ اﻟﺘﺼﻤﻴﻢ واﻟﺘﺤﻠﻴﻞ‪.‬‬
‫و ﻻﺟ ﺮاء ﻋﻤﻠ ﻴﺔ اﻟﺘﺼ ﻤﻴﻢ ﻳ ﺘﻢ آ ﺘﺎﺑﺔ ﻗ ﻴﻢ اﻟﻄ ﻮل اﻟﻜﻬﺮﺑ ﻰ ﻟﺨ ﻂ اﻻرﺳ ﺎل ﻋ ﻨﺪ اﻟﺘ ﺮدد اﻟﻤﻄﻠﻮب و اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ‬
‫ﻟﻠﺨ ﻂ )‪ (Zo,θ‬ﺛﻢ ﻳﺘﻢ ﺿﻐﻂ زر )‪ (Design or Í‬ﻻﺗﻤﺎم ﺣﺴﺎب ﻃﻮل و ﻋﺮض اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪(w,L‬‬
‫‪ ،‬و اﻟﻌﻜ ﺲ ﻳ ﺘﻢ ﻓ ﻰ ﻋﻤﻠ ﻴﺔ اﻟﺘﺤﻠ ﻴﻞ ﺑﻜﺘﺎﺑﺔ ﺑﻴﺎﻧﺎت ﻃﻮل و ﻋﺮض اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪ (w,L‬ﻣﻊ ﺿﻐﻂ زر‬
‫)‪ (Analysis or Î‬ﻻﺗﻤﺎم ﺣﺴﺎب )‪.(Zo,θ‬‬
‫و ﻓ ﻴﻤﺎ ﻳﻠ ﻰ ﺑ ﺮﻧﺎﻣﺞ )‪ (١-٣‬ﻣﻜﺘﻮب ﺑﻠﻐﺔ )‪ (FORTRAN‬ﻟﻌﻤﻞ ﺣﺴﺎﺑﺎت ﺗﺼﻤﻴﻢ و ﺗﺤﻠﻴﻞ اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ‪.‬‬
‫ﻳ ﺘﻜﻮن اﻟﺒ ﺮﻧﺎﻣﺞ ﻣ ﻦ ﺛﻼﺛ ﺔ )‪ (subroutines‬اﻻول ﻟﺤﺴ ﺎﺑﺎت اﻟﺘﺼﻤﻴﻢ و ﺣﺴﺎب ﺑﻌﺾ ﺑﺎراﻣﺘﺮات اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ‬
‫اﻟﺪﻗ ﻴﻖ و اﻟﺜﺎﻧ ﻰ ﻟﺤﺴ ﺎﺑﺎت اﻟﺘﺤﻠ ﻴﻞ و اﻟ ﺜﺎﻟﺚ ﻟﺤﺴ ﺎﺑﺎت اﻟﻔﻘ ﺪ و اﻟﺪاﺋﺮﻩ اﻟﻤﻜﺎﻓﺌﻪ ﻟﻠﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ ) ﻣﺜﻞ اﻟﺪاﺋﺮﻩ‬
‫اﻟﻤﻮﺿﺤﻪ ﻓﻰ ﺷﻜﻞ ‪. (٢ -٢‬‬

‫‪77‬‬

8

1
2
3
4

INTEGER L
WRITE(*,*)'
MICROSTRIP CALCULATIONS
'
WRITE(*,*)'
programmer Hesham I. M. AL Anwar
'
WRITE(*,*)
WRITE(2,*)'***************** NEW DATA *******************'
WRITE(*,*)' ENTER 1 IF GIVEN Zo,F REQUIRED W,LENGTH
^ (Synthesis)'
WRITE(*,*)'
2 IF GIVEN W,LENGTH REQUIRED Zo
^ (Analysis)'
WRITE(*,*)'
3 IF FOR ATTENUATION CALCULATIONS,R,L,C,G'
WRITE(*,*)'
4 TO EXIT
'
READ(*,*)L
GOTO(1,2,3,4),L
CALL EDWR
GO TO 8
CALL RVRS
GO TO 8
CALL ATTENU
GO TO 8
CONTINUE
STOP
END

*THIS SUBROUTINE CALCULATES DELTA-L EPSILON-F EPSILON-T WIDTH OF
*MICROSTRIP & LAMPDA GUIDE IN M-S.
ALL DIMENSIONS IN mm
*
DELTAL=DL // EPSILON EFFECTIVE=EFF // EPSILON EFFECTIVE OF*
T=EFFT // EPSILON EFFECTIVE OF F=EFFOF // LAMPDA GUIDE=LG
**
M.S WIDTH=W
EPSILONR=ER DELTA-L=DL
SUBROUTINE EDWR
REAL ZO,Y,Y1,Y2
REAL A,B,ER,W,PI,WH,T,H,DEFFT,rln1,rln2
REAL EFFT,EFFOF,LG,G,F,FP,BB,YY,YYD
REAL YY1,YYD1,YY2,YYD2
INTEGER NN,N
*
CHARACTER *19 OO
PI=3.1415927
*
OPEN(9,FILE=OO,STATUS='NEW')
WRITE(2,*)'
SYNTHESIS CALCULATIONS
'
25
WRITE(*,5)
5 FORMAT(2X,'ENTER EPSILON-R,H,T(Ohm,mm)')
READ(*,*)ER,H,T
WRITE(2,*)'EPSILON-R=',ER,'h(mm)=',H,'t(mm)=',T
1
WRITE(*,*)' ENTER Zo (Ohm), F(GHz)'
READ(*,*)ZO,F
WRITE(2,*)' Zo(ohm) =',ZO,' F(GHz) =',F
A=((ZO/60)*(((ER+1)/2)**0.5))+(((ER-1)/(ER+1))*
^ (0.23+(0.11/ER)))
B=((377*PI)/(2*ZO*ER**0.5))
WRITE(*,11)A,B
WRITE(2,11)A,B
11 FORMAT(2X,'A=',F16.9,2X,'B=',F16.9)
IF(A.GE.1.52)THEN
W=(H*8*(EXP(A)))/(EXP(2*A)-2)
ELSE

78

BB=(2*B)-1
RLN2=LOG(BB)
RLN1=LOG(B-1)
W=((H*2)/PI)*((B-1)-RLN2+(((ER-1)/(2*ER))*
^ (RLN1+0.39-(0.61/ER))))
ENDIF
WH=W/H
WRITE(*,12)WH,ZO,W
WRITE(2,12)WH,ZO,W
12 FORMAT(2X,'W/H =',F16.9,'THE MICROSTRIP WIDTH W FOR ZO('
^ ,F7.3,') ='F16.9,'mm')
EFF=((ER+1)/2)+(((ER-1)/2)*(1/(SQRT(1+(12/WH)))))
DEFFT=((ER-1)*(T/H))/(4.6*SQRT(WH))
EFFT=EFF-DEFFT
G=(0.004*ZO)+(((ZO-5)/60)**0.5)
FP=(15.66*ZO)/H
EFFOF=(ER)-((ER-EFFT)/(1+(G*(F/FP)**2)))
LG=300/(F*EFFOF**0.5)
WRITE(*,13)EFFOF,LG
WRITE(2,13)EFFOF,LG
13 FORMAT(2X,'FOR EPSILON EFF. OF F =',F16.9,'LAMPDA GUIDE'
^ ,'=',F16.9,' ( mm )')
WRITE(*,14)EFF,EFFT
WRITE(2,14)EFF,EFFT
14 FORMAT(2X,'EPSILON EFFECTIVE=',F16.9,2X,
^ 'EPSILON EFFECTIVE OF T =',F16.9)
DL=(H*0.412)*((EFFOF+0.3)/(EFFOF^ 0.258))*((WH+0.262)/(WH+0.813))
WRITE(*,15)DL
WRITE(2,15)DL
15 FORMAT(2X,'DELTA L (mm)=',F16.9)
WRITE(*,*)' LENGTHS CALCULATIONS'
35
WRITE(*,*)' ENTER
1 FOR LENGTH RELATIVE TO LAMPDA GUIDE.'
WRITE(*,*)'
2 FOR ELECTRICAL LENGTH IN DEGREE.'
WRITE(*,*)'
3 FOR ELECTRICAL LENGTH IN RADIANS.'
WRITE(*,*)'
4 TO TERMINATE LENGTHS CALCULATIONS.'
WRITE(2,*)' LENGTHS CALCULATIONS :'
READ(*,*)N
GO TO(30,31,32,33),N
30
WRITE(*,*)' ENTER LENGTH RELATIVE TO LAMPDA GUIDE.'
READ(*,*)Y
YY=LG*Y
YYD=(LG*Y)-DL
WRITE(2,40)Y,YY,YYD
WRITE(*,40)Y,YY,YYD
40
FORMAT(1X,F10.5,'LAMPDA GUIDE IS EQUIVALENT TO LENGTH=',
^D20.15,' (mm) & IF WE CONSIDER FRINGING EFFECT=',D20.15,'
^ (mm)')
GO TO 35
31
WRITE(*,*)' ENTER ELECTRICAL LENGTH IN DEGREE.'
READ(*,*)Y11
Y1=Y11*(PI/180)
YY1=(Y1*LG)/(2*PI)
YYD1=YY1-DL
WRITE(*,41)Y11,YY1,YYD1
WRITE(2,41)Y11,YY1,YYD1
41
FORMAT(1X,' TL. OF',F10.5,'(DEGREE) ELECTRICAL LENGTH =',
^F16.9,' (mm) & CONSIDER FRINGING EFFECT LENGTH=',F16.9,'mm')
GO TO 35
32
WRITE(*,*)' ENTER ELECTRICAL LENGTH IN RADIANS.'
READ(*,*)Y2

79

YY2=(LG*Y2)/(2*PI)
YYD2=YY2-DL
WRITE(*,42)Y2,YY2,YYD2
WRITE(2,42)Y2,YY2,YYD2
42
FORMAT(1X,'TL. OF',F10.5,'(RAD.)ELECTRICAL LENGTH =',F16.9,
^' (mm) & CONSIDER FRINGING EFFECT TL.LENGTH =',F16.9,'( mm)')
GO TO 35
33
WRITE(*,*)' ENTER 1 FOR NEW SUBSTRATE.'
WRITE(*,*)'
2 FOR NEW Zo'
WRITE(*,*)'
3 TO EXIT THIS PART.'
WRITE(2,*)'-----------****** NEW DATA ********-------'
WRITE(2,*)'
'
READ(*,*)NN
GO TO(25,1,2),NN
2
RETURN
END

*THIS SUBROUTINE IS MADE FOR REVERSE ENGINEERING FOR A MICROSTRIP
CIRCUIT
*FOR A CIRCUIT GIVEN IT'S SHAPE (WIDTHS,LENGTHS)
& KNOWN ZO FOR
*EACH LINE ;THIS PROGRAM ESTIMATES EPSILON-R ,H FOR SUBSTRATE
*THIS FILE CALCULATES DELTA-L EPSILON-F EPSILON-T WIDTH OF
*MICROSTRIP & LAMPDA GUIDE IN M-S.
ALL DIMENSIONS IN mm
*
DELTAL=DL // EPSILON EFFECTIVE=EFF // EPSILON EFFECTIVE OF*
T=EFFT // EPSILON EFFECTIVE OF F=EFFOF // LAMPDA GUIDE=LG
**
M.S WIDTH=W
EPSILONR=ER DELTA-L=DL MINIMUM WIDTH=MIN
* MAXIMUM WIDTH=MAX QUARTER LG=LGO4 MAX.(LG/4)=MAXL MIN.(LG/4)=MINL
* FOUNDATIONS FOR MICROSTRIP PAGE 66 2nd EDITION
SUBROUTINE RVRS
REAL ZO,MIN,MAX,H3,ER3,H,H1,H2,ER1,ER2,MINL,MAXL
INTEGER AK
REAL A,B,ER,W,LN1,LN2,PI,WH,T,DEFFT,RW,RL4
REAL EFFT,EFFOF,LG,G,F,FP,BB,LGO4,EFF
WRITE(2,*)'
ANALYSIS CALCULATIONS
'
4
WRITE(*,*)' ENTER EOSILON-R h t (mm) @ FREQUENCY (GHz)'
READ(*,*)ER,H,T,F
5
WRITE(*,*)'
ENTER WIDTH , LENGTH (mm)'
READ(*,*)W,AL
PI=3.1415927
E=2.7182818
WH=W/H
HW=H/W
EFF=((ER+1)/2)+(((ER-1)/2)*(1/(SQRT(1+(12/WH)))))
DEFFT=((ER-1)*(T/H))/(4.6*SQRT(WH))
EFFT=EFF-DEFFT
GGG=0.5*PI
IF(WH.LE.GGG)THEN
WEOH=WH+(((1.25*T)/(PI*H))*(1+LOG(4*PI*W/T)))
ENDIF
IF(WH.GE.GGG)THEN
WEOH=WH+(((1.25*T)/(PI*H))*(1+LOG(2*H/T)))
ENDIF
PPP=3.3
IF(WH.LT.PPP)THEN
ZO1=LOG((4*HW)+SQRT((16*HW**2)+2))
ZO=ZO1*(119.9/SQRT(2*(ER+1)))
ENDIF
IF(WH.GT.PPP)THEN
ZOA=((ER+1)/(2*PI*ER))*(LOG(PI*E/2)+LOG((WH/2)+0.94))

80

ZOD=(WH/2)+(LOG(4)/PI)+(LOG(E*(PI**2)/16)/(2*PI))*((ER^1)/ER**2)
ZO=((119.9*PI)/(2*SQRT(ER)))*(1/(ZOD+ZOA))
ENDIF
G=(0.004*ZO)+(((ZO-5)/60)**0.5)
FP=(15.66*ZO)/H
EFFOF=(ER)-((ER-EFFT)/(1+(G*(F/FP)**2)))
LG=300/(F*EFFOF**0.5)
RNL=AL/LG
DL=(H*0.412)*((EFFOF+0.3)/(EFFOF^0.258))*((WH+0.262)/(WH+0.813))
WRITE(*,16)W,LG,ER,H,T,F
WRITE(2,16)W,LG,ER,H,T,F
16 FORMAT(2X,'W = ',F16.9,' mm',2X,'LAM.GUIDE = ',F16.9,' mm',
^'EPSILON-R=',F16.9,'h = ',F14.10,'mm',' t = ',F8.5,
^' mm F =',F8.4,' GHz')
WRITE(2,*)
WRITE(2,*)' Zo = ',ZO,' ohm
NORMALIZED LENGTH =',RNL
WRITE(*,*)' Zo = ',ZO,' ohm
NORMALIZED LENGTH =',RNL
WRITE(*,*)' ENTER 1
WRITE(*,*)'
2
WRITE(*,*)'
3
READ(*,*)AK
GO TO(4,5,52)AK
52 RETURN
END

FOR NEW SUBSTRATE , FREQUENCY'
FOR NEW TRANSMITION LINE
'
TO EXIT THIS PART.
'

*GIVEN LOSS TANGENT
GONZALEZ PAGE 72
*THIS SUBROUTINE CALCULATES DELTA-L EPSILON-F EPSILON-T WIDTH OF
*MICROSTRIP & LAMPDA GUIDE IN M-S.
ALL DIMENSIONS IN mm
*
DELTAL=DL // EPSILON EFFECTIVE=EFF // EPSILON EFFECTIVE OF*
T=EFFT // EPSILON EFFECTIVE OF F=EFFOF // LAMPDA GUIDE=LG
**
M.S WIDTH=W
EPSILONR=ER DELTA-L=DL
SUBROUTINE ATTENU
REAL ZO,Y,Y1,Y2,RS,XC,XL
REAL A,B,ER,W,PI,WH,T,H,DEFFT,rln1,rln2,OMEGA
REAL EFFT,EFFOF,LG,G,F,FP,EO,BB,YY,YYD,TOTAL,LO
REAL YY1,YYD1,YY2,YYD2,RALFAD,ALFAD,TANDLT,SEGMA
REAL UO,WEFOF,WEFOFO,P,Q,ZOOFF
COMPLEX GAMA
INTEGER NN,N
DOUBLE PRECISION Rmetr,RLmetr,RCmetr,Gmetr
PI=3.1415927
C=2.99793E8
EO=8.854E-12
UO=4*PI*1E-7
25
5
1

WRITE(2,*)'
POWER LOSS AND ATTENUATION CALCULATIONS
WRITE(*,5)
FORMAT(2X,'ENTER EPSILON-R,H,T(Ohm,mm)')
READ(*,*)ER,H,T
WRITE(2,*)'EPSILON-R=',ER,'h(mm)=',H,'t(mm)=',T
WRITE(*,*)' ENTER Zo (Ohm), F(GHz) , tan delta '
READ(*,*)ZO,F,TANDLT
WRITE(2,*)' Zo(ohm) =',ZO,' F(GHz) =',F
WRITE(2,*)' tan delta = ',TANDLT
A=((ZO/60)*(((ER+1)/2)**0.5))+(((ER-1)/(ER+1))*

81

'

^(0.23+(0.11/ER)))
B=((377*PI)/(2*ZO*ER**0.5))
WRITE(*,11)A,B
WRITE(2,11)A,B
11 FORMAT(2X,'A=',F16.9,2X,'B=',F16.9)
IF(A.GE.1.52)THEN
W=(H*8*(EXP(A)))/(EXP(2*A)-2)
ELSE
BB=(2*B)-1
RLN2=LOG(BB)
RLN1=LOG(B-1)
W=((H*2)/PI)*((B-1)-RLN2+(((ER-1)/(2*ER))*
^ (RLN1+0.39-(0.61/ER))))
ENDIF
WH=W/H
WRITE(*,12)WH,ZO,W
WRITE(2,12)WH,ZO,W
12 FORMAT(2X,'W/H =',F16.9,'THE MICROSTRIP WIDTH W FOR ZO('
^ ,F7.3,') ='F16.9,'mm')
EFF=((ER+1)/2)+(((ER-1)/2)*(1/(SQRT(1+(12/WH)))))
DEFFT=((ER-1)*(T/H))/(4.6*SQRT(WH))
EFFT=EFF-DEFFT
G=(0.004*ZO)+(((ZO-5)/60)**0.5)
FP=(15.66*ZO)/H
EFFOF=(ER)-((ER-EFFT)/(1+(G*(F/FP)**2)))
LG=300/(F*EFFOF**0.5)
WRITE(*,13)EFFOF,LG
WRITE(2,13)EFFOF,LG
13 FORMAT(2X,'FOR EPSILON EFF. OF F =',F16.9,'LAMPDA GUIDE'
^ ,'=',F16.9,' ( mm )')
WRITE(*,14)EFF,EFFT
WRITE(2,14)EFF,EFFT
14 FORMAT(2X,'EPSILON EFFECTIVE=',F16.9,2X,
^ 'EPSILON EFFECTIVE OF T =',F16.9)
DL=(H*0.412)*((EFF+0.3)/(EFF-0.258))*((WH+0.262)/(WH+0.813))
WRITE(*,15)DL
WRITE(2,15)DL
15 FORMAT(2X,'DELTA L (mm)=',F16.9)
*------------------FOUNDATIONS------------SEGMA=TANDLT*2*PI*F*ER*EO*1E9
RALFAD=(27.3*ER*TANDLT*(EFFOF-1))/(EFFOF*(ER-1)*LG)
*-----------ALFAC PER MICROSTRIP WAVELENGTH LG
ALFAC=1.6*0.072*SQRT(F)*LG/(W*ZO)
ALFAC=ALFAC/LG
LO=1000*C/(F*1E9)
ALFAD=(27.3*ER*TANDLT*(EFFOF-1))/(SQRT(EFFOF)*(ER-1)*LO)
WRITE(*,19)RALFAD
WRITE(2,19)RALFAD
19
FORMAT(2X,' DIELCTRIC ATTENUATION (DB/mm)=',F16.9)
WRITE(*,99)ALFAD
WRITE(2,99)ALFAD
99
FORMAT(2X,' DIELCTRIC ATTENUATION (DB/UNIT LENGTH
^mm)=',F16.9)
WRITE(*,100)ALFAC
WRITE(2,100)ALFAC
100
FORMAT(2X,' CONDUCTOR ATTENUATION (DB/ mm)=',F16.9)
TOTAL=ALFAC+ALFAD
WRITE(*,101)TOTAL
WRITE(2,101)TOTAL
101
FORMAT(2X,' TOTAL ATTENUATION (DB/ mm)=',F16.9)
TOTAL=ALFAC+RALFAD

82

WRITE(*,101)TOTAL
WRITE(2,101)TOTAL
111
FORMAT(2X,' TOTAL ATTENUATION (DB/ mm)=',F16.9)
*--------------------------Transmission Line Model Paramerers----* Rmetr RLmetr RCmetr Gmetr
R L C G
RLmetr=UO/WH
RCmetr=EFF*WH
Rmetr=TOTAL/SQRT(RCmetr/RLmetr)
OMEGA=2*PI*F*1E9
XC=OMEGA*RCmetr
XL=OMEGA*RLmetr
Gmetr=(CMPLX(Rmetr,XL)/(ZO*ZO))-CMPLX(0.0,-XC)
WRITE(*,800)Rmetr
WRITE(2,800)Rmetr
800
FORMAT(2X,'Resistance ohm / m ',F16.12)
WRITE(*,801)RLmetr*1E9
WRITE(2,801)RLmetr*1E9
801
FORMAT(2X,'Inductance nH / m ',F16.11)
WRITE(*,802)RCmetr*1E12
WRITE(2,802)RCmetr*1E12
802
FORMAT(2X,'Capacitance pF / m ',F24.16)
WRITE(*,803)Gmetr
WRITE(2,803)Gmetr
803
FORMAT(2X,'Conductance mho / m ',F16.12)
GAMA=CMPLX(TOTAL,(2*PI/LG))
Gmetr=((GAMA*GAMA)/CMPLX(Rmetr,XL))-CMPLX(0.0,-XC)
WRITE(*,804)Gmetr
WRITE(2,804)Gmetr
804
FORMAT(2X,'Conductance mho / m ',F16.12)
33
WRITE(*,*)' ENTER 1 FOR NEW SUBSTRATE.'
WRITE(*,*)'
2 FOR NEW Zo,F'
WRITE(*,*)'
3 TO EXIT THIS PART.'
WRITE(2,*)'-----------****** NEW DATA ********-------'
WRITE(2,*)'
'
READ(*,*)NN
GO TO(25,1,2),NN
2
RETURN
END

(١-٣) ‫ﺑﺮﻧﺎﻣﺞ‬

‫( ﻟﻌﻤ ﻞ ﺣﺴ ﺎﺑﺎت ﺗﺼﻤﻴﻢ و ﺗﺤﻠﻴﻞ اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ‬C++) ‫( ﻣﻜ ﺘﻮﺑﻪ ﺑﻠﻐ ﺔ‬functions) ‫و ﻓ ﻴﻤﺎ ﻳﻠ ﻰ أﻳﻀ ﺎ ﻣﺠﻤ ﻮﻋﺔ‬
‫( و ه ﻰ ﻟﻠﻌﻤ ﻞ ﺗﺤ ﺖ‬functions) ‫( ﻗ ﺒﻞ ﻣﺠﻤ ﻮﻋﺔ‬٢-٣) ‫ ﻣﺒﺪﺋ ﻴﺎ ﻳﺘﻌ ﻴﻦ آ ﺘﺎﺑﺔ اﻟﺴ ﻄﻮر اﻟﺘﺎﻟ ﻴﻪ ﺑﺒ ﺮﻧﺎﻣﺞ‬، ‫اﻟﺪﻗ ﻴﻖ‬
.(Visual C and Microsoft C++)
‫( ﻟﻌﻤﻞ ﺣﺴﺎﺑﺎت ﺗﺼﻤﻴﻢ‬Microstrip_line_Synthesis) ‫( ﺑﺈﺳـﻢ‬function) ‫( ه ﻮ‬٣-٣) ‫اﻟﺠ ﺰء اﻻول ﺑ ﺮﻧﺎﻣﺞ‬
. ‫اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ‬
‫( ﻟﻌﻤﻞ‬microstrip_attenuation_calculations) ‫( ﺑﺈﺳـﻢ‬function) ‫( هﻮ‬٤-٣) ‫أﻣ ﺎ اﻟﺠ ﺰء اﻟﺜﺎﻧﻰ ﺑﺮﻧﺎﻣﺞ‬
. ‫ﺣﺴﺎﺑﺎت اﻟﻔﻘﺪ ﺑﺎﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ‬

83

#include <conio.h>
#include <stdio.h>
#include <iostream.h>
#include <math.h>
#include <fstream.h>
#include <iomanip.h>
#include <complex>
using namespace std;
typedef complex<double> COMPLEX;
inline complex<double> cmplx(double r,double i)
{ return ( complex<double> (r,i) ); }

(٢-٣) ‫ﺑﺮﻧﺎﻣﺞ‬

void Microstrip_line_Synthesis(void)
{
double ZO,Y,Y1,Y2,A,B,ER,W,PI,WH,T,H,DEFFT,EFFT,EFFOF,LG,G,F,FP,BB,YY,YYD;
double YY1,YYD1,YY2,YYD2,RLN1,RLN2,EFF,DL,Y11;
int NN,N;
PI=3.1415927;
char output_file[30];
FILE *output;
printf(" \n This program calculate W,LENGTH of Microstrip Line GIVEN Zo,F \n");
printf(" \n programmer Hesham I. M. AL Anwar \n");
printf(" \n Enter output data file name : ");
scanf("%s",output_file);
output=fopen(output_file,"w");
fprintf(output,"\n SYNTHESIS CALCULATIONS
\n");
A25 :
printf("\n SYNTHESIS CALCULATIONS \n");
printf("\n ENTER EPSILON-R : ");
scanf("%lf",&ER);
printf("\n Enter Microstrip substrate thickness h [mm] : ");
scanf("%lf",&H);
printf("\n ENTER cupper thickness t [mm] : ");
scanf("%lf",&T);
A1 :
printf("\n ENTER characterestic impedance Zo [ohm ] : ");
scanf("%lf",&ZO);
printf("\n Enter Frequency [GHz] : ");
scanf("%lf",&F);
fprintf(output,"\n EPSILON-R = %lf \t h [ mm ] = %lf \t t [mm] = %lf",ER,H,T);
fprintf(output,"\n Zo [ohm] = %lf \t F [GHz] = %lf ",ZO,F);
A=((ZO/60.0)*(pow(((ER+1.0)/2.0),0.5)))+(((ER-1.0)/(ER+1.0))*(0.23+(0.11/ER)));
B=((377.0*PI)/(2.0*ZO*pow(ER,0.5)));
if(A>=1.52)
{
W=(H*8.0*(exp(A)))/(exp(2.0*A)-2.0); }
else
{
BB=(2.0*B)-1.0;
RLN2=log(BB);
RLN1=log(B-1.0);

84

W=((H*2.0)/PI)*((B-1.0)-RLN2+(((ER-1.0)/(2.0*ER))*(RLN1+0.39-(0.61/ER))));
}
WH=W/H;
fprintf(output,"\n W/H = %lf \n THE MICROSTRIP LINE WIDTH w FOR ( ZO = %lf ) in
[mm] = %lf",WH,ZO,W);
EFF=((ER+1.0)/2.0)+(((ER-1.0)/2.0)*(1/(sqrt(1.0+(12.0/WH)))));
DEFFT=((ER-1)*(T/H))/(4.6*sqrt(WH));
EFFT=EFF-DEFFT;
G=(0.004*ZO)+(pow(((ZO-5.0)/60.0),0.5));
FP=(15.66*ZO)/H;
EFFOF=(ER)-((ER-EFFT)/(1+(G*pow((F/FP),2.0))));
LG=300.0/(F*pow(EFFOF,0.5));
fprintf(output,"\n FOR EPSILON EFFECTIVE OF F = %lf \t \t LAMPDA GUIDE [mm] = %lf
",EFFOF,LG);
fprintf(output,"\n EPSILON EFFECTIVE = %lf \t \t EPSILON EFFECTIVE OF T = %lf ",EFF,EFFT);
DL=(H*0.412)*((EFFOF+0.3)/(EFFOF-0.258))*((WH+0.262)/(WH+0.813));
fprintf(output,"\n DELTA L length extention of open end fringing effect = %lf [mm]",DL);
printf(" \n LENGTHS CALCULATIONS \n");
fprintf(output," \n LENGTHS CALCULATIONS \n");
A35 :
printf("\n ENTER 1 FOR LENGTH RELATIVE TO LAMPDA GUIDE.");
printf("\n
2 FOR ELECTRICAL LENGTH IN DEGREE.");
printf("\n
3 FOR ELECTRICAL LENGTH IN RADIANS.");
printf("\n
4 TO TERMINATE LENGTHS CALCULATIONS. \n : ");
scanf("%d",&N);
if(N==1)
{
printf(" ENTER LENGTH RELATIVE TO LAMPDA GUIDE. : ");
scanf("%lf",&Y);
YY=LG*Y;
YYD=(LG*Y)-DL;
fprintf(output,"\n ( %lf ) of LAMPDA GUIDE IS EQUIVALENT TO LENGTH = %lf [mm] \n
& IF WE CONSIDER FRINGING EFFECT= %lf [mm] \n ",Y,YY,YYD);
goto A35;
}
if(N==2)
{
printf(" ENTER ELECTRICAL LENGTH IN DEGREE. : ");
scanf("%lf",&Y11);
Y1=Y11*(PI/180.0);
YY1=(Y1*LG)/(2*PI);
YYD1=YY1-DL;
fprintf(output,"\n Transmission line of ( %lf DEGREE ) of ELECTRICAL LENGTH = %lf
[mm] \n & IF WE CONSIDER FRINGING EFFECT= %lf [mm] \n ",Y11,YY1,YYD1);
goto A35;
}
if(N==3)
{
printf(" ENTER ELECTRICAL LENGTH IN RADIANS. : ");
scanf("%lf",&Y2);
YY2=(LG*Y2)/(2.0*PI);
YYD2=YY2-DL;
fprintf(output,"\n Transmission line of ( %lf RADIANCE ) of ELECTRICAL LENGTH = %lf
[mm] \n & IF WE CONSIDER FRINGING EFFECT= %lf [mm] \n ",Y2,YY2,YYD2);
goto A35;
}
printf("\n ENTER 1 FOR NEW SUBSTRATE.");
printf("\n
2 FOR NEW Zo.");

85

printf("\n
3 TO EXIT THIS PART. \n : ");
fprintf(output,"\n -------------------------- NEW DATA --------------------------- \n \n");
scanf("%d",&NN);
if(NN==1) { goto A25; }
if(NN==2) { goto A1; }
fclose(output);
}

‫( ﻓﻰ ﺳﻄﺮ واﺣﺪ‬bold) ‫ ﻳﺘﻢ دﻣﺞ أى ﺳﻄﺮﻳﻦ أو ﺳﻄﻮر ﻣﺘﺘﺎﻟﻴﻪ ﻣﻜﺘﻮﺑﻪ ﺑﻔﻮرﻣﺎت‬: ‫ﻣﻠﺤﻮﻇﻪ‬
(٣-٣) ‫ﺑﺮﻧﺎﻣﺞ‬

void microstrip_attenuation_calculations(void)
{
double ZO,Y,Y1,Y2,RS,XC,XL;
double A,B,ER,W,PI,WH,T,H,DEFFT,RLN1,RLN2,OMEGA;
double EFFT,EFFOF,LG,G,F,FP,EO,BB,YY,YYD,TOTAL,LO;
double YY1,YYD1,YY2,YYD2,RALFAD,ALFAD,TANDLT,SEGMA;
double UO,WEFOF,WEFOFO,P,Q,ZOOFF,C,EFF,DL,ALFAC;
double Miou,Miou_r,Epsilon_dash,Epsilon_double_dash;
int NN,N;
double Rmetr,Lmetr,Cmetr,Gmetr;
char ys;
PI=3.1415927;
C=2.99793e8;
EO=8.854e-12;
UO=4*PI*1e-7;
char output_file[30];
FILE *output;
printf(" \n This program is for Microstrip Line SYNTHESIS AND ATTENUATION
CALCULATIONS \n");
printf(" \n programmer Hesham I. M. AL Anwar \n");
printf(" \n Enter output data file name : ");
scanf("%s",output_file);
output=fopen(output_file,"w");
fprintf(output,"SYNTHESIS AND ATTENUATION CALCULATIONS \n");
A25 :
printf("\n SYNTHESIS CALCULATIONS \n");
printf("\n ENTER EPSILON-R : ");
scanf("%lf",&ER);
printf("\n Enter Microstrip substrate thickness h [mm] : ");
scanf("%lf",&H);
printf("\n ENTER cupper thickness t [mm] : ");
scanf("%lf",&T);
A1 :
printf("\n ENTER characterestic impedance Zo [ohm ] : ");
scanf("%lf",&ZO);
printf("\n Enter Frequency [GHz] : ");
scanf("%lf",&F);
printf("\n ENTER tan delta ( Loss tangent ) of microstrip line : ");
scanf("%lf",&TANDLT);
fprintf(output,"\n EPSILON-R = %lf \t h [ mm ] = %lf \t t [mm] = %lf",ER,H,T);
fprintf(output,"\n Zo [ohm] = %lf \t F [GHz] = %lf \n tan delta ( delta tangent ) = %lf
\n",ZO,F,TANDLT);
A=((ZO/60.0)*(pow(((ER+1.0)/2.0),0.5)))+(((ER-1.0)/(ER+1.0))*(0.23+(0.11/ER)));
B=((377.0*PI)/(2.0*ZO*pow(ER,0.5)));
if(A>=1.52)
{
W=(H*8.0*(exp(A)))/(exp(2.0*A)-2.0); }

86

else
{
BB=(2.0*B)-1.0;
RLN2=log(BB);
RLN1=log(B-1.0);
W=((H*2.0)/PI)*((B-1.0)-RLN2+(((ER-1.0)/(2.0*ER))*(RLN1+0.39-(0.61/ER))));
}
WH=W/H;
fprintf(output,"\n W/H = %lf \n THE MICROSTRIP LINE WIDTH w FOR ( ZO = %lf ) in
[mm] = %lf",WH,ZO,W);
EFF=((ER+1.0)/2.0)+(((ER-1.0)/2.0)*(1/(sqrt(1.0+(12.0/WH)))));
DEFFT=((ER-1)*(T/H))/(4.6*sqrt(WH));
EFFT=EFF-DEFFT;
G=(0.004*ZO)+(pow(((ZO-5.0)/60.0),0.5));
FP=(15.66*ZO)/H;
EFFOF=(ER)-((ER-EFFT)/(1+(G*pow((F/FP),2.0))));
LG=300.0/(F*pow(EFFOF,0.5));
fprintf(output,"\n FOR EPSILON EFFECTIVE OF F = %lf \t \t LAMPDA GUIDE [mm] = %lf
",EFFOF,LG);
fprintf(output,"\n EPSILON EFFECTIVE = %lf \t \t EPSILON EFFECTIVE OF T = %lf ",EFF,EFFT);
DL=(H*0.412)*((EFFOF+0.3)/(EFFOF-0.258))*((WH+0.262)/(WH+0.813));
fprintf(output,"\n DELTA L length extention of open end fringing effect = %lf [mm]",DL);
RALFAD=(27.3*ER*TANDLT*(EFFOF-1.0))/(EFFOF*(ER-1.0)*LG);
ALFAC=1.6*0.072*sqrt(F)*LG/(W*ZO);
ALFAC=ALFAC/LG;
LO=1000.0*C/(F*1E9);
ALFAD=(27.3*ER*TANDLT*(EFFOF-1.0))/(sqrt(EFFOF)*(ER-1)*LO);
fprintf(output,"\n ----------------------------------------------------------- \n");
fprintf(output,"\n ATTENUATION CALCULATIONS microst.for \n");
fprintf(output,"\n ATTENUATION CALCULATIONS Foundations for Microstrip Circuit
Design \n ( second edition ) page 112 , 113 \n");
fprintf(output,"\n DIELCTRIC ATTENUATION (DB/mm)= %lf ",RALFAD);
fprintf(output,"\n DIELCTRIC ATTENUATION (DB/UNIT LENGTH mm)= %lf ",ALFAD);
fprintf(output,"\n CONDUCTOR ATTENUATION (DB/ mm)= %lf ",ALFAC);
TOTAL=ALFAC+ALFAD;
fprintf(output,"\n TOTAL ATTENUATION (DB/ mm)= %20.10lf ",TOTAL);
TOTAL=ALFAC+RALFAD;
fprintf(output,"\n TOTAL ATTENUATION (DB/ mm)= %20.10lf ",TOTAL);
printf("\n ENTER Miou r : ");
scanf("%lf",&Miou_r);
Miou=UO*Miou_r;
Epsilon_dash=ER*EO;
Epsilon_double_dash=Epsilon_dash*TANDLT;
OMEGA=2.0*PI*F*1e9;
printf("\n Enter (1) if you want to enter Rs Surface resistance.");
printf("\n
(2) if you want the program to calculate Rs Surface resistance for you. \n
scanf("%d",&ys);
if(ys==1)
{
printf("\n ENTER Surface resistance [ ohm ] : ");
scanf("%lf",&RS);
}
else
{
SEGMA=1.0/(TANDLT*TANDLT*PI*F*1e9*Miou);
RS=sqrt((OMEGA*Miou)/(2.0*SEGMA));
}
Lmetr=(Miou*H)/W;
Cmetr=(Epsilon_dash*W)/H;

87

: ");

Rmetr=(2.0*RS)/(W*1e-3);
Gmetr=(OMEGA*Epsilon_double_dash*W)/H;
fprintf(output,"\n Surface Resistance [ ohm ] = %lf ",RS);
fprintf(output,"\n ----------------------------------------------------------- \n");
fprintf(output,"\n Transmission Line Model Paramerers \n Rmetr Lmetr Cmetr Gmetr R L
C G per meter \n");
fprintf(output,"\n Resistance ohm / m = %lf ",Rmetr);
fprintf(output,"\n Inductance nH / m = %lf ",Lmetr*1e9);
fprintf(output,"\n Capacitance pF / m = %lf ",Cmetr*1E12);
fprintf(output,"\n Conductance mho / m = %lf ",Gmetr);
printf("\n ENTER 1 FOR NEW SUBSTRATE.");
printf("\n
2 FOR NEW Zo.");
printf("\n
3 TO EXIT THIS PART. \n : ");
fprintf(output,"\n -------------------------- NEW DATA --------------------------- \n \n");
scanf("%d",&NN);
if(NN==1) { goto A25; }
if(NN==2) { goto A1; }
fclose(output);
}

‫( ﻓﻰ ﺳﻄﺮ واﺣﺪ‬bold) ‫ ﻳﺘﻢ دﻣﺞ أى ﺳﻄﺮﻳﻦ أو ﺳﻄﻮر ﻣﺘﺘﺎﻟﻴﻪ ﻣﻜﺘﻮﺑﻪ ﺑﻔﻮرﻣﺎت‬: ‫ﻣﻠﺤﻮﻇﻪ‬
(٤-٣) ‫ﺑﺮﻧﺎﻣﺞ‬

‫( ﻟﻌﻤ ﻞ ﺣﺴ ﺎﺑﺎت‬Microstrip_line_analysis) ‫( ﺑﺈﺳ ـﻢ‬function) ‫( ه ﻮ‬٥-٣) ‫أﻣ ﺎ اﻟﺠ ﺰء اﻟ ﺜﺎﻟﺚ ﺑ ﺮﻧﺎﻣﺞ‬
‫( ﻳ ﺘﻢ دﻣ ﺞ أى ﺳ ﻄﺮﻳﻦ أو ﺳ ﻄﻮر ﻣﺘﺘﺎﻟ ﻴﻪ‬٥-٣) ‫( اﻟ ﻰ‬٣-٣) ‫ و ﻓ ﻰ اﻟﺒ ﺮاﻣﺞ ﻣ ﻦ‬. ‫ﺗﺤﻠ ﻴﻞ اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ‬
.‫( ﻓﻰ ﺳﻄﺮ واﺣﺪ‬bold) ‫ﻣﻜﺘﻮﺑﻪ ﺑﻔﻮرﻣﺎت‬
void Microstrip_line_analysis(void)
{
double ZO,MIN,MAX,H3,ER3,H,H1,H2,ER1,ER2,MINL,MAXL;
int AK;
double A,B,ER,W,LN1,LN2,PI,WH,T,DEFFT,RW,RL4;
double EFFT,EFFOF,LG,G,F,FP,BB,LGO4,EFF;
double AL,E,HW,GGG,WEOH,ZO1,ZOA,ZOD,RNL,DL,PPP;
char output_file[30];
FILE *output;
printf(" \n This program is for Microstrip Line ANALYSIS CALCULATIONS \n");
printf(" \n programmer Hesham I. M. AL Anwar \n");
printf(" \n Enter output data file name : ");
scanf("%s",output_file);
output=fopen(output_file,"w");
fprintf(output,"MICROSTRIP LINE ANALYSIS CALCULATIONS \n");
A4 :
printf("\n ENTER EPSILON-R : ");
scanf("%lf",&ER);
printf("\n Enter Microstrip substrate thickness h [mm] : ");
scanf("%lf",&H);
printf("\n ENTER cupper thickness t [mm] : ");
scanf("%lf",&T);
printf("\n Enter Frequency [GHz] : ");
scanf("%lf",&F);
fprintf(output,"\n EPSILON-R = %lf \t h [ mm ] = %lf \t t [mm] = %lf",ER,H,T);

88

fprintf(output,"\n F [GHz] = %lf \n ",F);
A5 :
printf("\n ENTER MICROSTRIP LINE WIDTH W [mm] : ");
scanf("%lf",&W);
printf("\n ENTER MICROSTRIP LINE LENGTH L [mm] : ");
scanf("%lf",&AL);
PI=3.1415927;
E=2.7182818;
WH=W/H;
HW=H/W;
EFF=((ER+1)/2)+(((ER-1)/2)*(1/(sqrt(1+(12/WH)))));
DEFFT=((ER-1)*(T/H))/(4.6*sqrt(WH));
EFFT=EFF-DEFFT;
GGG=0.5*PI;
if(WH<=GGG){ WEOH=WH+(((1.25*T)/(PI*H))*(1+log(4*PI*W/T))); }
if(WH>=GGG){ WEOH=WH+(((1.25*T)/(PI*H))*(1+log(2*H/T))); }
PPP=3.3;
if(WH<PPP)
{
ZO1=log((4*HW)+sqrt((16*pow(HW,2.0))+2));
ZO=ZO1*(119.9/sqrt(2*(ER+1)));
}
if(WH>PPP)
{
ZOA=((ER+1)/(2*PI*ER))*(log(PI*E/2)+log((WH/2)+0.94));
ZOD=(WH/2)+(log(4)/PI)+(log(E*(PI*PI)/16)/(2*PI))*((ER-1)/(ER*ER));
ZO=((119.9*PI)/(2*sqrt(ER)))*(1/(ZOD+ZOA));
}
G=(0.004*ZO)+(pow(((ZO-5.0)/60.0),0.5));
FP=(15.66*ZO)/H;
EFFOF=(ER)-((ER-EFFT)/(1+(G*pow((F/FP),2.0))));
LG=300.0/(F*pow(EFFOF,0.5));
RNL=AL/LG;
DL=(H*0.412)*((EFFOF+0.3)/(EFFOF-0.258))*((WH+0.262)/(WH+0.813));
fprintf(output,"\n EPSILON-R = %lf \t h [ mm ] = %lf \t t [mm] = %lf",ER,H,T);
fprintf(output,"\n F [GHz] = %lf \t input width of microstrip line w = %lf [ mm ] \n input
length of microstrip line L = %lf [ mm ] \n ",F,W,AL);
fprintf(output,"\n --------- output ----------\n");
fprintf(output,"\n Zo = %lf [ ohm ] \n normalized length to lampda guide of microstrip line =
%lf X Lampda guide ",ZO,RNL);
fprintf(output,"\n Lampda guide = %lf [ mm ] ",LG);
printf("\n ENTER 1 FOR NEW SUBSTRATE , FREQUENCY");
printf("\n
2 FOR NEW TRANSMITION LINE ");
printf("\n
3 TO EXIT THIS PART.
");
fprintf(output,"\n -------------------------- NEW DATA --------------------------- \n \n");
scanf("%d",&AK);
if(AK==1) { goto A4; }
if(AK==2) { goto A5; }
fclose(output);
}

‫( ﻓﻰ ﺳﻄﺮ واﺣﺪ‬bold) ‫ ﻳﺘﻢ دﻣﺞ أى ﺳﻄﺮﻳﻦ أو ﺳﻄﻮر ﻣﺘﺘﺎﻟﻴﻪ ﻣﻜﺘﻮﺑﻪ ﺑﻔﻮرﻣﺎت‬: ‫ﻣﻠﺤﻮﻇﻪ‬
(٥-٣) ‫ﺑﺮﻧﺎﻣﺞ‬

89

‫)ﻤﻘﻁﻊ ‪ (٨-٣‬ﺃﻤﺜﻠﻪ ﺭﻗﻤﻴﻪ ﻟﺘﺼﻤﻴﻡ ﻭ ﺘﺤﻠﻴل ﺍﻟﺨﻁ ﺍﻟﺸﺭﻴﻁﻰ ﺍﻟﺩﻗﻴﻕ ‪:‬‬

‫اﻟﺪاﺋ ﺮﻩ اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﺪﻗ ﻴﻘﻪ ﺗ ﺘﻜﻮن ﻣﻦ ﻋﺪد ﻣﻦ ﺧﻄﻮط اﻻرﺳﺎل )اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ( و ﻏﻴﺮهﺎ ﻣﻦ اﻟﻤﻜﻮﻧﺎت‬
‫‪ ،‬و ﻓ ﻰ ﻣﻌﻈ ﻢ اﻷﺣ ﻴﺎن ﻳ ﺒﺪأ ﺗﺼ ﻤﻴﻢ اﻟﺪاﺋ ﺮﻩ ﺑﺤﺴ ﺎب ﻗ ﻴﻢ اﻟﻄ ﻮل اﻟﻜﻬﺮﺑ ﻰ )‪ (θ‬ﻋ ﻨﺪ ﺗﺮدد ﻣﻌﻴﻦ و اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ‬
‫)‪ (Zo‬ﺑﺎﻟﻨﺴ ﺒﻪ ﻟﺨﻄ ﻮط اﻻرﺳ ﺎل اﻟﻤﻜ ﻮﻧﻪ ﻟﻠﺪاﺋ ﺮﻩ و ﻣﻦ هﺎﺗﻴﻦ اﻟﻘﻴﻤﺘﻴﻦ ﻳﺘﻢ ﺣﺴﺎب ﻃﻮل و ﻋﺮض آﻞ ﺧﻂ ﺷﺮﻳﻄﻰ‬
‫دﻗﻴﻖ ﺑﺎﻟﺪاﺋﺮﻩ )‪ ، (w,L‬ﺛﻢ ﺗﻮﺿﻊ اﻟﺪاﺋﺮﻩ ﻋﻠﻰ ﺑﺮﻧﺎﻣﺞ ﺗﺤﻠﻴﻞ اﻟﺪواﺋﺮ ﻟﺤﺴﺎب أداء اﻟﺪاﺋﺮﻩ‪.‬‬
‫و ﻓﻴﻤﺎ ﻳﻠﻰ ﺑﻌﺾ اﻷﻣﺜﻠﻪ ﻟﺘﺼﻤﻴﻢ اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ ‪.‬‬
‫ﻣﺜﺎل )‪: (١-٣‬‬
‫اﺣﺴ ﺐ ﻃ ﻮل )‪ (L‬و ﻋ ﺮض )‪ (w‬اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ ذو اﻟﻄ ﻮل اﻟﻜﻬﺮﺑ ﻰ )‪ (θ = 90o ≡ λg/4‬ﻋ ﻨﺪ ﺗ ﺮدد‬
‫)‪ (f = 5 GHz‬و اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻤﻴ ﺰﻩ )‪ (Zo = 50 Ω‬و اﻟ ﺬى ﺳ ﻴﺘﻢ ﺗﻨﻔ ﻴﺬﻩ ﻋﻠ ﻰ اﻟﺸ ﺮﻳﺤﻪ اﻟﻤﻌﻄ ﻰ ﻣﻮاﺻ ﻔﺎﺗﻬﺎ‬
‫ﺑﺎﻟﺠﺪول اﻟﺘﺎﻟﻰ ‪:‬‬
‫ﺛﺎﺑﺖ اﻟﻌﺰل )‪2.16 = ( εr dielectric constant‬‬

‫ﻧﻮع اﻟﻌﺎزل )‪ : (dielectric‬ﺗﻴﻔﻠﻮن‬
‫ﻣﻤﺎس اﻟﻔﻘﺪ )‪= (tan δ ≡ Loss tangent‬‬

‫‪0.001‬‬

‫ﻧﻮع اﻟﻤﻮﺻﻞ )‪ : (conductor‬ﻧﺤﺎس‬

‫ﺳﻤﻚ اﻟﻌﺎزل )‪0.508 mm = (h‬‬
‫اﻟﺘﻮﺻﻴﻞ )‪5.88X107 S/m = (Conductivity‬‬

‫ﺳﻤﻚ اﻟﻤﻮﺻﻞ )‪70 µm = 0.07 mm = (t‬‬
‫ﺟﺪول )‪ : (٣-٣‬ﻣﻮاﺻﻔﺎت ﺷﺮﻳﺤﺔ اﻟﺘﺮدد اﻟﻌﺎﻟﻰ اﻟﻤﺴﺘﺨﺪﻣﻪ ﻓﻰ ﻣﺜﺎل )‪(١-٣‬‬
‫اﻟﺤـﻞ ‪:‬‬
‫ﻃﻮل اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪ (L = 11.0634mm‬و ﻋﺮض اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪.(w = 1.50776mm‬‬

‫ﻣﺜﺎل )‪: (٢-٣‬‬
‫اﺣﺴ ﺐ ﻃ ﻮل )‪ (L‬و ﻋ ﺮض )‪ (w‬اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ ذو اﻟﻄ ﻮل اﻟﻜﻬﺮﺑ ﻰ )‪ (θ = 90o ≡ λg/4‬ﻋ ﻨﺪ ﺗ ﺮدد‬
‫)‪ (f = 5 GHz‬و اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻤﻴ ﺰﻩ )‪ (Zo = 100 Ω‬و اﻟ ﺬى ﺳ ﻴﺘﻢ ﺗﻨﻔ ﻴﺬﻩ ﻋﻠ ﻰ اﻟﺸ ﺮﻳﺤﻪ اﻟﻤﻌﻄ ﻰ ﻣﻮاﺻ ﻔﺎﺗﻬﺎ‬
‫ﺑﺠﺪول )‪.(٣-٣‬‬

‫‪90‬‬

‫اﻟﺤـﻞ ‪:‬‬
‫ﻃﻮل اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪ (L = 11.5373mm‬و ﻋﺮض اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪.(w = 0.38467mm‬‬

‫ﻣﺜﺎل )‪: (٣-٣‬‬
‫اﺣﺴ ﺐ ﻃ ﻮل )‪ (L‬و ﻋ ﺮض )‪ (w‬اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ ذو اﻟﻄ ﻮل اﻟﻜﻬﺮﺑ ﻰ )‪ (θ = 90o ≡ λg/4‬ﻋ ﻨﺪ ﺗ ﺮدد‬
‫)‪ (f = 5 GHz‬و اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻤﻴ ﺰﻩ )‪ (Zo = 25 Ω‬و اﻟ ﺬى ﺳ ﻴﺘﻢ ﺗﻨﻔ ﻴﺬﻩ ﻋﻠ ﻰ اﻟﺸ ﺮﻳﺤﻪ اﻟﻤﻌﻄ ﻰ ﻣﻮاﺻ ﻔﺎﺗﻬﺎ‬
‫ﺑﺠﺪول )‪.(٣-٣‬‬
‫اﻟﺤـﻞ ‪:‬‬
‫ﻃﻮل اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪ (L = 10.7139mm‬و ﻋﺮض اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪.(w = 3.95003mm‬‬

‫ﻓ ﻴﻤﺎ ﻳﻠ ﻰ ﺟ ﺪول ﻳﻠﺨ ﺺ ﺣﺴ ﺎﺑﺎت اﻻﻣ ﺜﻠﻪ اﻟﺴ ﺎﺑﻘﻪ )‪ (١-٣‬و )‪ (٢-٣‬و )‪ (٣-٣‬واﻟﺘ ﻰ ﺗﻤﺖ ﻓﻴﻬﺎ اﻟﺤﺴﺎﺑﺎت ﻋﻨﺪ ﻧﻔﺲ‬
‫اﻟﺘ ﺮدد و ﺑﺎﺳ ﺘﺨﺪام ﻧﻔ ﺲ اﻟﺸﺮﻳﺤﻪ و ﻟﻨﻔﺲ اﻟﻄﻮل اﻟﻜﻬﺮﺑﻰ ﻟﻠﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ ﻣﻊ ﺗﻐﻴﺮ اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ ﻟﻠﺨﻂ‬
‫اﻟﺸﺮﻳﻄﻰ ﻓﻘﻂ ‪.‬‬
‫ﻃﻮل اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ‬

‫اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ‬

‫ﻋﺮض اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ‬

‫اﻟﻄﻮل اﻟﻜﻬﺮﺑﻰ‬

‫‪25‬‬

‫‪3.95003mm‬‬

‫‪90o‬‬

‫‪10.7139mm‬‬

‫‪50‬‬

‫‪1.50776mm‬‬

‫‪90o‬‬

‫‪11.0634mm‬‬

‫‪100‬‬

‫‪0.38467mm‬‬

‫‪90o‬‬

‫‪11.5373mm‬‬

‫ﺟﺪول )‪ : (٤-٣‬ﻣﻠﺨﺺ ﺣﺴﺎﺑﺎت اﻷﻣﺜﻠﻪ اﻟﺴﺎﺑﻘﻪ‪.‬‬

‫و ﻧﻼﺣ ﻆ ﻣﻦ اﻟﺠﺪول )‪ (٤-٣‬أن ﻋﺮض اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ ﻳﻘﻞ ﺑﺰﻳﺎدة اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ ﺑﻴﻨﻤﺎ ﻳﺰﻳﺪ ﻃﻮل اﻟﺨﻂ‬
‫اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ )اﻟ ﺬى ﻟ ﻪ ﻧﻔ ﺲ اﻟﻄ ﻮل اﻟﻜﻬﺮﺑﻰ( زﻳﺎدﻩ ﻃﻔﻴﻔﻪ ‪ .‬و ﻳﻤﻜﻦ أن ﻧﺴﺘﻔﻴﺪ ﻣﻦ هﺬﻩ اﻟﻤﻠﺤﻮﻇﻪ ﻋﻨﺪ ﺗﺼﻤﻴﻢ‬
‫اﻟﺪواﺋ ﺮ ﺑ ﺄن ﻧﺘﺠ ﻨﺐ اﺳ ﺘﺨﺪام اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻤﻴ ﺰﻩ اﻟﻌﺎﻟ ﻴﻪ ﺟ ﺪا ﻟﻠﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ ﺣﺘﻰ ﻳﻤﻜﻦ ﺗﺼﻨﻴﻌﻬﺎ ﻓﻰ اﻟﻨﻬﺎﻳﻪ ‪ ،‬و‬
‫ﻋ ﺎدة ﻻ ﺗﺴ ﺘﺨﺪم ﻣﻌﺎوﻗ ﻪ ﻣﻤﻴ ﺰﻩ أآﺒ ﺮ ﻣ ﻦ )‪ (150 Ω‬ﻓ ﻰ اﻟﺪواﺋ ﺮ ﻃﺎﻟﻤ ﺎ ﻻ ﺗ ﻮ ﺟﺪ وﺳﺎﺋﻞ ﻋﺎﻟﻴﺔ اﻟﺘﻘﻨﻴﻪ ﻓﻰ اﻟﺘﺼﻨﻴﻊ‬
‫ﻣﺜﻞ ﻣﺎآﻴﻨﺎت )‪.(CNC‬‬

‫‪91‬‬

‫ﻣﺜﺎل )‪: (٤-٣‬‬
‫اﺣﺴ ﺐ ﻃ ﻮل )‪ (L‬و ﻋ ﺮض )‪ (w‬اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ ذو اﻟﻄ ﻮل اﻟﻜﻬﺮﺑ ﻰ )‪ (θ = 90o ≡ λg/4‬ﻋ ﻨﺪ ﺗ ﺮدد‬
‫)‪ (f = 1 GHz‬و اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻤﻴ ﺰﻩ )‪ (Zo = 50 Ω‬و اﻟ ﺬى ﺳ ﻴﺘﻢ ﺗﻨﻔ ﻴﺬﻩ ﻋﻠ ﻰ اﻟﺸ ﺮﻳﺤﻪ اﻟﻤﻌﻄ ﻰ ﻣﻮاﺻ ﻔﺎﺗﻬﺎ‬
‫ﺑﺠﺪول )‪.(٣-٣‬‬
‫اﻟﺤـﻞ ‪:‬‬
‫ﻃﻮل اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪ (L = 55.3408mm‬و ﻋﺮض اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪.(w =1.51072mm‬‬
‫ﻣﺜﺎل )‪: (٥-٣‬‬
‫اﺣﺴ ﺐ ﻃ ﻮل )‪ (L‬و ﻋ ﺮض )‪ (w‬اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ ذو اﻟﻄ ﻮل اﻟﻜﻬﺮﺑ ﻰ )‪ (θ = 90o ≡ λg/4‬ﻋ ﻨﺪ ﺗ ﺮدد‬
‫)‪ (f = 10 GHz‬و اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻤﻴ ﺰﻩ )‪ (Zo = 50 Ω‬و اﻟ ﺬى ﺳ ﻴﺘﻢ ﺗﻨﻔ ﻴﺬﻩ ﻋﻠ ﻰ اﻟﺸ ﺮﻳﺤﻪ اﻟﻤﻌﻄ ﻰ ﻣﻮاﺻ ﻔﺎﺗﻬﺎ‬
‫ﺑﺠﺪول )‪.(٣-٣‬‬
‫اﻟﺤـﻞ ‪:‬‬
‫ﻃﻮل اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪ (L =5.51735mm‬و ﻋﺮض اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪.(w =1.51096mm‬‬
‫ﻓ ﻰ اﻻﻣ ﺜﻠﻪ )‪ (١-٣‬و )‪ (٤-٣‬و )‪ (٥-٣‬واﻟﺘ ﻰ ﺗﻤﺖ ﻓﻴﻬﺎ اﻟﺤﺴﺎﺑﺎت ﺑﺎﺳﺘﺨﺪام ﻧﻔﺲ اﻟﺸﺮﻳﺤﻪ و ﻧﻔﺲ اﻟﻄﻮل اﻟﻜﻬﺮﺑﻰ‬
‫و اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻤﻴ ﺰﻩ ﻟﻠﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ ﻣ ﻊ ﺗﻐﻴﻴ ﺮ اﻟﺘ ﺮدد ‪ .‬ﻧﺴ ﺘﻨﺘﺞ ﻣ ﻦ ﻣﻘﺎرﻧ ﺔ اﻟﻨ ﺘﺎﺋﺞ أن أﺑﻌ ﺎد اﻟﺨﻄ ﻮط‬
‫اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﺪﻗ ﻴﻘﻪ )و ﺑﺎﻟﺘﺎﻟ ﻰ أﺑﻌﺎد اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ( ﺗﻘﻞ ﺑﺰﻳﺎدة اﻟﺘﺮدد‪ .‬و ﻟﺬﻟﻚ هﻨﺎك ﺣﺪود ﻟﺘﺼﻨﻴﻊ اﻟﺪواﺋﺮ ﺗﺮﺗﺒﻂ‬
‫ﺑﺪﻗ ﺔ اﻣﻜﺎﻧ ﻴﺎت اﻟﺘﺼ ﻨﻴﻊ و اﻟﺘ ﻰ ﻗ ﺪ ﻻﺗﺴ ﻤﺢ ﺑﺘﺼ ﻨﻴﻊ اﻟﺪواﺋ ﺮ أﻋﻠ ﻰ ﻣ ﻦ ﺗ ﺮدد ﻣﻌ ﻴﻦ ﺣ ﻴﺚ ﻳﺮﺗﺒﻂ ذﻟﻚ ﺑﺄﻗﻞ ﻣﻘﺎﺳﺎت‬
‫ﻟﻠﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ ﻳﻤﻜﻦ ﺗﻨﻔﻴﺬهﺎ‪.‬‬
‫ﻣﺜﺎل )‪: (٦-٣‬‬
‫اﺣﺴ ﺐ ﻃ ﻮل )‪ (L‬و ﻋ ﺮض )‪ (w‬اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ ذو اﻟﻄ ﻮل اﻟﻜﻬﺮﺑ ﻰ )‪ (θ = 90o ≡ λg/4‬ﻋ ﻨﺪ ﺗ ﺮدد‬
‫)‪ (f = 5 GHz‬و اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻤﻴ ﺰﻩ )‪ (Zo = 50 Ω‬و اﻟﺬى ﺳﻴﺘﻢ ﺗﻨﻔﻴﺬﻩ ﻋﻠﻰ ﺷﺮﻳﺤﻪ ﺑﻨﻔﺲ اﻟﻤﻮاﺻﻔﺎت اﻟﻤﻌﻄﺎﻩ‬
‫ﻓﻰ ﺟﺪول )‪ (٣-٣‬ﺑﺎﺳﺘﺜﻨﺎء ﺳﻤﻚ اﻟﻌﺎزل )‪. 0.127 mm = (h‬‬
‫اﻟﺤـﻞ ‪:‬‬
‫ﻃﻮل اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪ (L =11.2007mm‬و ﻋﺮض اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪.(w =0.343698mm‬‬
‫ﻣﺜﺎل )‪: (٧-٣‬‬
‫اﺣﺴ ﺐ ﻃ ﻮل )‪ (L‬و ﻋ ﺮض )‪ (w‬اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ ذو اﻟﻄ ﻮل اﻟﻜﻬﺮﺑ ﻰ )‪ (θ = 90o ≡ λg/4‬ﻋ ﻨﺪ ﺗ ﺮدد‬
‫)‪ (f = 5 GHz‬و اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻤﻴ ﺰﻩ )‪ (Zo = 50 Ω‬و اﻟﺬى ﺳﻴﺘﻢ ﺗﻨﻔﻴﺬﻩ ﻋﻠﻰ ﺷﺮﻳﺤﻪ ﺑﻨﻔﺲ اﻟﻤﻮاﺻﻔﺎت اﻟﻤﻌﻄﺎﻩ‬
‫ﻓﻰ ﺟﺪول )‪ (٣-٣‬ﺑﺎﺳﺘﺜﻨﺎء ﺳﻤﻚ اﻟﻌﺎزل )‪. 1.575 mm = (h‬‬
‫اﻟﺤـﻞ ‪:‬‬
‫ﻃﻮل اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪ (L =10.9501mm‬و ﻋﺮض اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪.(w =4.85912mm‬‬

‫‪92‬‬

‫ﻓ ﻴﻤﺎ ﻳﻠ ﻰ ﺟ ﺪول ﻳﻠﺨ ﺺ ﺣﺴ ﺎﺑﺎت اﻻﻣ ﺜﻠﻪ )‪ (١-٣‬و )‪ (٦-٣‬و )‪ (٧-٣‬واﻟﺘﻰ ﺗﻤﺖ ﻓﻴﻬﺎ اﻟﺤﺴﺎﺑﺎت ﻋﻨﺪ ﻧﻔﺲ اﻟﺘﺮدد و‬
‫ﺑﺎﺳﺘﺨﺪام ﻧﻔﺲ اﻟﻄﻮل اﻟﻜﻬﺮﺑﻰ و اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ ﻟﻠﺨﻂ اﻟﺸﺮﻳﻄﻰ ﻣﻊ ﺗﻐﻴﻴﺮ ﺳﻤﻚ اﻟﻌﺎزل ﺑﺎﻟﺸﺮﻳﺤﻪ )‪ (h‬ﻓﻘﻂ ‪.‬‬

‫ﺳﻤﻚ اﻟﻌﺎزل‬

‫ﻋﺮض اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ‬

‫ﻃﻮل اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ‬

‫‪0.127 mm‬‬

‫‪0.343698mm‬‬

‫‪11.2007mm‬‬

‫‪0.508 mm‬‬

‫‪1.50776mm‬‬

‫‪11.0634mm‬‬

‫‪1.575 mm‬‬

‫‪4.85912mm‬‬

‫‪10.9501mm‬‬

‫ﺟﺪول )‪ : (٥-٣‬ﻣﻠﺨﺺ ﺣﺴﺎﺑﺎت اﻷﻣﺜﻠﻪ اﻟﺴﺎﺑﻘﻪ‪.‬‬
‫و ﻧﻼﺣ ﻆ ﻣ ﻦ اﻟﺠ ﺪول )‪ (٥-٣‬أن ﻋ ﺮض اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ ﻳ ﺰﻳﺪ ﺑﻨﺴ ﺒﻪ آﺒﻴﺮﻩ ﺑﺰﻳﺎدة ﺳﻤﻚ اﻟﻌﺎزل ﺑﺎﻟﺸﺮﻳﺤﻪ‬
‫ﺑﻴ ﻨﻤﺎ ﻳﻘ ﻞ ﻃ ﻮل اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ )اﻟ ﺬى ﻟ ﻪ ﻧﻔ ﺲ اﻟﻄﻮل اﻟﻜﻬﺮﺑﻰ( ﺑﻨﺴﺒﻪ ﻃﻔﻴﻔﻪ ‪ .‬و ﻳﻤﻜﻦ أن ﻧﺴﺘﻔﻴﺪ ﻣﻦ هﺬﻩ‬
‫اﻟﻤﻠﺤ ﻮﻇﻪ ﻋ ﻨﺪ ﺗﺼ ﻤﻴﻢ اﻟﺪواﺋ ﺮ ﺑ ﺄن ﻧﺴ ﺘﺨﺪم ﺷ ﺮاﺋﺢ ذات ﺳ ﻤﻚ أآﺒ ﺮ ﻋ ﻨﺪﻣﺎ ﻧ ﺮﻏﺐ ﻓ ﻰ زﻳ ﺎدة أﺑﻌ ﺎد اﻟﺪاﺋ ﺮﻩ و أن‬
‫ﻧﺴ ﺘﺨﺪم ﺷ ﺮاﺋﺢ ذات ﺳ ﻤﻚ أﻗﻞ ﻋﻨﺪﻣﺎ ﻧﺮﻏﺐ ﻓﻰ اﺧﺘﺼﺎر أﺑﻌﺎد )أو ﻣﺴﺎﺣﺔ( اﻟﺪاﺋﺮﻩ ﻃﺎﻟﻤﺎ ﺗﻮ ﺟﺪ وﺳﺎﺋﻞ اﻟﺘﺼﻨﻴﻊ‬
‫اﻟﺘﻰ ﺗﺴﻤﺢ ﺑﺘﻨﻔﻴﺬ اﻷﺑﻌﺎد اﻟﺼﻐﻴﺮﻩ اﻟﺘﻰ ﺳﺘﻨﺘﺞ ﻣﻦ اﺳﺘﺨﺪام ﺳﻤﻚ ﻋﺎزل )‪ (h‬أﻗﻞ‪.‬‬

‫ﻣﺜﺎل )‪: (٨-٣‬‬
‫اﺣﺴ ﺐ ﻃ ﻮل )‪ (L‬و ﻋ ﺮض )‪ (w‬اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ ذو اﻟﻄ ﻮل اﻟﻜﻬﺮﺑ ﻰ )‪ (θ = 90o ≡ λg/4‬ﻋ ﻨﺪ ﺗ ﺮدد‬
‫)‪ (f = 5 GHz‬و اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻤﻴ ﺰﻩ )‪ (Zo = 50 Ω‬و اﻟﺬى ﺳﻴﺘﻢ ﺗﻨﻔﻴﺬﻩ ﻋﻠﻰ ﺷﺮﻳﺤﻪ ﺑﻨﻔﺲ اﻟﻤﻮاﺻﻔﺎت اﻟﻤﻌﻄﺎﻩ‬
‫ﻓﻰ ﺟﺪول )‪ (٣-٣‬ﺑﺎﺳﺘﺜﻨﺎء ﺛﺎﺑﺖ اﻟﻌﺰل )‪.6.0 = ( εr dielectric constant‬‬
‫اﻟﺤـﻞ ‪:‬‬
‫ﻃﻮل اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪ (L =7.34213mm‬و ﻋﺮض اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪.(w =0.704581mm‬‬
‫ﻣﺜﺎل )‪: (٩-٣‬‬
‫اﺣﺴ ﺐ ﻃ ﻮل )‪ (L‬و ﻋ ﺮض )‪ (w‬اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ ذو اﻟﻄ ﻮل اﻟﻜﻬﺮﺑ ﻰ )‪ (θ = 90o ≡ λg/4‬ﻋ ﻨﺪ ﺗ ﺮدد‬
‫)‪ (f = 5 GHz‬و اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻤﻴ ﺰﻩ )‪ (Zo = 50 Ω‬و اﻟﺬى ﺳﻴﺘﻢ ﺗﻨﻔﻴﺬﻩ ﻋﻠﻰ ﺷﺮﻳﺤﻪ ﺑﻨﻔﺲ اﻟﻤﻮاﺻﻔﺎت اﻟﻤﻌﻄﺎﻩ‬
‫ﻓﻰ ﺟﺪول )‪ (٣-٣‬ﺑﺎﺳﺘﺜﻨﺎء ﺛﺎﺑﺖ اﻟﻌﺰل )‪. 10.2 = ( εr dielectric constant‬‬
‫اﻟﺤـﻞ ‪:‬‬
‫ﻃﻮل اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪ (L =5.91995mm‬و ﻋﺮض اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪.(w =0.42183mm‬‬

‫‪93‬‬

‫ﻓ ﻴﻤﺎ ﻳﻠ ﻰ ﺟ ﺪول ﻳﻠﺨ ﺺ ﺣﺴ ﺎﺑﺎت اﻻﻣ ﺜﻠﻪ )‪ (١-٣‬و )‪ (٨-٣‬و )‪ (٩-٣‬واﻟﺘﻰ ﺗﻤﺖ ﻓﻴﻬﺎ اﻟﺤﺴﺎﺑﺎت ﻋﻨﺪ ﻧﻔﺲ اﻟﺘﺮدد و‬
‫ﺑﺎﺳﺘﺨﺪام ﻧﻔﺲ اﻟﻄﻮل اﻟﻜﻬﺮﺑﻰ و اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ ﻟﻠﺨﻂ اﻟﺸﺮﻳﻄﻰ ﻣﻊ ﺗﻐﻴﻴﺮ ﺛﺎﺑﺖ اﻟﻌﺰل ﺑﺎﻟﺸﺮﻳﺤﻪ )‪ (εr‬ﻓﻘﻂ ‪.‬‬

‫ﺛﺎﺑﺖ اﻟﻌﺰل‬

‫ﻋﺮض اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ‬

‫ﻃﻮل اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ‬

‫‪2.16‬‬

‫‪1.50776mm‬‬

‫‪11.0634mm‬‬

‫‪6.0‬‬

‫‪0.704581mm‬‬

‫‪7.34213mm‬‬

‫‪10.2‬‬

‫‪0.42183mm‬‬

‫‪5.91995mm‬‬

‫ﺟﺪول )‪ : (٦-٣‬ﻣﻠﺨﺺ ﺣﺴﺎﺑﺎت اﻷﻣﺜﻠﻪ اﻟﺴﺎﺑﻘﻪ‪.‬‬
‫و ﻧﻼﺣ ﻆ ﻣ ﻦ اﻟﺠ ﺪول )‪ (٦-٣‬أن ﻋ ﺮض و ﻃ ﻮل اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ ﻳﻘﻼن ﻣﻊ زﻳﺎدة ﺛﺎﺑﺖ اﻟﻌﺰل ﺑﺎﻟﺸﺮﻳﺤﻪ‪ .‬و‬
‫ﻳﻤﻜ ﻦ أن ﻧﺴ ﺘﻔﻴﺪ ﻣ ﻦ ه ﺬﻩ اﻟﻤﻠﺤ ﻮﻇﻪ ﻋ ﻨﺪ ﺗﺼﻤﻴﻢ اﻟﺪواﺋﺮ ﺑﺄن ﻧﺴﺘﺨﺪم ﺷﺮاﺋﺢ ذات ﺛﺎﺑﺖ ﻋﺰل أﻗﻞ ﻋﻨﺪﻣﺎ ﻧﺮﻏﺐ ﻓﻰ‬
‫زﻳ ﺎدة أﺑﻌ ﺎد )أو ﻣﺴ ﺎﺣﺔ( اﻟﺪاﺋ ﺮﻩ و أن ﻧﺴ ﺘﺨﺪم ﺷ ﺮاﺋﺢ ذات ﺛﺎﺑ ﺖ ﻋ ﺰل أآﺒ ﺮ ﻋ ﻨﺪﻣﺎ ﻧﺮﻏﺐ ﻓﻰ اﺧﺘﺼﺎر أﺑﻌﺎد )أو‬
‫ﻣﺴﺎﺣﺔ( اﻟﺪاﺋﺮﻩ ﻃﺎﻟﻤﺎ ﺗﻮ ﺟﺪ وﺳﺎﺋﻞ اﻟﺘﺼﻨﻴﻊ اﻟﺘﻰ ﺗﺴﻤﺢ ﺑﺘﻨﻔﻴﺬ هﺬﻩ اﻷﺑﻌﺎد اﻟﺼﻐﻴﺮﻩ‪.‬‬
‫و ﻳﻤﻜﻨﻨﺎ أن ﻧﻠﺨﺺ اﻟﻨﺘﺎﺋﺞ اﻟﺘﻰ ﺗﻢ ﺣﺴﺎﺑﻬﺎ ﻓﻰ آﻞ اﻷﻣﺜﻠﻪ اﻟﺴﺎﺑﻘﻪ ﻓﻰ ﻣﺠﻤﻮﻋﻪ ﻣﻦ اﻟﻘﻮاﻋﺪ آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫‪ -١‬ﻋﺮض اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ ﻳﻘﻞ ﺑﺰﻳﺎدة اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ ﻟﻠﺨﻂ )‪.(Zo‬‬
‫‪ -٢‬أﺑﻌﺎد اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ ﺗﻘﻞ ﺑﺰﻳﺎدة اﻟﺘﺮدد )‪.(f‬‬
‫‪ -٣‬أﺑﻌﺎد اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ ﺗﺰﻳﺪ ﻣﻊ زﻳﺎدة ﺳﻤﻚ اﻟﻌﺎزل ﺑﺎﻟﺸﺮﻳﺤﻪ )‪.(h‬‬
‫‪ -٤‬أﺑﻌﺎد اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ ﺗﻘﻞ ﻣﻊ زﻳﺎدة ﺛﺎﺑﺖ اﻟﻌﺰل ﺑﺎﻟﺸﺮﻳﺤﻪ )‪.(εr‬‬

‫ﺑﺎﻟﻌ ﻮدﻩ اﻟ ﻰ اﻟﻤ ﺜﺎل اﻟﻤﻌﻄ ﻰ ﻋﻠ ﻰ اﻟﺪواﺋ ﺮ اﻟﺸ ﺮﻳﻄﻴﻪ ﻓ ﻰ اﻟﻔﺼ ﻞ اﻷول ﻓ ﻰ اﻟﺸﻜﻞ )‪ (١٥-١‬اﻟﺬى آﺎن ﻋﺒﺎرﻩ ﻋﻦ‬
‫ﻓﻠﺘ ﺮ ﻣﺼ ﻨﻮع ﺑﺘﻜﻨﻮﻟﻮﺟ ﻴﺎ اﻟﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﺪﻗ ﻴﻘﻪ )‪ ، (Microstrip Low Pass Filter‬ﻳ ﺘﻜﻮن ﻣ ﻦ ﺧﻤﺴ ﺔ‬
‫ﺧﻄ ﻮط ﺷ ﺮﻳﻄﻴﻪ )‪ (5 microstrip lines‬ﻣ ﻨﻬﺎ ﺛﻼﺛ ﺔ ﺧﻄ ﻮط )ذات ﺳ ﻤﻚ رﻓ ﻴﻊ( و ه ﺬا ﻣﻌ ﻨﺎﻩ أﻧﻬﺎ ﺧﻄﻮط ذات‬
‫ﻣﻌﺎوﻗ ﻪ )‪ (characteristic impedance Zo‬ﻋﺎﻟ ﻴﻪ و ﺧﻄ ﻴﻦ ﺳ ﻤﻴﻜﻴﻦ و ه ﺬا ﻣﻌ ﻨﺎﻩ أن اﻟﺨﻄ ﻴﻦ ﻟﻬﻤ ﺎ ﻣﻌﺎوﻗ ﻪ‬
‫ﻣﻨﺨﻔﻀﻪ ‪ ،‬ﻳﺘﻀﺢ اﻵن ﻣﻌﻨﻰ اﻟﻘﺎﻋﺪﻩ رﻗﻢ )‪ (١‬اﻟﻤﺴﺘﻨﺘﺠﻪ أﻋﻼﻩ ‪.‬‬

‫‪94‬‬

‫ﺷﻜﻞ )‪ : (١٢ - ٣‬ﻓﻠﺘﺭ ﻤﺼﻨﻭﻉ ﺒﺘﻜﻨﻭﻟﻭﺠﻴﺎ ﺍﻟﺨﻁﻭﻁ ﺍﻟﺸﺭﻴﻁﻴﻪ ﺍﻟﺩﻗﻴﻘﻪ )‪(Microstrip Low Pass Filter‬‬
‫ﻤﻠﺤﻭﻡ ﺒﻪ ﻤﻭﺼﻼﺕ ﻤﺤﻭﺭﻴﻪ )‪(SMA coaxial connectors‬‬

‫ﺷﻜﻞ )‪ : (١٣ - ٣‬اﻟﻤﺨﻄﻂ اﻟﺘﻔﺼﻴﻠﻰ اﻟﺨﺎص ﺑﺎﻟﻔﻠﺘﺮ )‪(Filter Layout‬‬

‫‪95‬‬

‫ﻣﺜﺎل ) ‪: (١٠ -٣‬‬
‫ﺻﻤﻢ ﻓﻠﺘﺮ آﺎﻟﻤﺒﻴﻦ ﻓﻰ ﺷﻜﻞ )‪ (١٢ - ٣‬ﺑﺎﺳﺘﺨﺪام ﺷﺮﻳﺤﻪ ﺑﺎﻟﻤﻮاﺻﻔﺎت اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫ﺛﺎﺑﺖ اﻟﻌﺰل )‪. 2.2 = ( εr dielectric constant‬‬
‫ﺳﻤﻚ اﻟﻌﺎزل )‪. 1.575 mm = (h‬‬
‫ﺳﻤﻚ اﻟﻤﻮﺻﻞ )‪. 0.07 mm = (t‬‬

‫و ﻣﻌﻄ ﻰ ﻗ ﻴﻢ اﻟﻄ ﻮل اﻟﻜﻬﺮﺑ ﻰ )‪ (θ‬ﻋ ﻨﺪ ﺗ ﺮدد )‪ (3GHz‬و اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻤﻴ ﺰﻩ )‪ (Zo‬ﻟﻠﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﻤﻜﻮﻧﻪ‬
‫ﻟﻔﻠﺘﺮ )‪ (3GHz Microstrip Low Pass Filter‬ﺑﺎﻟﺠﺪول )‪. (٧-٣‬‬
‫اﻟﻄﻮل اﻟﻜﻬﺮﺑﻰ )‪(θ in degree‬‬

‫اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ‬

‫)‪(Zo Ω‬‬

‫رﻗﻢ اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ‬

‫‪θ1=20.2279‬‬

‫‪Zo1=150.538‬‬

‫‪1‬‬

‫‪θ2=70.8735‬‬

‫‪Zo2=35.9254‬‬

‫‪2‬‬

‫‪θ3=θ1=20.2279‬‬

‫‪Zo3=Zo1=150.538‬‬

‫‪3‬‬

‫‪θ4=θ2=70.8735‬‬

‫‪Zo4=Zo2=35.9254‬‬

‫‪4‬‬

‫‪θ5=θ1=20.2279‬‬

‫‪Zo5=Zo1=150.538‬‬

‫‪5‬‬

‫ﺟﺪول )‪ : (٧-٣‬ﻗﻴﻢ اﻟﻄﻮل اﻟﻜﻬﺮﺑﻰ و اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ ﻟﻠﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﻤﻜﻮﻧﻪ ﻟﻠﻔﻠﺘﺮ‬

‫اﻟﺤﻞ ‪:‬‬
‫ﻋﺮض اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪(mm‬‬

‫ﻃﻮل اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪(mm‬‬

‫رﻗﻢ اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ‬

‫‪W1=0.383781956421755‬‬

‫‪L1=4.34616948628873‬‬

‫‪1‬‬

‫‪W2=7.66764396065821‬‬

‫‪L2=14.0949609014343‬‬

‫‪2‬‬

‫‪W3=W1‬‬

‫‪L3=L1‬‬

‫‪3‬‬

‫‪W4=W2‬‬

‫‪L4=L2‬‬

‫‪4‬‬

‫‪W5=W1‬‬

‫‪L5=L1‬‬

‫‪5‬‬

‫ﺟﺪول )‪ : (٨-٣‬أﺑﻌﺎد اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﻤﻜﻮﻧﻪ ﻟﻠﻔﻠﺘﺮ ﻓﻰ ﻣﺜﺎل )‪(١٠-٣‬‬

‫‪96‬‬

‫ﺟ ﺪول )‪ (٨-٣‬ﻳﺤﺘﻮى ﻋﻠﻰ ﻧﺘﺎﺋﺞ ﺣﺴﺎﺑﺎت أﺑﻌﺎد اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﻤﻜﻮﻧﻪ ﻟﻠﻔﻠﺘﺮ ‪ ،‬آﻤﺎ ﻳﻮﺿﺢ اﻟﺸﻜﻞ )‪(١٣ - ٣‬‬
‫ﺷ ﻜﻞ اﻟﻤﺨﻄ ﻂ اﻟﺨ ﺎص ﺑﺎﻟﻔﻠﺘ ﺮ )‪ (Filter Layout‬و اﻟﻤﺨ ﺮﺟﻴﻦ )‪ (Ports‬و رﻣ ﻮز اﻷﺑﻌ ﺎد ‪ .‬و ه ﺬا اﻟﻤﺨﻄ ﻂ‬
‫اﻟﺘﻔﺼ ﻴﻠﻰ ﻣﺮﺳ ﻮم ﻓﻘ ﻂ ﻻﻳﻀ ﺎح ﻗ ﻴﺎس اﻷﺑﻌ ﺎد و ﻻ داﻋ ﻰ ﻻﺳ ﺘﺨﺪاﻣﻪ ﻓ ﻰ آﻞ ﺣﺎﻻت رﺳﻢ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ ﺣﻴﺚ‬
‫ﺗﻜﺘﻔ ﻰ ﺑﻌ ﺾ اﻟﻤ ﺮاﺟﻊ ﺑﺘﻤﻴﻴ ﺰ اﻟﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ ﺑﺎﻷرﻗﺎم )أو اﻟﺮﻣﻮز( آﻤﺎ وﺿﺤﻨﺎ ﻣﻦ ﻗﺒﻞ ﻓﻰ اﻟﻔﺼﻞ اﻷول ﻓﻰ‬
‫اﻟﺸ ﻜﻞ )‪ (١٥-١‬و ﺑﻄﺒﻴﻌﺔ اﻟﺤﺎل ﻳﻔﻬﻢ أن اﻟﺨﻂ رﻗﻢ )‪ (1‬ﻟﻪ ﻃﻮل )‪ (L1‬و ﻋﺮض )‪ (W1‬و اﻟﺨﻂ رﻗﻢ )‪ (2‬ﻟﻪ ﻃﻮل‬
‫)‪ (L2‬و ﻋﺮض )‪ (W2‬و هﻜﺬا دون اﻟﺤﺎﺟﻪ ﻟﺮﺳﻢ ﺧﻄﻮط أو أﺳﻬﻢ ﺗﺒﻴﻦ اﻷﺑﻌﺎد ﻓﻰ آﻞ ﻣﺮﻩ‪.‬‬
‫ﻓ ﻰ اﻟﻤ ﺜﺎل اﻟﺘﺎﻟ ﻰ و ﻟﻼﺳ ﺘﻔﺎدﻩ ﻣ ﻦ اﻟﻘﺎﻋﺪﺗ ﻴﻦ أرﻗ ﺎم )‪٣‬و‪ (٤‬اﻟﻤﺬآﻮرﺗ ﻴﻦ أﻋﻼﻩ ﺳﻴﺘﻢ ﺗﺼﻤﻴﻢ ﻧﻔﺲ اﻟﺪاﺋﺮﻩ ﺑﺎﺳﺘﺨﺪام‬
‫ﺷﺮﻳﺤﻪ ذات ﺳﻤﻚ ﻋﺎزل )‪ (h‬أﻗﻞ و ﺛﺎﺑﺖ ﻋﺰل )‪ (εr‬أآﺒﺮ ‪.‬‬
‫ﻣﺜﺎل ) ‪: (١١ -٣‬‬
‫ﺻﻤﻢ اﻟﻔﻠﺘﺮ آﺎﻟﻤﺒﻴﻦ ﻓﻰ ﺷﻜﻞ )‪ (١٣ - ٣‬ﺑﺎﺳﺘﺨﺪام ﺷﺮﻳﺤﻪ ﺑﺎﻟﻤﻮاﺻﻔﺎت اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫ﺛﺎﺑﺖ اﻟﻌﺰل )‪. 2.4 = ( εr dielectric constant‬‬
‫ﺳﻤﻚ اﻟﻌﺎزل )‪= (h‬‬

‫‪. 0.762 mm‬‬

‫ﺳﻤﻚ اﻟﻤﻮﺻﻞ )‪. 0.07 mm = (t‬‬

‫ﺑﺎﺳ ﺘﺨﺪام ﻧﻔ ﺲ ﻗ ﻴﻢ اﻟﻄ ﻮل اﻟﻜﻬﺮﺑ ﻰ )‪ (θ‬ﻋ ﻨﺪ ﺗ ﺮدد )‪ (3GHz‬و اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻤﻴ ﺰﻩ )‪ (Zo‬ﻟﻠﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ‬
‫اﻟﻤﻜﻮﻧﻪ ﻟﻠﻔﻠﺘﺮ ﺑﺎﻟﺠﺪول )‪. (٧-٣‬‬

‫اﻟﺤﻞ ‪:‬‬
‫ﻋﺮض اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪(mm‬‬

‫ﻃﻮل اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪(mm‬‬

‫رﻗﻢ اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ‬

‫‪W1=0.132411‬‬

‫‪L1=4.27077‬‬

‫‪1‬‬

‫‪W2=3.47785‬‬

‫‪L2=13.6522‬‬

‫‪2‬‬

‫‪W3=W1‬‬

‫‪L3=L1‬‬

‫‪3‬‬

‫‪W4=W2‬‬

‫‪L4=L2‬‬

‫‪4‬‬

‫‪W5=W1‬‬

‫‪L5=L1‬‬

‫‪5‬‬

‫ﺟﺪول )‪ : (٩-٣‬أﺑﻌﺎد اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﻤﻜﻮﻧﻪ ﻟﻠﻔﻠﺘﺮ ﻓﻰ ﻣﺜﺎل )‪(١١-٣‬‬

‫‪97‬‬

‫ﺑﻤﻘﺎرﻧ ﺔ اﻟﻨ ﺘﺎﺋﺞ ﻓ ﻰ ﺟﺪول )‪ (٨-٣‬و ﺟﺪول )‪ (٩-٣‬ﺑﺎﻟﻤﺜﺎﻟﻴﻦ اﻟﺴﺎﺑﻘﻴﻦ ﻳﻤﻜﻨﻨﺎ ﻣﻌﺮﻓﺔ آﻴﻒ ﻳﺘﻢ ﺗﺼﻤﻴﻢ ﻧﻔﺲ اﻟﺪاﺋﺮﻩ‬
‫ﺑﺎﺳﺘﺨﺪام ﺷﺮﻳﺤﻪ ذات ﺳﻤﻚ ﻋﺎزل أﻗﻞ و ﺛﺎﺑﺖ ﻋﺰل أآﺒﺮ ﻟﻠﺤﺼﻮل ﻋﻠﻰ أﺑﻌﺎد أﻗﻞ ﻟﻠﺨﻄﻮط ﻣﻤﺎ ﻳﻌﻨﻰ ﻣﺴﺎﺣﻪ أﻗﻞ‬
‫ﻟﻠﺪاﺋ ﺮﻩ ‪ .‬ﻟﻘ ﺪ ﺗ ﻢ اﺧﺘﺼ ﺎر ﻣﺴ ﺎﺣﺔ اﻟﺪاﺋ ﺮﻩ ﻓ ﻰ ﻣ ﺜﺎل )‪ (١١-٣‬و ه ﺬﻩ اﻟﻨﺘ ﻴﺠﻪ هﺎﻣ ﻪ ﺟ ﺪا ﻓ ﻰ ﺗﺼ ﻤﻴﻢ اﻷﺟﻬ ﺰﻩ‬
‫اﻟﻤﺤﻤ ﻮﻟﻪ ﻣ ﺜﻞ أﺟﻬﺰة اﻻﺗﺼﺎﻻت اﻟﻤﺤﻤﻮﻟﻪ و آﺬﻟﻚ اﻷﻧﻈﻤﻪ اﻟﻤﺤﻤﻮﻟﻪ ﺟﻮا و ﺗﻄﺒﻴﻘﺎت اﻟﻔﻀﺎء و اﻟﺪﻓﺎع و اﻷﺟﻬﺰﻩ‬
‫اﻟﻄﺒ ﻴﻪ و ﺑﻌ ﺾ أﺟﻬ ﺰة اﻟﻘ ﻴﺎس ﺣ ﻴﺚ اﺧﺘﺼ ﺎر ﻣﺴ ﺎﺣﺔ و ﺣﺠ ﻢ و وزن اﻟﺠﻬ ﺎز ﻳﻜ ﻮن ﻣﻄﻠ ﺒﺎ ﻣﻬﻤﺎ ﻟﺘﺤﻘﻴﻖ اﺳﺘﺨﺪام‬
‫أﻓﻀﻞ‪.‬‬
‫ﻟﻜﻦ ﻣﺎذا ﻟﻮ ﻟﻢ ﻳﺮاﻋﻰ اﻟﻤﺼﻤﻢ اﺧﺘﻴﺎر اﻟﺸﺮﻳﺤﻪ اﻟﻤﻨﺎﺳﺒﻪ ‪.‬‬
‫ﻣﺜﺎل ) ‪: (١٢ -٣‬‬
‫ﺻﻤﻢ اﻟﻔﻠﺘﺮ اﻟﻤﺒﻴﻦ ﻓﻰ ﺷﻜﻞ )‪ (١٣ - ٣‬ﺑﺎﺳﺘﺨﺪام ﺷﺮﻳﺤﻪ ﺑﺎﻟﻤﻮاﺻﻔﺎت اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫ﺛﺎﺑﺖ اﻟﻌﺰل )‪. 10.2 = ( εr dielectric constant‬‬
‫ﺳﻤﻚ اﻟﻌﺎزل )‪. 0.254 mm = (h‬‬
‫ﺳﻤﻚ اﻟﻤﻮﺻﻞ )‪. 0.07 mm = (t‬‬

‫ﺑﺎﺳ ﺘﺨﺪام ﻧﻔ ﺲ ﻗ ﻴﻢ اﻟﻄ ﻮل اﻟﻜﻬﺮﺑ ﻰ )‪ (θ‬ﻋ ﻨﺪ ﺗ ﺮدد )‪ (3GHz‬و اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻤﻴ ﺰﻩ )‪ (Zo‬ﻟﻠﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ‬
‫اﻟﻤﻜﻮﻧﻪ ﻟﻠﻔﻠﺘﺮ ﺑﺎﻟﺠﺪول )‪. (٧-٣‬‬

‫اﻟﺤﻞ ‪:‬‬
‫ﻋﺮض اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ‬

‫ﻃﻮل اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪(mm‬‬

‫رﻗﻢ اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ‬

‫‪W1=0.004 mm=4 µm‬‬

‫‪L1=4.445‬‬

‫‪1‬‬

‫‪W2=0.439 mm‬‬

‫‪L2=7.542‬‬

‫‪2‬‬

‫‪W3=W1‬‬

‫‪L3=L1‬‬

‫‪3‬‬

‫‪W4=W2‬‬

‫‪L4=L2‬‬

‫‪4‬‬

‫‪W5=W1‬‬

‫‪L5=L1‬‬

‫‪5‬‬

‫ﺟﺪول )‪ : (١٠-٣‬أﺑﻌﺎد اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﻤﻜﻮﻧﻪ ﻟﻠﻔﻠﺘﺮ ﻻ ﻳﻤﻜﻦ ﺗﻨﻔﻴﺬ ﺑﻌﻀﻬﺎ‪.‬‬

‫‪98‬‬

‫آﻤﺎ ﻧﺮى ﻓﻰ ﺟﺪول )‪ ، (١٠-٣‬ﻧﻈﺮا ﻻﺧﺘﻴﺎر ﺛﺎﺑﺖ اﻟﻌﺰل اﻟﻌﺎﻟﻰ )‪ (10.2‬و ﺳﻤﻚ اﻟﻌﺎزل اﻟﺼﻐﻴﺮ ﻧﺴﺒﻴﺎ )‪(0.254‬‬
‫ﺟ ﺎء ﻋ ﺮض اﻟﺨﻄﻮط )‪ (1,3,5‬ﺻﻐﻴﺮا ﺟﺪا )‪ (W1=W3=W5=4 µm‬ﻟﻴﻜﺎﻓﺊ اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ ﻟﻠﺨﻄﻮط اﻟﺜﻼﺛﻪ‬
‫)‪ (Zo1=Zo3=Zo5=150.538 Ω‬و ه ﺬا اﻟﺴ ﻤﻚ ﻳﺼ ﻌﺐ ﺗﻨﻔ ﻴﺬﻩ و أﺻ ﺒﺤﺖ اﻟﺪاﺋ ﺮﻩ ﻓ ﻰ ه ﺬا اﻟﻤ ﺜﺎل ﻏﻴ ﺮ ﻗﺎﺑﻠ ﻪ‬
‫ﻟﻠﺘﻨﻔﻴﺬ ﺑﺎﺳﺘﺨﺪام اﻟﻮﺳﺎﺋﻞ اﻟﻌﺎدﻳﻪ‪.‬‬
‫و اﻟﺤ ﻞ اﻟ ﻼزم ﻟﺘﻨﻔ ﻴﺬ ه ﺬﻩ اﻟﺪاﺋ ﺮﻩ ه ﻮ اﺧﺘ ﻴﺎر ﺷ ﺮاﺋﺢ ﻣﻨﺎﺳ ﺒﻪ )ذات ﺛﺎﺑ ﺖ ﻋ ﺰل أﻗ ﻞ و ﺳ ﻤﻚ ﻋ ﺎزل أآﺒ ﺮ( ﻣ ﺜﻞ‬
‫اﻟﺸﺮﻳﺤﺘﺎن اﻟﻤﺨﺘﺎرﺗﺎن ﻓﻰ ﻣﺜﺎل ) ‪ (١٠ -٣‬و ﻣﺜﺎل ) ‪. (١١ -٣‬‬
‫ﻟﻜ ﻦ ه ﻨﺎك ﺣ ﻞ ﺁﺧ ﺮ ﻟﻬ ﺬﻩ اﻟﻤﺸ ﻜﻠﻪ و ه ﻮ اﻋ ﺎدة ﺗﺼ ﻤﻴﻢ اﻟﻔﻠﺘ ﺮ ﻣ ﻨﺬ اﻟ ﺒﺪاﻳﻪ ﻟﻠﺤﺼ ﻮل ﻋﻠ ﻰ ﻗ ﻴﻢ )‪ (Zo‬أﺻ ﻐﺮ ﻣ ﻦ‬
‫)‪ (150.538 Ω‬ﻻ ﺗ ﺘﻌﺪى ﺣ ﺪود )‪ (90 Ω‬أو )‪ (100 Ω‬ﻣ ﺜﻼ ‪ ،‬ﺑﻐ ﺮض اﻟﺤﺼ ﻮل ﻋﻠ ﻰ ﺳ ﻤﻚ ﻣﻨﺎﺳ ﺐ ﻟﻠﺨ ﻂ‬
‫اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ ﻳﻤﻜﻦ ﺗﺼﻨﻴﻌﻪ ﺣﺘﻰ ﻓﻰ ﺣﺎﻟﺔ اﺧﺘﻴﺎر ﺷﺮﻳﺤﻪ ذات ﺛﺎﺑﺖ ﻋﺰل ﻋﺎﻟﻰ و ﺳﻤﻚ ﻋﺎزل ﺻﻐﻴﺮ‪.‬‬
‫ﻋ ﺎدة ﻳﺨ ﺘﺎر ﻣﺼ ﻤﻢ اﻟﺪاﺋ ﺮﻩ اﻟﺘ ﻰ ﺗﻌﻤ ﻞ ﻓﻰ اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ ﻣﻦ ﺣﻴﺰ اﻟﻤﻴﻜﺮووﻳﻒ ﻣﺜﻞ )‪(L and S bands‬‬
‫ﺷ ﺮﻳﺤﻪ ذات ﺛﺎﺑ ﺖ ﻋ ﺰل ﻋﺎﻟ ﻰ و ﺳ ﻤﻚ ﻋ ﺎزل ﺻﻐﻴﺮ ﻟﻜﻰ ﻳﻘﻠﻞ أﺑﻌﺎد و ﻣﺴﺎﺣﺔ اﻟﺪاﺋﺮﻩ )و اﻟﺘﻰ ﻋﺎدة ﺗﻜﻮن آﺒﻴﺮﻩ‬
‫ﻧﺴ ﺒﻴﺎ ﻓ ﻰ اﻟﺘ ﺮددات اﻟﻤﻨﺨﻔﻀ ﻪ( ‪ ،‬ﺑﻴ ﻨﻤﺎ ﻓ ﻰ اﻟﺘ ﺮددات اﻟﻌﺎﻟ ﻴﻪ ﻣ ﻦ ﺣﻴﺰ اﻟﻤﻴﻜﺮووﻳﻒ ﻣﺜﻞ )‪(X and Ku bands‬‬
‫ﻳﺨ ﺘﺎر اﻟﻤﺼ ﻤﻢ ﺷ ﺮﻳﺤﻪ ذات ﺛﺎﺑ ﺖ ﻋ ﺰل ﺻ ﻐﻴﺮ و ﺳ ﻤﻚ ﻋ ﺎزل آﺒﻴ ﺮ ﻟﻜ ﻰ ﺗ ﺰﻳﺪ أﺑﻌﺎد و ﻣﺴﺎﺣﺔ اﻟﺪاﺋﺮﻩ ﻓﻴﻤﻜﻦ أو‬
‫ﻳﺴﻬﻞ ﺗﻨﻔﻴﺬهﺎ ‪.‬‬
‫ﻟﻜ ﻦ ه ﺬﻩ ﻟﻴﺴ ﺖ ﻗﺎﻋ ﺪﻩ ﻓﻮﺟ ﻮد اﻣﻜﺎﻧ ﻴﺎت ﺗﺼ ﻨﻴﻊ ذات دﻗ ﻪ ﻋﺎﻟ ﻴﻪ ﻳﻌﻄ ﻰ ﺧ ﻴﺎرات واﺳ ﻌﻪ ﻟﻠﻤﺼﻤﻢ ﻓﻰ اﺧﺘﻴﺎر ﺛﺎﺑﺖ‬
‫اﻟﻌﺰل و ﺳﻤﻚ اﻟﻌﺎزل‪.‬‬
‫ﺑﺎﻻﺿ ﺎﻓﻪ اﻟ ﻰ أن اﻟﺪاﺋ ﺮﻩ ﺗﺼ ﻨﻊ ﻟﺘﻮﺿ ﻊ آﺠ ﺰء ﻣ ﻦ ﻧﻈ ﺎم ﻣﻌ ﻴﻦ و ﻳ ﺘﻢ اﺧﺘ ﻴﺎر اﻟﺸ ﺮﻳﺤﻪ و ﺗﺼ ﻤﻴﻢ اﻟﺪاﺋ ﺮﻩ وﻓﻘ ﺎ‬
‫ﻟﻤﺘﻄﻠﺒﺎت اﻟﻨﻈﺎم ﻣﻦ ﺣﻴﺚ اﻷداء و اﻟﻤﺴﺎﺣﻪ و اﻟﺤﺠﻢ واﻟﻮزن اﻟﻰ ﺁﺧﺮﻩ‪.‬‬
‫ﻓﺎﺧﺘ ﻴﺎر اﻟﺸ ﺮﻳﺤﻪ اﻟﻤﻨﺎﺳ ﺒﻪ ﻻ ﻳﻜ ﻮن ﺑﺎﺧﺘﻴﺎر ﺛﺎﺑﺖ اﻟﻌﺰل )‪ (εr‬و ﺳﻤﻚ اﻟﻌﺎزل )‪ (h‬و ﺳﻤﻚ اﻟﻤﻮﺻﻞ )‪ (t‬ﻓﻘﻂ ‪ ،‬ﺑﻞ‬
‫ﻳ ﺘﻢ اﻻﺧﺘ ﻴﺎر ﺣﺴ ﺐ ﻧ ﻮع اﻟﺪاﺋ ﺮﻩ ) و اﻟ ﻨﻈﺎم أو اﻟﺘﻄﺒ ﻴﻖ ( و وﻓﻘ ﺎ ﻟﻜ ﻞ اﻟﻤﻮاﺻ ﻔﺎت اﻟﻔﻨ ﻴﻪ ﻟﻠﺸ ﺮﻳﺤﻪ اﻟﻤﺬآ ﻮرﻩ ﻓ ﻰ‬
‫ﻣﻘﻄﻊ )‪ (٣-١‬ﻣﻦ اﻟﻔﺼﻞ اﻷول ﻣﻦ هﺬا اﻟﻜﺘﺎب ‪.‬‬
‫ﻋﻠ ﻰ ﺳ ﺒﻴﻞ اﻟﻤ ﺜﺎل ﻟ ﻮ أردﻧ ﺎ ﺗﺼ ﻤﻴﻢ داﺋ ﺮﻩ ﺗﻌﻤ ﻞ ﺑﻘ ﺪرﻩ ﻋﺎﻟ ﻴﻪ )ﻣﺜﻞ ﻣﻜﺒﺮ اﻟﻘﺪرﻩ ‪ (power amplifier‬ﻟﻦ ﻳﻜﻮن‬
‫آﺎﻓ ﻴﺎ اﺧﺘ ﻴﺎر ﺷ ﺮﻳﺤﻪ ذات ﺛﺎﺑ ﺖ ﻋ ﺰل و ﺳ ﻤﻚ ﻋ ﺎزل ﺑﻘﻴﻢ ﻣﻌﻴﻨﻪ ﻟﺘﺤﻘﻴﻖ أﺑﻌﺎد ﺧﻄﻮط ﺷﺮﻳﻄﻴﻪ ﻗﺎﺑﻠﻪ ﻟﻠﺘﻨﻔﻴﺬ ﻓﻘﻂ ‪،‬‬
‫ﺑ ﻞ ﻳﺠ ﺐ أﻳﻀ ﺎ ﻣ ﺮاﺟﻌﺔ ﻗ ﻴﻢ ﻣﻘ ﺪرة اﻟﻌ ﺎزل )‪ (Dielectric strength‬و اﻟﺘﻮﺻ ﻴﻞ اﻟﺤ ﺮارى ) ‪Thermal‬‬
‫‪ (Conductivity‬ﻟﻠﺸ ﺮﻳﺤﻪ ﻟ ﺘﺤﺪﻳﺪ ﻣ ﺎ اذا آﺎﻧ ﺖ ﻣﻨﺎﺳ ﺒﻪ أم ﻻ‪ .‬ﻓﻤ ﺜﻼ ﻋ ﻨﺪ ﺗﻨﻔ ﻴﺬ داﺋ ﺮﻩ ﺗﻌﻤ ﻞ ﺑﻘ ﺪرﻩ ﻋﺎﻟ ﻴﻪ ﻳﻔﻀ ﻞ‬
‫اﺳ ﺘﺨﺪام ﺷ ﺮاﺋﺢ ﻣ ﻦ ﻣ ﻮاد ﺳ ﻴﺮاﻣﻴﻜﻴﻪ )أو ﻣﻮاد ﺳﻴﺮاﻣﻴﻜﻴﻪ ﻣﺨﻠﻮﻃﻪ( ﻟﻜﻰ ﺗﺘﺤﻤﻞ درﺟﺎت ﺣﺮارﻩ ﻣﺮﺗﻔﻌﻪ آﻤﺎ ذآﺮ‬
‫ﻣﻦ ﻗﺒﻞ ﻓﻰ اﻟﻔﺼﻞ اﻷول ‪.‬‬
‫اﻟﻮﺻ ﻮل اﻟ ﻰ اﻟﻘ ﺮارات اﻟﺼ ﺤﻴﺤﻪ ﻓ ﻰ اﻟﺘﺼ ﻤﻴﻢ ﻳﻜ ﻮن ﺳ ﻬﻼ ﻋ ﻨﺪﻣﺎ ﻳﺪرس ﻣﺼﻤﻢ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺘﺼﻤﻴﻤﺎت‬
‫اﻟﻤﺘﻮﻓﺮﻩ ﻓﻰ اﻟﻤﺮاﺟﻊ اﻟﻤﺨﺘﻠﻔﻪ و ﻳﺪرس اﻟﺠﻮاﻧﺐ اﻟﻤﺨﺘﻠﻔﻪ ﻓﻰ ﻋﻤﻠﻴﺘﻰ اﻟﺘﺼﻤﻴﻢ و اﻟﺘﺼﻨﻴﻊ ﻣﺜﻞ اﺧﺘﻴﺎر اﻟﺸﺮﻳﺤﻪ و‬
‫ﻃ ﺮق و ﺣﺴ ﺎﺑﺎت اﻟﺘﺼ ﻤﻴﻢ و اﻟﺘﺤﻠ ﻴﻞ )‪ (analysis‬و اﻟﺘﻮﺻ ﻞ ﻟﻠﺤ ﻞ اﻷﻣ ﺜﻞ )‪ (optimization‬و اﻟﻤﻬ ﺎرات و‬

‫‪99‬‬

‫اﻟﻤﻠﺤ ﻮﻇﺎت اﻟﻔﻨ ﻴﻪ ﻓ ﻰ رﺳﻢ اﻟﻤﺨﻄﻂ اﻟﻨﻬﺎﺋﻰ ﻟﻠﺪاﺋﺮﻩ )‪ (final layout‬و ﻃﺮق و ﻣﻮاﺻﻔﺎت اﻟﺘﺼﻨﻴﻊ و هﺬا ﻳﺘﺤﻘﻖ‬
‫ﺑﺘﻜﺮار اﻟﺘﺼﻤﻴﻢ و اﻟﺘﻌﻮد ﻋﻠﻰ اﺳﺘﺨﺪام ﺑﺮاﻣﺞ اﻟﺘﺼﻤﻴﻢ ﺑﻮاﺳﻄﺔ اﻟﺤﺎﺳﺐ و أﺟﻬﺰة اﻟﻘﻴﺎس اﻟﻤﺨﺘﻠﻔﻪ ‪.‬‬
‫ﻓﻰ ﻣﻌﻤﻞ ﺗﺼﻤﻴﻢ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ أو اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ ﻳﺠﺐ أن ﻳﺘﻢ آﺘﺎﺑﺔ ﺗﻘﺮﻳﺮ ﺗﻘﻨﻰ )‪(Technical Report‬‬
‫ﻳﺸ ﺮح ﺟﻤ ﻴﻊ ﺗﻔﺎﺻ ﻴﻞ ﺗﺼ ﻤﻴﻢ و ﺗﺼ ﻨﻴﻊ اﻟﺪواﺋ ﺮ ﺑﻤ ﺎ ﻓ ﻴﻬﺎ اﻷﺧﻄ ﺎء و اﻟﻤﺸ ﺎآﻞ اﻟﺘ ﻰ ﺗﻘﺎﺑﻞ اﻟﻤﺼﻤﻢ ‪ ،‬و هﺬﻩ اﻟﺨﺒﺮﻩ‬
‫اﻟﻤﻜ ﺘﻮﺑﻪ ﺗﻮﻓ ﺮ اﻟ ﻮﻗﺖ و اﻟﻤﺠﻬ ﻮد اﻟ ﺬى ﻳ ﺒﺬل ﻓ ﻴﻤﺎ ﺑﻌ ﺪ ﻟﻌﻤﻞ ﺗﺼﺎﻣﻴﻢ أﺧﺮى و ﺗﺴﺎﻋﺪ ﻓﻰ ﻋﺪم ﺗﻜﺮار اﻷﺧﻄﺎء ﻣﺮﻩ‬
‫أﺧ ﺮى و ﻳ ﺘﻌﻠﻢ ﻣﻨﻬﺎ آﻞ ﻣﻦ ﻳﺒﺪأ ﻓﻰ اﻟﻌﻤﻞ ﺑﺎﻟﺘﺼﻤﻴﻢ ‪ ،‬ﻣﻊ ﺗﻮﻓﺮ ﻣﻜﺘﺒﻪ ﺗﺤﺘﻮى ﻋﻠﻰ اﻟﻜﺘﺐ و اﻟﺪورﻳﺎت اﻟﻤﺘﺨﺼﺼﻪ‬
‫و ﻣﻼﺣﻈ ﺎت اﻟﺘﻄﺒ ﻴﻖ )‪ (Application Notes‬و اﻟﻜ ﺘﺎﻟﻮﺟﺎت و ﺻ ﻔﺤﺎت اﻟﺒ ﻴﺎﻧﺎت )‪ (datasheets‬وﻏﻴ ﺮهﺎ ﻣﻦ‬
‫اﻟﻤﻄﺒﻮﻋﺎت اﻟﺘﻰ ﺗﺼﺪرهﺎ اﻟﺸﺮآﺎت‪.‬‬
‫ﻳﻤﻜﻦ أن ﻳﺘﻢ ﺗﺼﻤﻴﻢ داﺋﺮﻩ ﺷﺮﻳﻄﻴﻪ ﺑﺎﻻﻋﺘﻤﺎد ﻋﻠﻰ ﺗﺼﻤﻴﻢ داﺋﺮﻩ ﻣﻤﺎﺛﻠﻪ ﻟﻬﺎ آﻤﺎ هﻮ ﻣﻮﺿﺢ ﻓﻰ اﻟﻤﺜﺎل اﻟﺘﺎﻟﻰ‪.‬‬

‫ﻣﺜﺎل ) ‪: (١٣ -٣‬‬

‫اﻟﺸﻜﻞ )‪ : (١٤ - ٣‬ﻣﺨﻄﻂ داﺋﺮة اﻟﺘﻮﻓﻴﻖ اﻟﺸﺮﻳﻄﻴﻪ‪.‬‬

‫اﻟﺸ ﻜﻞ )‪ (١٤ - ٣‬ﻳﻮﺿ ﺢ داﺋﺮة ﺗﻮﻓﻴﻖ ﺷﺮﻳﻄﻴﻪ )‪ (microstrip matching circuit‬ﻋﺒﺎرﻩ ﻋﻦ ﺟﺰء ﻣﻦ داﺋﺮة‬
‫ﻣﻜﺒﺮ ﻋﻨﺪ )‪ .(5GHz‬ﺗﺘﻜﻮن داﺋﺮة اﻟﺘﻮﻓﻴﻖ ﻣﻦ ﺛﻼﺛﺔ ﺧﻄﻮط ﺷﺮﻳﻄﻴﻪ أﺑﻌﺎدهﺎ آﻤﺎ ﻓﻰ اﻟﺠﺪول اﻟﺘﺎﻟﻰ‬
‫ﻋﺮض اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ‬

‫ﻃﻮل اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪(mm‬‬

‫رﻗﻢ اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ‬

‫‪W1=0.1 mm=100 µm‬‬

‫‪L1=12.645‬‬

‫‪1‬‬

‫‪W2=1.1 mm‬‬

‫‪L2=11.542‬‬

‫‪2‬‬

‫‪W3=1.9 mm‬‬

‫‪L3=12.258‬‬

‫‪3‬‬

‫ﺟﺪول )‪ : (١١-٣‬أﺑﻌﺎد اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﻤﻜﻮﻧﻪ‪.‬‬

‫‪100‬‬

‫وﻣﺼﻨﻌﻪ ﺑﺎﺳﺘﺨﺪام ﺷﺮﻳﺤﻪ ﺑﺎﻟﻤﻮاﺻﻔﺎت اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫ﺛﺎﺑﺖ اﻟﻌﺰل )‪. 9.0 = ( εr dielectric constant‬‬
‫ﺳﻤﻚ اﻟﻌﺎزل )‪. 0.75 mm = (h‬‬
‫ﺳﻤﻚ اﻟﻤﻮﺻﻞ )‪. 0.05 mm = (t‬‬

‫اﻟﻤﻄﻠﻮب اﻋﺎدة ﺗﺼﻤﻴﻢ وﺗﺼﻨﻴﻊ اﻟﺪاﺋﺮﻩ ﻟﺘﻌﻄﻰ ﻧﻔﺲ اﻷداء ﺑﺸﺮط أﻻ ﻳﻘﻞ ﻋﺮض أى ﺧﻂ ﺷﺮﻳﻄﻰ دﻗﻴﻖ ﻋﻦ ) ‪200‬‬
‫‪ (µm‬أى )‪ (0.2 mm‬و ه ﻮ أﺻ ﻐﺮ ﻋ ﺮض ﻟﻠﺨﻂ ﻳﻤﻜﻦ ﺗﻨﻔﻴﺬﻩ و ﺗﺴﻤﺢ ﺑﻪ اﻻﻣﻜﺎﻧﻴﺎت اﻟﻤﺘﻮﻓﺮﻩ ﻟﺪى اﻟﻤﺼﻨﻊ اﻟﺬى‬
‫ﺳﻴﻘﻮم ﺑﺘﺼﻨﻴﻊ اﻟﺪاﺋﺮﻩ‪.‬‬
‫اﻟﺤﻞ ﻓﻰ ﺛﻼﺛﺔ ﺧﻄﻮات ‪:‬‬
‫اﻟﺨﻄ ﻮﻩ اﻷوﻟ ﻰ ه ﻰ ﻋﻤ ﻞ ﺗﺤﻠ ﻴﻞ ﻟﻠﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﻤﻜ ﻮﻧﻪ ﻟﻠﺪاﺋﺮﻩ ﺑﻤﻌﻨﻰ ﺣﺴﺎب ﻗﻴﻢ اﻟﻄﻮل اﻟﻜﻬﺮﺑﻰ )‪ (θ‬ﻋﻨﺪ‬
‫ﺗﺮدد ﻣﻌﻴﻦ ) ﻓﻰ هﺬا اﻟﻤﺜﺎل ‪ (5GHz‬و اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ )‪ (Zo‬ﻟﻠﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﻤﻜﻮﻧﻪ ﻟﻠﺪاﺋﺮﻩ آﻤﺎ ﻳﻠﻰ‪.‬‬
‫اﻟﻄﻮل اﻟﻜﻬﺮﺑﻰ )‪(θ in degree‬‬

‫اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ‬

‫)‪(Zo Ω‬‬

‫رﻗﻢ اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ‬

‫‪θ1=171.087‬‬

‫‪Zo1=95.7127‬‬

‫‪1‬‬

‫‪θ2=174.185‬‬

‫‪Zo2=41.0826‬‬

‫‪2‬‬

‫‪θ3=191.764‬‬

‫‪Zo3=29.6459‬‬

‫‪3‬‬

‫ﺟﺪول )‪ : (١٢-٣‬ﺑﺎرﻣﺘﺮات اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﻤﻜﻮﻧﻪ‪.‬‬
‫اﻟﺨﻄ ﻮﻩ اﻟﺜﺎﻧ ﻴﻪ ه ﻰ اﻋ ﺎدة ﺗﺼ ﻤﻴﻢ داﺋ ﺮﻩ ﺗﻮﻓ ﻴﻖ ﺷ ﺮﻳﻄﻴﻪ ﺟﺪﻳ ﺪﻩ )أو ﺑﺪﻳﻠ ﻪ( ﺑﺎﺳ ﺘﺨﺪام ﻗ ﻴﻢ اﻟﻄ ﻮل اﻟﻜﻬﺮﺑ ﻰ )‪ (θ‬و‬
‫اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻤﻴ ﺰﻩ )‪ (Zo‬ﻟﻠﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﺘ ﻰ ﺗ ﻢ ﺣﺴ ﺎﺑﻬﺎ ﺑﺠ ﺪول )‪ (١٢-٣‬ﻓ ﻰ اﻟﺨﻄ ﻮﻩ اﻷوﻟﻰ وﻟﻜﻦ ﻓﻰ هﺬﻩ‬
‫اﻟﻤ ﺮﻩ ﺑﺎﺳ ﺘﺨﺪام ﺷ ﺮﻳﺤﻪ ذات ﺛﺎﺑﺖ ﻋﺰل أﺻﻐﺮ و ﺳﻤﻚ ﻋﺎزل أآﺒﺮ ﺑﻐﺮض ﺗﻜﺒﻴﺮ أﺑﻌﺎد اﻟﺪاﺋﺮﻩ ﻟﻴﺴﻬﻞ ﺗﺼﻨﻴﻌﻬﺎ ‪،‬‬
‫و ﻗﺪ ﺗﻢ اﺧﺘﻴﺎر ﺷﺮﻳﺤﻪ ﺑﺎﻟﻤﻮاﺻﻔﺎت اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫ﺛﺎﺑﺖ اﻟﻌﺰل )‪. 3.0 = ( εr dielectric constant‬‬
‫ﺳﻤﻚ اﻟﻌﺎزل )‪. 1.575 mm = (h‬‬
‫ﺳﻤﻚ اﻟﻤﻮﺻﻞ )‪. 0.07 mm = (t‬‬
‫ﻭ ﻤﻨﻬﺎ ﻨﺤﺴﺏ ﺃﺒﻌﺎﺩ ﺍﻟﺩﺍﺌﺭﻩ ﺍﻟﺒﺩﻴﻠﻪ ﻜﻤﺎ ﻓﻰ ﺍﻟﺠﺩﻭل ﺍﻟﺘﺎﻟﻰ ‪:‬‬

‫‪101‬‬

‫ﻋﺮض اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪(mm‬‬

‫ﻃﻮل اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪(mm‬‬

‫رﻗﻢ اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ‬

‫‪W1=1.098‬‬

‫‪L1=19.059‬‬

‫‪1‬‬

‫‪W2=5.291‬‬

‫‪L2=18.222‬‬

‫‪2‬‬

‫‪W3=8.339‬‬

‫‪L3=19.657‬‬

‫‪3‬‬

‫ﺟﺪول )‪ : (١٣-٣‬أﺑﻌﺎد اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﻤﻜﻮﻧﻪ ﻟﻠﺪاﺋﺮﻩ اﻟﺒﺪﻳﻠﻪ‪.‬‬
‫و آﻤ ﺎ ﻧﻼﺣ ﻆ ﻓ ﻰ ﺟ ﺪول )‪ (١٣-٣‬أن أﺻﻐﺮ ﻋﺮض ﺧﻂ ﺷﺮﻳﻄﻰ ﻓﻰ اﻟﺪاﺋﺮﻩ اﻟﺒﺪﻳﻠﻪ ﺳﻴﻜﻮن )‪ (1.098 mm‬و هﻮ‬
‫ﻃ ﺒﻌﺎ أآﺒ ﺮ ﻣ ﻦ اﻟﺤ ﺪ اﻟﻤﺸ ﺘﺮط ﻟﻠﺘﺼ ﻨﻴﻊ )‪ (200µm‬اﻟ ﺬى ﻳﻤ ﺜﻞ أﺻ ﻐﺮ ﻋ ﺮض ﻳﻤﻜﻦ ﺗﻨﻔﻴﺬﻩ ﺑﺎﻻﻣﻜﺎﻧﻴﺎت اﻟﻤﺘﻮﻓﺮﻩ‬
‫ﻟﺪى اﻟﻤﺼﻨﻊ اﻟﺬى ﺳﻴﻘﻮم ﺑﺘﺼﻨﻴﻊ اﻟﺪاﺋﺮﻩ اﻟﺒﺪﻳﻠﻪ‪.‬‬
‫اﻟﺨﻄ ﻮﻩ اﻟﺜﺎﻟ ﺜﻪ ه ﻰ ﻋﻤ ﻞ ﺗﺤﻠ ﻴﻞ ﻟﺪاﺋﺮﻩ اﻟﺘﻮﻓﻴﻖ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺒﺪﻳﻠﻪ اﻟﺘﻰ ﺗﻢ ﺗﺼﻤﻴﻤﻬﺎ ﻓﻰ اﻟﺨﻄﻮﻩ اﻟﺜﺎﻧﻴﻪ ﺑﺎﺳﺘﺨﺪام أﺣﺪ‬
‫ﺑ ﺮاﻣﺞ ﺗﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ و اﺳ ﺘﺨﺪام ﺣﺴ ﺎب اﻟﺤ ﻞ اﻷﻣ ﺜﻞ )‪ (optimization‬ﻟﻀ ﺒﻂ أداء اﻟﺪاﺋﺮﻩ آﻤﺎ هﻮ ﻣﺮﻏﻮب اذا‬
‫دﻋﺖ اﻟﺤﺎﺟﻪ ﻟﺬﻟﻚ‪.‬‬
‫ﻓ ﻰ اﻟ ﻨﻬﺎﻳﻪ ﺗ ﻢ ﺗﺼ ﻤﻴﻢ داﺋ ﺮﻩ ﺑﺪﻳﻠ ﻪ ﺗﻌﻄﻰ ﻧﻔﺲ أداء اﻟﺪاﺋﺮﻩ اﻷﺻﻠﻴﻪ و ﻟﻜﻦ ﺑﺄﺑﻌﺎد أآﺒﺮ ﻳﻤﻜﻦ ﺗﺼﻨﻴﻌﻬﺎ ﻟﻠﺘﻐﻠﺐ ﻋﻠﻰ‬
‫ﻣﺸ ﻜﻠﺔ ﻋ ﺪم ﺗﻮﻓ ﺮ اﻣﻜﺎﻧ ﻴﺎت ﺗﺴ ﻤﺢ ﺑﺘﺼ ﻨﻴﻊ ﺧﻂ ﻋﺮﺿﻪ )‪ (100 µm‬اﻟﻤﻮﺟﻮد ﻓﻰ اﻟﺪاﺋﺮﻩ اﻷﺻﻠﻴﻪ ‪ ،‬و أﺻﺒﺢ ﻣﻦ‬
‫اﻟﻤﻤﻜﻦ ﺗﻨﻔﻴﺬ اﻟﺪاﺋﺮﻩ اﻟﺒﺪﻳﻠﻪ ﺑﻮاﺳﻄﺔ اﻻﻣﻜﺎﻧﻴﺎت اﻟﻤﺘﻮﻓﺮﻩ ﻟﺪى اﻟﻤﺼﻨﻊ اﻟﺬى ﺳﻴﺼﻨﻊ اﻟﺪاﺋﺮﻩ‪.‬‬
‫ه ﺬﻩ اﻟﺨﻄ ﻮات اﻟ ﺜﻼﺛﻪ ه ﻰ ﻣﺜﺎل ﻣﺒﺴﻂ ﺟﺪا ﻟﻤﺎ ﻳﺴﻤﻰ )اﻟﻬﻨﺪﺳﻪ اﻟﻌﻜﺴﻴﻪ( ‪ ،‬ﻓﻘﺪ اﺳﺘﺨﺪﻣﻨﺎ أﺑﻌﺎد داﺋﺮﻩ ﺗﻢ ﺗﺼﻤﻴﻤﻬﺎ و‬
‫ﺗﺼ ﻨﻴﻌﻬﺎ ﺑﻮاﺳ ﻄﺔ ﺁﺧ ﺮﻳﻦ و ﺑﻤﻌ ﺮﻓﺔ )أو ﺑﻘ ﻴﺎس( ﺧﺼ ﺎﺋﺺ اﻟﺸ ﺮﻳﺤﻪ اﻟﺸ ﺮﻳﻄﻴﻪ ﻟﻠﺪاﺋ ﺮﻩ و أﺑﻌ ﺎد اﻟﺪاﺋﺮﻩ ‪ ،‬ﺗﻢ اﻋﺎدة‬
‫ﺗﺼ ﻤﻴﻤﻬﺎ و ﺗﺼ ﻨﻴﻌﻬﺎ ﻣ ﺮﻩ أﺧ ﺮى ﻟﺘﻌﻄ ﻰ ﻧﻔ ﺲ اﻷداء ) و ﻟﻜ ﻦ ه ﺬﻩ اﻟﻤ ﺮﻩ ﺑﺄﺑﻌ ﺎد أآﺒ ﺮ ﺗﺴ ﻤﺢ ﺑﺘﻨﻔ ﻴﺬ اﻟﺪاﺋ ﺮﻩ‬
‫ﺑﺎﻻﻣﻜﺎﻧﻴﺎت اﻟﻤﺘﻮﻓﺮﻩ ﻟﺪﻳﻨﺎ (‪.‬‬
‫ه ﺬﻩ اﻟﻌﻤﻠ ﻴﻪ )اﻟﻬﻨﺪﺳ ﻪ اﻟﻌﻜﺴ ﻴﻪ( ﺗﺼﺒﺢ ﺳﻬﻠﻪ ﻓﻰ ﺣﺎﻟﺔ ﺗﻮﻓﺮ اﻷﺟﻬﺰة اﻟﻼزﻣﻪ ﻟﻘﻴﺎس ﺧﺼﺎﺋﺺ اﻟﺸﺮﻳﺤﻪ اﻟﺸﺮﻳﻄﻴﻪ‬
‫ﻣ ﺜﻞ )ﺛﺎﺑ ﺖ اﻟﻌ ﺰل و ﺳ ﻤﻚ اﻟﻌ ﺎزل( و ﺑ ﺮاﻣﺞ ﺗﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ و اﻟ ﻨﻈﻢ ﺑﺎﻻﺿ ﺎﻓﻪ اﻟ ﻰ ﺧﺒ ﺮة اﻟﻤﺼ ﻤﻢ و اﻟﺘ ﻰ ﺗﺒﻨﻰ‬
‫ﺑﻤﻌﻠﻮﻣﺎت اﻟﺘﺼﻤﻴﻢ اﻟﺘﻰ ﻟﺪﻳﻪ و ﺑﺘﻜﺮار هﺬا اﻟﻨﻮع ﻣﻦ اﻟﻌﻤﻞ‪.‬‬
‫و ﻳﻤﻜ ﻦ ﺗﻨﻔ ﻴﺬ ﻋﻤﻠ ﻴﺔ اﻟﻬﻨﺪﺳ ﻪ اﻟﻌﻜﺴ ﻴﻪ ﻋﻠ ﻰ ﻧﻄﺎق أوﺳﻊ )ﺑﺪﻻ ﻣﻦ داﺋﺮﻩ واﺣﺪﻩ( ﻟﺘﺸﻤﻞ ﻧﻈﺎﻣﺎ آﺎﻣﻼ ﻣﻬﻤﺎ آﺎن ﻧﻮع‬
‫اﻟﺘﻄﺒ ﻴﻖ اﻟﻤﺴ ﺘﺨﺪم ﻓ ﻴﻪ اﻟ ﻨﻈﺎم اذا ﻣ ﺎ ﺗﻮﻓ ﺮت اﻻﻣﻜﺎﻧ ﻴﺎت اﻟﻼزﻣ ﻪ ﻟ ﺬﻟﻚ )ﺗﻄﺒ ﻴﻘﺎت دواﺋ ﺮ اﻟﻤﻴﻜﺮووﻳﻒ ﻣﺬآﻮرﻩ ﻓﻰ‬
‫اﻟﻔﺼ ﻞ اﻷول( ‪ .‬و أﺣ ﻴﺎﻧﺎ ﺗﻜ ﻮن اﻟﻬﻨﺪﺳﻪ اﻟﻌﻜﺴﻴﻪ هﻰ اﻟﺤﻞ اﻟﻮﺣﻴﺪ ﻻﻧﺘﺎج أو ﻧﻘﻞ ﺗﻜﻨﻮﻟﻮﺟﻴﺎ ﻣﻨﺘﺠﺎت ﻣﻌﻴﻨﻪ ﻻ ﻳﻤﻜﻦ‬
‫ﺷﺮاء ﺗﺼﻤﻴﻤﺎﺗﻬﺎ ‪.‬‬

‫‪102‬‬

‫ﻤﺭﺍﺠﻊ ﺍﻟﻔﺼل ﺍﻟﺜﺎﻟﺙ‬
‫اﻟﺴﻨﻪ‬

‫ﻣﻜﺎن اﻟﻨﺸﺮ‬/‫دار اﻟﻨﺸﺮ‬

1992

John Wiley & Sons

1990

Prentice Hall

1987

Artech House

1996

Artech House

2005

Artech House

2001

John Wiley & Sons

1999

Rogers Corporation USA
Application Note:
TM 3.3.3

2005

Artech House

1992

McGraw-Hill

2005

John Wiley & Sons

1990

Artech House

1999

Faculty of
Engineering - Ain
Shams University

2002

Faculty of
Engineering - Cairo
University
John Wiley & Sons

1994

‫اﻟﻨﺎﺷﺮﻳﻦ‬/‫اﻟﻤﺆﻟﻔﻴﻦ‬
T. C. Edwards

‫اﺳﻢ اﻟﻜﺘﺎب أو اﻟﻮﺛﻴﻘﻪ‬

Foundations for Microstrip
nd
Circuit Design (2 edition)
Fooks , E. H., and Microwave
Engineering
Zakarevicius , R. Using Microstrip Circuits
A.
Hoffmann, R. K.
Handbook of Microwave
Integrated Circuits
Gupta , K. C., Microstrip
Lines
and
Garg , Ramesh , Slotlines , (2nd edition )
and Bahl, I. J.
Gunter Kompa
Practical Microstrip Design
And Applications
T. C. Edwards ,
Foundations of Interconnect
M. B. Steer
and Microstrip Design
Rogers
Width
and
Effective
Corporation
Dielectric Constant Data for
Design
of
Microstrip
Transmission Lines
on Various Thicknesses,
Types and Claddings of
TMM®
Microwave
Laminates
Noyan Kinayman Modern Microwave Circuits
M. I. Aksun
Robert Collins
Foundations for Microwave
nd
Engineering (2 edition)
David M. Pozar
Microwave Engineering
rd
(3 edition)
Stanislaw
Algorithms for ComputerRosloniec
Aided Design of Linear
Microwave Circuits
Hesham I. M. AL Computer Aided Design of
Anwar
Microwave Planar Six-Port
Reflection Analyzer(M.Sc.
thesis)
Hesham I. M. AL Computer Aided Design of
Anwar
Microwave Planar Diode
Detectors (Ph.D. thesis)
Kai Chang
Microwave Solid-State
Circuits and Applications

103

1
2
3
4
5
6
7

8
9
10
11
12

13
14

‫ﻤﺭﺍﺠﻊ ﺍﻻﻨﺘﺭﻨﺕ‬
‫‪i1‬‬

‫ﻣﻮﻗ ﻊ ﺷﺮآﺔ روﺟﺮز اﻟﻤﻨﺘﺠﻪ ﻟﻠﺸﺮاﺋﺢ و ﻣﻨﻪ ﻳﻤﻜﻦ ﺗﺤﻤﻴﻞ ﻣﻌﻠﻮﻣﺎت و ﺻﻔﺤﺎت ﺑﻴﺎﻧﺎت ﺗﻔﻴﺪ ﺗﺼﻤﻴﻢ و ﺗﺤﻠﻴﻞ‬
‫اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ و ﻏﻴﺮهﺎ‪.‬‬

‫‪i2‬‬

‫‪Rogers Corporation‬‬
‫‪http://www.rogers-corp.com/mwu/‬‬
‫ﻣﻮﻗﻊ ﺷﺮآﺔ )‪ (Ansoft‬اﻟﻤﻨﺘﺠﻪ ﻟﺒﺮاﻣﺞ اﻟﺘﺤﻠﻴﻞ و اﻟﺘﺼﻤﻴﻢ و ﻏﻴﺮهﺎ ‪.‬‬
‫‪http://www.ansoft.com/‬‬

‫‪i3‬‬

‫ﻣﻮﻗﻊ ﺷﺮآﺔ )‪ (APLAC‬اﻟﻤﻨﺘﺠﻪ ﻟﺒﺮاﻣﺞ اﻟﺘﺤﻠﻴﻞ و اﻟﺘﺼﻤﻴﻢ و ﻏﻴﺮهﺎ ‪.‬‬

‫‪i4‬‬

‫ﻣﻮﻗﻊ ﻣﺮاﺟﻊ و ﻣﻌﻠﻮﻣﺎت ﺗﺤﻤﻴﻞ اﻟﺒﺮاﻣﺞ اﻟﻤﺠﺎﻧﻴﻪ اﻟﻤﺴﺘﺨﺪﻣﻪ ﻓﻰ ﺗﺼﻤﻴﻢ و ﺗﺤﻠﻴﻞ اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ‬
‫اﻟﺪﻗﻴﻘﻪ و ﻏﻴﺮهﺎ‪.‬‬
‫‪http://www.circuitsage.com/tline.html‬‬
‫ﻣﻮﻗﻊ ﻣﻌﻠﻮﻣﺎت ﺗﺤﻤﻴﻞ ﺑﺮاﻣﺞ ﻣﺠﺎﻧﻴﻪ ﻣﺴﺘﺨﺪﻣﻪ ﻓﻰ ﺗﺼﻤﻴﻢ و ﺗﺤﻠﻴﻞ اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ و ﻏﻴﺮهﺎ‪.‬‬

‫‪http://www.aplac.com‬‬

‫‪i5‬‬

‫‪http://www.turnkey.net/rftools.htm‬‬
‫‪i6‬‬

‫ﻣﻮﻗﻊ ﻣﺠﺎﻧﻰ ﻟﺤﺴﺎﺑﺎت ﺗﺼﻤﻴﻢ و ﺗﺤﻠﻴﻞ اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ‪.‬‬
‫‪Microstrip Analysis/Synthesis Calculator‬‬

‫‪http://mcalc.sourceforge.net/‬‬
‫‪i7‬‬

‫ﻣﻮﻗﻊ ﺗﺤﻤﻴﻞ ﺑﺮاﻣﺞ ﻣﺠﺎﻧﻴﻪ ﻣﺴﺘﺨﺪﻣﻪ ﻓﻰ ﺗﺼﻤﻴﻢ و ﺗﺤﻠﻴﻞ اﻟﺨﻄﻮط و اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ و ﻣﻌﻠﻮﻣﺎت‬
‫و ﺑﺮاﻣﺞ أﺧﺮى ‪.‬‬
‫‪http://www.fritz.dellsperger.net/‬‬

‫‪select downloads link‬‬

‫‪104‬‬

‫‪Chapter 4 : Microstrip Components and Discontinuities‬‬
‫اﻟﻔﺼﻞ اﻟﺮاﺑﻊ ‪ :‬اﻟﻤﻜﻮﻧﺎت اﻟﺸﺮﻳﻄﻴﻪ و اﻟﻼ إﺳﺘﻤﺮارﻳﺎت‬

‫)ﻤﻘﻁﻊ ‪ (١-٤‬ﻤﻘﺩﻤﻪ ‪:‬‬

‫ﺸﻜل )‪ : (١ - ٤‬داﺋﺮﻩ ﺷﺮﻳﻄﻴﻪ ﺑﻬﺎ ﻻ اﺳﺘﻤﺮارﻳﺎت و ﻣﻜﻮﻧﺎت ﺷﺮﻳﻄﻴﻪ و ﻣﻜﻮﻧﺎت ﻣﻠﺤﻮﻣﻪ‪.‬‬

‫ه ﻨﺎك دواﺋ ﺮ ﺷ ﺮﻳﻄﻴﻪ ﺗ ﺘﻜﻮن ﻣ ﻦ ﻋ ﺪد ﻣ ﻦ اﻟﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﺪﻗ ﻴﻘﻪ ﻓﻘ ﻂ ) آﻤ ﺎ ه ﻮ اﻟﺤ ﺎل ﻓ ﻰ ﺑﻌﺾ اﻟﻔﻼﺗﺮ و‬
‫ﻣﻘﺴ ﻤﺎت اﻟﻘ ﺪرﻩ( ‪ ،‬و ﻟﻜ ﻦ ﻳﻤﻜﻦ أن ﺗﺤﺘﻮى ﺑﻌﺾ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ ﻋﻠﻰ ﻣﻜﻮﻧﺎت ﻣﻠﺤﻮﻣﻪ ﻋﻠﻴﻬﺎ )ﻣﺜﻞ اﻟﻤﻘﺎوﻣﻪ و‬
‫اﻟﻤﻜ ﺜﻒ و اﻟﻤﻠ ﻒ و اﻟﺪﻳ ﻮد و اﻟﺘﺮاﻧﺰﻳﺴﺘﻮر و دواﺋﺮ ‪ isolator and circulator‬و دواﺋﺮ ﻣﺘﻜﺎﻣﻠﻪ ﻣﺜﻞ ‪(MMIC‬‬
‫آﻤ ﺎ ﻳﻤﻜ ﻦ أن ﺗﺤ ﺘﻮى اﻟﺪواﺋ ﺮ اﻟﺸ ﺮﻳﻄﻴﻪ ﻋﻠ ﻰ ﻣﻜ ﻮﻧﺎت ﺷ ﺮﻳﻄﻴﻪ )ﻣ ﺜﻼ ﻣﻜ ﺜﻒ أو ﻣﻠ ﻒ أو ﺧ ﻂ ﺷ ﺮﻳﻄﻰ ﻣﺘﻨﺎﻗﺺ‬
‫اﻟﻌﺮض أو ﺧﻂ ﺷﺮﻳﻄﻰ ﻧﺼﻒ ﻗﻄﺮى( ﺗﻜﻮن ﻣﻨﻔﺬﻩ أو ﻣﻄﺒﻮﻋﻪ ﻋﻠﻰ اﻟﺪاﺋﺮﻩ ﻣﺜﻠﻬﺎ ﻣﺜﻞ اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ ‪.‬‬

‫‪105‬‬

‫ﻋ ﻨﺪ اﻧﺜ ﻨﺎء اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ أو ﺣ ﺪوث ﺗﻐﻴ ﺮ ﻓ ﻰ اﺳ ﺘﻤﺮارﻳﺔ اﻟﺨ ﻂ أو ﻋ ﻨﺪ ﻧﻬﺎﻳ ﺔ آ ﻞ ﺧ ﻂ ﺷ ﺮﻳﻄﻰ أو ﻋ ﻨﺪ اﻟﺘﻘﺎء‬
‫ﺧﻄﻴﻦ أو ﺧﻄﻮط ﺷﺮﻳﻄﻴﻪ ﻣﻌﺎ هﻨﺎك ﻣﺎ ﻳﺴﻤﻰ )ﻻ اﺳﺘﻤﺮارﻳﺎت أو ‪. (discontinuities‬‬
‫ه ﺬﻩ اﻟﻼ اﺳﺘﻤﺮارﻳﺎت ﻳﻜﻮن ﻟﻬﺎ ﺗﺄﺛﻴﺮ ﻋﻠﻰ أداء اﻟﺪاﺋﺮﻩ و ﻳﺠﺐ أن ﺗﺆﺧﺬ ﻓﻰ اﻻﻋﺘﺒﺎر ﻋﻨﺪ ﺗﺼﻤﻴﻢ و رﺳﻢ ﻣﺨﻄﻂ و‬
‫ﺗﺤﻠﻴﻞ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ‪.‬‬
‫ﺷ ﻜﻞ )‪ (١ - ٤‬ﻳﻮﺿ ﺢ داﺋ ﺮﻩ ﺷ ﺮﻳﻄﻴﻪ دﻗ ﻴﻘﻪ ﻣﻠﺤﻮم ﻋﻠﻴﻬﺎ ﺗﺮاﻧﺰﻳﺴﺘﻮر و ﻣﻘﺎوﻣﺎت و ﻣﻜﺜﻔﺎت ‪ .‬و ﺗﺤﺘﻮى اﻟﺪاﺋﺮﻩ‬
‫أﻳﻀ ﺎ ﻋﻠ ﻰ ﻣﻜ ﻮن ﺷ ﺮﻳﻄﻰ ﻣ ﻦ ﻧﻮع )‪ radial line‬ﺧﻂ ﻧﺼﻒ ﻗﻄﺮى( ‪ ،‬آﻤﺎ ﺗﺤﺘﻮى اﻟﺪاﺋﺮﻩ أﻳﻀﺎ ﻋﻠﻰ ﻋﺪد ﻣﻦ‬
‫اﻟ ﻼ اﺳ ﺘﻤﺮارﻳﺎت ﻓﻬ ﻨﺎك ﻣ ﺜﻼ ﺧ ﻂ ﻳ ﻮﺟﺪ ﻋ ﻨﺪ ﻧﻬﺎﻳﺘﻪ ﺗﻮﺻﻴﻞ ﺑﺎﻷرض ﻋﻦ ﻃﺮﻳﻖ )‪ (Via‬و هﻨﺎك ﻻ اﺳﺘﻤﺮارﻳﺎت‬
‫ﻋﻠ ﻰ ﺷ ﻜﻞ ﺛﻨ ﻴﻪ ﻣ ﺘﻌﺎﻣﺪﻩ أو ﺛﻨ ﻴﻪ ﺗﺴ ﻌﻴﻦ درﺟ ﻪ )‪ (90o degree bend‬و ه ﻨﺎك ﻻ اﺳ ﺘﻤﺮارﻳﺎت ﻋﻠ ﻰ ﺷ ﻜﻞ ﺛﻨ ﻴﻪ‬
‫ﻣﺸ ﻄﻮﻓﻪ )‪ (Mitered or Champhered Bend‬و ه ﻨﺎك أﻳﻀ ﺎ ﻻ اﺳﺘﻤﺮارﻳﻪ ﻋﻠﻰ ﺷﻜﻞ ﺣﺮف )‪ (T‬ﻋﻨﺪ اﻟﺘﻘﺎء‬
‫ﺛﻼﺛﺔ ﺧﻄﻮط ﺷﺮﻳﻄﻴﻪ ‪.‬‬
‫ﺷ ﻜﻞ )‪ (٢ - ٤‬ﻳﻮﺿ ﺢ داﺋ ﺮﻩ ﺷ ﺮﻳﻄﻴﻪ ﻣﻠﺤ ﻮم ﻋﻠ ﻴﻬﺎ ﻣﻜ ﺜﻒ )‪ (Chip Capacitor‬و ﺗﺤ ﺘﻮى ﻋﻠ ﻰ ﺧ ﻂ ﺷﺮﻳﻄﻰ‬
‫دﻗ ﻴﻖ ﻣﺘ ﻨﺎﻗﺺ اﻟﻌ ﺮض أو )‪ (Tapered Microstrip line‬و ﺗﺤ ﺘﻮى أﻳﻀ ﺎ ﻋﻠ ﻰ ﻣﻜ ﺜﻒ ﻣﻄ ﺒﻮع ﻣ ﻦ ﻧ ﻮع‬
‫)‪ (Interdigital Capacitor‬ﻳ ﻮﺟﺪ ﻋ ﻨﺪ ﻧﻬﺎﻳ ﺘﻪ ﺗﻮﺻ ﻴﻞ ﺑ ﺎﻷرض ﻋ ﻦ ﻃ ﺮﻳﻖ )‪ (Via‬و هﻨﺎك أﻳﻀﺎ ﻋﺪد ﻣﻦ اﻟﻼ‬
‫اﺳ ﺘﻤﺮارﻳﺎت ﻣ ﺜﻞ )‪ (Step Discontinuity‬ﻋﻠ ﻰ ﺷ ﻜﻞ درﺟ ﺔ اﻟﺴ ﻠﻢ و اﻟﺘ ﻰ ﺗﺤ ﺪث ﻋ ﻨﺪ اﻟﺘﻘﺎء ﺧﻄﻴﻦ ﺷﺮﻳﻄﻴﻴﻦ‬
‫ﻣﺨﺘﻠﻔﻴﻦ ﻓﻰ اﻟﻌﺮض‪.‬‬

‫ﺸﻜل )‪ : (٢ - ٤‬داﺋﺮﻩ ﺷﺮﻳﻄﻴﻪ ﺑﻬﺎ ﻻ اﺳﺘﻤﺮارﻳﺎت و ﻣﻜﻮﻧﺎت ﺷﺮﻳﻄﻴﻪ‪.‬‬

‫‪106‬‬

‫ﺷ ﻜﻞ )‪ (٣ - ٤‬ﻳﻮﺿ ﺢ داﺋ ﺮﺗﻴﻦ ﺷ ﺮﻳﻄﻴﺘﻴﻦ ﻣ ﻦ ﻧ ﻮع )‪ . (bandpass filter‬ﻳﺤ ﺘﻮى اﻟﻔﻠﺘ ﺮ اﻟﻤﻮﺿ ﺢ ﺟﻬ ﺔ اﻟﻴﻤﻴﻦ‬
‫ﻋﻠ ﻰ ﺧﻄﻮط ﺷﺮﻳﻄﻴﻪ دﻗﻴﻘﻪ ﻣﺘﻌﺪدﻩ ﻣﺰدوﺟﻪ )‪ . (multiple microstrip coupled lines‬ﺑﻴﻨﻤﺎ اﻟﻔﻠﺘﺮ اﻟﻤﻮﺿﺢ‬
‫ﺟﻬ ﺔ اﻟﻴﺴ ﺎر ﻳ ﻮﺟﺪ ﺑﻪ ﺧﻄﻴﻦ ﺷﺮﻳﻄﻴﻴﻦ ﻣﺰدوﺟﻴﻦ ﻣﺸﺎر اﻟﻴﻬﻤﺎ ﺑﺎﻟﺴﻬﻢ )‪ (microstrip coupled lines‬ﻣﺘﻜﺮرﻳﻦ‬
‫ﺛﻼث ﻣﺮات ﺑﺎﻟﺪاﺋﺮﻩ‪.‬‬
‫و ﻓ ﻰ ه ﺬا اﻟﻔﺼ ﻞ ﺷ ﺮح ﻣﺒﺴ ﻂ ﻟ ﺒﻌﺾ اﻟﻤﻜ ﻮﻧﺎت اﻟﺸ ﺮﻳﻄﻴﻪ )‪ (microstrip components‬و اﻟﻼ اﺳﺘﻤﺮارﻳﺎت‬
‫)‪ (microstrip discontinuities‬و اﻟﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﻤ ﺰدوﺟﻪ )‪ (microstrip coupled lines‬و‬
‫ﻏﻴ ﺮهﺎ ﻣ ﻦ اﻟﻤﻌﻠ ﻮﻣﺎت اﻟﺘ ﻰ ﻳﺠ ﺐ اﻻﻟﻤﺎم ﺑﻬﺎ ﻗﺒﻞ اﻟﺒﺪء ﻓﻰ ﺷﺮح ﺗﺼﻤﻴﻢ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ ‪ ،‬و هﻨﺎك أﻳﻀﺎ أﺷﻜﺎل‬
‫ﺗﻮﺿﺢ اﻟﺮﺳﻮﻣﺎت اﻟﺮﻣﺰﻳﻪ ﻟﻠﻤﻜﻮﻧﺎت و اﻟﻼ اﺳﺘﻤﺮارﻳﺎت اﻟﻤﺨﺘﻠﻔﻪ آﻤﺎ ﺗﺒﺪو ﻓﻰ ﺑﺮاﻣﺞ ﺗﺤﻠﻴﻞ اﻟﺪواﺋﺮ ‪.‬‬

‫ﺸﻜل )‪ : (٣ - ٤‬داﺋﺮﺗﻴﻦ ﺷﺮﻳﻄﻴﺘﻴﻦ ﻣﻦ ﻧﻮع )‪.(bandpass filter‬‬

‫‪107‬‬

‫)ﻤﻘﻁﻊ ‪ (٢-٤‬ﺍﻟﻼﺍﺴﺘﻤﺭﺭﻴﺎﺕ ‪:‬‬
‫اﻟﺠ ﺪول )‪ (١-٤‬ﻳﻮﺿ ﺢ ﻋ ﺪدا ﻣ ﻦ أﻧ ﻮاع اﻟ ﻼ اﺳ ﺘﻤﺮارﻳﺎت و آﻤ ﺎ ذآﺮت ﻣﻦ ﻗﺒﻞ ﻓﺎن اﻟﻼ اﺳﺘﻤﺮارﻳﺎت ﺗﺤﺪث ﻋﻨﺪ‬
‫اﻧﺜ ﻨﺎء اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ ﻣ ﺜﻞ )اﻟ ﻼ اﺳ ﺘﻤﺮارﻳﺎت أرﻗ ﺎم ﻣ ﻦ ‪ ١‬اﻟ ﻰ ‪ (٤‬ﺑﺎﻟﺠ ﺪول أو ﺣﺪوث ﺗﻐﻴﺮ ﻓﻰ اﺳﺘﻤﺮارﻳﺔ اﻟﺨﻂ‬
‫ﻣ ﺜﻞ )اﻟ ﻼ اﺳ ﺘﻤﺮارﻳﺎت أرﻗ ﺎم ‪٥‬و‪ (٦‬أو ﻋ ﻨﺪ اﻟ ﺘﻘﺎء ﺧﻄ ﻴﻦ ﺷ ﺮﻳﻄﻴﻴﻦ ﻣﻌ ﺎ ﻣﺜﻞ )اﻟﻼ اﺳﺘﻤﺮارﻳﺎت أرﻗﺎم ‪٧‬و‪ (٨‬أو‬
‫ﻋ ﻨﺪ اﻟ ﺘﻘﺎء ﺛﻼﺛ ﺔ ﺧﻄ ﻮط ﺷ ﺮﻳﻄﻴﻪ ﻣﻌ ﺎ ﻣ ﺜﻞ )اﻟ ﻼ اﺳ ﺘﻤﺮارﻳﺎت أرﻗ ﺎم ‪ ٩‬و‪ (١٠‬أو ﻋ ﻨﺪ اﻟ ﺘﻘﺎء أرﺑﻌ ﺔ ﺧﻄ ﻮط‬
‫ﺷ ﺮﻳﻄﻴﻪ ﻣﻌ ﺎ ﻣ ﺜﻞ )اﻟ ﻼ اﺳ ﺘﻤﺮارﻳﺎت أرﻗ ﺎم ‪١١‬و‪ (١٢‬أو اﻟﻼ اﺳﺘﻤﺮارﻳﺎت ﻋﻨﺪ ﻧﻬﺎﻳﺔ آﻞ ﺧﻂ ﺷﺮﻳﻄﻰ ﻏﻴﺮ ﻣﺘﺼﻞ‬
‫ﺑﻤﻜ ﻮن ﺁﺧ ﺮ ﻣ ﺜﻞ )ﻻ اﺳ ﺘﻤﺮارﻳﺎت اﻟ ﻨﻬﺎﻳﻪ اﻟﻤﻔ ﺘﻮﺣﻪ ‪ open circuit end‬و اﻟ ﻨﻬﺎﻳﻪ اﻟﻤﻮﺻ ﻠﻪ ﺑ ﺎﻷرض ‪short‬‬
‫‪ (circuit end‬آﻤﺎ ﻓﻰ اﻟﺸﻜﻞ )‪ (٤ - ٤‬و اﻟﺸﻜﻞ )‪ (٧ - ٤‬و ﻏﻴﺮ ذﻟﻚ ﻣﻦ أﻧﻮاع اﻟﻼ اﺳﺘﻤﺮارﻳﺎت ‪.‬‬
‫ﻋﻠ ﻰ ﻣ ﺪار ﺳﻨﻮات اﻟﺒﺤﺚ ﻓﻰ ﻣﺠﺎل ﺗﺼﻤﻴﻢ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ ﺗﻢ ﺣﺴﺎب و ﺗﺤﻠﻴﻞ ﺗﺄﺛﻴﺮ اﻟﻼ اﺳﺘﻤﺮارﻳﺎت ﻋﻠﻰ أداء‬
‫اﻟﺪواﺋ ﺮ و ﻋﻤ ﻞ دواﺋ ﺮ ﻣﻜﺎﻓ ﺌﻪ ﻟﻬ ﺎ )‪ (equivalent circuit models‬ﻟﻜ ﻰ ﻳﺴ ﻬﻞ ﺗﺤﻠﻴﻞ اﻟﺪواﺋﺮ ﺑﺎﺳﺘﺨﺪام ﺑﺮاﻣﺞ‬
‫ﺗﺤﻠﻴﻞ اﻟﺪواﺋﺮ اﻟﺘﻰ ﺗﺤﺘﻮى ﻋﻠﻰ ﻧﻤﺎذج اﻟﻼ اﺳﺘﻤﺮارﻳﺎت )‪.(closed form models‬‬
‫و ﻗ ﺪ وﺟ ﺪ أن ﺗﺄﺛﻴ ﺮ اﻟ ﻼ اﺳ ﺘﻤﺮارﻳﺎت ﻋﻠ ﻰ أداء اﻟﺪواﺋ ﺮ اﻟﺸ ﺮﻳﻄﻴﻪ ﻳﻜ ﻮن ﺑﻨﺴ ﺐ أﻗﻞ ﻓﻰ ﺗﺮددات ﺣﻴﺰ ) ‪VHF‬‬
‫‪ (and UHF‬و آﺬﻟﻚ ﻋﻨﺪ اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ ﻣﻦ ﺣﻴﺰ اﻟﻤﻴﻜﺮووﻳﻒ ﻣﺜﻞ )‪. (L band‬‬
‫ﺑﻴ ﻨﻤﺎ ﻳﻜ ﻮن ﺗﺄﺛﻴ ﺮ اﻟ ﻼ اﺳﺘﻤﺮارﻳﺎت ﻋﻠﻰ أداء اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ ﻳﻜﻮن ﺑﻨﺴﺐ أآﺒﺮ ﺑﻜﺜﻴﺮ ﻓﻰ اﻟﺘﺮددات اﻟﻌﺎﻟﻴﻪ ﻣﻦ‬
‫ﺣﻴﺰ اﻟﻤﻴﻜﺮووﻳﻒ و ﺣﻴﺰ اﻟﺘﺮددات اﻟﻤﻴﻠﻠﻴﻤﺘﺮﻳﻪ ‪.‬‬
‫و ﻳﻤﻜ ﻦ أن ﻧﻔﻬ ﻢ ه ﺬا ﻋ ﻨﺪ ﺣﺴ ﺎب ﻗ ﻴﻢ اﻟﻤﻜ ﻮﻧﺎت ﻓ ﻰ اﻟﺪواﺋ ﺮ اﻟﻤﻜﺎﻓ ﺌﻪ ﻟﻠ ﻼ اﺳﺘﻤﺮارﻳﺎت ) ‪equivalent circuit‬‬
‫‪ (models‬ﺣ ﻴﺚ ﻧﺠ ﺪ أن ﻗﻴﻢ اﻟﻤﻜﺜﻔﺎت ﺑﺎﻟﺪواﺋﺮ اﻟﻤﻜﺎﻓﺌﻪ ﻗﺪ ﻻ ﻳﺘﻌﺪى )‪ (0.1 pF‬ﻓﻰ ﻣﻌﻈﻢ اﻟﺤﺎﻻت ‪ ،‬ﺑﻴﻨﻤﺎ ﻧﺠﺪ أن‬
‫ﻗ ﻴﻢ اﻟﻤﻠﻔ ﺎت ﺑﺎﻟﺪواﺋ ﺮ اﻟﻤﻜﺎﻓ ﺌﻪ ﻗ ﺪ ﻻ ﻳﺘﻌﺪى )‪ (0.1 nH‬ﻓﻰ ﻣﻌﻈﻢ اﻟﺤﺎﻻت و ﻟﻬﺬا ﻳﻜﻮن ﺗﺄﺛﻴﺮ اﻟﻼ اﺳﺘﻤﺮارﻳﺎت ﻋﻨﺪ‬
‫)‪ (1 GHz‬ﻣﺜﻼ أﻗﻞ ﺑﻜﺜﻴﺮ ﻣﻦ ﺗﺄﺛﻴﺮهﺎ ﻋﻨﺪ )‪. (10 GHz‬‬
‫ﻟﻜ ﻦ ﻋﻤ ﻮﻣﺎ ﻳﺘﻌ ﻴﻦ ﻋﻠ ﻰ ﻣﺼ ﻤﻢ اﻟﺪواﺋ ﺮ اﻟﺸ ﺮﻳﻄﻴﻪ ﻋ ﻨﺪ ﺗﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ ﺑﺎﺳﺘﺨﺪام ﺑﺮاﻣﺞ اﻟﺘﺤﻠﻴﻞ أن ﻳﺄﺧﺬ ﺟﻤﻴﻊ اﻟﻼ‬
‫اﺳﺘﻤﺮارﻳﺎت اﻟﻤﻮﺟﻮدﻩ ﺑﺎﻟﺪاﺋﺮﻩ ﻓﻰ اﻻﻋﺘﺒﺎر ﻟﻠﺤﺼﻮل ﻋﻠﻰ أدق ﻧﺘﺎﺋﺞ ﻣﻤﻜﻨﻪ‪.‬‬
‫اﺳ ﺘﻨﺘﺎج اﻟﺪواﺋ ﺮ اﻟﻤﻜﺎﻓ ﺌﻪ ﻟﻠ ﻼ اﺳ ﺘﻤﺮارﻳﺎت )‪ (equivalent circuit models‬ﻳ ﺘﻢ ﺑﻄ ﺮق ﻋﺪﻳ ﺪﻩ ‪ .‬ﻓﻬ ﻨﺎك ﻃ ﺮق‬
‫ﻟﺤﺴ ﺎب ﻗ ﻴﻢ اﻟﻤﻜ ﺜﻔﺎت ﺑﺎﻟﺪواﺋ ﺮ اﻟﻤﻜﺎﻓ ﺌﻪ ﻟﻠ ﻼ اﺳ ﺘﻤﺮارﻳﺎت )‪ (capacitance evaluation techniques‬ﻣ ﺜﻞ‬
‫) ‪– variational method –matrix inversion method‬‬

‫‪ ( Galerkin's method‬و ه ﻨﺎك ﻃ ﺮق‬

‫ﻟﺤﺴﺎب ﻗﻴﻢ اﻟﻤﻠﻔﺎت ﺑﺎﻟﺪواﺋﺮ اﻟﻤﻜﺎﻓﺌﻪ و هﻨﺎك ﻃﺮق ﻻﺳﺘﻨﺘﺎج ﺑﺎراﻣﺘﺮات )‪ (S‬اﻟﻤﻜﺎﻓﺌﻪ ﻟﻠﻼ اﺳﺘﻤﺮارﻳﺎت ‪.‬‬
‫و ه ﻨﺎك ﻃ ﺮق ﻻﺳ ﺘﻨﺘﺎج اﻟﺪواﺋﺮ اﻟﻤﻜﺎﻓﺌﻪ ﻟﻠﻼ اﺳﺘﻤﺮارﻳﺎت ﺑﺎﺳﺘﺨﺪام اﻟﺨﻼﻳﺎ اﻟﻤﺨﻴﻪ اﻟﻌﺼﺒﻴﻪ ) ‪Articial Neural‬‬
‫‪ (Networks ANN‬ﻣﻨﻬﺎ ﻣﺎ ﻳﻌﺘﻤﺪ ﻋﻠﻰ ﻃﺮق اﻟﺘﺤﻠﻴﻞ اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴﻴﻪ ﻻﻧﺘﺎج ) ‪Electromagnetic Based‬‬
‫‪ (Articial Neural Network Models‬و أﺻ ﺒﺢ ه ﻨﺎك ﺑ ﺮاﻣﺞ ﻟﺘﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ ﺗﺒﺎع ﺗﺠﺎرﻳﺎ ﺗﺴﺘﺨﺪم هﺬا اﻟﻨﻮع‬
‫ﻣ ﻦ اﻟ ﻨﻤﺎذج أو اﻟﺪواﺋ ﺮ اﻟﻤﻜﺎﻓ ﺌﻪ ﻟﻠ ﻼ اﺳ ﺘﻤﺮارﻳﺎت ﻣ ﺜﻞ )‪ (Agilent ADS, AWR Suite‬و ﻏﻴ ﺮهﺎ و ه ﻨﺎك‬
‫ﺑ ﺮاﻣﺞ ﻻﺳ ﺘﻨﺘﺎج )أو ﺣﺴ ﺎب ﺑﺎراﻣﺘ ﺮات( هﺬا اﻟﻨﻮع ﻣﻦ اﻟﻨﻤﺎذج أو اﻟﺪواﺋﺮ اﻟﻤﻜﺎﻓﺌﻪ ﻟﻠﻼ اﺳﺘﻤﺮارﻳﺎت ﺗﺒﺎع ﺗﺠﺎرﻳﺎ‬
‫ﻣﺜﻞ )‪. (NeuroModeler‬‬

‫‪108‬‬

‫ﻧﻮع اﻟﻼ اﺳﺘﻤﺮارﻳﻪ‬

‫ﻣﺨﻄﻂ )‪(Layout‬‬

‫‪1‬‬

‫ﺛﻨﻴﻪ ﻣﺘﻌﺎﻣﺪﻩ أو ﺛﻨﻴﻪ ﺗﺴﻌﻴﻦ درﺟﻪ‬
‫‪o‬‬

‫‪90 degree bend‬‬
‫‪2‬‬

‫ﺛﻨﻴﻪ ﻣﻘﻮﺳﻪ أو ﺛﻨﻴﻪ ﻣﺪورﻩ‬
‫‪Curved bend‬‬

‫‪3‬‬

‫ﺛﻨﻴﻪ ذات زاوﻳﻪ ﻣﻌﻴﻨﻪ‬
‫‪θ degree bend‬‬

‫‪4‬‬

‫ﺛﻨﻴﻪ ﻣﺸﻄﻮﻓﻪ‬
‫‪Mitered or champhered or compensated‬‬
‫‪bend‬‬
‫ﻓﺠﻮﻩ‬

‫‪5‬‬

‫‪Gap (or series gap) discontinuity‬‬
‫ﺷﻄﻔﻪ أو ﺷﻖ ﻋﺮﺿﻰ‬

‫‪6‬‬

‫‪Slit or transverse slit‬‬
‫ﻻ اﺳﺘﻤﺮارﻳﻪ ﻣﺘﻤﺎﺛﻠﻪ ﻋﻠﻰ ﺷﻜﻞ درﺟﺔ اﻟﺴﻠﻢ‬

‫‪7‬‬

‫‪Symmetrical Step Discontinuity‬‬
‫ﻻ اﺳﺘﻤﺮارﻳﻪ ﻏﻴﺮ ﻣﺘﻤﺎﺛﻠﻪ ﻋﻠﻰ ﺷﻜﻞ درﺟﺔ اﻟﺴﻠﻢ‬

‫‪8‬‬

‫‪Nonsymmetrical Step Discontinuity‬‬
‫‪9‬‬

‫ﻻ اﺳﺘﻤﺮارﻳﻪ ﻋﻠﻰ ﺷﻜﻞ ﺣﺮف )‪(T‬‬
‫‪Tee Discontinuity or T-junction‬‬

‫‪10‬‬

‫ﻻ اﺳﺘﻤﺮارﻳﻪ ﻋﻠﻰ ﺷﻜﻞ ﺣﺮف )‪(Y‬‬
‫‪Y-junction‬‬
‫‪or junction with arbitrary angle θ‬‬
‫ﻻ اﺳﺘﻤﺮارﻳﻪ ﻋﻠﻰ ﺷﻜﻞ )‪(+‬‬

‫‪11‬‬

‫‪Cross discontinuity or cross junction‬‬
‫ﻻ اﺳﺘﻤﺮارﻳﻪ ﻋﻠﻰ ﺷﻜﻞ )‪ (+‬ﻏﻴﺮ اﻋﺘﻴﺎدﻳﻪ‬
‫‪Unusual cross junction‬‬

‫ﺟﺪول )‪ : (١-٤‬ﺑﻌﺾ أﻧﻮاع اﻟﻼ اﺳﺘﻤﺮارﻳﺎت ﻓﻰ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ‬

‫‪109‬‬

‫‪12‬‬

‫و ﻣﻮﺿﻮع اﻟﻨﻤﺬﺟﻪ )‪ (Modeling‬ﻳﺤﺘﺎج دراﺳﻪ ﻃﻮﻳﻠﻪ ﺧﺎرج ﻣﻮﺿﻮع اﻟﻜﺘﺎب ﻟﻜﻦ هﻨﺎك ﻋﺪد ﻣﻦ اﻟﻤﺮاﺟﻊ ﻳﻤﻜﻦ‬
‫اﺳ ﺘﺨﺪاﻣﻪ ﻓ ﻰ ه ﺬا اﻟﻤﻮﺿ ﻮع ﻣ ﺜﻞ ﻣ ﺮﺟﻊ )‪ ، (8‬آﻤ ﺎ ﻳ ﻮﺟﺪ ﻋ ﺪد آﺒﻴ ﺮ ﻣ ﻦ اﻟﻤ ﺮاﺟﻊ ﻳﺤﺘﻮى ﻋﻠﻰ ﻧﻤﺎذج أو دواﺋﺮ‬
‫ﻣﻜﺎﻓﺌﻪ ﻟﻠﻼ اﺳﺘﻤﺮارﻳﺎت ﺳﻮاء ﻟﺘﻜﻨﻮﻟﻮﺟﻴﺎ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ أو ﺗﻜﻨﻮﻟﻮﺟﻴﺎت أﺧﺮى ﻣﺜﻞ اﻟﻤﺮاﺟﻊ )‪.(1,5‬‬
‫ﺗﺤ ﺘﻮى ﻣﻌﻈ ﻢ ﺑ ﺮاﻣﺞ ﺗﺤﻠﻴﻞ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ اﻟﺤﺪﻳﺜﻪ ﻋﻠﻰ ﻣﻜﺘﺒﺎت ﻣﺒﻨﻴﻪ )‪ (built-in libraries‬داﺧﻞ اﻟﺒﺮاﻣﺞ‬
‫ﺑﻬ ﺎ ﻧﻤ ﺎذج دﻗ ﻴﻘﻪ ﻟﻠﻤﻜ ﻮﻧﺎت و اﻟﻼاﺳ ﺘﻤﺮارﻳﺎت و ﻏﻴ ﺮهﺎ و ﻳﺘﻌ ﻴﻦ ﻋﻠ ﻰ ﻣﺴ ﺘﺨﺪم اﻟﺒ ﺮﻧﺎﻣﺞ ﻓﻘ ﻂ اﺧﺘ ﻴﺎر اﻟﻨﻤﺎذج )أو‬
‫اﻟ ﺮﻣﻮز( اﻟﺘ ﻰ ﻳﺮﻏﺐ ﻓﻰ اﺿﺎﻓﺘﻬﺎ ﻟﻠﺪاﺋﺮﻩ‪ .‬و ﻓﻴﻤﺎ ﻳﻠﻰ ﺷﺮح ﻟﺒﻌﺾ اﻟﺪواﺋﺮ اﻟﻤﻜﺎﻓﺌﻪ ﻟﻠﻼ اﺳﺘﻤﺮارﻳﺎت ﻓﻰ اﻟﺪواﺋﺮ‬
‫اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ ‪.‬‬

‫)ﻤﻘﻁﻊ ‪ (١-٢-٤‬ﻻ ﺍﺴﺘﻤﺭﺍﺭﻴﺔ ﺍﻟﻨﻬﺎﻴﻪ ﺍﻟﻤﻔﺘﻭﺤﻪ ‪: open circuit end‬‬

‫ﻳﻮﺿ ﺢ ﺸـﻜل )‪ (٤ - ٤‬ﺧ ﻂ ﺷ ﺮﻳﻄﻰ دﻗﻴﻖ ذو ﻧﻬﺎﻳﻪ ﻣﻔﺘﻮﺣﻪ )‪(microstrip line with open circuit end‬‬
‫ﻣﺮﺳ ﻮم اﻟ ﻰ اﻟﻴﻤ ﻴﻦ ﺑﻤﺴ ﻘﻂ ﻓﻮﻗ ﻰ و اﻟ ﻰ اﻟﻴﺴ ﺎر ﺑﻤﻨﻈ ﺮ ﺛﻼﺛ ﻰ اﻷﺑﻌ ﺎد ‪ ،‬و ﻳﻮﺿﺢ ﺸﻜل )‪ (٥ - ٤‬ﻣﻘﻄﻊ ﻓﻰ اﻟﺨﻂ‬
‫اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ ذو اﻟ ﻨﻬﺎﻳﻪ اﻟﻤﻔ ﺘﻮﺣﻪ ﻣﺒﻴ ﻨﺎ ﺷ ﻜﻞ ﺧﻄ ﻮط اﻟﻤﺠ ﺎل اﻟﻜﻬﺮﺑ ﻰ )‪ (E‬ﻟﻠﻤ ﻮﺟﻪ اﻟﻤﻨﺘﺸ ﺮﻩ ﻓ ﻰ اﻟﺨ ﻂ‬
‫اﻟﺸﺮﻳﻄﻰ و ﻋﻨﺪ و ﺑﻌﺪ اﻟﻨﻬﺎﻳﻪ اﻟﻤﻔﺘﻮﺣﻪ ‪.‬‬

‫ﺸﻜل )‪ : (٤ - ٤‬ﺧﻂ ﺷﺮﻳﻄﻰ دﻗﻴﻖ ذو ﻧﻬﺎﻳﻪ ﻣﻔﺘﻮﺣﻪ‪.‬‬

‫‪110‬‬

‫ﺸﻜل )‪ : (٥ - ٤‬ﻣﻘﻄﻊ ﻓﻰ ﺧﻂ ﺷﺮﻳﻄﻰ دﻗﻴﻖ ذو ﻧﻬﺎﻳﻪ ﻣﻔﺘﻮﺣﻪ ‪.‬‬

‫ه ﻨﺎك ﺛﻼﺛ ﺔ ﻧﻈ ﺮﻳﺎت ﺗﺤﻜ ﻢ اﻟ ﻨﻬﺎﻳﻪ اﻟﻤﻔ ﺘﻮﺣﻪ و ه ﻰ أوﻻ ﺗﺄﺛﻴ ﺮ اﻟﺤﺎﻓﻪ )‪ (fringing effect‬و ﺛﺎﻧﻴﺎ هﻨﺎك ﻣﻮﺟﺎت‬
‫اﻟﺴﻄﺢ )‪ (surface waves‬و اﻟﺘﻰ ﺗﻨﺘﺸﺮ ﺑﻌﺪ ﻧﻬﺎﻳﺔ اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ و ﺛﺎﻟﺜﺎ اﻟﻄﺎﻗﻪ اﻟﺘﻰ ﺗﺸﻊ ﻣﻦ اﻟﻨﻬﺎﻳﻪ اﻟﻤﻔﺘﻮﺣﻪ ‪.‬‬
‫ﻧﻼﺣ ﻆ ﻣ ﻦ ﺸـﻜل )‪ (٥ - ٤‬أن ﺧﻄ ﻮط اﻟﻤﺠ ﺎل اﻟﻜﻬﺮﺑ ﻰ ﻳﻨﺘﺸ ﺮ ﺟ ﺰء ﻣﻨﻬﺎ ﻓﻰ اﻟﻬﻮاء ﺑﻌﺪ اﻟﻨﻬﺎﻳﻪ اﻟﻤﻔﺘﻮﺣﻪ ﻟﻠﺨﻂ‬
‫اﻟﺸ ﺮﻳﻄﻰ و ﺗﺨﺘ ﺮق ﺧﻄ ﻮط اﻟﻤﺠ ﺎل اﻟﻜﻬﺮﺑ ﻰ ﻃ ﺒﻘﺔ اﻟﻌ ﺎزل و ﺗﻨﺘﻬ ﻰ ﻋ ﻨﺪ ﻃ ﺒﻘﺔ اﻟﻤﻮﺻ ﻞ اﻷرﺿ ﻰ و ﺗﺴﻤﻰ هﺬﻩ‬
‫اﻟﻈﺎهﺮﻩ )‪ (fringing effect‬أو ﺗﺄﺛﻴﺮ اﻟﺤﺎﻓﻪ ‪.‬‬
‫و ﻳﻤﻜ ﻦ أن ﻧﺴ ﺘﻨﺘﺞ ﻣ ﻦ ﺸـﻜل )‪ (٥ - ٤‬أن ه ﻨﺎك ﻣﺠ ﺎل آﻬﺮﺑ ﻰ ﻣﺤﺼ ﻮر ﺑ ﻴﻦ اﻟ ﻨﻬﺎﻳﻪ اﻟﻤﻔ ﺘﻮﺣﻪ ﻟﻠﺨﻂ اﻟﺸﺮﻳﻄﻰ‬
‫اﻟﺪﻗ ﻴﻖ و ﺑ ﻴﻦ ﻃ ﺒﻘﺔ اﻟﻤﻮﺻ ﻞ اﻷرﺿ ﻰ ) أى ﻣﺠﺎل آﻬﺮﺑﻰ ﻣﺤﺼﻮر ﺑﻴﻦ ﻣﻮﺻﻠﻴﻦ ( و هﺬا ﻳﻜﺎﻓﺊ ﻣﻜﺜﻒ ﻋﻨﺪ ﻧﻬﺎﻳﺔ‬
‫اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ ﻗﻴﻤﺘﻪ )‪: (Cf‬‬

‫)‪(4.1‬‬

‫‪pF/m‬‬

‫‪i −1‬‬
‫‪5‬‬
‫⎡‬
‫⎤ ⎞‪w‬‬
‫⎛‬
‫⎥ ⎟ ‪= exp ⎢2.2036 ∑ K ε ⎜ log‬‬
‫‪w‬‬
‫⎦⎥ ⎠ ‪h‬‬
‫⎝‬
‫‪i =1‬‬
‫⎣⎢‬

‫‪Cf‬‬

‫ﺣ ﻴﺚ )‪ (Kε‬ﺛﺎﺑ ﺖ ﻳﻌ ﺘﻤﺪ ﻋﻠ ﻰ ﻗ ﻴﻤﺔ ﺛﺎﺑ ﺖ اﻟﻌ ﺰل ﻟﻠﺸ ﺮﻳﺤﻪ و ﻳﻌﻄ ﻰ ﻓ ﻰ ﺑﻌ ﺾ اﻟﻤ ﺮاﺟﻊ ﻓ ﻰ ﺻ ﻮرة ﺟ ﺪاول )ﻣ ﺜﻞ‬
‫اﻟﻤ ﺮﺟﻊ ‪ (2‬و )‪ (w‬ه ﻮ ﻋ ﺮض اﻟﺨ ﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ و )‪ (h‬هﻮ ﺳﻤﻚ ﻃﺒﻘﺔ اﻟﻌﺎزل ‪ .‬و ﻋﻤﻮﻣﺎ هﺬا اﻟﻤﻜﺜﻒ ﻟﻴﺲ‬
‫اﻷﺳﻬﻞ ﻟﻠﺘﻌﺒﻴﺮ ﻋﻦ اﻟﺪاﺋﺮﻩ اﻟﻤﻜﺎﻓﺌﻪ ﻟﻠﻨﻬﺎﻳﻪ اﻟﻤﻔﺘﻮﺣﻪ ﻟﻠﺨﻂ اﻟﺸﺮﻳﻄﻰ و هﻨﺎك ﻃﺮﻳﻘﺔ أﺧﺮى‪.‬‬

‫‪111‬‬

‫ﻓﻠ ﻮ أﻋ ﺪﻧﺎ اﻟﻨﻈ ﺮ ﻟﻠﺸ ﻜﻞ )‪ (٥ - ٤‬ﻧﺠﺪ أن ﺧﻄﻮط اﻟﻤﺠﺎل اﻟﻜﻬﺮﺑﻰ ﺑﻌﺪ اﻟﻨﻬﺎﻳﻪ اﻟﻤﻔﺘﻮﺣﻪ ﻟﻠﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ ﺗﻤﺘﺪ‬
‫ﻓ ﻰ ﻧﻔ ﺲ اﺗﺠ ﺎﻩ ﻃ ﻮل اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ ‪ ،‬آﻤ ﺎ ﻟ ﻮ آ ﺎن اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ ﻗ ﺪ زاد ﻃﻮﻟﻪ )اﻟﻜﻬﺮﺑﻰ( و ﺑﺎﻟﺘﺎﻟﻰ‬
‫ﻳﻤﻜ ﻦ اﻟ ﺘﻌﻮﻳﺾ ﻋ ﻦ ه ﺬﻩ اﻟ ﺰﻳﺎدﻩ ﻓ ﻰ اﻟﻄ ﻮل اﻟﻜﻬﺮﺑ ﻰ ﺑ ﺰﻳﺎدة اﻟﻄ ﻮل )اﻟﻔﻌﻠ ﻰ أو اﻟﻔﻴﺰﻳﻘﻰ( ﻟﻠﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ‬
‫ﺑﻤﺴﺎﻓﻪ ﻧﺴﻤﻴﻬﺎ اﻻﺳﺘﻄﺎﻟﻪ )‪ (∆ l‬و هﻰ ﺗﻌﻄﻰ ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫)‪(4.2‬‬

‫⎞ ‪⎛ ( w / h) + 0.262‬‬
‫⎟⎟‬
‫⎜⎜‬
‫⎠ ‪⎝ ( w / h) + 0.813‬‬

‫⎞ ‪⎛ ε + 0.3‬‬
‫⎟⎟‬
‫‪∆ l = 0.412 h ⎜⎜ eff‬‬
‫⎠ ‪⎝ ε eff − 0.258‬‬

‫ﺣﻴﺚ )‪ (εeff‬هﻰ اﻟﺴﻤﺎﺣﻴﻪ اﻟﻔﻌﺎﻟﻪ ﻟﻠﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ آﻤﺎ ﻋﺮﻓﻨﺎ ﻣﻦ اﻟﻔﺼﻞ اﻟﺴﺎﺑﻖ‪.‬‬
‫اذًا و ﻣ ﻦ اﻟﻤﻌﺎدﻟ ﻪ )‪ (4.2‬ﻳﻤﻜﻨ ﻨﺎ ﺣﺴ ﺎب اﻟﺪاﺋ ﺮﻩ اﻟﻤﻜﺎﻓ ﺌﻪ ﻟﻠ ﻨﻬﺎﻳﻪ اﻟﻤﻔ ﺘﻮﺣﻪ ﻟﻠﺨ ﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ ﻓﻰ ﺻﻮرة ﺧﻂ‬
‫ﺷﺮﻳﻄﻰ ﻣﺘﺼﻞ ﺑﺎﻟﺨﻂ اﻷﺻﻠﻰ ﻟﻪ ﻧﻔﺲ اﻟﻌﺮض )‪ (w‬و ﻃﻮﻟﻪ )‪. (∆ l‬‬
‫ﻳﻤﻜ ﻦ اﻟ ﺮﺟﻮع ﻟﻠﻤ ﺮاﺟﻊ )‪ (1,2,5‬ﻟﻤﻌ ﺮﻓﺔ اﻟﻨﻈ ﺮﻳﺎت و اﻻﺛ ﺒﺎﺗﺎت اﻟﻤﺴ ﺘﻨﺘﺞ ﻣ ﻨﻬﺎ اﻟﻤﻌﺎدﻟﺘ ﻴﻦ )‪ (4.1‬و )‪(4.2‬‬
‫اﻟﺴﺎﺑﻘﺘﻴﻦ‪.‬‬
‫و ﻣﻔﻬ ﻮم ﺑﺎﻟﻄ ﺒﻊ أﻧ ﻪ ﻋ ﻨﺪ ﺗﺼ ﻤﻴﻢ داﺋ ﺮﻩ ﺑﻬ ﺎ ﺧ ﻂ ﺷ ﺮﻳﻄﻰ دﻗﻴﻖ ﻳﻨﺘﻬﻰ ﺑﻨﻬﺎﻳﻪ ﻣﻔﺘﻮﺣﻪ و ﻧﺤﺘﺎج ﻟﻄﻮل ﻣﻘﺪارﻩ )‪(X‬‬
‫ﻟﻬ ﺬا اﻟﺨ ﻂ ﻓﺎﻧﻪ ﻋﻨﺪ ﺗﻨﻔﻴﺬ اﻟﺪاﺋﺮﻩ ﻧﺠﻌﻞ ﻃﻮل اﻟﺨﻂ )‪ ، (X − ∆ l‬و ﻋﻨﺪ ﻋﻤﻞ ﺗﺤﻠﻴﻞ ﻟﻬﺬﻩ اﻟﺪاﺋﺮﻩ ﺑﺎﺳﺘﺨﺪام أى ﻣﻦ‬
‫ﺑﺮاﻣﺞ ﺗﺤﻠﻴﻞ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ ﻓﺎﻧﻨﺎ ﻧﺴﺘﺨﺪم ﻃﻮل اﻟﺨﻂ )‪ (X − ∆ l‬و ﻧﻀﻊ ﻋﻨﺪ ﻧﻬﺎﻳﺘﻪ ﻧﻤﻮذج أو ﻋﻨﺼﺮ‬
‫اﻟﻨﻬﺎﻳﻪ اﻟﻤﻔﺘﻮﺣﻪ )‪ (microstrip open circuit end element‬ﻟﻠﺘﻌﻮﻳﺾ ﻋﻦ اﻻﺳﺘﻄﺎﻟﻪ‪.‬‬
‫ﻳﻮﺿ ﺢ ﺸـﻜل )‪ (٦ - ٤‬رﺳ ﻢ رﻣ ﺰى ﻟﺨ ﻂ ﺷ ﺮﻳﻄﻰ دﻗ ﻴﻖ )‪ (Microstrip Line‬ﻣﻮﺻ ﻞ ﺑﻨﻬﺎﻳﺘﻪ ﻧﻬﺎﻳﻪ ﻣﻔﺘﻮﺣﻪ‬
‫)‪ (microstrip open circuit end element‬آﻤ ﺎ ﻳ ﺒﺪو ﻓ ﻰ ﺑﻌ ﺾ ﺑ ﺮاﻣﺞ ﺗﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ ‪ .‬ﻟﻜ ﻦ ه ﻨﺎك ﺑﻌﺾ‬
‫اﻟﺒﺮاﻣﺞ اﻟﺘﻰ ﺗﺤﺘﻮى ﻋﻠﻰ رﻣﺰ واﺣﺪ ﻳﻤﺜﻞ اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ اﻟﻤﻨﺘﻬﻰ ﺑﻨﻬﺎﻳﻪ ﻣﻔﺘﻮﺣﻪ‪.‬‬

‫ﺸﻜل )‪ : (٦ - ٤‬رﺳﻢ رﻣﺰى ﻟﺨﻂ ﺷﺮﻳﻄﻰ دﻗﻴﻖ )‪ (Microstrip Line‬ﻣﻮﺻﻞ ﺑﻨﻬﺎﻳﺘﻪ ﻧﻬﺎﻳﻪ ﻣﻔﺘﻮﺣﻪ‪.‬‬

‫‪112‬‬

‫)ﻤﻘﻁﻊ ‪ (٢-٢-٤‬ﺍﻟﻨﻬﺎﻴﻪ ﺍﻟﻤﻭﺼﻠﻪ ﺒﺎﻷﺭﺽ ‪: short circuit end‬‬

‫ﺸﻜل )‪ : (٧ - ٤‬ﺧﻂ ﺷﺮﻳﻄﻰ دﻗﻴﻖ ذو ﻧﻬﺎﻳﻪ ﻣﻮﺻﻠﻪ ﺑﺎﻷرض‪.‬‬

‫ﻳﻮﺿﺢ ﺸﻜل )‪ (٦ - ٤‬ﺧﻂ ﺷﺮﻳﻄﻰ دﻗﻴﻖ ذو ﻧﻬﺎﻳﻪ ﻣﻮﺻﻠﻪ ﺑﺎﻷرض ) ‪microstrip line with short circuit‬‬
‫‪ (end‬ﻣﺮﺳ ﻮم اﻟﻰ اﻟﻴﻤﻴﻦ ﺑﻤﺴﻘﻂ ﻓﻮﻗﻰ و اﻟﻰ اﻟﻴﺴﺎر ﺑﻤﻨﻈﺮ ﺛﻼﺛﻰ اﻷﺑﻌﺎد ﻣﻊ ﺟﻌﻞ اﻟﺸﺮﻳﺤﻪ ﺷﻔﺎﻓﻪ ﻻﻳﻀﺎح اﻟﺸﻜﻞ‬
‫اﻻﺳ ﻄﻮاﻧﻰ ﻟﻠﻮﺻ ﻠﻪ اﻟﻤﻮﺻ ﻠﻪ ﺑ ﺎﻷرض أو اﻟ ـ )‪ ، (Via‬و ﻓ ﻰ اﻟﺠﺰء اﻷﺳﻔﻞ ﻳﻮﺿﺢ ﺸﻜل )‪ (٦ - ٤‬ﻣﻘﻄﻊ ﻟﻨﻔﺲ‬
‫اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ ذو اﻟﻨﻬﺎﻳﻪ اﻟﻤﻮﺻﻠﻪ ﺑﺎﻷرض ‪.‬‬
‫ﻓ ﻰ اﻟﺘ ﺮددات اﻟﻤﻨﺨﻔﻀ ﻪ ﻣ ﻦ ﺣﻴﺰ اﻟﻤﻴﻜﺮووﻳﻒ ﻣﺜﻼ )ﺣﺘﻰ ‪ (3 GHz‬ﻧﺠﺪ أن اﻟﺘﻮﺻﻴﻞ ﺑﺎﻷرض ﻋﻦ ﻃﺮﻳﻖ ﺳﻠﻚ‬
‫ﻣﻠﺤ ﻮم ﺑ ﻨﻬﺎﻳﺔ اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ ﻣ ﻦ ﻃ ﺮف و ﻣ ﻦ اﻟﻄ ﺮف اﻵﺧ ﺮ ﻣﻠﺤ ﻮم ﺑﻄ ﺒﻘﺔ اﻟﻤﻮﺻ ﻞ اﻷرﺿ ﻰ ﻳﻌﻄ ﻰ‬
‫ﺗﻮﺻﻴﻼ ﺟﻴﺪا ﺑﺎﻷرض )‪ (good short circuit‬آﻤﺎ ﻓﻰ اﻟﻤﺮﺟﻊ )‪. (2‬‬

‫‪113‬‬

‫و ﻋ ﻨﺪ زﻳ ﺎدة اﻟﺘ ﺮدد ﻓ ﻮق )‪ (3 GHz‬ﻧﺠ ﺪ أن اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻜﺎﻓ ﺌﻪ ﻟﻬ ﺬا اﻟﺴﻠﻚ اﻟﻤﻮﺻﻞ ﺑﺎﻷرض ﺗﻌﻄﻰ ﻧﺘﺎﺋﺞ ﺑﻌﻴﺪﻩ‬
‫ﻋ ﻦ ﻣﻌﺎوﻗ ﺔ اﻟﺪاﺋ ﺮﻩ اﻟﻤﻘﻔﻠ ﻪ )‪ (short circuit impedance‬و ﻳﻜ ﻮن ﻟﻬ ﺬا اﻟﺴ ﻠﻚ اﻟﻤﻮﺻﻞ ﺑﺎﻷرض داﺋﺮﻩ ﻣﻜﺎﻓﺌﻪ‬
‫ﺗﺨ ﺘﻠﻒ ﺗﻤﺎﻣ ﺎ ﻋ ﻦ ﻣﺠ ﺮد وﺻ ﻠﻪ ﺑ ﺎﻷرض ‪ ،‬و ﺑﺎﻟﺘﺎﻟ ﻰ ﻻ ﻳﺼ ﺒﺢ اﻟﺴ ﻠﻚ ﻣﻨﺎﺳﺒﺎ ﻟﺘﻨﻔﻴﺬ اﻟﻨﻬﺎﻳﻪ ﻟﺨﻂ ﺷﺮﻳﻄﻰ دﻗﻴﻖ ذو‬
‫ﻧﻬﺎﻳﻪ ﻣﻮﺻﻠﻪ ﺑﺎﻷرض ﻓﻮق )‪. (3 GHz‬‬
‫ﻟ ﺬﻟﻚ ﻟﻌﻤﻞ وﺻﻠﻪ ﺑﺎﻷرض ﻋﻨﺪ ﻧﻬﺎﻳﺔ ﺧﻂ ﺷﺮﻳﻄﻰ دﻗﻴﻖ ﻟﺤﻴﺰ واﺳﻊ ﻣﻦ اﻟﺘﺮددات ) ‪good broadband short‬‬
‫‪ (circuit‬ﻳﺠ ﺐ أن ﺗﻜ ﻮن ه ﺬﻩ اﻟﻮﺻ ﻠﻪ ﻋﻠ ﻰ ﺷﻜﻞ ﺣﻔﺮﻩ أو ﺛﻘﺐ اﺳﻄﻮاﻧﻰ )‪ (hole‬آﻤﺎ هﻮ ﻣﻮﺿﺢ ﺑﺸﻜﻞ )‪(٦ - ٤‬‬
‫‪ ،‬و ه ﺬا اﻟ ﺜﻘﺐ ﻗ ﺪ ﻳﻜ ﻮن ﻣﻤﻠ ﻮﺋﺎ ﺑﻤﻮﺻ ﻞ أو ﺗﻜ ﻮن ﺣﻮاﺋﻂ اﻟﺜﻘﺐ ﻣﺒﻄﻨﻪ ﺑﻤﻮﺻﻞ اﻟﻰ ﻏﻴﺮ ذﻟﻚ ﻣﻦ أﻧﻮاع اﻟﻮﺻﻼت‬
‫ﺑﺎﻷرض )‪.(vias‬‬

‫ﺸﻜل )‪ : (٨ - ٤‬رﺳﻤﻴﻦ رﻣﺰﻳﻴﻦ ﻟﺨﻂ ﺷﺮﻳﻄﻰ دﻗﻴﻖ )‪ (Microstrip Line‬ﻣﻮﺻﻞ ﺑﻨﻬﺎﻳﺘﻪ وﺻﻠﻪ ﻟﻸرض‪.‬‬

‫ﻋ ﺎدة ﻳﺘ ﺮاوح ﻗﻄ ﺮ اﻟ ﺜﻘﺐ ﺑﻴﻦ )‪ (0.25mm to 1.3mm‬ﻣﺜﻼ ﻓﻰ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ و ﻳﻜﻮن ﻗﻄﺮ اﻟﺜﻘﺐ أﺻﻐﺮ‬
‫ﻣﻦ ﻋﺮض اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ اﻟﻤﻮﺟﻮد ﻋﻨﺪ ﻧﻬﺎﻳﺘﻪ ] و ﻟﻴﺲ آﻤﺎ هﻮ ﻣﻮﺿﺢ ﻓﻰ ﺸﻜل )‪ (٦ - ٤‬اﻟﺬى ﺗﻢ ﺗﻀﺨﻴﻢ‬
‫اﻟﺜﻘﺐ ﻓﻴﻪ ﻟﻠﺘﻮﺿﻴﺢ[‪.‬‬
‫اﻟﺪاﺋﺮﻩ اﻟﻤﻜﺎﻓﺌﻪ ﻟﻠـ )‪ (Via‬ﻟﻬﺎ أﺷﻜﺎل ﻣﺘﻌﺪدﻩ ﻓﻘﺪ ﺗﻜﻮن ﻋﻠﻰ ﺷﻜﻞ ﻣﻠﻒ أو ﻗﺪ ﺗﺘﻜﻮن ﻣﻦ ﺛﻼث ﻣﻠﻔﺎت ﻣﻮ ﺻﻠﻴﻦ ﻣﻌﺎ‬
‫آﺤ ﺮف )‪ (T‬و ﺗﻌ ﺘﻤﺪ ﻗ ﻴﻢ اﻟﻤﻠﻔ ﺎت ﻋﻠ ﻰ أﺑﻌ ﺎد اﻟ ـ )‪ (Via‬و ﻳﻤﻜ ﻦ اﻟ ﺮﺟﻮع ﻟﻠﻤ ﺮاﺟﻊ )‪ (1,9‬ﻟﻤ ﺮاﺟﻌﺔ ﻣﻌ ﺎدﻻت‬
‫اﻟﺪواﺋ ﺮ اﻟﻤﻜﺎﻓ ﺌﻪ ﻟﻠـ )‪ (vias‬و اﻟﻤﻨﺤﻨﻴﺎت اﻟﺨﺎﺻﻪ ﺑﻬﺎ و آﺬﻟﻚ ﻣﻌﻠﻮﻣﺎت ﻋﻦ )‪ (vias‬ﻏﻴﺮ ﺗﻘﻠﻴﺪﻳﻪ ذات ﻣﻘﻄﻊ ﻏﻴﺮ‬
‫داﺋﺮى أو ﻋﻠﻰ ﺷﻜﻞ ﻗﻄﻊ ﻧﺎﻗﺺ )‪ (ellipse‬أو ﻣﻘﻄﻊ ﻣﺘﻐﻴﺮ اﻷﺑﻌﺎد و ﻏﻴﺮهﺎ‪.‬‬
‫اﻟﺒ ﺮاﻣﺞ اﻟﺤﺪﻳ ﺜﻪ اﻟﻤﺴ ﺘﺨﺪﻣﻪ ﻓ ﻰ ﺗﺤﻠ ﻴﻞ دواﺋ ﺮ اﻟﻤﻴﻜ ﺮووﻳﻒ ﺗﺤﺘﻮى ﻋﺎدة ﻋﻠﻰ ﻋﺪد ﻣﻦ اﻟﻨﻤﺎذج أو اﻟﺪواﺋﺮ اﻟﻤﻜﺎﻓﺌﻪ‬
‫ﻟﻌ ﺪد ﻣ ﻦ اﻟﻮﺻ ﻼت ﺑ ﺎﻷرض )‪ ، (vias‬و ﻋ ﻨﺪ ﺗﺤﻠ ﻴﻞ داﺋ ﺮﻩ ﺗﺤ ﺘﻮى ﻋﻠ ﻰ ﺧ ﻂ ﺷ ﺮﻳﻄﻰ دﻗ ﻴﻖ ذو ﻧﻬﺎﻳ ﻪ ﻣﻮﺻﻠﻪ‬

‫‪114‬‬

‫ﺑ ﺎﻷرض ﻳﺨ ﺘﺎر اﻟﻤﺼ ﻤﻢ ﻧﻤ ﻮذج اﻟـ )‪ (Via‬اﻟﺬى ﻳﻮﺻﻞ ﺑﺮﻣﺰ اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ ﻓﻰ اﻟﺒﺮﻧﺎﻣﺞ ﻣﻄﺎﺑﻘﺎ ﻟﻠﻮﺻﻠﻪ‬
‫أو اﻟﺜﻘﺐ اﻟﻤﺮاد ﺗﻨﻔﻴﺬﻩ )و ﻣﻄﺎﺑﻘﺎ ﻷﺑﻌﺎد اﻟﻮﺻﻠﻪ أو اﻟﺜﻘﺐ( ﻟﻠﺤﺼﻮل ﻋﻠﻰ ﻧﺘﺎﺋﺞ ﺗﺤﻠﻴﻞ دﻗﻴﻘﻪ‪.‬‬
‫ـﻜل )‪ (٨ – ٤‬رﺳ ﻤﻴﻦ رﻣ ﺰﻳﻴﻦ ﻟﺨ ﻂ ﺷ ﺮﻳﻄﻰ دﻗ ﻴﻖ )‪ (Microstrip Line‬ﻣﻮﺻ ﻞ ﺑﻨﻬﺎﻳ ﺘﻪ وﺻ ﻠﻪ‬
‫ﻳﻮﺿ ﺢ ﺸـ‬
‫ﻟ ﻸرض )‪ (Via‬آﻤ ﺎ ﻳ ﺒﺪو ﻓ ﻰ ﻣﻌﻈ ﻢ ﺑ ﺮاﻣﺞ ﺗﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ ‪ .‬ﻟﻜﻦ هﻨﺎك ﺑﻌﺾ اﻟﺒﺮاﻣﺞ ﺗﺤﺘﻮى ﻋﻠﻰ رﻣﺰ واﺣﺪ‬
‫ﻳﻤﺜﻞ اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ اﻟﻤﻨﺘﻬﻰ ﺑﻮﺻﻠﻪ ﻟﻸرض‪.‬‬

‫)ﻤﻘﻁﻊ ‪ (٣-٢-٤‬ﻻ ﺍﺴﺘﻤﺭﺍﺭﻴﺔ ﺍﻟﻔﺠﻭﻩ ‪:Gap (or series gap) discontinuity‬‬

‫ﻳﻮﺿ ﺢ ﺷ ﻜﻞ )‪ (٩ - ٤‬ﻻ اﺳﺘﻤﺮارﻳﺔ اﻟﻔﺠﻮﻩ )‪ . (series gap discontinuity‬اﻟﺠﺰء اﻷﻳﺴﺮ ﻣﻦ ﺷﻜﻞ )‪(٩ - ٤‬‬
‫ﻳﺒﻴﻦ رﺳﻢ ﺛﻼﺛﻰ اﻷﺑﻌﺎد أﻣﺎ اﻟﺠﺰء اﻷﻳﻤﻦ ﻓﻴﺒﻴﻦ ﻣﺴﻘﻂ ﻓﻮﻗﻰ ﻣﻊ ﺑﻴﺎن اﻷﺑﻌﺎد‪.‬‬

‫ﺸﻜل )‪ : (٩ - ٤‬ﻻ اﺳﺘﻤﺮارﻳﺔ اﻟﻔﺠﻮﻩ )‪(series gap discontinuity‬‬

‫و ﻳﻮﺿﺢ ﺷﻜﻞ )‪ (١٠ - ٤‬اﻟﺪاﺋﺮﻩ اﻟﻤﻜﺎﻓﺌﻪ ﻟﻼ اﺳﺘﻤﺮارﻳﺔ اﻟﻔﺠﻮﻩ ‪ ،‬و ﺗﻔﺴﻴﺮ اﻟﺪاﺋﺮﻩ اﻟﻤﻜﺎﻓﺌﻪ آﺎﻟﺘﺎﻟﻰ ; أوﻻ اﻟﻤﻜﺜﻒ‬
‫)‪ (CS‬و ه ﻮ ﻧﺎﺗﺞ ﻣﻦ اﻟﻤﺠﺎل اﻟﻜﻬﺮﺑﻰ اﻟﻤﺤﺼﻮر ﺑﻴﻦ ﻧﻬﺎﻳﺘﻰ اﻟﺨﻄﻴﻦ اﻟﺸﺮﻳﻄﻴﻴﻦ اﻷﻳﻤﻦ و اﻷﻳﺴﺮ و ﺛﺎﻧﻴﺎ اﻟﻤﻜﺜﻔﻴﻦ‬
‫)‪ (CP1 and CP2‬و آ ﻞ ﻣ ﻨﻬﻤﺎ ﻧ ﺎﺗﺞ ﻣ ﻦ اﻟﻤﺠ ﺎل اﻟﻜﻬﺮﺑ ﻰ اﻟﻤﺤﺼ ﻮر ﺑ ﻴﻦ ﻧﻬﺎﻳ ﺔ اﻟﺨ ﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ و ﻃﺒﻘﺔ‬
‫اﻟﻤﻮﺻﻞ اﻷرﺿﻰ أى ﻣﻦ )‪ (fringing effect‬آﻤﺎ ﺷﺮح ﻣﻦ ﻗﺒﻞ ﻓﻰ )ﻣﻘﻄﻊ ‪. (١-٢-٤‬‬

‫‪115‬‬

‫ﺸﻜل )‪ : (١٠ - ٤‬اﻟﺪاﺋﺮﻩ اﻟﻤﻜﺎﻓﺌﻪ ﻟﻼ اﺳﺘﻤﺮارﻳﺔ اﻟﻔﺠﻮﻩ‪.‬‬

‫و ﻳﻔﻬ ﻢ ﻣ ﻦ اﻟﺸ ﻜﻞ اﻟﻬﻨﺪﺳ ﻰ ﻟﻠﻔﺠ ﻮﻩ أﻧ ﻪ ﻓ ﻰ ﺣﺎﻟ ﺔ )‪ (w1=w2‬أى ﺗﺴ ﺎوى ﻋﺮﺿ ﻴﻦ اﻟﺨﻄ ﻴﻦ اﻟﺸﺮﻳﻄﻴﻴﻦ اﻷﻳﻤﻦ و‬
‫اﻷﻳﺴﺮ ﻳﺼﺒﺢ )‪ ، (CP1 = CP2‬أﻣﺎ ﻣﻌﺎدﻻت ﺣﺴﺎب ﻣﻜﻮﻧﺎت اﻟﺪاﺋﺮﻩ اﻟﻤﻜﺎﻓﺌﻪ ﻟﻼ اﺳﺘﻤﺮارﻳﺔ اﻟﻔﺠﻮﻩ ﻓﻬﻰ آﺎﻟﺘﺎﻟﻰ ‪:‬‬

‫)‪(4.3‬‬

‫⎪⎧‬
‫⎛‬
‫⎡⎞‪s‬‬
‫⎤⎪⎫⎞ ‪h w1‬‬
‫⎛‬
‫⎥⎬ ⎟‬
‫‪Cs = 0.5 h Q1 exp ⎜ - 1.86 ⎟ ⎢1 + 4.19⎨1 - exp⎜⎜ - 0.785‬‬
‫⎟‬
‫‪h‬‬
‫‪w‬‬
‫‪w‬‬
‫⎩⎪‬
‫⎝‬
‫⎣⎢ ⎠‬
‫‪2‬‬
‫⎪⎠ ‪2‬‬
‫⎝‬
‫⎦⎥⎭‬

‫ﺣﻴﺚ )‪ (s‬هﻰ ﻃﻮل اﻟﻔﺠﻮﻩ آﻤﺎ ﻳﺘﻀﺢ ﻣﻦ ﺷﻜﻞ )‪.(٩ - ٤‬‬

‫)‪(4.6‬‬

‫)‪(4.7‬‬

‫)‪(4.4‬‬

‫‪Q2 + Q3‬‬
‫‪Q2 + 1‬‬

‫‪C P 2 = C L2‬‬

‫)‪(4.5‬‬

‫‪Q2 + Q4‬‬
‫‪Q2 + 1‬‬

‫‪C P1 = C L1‬‬

‫‪Q5‬‬
‫⎪⎧‬
‫⎪⎫ ⎞ ‪⎛ w2‬‬
‫} ‪Q1 = 0.04598 ⎨0.03 + ⎜ ⎟ ⎬{0.272 + 0.07 ε r‬‬
‫⎭⎪ ⎠ ‪⎝ h‬‬
‫⎩⎪‬

‫⎞ ]‪⎛ 1.5 + [0.3w2 / h‬‬
‫⎟⎟‬
‫⎜⎜‬
‫[‬
‫]‬
‫‪1‬‬
‫‪0‬‬
‫‪.‬‬
‫‪6‬‬
‫‪/‬‬
‫‪+‬‬
‫‪w‬‬
‫‪h‬‬
‫⎠‬
‫⎝‬
‫‪2‬‬

‫‪1.05‬‬

‫⎞‪⎛s‬‬
‫⎟ ⎜ ‪+ 2.09‬‬
‫⎠‪⎝h‬‬

‫‪116‬‬

‫‪3.23‬‬

‫⎞ ‪⎞⎛ s‬‬
‫‪⎛w‬‬
‫⎟ ⎜ ⎟ ‪Q2 = 0.107 ⎜ 2 + 9‬‬
‫⎠‪⎠⎝h‬‬
‫‪⎝ h‬‬

‫)‪(4.8‬‬

‫‪1.35‬‬
‫⎪⎧‬
‫⎪⎫ ⎞ ‪⎛ w1‬‬
‫‪⎟⎟ ⎬ - 0.55‬‬
‫⎜⎜‪Q3 = exp ⎨- 0.5978‬‬
‫⎭⎪ ⎠ ‪⎝ w 2‬‬
‫⎩⎪‬

‫)‪(4.9‬‬

‫‪1.35‬‬
‫⎪⎧‬
‫⎪⎫ ⎞ ‪⎛ w 2‬‬
‫‪⎟⎟ ⎬ - 0.55‬‬
‫⎜⎜‪Q4 = exp ⎨- 0.5978‬‬
‫‪w‬‬
‫⎭⎪ ⎠ ‪⎝ 1‬‬
‫⎩⎪‬

‫‪1.23‬‬

‫)‪(4.10‬‬

‫‪0.9‬‬

‫‪w‬‬
‫⎟⎞‪1 + 0.12⎛⎜ ⎧⎨ 1 ⎫⎬ − 1‬‬
‫⎠ ⎭ ‪⎝ ⎩ w2‬‬

‫= ‪Q5‬‬

‫ﺣ ﻴﺚ اﻟﻤﻜﺜﻔ ﻴﻦ )‪ (CL1 and CL2‬ﻳ ﺘﻢ ﺣﺴ ﺎﺑﻬﻤﺎ ﻗﻴﻤﺘ ﻴﻬﻤﺎ ﺗﻘ ﺮﻳﺒﻴﺎ )ﻏﻴ ﺮ دﻗ ﻴﻖ( ﻣﻦ اﻟﻤﻌﺎدﻟﻪ )‪ (4.1‬ﺑﺪﻻﻟﺔ آﻼ ﻣﻦ‬
‫)‪ (w1 and w2‬ﻋﻠ ﻰ اﻟﺘﻮاﻟ ﻰ ‪ .‬و اﻟﻤﻌ ﺎدﻻت ﻣ ﻦ )‪ (4.3‬اﻟ ﻰ )‪ (4.10‬ﺻ ﺎﻟﺤﻪ ﻓ ﻰ ﺣﺎﻟ ﺔ )‪ (w1 > w2‬ﺑﺎﻟﺸ ﺮوط‬
‫اﻵﺗﻴﻪ ‪:‬‬

‫‪0.1 ≤ w1 / h ≤ 3‬‬
‫‪0.1 ≤ w2 / h ≤ 3‬‬
‫‪1 ≤ w1 / w2 ≤ 3‬‬
‫∞ < ‪0.2 ≤ s / h‬‬
‫‪f ≤ 12 GHz‬‬

‫‪and‬‬

‫‪6 ≤ ε r ≤ 13‬‬

‫و ﻳﻤﻜ ﻦ اﻟ ﺮﺟﻮع ﻟﻠﻤ ﺮﺟﻊ )‪ (1‬ﻟﻤ ﺮاﺟﻌﺔ ﻣﻌ ﺎدﻻت اﻟﺪاﺋﺮﻩ اﻟﻤﻜﺎﻓﺌﻪ ﻟﻼ اﺳﺘﻤﺮارﻳﺔ اﻟﻔﺠﻮﻩ و اﻟﻤﻨﺤﻨﻴﺎت اﻟﺨﺎﺻﻪ ﺑﻬﺎ‬
‫و ﻣﻌﻠﻮﻣﺎت اﺿﺎﻓﻴﻪ ﻋﻦ ﻧﻔﺲ اﻟﻤﻮﺿﻮع‪.‬‬

‫ﺸﻜل )‪ : ( ١١ – ٤‬رﺳﻢ رﻣﺰى ﻟﺨﻄﻴﻦ ﺷﺮﻳﻄﻴﻴﻦ )‪ (Two Microstrip Lines‬ﺑﻴﻨﻬﻤﺎ ﻓﺠﻮﻩ )‪(gap‬‬

‫‪117‬‬

‫ﻓ ﻰ ﺟﻤ ﻴﻊ ﺑ ﺮاﻣﺞ ﺗﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ اﻟﺤﺪﻳ ﺜﻪ ﻳ ﻮﺟﺪ ﻧﻤ ﻮذج ﻟﻠﻔﺠ ﻮﻩ ﺑ ﻴﻦ ﺧﻄ ﻴﻦ ﺷ ﺮﻳﻄﻴﻴﻦ و ﻳﻮﺿ ﺢ ﺷﻜﻞ )‪( ١١ – ٤‬‬
‫رﺳ ﻢ رﻣ ﺰى ﻟﺨﻄ ﻴﻦ ﺷ ﺮﻳﻄﻴﻴﻦ )‪ (Two Microstrip Lines‬ﺑﻴ ﻨﻬﻤﺎ ﻓﺠﻮﻩ )‪ (gap‬آﻤﺎ ﻳﺒﺪو ﻓﻰ ﻣﻌﻈﻢ ﺑﺮاﻣﺞ‬
‫ﺗﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ ‪ .‬و ﻳﺘﻌ ﻴﻦ ﻋﻠ ﻰ اﻟﻤﺼ ﻤﻢ ﻓﻘ ﻂ ادراج اﻷﺑﻌ ﺎد اﻟﻤﻮﺟ ﻮدﻩ ﻓ ﻰ اﻟﺮﺳ ﻢ اﻟﺮﻣ ﺰى ﺑﺎﻟﺒ ﺮﻧﺎﻣﺞ آﻤ ﺎ ه ﻰ ﻓ ﻰ‬
‫اﻟﺪاﺋ ﺮﻩ ﻟﻀ ﻤﺎن ﻧﺘ ﻴﺠﻪ دﻗ ﻴﻘﻪ ﻟﺘﺤﻠ ﻴﻞ اﻟﺪاﺋﺮﻩ‪ .‬و ﻟﻔﻬﻢ هﺬا اﻟﻌﻤﻞ ﻳﻤﻜﻦ اﻟﻤﻘﺎرﻧﻪ ﺑﻴﻦ اﻟﺠﺰء اﻷﻳﻤﻦ ﻣﻦ ﺷﻜﻞ )‪(٩ - ٤‬‬
‫اﻟ ﺬى ﻳﺤ ﺘﻮى ﻋﻠ ﻰ اﻟﻤﺨﻄ ﻂ )‪ (layout‬و ﺑ ﻴﻦ ﺷ ﻜﻞ )‪ ( ١١ – ٤‬اﻟ ﺬى ﻳﻮﺿ ﺢ اﻟﺮﺳ ﻢ اﻟﺮﻣ ﺰى )‪(schematic‬‬
‫ﻟﻠﺨﻄﻴﻦ اﻟﺸﺮﻳﻄﻴﻴﻦ و ﺑﻴﻨﻬﻤﺎ اﻟﻔﺠﻮﻩ ‪.‬‬

‫)ﻤﻘﻁﻊ ‪ (٤-٢-٤‬ﻻ ﺍﺴﺘﻤﺭﺍﺭﻴﺔ ﺍﻟﺸﻁﻔﻪ ﺃﻭ ﺍﻟﺸﻕ ﺍﻟﻌﺭﻀﻰ )‪: (Slit or transverse slit‬‬

‫ﻳﺒ ﻴﻦ اﻟﺸ ﻜﻞ )‪ ( ١٢ – ٤‬ﻣﻨﻈ ﺮ ﻓﻮﻗ ﻰ ﻟ ﻼ اﺳ ﺘﻤﺮارﻳﺔ اﻟﺸ ﻄﻔﻪ أو اﻟﺸ ﻖ اﻟﻌﺮﺿ ﻰ )‪ (slit or transverse slit‬و‬
‫اﻟﺪاﺋﺮﻩ اﻟﻤﻜﺎﻓﺌﻪ ﻟﻬﺎ و اﻟﺘﻰ ﺗﺤﺘﻮى ﻋﻠﻰ ﻣﻠﻒ ﻋﻠﻰ اﻟﺘﻮاﻟﻰ )‪ (series coil‬ﻗﻴﻤﺘﻪ ﺗﺤﺴﺐ ﻣﻦ اﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫‪2‬‬

‫)‪(4.11‬‬

‫⎡ ‪µoπ‬‬

‫⎤ ) ‪Z o ( air‬‬
‫‪−‬‬
‫‪1‬‬
‫⎢‬
‫⎥‬
‫⎦⎥ ) ‪2 ⎢⎣ Z o' ( air‬‬

‫= ‪Lslit‬‬

‫ﺣ ﻴﺚ ) ‪ Z o ( air‬هﻰ اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ ﻟﻠﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ اﻟﺬى ﻋﺮﺿﻪ ﻳﺴﺎوى )‪ (w‬ﺑﺎﻋﺘﺒﺎر ﻃﺒﻘﺔ اﻟﻌﺎزل ﻣﻦ‬
‫'‬

‫اﻟﻬ ﻮاء أو اﻟﻔ ﺮاغ ‪ ،‬و ) ‪ Z o ( air‬ه ﻰ اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻤﻴ ﺰﻩ ﻟﻠﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ اﻟ ﺬى ﻋﺮﺿ ﻪ ﻳﺴ ﺎوى )‪(w−a‬‬
‫ﺑﺎﻋﺘﺒﺎر ﻃﺒﻘﺔ اﻟﻌﺎزل ﻣﻦ اﻟﻬﻮاء أو اﻟﻔﺮاغ ‪.‬‬
‫ه ﻨﺎك ﺣﺎﻟ ﺘﺎن ﻟﻠﺸ ﻄﻔﻪ ‪ :‬اﻷوﻟ ﻰ اذا آ ﺎن ﻋ ﺮض اﻟﺸ ﻄﻔﻪ )‪ (b‬ﺻ ﻐﻴﺮ ﻧﺴ ﺒﻴﺎ ﻳﻀ ﺎف ﻟﻠﺪاﺋ ﺮﻩ اﻟﻤﻜﺎﻓ ﺌﻪ ﻣﻜﺜﻒ ﻣﻮازى‬
‫ﻟﻠﻤﻠ ﻒ )‪ . (Lslit‬ه ﺬا اﻟﻤﻜ ﺜﻒ ﻧ ﺎﺗﺞ ﻣ ﻦ اﻟﻤﺠﺎل اﻟﻜﻬﺮﺑﻰ اﻟﻤﺤﺼﻮر ﺑﻴﻦ ﻧﻬﺎﻳﺘﻰ اﻟﺸﻄﻔﻪ و ﻳﻘﺪر ﺗﻘﺮﻳﺒﻴﺎ )ﻏﻴﺮ دﻗﻴﻖ(‬
‫ﺑـ ‪ (a / w)C s‬ﺣﻴﺚ )‪ (CS‬هﻮ اﻟﻤﻜﺜﻒ اﻟﻤﺤﺴﻮب ﺑﺎﻟﻤﻌﺎدﻟﻪ )‪. (4.3‬‬
‫أﻣﺎ اﻟﺤﺎﻟﻪ اﻟﺜﺎﻧﻴﻪ ﻟﻠﺸﻄﻔﻪ ﻓﻬﻰ اذا آﺎن ﻋﺮض اﻟﺸﻄﻔﻪ )‪ (b‬آﺒﻴﺮ ﻓﻨﻌﺘﺒﺮ أن هﻨﺎك ﺛﻼﺛﺔ ﺧﻄﻮط ﺷﺮﻳﻄﻴﻪ ﻣﺘﺼﻠﻪ ﻣﻌﺎ‬
‫ﻣ ﻦ ﻧﻬﺎﻳ ﺘﻬﺎ اﻷول ﻋﺮﺿ ﻪ ﻳﺴ ﺎوى )‪ (w‬و اﻟﺜﺎﻧ ﻰ ﻋﺮﺿ ﻪ ﻳﺴ ﺎوى )‪ (w−a‬و ﻃ ﻮﻟﻪ )‪ (b‬و اﻟ ﺜﺎﻟﺚ ﻋﺮﺿﻪ ﻳﺴﺎوى‬
‫)‪ (w‬و ﻃ ﺒﻌﺎ ﺑ ﻴﻦ آ ﻞ ﺧ ﻂ و اﻟ ﺬى ﻳﻠ ﻴﻪ ه ﻨﺎك ﻻ اﺳ ﺘﻤﺮارﻳﻪ ﻏﻴ ﺮ ﻣ ﺘﻤﺎﺛﻠﻪ ﻋﻠ ﻰ ﺷ ﻜﻞ درﺟ ﺔ اﻟﺴ ﻠﻢ‬
‫)‪ . (Nonsymmetrical Step Discontinuity‬ﻓ ﻰ اﻟﺤﺎﻟ ﻪ اﻟﺜﺎﻧ ﻴﻪ ﺗﻢ اﻟﻐﺎء ﻓﻜﺮة اﻋﺘﺒﺎر اﻟﺸﻄﻔﻪ ﻻاﺳﺘﻤﺮارﻳﻪ و‬
‫اﻟﻨﻈﺮ ﻟﻠﺸﻜﻞ اﻟﻬﻨﺪﺳﻰ ﺑﻄﺮﻳﻘﻪ ﻣﺨﺘﻠﻔﻪ ﺗﻤﺎﻣﺎ ﻋﻦ اﻟﺤﺎﻟﻪ اﻷوﻟﻰ‪.‬‬
‫اﺳ ﺘﺨﺪام ﻃ ﺮق اﻟﺘﺤﻠ ﻴﻞ اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴ ﻴﻪ ﻓ ﻰ ﺗﺤﻠﻴﻞ اﻟﺪاﺋﺮﻩ اﻟﺘﻰ ﺗﺤﺘﻮى ﻋﻠﻰ ﻻ اﺳﺘﻤﺮارﻳﺔ اﻟﺸﻄﻔﻪ أو ﻓﻰ ﺣﺴﺎب‬
‫ﺑﻠﺮاﻣﺘ ﺮات )‪ (S‬ﻟﻠﺸﻄﻔﻪ ﻳﻌﻄﻰ ﻧﺘﺎﺋﺞ دﻗﻴﻘﻪ و ﻳﻌﻮض ﻋﻦ اﺳﺘﺨﺪام داﺋﺮﻩ ﻣﻜﺎﻓﺌﻪ ‪ ،‬و هﺬا ﻣﻤﻜﻦ ﺟﺪا ﺑﺎﺳﺘﺨﺪام ﺑﺮاﻣﺞ‬

‫‪118‬‬

‫ﺗﺤﻠﻴﻞ اﻟﺪواﺋﺮ اﻟﺤﺪﻳﺜﻪ ﻣﺜﻞ )‪ (Ansoft Designer , Agilent ADS , Agilent Genesys, AWR Suite‬و‬
‫ﻏﻴﺮهﺎ‪.‬‬
‫ﻋ ﻨﺪ ﺗﻨﻔ ﻴﺬ اﻟﺪاﺋ ﺮﻩ اﻟﺸ ﺮﻳﻄﻴﻪ ﺑﻄ ﺮﻳﻘﺔ ﻟﻄ ﺒﺎﻋﺔ اﻟﺪواﺋ ﺮ ﻣﻨﺨﻔﻀ ﺔ اﻟﺪﻗﻪ و ﻧﺘﻴﺠﺔ ﻋﻴﻮب اﻟﺼﻨﺎﻋﻪ ﻗﺪ ﺗﺤﺪث ﻓﻰ ﺧﻂ‬
‫ﺷ ﺮﻳﻄﻰ أو أآﺜ ﺮ ﺑﺎﻟﺪاﺋ ﺮﻩ )ﺷ ﻄﻔﻪ( ﻏﻴ ﺮ ﻣﻘﺼ ﻮدﻩ و ﻏﺎﻟ ﺒﺎ ﻣ ﺎ ﻳﻜ ﻮن ﺷ ﻜﻠﻬﺎ ﻏﻴ ﺮ ﻣﻨ ﺘﻈﻢ و ﻣﻔﻬ ﻮم ﻣ ﻦ اﻟﻤﻌﻠ ﻮﻣﺎت‬
‫اﻟﻤﻌﻄﺎﻩ أﻋﻼﻩ أن ﺛﻤﺔ ﻣﻠﻒ ﻣﻜﺎﻓﺊ ) أو ﻣﻠﻒ وﻣﻜﺜﻒ ﻣﻜﺎﻓﺌﺎن ( ﻏﻴﺮ ﻣﺘﻮﻗﻊ ﻗﺪ أﺿﻴﻒ ﻟﻠﺪاﺋﺮﻩ ﻓﻀﻼ ﻋﻦ اﻟﺘﺸﻮﻳﻬﺎت‬
‫اﻷﺧ ﺮى اﻟﺘ ﻰ ﺗﺴﺒﺒﻬﺎ ﻋﻴﻮب اﻟﺼﻨﺎﻋﻪ ﻟﻠﺸﻜﻞ اﻟﻬﻨﺪﺳﻰ ﻟﻠﺪاﺋﺮﻩ و ﺑﺪﻳﻬﻰ أن ﻧﺤﺼﻞ ﻋﻠﻰ أداء ﻏﻴﺮ ﻣﺘﻮﻗﻊ أو ﻣﺨﺘﻠﻒ‬
‫ﻋﻦ اﻟﻤﺮاد ﻟﻠﺪاﺋﺮﻩ‪.‬‬

‫ﺸﻜل )‪ : ( ١٢ – ٤‬ﻻ اﺳﺘﻤﺮارﻳﺔ اﻟﺸﻄﻔﻪ )‪ (Slit or transverse slit‬و اﻟﺪاﺋﺮﻩ اﻟﻤﻜﺎﻓﺌﻪ ﻟﻬﺎ‪.‬‬

‫)ﻤﻘﻁﻊ ‪ (٥-٢-٤‬ﻻ ﺍﺴﺘﻤﺭﺍﺭﻴﺎﺕ ﺍﻟﺜﻨﻴﻪ ) ‪: (Bend Discontinuities‬‬

‫ﺗﻌ ﺮﻓﻨﺎ ﻋﻠ ﻰ أرﺑﻌ ﺔ أﻧ ﻮاع ﻣﺨ ﺘﻠﻔﻪ ﻣ ﻦ ﻻ اﺳ ﺘﻤﺮارﻳﺎت اﻟﺜﻨ ﻴﻪ )‪ (Bend Discontinuities‬ﻓ ﻰ اﻷرﺑﻌ ﺔ ﺻ ﻔﻮف‬
‫اﻷوﻟ ﻰ ﻣ ﻦ ﺟ ﺪول )‪ . (١-٤‬ﻻ اﺳ ﺘﻤﺮارﻳﺎت اﻟﺜﻨ ﻴﻪ ﺗﺤ ﺪث ﻋﻨﺪ اﻧﺜﻨﺎء ﺧﻂ ﺷﺮﻳﻄﻰ دﻗﻴﻖ ﻟﻜﻦ هﻨﺎك ﺣﺎﻻت اﺳﺘﺜﻨﺎﺋﻴﻪ‬
‫ﺗﺤ ﺪث ﻋ ﻨﺪ ﺗﻐﻴ ﺮ ﻋ ﺮض اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ ﺑﻌﺪ اﻟﺜﻨﻴﻪ )ﺑﻤﻌﻨﻰ اﻟﺘﻘﺎء ﺧﻄﻴﻦ ﺷﺮﻳﻄﻴﻴﻦ ﻟﻬﻤﺎ ﻋﺮﺿﻴﻦ ﻣﺨﺘﻠﻔﻴﻦ‬

‫‪119‬‬

‫ﻋ ﻨﺪ ﻧﻬﺎﻳ ﺘﻬﻤﺎ و ﻟﻜ ﻦ ﺑ ﺰاوﻳﻪ ﻣﻌﻴ ﻨﻪ ﻣ ﺜﻼ‬

‫‪o‬‬

‫‪o‬‬

‫‪ 90‬أو ‪ 60‬أو أى زاوﻳ ﻪ أﺧﺮى ﺣﺎدﻩ أو ﻣﻨﻔﺮﺟﻪ ( ‪ ،‬و هﺬﻩ اﻟﺤﺎﻻت‬

‫اﻻﺳﺘﺜﻨﺎﺋﻴﻪ ﻟﻦ ﻳﺘﻢ اﻋﻄﺎء داﺋﺮﻩ ﻣﻜﺎﻓﺌﻪ ﻟﻬﺎ ﻓﻰ هﺬا اﻟﻤﻘﻄﻊ ‪.‬‬
‫ﻻ اﺳﺘﻤﺮارﻳﺎت اﻟﺜﻨﻴﻪ ﺗﺴﺘﺨﺪم ﻋﺎدة ﻟﻌﻤﻞ ﻣﺮوﻧﻪ )‪ (flexibility‬ﻓﻰ ﺗﻨﻔﻴﺬ ﻣﺨﻄﻂ اﻟﺪاﺋﺮﻩ اﻟﺸﺮﻳﻄﻴﻪ ) ‪microstrip‬‬
‫‪ (circuit layout‬ﻻهﺪاف ﻣﺨﺘﻠﻔﻪ ﻗﺪ ﻳﻜﻮن ﻣﻨﻬﺎ اﺧﺘﺼﺎر ﻣﺴﺎﺣﺔ اﻟﺪاﺋﺮﻩ أو ﺗﻮﺻﻴﻞ داﺋﺮﻩ ﺑﺄﺧﺮى ﻣﻨﻔﺬﻩ ﻋﻠﻰ ﻧﻔﺲ‬
‫اﻟﺸﺮﻳﺤﻪ ‪ ...‬اﻟﻰ ﺁﺧﺮﻩ ‪.‬‬
‫اﻟﺸ ﻜﻞ )‪ ( ١٣ – ٤‬ﻳﺒ ﻴﻦ ﺛﻼﺛ ﺔ ﻣﺨﻄﻄ ﺎت ﻟ ﺜﻼﺛﺔ ﻻ اﺳ ﺘﻤﺮارﻳﺎت ﻣﺨ ﺘﻠﻔﻪ ﻣ ﻦ ﻧ ﻮع اﻟﺜﻨ ﻴﻪ ‪ ،‬ﻓ ﻰ هﺬا اﻟﺸﻜﻞ ﺗﻢ رﺳﻢ‬
‫اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ ﺑﺎﻟﻠﻮن اﻷﺑﻴﺾ و اﻟﺜﻨﻴﻪ ﺑﺎﻟﻠﻮن اﻟﺮﻣﺎدى ‪.‬‬
‫و ﻳﺒ ﻴﻦ اﻟﺸ ﻜﻞ )‪ ( ١٣ – ٤‬ﻗ ﻴﺎس اﻷﻃ ﻮال ﺣ ﻴﺚ )‪ (L1‬ه ﻮ ﻃ ﻮل اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ ﻗ ﺒﻞ اﻟﺜﻨﻴﻪ و )‪ (L2‬هﻮ ﻃﻮل‬
‫اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ ﺑﻌﺪ اﻟﺜﻨﻴﻪ ‪ .‬ﺑﻴﻨﻤﺎ ﻋﺮض اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ )‪ (w‬ﺛﺎﺑﺖ ﻗﺒﻞ و ﺑﻌﺪ اﻟﺜﻨﻴﻪ ‪.‬‬
‫اﻟﺸ ﻜﻞ )‪ ( ١٤ – ٤‬ﻳﺒ ﻴﻦ اﻟﺪاﺋ ﺮﻩ اﻟﻤﻜﺎﻓ ﺌﻪ ﻟ ﻼ اﺳ ﺘﻤﺮارﻳﺎت اﻟﺜﻨﻴﻪ اﻟﻤﺒﻴﻨﻪ ﺑﺎﻟﻠﻮن اﻟﺮﻣﺎدى ﻓﻰ اﻟﺸﻜﻞ )‪ ( ١٣ – ٤‬و‬
‫ﺗﺘﻜﻮن اﻟﺪاﺋﺮﻩ اﻟﻤﻜﺎﻓﺌﻪ ﻣﻦ ﻣﻠﻔﻴﻦ و ﻣﻜﺜﻒ ﻣﺘﺼﻠﻴﻦ ﻋﻠﻰ ﺷﻜﻞ ﺣﺮف )‪.(T‬‬
‫اﻟﺘ ﺮدد اﻷﻗﺼﻰ اﻟﺬى ﺗﺤﺴﺐ ﻋﻨﺪﻩ اﻟﺪواﺋﺮ اﻟﻤﻜﺎﻓﺌﻪ ﻟﻼ اﺳﺘﻤﺮارﻳﺎت اﻟﺜﻨﻴﻪ هﻮ اﻟﺘﺮدد اﻟﺬى ﻳﺒﺪأ ﻋﻨﺪﻩ اﺛﺎرة )‪(mode‬‬
‫اﻟ ﺬى ﻳﻠ ﻰ )‪ (Quasi-TEM mode‬اﻟ ﺬى ﺗ ﻢ ﺷ ﺮﺣﻪ ﻓﻰ اﻟﻔﺼﻞ اﻟﺜﺎﻟﺚ و ﻳﺴﻤﻰ هﺬا اﻟﺘﺮدد ) ‪the first higher‬‬
‫‪ (order mode cut-off frequency fc‬و ﻳﻌﻄﻰ ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫) ‪fc = 0.4 ( Zo / h‬‬

‫)‪(4.12‬‬

‫ﺣﻴﺚ وﺣﺪة اﻟﺘﺮدد )‪ (fc‬هﻰ )‪ (GHz‬و وﺣﺪة )‪ (h‬هﻰ )‪ (mm‬و وﺣﺪة اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ )‪ (Zo‬هﻰ اﻷوم ﻓﻰ هﺬﻩ‬
‫اﻟﻤﻌﺎدﻟﻪ‪.‬‬

‫ﺷﻜﻞ )‪ : ( ١٣ – ٤‬ﻣﺨﻄﻄﺎت ﻻ اﺳﺘﻤﺮارﻳﺎت ﻣﺨﺘﻠﻔﻪ ﻣﻦ ﻧﻮع اﻟﺜﻨﻴﻪ‪.‬‬

‫‪120‬‬

‫ﺷﻜﻞ )‪ : ( ١٤ – ٤‬اﻟﺪاﺋﺮﻩ اﻟﻤﻜﺎﻓﺌﻪ ﻟﻼ اﺳﺘﻤﺮارﻳﺎت اﻟﺜﻨﻴﻪ ‪.‬‬
‫ﺑﺎﻟﻨﺴﺒﻪ ﻟﻠﺜﻨﻴﻪ اﻟﻤﺘﻌﺎﻣﺪﻩ ﻳﺘﻢ ﺣﺴﺎب اﻟﺪاﺋﺮﻩ اﻟﻤﻜﺎﻓﺌﻪ ﺑﺎﺳﺘﺨﺪام اﻟﻤﻌﺎدﻟﺘﻴﻦ اﻟﺘﺎﻟﻴﺘﻴﻦ ‪:‬‬
‫} }))‪C [in pF] =0.001 (h in [mm]) { { ((10.35 εr+2.5) (w/h)2 }+{ (2.6 εr +5.64) (W/h‬‬
‫)‪…………………………………………………………………………………(4.13‬‬
‫)‪L [in nH ] = 0.22 (h in [mm]) { (1 − 1.35exp(-0.18 (w/h) 1.39)) } ……………(4.14‬‬
‫أﻣﺎ ﺑﺎﻟﻨﺴﺒﻪ ﻟﻠﺜﻨﻴﻪ اﻟﻤﺸﻄﻮﻓﻪ ﻓﻴﺘﻢ ﺣﺴﺎب اﻟﺪاﺋﺮﻩ اﻟﻤﻜﺎﻓﺌﻪ ﺑﺎﺳﺘﺨﺪام اﻟﻤﻌﺎدﻟﺘﻴﻦ اﻟﺘﺎﻟﻴﺘﻴﻦ ‪:‬‬
‫} }))‪C [in pF] =0.001 (h in [mm]) { { ((3.93 εr+0.62) (w/h)2 }+{ (7.6 εr +3.8) (W/h‬‬
‫)‪…………………………………………………………………………………(4.15‬‬
‫)‪L [in nH ] =0.44 (h in [mm]) { (1 − 1.062exp(-0.177 (w/h) 0.947)) } ………… (4.16‬‬
‫أﻣﺎ ﺑﺎﻟﻨﺴﺒﻪ ﻟﻠﺜﻨﻴﻪ ذات اﻟﺰاوﻳﻪ )‪ (θ‬ﻓﻴﺘﻢ ﺣﺴﺎب اﻟﺪاﺋﺮﻩ اﻟﻤﻜﺎﻓﺌﻪ ﺑﺎﺳﺘﺨﺪام اﻟﻤﻌﺎدﻟﺘﻴﻦ اﻟﺘﺎﻟﻴﺘﻴﻦ ‪:‬‬
‫) ‪Cθ = C tan(θ / 2‬‬

‫)‪(4.17‬‬

‫])‪L [y + 1.9635 - (1/x‬‬
‫‪0.87391‬‬

‫)‪(4.18‬‬
‫‪y = 0.5223 ln (x) + 0.394‬‬

‫‪,‬‬

‫) ) ‪x = 0.5 ( 1 + (θ /180‬‬

‫‪0o < θ < 180o‬‬
‫ﺣﻴﺚ )‪ (C‬و )‪ (L‬ﻓﻰ اﻟﻤﻌﺎدﻟﺘﻴﻦ اﻟﺴﺎﺑﻘﺘﻴﻦ ﻳﺘﻢ ﺣﺴﺎﺑﻬﻤﺎ ﺑﺎﻟﻤﻌﺎدﻟﺘﻴﻦ )‪ (4.13‬و )‪ (4.14‬ﻋﻠﻰ اﻟﺘﻮاﻟﻰ‪.‬‬

‫‪121‬‬

‫= ‪Lθ‬‬

‫‪where‬‬
‫‪and‬‬

‫ﺷﻜﻞ )‪ : ( ١٥ – ٤‬ﻣﺨﻄﻂ ﻟﺜﻨﻴﻪ ﻣﻘﻮﺳﻪ أو ﻣﺪورﻩ )‪. (Curved bend layout‬‬

‫ﺷﻜﻞ )‪ : ( ١٦ – ٤‬اﻟﺪاﺋﺮﻩ اﻟﻤﻜﺎﻓﺌﻪ ﻟﻠﺜﻨﻴﻪ اﻟﻤﻘﻮﺳﻪ أو اﻟﻤﺪورﻩ ‪.‬‬

‫ﺑﺎﻟﻨﺴ ﺒﻪ ﻟﻠﺜﻨ ﻴﻪ اﻟﻤﻘﻮﺳ ﻪ أو اﻟﻤ ﺪورﻩ )‪ (Curved bend‬اﻟﻤﺒﻴ ﻨﻪ ﻓ ﻰ اﻟﺸﻜﻞ )‪ ( ١٥ – ٤‬ﻓﺎن اﻟﺪاﺋﺮﻩ اﻟﻤﻜﺎﻓﺌﻪ ﻟﻬﺎ ﺗﺒﺪو‬
‫آﻤ ﺎ ﻓ ﻰ اﻟﺸ ﻜﻞ )‪ ( ١٦ – ٤‬ﻣﻜ ﻮﻧﻪ ﻣ ﻦ ﻣﻜﺜﻔ ﻴﻦ و ﻣﻠ ﻒ ﻣﺘﺼﻠﻴﻦ ﻋﻠﻰ ﺷﻜﻞ ﺣﺮف )‪ . (Π‬أﻣﺎ ﺣﺴﺎﺑﺎت ﻗﻴﻢ ﻣﻜﻮﻧﺎت‬
‫اﻟﺪاﺋﺮﻩ اﻟﻤﻜﺎﻓﺌﻪ ﻓﻬﻰ آﻤﺎ ﻳﻠﻰ ‪:‬‬

‫)‪(4.19‬‬

‫]‪[fF‬‬

‫) (‬

‫)‪(4.20‬‬

‫]‪[nH‬‬

‫) (‬

‫⎤ ‪⎡ aR‬‬
‫⎢ ‪C = 0.5 103 K h‬‬
‫⎦⎥ ‪⎣ w + b‬‬

‫‪122‬‬

‫⎤ ‪⎡ cR‬‬
‫⎢ ‪L = K h 103‬‬
‫⎦⎥ ‪⎣ w + d‬‬

‫ﺣﻴﺚ‬

‫)‪(4.31‬‬

‫‪( h ) + b (w h )+ c‬‬
‫‪b = a (w ) + b (w ) + c‬‬
‫‪h‬‬
‫‪h‬‬
‫‪2‬‬

‫)‪(4.21‬‬

‫‪a‬‬

‫‪a‬‬

‫)‪(4.22‬‬

‫‪b‬‬

‫‪b‬‬

‫‪a = aa w‬‬

‫‪2‬‬

‫‪b‬‬

‫)‪(4.23‬‬

‫⎟⎞ ‪c = 0.7492 ⎛⎜ w ⎞⎟ − 0.0376 ⎛⎜ h‬‬
‫⎠‪h‬‬
‫⎝‬
‫⎠‪⎝ w‬‬

‫)‪(4.24‬‬

‫⎟⎞ ‪d = 0.2647 ⎛⎜ w ⎞⎟ − 0.1543 ⎛⎜ h‬‬
‫⎠‪h‬‬
‫⎝‬
‫⎠‪⎝ w‬‬

‫)‪(4.25‬‬

‫‪a a = 15.05 ε r + 0.07‬‬

‫)‪(4.26‬‬

‫‪b a = 11.21 ε r + 20.62‬‬

‫)‪(4.27‬‬

‫‪c a = 0.29 ε r − 1.85‬‬

‫)‪(4.28‬‬

‫‪a b = 9.114 ε r − 0.631‬‬

‫)‪(4.29‬‬

‫‪b b = 4.08 ε r + 10.42‬‬

‫)‪(4.30‬‬

‫‪c b = − 0.563 ε r − 4.356‬‬

‫⎞ ‪{ 1.95 R w − 0.5 } − 0.045⎞⎟ sin ⎛ 3.27 π θ‬‬
‫⎟‬
‫⎠‬

‫‪180‬‬

‫⎜‬
‫⎝‬

‫⎟‬
‫⎠‬

‫‪π‬‬

‫⎛‬
‫‪⎛ θ ⎞ ⎜ 0.114 atan‬‬
‫‪K= ⎜ ⎟−‬‬
‫⎜ ⎠ ‪⎝ 90‬‬
‫⎝‬

‫آﻤﺎ ﻓﻰ اﻟﻤﺮﺟﻊ )‪. (18‬‬
‫ﻳﻮﺿ ﺢ ﺸـﻜل )‪ ( ١٧ – ٤‬أرﺑﻌ ﺔ أﻣ ﺜﻠﻪ ﻟﺮﺳ ﻮم رﻣ ﺰﻳﻪ ﻟﺨﻄ ﻮط ﺷ ﺮﻳﻄﻴﻪ دﻗﻴﻘﻪ ﻣﺜﻨﻴﻪ ) ‪bended microstrip‬‬
‫‪ (lines‬آﻤ ﺎ ﺗ ﺒﺪو ﻓ ﻰ ﻣﻌﻈ ﻢ ﺑ ﺮاﻣﺞ ﺗﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ ‪ .‬ﺗ ﻢ رﺳﻢ رﻣﻮز اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ ﺑﺎﻟﻠﻮن اﻷﺑﻴﺾ و رﻣﻮز‬
‫ﻻاﺳﺘﻤﺮارﻳﺎت اﻟﺜﻨﻴﻪ ﺑﺎﻟﻠﻮن اﻟﺮﻣﺎدى ‪.‬‬
‫ﻓ ﻰ ﺑ ﺮاﻣﺞ ﺗﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ ﻳﺨ ﺘﺎر اﻟﻤﺼ ﻤﻢ رﻣ ﺰ ﻧ ﻮع اﻟﺜﻨﻴﻪ اﻟﻤﻄﺎﺑﻖ ﻟﻠﻤﺮاد ﺗﻨﻔﻴﺬﻩ و ﻳﻤﻜﻦ ﻓﻬﻢ هﺬا اﻟﻌﻤﻞ ﺑﺎﻟﻤﻘﺎرﻧﻪ‬
‫ﺑ ﻴﻦ اﻟﺸ ﻜﻠﻴﻦ )‪ ( ١٣ – ٤‬و )‪ ( ١٥ – ٤‬اﻟﻠ ﺬان ﻳﻮﺿ ﺤﺎن اﻟﻤﺨﻄ ﻂ )‪ (layout‬و ﺑ ﻴﻦ اﻟﺸ ﻜﻞ )‪ ( ١٧ – ٤‬اﻟ ﺬى‬
‫ﻳﻮﺿﺢ اﻟﺮﺳﻢ اﻟﺮﻣﺰى )‪ (schematic‬ﻟﻼاﺳﺘﻤﺮارﻳﺎت اﻟﺜﻨﻴﻪ ﻣﺘﺼﻠﻪ ﺑﺎﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ‪.‬‬

‫‪123‬‬

‫ﺸﻜل )‪ : ( ١٧ – ٤‬رﺳﻮم رﻣﺰﻳﻪ ﻷﻧﻮاع ﻣﺨﺘﻠﻔﻪ ﻣﻦ ﻻاﺳﺘﻤﺮارﻳﺎت اﻟﺜﻨﻴﻪ آﻤﺎ ﺗﺒﺪو ﻓﻰ ﻣﻌﻈﻢ ﺑﺮاﻣﺞ‬
‫ﺗﺤﻠﻴﻞ اﻟﺪواﺋﺮ ‪.‬‬

‫)ﻤﻘﻁﻊ ‪ (٦-٢-٤‬ﻻ ﺍﺴﺘﻤﺭﺍﺭﻴﺎﺕ ﻋﻠﻰ ﺸﻜل ﺩﺭﺠﺔ ﺍﻟﺴﻠﻡ )‪: (Step Discontinuities‬‬

‫ه ﻨﺎك ﻧ ﻮﻋﺎن ﻣﺨ ﺘﻠﻔﺎن ﻣ ﻦ اﻟ ﻼ اﺳ ﺘﻤﺮارﻳﺎت ﻋﻠ ﻰ ﺷ ﻜﻞ درﺟ ﺔ اﻟﺴ ﻠﻢ و هﻤ ﺎ اﻟ ﻼ اﺳ ﺘﻤﺮارﻳﻪ اﻟﻤ ﺘﻤﺎﺛﻠﻪ ﻋﻠ ﻰ ﺷﻜﻞ‬
‫درﺟ ﺔ اﻟﺴ ﻠﻢ )‪ (Symmetrical Step Discontinuity‬اﻟﻤﻮﺿ ﺤﻪ ﻓ ﻰ اﻟﺠ ﺰء اﻷﻳﻤ ﻦ ﻣ ﻦ اﻟﺸ ﻜﻞ )‪ (١٨ – ٤‬و‬
‫اﻟ ﻼ اﺳ ﺘﻤﺮارﻳﻪ اﻟﻐﻴﺮ ﻣﺘﻤﺎﺛﻠﻪ ﻋﻠﻰ ﺷﻜﻞ درﺟﺔ اﻟﺴﻠﻢ )‪ (Nonsymmetrical Step Discontinuity‬اﻟﻤﻮﺿﺤﻪ‬
‫ﻓ ﻰ اﻟﺠ ﺰء اﻷﻳﺴ ﺮ ﻣ ﻦ اﻟﺸ ﻜﻞ )‪ ، (١٨ – ٤‬و هﻤ ﺎ ﻳﺤ ﺪﺛﺎن ﻋ ﻨﺪ اﻟﺘﻘﺎء ﺧﻄﻴﻦ ﺷﺮﻳﻄﻴﻴﻦ ﻣﺨﺘﻠﻔﻴﻦ ﻓﻰ اﻟﻌﺮض ﻋﻨﺪ‬
‫ﻧﻬﺎﻳﺘﻬﻤﺎ و ﻳﻘﺎس ﻃﻮل آﻞ ﺧﻂ ﺷﺮﻳﻄﻰ اﺑﺘﺪاء ﻣﻦ هﺬﻩ اﻟﻨﻬﺎﻳﻪ آﻤﺎ ﻓﻰ اﻟﺸﻜﻞ )‪.(١٨ – ٤‬‬
‫ﺑﺎﻟﻨﺴ ﺒﻪ ﻟﻤﺨﻄ ﻂ )‪ (layout‬اﻟ ﻼ اﺳ ﺘﻤﺮارﻳﻪ اﻟﻤ ﺘﻤﺎﺛﻠﻪ ﻋﻠ ﻰ ﺷ ﻜﻞ درﺟ ﺔ اﻟﺴ ﻠﻢ ﻟ ﻮ ﻓﺮﺿ ﻨﺎ أن ه ﻨﺎك ﺧ ﻂ ﻣﻨﺘﺼ ﻒ‬
‫وهﻤ ﻰ )‪ (center line‬ﻳﻤ ﺮ ﺧﻼل ﻣﻨﺘﺼﻒ اﻟﺨﻄﻴﻦ اﻟﺸﺮﻳﻄﻴﻴﻦ آﻤﺎ ﻓﻰ اﻟﺠﺰء اﻷﻳﻤﻦ ﻣﻦ اﻟﺸﻜﻞ )‪ (١٨ – ٤‬ﻧﺠﺪ‬
‫أن ﻋﺮض آﻞ ﺧﻂ ﺷﺮﻳﻄﻰ ﻳﻨﻘﺴﻢ اﻟﻰ ﻧﺼﻔﻴﻦ ﻣﺘﺴﺎوﻳﻴﻦ ﺣﻮل ﺧﻂ اﻟﻤﻨﺘﺼﻒ اﻟﻮهﻤﻰ‪.‬‬

‫‪124‬‬

‫ﺑﻴ ﻨﻤﺎ ﻓ ﻰ ﻣﺨﻄ ﻂ )‪ (layout‬اﻟ ﻼ اﺳ ﺘﻤﺮارﻳﻪ اﻟﻐﻴ ﺮ ﻣ ﺘﻤﺎﺛﻠﻪ ﻋﻠ ﻰ ﺷ ﻜﻞ درﺟ ﺔ اﻟﺴ ﻠﻢ ﻧﺠ ﺪ أن ﻋﺮﺿ ﻴﻦ اﻟﺨﻄ ﻴﻦ‬
‫اﻟﺸﺮﻳﻄﻴﻴﻦ ﻳﺘﻢ ﻗﻴﺎﺳﻬﻤﺎ ﺑﺪءا ﻣﻦ اﻟﺤﺪ اﻟﺠﺎﻧﺒﻰ اﻟﻤﺸﺘﺮك ﻟﻠﺨﻄﻴﻦ آﻤﺎ ﻓﻰ اﻟﺠﺰء اﻷﻳﺴﺮ ﻣﻦ اﻟﺸﻜﻞ )‪. (١٨ – ٤‬‬

‫ﺷﻜﻞ )‪ : (١٨ – ٤‬ﻣﺨﻄﻂ اﻟﻼ اﺳﺘﻤﺮارﻳﺎت ﻋﻠﻰ ﺷﻜﻞ درﺟﺔ اﻟﺴﻠﻢ ‪.‬‬

‫ﺷﻜﻞ )‪ : ( ١٩ – ٤‬اﻟﺪاﺋﺮﻩ اﻟﻤﻜﺎﻓﺌﻪ ﻟﻨﻮﻋﻴﻦ اﻟﻼ اﺳﺘﻤﺮارﻳﺎت ﻋﻠﻰ ﺷﻜﻞ درﺟﺔ اﻟﺴﻠﻢ‪.‬‬

‫اﻟﺸ ﻜﻞ )‪ ( ١٩ – ٤‬ﻳﺒ ﻴﻦ اﻟﺪاﺋ ﺮﻩ اﻟﻤﻜﺎﻓ ﺌﻪ ﻟﻠ ﻼ اﺳ ﺘﻤﺮارﻳﺎت ﻋﻠ ﻰ ﺷ ﻜﻞ درﺟ ﺔ اﻟﺴ ﻠﻢ و ﺗﺘﻜﻮن اﻟﺪاﺋﺮﻩ اﻟﻤﻜﺎﻓﺌﻪ ﻣﻦ‬
‫ﻣﻠﻒ و ﻣﻜﺜﻒ ﻣﺘﺼﻠﻴﻦ ﻋﻠﻰ ﺷﻜﻞ ﺣﺮف )‪ (L‬و ﻳﺘﻢ ﺣﺴﺎب ﻗﻴﻤﺘﻬﻤﺎ ﻣﻦ اﻟﻤﻌﺎدﻻت اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫)) ‪0.5( a + (1 / a‬‬
‫⎪⎫‬
‫⎞ ‪⎞ ⎡ ⎧⎪⎛ 1 − a 2 ⎞⎛ 1 + a‬‬
‫‪A + B + 2D‬‬
‫⎜⎟⎟‬
‫⎜⎜⎨ ‪⎟⎟ ⎢ ln‬‬
‫⎟‬
‫‪⎬+2‬‬
‫‪AB − D 2‬‬
‫⎭⎪‬
‫⎠ ‪⎠ ⎢⎣ ⎪⎩⎝ 4a ⎠⎝ 1 − a‬‬

‫)‪…………(4.32‬‬

‫⎤‬
‫⎥‬
‫⎦⎥‬

‫‪2‬‬

‫⎞ ‪⎛ 5a 2 - 1 4a 2 D‬‬
‫⎜⎜‬
‫⎟⎟‬
‫‪+‬‬
‫‪2‬‬
‫‪3‬‬
‫‪A‬‬
‫‪1‬‬
‫‬‫‪a‬‬
‫⎝‬
‫⎠‬

‫ﺣﻴﺚ‬

‫‪125‬‬

‫‪4a‬‬

‫‪⎛ 2 w eff1 Z1‬‬
‫⎜⎜ = ‪L‬‬
‫‪⎝ π f λ1 δ‬‬
‫‪2‬‬

‫⎞ ‪⎞ ⎛ 1- a‬‬
‫⎜ ⎟⎟‬
‫⎟‬
‫⎠ ‪⎠ ⎝1+ a‬‬

‫‪⎛w‬‬
‫‪+ ⎜⎜ eff1‬‬
‫‪⎝ 2λ1 δ‬‬

‫)‪…………(4.33‬‬

‫⎞‬
‫‪2‬‬
‫‪⎟ 1 + 3a‬‬
‫‪−‬‬
‫‪⎟⎟ 1 − a 2‬‬
‫⎠‬

‫)‪…………(4.34‬‬

‫⎞‬
‫‪2‬‬
‫‪⎟ 3+ a‬‬
‫‪−‬‬
‫‪⎟⎟ 1 − a 2‬‬
‫⎠‬

‫‪2‬‬
‫⎛ ‪2a‬‬
‫}) ‪⎛ 1 + a ⎞ ⎜ 1 + 1 − {2 weff 1 /(λ1δ‬‬
‫⎜=‪A‬‬
‫⎟‬
‫‪⎝ 1 − a ⎠ ⎜⎜ 1 − 1 − {2weff 1 /(λ1δ )}2‬‬
‫⎝‬

‫}) ‪⎜ 1 + 1 − {2 weff 2 /(λ2δ‬‬
‫⎜⎜‬
‫‪2‬‬
‫}) ‪⎝ 1 − 1 − {2 weff 2 /(λ2δ‬‬

‫⎛‪a / 2‬‬

‫‪2‬‬

‫)‪………… ………… ………… ………… ………… ..(4.35‬‬

‫⎞ ‪⎛1+ a‬‬
‫⎜=‪B‬‬
‫⎟‬
‫⎠ ‪⎝1− a‬‬

‫}‬

‫‪2‬‬

‫{‬

‫) ‪D = 4a /(1 − a 2‬‬

‫)‪a = weff 2 / weff 1 ………… ………… ………… ………… ………… ……...(4.36‬‬
‫)‪………… ………… ……...(4.37‬‬

‫) ‪weff1, 2 = ( 376.7 h ) / ( Z1,2 ε eff1,2‬‬

‫)‪………… ………… ……...(4.38‬‬

‫) ‪λ 1, 2 = c / ( f ε eff1,2‬‬

‫)‪………… ………… ……...(4.39‬‬

‫⎞ ‪⎡ ε reff 1 ε ε w ⎤ ⎛ w − w‬‬
‫‪2‬‬
‫‪− o r 1⎥ ⎜ 1‬‬
‫⎢=‪C‬‬
‫⎟‬
‫⎠ ‪2‬‬
‫‪h‬‬
‫‪⎢⎣ c Z1‬‬
‫⎝ ⎦⎥‬

‫ﺣﻴﺚ )‪ (δ = 1‬ﻓﻰ ﺣﺎﻟﺔ اﻟﻼ اﺳﺘﻤﺮارﻳﻪ اﻟﻐﻴﺮ اﻟﻤﺘﻤﺎﺛﻠﻪ ﻋﻠﻰ ﺷﻜﻞ درﺟﺔ اﻟﺴﻠﻢ ‪،‬‬
‫ﺑﻴﻨﻤﺎ )‪ (δ = 2‬ﻓﻰ ﺣﺎﻟﺔ اﻟﻼ اﺳﺘﻤﺮارﻳﻪ اﻟﻤﺘﻤﺎﺛﻠﻪ ﻋﻠﻰ ﺷﻜﻞ درﺟﺔ اﻟﺴﻠﻢ ‪،‬‬
‫و هﻨﺎك ﺷﺮط ﻟﺼﺤﺔ اﻟﻤﻌﺎدﻻت هﻮ ) ‪.( w1 > w2‬‬
‫ﻳﺤ ﺘﻮى ﺷ ﻜﻞ )‪ (٢٠ – ٤‬ﻋﻠ ﻰ رﺳ ﻢ رﻣ ﺰى )‪ (schematic‬ﻟﻠ ﻼ اﺳ ﺘﻤﺮارﻳﺎت ﻋﻠ ﻰ ﺷ ﻜﻞ درﺟ ﺔ اﻟﺴ ﻠﻢ ﻣﺘﺼ ﻠﻪ‬
‫ﺑﺎﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ آﻤﺎ ﻳﺒﺪو ﻓﻰ ﻣﻌﻈﻢ ﺑﺮاﻣﺞ ﺗﺤﻠﻴﻞ اﻟﺪواﺋﺮ‪.‬‬
‫اﻟﻤﺼ ﻤﻢ ﻳﺨ ﺘﺎر رﻣ ﺰ ﻧ ﻮع اﻟ ﻼ اﺳ ﺘﻤﺮارﻳﺔ ﻋﻠ ﻰ ﺷ ﻜﻞ درﺟ ﺔ اﻟﺴ ﻠﻢ اﻟﻤﻄﺎﺑ ﻖ ﻟﻠﻤ ﺮاد ﺗﻨﻔ ﻴﺬﻩ و ﻳﻤﻜﻦ ﻓﻬﻢ هﺬا اﻟﻌﻤﻞ‬
‫ﺑﺎﻟﻤﻘﺎرﻧ ﻪ ﺑ ﻴﻦ اﻟﻨﺼ ﻒ اﻷﻳﻤ ﻦ ﻣ ﻦ اﻟﺸ ﻜﻞ )‪ ( ١٨ – ٤‬اﻟﻠ ﺬى ﻳﻮﺿﺢ اﻟﻤﺨﻄﻂ )‪ (layout‬و ﺑﻴﻦ اﻟﻨﺼﻒ اﻷﻳﻤﻦ‬
‫ﻣﻦ اﻟﺸﻜﻞ )‪ (٢٠ – ٤‬اﻟﺬى ﻳﻮﺿﺢ اﻟﺮﺳﻢ اﻟﺮﻣﺰى )‪ .(schematic‬و آﺬﻟﻚ ﺑﺎﻟﻤﻘﺎرﻧﻪ ﺑﻴﻦ اﻟﻨﺼﻒ اﻷﻳﺴﺮ ﻟﻜﻞ ﻣﻦ‬
‫اﻟﺸﻜﻠﻴﻦ‪.‬‬

‫ﺷﻜﻞ )‪ : (٢٠ – ٤‬رﺳﻢ رﻣﺰى )‪ (schematic‬ﻟﻠﻼ اﺳﺘﻤﺮارﻳﺎت ﻋﻠﻰ ﺷﻜﻞ درﺟﺔ اﻟﺴﻠﻢ ‪.‬‬

‫‪126‬‬

‫)ﻤﻘﻁﻊ ‪ (٧-٢-٤‬ﺍﻟﻼ ﺍﺴﺘﻤﺭﺍﺭﻴﺎﺕ ﺍﻟﻤﺘﻜﻭﻨﻪ ﺒﻴﻥ ﺜﻼﺜﺔ ﺨﻁﻭﻁ ﺸﺭﻴﻁﻴﻪ ﺩﻗﻴﻘﻪ ‪:‬‬

‫اﻟ ﻼ اﺳ ﺘﻤﺮارﻳﺎت اﻟﻤ ﺘﻜﻮﻧﻪ ﺑ ﻴﻦ ﺛﻼﺛ ﺔ ﺧﻄ ﻮط ﺷ ﺮﻳﻄﻴﻪ دﻗ ﻴﻘﻪ ﺗﺨ ﺘﻠﻒ ﻓ ﻰ أﺷ ﻜﺎﻟﻬﺎ ﻣ ﺜﻞ اﻟ ﻼ اﺳﺘﻤﺮارﻳﻪ ﻋﻠﻰ ﺷﻜﻞ‬
‫ﺣﺮف )‪ (T‬أو )‪ (Tee Discontinuity or T-junction‬اﻟﻤﻮﺟﻮدﻩ ﻓﻰ اﻟﺼﻒ اﻟﺘﺎﺳﻊ ﻣﻦ ﺟﺪول )‪ (١-٤‬و ﻣﺜﻞ‬
‫اﻟ ﻼ اﺳﺘﻤﺮارﻳﻪ ﻋﻠﻰ ﺷﻜﻞ ﺣﺮف )‪ (Y‬أو )‪ (Y-junction or junction with arbitrary angle θ‬اﻟﻤﻮﺟﻮدﻩ‬
‫ﻓ ﻰ اﻟﺼ ﻒ اﻟﻌﺎﺷ ﺮ ﻣ ﻦ ﺟ ﺪول )‪ . (١-٤‬و ﻳﻤﻜ ﻦ اﻟ ﺮﺟﻮع اﻟ ﻰ اﻟﻤﺮاﺟﻊ )‪ (1,6‬ﻟﻠﺘﻌﺮف ﻋﻠﻰ اﻷﺷﻜﺎل اﻷﺧﺮى ﻟﻠﻼ‬
‫اﺳﺘﻤﺮارﻳﺎت اﻟﻤﺘﻜﻮﻧﻪ ﺑﻴﻦ ﺛﻼﺛﺔ ﺧﻄﻮط ﺷﺮﻳﻄﻴﻪ دﻗﻴﻘﻪ‪.‬‬
‫ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (٢١ – ٤‬ﻧﻮﻋ ﻴﻦ ﻣﺨﺘﻠﻔﻴﻦ ﻣﻦ اﻟﻼ اﺳﺘﻤﺮارﻳﺎت ﻋﻠﻰ ﺷﻜﻞ ﺣﺮف )‪ : (T‬اﻟﻤﺘﻤﺎﺛﻠﻪ ) ‪symmetrical‬‬
‫‪ (T-junction‬و اﻟﻐﻴ ﺮ ﻣ ﺘﻤﺎﺛﻠﻪ )‪ . (Nonsymmetrical T-junction‬و ﻳﻮﺿ ﺢ اﻟﺸ ﻜﻞ اﻟ ﺬراع اﻟﺮﺋﻴﺴ ﻰ‬
‫)اﻷﻓﻘ ﻰ( اﻟﺬى ﻳﺤﺘﻮى ﻋﻠﻰ ﺧﻄﻴﻦ ﺷﺮﻳﻄﻴﻴﻦ أﻓﻘﻴﻴﻦ و اﻟﺬراع اﻟﺜﺎﻧﻮى )اﻟﺮأﺳﻰ أو اﻟﻌﻤﻮدى ﻋﻠﻰ اﻟﺬراع اﻟﺮﺋﻴﺴﻰ(‬
‫اﻟﺬى هﻮ ﻋﺒﺎرﻩ ﻋﻦ ﺧﻂ ﺷﺮﻳﻄﻰ دﻗﻴﻖ واﺣﺪ‪.‬‬

‫‪symmetrical‬‬

‫‪Nonsymmetrical‬‬

‫ﺷﻜﻞ )‪ : (٢١ – ٤‬ﻣﺨﻄﻂ ﻟﻨﻮﻋﻴﻦ ﻣﺨﺘﻠﻔﻴﻦ ﻣﻦ اﻟﻼ اﺳﺘﻤﺮارﻳﺎت ﻋﻠﻰ ﺷﻜﻞ ﺣﺮف )‪.(T‬‬

‫ﺑﺎﻟﻨﺴ ﺒﻪ ﻟﻠﻼاﺳ ﺘﻤﺮارﻳﻪ اﻟﻐﻴ ﺮ ﻣ ﺘﻤﺎﺛﻠﻪ ﻋﻠ ﻰ ﺷﻜﻞ ﺣﺮف )‪ (T‬ﻧﺠﺪ أن اﻟﺨﻄﺎن اﻟﺸﺮﻳﻄﻴﺎن اﻟﻤﻜﻮﻧﺎن ﻟﻠﺬراع اﻟﺮﺋﻴﺴﻰ‬
‫أو )اﻷﻓﻘ ﻰ( ﻟ ﺪﻳﻬﻤﺎ ﺧ ﻂ ﻣﻨﺘﺼ ﻒ )‪ (center line‬ﻣﺸ ﺘﺮك ﻳﻘﺴ ﻢ ﻋﺮﺿ ﻴﻦ ه ﺬﻳﻦ اﻟﺨﻄ ﻴﻦ اﻟ ﻰ ﻗﺴ ﻤﻴﻦ ﻣﺘﺴ ﺎوﻳﻴﻦ‬
‫ﺣ ﻮﻟﻪ‪ .‬أﻣ ﺎ ﺑﺎﻟﻨﺴ ﺒﻪ ﻟﻠﻼاﺳ ﺘﻤﺮارﻳﻪ اﻟﻤ ﺘﻤﺎﺛﻠﻪ ﻋﻠ ﻰ ﺷ ﻜﻞ ﺣﺮف )‪ (T‬ﻧﺠﺪ أن اﻟﺨﻄﺎن اﻟﺸﺮﻳﻄﻴﺎن اﻟﻤﻜﻮﻧﺎن ﻟﻠﺬراع‬
‫اﻟﺮﺋﻴﺴﻰ أو )اﻷﻓﻘﻰ( ﻟﺪﻳﻬﻤﺎ ﻧﻔﺲ اﻟﻌﺮض )أى ﻧﻔﺲ اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ(‪.‬‬
‫‪127‬‬

‫ﻓ ﻰ آ ﻼ اﻟﻨﻮﻋ ﻴﻦ ﻣ ﻦ اﻟ ﻼ اﺳ ﺘﻤﺮارﻳﺎت ﻋﻠ ﻰ ﺷ ﻜﻞ ﺣ ﺮف )‪ (T‬ﻳ ﺒﺪأ ﻗ ﻴﺎس ﻃ ﻮل آ ﻞ ﺧ ﻂ ﺷﺮﻳﻄﻰ دﻗﻴﻖ ﻣﻦ ﺧﻂ‬
‫اﻟﻤﻨﺘﺼﻒ )‪ (center line‬اﻟﻤﺎر ﻓﻰ اﻟﺬراع اﻟﻌﻤﻮدى ﻋﻠﻰ اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ‪.‬‬
‫ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (٢٢ – ٤‬اﻟﺪاﺋ ﺮﻩ اﻟﻤﻜﺎﻓ ﺌﻪ ﻟﻠ ﻼ اﺳ ﺘﻤﺮارﻳﺎت ﻋﻠﻰ ﺷﻜﻞ ﺣﺮف )‪ (T‬و هﻰ ﺗﺘﻜﻮن ﻣﻦ ﻣﺤﻮﻻن ) ‪two‬‬
‫‪ (transformers‬و ﻣﻌﺎوﻗﻪ أو ﻣﻘﻠﻮب ﻣﻌﺎوﻗﻪ ﻣﺘﺼﻠﻪ ﻋﻠﻰ اﻟﺘﻮازى )‪. (shunt susceptance‬‬
‫اﻟﻤﺴﺎﻓﺎت )‪ (displacements d1a,d1b,d2‬و اﻟﻤﺴﺘﻮﻳﺎت اﻟﻤﺮﺟﻌﻴﻪ )‪ (reference planes T1a,T1b,T2‬اﻟﻤﺒﻴﻨﻪ‬
‫ﻓﻰ ﺷﻜﻞ )‪ (٢١ – ٤‬ﺳﺘﺴﺘﺨﺪم ﻓﻰ ﺣﺴﺎب ﻗﻴﻢ ﻣﻜﻮﻧﺎت اﻟﺪاﺋﺮﻩ اﻟﻤﻜﺎﻓﺌﻪ آﻤﺎ هﻮ ﻣﻮﺿﺢ أدﻧﺎﻩ ‪.‬‬
‫ﺑﺎﻟﻨﺴ ﺒﻪ ﻟﻠﺪاﺋ ﺮﻩ اﻟﻤﻜﺎﻓ ﺌﻪ ﻟﻠﻼاﺳ ﺘﻤﺮارﻳﻪ اﻟﻤ ﺘﻤﺎﺛﻠﻪ ﻋﻠ ﻰ ﺷ ﻜﻞ ﺣ ﺮف )‪ (T‬ﻓ ﺎن اﻟﻤﺤ ﻮﻻن )‪(transformers‬‬
‫اﻟﻤﻮﺿﺤﺎن ﻓﻰ ﺷﻜﻞ )‪ (٢٢ – ٤‬ﻳﻜﻮﻧﺎن ﻣﺘﻄﺎﺑﻘﺎن أى أن ﻟﻬﻤﺎ ﻧﻔﺲ ﻧﺴﺒﺔ اﻟﺘﺤﻮﻳﻞ )‪(transformer turns ratio‬‬
‫أى أن )‪ (n = na = nb‬ﺑﻴﻨﻤﺎ ﺗﻜﻮن اﻟﻤﺴﺎﻓﺎت )‪ (displacements‬ﻣﺘﺴﺎوﻳﻪ أى أن )‪. (d1 = d1a = d1b‬‬
‫ﻣﻌﺎدﻻت ﺣﺴﺎب ﻗﻴﻢ ﻣﻜﻮﻧﺎت اﻟﺪاﺋﺮﻩ اﻟﻤﻜﺎﻓﺌﻪ ﻟﻠﻼاﺳﺘﻤﺮارﻳﻪ اﻟﻤﺘﻤﺎﺛﻠﻪ ﻋﻠﻰ ﺷﻜﻞ ﺣﺮف )‪ (T‬ﻣﻌﻄﺎﻩ آﻤﺎ ﻳﻠﻰ ‪:‬‬

‫)‪……...(4.40‬‬

‫‪2‬‬
‫⎡‬
‫⎞ ‪⎛ Z1 ⎞⎛ f ⎞ ⎤ ⎛ Z1‬‬
‫‪d1‬‬
‫⎟⎟ ⎜⎜ ⎥ ⎟⎟‬
‫⎜⎜⎟⎟ ⎜⎜ ‪= 0.055 ⎢1 - 2‬‬
‫‪D2‬‬
‫⎣⎢‬
‫⎠ ‪⎝ Z 2 ⎠⎝ f c1 ⎠ ⎥⎦ ⎝ Z 2‬‬

‫‪2‬‬
‫⎡‬
‫⎞ ‪⎛ Z ⎞⎤ ⎛ Z‬‬
‫⎛‬
‫⎞ ‪⎛ Z1 ⎞⎛ f‬‬
‫⎞ ‪Z1‬‬
‫‪d2‬‬
‫⎟⎟ ‪⎟⎟ - 0.17 ln⎜⎜ 1 ⎟⎟⎥ ⎜⎜ 1‬‬
‫⎜⎜⎟⎟ ⎜⎜ ‪= 0.5 - ⎢0.05 + 0.7 exp ⎜⎜ - 1.6 ⎟⎟ + 0.25‬‬
‫⎠ ‪Z2‬‬
‫‪D1‬‬
‫⎣⎢‬
‫⎠ ‪⎝ Z 2 ⎠⎥⎦ ⎝ Z 2‬‬
‫⎝‬
‫⎠ ‪⎝ Z 2 ⎠⎝ f c1‬‬

‫)‪…………………………………………………………………………. ……...(4.41‬‬
‫ﺣﻴﺚ )‪ (fc1‬ﻣﻌﻄﻰ ﺑﺎﻟﻤﻌﺎدﻟﻪ رﻗﻢ )‪ (4.12‬ﻣﻊ اﻟﺘﻌﻮﻳﺾ ﺑـ )‪.(Zo = Z1‬‬

‫)‪……………...(4.42‬‬

‫‪−0.5‬‬
‫‪D1, 2 = ( 376.73 h ε eff‬‬
‫‪) / Z 1,2‬‬
‫‪1, 2‬‬

‫)‪……………...(4.43‬‬

‫‪2‬‬
‫‪2‬‬
‫‪2‬‬
‫⎛ ⎞ ‪⎛ f ⎞ ⎡ 1 ⎛ Z1‬‬
‫⎤ ⎞ ‪d2‬‬
‫⎥ ⎟⎟ ‪⎟⎟ ⎢ ⎜⎜ ⎟⎟ + ⎜⎜ 0.5 -‬‬
‫⎜⎜ ‪n = 1 - π‬‬
‫⎥ ⎠ ‪D1‬‬
‫⎝ ⎠ ‪⎝ f c1 ⎠ ⎢⎣12 ⎝ Z 2‬‬
‫⎦‬
‫‪2‬‬

‫ﻗﻴﻤﺔ ﻣﻘﻠﻮب اﻟﻤﻌﺎوﻗﻪ اﻟﻤﺘﺼﻠﻪ ﻋﻠﻰ اﻟﺘﻮازى )‪ (shunt susceptance‬ﻣﻌﻄﺎﻩ ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫‪2‬‬
‫‪2‬‬
‫⎡ ⎞ ‪⎛ 5.5 D1 d1 n -2 ⎞⎛ ε r + 2‬‬
‫⎤ ⎞ ‪⎛ Z2‬‬
‫⎞ ‪⎛ Z1‬‬
‫⎞ ‪⎛ Z1 ⎞⎛ f‬‬
‫⎛‬
‫⎞ ‪Z1‬‬
‫⎜⎜⎟‬
‫‪⎟⎟ - 4.4 exp ⎜⎜ - 1.3‬‬
‫⎜⎜⎟⎟ ⎜⎜ ‪⎟⎟ ⎢1 + 0.9 ln⎜⎜ ⎟⎟ + 4.5‬‬
‫⎥ ⎟⎟ ⎜⎜ ‪⎟ - 20‬‬
‫⎜⎜ = ‪BT‬‬
‫⎟‬
‫⎠⎟ ‪Z 2‬‬
‫⎠ ‪⎝ Z2‬‬
‫⎠ ‪⎝ Z 2 ⎠⎝ f c1‬‬
‫⎝‬
‫⎦⎥ ⎠ ‪⎝ η o‬‬
‫⎣⎢ ⎠ ‪⎝ Z 2 λ1 D 2 ⎠⎝ ε r‬‬

‫)‪…………………………………………………………………………………...(4.44‬‬

‫‪128‬‬

‫ﺷﻜﻞ )‪ : (٢٢ – ٤‬اﻟﺪاﺋﺮﻩ اﻟﻤﻜﺎﻓﺌﻪ ﻟﻠﻼاﺳﺘﻤﺮارﻳﻪ ﻋﻠﻰ ﺷﻜﻞ ﺣﺮف )‪.(T‬‬

‫و ﻟﺤﺴ ﺎب ﻗ ﻴﻢ ﻣﻜ ﻮﻧﺎت اﻟﺪاﺋﺮﻩ اﻟﻤﻜﺎﻓﺌﻪ ﻟﻠﻼاﺳﺘﻤﺮارﻳﻪ اﻟﻐﻴﺮ ﻣﺘﻤﺎﺛﻠﻪ ﻋﻠﻰ ﺷﻜﻞ ﺣﺮف )‪ (T‬ﺗﺴﺘﺨﺪم ﻧﻔﺲ اﻟﻤﻌﺎدﻻت‬
‫ﻣﻦ )‪ (4.40‬اﻟﻰ )‪ (4.44‬و ﻟﻜﻦ ﺑﺎﻟﺘﻐﻴﻴﺮات اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫ﺑﺎﻟﻨﺴ ﺒﻪ ﻟﻠ ﺬراع اﻟﺮﺋﻴﺴ ﻰ أو )اﻷﻓﻘ ﻰ( ﻳ ﺘﻢ اﻟ ﺘﻌﻮﻳﺾ ﺑﻤﻌﺎوﻗ ﺔ آﻞ ﺧﻂ ﺷﺮﻳﻄﻰ و اﻟﻤﺴﺎﻓﻪ اﻟﺨﺎﺻﻪ ﺑﻪ ﻟﺤﺴﺎب ﻧﺴﺒﺔ‬
‫اﻟ ﺘﺤﻮﻳﻞ ﻟﻠﻤﺤ ﻮل اﻟﻤﻜﺎﻓ ﺊ ﻟ ﻪ ‪ .‬و ﺑﺎﻟﻨﺴ ﺒﻪ ﻟﻠ ﺬراع اﻟ ﺜﺎﻧﻮى )اﻟﺮأﺳ ﻰ أو اﻟﻌﻤ ﻮدى ﻋﻠﻰ اﻟﺬراع اﻟﺮﺋﻴﺴﻰ( و اﻟﻤﻜﻮن‬
‫ﻣ ﻦ ﺧ ﻂ ﺷ ﺮﻳﻄﻰ واﺣ ﺪ ﻳﺘﻢ ﺣﺴﺎب ﻣﻘﻠﻮب اﻟﻤﻌﺎوﻗﻪ ﺑﺎﻋﺘﺒﺎر ﻣﻌﺎوﻗﺔ ﺧﻄﻰ اﻟﺬراع اﻟﺮﺋﻴﺴﻰ )‪ (Z1‬ﺗﺴﺎوى اﻟﻤﺘﻮﺳﻂ‬
‫اﻟﻬﻨﺪﺳﻰ )‪ (geometric mean‬ﻟﻤﻌﺎوﻗﺘﻴﻬﻤﺎ ‪.‬‬
‫ﻳﺤﺘﻮى ﺷﻜﻞ )‪ (٢٣ – ٤‬ﻋﻠﻰ رﺳﻢ رﻣﺰى )‪ (schematic‬ﻟﻠﻼاﺳﺘﻤﺮارﻳﻪ ﻋﻠﻰ ﺷﻜﻞ ﺣﺮف )‪ (T‬ﻣﺘﺼﻠﻪ ﺑﺎﻟﺨﻄﻮط‬
‫اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ آﻤﺎ ﻳﺒﺪو ﻓﻰ ﻣﻌﻈﻢ ﺑﺮاﻣﺞ ﺗﺤﻠﻴﻞ اﻟﺪواﺋﺮ‪.‬‬

‫ﺷﻜﻞ )‪ : (٢٣ – ٤‬رﺳﻢ رﻣﺰى )‪ (schematic‬ﻟﻠﻼاﺳﺘﻤﺮارﻳﻪ ﻋﻠﻰ ﺷﻜﻞ ﺣﺮف )‪.(T‬‬

‫‪129‬‬

‫ﻳﻤﻜ ﻦ اﻟ ﺮﺟﻮع اﻟ ﻰ اﻟﻤ ﺮاﺟﻊ )‪ (1,6‬ﻟﻠﺘﻌ ﺮف ﻋﻠ ﻰ اﻷﺷ ﻜﺎل اﻷﺧ ﺮى ﻟﻠ ﻼ اﺳ ﺘﻤﺮارﻳﺎت و اﻟﺪواﺋ ﺮ اﻟﻤﻜﺎﻓﺌﻪ ﻟﻬﺎ ‪ .‬و‬
‫ﻳﻤﻜ ﻦ أن ﻧﺠ ﺪ ﻋ ﺪة دواﺋ ﺮ ﻣﻜﺎﻓ ﺌﻪ ﻟ ﻨﻔﺲ اﻟ ﻨﻮع ﻣ ﻦ اﻟ ﻼ اﺳ ﺘﻤﺮارﻳﺔ ﺗﺨ ﺘﻠﻒ ﻓ ﻰ ﺷ ﻜﻠﻬﺎ و ﻃﺮﻳﻘﺔ ﺣﺴﺎب ﻣﻜﻮﻧﺎﺗﻬﺎ و‬
‫ﻃﺮﻳﻘﺔ اﺳﺘﻨﺘﺎﺟﻬﺎ و دﻗﺘﻬﺎ ﻓﻰ اﻟﻌﺪﻳﺪ ﻣﻦ اﻟﻤﺮاﺟﻊ‪.‬‬
‫و ﻟﺨﺪﻣ ﺔ اﻟﻬ ﺪف ﻣ ﻦ اﻟﻜ ﺘﺎب و ه ﻮ ﺗﻌﻠ ﻢ ﺗﺼ ﻤﻴﻢ اﻟﺪواﺋ ﺮ اﻟﺸ ﺮﻳﻄﻴﻪ ﻓﻘ ﺪ ﺗﻌ ﺮﻓﻨﺎ ﻋﻠ ﻰ ﻋﺪد ﻣﻦ اﻟﺪواﺋﺮ اﻟﻤﻜﺎﻓﺌﻪ ﻟﻠﻼ‬
‫اﺳ ﺘﻤﺮارﻳﺎت و ﻃ ﺮﻳﻘﺔ رﺳ ﻤﻬﺎ و ﻗ ﻴﺎس أﺑﻌ ﺎد اﻟﺨﻄ ﻮط اﻟﺸﺮﻳﻄﻴﻪ ﻣﻦ ﺧﻼل أﺷﻜﺎل اﻟﻤﺨﻄﻄﺎت )‪ (layout‬اﻟﻤﻌﻄﺎﻩ‬
‫ﻓﻰ هﺬا اﻟﻔﺼﻞ و آﺬﻟﻚ ﺗﻌﺮﻓﻨﺎ ﻋﻠﻰ اﻟﺸﻜﻞ اﻟﺮﻣﺰى )‪ (schematic‬اﻟﻤﺴﺘﺨﺪم ﻓﻰ ﻣﻌﻈﻢ ﺑﺮاﻣﺞ ﺗﺤﻠﻴﻞ اﻟﺪواﺋﺮ ﻟﻬﺬﻩ‬
‫اﻟ ﻼ اﺳ ﺘﻤﺮارﻳﺎت و آﻠﻬ ﺎ ﻣﻮاﺿ ﻴﻊ أﺳﺎﺳ ﻴﻪ ﻻﺗﻤ ﺎم ﺗﺼ ﻤﻴﻢ و ﺗﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ اﻟﺸ ﺮﻳﻄﻴﻪ و اﻧﺘﺎج ﻣﺨﻄﻂ )‪(layout‬‬
‫ﻧﻬﺎﺋﻰ ﻟﻠﺪاﺋﺮﻩ‪.‬‬
‫ﺑﻌ ﺪ اﻟﻤﻌﻠ ﻮﻣﺎت اﻟﻤﻌﻄ ﺎﻩ ﻓ ﻰ ه ﺬا اﻟﻔﺼ ﻞ ﻳﻤﻜ ﻦ ﻟﻤﺴ ﺘﺨﺪم أى ﻣ ﻦ ﺑ ﺮاﻣﺞ ﺗﺤﻠ ﻴﻞ دواﺋ ﺮ اﻟﻤﻴﻜ ﺮووﻳﻒ أن ﻳﺴ ﺘﺨﺪم‬
‫اﻟﺒﺮﻧﺎﻣﺞ و ﻳﺪﺧﻞ اﻟﺸﻜﻞ اﻟﺮﻣﺰى )‪ (schematic‬ﻟﺪاﺋﺮﻩ ﺷﺮﻳﻄﻴﻪ ﻣﺎ و ﻳﺤﺼﻞ ﻋﻠﻰ اﻟﻤﺨﻄﻂ )‪ (layout‬ﻟﻠﺪاﺋﺮﻩ و‬
‫ﺑ ﺎﻟﻌﻜﺲ ﻟ ﻮ آ ﺎن ﻟﺪﻳ ﻪ ﻣﺨﻄ ﻂ )‪ (layout‬ﻟﺪاﺋ ﺮﻩ ﺷ ﺮﻳﻄﻴﻪ ﻣﻌﻴ ﻨﻪ ﻳﺴ ﺘﻄﻴﻊ أن ﻳﻔﻬ ﻢ آ ﻴﻒ ﻳ ﺒﺪو اﻟﺸ ﻜﻞ اﻟﺮﻣ ﺰى‬
‫)‪ (schematic‬ﻟﻬﺎ ‪.‬‬
‫اﻵن ﻳﻤﻜﻨﻨﺎ ﻓﻬﻢ اﻟﺸﻜﻠﻴﻦ )‪ (٢٤ – ٤‬و )‪ (٢٥ – ٤‬و اﻟﻤﻘﺎرﻧﻪ ﺑﻴﻨﻬﻤﺎ‪.‬‬
‫اﻟﺸ ﻜﻞ )‪ (٢٤ – ٤‬ﻳﺒ ﻴﻦ ﺟ ﺰء ﻣ ﻦ ﻣﺨﻄ ﻂ )‪ (layout‬داﺋ ﺮﻩ ﺷﺮﻳﻄﻴﻪ ﻣﻌﻴﻨﻪ ﺑﻴﻨﻤﺎ ﻳﻮﺿﺢ ﺷﻜﻞ )‪ (٢٥ – ٤‬رﺳﻢ‬
‫رﻣﺰى )‪ (schematic‬ﻟﻨﻔﺲ اﻟﺪاﺋﺮﻩ ‪.‬‬
‫ﻓ ﻰ ﺷ ﻜﻞ )‪ (٢٥ – ٤‬ﺗ ﻢ رﺳ ﻢ رﻣ ﻮز اﻟﻼاﺳ ﺘﻤﺮارﻳﺎت ﺑﺎﻟﻠ ﻮن اﻟ ﺮﻣﺎدى ﺑﻴ ﻨﻤﺎ ﺗ ﻢ رﺳ ﻢ اﻟﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﺪﻗ ﻴﻘﻪ‬
‫ﺑﺎﻟﻠﻮن اﻷﺑﻴﺾ آﻤﺎ ﺳﺒﻖ و ﺣﺪث ﻓﻰ ﺟﻤﻴﻊ اﻷﺷﻜﺎل اﻟﺴﺎﺑﻘﻪ ﻣﻦ هﺬا اﻟﻔﺼﻞ و ﻟﻜﻦ ﻳﺠﺐ أن ﻧﻌﻠﻢ أن هﺬا اﻟﺘﻤﻴﻴﺰ ﻓﻰ‬
‫اﻷﻟ ﻮان ﻋ ﺎدة ﻻ ﻳﺴ ﺘﺨﺪم ﻓ ﻰ ﺑﺮاﻣﺞ ﺗﺤﻠﻴﻞ اﻟﺪواﺋﺮ ﺣﻴﺚ ﻳﺴﺘﺨﺪم ﻟﻮن واﺣﺪ ﻋﺎدة ﻟﻜﻞ رﻣﻮز اﻟﻤﻜﻮﻧﺎت و اﻟﺨﻄﻮط‬
‫اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ و اﻟﻼاﺳﺘﻤﺮارﻳﺎت ‪.‬‬

‫ﺷﻜﻞ )‪ : (٢٤ – ٤‬ﺟﺰء ﻣﻦ ﻣﺨﻄﻂ )‪ (layout‬داﺋﺮﻩ ﺷﺮﻳﻄﻴﻪ ‪.‬‬

‫‪130‬‬

‫ﺷﻜﻞ )‪ : (٢٥ – ٤‬رﺳﻢ رﻣﺰى )‪ (schematic‬ﻟﻤﺨﻄﻂ اﻟﺪاﺋﺮﻩ اﻟﻤﻌﻄﺎﻩ ﻓﻰ ﺷﻜﻞ )‪. (٢٤ – ٤‬‬

‫ﻓ ﻰ ﺷ ﻜﻞ )‪ (٢٤ – ٤‬ﻳﻤﻜﻨ ﻨﺎ ﺗﻤﻴﻴ ﺰ ﻻاﺳﺘﻤﺮارﻳﺎت ﻣﻦ ﻧﻮع درﺟﺔ اﻟﺴﻠﻢ و اﻟﻔﺠﻮﻩ و اﻟﺜﻨﻴﻪ و اﻟﻨﻬﺎﻳﻪ اﻟﻤﻔﺘﻮﺣﻪ و ﻻ‬
‫اﺳﺘﻤﺮارﻳﻪ ﻋﻠﻰ ﺷﻜﻞ )‪ (+‬و ﻳﻤﻜﻨﻨﺎ ﺗﻤﻴﻴﺰ رﻣﻮز هﺬﻩ اﻟﻼاﺳﺘﻤﺮارﻳﺎت ﻓﻰ ﺷﻜﻞ )‪. (٢٥ – ٤‬‬
‫و ﻟﻠ ﺘﺪرﻳﺐ ﻋﻠ ﻰ ﺗﻤﻴﻴ ﺰ اﻟﻼاﺳ ﺘﻤﺮارﻳﺎت و رﻣ ﻮزهﺎ ﻳﻤﻜ ﻦ ﻟﻤﺴ ﺘﺨﺪم اﻟﻜ ﺘﺎب أن ﻳﺤ ﺎول اﺳ ﺘﻨﺘﺎج ﺷ ﻜﻞ )‪(٢٥ – ٤‬‬
‫ﺑﺎﺳﺘﺨﺪام ﺷﻜﻞ )‪ (٢٤ – ٤‬و اﻟﻌﻜﺲ‪.‬‬

‫)ﻤﻘﻁﻊ ‪ (٣-٤‬ﺍﻟﻤﻜﻭﻨﺎﺕ ﺍﻟﺸﺭﻴﻁﻴﻪ )‪: (microstrip components‬‬

‫اﻟﻤﻜ ﻮﻧﺎت اﻟﺸ ﺮﻳﻄﻴﻪ )‪ (microstrip components‬ه ﻰ اﻟﻤﻜ ﻮﻧﺎت اﻟﺘ ﻰ ﺗﻜ ﻮن ﻣ ﻨﻔﺬﻩ أو ﻣﻄ ﺒﻮﻋﻪ ﻋﻠ ﻰ اﻟﺪاﺋ ﺮﻩ‬
‫ﻣ ﺜﻠﻬﺎ ﻣﺜﻞ اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ ﻣﺜﻞ اﻟﻤﻠﻔﺎت )‪ (inductors‬و اﻟﻤﻜﺜﻔﺎت )‪ (capacitors‬و اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ ﻣﺘﻨﺎﻗﺺ‬
‫اﻟﻌﺮض )‪ (tapered microstrip line‬و اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﻨﺼﻒ ﻗﻄﺮى )‪ (radial line‬و ﻏﻴﺮهﺎ ‪.‬‬
‫و ﻓ ﻰ ﺟﻤ ﻴﻊ ﺑ ﺮاﻣﺞ ﺗﺤﻠ ﻴﻞ دواﺋ ﺮ اﻟﻤﻴﻜ ﺮووﻳﻒ اﻟﺤﺪﻳﺜﻪ ﻧﺠﺪ داﺋﻤﺎ ﻧﻤﺎذج أو رﺳﻮم رﻣﺰﻳﻪ ﻣﺒﻨﻴﻪ )‪ (built-in‬داﺧﻞ‬
‫اﻟﺒ ﺮﻧﺎﻣﺞ ﻷﻧ ﻮاع ﻣﺨﺘﻠﻔﻪ ﻣﻦ هﺬﻩ اﻟﻤﻜﻮﻧﺎت‪ .‬و ﻓﻰ ﺷﻜﻞ )‪ (٢٦ – ٤‬رﺳﻮم رﻣﺰﻳﻪ ﻟﻤﻜﻮﻧﺎت ﺷﺮﻳﻄﻴﻪ آﻤﺎ ﺗﺒﺪو ﻓﻰ‬
‫ﻣﻌﻈﻢ ﺑﺮاﻣﺞ ﺗﺤﻠﻴﻞ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ‪.‬‬
‫اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ ﻣﺘ ﻨﺎﻗﺺ اﻟﻌﺮض )‪ (tapered microstrip line‬هﻮ أﺣﺪ هﺬﻩ اﻟﻤﻜﻮﻧﺎت و هﻮ ﻳﺴﺘﺨﺪم ﻓﻰ دواﺋﺮ‬
‫اﻟﺘﻮﻓ ﻴﻖ )‪ (matching circuits‬و ﻳﺴ ﺘﺨﺪم آﺪاﺋ ﺮة أو آﻌﻨﺼ ﺮ رﻧ ﻴﻦ )‪ (resonator‬ﻓ ﻰ دواﺋ ﺮ ﻣ ﺜﻞ اﻟﻔﻼﺗ ﺮ‬
‫اﻟﻤﺮﺟﻊ )‪. (7‬‬

‫‪131‬‬

‫اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ ﻣﺘ ﻨﺎﻗﺺ اﻟﻌﺮض ﻳﺘﻤﻴﺰ ﺑﺄن ﻋﺮﺿﻪ ﻳﻘﻞ ﺗﺪرﻳﺠﻴﺎ آﻠﻤﺎ اﺗﺠﻬﻨﺎ ﻣﻦ ﻃﺮﻓﻪ اﻷآﺒﺮ اﻟﻰ ﻃﺮﻓﻪ اﻷﺻﻐﺮ‬
‫و ﻗ ﺪ ﻳﻜ ﻮن اﻟ ﻨﻘﺺ ﻓ ﻰ ﻋﺮﺿ ﻪ ﺧﻄﻴﺎ )‪ (linear‬أو ﻣﻨﺤﻨﻰ أو ﻏﻴﺮ ﺧﻄﻰ )‪ (nonlinear‬آﻤﺎ هﻮ ﻣﻮﺿﺢ ﻓﻰ ﺷﻜﻞ‬
‫)‪ . (٢٧ – ٤‬و ﻳﻨﻈ ﺮ اﻟ ﻲ اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ ﻣﺘ ﻨﺎﻗﺺ اﻟﻌﺮض ﻓﻰ ﺑﻌﺾ ﻃﺮق اﻟﺘﺤﻠﻴﻞ ﻋﻠﻰ أﻧﻪ ﻋﺪد ﻣﻦ اﻟﺨﻄﻮط‬
‫اﻟﺸﺮﻳﻄﻴﻪ ﻣﺘﺼﻠﻪ ﺑﺒﻌﻀﻬﺎ و ﺻﻐﻴﺮة اﻟﻄﻮل و ﺗﺘﻔﺎوت ﻓﻰ ﻋﺮﺿﻬﺎ ﺗﺪرﻳﺠﻴﺎ ‪.‬‬
‫ﻳﻤﻜ ﻦ اﻟ ﺮﺟﻮع اﻟ ﻰ اﻟﻤ ﺮﺟﻊ )‪ (13‬ﻟﻤﻌﻠ ﻮﻣﺎت أآﺜ ﺮ ﻋﻦ ﺧﻂ اﻻرﺳﺎل ﻣﺘﻨﺎﻗﺺ اﻟﻌﺮض )‪ (tapered line‬و آﻴﻔﻴﺔ‬
‫اﺳ ﺘﺨﺪاﻣﻪ و ﺣﺴ ﺎب أﺑﻌ ﺎدﻩ ﻓ ﻰ دواﺋ ﺮ اﻟﺘﻮﻓ ﻴﻖ )‪ (matching networks‬آﻤ ﺎ ﻳﻤﻜ ﻦ اﻟ ﺮﺟﻮع اﻟ ﻰ اﻟﻤ ﺮﺟﻊ )‪(7‬‬
‫ﻟﻤﻌﺮﻓﺔ آﻴﻔﻴﺔ ﺗﺼﻤﻴﻢ دواﺋﺮ اﻟﻔﻠﺘﺮ ﺑﺎﺳﺘﺨﺪام اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ ﻣﺘﻨﺎﻗﺺ اﻟﻌﺮض ‪.‬‬
‫اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﻨﺼ ﻒ ﻗﻄ ﺮى )‪ (radial line‬ﻳﺴ ﺘﺨﺪم ﻓ ﻰ ﺑﻌﺾ دواﺋﺮ اﻟﺘﻮﻓﻴﻖ )‪ (matching networks‬و‬
‫ﻳﺴ ﺘﺨﺪم آﺪاﺋ ﺮة أو آﻌﻨﺼ ﺮ رﻧ ﻴﻦ )‪ (resonator‬ﻓ ﻰ ﺑﻌ ﺾ اﻟﺪواﺋ ﺮ آﻤ ﺎ ﻳﺴ ﺘﺨﺪم ﻓ ﻰ دواﺋ ﺮ اﻟ ﺘﻐﺬﻳﻪ ) ‪bias‬‬
‫‪ (networks‬اﻟﺘ ﻰ ﺗﻤ ﺜﻞ ﺟ ﺰء ﻣ ﻦ دواﺋ ﺮ ﻋﺪﻳ ﺪﻩ ﻣ ﺜﻞ اﻟﻤﻜﺒ ﺮات )‪ (amplifiers‬و اﻟﻤﺬﺑ ﺬﺑﺎت )‪ (oscillators‬و‬
‫دواﺋﺮ ﺿﺮب اﻟﺘﺮدد )‪ (frequency multipliers‬و ﻏﻴﺮهﺎ‪.‬‬

‫ﺧﻂ ﺷﺮﻳﻄﻰ ﻧﺼﻒ ﻗﻄﺮى ﻳﻮﺻﻞ ﺑﻤﻜﻮﻧﻴﻦ‬

‫ﺧﻂ ﺷﺮﻳﻄﻰ ﻧﺼﻒ ﻗﻄﺮى ﻳﻮﺻﻞ ﺑﻤﻜﻮن واﺣﺪ‬

‫ﺧﻄﻴﻦ )ﻧﻮﻋﻬﻤﺎ ﻧﺼﻒ ﻗﻄﺮى( ﻳﻮﺻﻼن ﺑﻤﻜﻮﻧﻴﻦ‬

‫ﺧﻂ اﻟﺸﺮﻳﻄﻰ ﻣﺘﻨﺎﻗﺺ اﻟﻌﺮض‬

‫ﻣﻜﺜﻒ )‪(interdigitated capacitor‬‬

‫ﻣﻠﻒ )‪(spiral inductor‬‬

‫ﺷﻜﻞ )‪ : (٢٦ – ٤‬رﺳﻮم رﻣﺰﻳﻪ ﻟﻤﻜﻮﻧﺎت ﺷﺮﻳﻄﻴﻪ‪.‬‬

‫‪132‬‬

‫ﺷﻜﻞ )‪ : (٢٧ – ٤‬ﻧﻮﻋﻴﻦ ﻣﺨﺘﻠﻔﻴﻦ ﻣﻦ اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ ﻣﺘﻨﺎﻗﺺ اﻟﻌﺮض‪.‬‬

‫و ﻳ ﺘﻢ ﺗﻮﺻ ﻴﻞ اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﻨﺼﻒ ﻗﻄﺮى ﺣﺴﺐ و ﻇﻴﻔﺘﻪ ﻓﻰ اﻟﺪاﺋﺮﻩ ﺑﻄﺮق ﻣﺘﻌﺪدﻩ ﻣﻨﻬﺎ اﻟﺘﻮﺻﻴﻞ ﺑﻨﻬﺎﻳﺔ ﺧﻂ‬
‫ﺷ ﺮﻳﻄﻰ دﻗ ﻴﻖ أى اﻟﺘﻮﺻ ﻴﻞ ﻋﻠ ﻰ اﻟﺘﻮاﻟ ﻰ )‪ (series‬أو اﻟﺘﻮﺻ ﻴﻞ ﻋﻠ ﻰ اﻟ ﺘﻮازى )‪ (parallel‬أو ﺗﻮﺻ ﻴﻞ ﺧﻄ ﻴﻦ‬
‫)ﻧ ﻮﻋﻬﻤﺎ ﻧﺼ ﻒ ﻗﻄﺮى( ﻋﻠﻰ اﻟﺘﻮازى و ﻳﺴﻤﻰ هﺬا اﻟﺠﺰء )‪ (Butterfly structure‬أو اﻟﻔﺮاﺷﻪ آﻤﺎ هﻮ ﻣﻮﺿﺢ‬
‫ﻓﻰ ﺷﻜﻞ )‪.(٢٨ – ٤‬‬

‫‪Butterfly structure‬‬

‫‪parallel radial line‬‬

‫‪series radial line‬‬

‫ﺷﻜﻞ )‪ : (٢٨ – ٤‬ﻣﺨﻄﻂ )‪ (layout‬أﻧﻮاع ﻣﺨﺘﻠﻔﻪ ﻣﻦ ﺗﻮﺻﻴﻞ اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﻨﺼﻒ ﻗﻄﺮى‪.‬‬

‫ﻳﺒ ﻴﻦ اﻟﺸ ﻜﻞ )‪ (٢٩ – ٤‬ﻣﻨﺤﻨ ﻰ ﺗﻐﻴﺮ ﻣﻌﺎوﻗﻪ اﻻدﺧﺎل )‪ (input impedance Zin‬ﻣﻊ اﻟﺘﺮدد ﻟﺨﻂ ﺷﺮﻳﻄﻰ دﻗﻴﻖ‬
‫ﻣﻮﺻ ﻞ ﺑﻨﻬﺎﻳ ﺘﻪ ﺧ ﻂ ﺷ ﺮﻳﻄﻰ ﻧﺼ ﻒ ﻗﻄﺮى ‪ ،‬و ﻧﻼﺣﻆ أن ﻗﻴﻤﺔ ﻣﻌﺎوﻗﻪ اﻻدﺧﺎل ﻣﻨﺨﻔﻀﻪ و ﻟﻜﻨﻬﺎ ﺗﺼﻞ اﻟﻰ ﻗﻴﻢ‬
‫ﻋﺎﻟﻴﻪ ﺟﺪا ﻋﻨﺪ ﺗﺮددات ﻣﻌﻴﻨﻪ )‪ ، (f1 , f2, ...‬و ﻳﺤﺪد ﻗﻴﻢ هﺬﻩ اﻟﺘﺮددات أﺑﻌﺎد اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﻨﺼﻒ ﻗﻄﺮى‪.‬‬
‫و ﻧﻈﺮا ﻟﻬﺬﻩ اﻟﻘﻴﻢ ﻟﻤﻌﺎوﻗﺔ اﻻدﺧﺎل ﻳﻤﻜﻦ اﺳﺘﻐﻼل اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﻨﺼﻒ ﻗﻄﺮى ﻓﻰ ﺑﻌﺾ اﻟﺪواﺋﺮ ﻣﺜﻞ اﻟﻔﻼﺗﺮ و‬
‫دواﺋﺮ اﻟﺘﻐﺬﻳﻪ و دواﺋﺮ اﻟﺘﻮﻓﻴﻖ و دواﺋﺮ أﺧﺮى ﻋﺪﻳﺪﻩ ﻟﻼﺳﺘﻔﺎدﻩ ﻣﻦ هﺬﻩ اﻟﺨﺎﺻﻴﻪ‪.‬‬

‫‪133‬‬

‫ﺷﻜﻞ )‪ : (٢٩ – ٤‬ﻣﻌﺎوﻗﻪ اﻻدﺧﺎل ﻟﺨﻂ ﺷﺮﻳﻄﻰ دﻗﻴﻖ ﻣﻮﺻﻞ ﺑﻨﻬﺎﻳﺘﻪ ﺧﻂ ﺷﺮﻳﻄﻰ ﻧﺼﻒ ﻗﻄﺮى ‪.‬‬

‫‪circular spiral inductor‬‬

‫‪rectangular spiral inductor‬‬

‫‪octagonal spiral inductor‬‬

‫‪meander line‬‬

‫ﺷﻜﻞ )‪ : (٣٠ – ٤‬أﺷﻜﺎل ﻣﺨﺘﻠﻔﻪ ﻟﻠﻤﻠﻔﺎت اﻟﻤﻄﺒﻮﻋﻪ‪.‬‬

‫اﻟﻤ ﺮﺟﻊ )‪ (6‬ﻳﺤ ﺘﻮى ﻋﻠ ﻰ ﻣﻌﺎدﻻت ﺣﺴﺎب ﻣﻌﺎوﻗﻪ اﻻدﺧﺎل ﻟﻠﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﻨﺼﻒ ﻗﻄﺮى و ﻣﻌﻠﻮﻣﺎت ﻋﻦ ﻃﺮق‬
‫اﺳﺘﻨﺘﺎﺟﻬﺎ و ﻣﻌﻠﻮﻣﺎت ﻋﻦ اﺳﺘﺨﺪام اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﻨﺼﻒ ﻗﻄﺮى ﻓﻰ دواﺋﺮ اﻟﺘﻐﺬﻳﻪ‪.‬‬

‫‪134‬‬

‫ﺗ ﺘﻌﺪد أﻧ ﻮاع اﻟﻤﻠﻔﺎت اﻟﻤﻄﺒﻮﻋﻪ ﻓﻰ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ أو )‪ (spiral inductors‬ﻓﻤﻨﻬﺎ اﻟﻤﺮﺑﻊ اﻟﺸﻜﻞ و ﻣﻨﻬﺎ اﻟﻤﺪور‬
‫و ﻣﻨﻬﺎ اﻟﺴﺪاﺳﻰ و اﻟﺜﻤﺎﻧﻰ و ﻓﻰ ﺷﻜﻞ )‪ (٣٠ – ٤‬ﺛﻼث أﺷﻜﺎل ﻣﺨﺘﻠﻔﻪ ﻟﻪ‪.‬‬
‫و ﺗﻨﻔ ﻴﺬ اﻟﻤﻠ ﻒ ﻣﻤﻜ ﻦ أن ﻳ ﺘﻢ أﻳﻀ ﺎ ﺑﺨ ﻂ ﺷ ﺮﻳﻄﻰ دﻗ ﻴﻖ ذو ﻋ ﺮض ﺻ ﻐﻴﺮ )أى ذو ﻣﻌﺎوﻗ ﻪ ﻣﻤﻴ ﺰﻩ ﻋﺎﻟﻴﺔ اﻟﻘﻴﻤﻪ( و‬
‫ﻣﻤﻜﻦ أن ﻳﺘﻢ ﺗﻨﻔﻴﺬ اﻟﻤﻠﻒ ﺑﺨﻂ ﻣﺘﻌﺮج ﻣﻦ ﻧﻮع )‪ (meander line‬آﺎﻟﻤﺒﻴﻦ ﻓﻰ أﺳﻔﻞ اﻟﻴﺴﺎر ﻣﻦ ﺷﻜﻞ )‪.(٣٠ – ٤‬‬
‫اﻟﻄ ﺮف اﻟﺨﺎرﺟ ﻰ ﻟﻠﻤﻠ ﻒ اﻟﻤﻄ ﺒﻮع )‪ (spiral inductor‬ﻳ ﺘﻢ ﺗﻮﺻ ﻴﻠﻪ ﻣﺒﺎﺷ ﺮة أﻣ ﺎ اﻟﻄ ﺮف اﻟﺪاﺧﻠﻰ ﻣﻦ اﻟﻤﻠﻒ‬
‫اﻟﻤﻄ ﺒﻮع ﻓﻴ ﺘﻢ ﺗﻮﺻ ﻴﻠﻪ ﺑﺴ ﻠﻚ أو ﺑﺸ ﺮﻳﺤﺔ ﻣﻮﺻ ﻞ )‪ (air bridge‬ﺗﻌﺒ ﺮ ﻟﻔ ﺎت اﻟﻤﻠ ﻒ ﻓ ﻰ اﻟﻬ ﻮاء ﺛ ﻢ ﺗ ﻨﺨﻔﺾ اﻟﻰ‬
‫ﻣﺴ ﺘﻮى ﺷ ﺮﻳﺤﺔ اﻟﻌ ﺎزل ﻟﺘﺘﺼ ﻞ ﺑﺎﻟﻤﻜ ﻮن أو اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﻤ ﺮاد اﻟﺘﻮﺻ ﻴﻞ ﺑ ﻪ آﻤ ﺎ ه ﻮ ﻣﻮﺿ ﺢ ﻓ ﻰ ﺷ ﻜﻞ‬
‫)‪.(٣١ – ٤‬‬
‫ﻣﻌﺎدﻻت ﺣﺴﺎب ﻗﻴﻤﺔ اﻟﻤﻠﻒ اﻟﻤﻄﺒﻮع ﺑﺄﻧﻮاﻋﻪ اﻟﻤﺨﺘﻠﻔﻪ ﺗﺘﻮﻓﺮ ﻓﻰ ﻣﺮاﺟﻊ ﻋﺪﻳﺪﻩ ﻣﺜﻞ اﻟﻤﺮاﺟﻊ )‪. (9,15, 17‬‬

‫ﺷﻜﻞ )‪ : (٣١ – ٤‬رﺳﻢ ﺛﻼﺛﻰ اﻷﺑﻌﺎد ﻟﻤﻠﻒ ﻣﺮﺑﻊ اﻟﺸﻜﻞ )‪.(square shape spiral inductor‬‬

‫و ﻋﻠ ﻰ ﺳ ﺒﻴﻞ اﻟﻤ ﺜﺎل ﻳ ﺘﻢ ﺣﺴ ﺎب اﻟﻘ ﻴﻤﺔ اﻟﺘﻘ ﺮﻳﺒﻴﻪ ﻟﻠﻤﻠ ﻒ اﻟﻤ ﺮﺑﻊ اﻟﺸ ﻜﻞ )‪(square shape spiral inductor‬‬
‫آﺎﻟﻤﺒﻴﻦ ﻓﻰ ﺷﻜﻞ )‪ (٣١ – ٤‬ﺗﻌﻄﻰ ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫)‪(4.45‬‬

‫‪L ≈ K N1.67 A‬‬

‫]‪[nH‬‬
‫‪2‬‬

‫‪2‬‬

‫ﺣﻴﺚ )‪ (A‬هﻰ ﻣﺴﺎﺣﺔ اﻟﻤﻠﻒ اﻟﻤﺮﺑﻊ اﻟﺸﻜﻞ ﺳﻮاء ﺑﺎﻟﻤﻴﻠﻠﻴﻤﺘﺮ اﻟﻤﺮﺑﻊ ) ‪ (mm‬أو اﻟﻤﻴﻠﻠﻴﺒﻮﺻﻪ اﻟﻤﺮﺑﻊ ) ‪. (mil‬‬
‫و )‪ (K=0.85‬ﻓﻰ ﺣﺎﻟﺔ اﻟﺘﻌﻮﻳﺾ ﺑﺎﻟﻤﺴﺎﺣﻪ ﺑﻮﺣﺪة ال )‪(mm2‬‬
‫أو )‪ (K=0.0216‬ﻓﻰ ﺣﺎﻟﺔ اﻟﺘﻌﻮﻳﺾ ﺑﺎﻟﻤﺴﺎﺣﻪ ﺑﻮﺣﺪة ال )‪. (mil2‬‬
‫و ﺣﻴﺚ )‪ (N‬هﻮ ﻋﺪد ﻟﻔﺎت اﻟﻤﻠﻒ )‪. (number of turns‬‬

‫‪135‬‬

‫ﺑﺎﻟﻨﺴ ﺒﻪ ﻟﻠﻤﻜ ﺜﻔﺎت اﻟﻤﻄ ﺒﻮﻋﻪ ﻓ ﻰ اﻟﺪواﺋ ﺮ اﻟﺸ ﺮﻳﻄﻴﻪ ﻣﺜﻞ اﻟﻤﻜﺜﻒ ﻣﻦ ﻧﻮع )‪ (interdigitated capacitor‬ﻓﻴﻤﻜﻦ‬
‫اﻟ ﺮﺟﻮع اﻟ ﻰ ﻋ ﺪد ﻣ ﻦ اﻟﻤ ﺮاﺟﻊ ﻣ ﺜﻞ )‪ (9,15‬ﻟﻤﻌ ﺮﻓﺔ ﻣﻌﻠ ﻮﻣﺎت ﻋ ﻦ اﺳ ﺘﺨﺪاﻣﻬﺎ و ﻃ ﺮق ﺣﺴ ﺎب ﻗﻴﻤﺘﻬﺎ و اﻟﺪواﺋﺮ‬
‫اﻟﻤﻜﺎﻓﺌﻪ ﻟﻬﺎ‪.‬‬
‫و ﻣﻌﺎدﻻت ﺣﺴﺎب ﻗﻴﻢ هﺬﻩ اﻟﻤﻜﺜﻔﺎت ﻣﺘﻌﺪدﻩ و ﺗﺨﺘﻠﻒ ﻓﻰ ﻃﺮق اﺛﺒﺎﺗﻬﺎ و دﻗﺘﻬﺎ ‪.‬‬
‫ﻋﻠ ﻰ ﺳ ﺒﻴﻞ اﻟﻤ ﺜﺎل ﻳ ﺘﻢ ﺣﺴ ﺎب اﻟﻘ ﻴﻤﺔ اﻟﺘﻘ ﺮﻳﺒﻴﻪ ﻟﻠﻤﻜ ﺜﻒ ﻣ ﻦ ﻧ ﻮع )‪ (interdigitated capacitor‬اﻟﻤﺒﻴﻦ ﻓﻰ ﺷﻜﻞ‬
‫)‪ (٣٢ – ٤‬ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫]‪[F‬‬

‫)‪(4.46‬‬

‫⎤‪⎡ ε + 1‬‬
‫] ‪C = ⎢ r ⎥ Y 2 [(N − 3) A1 + A 2‬‬
‫⎦ ‪⎣ W‬‬

‫ﺣﻴﺚ )‪ (N‬هﻮ ﻋﺪد اﻷﺻﺎﺑﻊ )‪. (number of fingures‬‬
‫و ﺣﻴﺚ )‪ (A1 = 8.85826X10-3‬و )‪ (A2 = 9.92125X10-3‬ووﺣﺪﺗﻴﻬﻤﺎ هﻰ )‪. (pF/mm‬‬
‫و ﺣ ﻴﺚ )‪ (Y‬ه ﻮ ﻃ ﻮل اﻟ ﺘﺪاﺧﻞ ﺑ ﻴﻦ اﻷﺻ ﺎﺑﻊ )‪ (length of overlap‬و )‪ (εr‬هﻮ ﺛﺎﺑﺖ ﻋﺰل اﻟﺸﺮﻳﺤﻪ و )‪(W‬‬
‫هﻮ ﻋﺮض اﻟﻤﻜﺜﻒ‪.‬‬
‫ﻓ ﻰ ﺷ ﻜﻞ )‪ (٣٢ – ٤‬ﺗ ﻢ رﺳ ﻢ اﻟﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ ﺑﺎﻟﻠ ﻮن اﻷﺳ ﻮد ﻟﻠﺘﻤﻴﻴ ﺰ ﺑﻴ ﻨﻬﺎ و ﺑ ﻴﻦ اﻟﻤﻜ ﺜﻒ اﻟﻤﺮﺳ ﻮم ﺑﺎﻟﻠ ﻮن‬
‫اﻟﺮﻣﺎدى‪.‬‬

‫ﺷﻜﻞ )‪ : (٣٢ – ٤‬ﻣﻜﺜﻒ ﻣﻦ ﻧﻮع )‪. (interdigitated capacitor‬‬

‫هﻨﺎك ﻣﻜﺜﻔﺎت أﺧﺮى ﻏﻴﺮ ﺷﺮﻳﻄﻴﻪ و هﻰ اﻟﻤﻜﺜﻔﺎت اﻟﺘﻰ ﻳﺘﻢ ﻟﺤﺎﻣﻬﺎ أو ﺗﺼﻨﻴﻌﻬﺎ ﻋﻠﻰ اﻟﺪاﺋﺮﻩ اﻟﺸﺮﻳﻄﻴﻪ ﻣﺜﻞ اﻟﻤﻜﺜﻒ‬
‫ذو اﻟﻄ ﺒﻘﻪ اﻟﻌﻠ ﻮﻳﻪ )‪ (MIM capacitor‬و اﻟ ﺬى ﻳ ﺘﻜﻮن ﻣ ﻦ ﺷ ﺮﻳﺤﺔ ﻋ ﺎزل ﻣﻮﺟﻮدﻩ ﺑﻴﻦ ﺷﺮﻳﺤﺘﻰ ﻣﻮﺻﻞ و اﺣﺪﻩ‬
‫ﻋﻠ ﻮﻳﻪ و اﻟﺜﺎﻧ ﻴﻪ اﻟﺴ ﻔﻠﻴﻪ ﻋ ﺒﺎرﻩ ﻋ ﻦ اﻣ ﺘﺪاد ﻟﻄ ﺒﻘﺔ اﻟﻤﻮﺻ ﻞ اﻟﺨﺎﺻ ﻪ ﺑﺎﻟﺸ ﺮﻳﺤﻪ اﻟﺸ ﺮﻳﻄﻴﻪ آﻤ ﺎ ه ﻮ ﻣﺒﻴﻦ ﻓﻰ اﻟﺠﺰء‬
‫اﻷﻳﺴﺮ ﻣﻦ ﺷﻜﻞ )‪ ، (٣٣ – ٤‬و ﻣﻦ هﻨﺎ ﻳﺘﻀﺢ اﺳﻢ اﻟﻤﻜﺜﻒ )ﻣﻮﺻﻞ ‪ -‬ﻋﺎزل ‪ -‬ﻣﻮﺻﻞ( أو )‪Metal-Insulator-‬‬
‫‪.(Metal or MIM‬‬
‫و ﻓ ﻰ اﻟﺠ ﺰء اﻷﻳﻤﻦ ﻣﻦ ﺷﻜﻞ )‪ (٣٣ – ٤‬ﻳﻮﺟﺪ ﻧﻮع ﺁﺧﺮ ﻣﻦ اﻟﻤﻜﺜﻔﺎت ﻳﺘﻢ ﻟﺤﺎﻣﻪ ﻣﻦ ﻧﻮع ) ‪Vertical-parallel‬‬
‫‪.(plate chip capacitor‬‬

‫‪136‬‬

‫‪Vertical-parallel plate chip capacitor‬‬
‫‪MIM capacitor‬‬

‫ﺷﻜﻞ )‪ : (٣٣ – ٤‬ﻧﻮﻋﻴﻦ ﻣﻦ اﻟﻤﻜﺜﻔﺎت اﻟﺘﻰ ﺗﺴﺘﺨﺪم ﻓﻰ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ‪.‬‬

‫ﺷﻜﻞ )‪ : (٣٤ – ٤‬رﺳﻢ ﺛﻼﺛﻰ اﻷﺑﻌﺎد ﻟﻤﻘﺎوﻣﻪ ﻣﺘﺮﺳﺒﻪ ﻣﺘﺼﻠﻪ ﺑﺨﻄﻴﻦ ﺷﺮﻳﻄﻴﻴﻦ ‪.‬‬

‫هﻨﺎك ﻣﻜﻮﻧﺎت أﺧﺮى ﻏﻴﺮ ﺷﺮﻳﻄﻴﻪ و ﻻ ﻳﺘﻢ ﻟﺤﺎﻣﻬﺎ و ﻟﻜﻦ ﺗﻮﺻﻒ ﺑﺄﻧﻬﺎ )‪ (deposited‬أو ﻣﺘﺮﺳﺒﻪ أو ﻳﺘﻢ ﺗﺮﺳﻴﺒﻬﺎ‬
‫ﻋﻠﻰ اﻟﺸﺮﻳﺤﻪ ﻣﺜﻞ اﻟﻤﻘﺎوﻣﻪ اﻟﻤﺘﺮﺳﺒﻪ )‪ (deposited resistance‬اﻟﻤﺒﻴﻨﻪ ﻓﻰ ﺷﻜﻞ )‪. (٣٤ – ٤‬‬
‫ﻳ ﺘﻢ ﺗﻨﻔ ﻴﺬ اﻟﻤﻘﺎوﻣ ﻪ اﻟﻤﺘﺮﺳﺒﻪ ﺑﺘﺮﺳﻴﺐ ﺷﺮﻳﺤﻪ رﻗﻴﻘﻪ )‪ (thin film‬ﻓﻮق ﻃﺒﻘﺔ اﻟﻌﺎزل ﺑﺎﻟﺸﺮﻳﺤﻪ اﻟﺸﺮﻳﻄﻴﻪ ﻣﻦ ﻣﺎدﻩ‬
‫ﺗﺤﻘ ﻖ ﻓﻘ ﺪ ﻟﻠﻘ ﺪرﻩ )‪ (lossy material‬ﻣ ﺜﻞ اﻟﻨﻴﻜﺮوم )‪ (nichrome‬و ﻧﺘﺮات اﻟﺘﺎﻧﺘﺎﻟﻴﻮم )‪ (tantalum nitride‬و‬
‫ﻏﻴﺮهﺎ‪.‬‬
‫و ﻳﺘﻢ ﺣﺴﺎب ﻗﻴﻤﺔ اﻟﻤﻘﺎوﻣﻪ اﻟﻤﺘﺮﺳﺒﻪ )‪ (R‬اﻟﻤﺒﻴﻨﻪ ﻓﻰ ﺷﻜﻞ )‪ (٣٤ – ٤‬ﻣﻦ اﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫‪137‬‬

‫)‪(4.47‬‬

‫]‪[Ω‬‬

‫⎞‬
‫⎞‪⎛L‬‬
‫⎟ ⎜‪⎟=ρ‬‬
‫⎠‬
‫⎠‪⎝ A‬‬

‫‪⎞ ⎛ 1 ⎞⎛ L‬‬
‫⎜=⎟‬
‫⎜⎟‬
‫‪⎠ ⎝ σ t ⎠⎝ W‬‬

‫‪⎞ ⎛ ρ ⎞⎛ L‬‬
‫⎜⎟ ⎜ = ⎟‬
‫‪⎠ ⎝ t ⎠⎝ W‬‬

‫‪⎛L‬‬
‫⎜‪R = Rs‬‬
‫‪⎝W‬‬

‫⎞ ‪ρ 1‬‬
‫⎛‬
‫= = ‪ ⎜ R s‬هﻰ )‪ (sheet resistance‬ﻣﻘﺎوﻣﺔ اﻟﺸﺮﻳﺤﻪ اﻟﺮﻗﻴﻘﻪ )‪. (Ω/square‬‬
‫ﺣﻴﺚ ⎟‬
‫⎠‪t σ t‬‬
‫⎝‬
‫و )‪ (material bulk resistivity ρ‬هﻰ ﻣﻘﺎوﻣﺔ اﻟﻤﺎدة اﻟﻤﺼﻨﻮع ﻣﻨﻬﺎ اﻟﺸﺮﻳﺤﻪ اﻟﺮﻗﻴﻘﻪ )‪.(Ω m‬‬
‫و )‪ (material bulk conductivity σ‬هﻰ ﻣﻌﺎﻣﻞ ﺗﻮﺻﻴﻞ اﻟﻤﺎدة اﻟﻤﺼﻨﻮع ﻣﻨﻬﺎ اﻟﺸﺮﻳﺤﻪ اﻟﺮﻗﻴﻘﻪ )‪.(S / m‬‬
‫و ﺣ ﻴﺚ ﺳ ﻤﻚ اﻟﻤﻘﺎوﻣ ﻪ اﻟﻤﺘﺮﺳ ﺒﻪ ﻳﺴ ﺎوى )‪ (t‬و ﻃ ﻮﻟﻬﺎ ﻳﺴ ﺎوى )‪ (L‬و ﻋﺮﺿ ﻬﺎ ﻳﺴ ﺎوى )‪ (W‬و ﻣﺴ ﺎﺣﺔ ﻣﻘﻄ ﻊ‬
‫اﻟﻤﻘﺎوﻣﻪ اﻟﻤﺘﺮﺳﺒﻪ ﺗﺴﺎوى )‪.(A‬‬
‫ه ﻨﺎك اﻟﻌﺪﻳ ﺪ ﻣ ﻦ اﻟﻤ ﺮاﺟﻊ ﻣ ﺜﻞ )‪ (9‬ﻳﺤ ﺘﻮى ﻋﻠ ﻰ ﻣﻌﻠ ﻮﻣﺎت و ﻃ ﺮق اﻟﺤﺴﺎب و اﻟﺘﺤﻠﻴﻞ و ﻣﻌﺎدﻻت دﻗﻴﻘﻪ ﻟﻨﻤﺎذج‬
‫اﻟﻤﻜ ﻮﻧﺎت اﻟﻌﻴﻨ ﻴﻪ )‪ (lumped components‬اﻟﺸ ﺮﻳﻄﻴﻪ و اﻟﺘ ﻰ ﻳ ﺘﻢ ﻟﺤﺎﻣﻬ ﺎ ﺳ ﻮاء اﻟﻤﺬآ ﻮرﻩ ﻓ ﻰ ه ﺬا اﻟﻤﻘﻄ ﻊ أو‬
‫ﻏﻴﺮهﺎ‪.‬‬
‫ﺟﻤ ﻴﻊ اﻟﻤﻜ ﻮﻧﺎت اﻟﻤﺬآ ﻮرﻩ أﻋ ﻼﻩ و ﺟﻤ ﻴﻊ اﻟﻤﻜ ﻮﻧﺎت اﻟﻌﻴﻨ ﻴﻪ )‪ (lumped components‬ﻓ ﻰ ﺣﻴﺰ اﻟﻤﻴﻜﺮووﻳﻒ‬
‫ﺗﺼ ﺒﺢ اﻟﺪاﺋ ﺮﻩ اﻟﻤﻜﺎﻓ ﺌﻪ ﻟﻬ ﺎ ﻣﻌﻘ ﺪﻩ ) ﻻ ﺗﻜﺎﻓ ﺊ ﻣﺠ ﺮد ﻣﻠ ﻒ أو ﻣﻜ ﺜﻒ أو ﻣﻘﺎوﻣ ﻪ ( و ﻋ ﻨﺪﻣﺎ ﻳ ﺘﻌﺬر اﻟﺤﺼ ﻮل ﻋﻠ ﻰ‬
‫ﻧﻤ ﻮذج أو داﺋ ﺮﻩ ﻣﻜﺎﻓ ﺌﻪ دﻗ ﻴﻘﻪ ﻟﻬ ﺎ ﻳﻔﻀ ﻞ اﺳ ﺘﺨﺪام ﺑﺎراﻣﺘ ﺮات إس )‪ (S parameters‬ﻟﻠﺘﻌﺒﻴ ﺮ ﻋ ﻨﻬﺎ أو ﻃ ﺮق‬
‫اﻟﺘﺤﻠﻴﻞ اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴﻴﻪ‪.‬‬
‫ﻣ ﻦ اﻟﺴ ﻬﻞ اﻧ ﺘﺎج اﻟ ﻨﻤﺎذج ﻋ ﻦ ﻃﺮﻳﻖ ﻗﻴﺎس ﺑﺎراﻣﺘﺮات إس )‪ (S parameters‬ﻟﻠﻤﻜﻮﻧﺎت ﺛﻢ اﺳﺘﺨﺪام ﺑﺮاﻣﺞ ﺗﺤﻠﻴﻞ‬
‫دواﺋ ﺮ اﻟﻤﻴﻜ ﺮووﻳﻒ ﻻﻧ ﺘﺎج ﻧﻤ ﻮذج ﻟ ﻪ ﻧﻔ ﺲ ﺑﺎراﻣﺘﺮات إس اﻟﻤﻘﺎﺳﻪ أى ﻋﻤﻞ )‪ (model fitting‬ﺑﺎﺳﺘﺨﺪام ﺣﺴﺎب‬
‫اﻟﺤ ﻞ اﻷﻣﺜﻞ )‪ .(optimization‬و ﻳﺘﻄﻠﺐ هﺬا اﻟﻌﻤﻞ ﺧﺒﺮﻩ ﻓﻰ اﻟﻘﻴﺎس ﺑﺎﺳﺘﺨﺪام ﺟﻬﺎز )‪ (network analyzer‬و‬
‫اﺳﺘﺨﺪام ﺑﺮﻧﺎﻣﺞ ﺣﺪﻳﺚ ﻟﺘﺤﻠﻴﻞ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ‪.‬‬
‫ﻟﻜ ﻦ ﻋﻤ ﻮﻣﺎ ﺗﺤ ﺘﻮى ﻣﻌﻈ ﻢ ﺑ ﺮاﻣﺞ ﺗﺤﻠ ﻴﻞ دواﺋ ﺮ اﻟﻤﻴﻜ ﺮووﻳﻒ اﻟﺤﺪﻳ ﺜﻪ ﻋﻠﻰ ﻣﻜﺘﺒﺎت ﻣﺒﻨﻴﻪ )‪(built-in libraries‬‬
‫داﺧ ﻞ اﻟﺒ ﺮاﻣﺞ ﺑﻬ ﺎ ﻧﻤ ﺎذج دﻗ ﻴﻘﻪ ﻟﻠﻤﻜ ﻮﻧﺎت اﻟﻤﻨ ﺘﺠﻪ ﺗﺠﺎرﻳ ﺎ ﺑﺎﻻﺿ ﺎﻓﻪ اﻟ ﻰ اﻟﻌﺪﻳ ﺪ ﻣ ﻦ اﻟﻤﻜﻮﻧﺎت اﻟﺸﺮﻳﻄﻴﻪ و ﻳﻤﻜﻦ‬
‫اﻻﻋﺘﻤﺎد ﻋﻠﻴﻬﺎ ﻓﻰ ﺗﺤﻠﻴﻞ اﻟﺪواﺋﺮ و اﻟﺤﺼﻮل ﻋﻠﻰ ﻧﺘﺎﺋﺞ دﻗﻴﻘﻪ‪.‬‬
‫وه ﻨﺎك ﺷ ﺮآﺎت ﻣﺘﺨﺼﺼ ﻪ ﻓﻰ اﻧﺘﺎج ﻧﻤﺎذج ﻟﻠﻤﻜﻮﻧﺎت اﻟﻤﻨﺘﺠﻪ ﺗﺠﺎرﻳﺎ و ﻏﻴﺮهﺎ ﻣﺜﻞ ﺷﺮآﺔ )‪ (Modelithics‬اﻟﺘﻰ‬
‫ﺗﻘ ﻮم ﺑﺒ ﻴﻊ ﻧﻤ ﺎذج ﻟﻠﻤﻜ ﻮﻧﺎت اﻟﻤﺨ ﺘﻠﻔﻪ و ﻣﻜﺘﺒﺎت ﻣﺒﻨﻴﻪ )‪ (built-in libraries‬ﻟﻨﻤﺎذج اﻟﻤﻜﻮﻧﺎت ﻣﺘﻮاﻓﻘﻪ ﻣﻊ ﺑﻌﺾ‬
‫ﺑ ﺮاﻣﺞ ﺗﺤﻠ ﻴﻞ دواﺋ ﺮ اﻟﻤﻴﻜ ﺮووﻳﻒ اﻟﺤﺪﻳ ﺜﻪ و ﻣ ﺘﻮاﻓﻘﻪ ﻣ ﻊ ﺑ ﺮﻧﺎﻣﺞ )‪ (SPICE‬اﻟﻤﺴ ﺘﺨﺪم ﻓ ﻰ ﺗﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ و‬
‫اﻟﻤﻌﺮوف ﻟﺪى اﻟﻤﺘﺨﺼﺼﻴﻦ ﻓﻰ اﻟﺪواﺋﺮ اﻟﻜﻬﺮﺑﻴﻪ‪ .‬أﻧﻈﺮ ﻣﺮﺟﻊ اﻻﻧﺘﺮﻧﺖ )‪.(i1‬‬

‫‪138‬‬

‫)ﻤﻘﻁﻊ ‪ (٤-٤‬ﺍﻟﺨﻁﻴﻥ ﺍﻟﺸﺭﻴﻁﻴﻴﻥ ﺍﻟﻤﺯﺩﻭﺠﻴﻥ ‪:‬‬

‫اﻟﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﻤ ﺰدوﺟﻪ أو اﻟﻤﻘ ﺮوﻧﻪ )‪ (microstrip coupled lines‬أو اﻟﻤ ﺰدوﺟﻪ ﻣ ﻦ اﻟﺤﺎﻓ ﻪ )‪edge-‬‬
‫‪ (coupled microstrip lines‬ﺗﺴ ﺘﺨﺪم ﻓ ﻰ اﻟﻌﺪﻳ ﺪ ﻣ ﻦ اﻟﺪواﺋ ﺮ اﻟﺸ ﺮﻳﻄﻴﻪ ﻣ ﺜﻞ اﻟﻔﻼﺗ ﺮ و دواﺋ ﺮ اﻟﺘﻮﻓ ﻴﻖ و ه ﻰ‬
‫ﺗﻜ ّﻮن اﻟﻤ ﺰدوج اﻻﺗﺠﺎه ﻰ )‪ (directional coupler‬اﻟ ﺬى ﻳﺴ ﺘﺨﺪم آﺠ ﺰء ﻣ ﻦ دواﺋ ﺮ ﻋﺪﻳ ﺪﻩ ﻣ ﺜﻞ اﻟﺨﺎﻟﻄ ﺎت‬
‫اﻟﻤﺘﻮازﻧﻪ )‪ (balanced mixers‬و اﻟﻤﻜﺒﺮات اﻟﻤﺘﻮازﻧﻪ )‪ (balanced amplifiers‬و ﻣﻐﻴﺮات اﻟﻄﻮر ) ‪phase‬‬
‫‪ (shifters‬و اﻟﻤﻮه ﻨﺎت )‪ (attenuators‬و اﻟﻤﻌ ﺪﻻت )‪ (modulators‬و‬

‫ﻣﻤﻴﺰات اﻟﺘﺮدد‬

‫) ‪frequency‬‬

‫‪ (discriminators‬و ﻏﻴﺮهﺎ‪.‬‬
‫ﻓ ﻰ ﺸﻜل )‪ (٣ - ٤‬ﺗ ﻢ ﻋ ﺮض ﻣﺜﺎﻟ ﻴﻦ ﻟﺪاﺋ ﺮﺗﻴﻦ ﺷﺮﻳﻄﻴﺘﻴﻦ ﻣﻦ ﻧﻮع اﻟﻔﻠﺘﺮ )‪ ، (bandpass filter‬و ﺗﺤﺘﻮى هﺎﺗﻴﻦ‬
‫اﻟﺪاﺋ ﺮﺗﻴﻦ ﻋﻠ ﻰ ﺧﻄ ﻮط ﺷ ﺮﻳﻄﻴﻪ ﻣ ﺰدوﺟﻪ ﺣ ﻴﺚ ﻳﺤ ﺘﻮى اﻟﻔﻠﺘﺮ اﻟﻤﻮﺿﺢ ﺟﻬﺔ اﻟﻴﻤﻴﻦ ﻋﻠﻰ ﺧﻄﻮط ﺷﺮﻳﻄﻴﻪ ﻣﺘﻌﺪدﻩ‬
‫ﻣ ﺰدوﺟﻪ )‪ . (multiple microstrip coupled lines‬ﺑﻴ ﻨﻤﺎ اﻟﻔﻠﺘ ﺮ اﻟﻤﻮﺿ ﺢ ﺟﻬ ﺔ اﻟﻴﺴ ﺎر ﻳ ﻮﺟﺪ ﺑ ﻪ ﺧﻄ ﻴﻦ‬
‫ﺷﺮﻳﻄﻴﻴﻦ ﻣﺰدوﺟﻴﻦ ﻣﺸﺎر اﻟﻴﻬﻤﺎ ﺑﺎﻟﺴﻬﻢ )‪ (microstrip coupled lines‬ﻣﺘﻜﺮرﻳﻦ ﺛﻼث ﻣﺮات ﺑﺎﻟﺪاﺋﺮﻩ‪.‬‬
‫ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (٣٥ – ٤‬ﻣﻨﻈ ﺮ ﻓﻮﻗ ﻰ و رﺳ ﻢ ﺛﻼﺛ ﻰ اﻷﺑﻌﺎد ﻟﺨﻄﻴﻦ ﺷﺮﻳﻄﻴﻴﻦ ﻣﺰدوﺟﻴﻦ ﻣﺘﻤﺎﺛﻠﻴﻦ ) ‪symmetrical‬‬
‫‪ (microstrip coupled lines‬ﻳﺘﻤﻴﺰان ﺑﺄن ﻟﻜﻞ ﻣﻨﻬﻤﺎ ﻋﺮض )‪ (W‬و ﻃﻮل )‪ (L‬و اﻟﻤﺴﺎﻓﻪ ﺑﻴﻦ اﻟﺨﻄﻴﻦ )‪.(S‬‬
‫و ﻳﺒﻴﻦ ﺷﻜﻞ )‪ (٣٦ – ٤‬ﻣﻘﻄﻊ ﻓﻰ ﻧﻔﺲ اﻟﺨﻄﻴﻦ اﻟﺸﺮﻳﻄﻴﻴﻦ اﻟﻤﺰدوﺟﻴﻦ اﻟﻤﺘﻤﺎﺛﻠﻴﻦ‪.‬‬
‫ﻋﻠ ﻰ أﺳ ﺎس اﻷﺑﻌ ﺎد اﻟﻤﺒﻴ ﻨﻪ ﻓﻰ اﻟﺸﻜﻠﻴﻦ )‪ (٣٥ – ٤‬و )‪ (٣٦ – ٤‬ﻳﺘﻢ ﺗﺤﻠﻴﻞ اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﻤﺰدوﺟﻪ ﻋﻠﻤﺎ ﺑﺄن‬
‫ﻃ ﺮق اﻟﺘﺤﻠ ﻴﻞ ﻣ ﺘﻌﺪدﻩ ﻟﻬ ﺬا اﻟ ﻨﻮع ﻣ ﻦ اﻟﻤﻜ ﻮﻧﺎت ﻟﺤﺴ ﺎب اﻧ ﺘﻘﺎل اﻟﻤ ﻮﺟﻪ ﻣ ﻦ ﻃ ﺮف ﻵﺧ ﺮ و اﻧﺘﺸ ﺎر اﻟﻤ ﻮﺟﻪ ﻓ ﻰ‬
‫اﻟﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﻤ ﺰدوﺟﻪ ﻻﻧ ﺘﺎج ﻣﻌ ﺎدﻻت اﻟﺘﺼ ﻤﻴﻢ و اﻟﺘ ﻰ ﺗﺴ ﺘﺨﺪم ﺑﻌ ﺪ ذﻟ ﻚ ﻓ ﻰ ﺣﺴ ﺎب أﺑﻌ ﺎد اﻟﺨﻄ ﻴﻦ‬
‫اﻟﻤﺰدوﺟﻴﻦ ‪.‬‬

‫ﺷﻜﻞ )‪ : (٣٥ – ٤‬ﺧﻄﻴﻦ ﺷﺮﻳﻄﻴﻴﻦ ﻣﺰدوﺟﻴﻦ ﻣﺘﻤﺎﺛﻠﻴﻦ‪.‬‬

‫‪139‬‬

‫ﺷﻜﻞ )‪ : (٣٦ – ٤‬ﻣﻘﻄﻊ ﻓﻰ ﺧﻄﻴﻦ ﺷﺮﻳﻄﻴﻴﻦ ﻣﺰدوﺟﻴﻦ ﻣﺘﻤﺎﺛﻠﻴﻦ‪.‬‬

‫و ﻣ ﻦ ه ﺬﻩ اﻟﻄ ﺮق ﻃ ﺮﻳﻘﺔ اﻟﺘﺤﻠ ﻴﻞ ﺑﺎﺳ ﺘﺨﺪام ﺗ ﺮﺗﻴﺒﺎت اﻟﻤﺠ ﺎل اﻟ ﺰوﺟﻴﻪ و اﻟﻔ ﺮدﻳﻪ ) ‪Even and Odd Mode‬‬
‫‪ (analysis‬و اﻟﺘ ﻰ ﺗﻌ ﺘﻤﺪ ﻋﻠ ﻰ اﻋﺘ ﺒﺎر اﻟ ﻨﻬﺎﻳﺎت اﻟﻘﺼ ﻮى ﻟﻠﻘﻄﺒﻴﻪ )‪ (the extremes of polarization‬ﺑﺎﻟﻨﺴﺒﻪ‬
‫ﻟﻠﻔﻮﻟﺖ )اﻟﺠﻬﺪ( اﻟﻤﻨﺘﺸﺮ ﻓﻰ اﻟﺨﻄﻴﻦ اﻟﻤﺰدوﺟﻴﻦ‪.‬‬
‫ﺗ ﺮﺗﻴﺐ اﻟﻤﺠ ﺎل اﻟﺰوﺟ ﻰ )‪ (The even mode‬ﻳﺘﻌ ﺮف ﺑﺤﺎﻟ ﺔ اﻟﻤﺠ ﺎل اﻟ ﻨﺎﺗﺞ ﻋ ﻨﺪﻣﺎ ﻳﻜ ﻮن اﻟﻔ ﻮﻟﺖ ﻋﻠ ﻰ آ ﻞ ﺧ ﻂ‬
‫ﺷﺮﻳﻄﻰ ﻣﺘﻤﺎﺛﻞ ﻓﻰ اﻟﻘﻄﺒﻴﻪ )اﻻﺛﻨﺎن ﺳﺎﻟﺒﺎن أو اﻻﺛﻨﺎن ﻣﻮﺟﺒﺎن(‪.‬‬
‫ﺑﻴ ﻨﻤﺎ ﺗ ﺮﺗﻴﺐ اﻟﻤﺠ ﺎل اﻟﻔ ﺮدى )‪ (The odd mode‬ﻳﺘﻌ ﺮف ﺑﺤﺎﻟ ﺔ اﻟﻤﺠﺎل اﻟﻨﺎﺗﺞ ﻋﻨﺪﻣﺎ ﻳﻜﻮن اﻟﻔﻮﻟﺖ ﻋﻠﻰ آﻞ ﺧﻂ‬
‫ﺷ ﺮﻳﻄﻰ ﻣﺨ ﺘﻠﻒ ﻓ ﻰ اﻟﻘﻄﺒ ﻴﻪ )أﺣﺪهﻤﺎ ﺳﺎﻟﺐ و اﻵﺧﺮ ﻣﻮﺟﺐ( آﻤﺎ هﻮ ﻣﺮﺳﻮم ﻓﻰ ﺷﻜﻞ )‪ (٣٧ – ٤‬و اﻟﺬى ﻳﻮﺿﺢ‬
‫أﻳﻀﺎ اﻟﻤﻜﺜﻔﺎت اﻟﺘﻰ ﺗﻜ ّﻮن اﻟﺪاﺋﺮﻩ اﻟﻤﻜﺎﻓﺌﻪ ﻓﻰ ﺣﺎﻟﺘﻰ ﺗﺮﺗﻴﺐ اﻟﻤﺠﺎل اﻟﺰوﺟﻰ و اﻟﻔﺮدى ‪.‬‬
‫و ﺑﺎﻟﺘﺎﻟ ﻰ ﺑ ﺪﻻ ﻣ ﻦ وﺟ ﻮد ﻣﻌﺎوﻗ ﻪ ﻣﻤﻴ ﺰﻩ )‪ (characteristic impedance‬واﺣ ﺪﻩ و ﺳ ﺮﻋﺔ ﻃ ﻮر ) ‪phase‬‬
‫‪ (velocity‬واﺣ ﺪﻩ ﻟﻠﻤ ﻮﺟﻪ و ﺳﻤﺎﺣﻴﻪ ﻓﻌﺎﻟﻪ )‪ (εeff effective microstrip permittivity‬واﺣﺪﻩ أﺻﺒﺢ هﻨﺎك‬
‫ﻗﻴﻤﺘﺎن ﻟﻜﻞ ﻣﻨﻬﻢ و آﺬﻟﻚ أﺻﺒﺢ هﻨﺎك ازدواﺟﻴﺔ ﻟﻜﻞ اﻟﻘﻴﻢ اﻷﺧﺮى اﻟﻤﻌﺘﻤﺪﻩ ﻋﻠﻴﻬﻢ ﻟﺘﻌﺮﻳﻒ اﻟﺨﻄﻴﻦ اﻟﻤﺰدوﺟﻴﻦ‪.‬‬
‫ﻓﻤ ﺜﻼ أﺻ ﺒﺤﺖ اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻤﻴ ﺰﻩ ﻟﺘﺮﺗﻴﺐ اﻟﻤﺠﺎل اﻟﺰوﺟﻰ هﻰ ) ‪even mode characteristic impedances‬‬
‫‪ (Zoe‬و اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ ﻟﺘﺮﺗﻴﺐ اﻟﻤﺠﺎل اﻟﻔﺮدى هﻰ )‪.(odd mode characteristic impedances Zoo‬‬
‫و أﺻ ﺒﺤﺖ اﻟﺴ ﻤﺎﺣﻴﻪ اﻟﻔﻌﺎﻟ ﻪ ﻟﺘ ﺮﺗﻴﺐ اﻟﻤﺠ ﺎل اﻟﺰوﺟ ﻰ ه ﻰ )‪ (εeffe‬ﺑﻴﻨﻤﺎ أﺻﺒﺤﺖ اﻟﺴﻤﺎﺣﻴﻪ اﻟﻔﻌﺎﻟﻪ ﻟﺘﺮﺗﻴﺐ اﻟﻤﺠﺎل‬
‫ﺟﻪ اﻟﺰوﺟﻰ و أﺻﺒﺢ )‪ (λgo‬هﻮ ﻃﻮل اﻟﻤﻮﺟﻪ‬
‫اﻟﻔ ﺮدى ه ﻰ )‪ (εeffo‬و ﺑﻴ ﻨﻤﺎ أﺻ ﺒﺢ )‪ (λge‬ه ﻮ ﻃ ﻮل اﻟﻤﻮﺟﻪ اﻟ ُﻤﻮ ّ‬
‫ﺟﻪ اﻟﻔﺮدى و هﻜﺬا ﻟﻜﻞ اﻟﻜﻤﻴﺎت اﻟﺘﻰ ُﺗﻌ ّﺮف اﻟﺨﻄﻴﻦ اﻟﻤﺰدوﺟﻴﻦ‪.‬‬
‫اﻟ ُﻤﻮ ّ‬
‫اﻟﻤ ﺰدوج اﻻﺗﺠﺎه ﻰ )‪ (directional coupler‬ﻣ ﺎ ه ﻮ إﻻ ﺧﻄ ﻴﻦ ﺷ ﺮﻳﻄﻴﻴﻦ ﻣ ﺰدوﺟﻴﻦ و ﻳﻤﻜ ﻦ أن ﻧﻌﺘﺒ ﺮﻩ ﻣﻜ ﻮن‬
‫ﺷﺮﻳﻄﻰ أو داﺋﺮﻩ ﺷﺮﻳﻄﻴﻪ ذات أرﺑﻊ ﻣﺨﺎرج‪.‬‬
‫اﻟﺸ ﻜﻞ )‪ (٣٧ – ٤‬ﻳﺒ ﻴﻦ اﻟﻤ ﺰدوج اﻻﺗﺠﺎه ﻰ و ه ﻮ اﻋﺎدﻩ ﻟﺮﺳﻢ اﻟﺠﺰء اﻷﻳﻤﻦ ﻣﻦ ﺷﻜﻞ )‪ (٣٥ – ٤‬ﻣﻊ وﺿﻊ أرﻗﺎم‬
‫ﻟﻠﻤﺨﺎرج‪.‬‬

‫‪140‬‬

‫اﻟﺸﻜﻞ )‪ : (٣٧ – ٤‬اﻟﻤﺰدوج اﻻﺗﺠﺎهﻰ )‪.(directional coupler‬‬

‫ﺣﺎﻟﺔ اﻟﻤﺠﺎل اﻟﺰوﺟﻰ‬

‫ﺣﺎﻟﺔ اﻟﻤﺠﺎل اﻟﻔﺮدى‬

‫ﺷﻜﻞ )‪ : (٣٨ – ٤‬ﺧﻄﻮط اﻟﻤﺠﺎﻟﻴﻦ اﻟﻜﻬﺮﺑﻰ و اﻟﻤﻐﻨﺎﻃﻴﺴﻰ و اﻟﺪاﺋﺮﻩ اﻟﻤﻜﺎﻓﺌﻪ ﻟﻠﻤﺰدوج اﻻﺗﺠﺎهﻰ‪.‬‬

‫و ﻟﺘ ﺮﻗﻴﻢ ﻣﺨ ﺎرج اﻟﻤ ﺰدوج اﻻﺗﺠﺎه ﻰ أهﻤ ﻴﻪ آﺒﻴ ﺮﻩ ﻓ ﺒﻌﺾ ﺗﻌﺎرﻳﻒ ﺑﺎراﻣﺘﺮات اس )‪ (S-parameters‬ﻟﻬﺎ ﻣﺪﻟﻮل‬
‫ﻟﺘﻌﺮﻳﻒ هﺬﻩ اﻟﺪاﺋﺮﻩ أو هﺬا اﻟﻤﻜﻮن اﻟﺸﺮﻳﻄﻰ‪.‬‬
‫اﻟﻤﺨﺮج رﻗﻢ )‪ (3‬ﻳﺴﻤﻰ اﻟﻤﺨﺮج اﻟﻤﺒﺎﺷﺮ اﻟﻤﺰدوج أو اﻟﻤﺮﺳﻞ اﻟﻴﻪ ) ‪Transmitted port or direct coupled‬‬
‫‪.(port‬‬
‫اﻟﻤﺨﺮج رﻗﻢ )‪ (4‬ﻳﺴﻤﻰ اﻟﻤﺨﺮج اﻟﻤﻌﺰول )‪.(isolated port‬‬
‫اﻟﻤﺨﺮج رﻗﻢ )‪ (2‬ﻳﺴﻤﻰ اﻟﻤﺨﺮج اﻟﻤﺒﺎﺷﺮ )‪.(direct port‬‬
‫أﻣ ﺎ ﺑﺎراﻣﺘ ﺮات اس )‪ (S-parameters‬ﻓﻠﻬ ﺎ ﺗﺴ ﻤﻴﺎت أﻳﻀﺎ ﺣﻴﺚ ﻣﻌﺎﻣﻞ اﻟﻌﺰل )‪ (Isolation Coefficient‬هﻮ‬
‫ﻣﻘ ﺪار ﻣﻌﺎﻣ ﻞ اﻻرﺳ ﺎل ﻣ ﻦ اﻟﻤﺨ ﺮج رﻗ ﻢ )‪ (1‬اﻟ ﻰ اﻟﻤﺨ ﺮج رﻗ ﻢ )‪ (4‬أى ﻣﻘ ﺪار )‪ (Magnitude of S41‬و هﻮ‬
‫ﻣﻌﺎﻣﻞ هﺎم ﻟﺘﻌﺮﻳﻒ ﺧﺼﺎﺋﺺ اﻟﻤﺰدوج اﻻﺗﺠﺎهﻰ و ﻳﻌﻄﻰ ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫]‪[dB‬‬

‫⎞ ‪⎛V‬‬
‫⎟⎟ ‪S 41 dB = 20 log ⎜⎜ 4‬‬
‫⎠ ‪⎝ V1‬‬

‫ﺣﻴﺚ آﻼ ﻣﻦ )‪ (V1 , V4‬هﻤﺎ ﻣﻘﺪارى اﻟﻔﻮﻟﺖ )اﻟﺠﻬﺪ( ﻋﻨﺪ اﻟﻤﺨﺮﺟﻴﻦ رﻗﻢ )‪ (4‬و رﻗﻢ )‪.(1‬‬

‫‪141‬‬

‫و ﻳﺠ ﺐ أن ﻳﻜﻮن ﻣﻌﺎﻣﻞ اﻟﻌﺰل )ﻣﻘﺪار ‪ (S41‬ﻣﻨﺨﻔﻀﺎ ﻟﻴﻤﻨﻊ ﻣﺮور اﻟﻤﻮﺟﻪ اﻟﻤﻨﺘﺸﺮﻩ داﺧﻞ اﻟﻤﺰدوج اﻻﺗﺠﺎهﻰ اﻟﻰ‬
‫اﻟﻤﺨﺮج رﻗﻢ )‪ (4‬اﻟﻤﻌﺰول‪.‬‬
‫ﻳﻌ ﺪ ﻣﻌﺎﻣ ﻞ اﻻﻧﻌﻜ ﺎس ﻋ ﻨﺪ آ ﻞ ﻣﺨ ﺮج هﺎﻣ ﺎ ﻓ ﻰ اﻟﺘﺼﻤﻴﻢ ﻓﻤﺜﻼ )‪ (S11‬ﻣﻌﺎﻣﻞ اﻻﻧﻌﻜﺎس ﻋﻨﺪ اﻟﻤﺨﺮج )أو اﻟﻤﺪﺧﻞ(‬
‫رﻗﻢ )‪ (1‬ﻳﺠﺐ أن ﻳﻜﻮن ﻣﻘﺪارﻩ ﻣﻨﺨﻔﻀﺎ ﻟﻴﺴﻤﺢ ﺑﻤﺮور ﻣﻌﻈﻢ اﻟﻤﻮﺟﻪ اﻟﻘﺎدﻣﻪ اﻟﻰ داﺧﻞ اﻟﻤﺰدوج اﻻﺗﺠﺎهﻰ ‪.‬‬
‫]‪[dB‬‬

‫⎞ ‪⎛ Vreflected at port 1‬‬
‫⎟‬
‫⎜ ‪S11 dB = 20 log‬‬
‫‪⎜V‬‬
‫⎟‬
‫⎠ ‪⎝ incedent at port 1‬‬

‫أﻣ ﺎ )‪ (S21‬ﻣﻌﺎﻣ ﻞ اﻻرﺳ ﺎل ﻣ ﻦ اﻟﻤﺨ ﺮج رﻗ ﻢ )‪ (1‬اﻟ ﻰ اﻟﻤﺨ ﺮج رﻗ ﻢ )‪ (2‬ﻓ ﻴﺠﺐ أن ﻳﻜ ﻮن ﻣﻘ ﺪارﻩ ﻣ ﺮﺗﻔﻌﺎ ﻟﻴﺴ ﻤﺢ‬
‫ﺑﻤ ﺮور ﻣﻌﻈ ﻢ اﻟﻤ ﻮﺟﻪ اﻟﻤﻨﺘﺸ ﺮﻩ داﺧ ﻞ اﻟﻤ ﺰدوج اﻻﺗﺠﺎه ﻰ اﻟ ﻰ )اﻟﺪاﺋ ﺮﻩ( أو اﻟﻤﻜ ﻮن اﻟ ﺬى ﻳﻠ ﻴﻪ اذا آ ﺎن ﻣﻮﺻ ﻼ‬
‫ﺑﺎﻟﻤﺨﺮج )‪.(2‬‬
‫⎞ ‪⎛V‬‬
‫⎟⎟ ‪S 21 dB = 20 log ⎜⎜ 2‬‬
‫⎠ ‪⎝ V1‬‬

‫]‪[dB‬‬

‫ﻋﺮﻓﻨﺎ ﻣﻌﺎﻣﻞ اﻻزدواج ﻟﻠﻤﺰدوج اﻻﺗﺠﺎهﻰ )‪ (coupling coefficient C‬ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫اذا ّ‬
‫]‪[dB‬‬

‫)‪(4.48‬‬

‫⎞ ‪⎛P‬‬
‫⎟⎟ ‪C = 10 log ⎜⎜ 3‬‬
‫⎠ ‪⎝ P1‬‬

‫ﻓﺎن ﻋﻼﻗﺘﻪ ﺑﺒﺎراﻣﺘﺮات اس )‪ (S-parameters‬ﺗﻜﻮن آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫)‪(4.49‬‬

‫]‪[dB‬‬

‫⎞ ‪⎛V‬‬
‫⎞ ‪⎛P‬‬
‫‪C = 10 log ⎜⎜ 3 ⎟⎟ = 20 log ⎜⎜ 3 ⎟⎟ = S 31 dB‬‬
‫⎠ ‪⎝ V1‬‬
‫⎠ ‪⎝ P1‬‬

‫ﺣﻴﺚ )‪ (Transmission Coefficient S31‬هﻮ ﻣﻌﺎﻣﻞ اﻻرﺳﺎل ﻣﻦ اﻟﻤﺨﺮج رﻗﻢ )‪ (1‬اﻟﻰ اﻟﻤﺨﺮج رﻗﻢ )‪.(3‬‬
‫و )‪ (P1‬هﻰ اﻟﻘﺪرﻩ اﻟﻤﺪﺧﻠﻪ ﻋﻨﺪ اﻟﻤﺨﺮج رﻗﻢ )‪ (1‬ﺑﻴﻨﻤﺎ )‪ (P3‬هﻰ اﻟﻘﺪرﻩ اﻟﺨﺎرﺟﻪ ﻋﻨﺪ اﻟﻤﺨﺮج رﻗﻢ )‪.(3‬‬
‫و آﻼ ﻣﻦ )‪ (V1 , V3‬هﻤﺎ ﻣﻘﺪارى اﻟﻔﻮﻟﺖ )اﻟﺠﻬﺪ( ﻋﻨﺪ اﻟﻤﺨﺮﺟﻴﻦ رﻗﻢ )‪ (3‬و رﻗﻢ )‪.(1‬‬
‫ﺑﻌ ﺾ اﻟﻤ ﺮاﺟﻊ ﺗﺴ ﺘﺨﺪم ﺗﻌﺒﻴ ﺮ ) ‪ (S31 in dB or S31dB‬ﻣﺠ ﺎزا ﺑ ﺪﻻ ﻣ ﻦ )‪ (|S31|dB‬و ﻻ ﻳﻨﺒﻐ ﻰ أن ﻳﺆدى‬
‫ه ﺬا اﻟ ﻰ ﻟ ﺒﺲ ﻓﺎﻟﻜﻤ ﻴﻪ )‪ (S31‬ه ﻰ رﻗ ﻢ ﻣﻌﻘ ﺪ )‪ (complex number‬ﻟ ﻪ ﻣﻘ ﺪار )‪ (Magnitude‬و زاوﻳ ﺔ ﻃ ﻮر‬
‫)‪.(Angle‬‬
‫أﻣ ﺎ اﻟﻘ ﻴﻤﻪ ﺑﺎﻟﺪﻳﺴ ﻴﺒﻞ ﻓﻬ ﻰ ﻋﺸ ﺮون ﻣﻀ ﺮوﺑﻪ ﻓ ﻰ ﻟﻮﻏﺎرﻳ ﺘﻢ اﻟﻤﻘ ﺪار )‪ (20 × Magnitude‬و ذﻟ ﻚ ﻷى ﻣ ﻦ‬
‫ﺑﺎراﻣﺘﺮات اس آﻤﺎ هﻮ ﻣﺸﺮوح ﻓﻰ اﻟﻔﺼﻞ اﻟﺜﺎﻧﻰ ﻣﻦ اﻟﻜﺘﺎب‪.‬‬
‫ﺑﻌ ﺾ اﻟﻤ ﺮاﺟﻊ ﺗﺴ ﺘﺨﺪم )‪ (C = −|S31|dB‬ﺑ ﺪﻻ ﻣ ﻦ اﻟﻤﻌﺎدﻟ ﻪ )‪ (4.49‬و ﻻ ﻳﻨﺒﻐ ﻰ أن ﻳ ﺆدى ه ﺬا اﻟ ﻰ ﻟ ﺒﺲ ﻓﻬ ﺬﻩ‬
‫اﻻﺷﺎرﻩ اﻟﺴﺎﻟﺒﺔ ﺗﺴﺘﺨﺪم ﻟﻠﺘﻌﺒﻴﺮ ﻋﻦ اﻻﺗﺠﺎﻩ ﻓﻘﻂ ‪.‬‬
‫ﻓﻌ ﻨﺪﻣﺎ ﻳﺬآ ﺮ ﻣﺮﺟﻊ ﻣﺜﻼ أن هﻨﺎك )‪ (20 dB directional coupler‬أى اﻟﻤﺰدوج اﻻﺗﺠﺎهﻰ ذو اﻟﻌﺸﺮﻳﻦ دﻳﺴﻴﺒﻞ‬
‫ﻳﻌﻨ ﻰ ذﻟﻚ أن ﻣﻌﺎﻣﻞ اﻻزدواج ﻟﻬﺬا اﻟﻤﺰدوج اﻻﺗﺠﺎهﻰ ﻳﺴﺎوى )‪ (− 20 dB‬أى ﻋﺸﺮون دﻳﺴﻴﺒﻞ ﺳﺎﻟﺒﻪ أو ﻋﺸﺮون‬
‫دﻳﺴﻴﺒﻞ ﻟﻸﺳﻔﻞ‪.‬‬

‫‪142‬‬

‫و ﻋ ﻨﺪﻣﺎ ﻳﺬآ ﺮ ﻣ ﺮﺟﻊ ﺁﺧ ﺮ أن ه ﻨﺎك )‪ (−20 dB directional coupler‬أى اﻟﻤ ﺰدوج اﻻﺗﺠﺎه ﻰ ذو اﻟﻌﺸ ﺮﻳﻦ‬
‫دﻳﺴﻴﺒﻞ اﻟﺴﺎﻟﺒﻪ ﻓﺬﻟﻚ ﻳﻌﻨﻰ أﻳﻀﺎ أن ﻣﻌﺎﻣﻞ اﻻزدواج ﻟﻬﺬا اﻟﻤﺰدوج اﻻﺗﺠﺎهﻰ ﻳﺴﺎوى )‪.(− 20 dB‬‬
‫أى أﻧ ﻪ ﻓ ﻰ ﺟﻤ ﻴﻊ اﻟﺤ ﺎﻻت ﻻﺑ ﺪ أن ﺗﻜ ﻮن ﻗ ﻴﻤﺔ ﻣﻌﺎﻣ ﻞ اﻻزدواج )‪ (C‬ﺑﺎﻟﺪﻳﺴ ﻴﺒﻞ ﺳﺎﻟﺒﻪ ﻷن اﻟﻨﺴﺒﺘﺎن )‪ (V3/V1‬و‬
‫)‪ (P3/P1‬داﺋﻤ ﺎ أﻗ ﻞ ﻣﻦ اﻟﻮاﺣﺪ اﻟﺼﺤﻴﺢ ﻷن ﺟﺰء ﻓﻘﻂ ﻣﻦ اﻟﻘﺪرﻩ اﻟﺪاﺧﻠﻪ ﻋﻨﺪ اﻟﻤﺪﺧﻞ رﻗﻢ )‪ (1‬ﻳﺨﺮج ﻣﻦ اﻟﻤﺨﺮج‬
‫رﻗﻢ )‪ .(3‬و ﻟﻮﻏﺎرﻳﺘﻢ ﻋﺪد أﻗﻞ ﻣﻦ اﻟﻮاﺣﺪ اﻟﺼﺤﻴﺢ ﻳﻜﻮن ﺳﺎﻟﺒﺎ‪.‬‬
‫اﻟﺤﻴ ﺰ اﻟﻨﺴ ﺒﻰ ) ‪ (relative bandwidth = ∆B = {f2−f1}/fo‬اﻟ ﺬى ﻳﻜ ﻮن ﻓ ﻴﻪ ﻣﻌﺎﻣ ﻞ اﻻزدواج ﻟﻠﻤ ﺰدوج‬
‫اﻻﺗﺠﺎهﻰ )‪ (C‬و ﺑﺎﻗﻰ اﻟﺨﺼﺎﺋﺺ ﻗﺮﻳﺒﻪ ﻣﻦ اﻟﻘﻴﻢ اﻟﻤﻄﻠﻮﺑﻪ ﻳﺴﺎوى )‪ (10%‬ﺗﻘﺮﻳﺒﺎ‪.‬‬
‫ﺣ ﻴﺚ )‪ (central frequency fo‬ه ﻮ اﻟﺘ ﺮدد ﻋ ﻨﺪ اﻟﻤﻨﺘﺼ ﻒ و )‪ (lower edge frequency f1‬ه ﻮ اﻟﺘﺮدد ﻋﻨﺪ‬
‫ﺑﺪاﻳﺔ اﻟﺤﻴﺰ اﻟﻤﻔﻴﺪ و )‪ (upper edge frequency f2‬هﻮ اﻟﺘﺮدد ﻋﻨﺪ ﻧﻬﺎﻳﺔ اﻟﺤﻴﺰ اﻟﻤﻔﻴﺪ ‪.‬‬
‫ﻋﻤﻠ ﻴﺔ ﺗﺼ ﻤﻴﻢ اﻟﻤ ﺰدوج اﻻﺗﺠﺎه ﻰ )‪ (directional coupler‬ﺗﻌﻨ ﻰ ﺣﺴﺎب أﺑﻌﺎدﻩ و هﻰ ﻋﺮض آﻞ ﺧﻂ ﺷﺮﻳﻄﻰ‬
‫ﻓﻴﻪ )‪ (W‬و اﻟﻄﻮل )‪ (L‬و اﻟﻤﺴﺎﻓﻪ ﺑﻴﻦ اﻟﺨﻄﻴﻦ )‪.(S‬‬
‫إﺣﺪى اﻟﻄﺮق ﻟﺘﺼﻤﻴﻢ اﻟﻤﺰدوج اﻻﺗﺠﺎهﻰ )ﺣﺴﺎب أﺑﻌﺎدﻩ ﺗﻘﺮﻳﺒﻴﺎ( ﺗﺘﻢ ﺑﺎﺗﺒﺎع اﻟﺨﻄﻮات اﻟﺨﻤﺴﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫‪ -١‬اﻣ ﺎ أن ﻳﻌﻄ ﻰ آ ﻼ ﻣ ﻦ اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻤﻴ ﺰﻩ ﻟﺘ ﺮﺗﻴﺐ اﻟﻤﺠ ﺎل اﻟﺰوﺟ ﻰ )‪ (Zoe‬و اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻤﻴ ﺰﻩ ﻟﺘﺮﺗﻴﺐ اﻟﻤﺠﺎل‬
‫اﻟﻔ ﺮدى )‪ (Zoo‬ﻋ ﻨﺪ ﺑﺪاﻳ ﺔ ﺗﺼ ﻤﻴﻢ اﻟﻤ ﺰدوج اﻻﺗﺠﺎه ﻰ أو أن ﻳﻜ ﻮن ﻣﻌﻄ ﻰ ﻣﻌﺎﻣ ﻞ اﻻزدواج ) ‪coupling‬‬
‫‪ (coefficient C‬ﻓﻴﺘﻢ ﺣﺴﺎب )‪ (Zoe , Zoo‬ﻣﻦ اﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫)‪(4.50‬‬

‫‪1 − 10C / 20‬‬
‫‪1 + 10 C / 20‬‬

‫‪Z oo = Z o‬‬

‫‪1 + 10C / 20‬‬
‫‪1 − 10 C / 20‬‬

‫‪,‬‬

‫‪Z oe = Z o‬‬

‫ﺣﻴﺚ )‪ (Zo‬هﻰ اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ ﻟﻠﻨﻈﺎم وهﻰ ﻋﺎدة ﺗﺴﺎوى )‪.(50 Ω‬‬
‫و هﻨﺎك اﺧﺘﺒﺎر ﻟﺼﺤﺔ ﺣﺴﺎب اﻟﻤﻌﺎدﻟﻪ )‪ (4.50‬و ذﻟﻚ ﺑﺎﻟﺘﺄآﺪ ﻣﻦ أن ‪Z oe Z oo‬‬

‫≈ ‪. Zo‬‬

‫‪ -٢‬ﻳﺘﻢ ﺣﺴﺎب ﻃﻮل اﻟﺨﻄﻴﻦ اﻟﺸﺮﻳﻄﻴﻴﻦ )‪ (coupled lines length L‬ﻣﻦ اﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫)‪(4.51‬‬

‫‪λge + λgo‬‬
‫‪2‬‬

‫= ‪λgm‬‬

‫‪, where‬‬

‫‪λgm‬‬
‫‪4‬‬

‫=‪L‬‬

‫و ﻳ ﺘﻢ ﺣﺴ ﺎب آ ﻼ ﻣ ﻦ )‪ (λge & λgo‬ﻣ ﻦ اﻟﻤﻌﺎدﻟ ﻪ )‪ (3.12‬ﺑﺪﻻﻟ ﺔ آ ﻼ ﻣ ﻦ )‪ (εeffe & εeffo‬ﻋﻠ ﻰ اﻟﺘ ﺮﺗﻴﺐ أى‬

‫‪λ0‬‬
‫ﺑﺎﺳ ﺘﺨﺪام اﻟﻤﻌﺎدﻟ ﻪ‬
‫‪ε eff‬‬

‫= ‪) λ g‬ﺣ ﻴﺚ ﻳ ﺘﻢ اﻟ ﺘﻌﻮﻳﺾ ب ‪ εeffe‬ﻟﺤﺴ ﺎب ‪ λge‬و ب ‪ εeffo‬ﻟﺤﺴ ﺎب ‪( λgo‬‬

‫و ﺤـﻴﺙ ) ‪ ( λo = light velocity/frequency = 299792458 / fin Hz‬ه ﻮ ﻃﻮل اﻟﻤﻮﺟﻪ ﻓﻰ اﻟﻔﺮاغ أو‬
‫اﻟﻬﻮاء ﺑﺎﻟﻤﺘﺮ )راﺟﻊ اﻟﻔﺼﻞ اﻟﺜﺎﻟﺚ ﻣﻦ هﺬا اﻟﻜﺘﺎب(‪.‬‬

‫‪143‬‬

‫ﻓ ﻰ ﺑﻌ ﺾ اﻟﺤ ﺎﻻت )و ﺧﺼﻮﺻ ﺎ ﻋ ﻨﺪ اﻟﺘ ﺮددات اﻷﻋﻠ ﻰ ﻣ ﻦ ﺣﻴ ﺰ اﻟﻤﻴﻜ ﺮووﻳﻒ( ﻳﻜ ﻮن ه ﺬا اﻟﻄ ﻮل ﺻﻐﻴﺮ ﺟﺪا و‬
‫ﻳﺼﻌﺐ ﺗﻨﻔﻴﺬﻩ و ﻓﻰ هﺬﻩ اﻟﺤﺎﻟﻪ ﻳﺘﻢ ﺣﺴﺎب ﻃﻮل اﻟﺨﻄﻴﻦ اﻟﺸﺮﻳﻄﻴﻴﻦ )‪ (L‬ﻣﻦ اﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫‪λgm‬‬

‫)‪L = (2n − 1‬‬

‫‪4‬‬

‫ﺣ ﻴﺚ )‪ . (n=1,2,3,...‬أى أﻧ ﻪ ﻓ ﻰ ه ﺬﻩ اﻟﺤﺎﻟ ﻪ ﻳﻜ ﻮن ﻃ ﻮل اﻟﺨﻄﻴﻦ اﻟﺸﺮﻳﻄﻴﻴﻦ )‪ (L‬هﻮ أﺣﺪ اﻟﻤﻀﺎﻋﻔﺎت اﻟﻔﺮدﻳﻪ‬
‫ﻟﻠﻘﻴﻤﻪ اﻟﻤﺤﺴﻮﺑﻪ ﺑﺎﻟﻤﻌﺎدﻟﻪ )‪.(4.51‬‬
‫هﻨﺎك ﻣﻌﺎدﻻت أﺧﺮى ﻣﻜﺎﻓﺌﻪ ﻟﺤﺴﺎب آﻼ ﻣﻦ )‪ (λge & λgo‬ﻓﻰ اﻟﻤﺮﺟﻊ )‪ (2‬و هﻰ آﺎﻟﺘﺎﻟﻰ ‪:‬‬

‫‪⎛ 300 ⎞⎛⎜ Z oe‬‬
‫⎟‬
‫‪⎝ F ⎠⎜⎝ Z01e‬‬

‫‪mm‬‬

‫⎞‬
‫⎟‬
‫⎟‬
‫⎠‬

‫‪mm‬‬

‫⎟⎞ ‪⎛ 300 ⎞⎛⎜ Z oo‬‬
‫⎟‬
‫⎠⎟ ‪⎝ F ⎠⎜⎝ Z01o‬‬

‫⎜ ≈ ‪λge‬‬

‫⎜ ≈ ‪λgo‬‬

‫ﺣ ﻴﺚ )‪ (F‬ه ﻮ اﻟﺘ ﺮدد ﺑﺎﻟﺠﻴﺠﺎهﺮﺗ ﺰ و ﺣ ﻴﺚ اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ ﻟﻠﺨﻄﻴﻦ اﻟﻤﻤﻠﻮﺋﻴﻦ ﺑﺎﻟﻬﻮاء ﻟﺘﺮﺗﻴﺐ اﻟﻤﺠﺎل اﻟﺰوﺟﻰ‬
‫ه ﻰ )‪ (Zo1e‬ﺑﻴ ﻨﻤﺎ اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻤﻴ ﺰﻩ ﻟﻠﺨﻄ ﻴﻦ اﻟﻤﻤﻠﻮﺋ ﻴﻦ ﺑﺎﻟﻬ ﻮاء ﻟﺘ ﺮﺗﻴﺐ اﻟﻤﺠ ﺎل اﻟﻔ ﺮدى ه ﻰ )‪ (Zo1o‬و ﻳﻤﻜ ﻦ‬

‫ﺣﺴ ﺎب اﻟﻘﻴﻤﺘ ﻴﻦ ﻣ ﻦ اﻟﻤﻌﺎدﻟﺘ ﻴﻦ ‪ Z 01 = Z 0 ε effo‬و ‪ε effe‬‬
‫‪o‬‬

‫‪) Z 01e = Z 0‬راﺟ ﻊ اﻟﻔﺼ ﻞ اﻟ ﺜﺎﻟﺚ ﻣ ﻦ‬

‫اﻟﻜﺘﺎب(‪.‬‬

‫‪ -٣‬ﻳﺘﻢ ﺣﺴﺎب اﻟﻤﺴﺎﻓﻪ ﺑﻴﻦ اﻟﺨﻄﻴﻦ )‪ (S‬ﻣﻦ ﻣﻦ اﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫)‪(4.52‬‬

‫⎡‬
‫⎤‬
‫⎫ ⎞ ‪⎧π ⎛ w‬‬
‫⎫ ⎞ ‪⎧π ⎛ w‬‬
‫⎥ ‪⎢ cosh ⎨ ⎜ ⎟ ⎬ + cosh ⎨ ⎜ ⎟ ⎬ − 2‬‬
‫‪s 2‬‬
‫⎭ ‪⎩ 2 ⎝ h ⎠ se‬‬
‫⎭ ‪⎩ 2 ⎝ h ⎠ so‬‬
‫⎥‬
‫⎢ ‪= cosh −1‬‬
‫⎢‬
‫‪h π‬‬
‫⎫ ⎞ ‪⎧π ⎛ w‬‬
‫⎥ ⎫ ⎞ ‪⎧π ⎛ w‬‬
‫⎥ ⎬ ⎟ ⎜ ⎨ ‪⎢ cosh ⎨ ⎜ ⎟ ⎬ − cosh‬‬
‫⎭ ‪⎩ 2 ⎝ h ⎠ so‬‬
‫⎥⎦ ⎭ ‪⎩ 2 ⎝ h ⎠ se‬‬
‫⎢⎣‬

‫⎞‪⎛ w‬‬
‫⎞‪⎛ w‬‬
‫ﺣ ﻴﺚ اﻟﻘ ﻴﻤﻪ ⎟ ⎜ ﺗﻜﺎﻓ ﺊ )‪ ، (Zoe / 2‬ﺑﻴ ﻨﻤﺎ اﻟﻘ ﻴﻤﻪ ⎟ ⎜ ﺗﻜﺎﻓ ﺊ )‪ (Zoo / 2‬و ﻳﻤﻜ ﻦ ﺣﺴ ﺎب هﺎﺗ ﻴﻦ‬
‫‪⎝ h ⎠ so‬‬
‫‪⎝ h ⎠ se‬‬

‫اﻟﻘﻴﻤﺘﻴﻦ ﺑﺎﻟﺘﻌﻮﻳﺾ ﺑﺎﻟﻤﻌﺎوﻗﺘﺎن اﻟﻤﻜﺎﻓﺌﺘﺎن ﻟﻬﻤﺎ ﻓﻰ ﻣﻌﺎدﻻت اﻟﻔﺼﻞ اﻟﺜﺎﻟﺚ أرﻗﺎم )‪ (3.15‬ﺣﺘﻰ )‪. (3.23‬‬
‫و ﻳﻤﻜﻦ ﺣﺴﺎب هﺎﺗﻴﻦ اﻟﻘﻴﻤﺘﻴﻦ ﻣﻦ اﻟﻤﻌﺎدﻻت اﻟﺘﺎﻟﻴﻪ‪:‬‬

‫‪144‬‬

‫‪π‬‬
‫⎞‪⎛ w‬‬
‫⎞ ‪−1 ⎛ 2d − g + 1‬‬
‫⎟⎟‬
‫⎜⎜ ‪⎜ ⎟ = cosh‬‬
‫‪⎝ h ⎠ se 2‬‬
‫⎠ ‪⎝ g +1‬‬

‫)‪(4.53‬‬

‫⎞‪⎛ w‬‬
‫ﻓﻰ ﺣﺎﻟﺔ )‪ (εr ≥ 6‬ﻳﻜﻮن ﺣﺴﺎب اﻟﻘﻴﻤﻪ ⎟ ⎜ ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫‪⎝ h ⎠ so‬‬

‫‪π‬‬
‫⎞‪w/h‬‬
‫‪1‬‬
‫⎞‪⎛ w‬‬
‫⎛‬
‫⎞ ‪−1 ⎛ 2d − g − 1‬‬
‫‪⎟⎟ + cosh −1 ⎜1 + 2‬‬
‫⎜⎜ ‪⎜ ⎟ = cosh‬‬
‫⎟‬
‫⎠ ‪s/h‬‬
‫‪⎝ h ⎠ so 2‬‬
‫⎝‬
‫‪⎝ g −1 ⎠ π‬‬

‫)‪(4.54‬‬

‫⎞‪⎛ w‬‬
‫أﻣﺎ ﻓﻰ ﺣﺎﻟﺔ )‪ (εr ≤ 6‬ﻳﻜﻮن ﺣﺴﺎب اﻟﻘﻴﻤﻪ ⎟ ⎜ ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫‪⎝ h ⎠ so‬‬

‫)‪(4.55‬‬

‫‪π‬‬
‫⎞‪w/h‬‬
‫‪4‬‬
‫⎞‪⎛ w‬‬
‫⎛‬
‫⎞ ‪−1 ⎛ 2d − g − 1‬‬
‫‪⎟⎟ +‬‬
‫‪cosh −1 ⎜1 + 2‬‬
‫⎜⎜ ‪⎜ ⎟ = cosh‬‬
‫⎟‬
‫⎠ ‪s/h‬‬
‫‪⎝ h ⎠ so 2‬‬
‫⎝‬
‫)‪⎝ g − 1 ⎠ π (1 + ε r / 2‬‬

‫ﺣﻴﺚ ‪:‬‬
‫⎞‪⎛ w π s‬‬
‫‪d = cosh⎜ π +‬‬
‫⎟‬
‫⎠‪⎝ h 2 h‬‬

‫⎞ ‪⎛π s‬‬
‫⎜‪g = cosh‬‬
‫⎟‬
‫⎠‪⎝ 2 h‬‬

‫&‬

‫⎞‪⎛ s ⎞ ⎛ w‬‬
‫اﻟﻤﺮﺟﻊ )‪ (2‬ﻳﺤﺘﻮى ﻋﻠﻰ اﻟﻤﻨﺤﻨﻴﺎت اﻟﺨﺎﺻﻪ ﺑﻘﻴﻢ ⎟ ⎜ و ⎟ ⎜ ﻟﻠﺘﻌﻮﻳﺾ ﻓﻰ اﻟﻤﻌﺎدﻻت‪.‬‬
‫⎠ ‪⎝h⎠ ⎝ h‬‬

‫⎞‪⎛ w‬‬
‫⎞‪⎛ w‬‬
‫‪ -٤‬ﻓ ﻰ اﻟﺨﻄ ﻮات اﻟ ﺜﻼﺛﻪ اﻟﺴ ﺎﺑﻘﻪ ﺗ ﻢ ﺣﺴ ﺎب اﻟﻘﻴﻤ ﺘﺎن )‪ (Zoe , Zoo‬و اﻟﻘﻴﻤ ﺘﺎن ⎟ ⎜ و ⎟ ⎜ و‬
‫‪⎝ h ⎠ so‬‬
‫‪⎝ h ⎠ se‬‬

‫⎞‪⎛s‬‬
‫اﻟﻘﻴﻤﻪ ⎟ ⎜ ﺑﺎﻟﻤﻌﺎدﻻت اﻟﻤﻌﻄﺎﻩ أﻋﻼﻩ‪.‬‬
‫⎠‪⎝h‬‬
‫ﻓ ﻰ هﺬﻩ اﻟﺨﻄﻮﻩ ﻳﺘﻢ ﺣﺴﺎب اﻟﻘﻴﻤﺘﺎن )‪ (Zoe , Zoo‬ﺑﺪﻻﻟﺔ ﻗﻴﻢ ﻣﻜﻮﻧﺎت اﻟﺪاﺋﺮﻩ اﻟﻤﻜﺎﻓﺌﻪ ﻟﻠﻤﺰدوج اﻻﺗﺠﺎهﻰ اﻟﻤﺒﻴﻨﻪ‬
‫ﻓﻰ ﺷﻜﻞ )‪ (٣٨ – ٤‬آﻤﺎ ﻳﻠﻰ ‪:‬‬
‫)‪(4.56‬‬

‫)‬

‫‪−1‬‬

‫(‬

‫‪Z oo = c Co Co1‬‬

‫&‬

‫)‬

‫‪−1‬‬

‫(‬

‫‪Z oe = c CeCe1‬‬

‫ﺣﻴﺚ ﺳﺮﻋﺔ اﻟﻀﻮء ﻓﻰ اﻟﻔﺮاغ أو اﻟﻬﻮاء )‪. (light velocity c = 299792458 m/s‬‬
‫و ﺣﻴﺚ ﻗﻴﻢ ﻣﻜﻮﻧﺎت اﻟﺪاﺋﺮﻩ اﻟﻤﻜﺎﻓﺌﻪ ﻟﻠﻤﺰدوج اﻻﺗﺠﺎهﻰ اﻟﻤﺒﻴﻨﻪ ﻓﻰ ﺷﻜﻞ )‪ (٣٨ – ٤‬ﻣﻌﻄﺎﻩ آﺎﻵﺗﻰ ‪:‬‬

‫‪Co = C p + C f + C ga + C gd‬‬

‫‪,‬‬

‫‪145‬‬

‫‪Ce = C p + C f + C 'f‬‬

‫( ه ﻰ‬Cp = the capacitance between one of the coupled lines and the ground plane) ‫ﺣ ﻴﺚ‬
. ‫ﻗﻴﻤﺔ اﻟﻤﻜﺜﻒ ﺑﻴﻦ اﻟﺨﻄﻴﻦ اﻟﺸﺮﻳﻄﻴﻴﻦ اﻟﻤﺰدوﺟﻴﻦ و ﻃﺒﻘﺔ اﻟﻤﻮﺻﻞ اﻷرﺿﻰ‬
Cf and Cf’ are fringing capacitances between each coupled line and the ground ) ‫و‬
. ‫( هﻤﺎ ﻗﻴﻤﺘﻰ اﻟﻤﻜﺜﻔﻴﻦ ﺑﻴﻦ آﻞ ﺧﻂ ﺷﺮﻳﻄﻰ و ﻃﺒﻘﺔ اﻟﻤﻮﺻﻞ اﻷرﺿﻰ‬plane
Cga and Cgd represent, respectively, the odd mode fringing field capacitances for the ) ‫و‬
‫( هﻤ ﺎ ﻗﻴﻤﺘ ﻰ اﻟﻤﻜﺜﻔ ﻴﻦ ﺑ ﻴﻦ اﻟﺨﻄ ﻴﻦ اﻟﺸ ﺮﻳﻄﻴﻴﻦ‬air and dielectric regions across the coupling gap
.(Cgd) ‫( و ﻓﻰ ﻃﺒﻘﺔ اﻟﻌﺎزل‬Cga) ‫ﻓﻰ اﻟﻬﻮاء‬

⎛ w⎞
Cp = ε⎜ ⎟
⎝h⎠

⎛ ε eff

− Cp ⎟
C f = 0.5⎜
⎜ cZ o




,

C 'f =

,

ε = εr εo

εr
1 + ( A h/s ) tanh ( 8 s/h ) ε eff
Cf

A = exp [ – 0.1 exp ( 2.33 – 2.53 w/h ) ]

C ga = ε o

K (k ' )
K (k )

,

k=

s/h
s/ h + 2 w/ h

, k' = 1− k2
: ‫( ﻳﺘﻢ ﺣﺴﺎﺑﻬﺎ آﺎﻟﺘﺎﻟﻰ‬k) ‫ﺣﻴﺚ اﻟﻨﺴﺒﻪ‬
‫( ﻳﻜﻮن‬0 ≤ k ≤ 0.5) ‫ ﻓﻰ ﺣﺎﻟﺔ‬-

⎛ 2(1 + k ' ) ⎞
K (k ' ) 1

= ln ⎜
⎜ 1 − k' ⎟
K (k ) π


‫( ﻳﻜﻮن‬0.5 ≤ k ≤ 1) ‫ أﻣﺎ ﻓﻰ ﺣﺎﻟﺔ‬K (k ' )
π
=
K (k ) ln { 2 (1 + k )/(1 - k ) }

‫ﺣﻴﺚ‬
C gd =


ε
⎛π
ln ⎢coth ⎜
π
⎝4


s ⎞⎤
⎛ 0.02

ε r + 1 − ε r−2 ⎟
⎟⎥ + 0.65 C f ⎜
h ⎠⎦
⎝ s/h


‫ ( و‬Ce1 = Ce ) ‫( ﻳﺘﻢ اﻟﺘﻌﻮﻳﺾ ﻓﻰ ﻧﻔﺲ اﻟﻤﻌﺎدﻻت ﺣﻴﺚ‬Ce1 , Co1) ‫ﺑﺎﻟﻨﺴﺒﻪ ﻟﺤﺴﺎب ﻗﻴﻢ اﻟﻤﻜﺜﻔﺎت ﻓﻰ اﻟﻬﻮاء‬
. ‫( ﻓﻰ اﻟﻤﻌﺎدﻻت اﻟﻤﻌﻄﺎﻩ أﻋﻼﻩ‬ε = εo) ‫ ( ﺑﺸﺮط اﻟﺘﻌﻮﻳﺾ ﺑﻘﻴﻤﺔ ﺛﺎﺑﺖ اﻟﻌﺰل ﻟﻠﻬﻮاء‬Co1 = Co )

146

‫‪ -٥‬ﻓ ﻰ ه ﺬﻩ اﻟﺨﻄ ﻮﻩ ﻗ ﺎرن ﺑﻴﻦ اﻟﻘﻴﻤﺘﺎن )‪ (Zoe , Zoo‬اﻟﻤﺤﺴﻮﺑﺘﺎن ﻓﻰ اﻟﺨﻄﻮﻩ اﻷوﻟﻰ ﺑﺪﻻﻟﺔ اﻟﻤﻌﺎدﻟﻪ )‪(4.50‬‬
‫و ﺑ ﻴﻦ اﻟﻘﻴﻤ ﺘﺎن )‪ (Zoe , Zoo‬اﻟﻤﺤﺴ ﻮﺑﺘﺎن ﻓ ﻰ اﻟﺨﻄ ﻮﻩ اﻟ ﺮاﺑﻌﻪ ﺑﺪﻻﻟ ﺔ ﻗ ﻴﻢ ﻣﻜ ﻮﻧﺎت اﻟﺪاﺋ ﺮﻩ اﻟﻤﻜﺎﻓ ﺌﻪ ﻟﻠﻤ ﺰدوج‬
‫اﻻﺗﺠﺎهﻰ ‪.‬‬
‫اذا آ ﺎن اﻟﻔ ﺮق ﺑ ﻴﻦ اﻟﻘﻴﻤ ﺘﺎن )‪ (Zoe , Zoo‬اﻟﻤﺤﺴ ﻮﺑﺘﺎن ﻓ ﻰ اﻟﺨﻄ ﻮﻩ اﻷوﻟ ﻰ و اﻟﻤﺤﺴ ﻮﺑﺘﺎن ﻓ ﻰ اﻟﺨﻄﻮﻩ اﻟﺮاﺑﻌﻪ‬
‫ﺻ ﻐﻴﺮا و ﻳﻤﻜ ﻦ إهﻤﺎﻟ ﻪ ‪ ،‬ﻓ ﻼ داﻋ ﻰ ﻻﺳ ﺘﻜﻤﺎل اﻟﺤﺴ ﺎب و ﺗﻜ ﻮن اﻟﻘﻴﻤ ﺘﺎن اﻟﻨﻬﺎﺋﻴ ﺘﺎن ﻟﻌ ﺮض آ ﻞ ﺧﻂ ﺷﺮﻳﻄﻰ ﻓﻲ‬
‫اﻟﻤﺰدوج اﻻﺗﺠﺎهﻰ )‪ (W‬و اﻟﻤﺴﺎﻓﻪ ﺑﻴﻦ اﻟﺨﻄﻴﻦ )‪ (S‬هﻰ اﻟﻤﺤﺴﻮﺑﻪ ﻓﻰ اﻟﺨﻄﻮﻩ اﻟﺜﺎﻟﺜﻪ‪.‬‬
‫أﻣ ﺎ اذا آﺎن اﻟﻔﺮق ﺑﻴﻦ اﻟﻘﻴﻤﺘﺎن )‪ (Zoe , Zoo‬اﻟﻤﺤﺴﻮﺑﺘﺎن ﻓﻰ اﻟﺨﻄﻮﻩ اﻷوﻟﻰ و اﻟﻤﺤﺴﻮﺑﺘﺎن ﻓﻰ اﻟﺨﻄﻮﻩ اﻟﺮاﺑﻌﻪ‬
‫آﺒﻴﺮا و ﻻ ﻳﻤﻜﻦ إهﻤﺎﻟﻪ ‪ ،‬ﻓﺄﻋﺪ اﻟﺘﻌﻮﻳﺾ ﻓﻰ اﻟﺨﻄﻮات اﻟﺜﺎﻟﺜﻪ و اﻟﺮاﺑﻌﻪ اﻟﻰ أن ﻳﺼﺒﺢ اﻟﻔﺮق ﺑﻴﻦ اﻟﻘﻴﻤﺘﺎن ) ‪Zoe ,‬‬
‫‪ (Zoo‬اﻟﻤﺤﺴ ﻮﺑﺘﺎن ﻓ ﻰ اﻟﺨﻄ ﻮﻩ اﻷوﻟ ﻰ و اﻟﻤﺤﺴﻮﺑﺘﺎن ﻓﻰ اﻟﺨﻄﻮﻩ اﻟﺮاﺑﻌﻪ ﺻﻐﻴﺮا و ﻳﻤﻜﻦ إهﻤﺎﻟﻪ ‪ ،‬و هﻨﺎ ﺗﺤﺼﻞ‬
‫ﻋﻠﻰ اﻟﻘﻴﻤﺘﺎن )‪.(S,W‬‬
‫ﺗﺬآﺮ أﻧﻪ ﺗﻢ ﺣﺴﺎب ﻃﻮل اﻟﺨﻄﻴﻦ اﻟﺸﺮﻳﻄﻴﻴﻦ )‪ (coupled lines length L‬ﻓﻰ اﻟﺨﻄﻮﻩ اﻟﺜﺎﻧﻴﻪ‪.‬‬
‫ﻃ ﺮﻳﻘﺔ اﻟﺘﺼ ﻤﻴﻢ ﺑﺎﺳ ﺘﺨﺪام اﻟﺨﻄ ﻮات اﻟﺨﻤﺴ ﻪ اﻟﺴ ﺎﺑﻘﻪ ﻳﻨﺒﻐ ﻰ أن ﺗ ﺘﻢ ﺑﺎﺳ ﺘﺨﺪام ﺑ ﺮﻧﺎﻣﺞ ﺣﺎﺳ ﺐ ﺷ ﺄﻧﻬﺎ ﺷ ﺄن ﺟﻤ ﻴﻊ‬
‫اﻟﺤﺴ ﺎﺑﺎت ﻓ ﻰ ﺗﺼ ﻤﻴﻢ اﻟﺪواﺋ ﺮ اﻟﺸ ﺮﻳﻄﻴﻪ )و دواﺋ ﺮ اﻟﻤﻴﻜ ﺮووﻳﻒ( ‪ ،‬و اﻻ أﺻ ﺒﺢ اﺗﻤﺎم اﻟﺤﺴﺎﺑﺎت ﺑﺎﻟﺪﻗﻪ و اﻟﺴﺮﻋﻪ‬
‫اﻟﻤﻄﻠﻮﺑﻪ ﻏﻴﺮ ﻣﻤﻜﻦ‪.‬‬
‫ﻋﻠﻤ ﺎ ﺑ ﺄن هﺬﻩ ﻟﻴﺴﺖ اﻟﻄﺮﻳﻘﻪ اﻟﻮﺣﻴﺪﻩ ﻟﺘﺼﻤﻴﻢ اﻟﻤﺰدوج اﻻﺗﺠﺎهﻰ ذو اﻟﺨﻄﻴﻦ اﻟﺸﺮﻳﻄﻴﻴﻦ اﻟﻤﺰدوﺟﻴﻦ اﻟﻤﺘﻤﺎﺛﻠﻴﻦ ﺑﻞ‬
‫هﻨﺎك ﻃﺮق أﺧﺮى و ﻣﻌﺎدﻻت أﺧﺮى ﻟﻠﺘﺼﻤﻴﻢ ﻳﻤﻜﻦ اﻟﺮﺟﻮع اﻟﻴﻬﺎ ﻓﻰ اﻟﻤﺮاﺟﻊ )‪.(2,14,20‬‬
‫ه ﻨﺎك ﺑ ﺮاﻣﺞ ﻣﻨ ﺘﺠﻪ ﺗﺠﺎرﻳ ﺎ ﺗﻘ ﻮم ﺑﺘﺼﻤﻴﻢ اﻟﻤﺰدوج اﻻﺗﺠﺎهﻰ ذو اﻟﺨﻄﻴﻦ اﻟﺸﺮﻳﻄﻴﻴﻦ اﻟﻤﺰدوﺟﻴﻦ اﻟﻤﺘﻤﺎﺛﻠﻴﻦ ﺑﺠﺎﻧﺐ‬
‫أﻧ ﻮاع أﺧ ﺮى ﻣ ﻦ اﻟﺤﺴ ﺎﺑﺎت ﻓﻤ ﺜﻼ ه ﻨﺎك ﺑ ﺮﻧﺎﻣﺞ )‪ (LineComp‬ﻳﻘ ﻮم ﺑﺤﺴ ﺎﺑﺎت ﺗﺼ ﻤﻴﻢ اﻟﻤ ﺰدوج اﻻﺗﺠﺎه ﻰ‬
‫ﺑﺎﻻﺿ ﺎﻓﻪ ﻟﺤﺴ ﺎﺑﺎت أﺧ ﺮى ‪ .‬و ﻗ ﺪ ﺗﻜﻮن ﺣﺴﺎﺑﺎت اﻟﺘﺼﻤﻴﻢ ﺿﻤﻦ اﻣﻜﺎﻧﻴﺎت ﺑﺮﻧﺎﻣﺞ ﻋﺎم ﻓﻤﺜﻼ ﺑﺮﻧﺎﻣﺞ ) ‪Agilent‬‬
‫‪ (Genesys‬ﺑ ﻪ ﺟ ﺰء أو )‪ (Module‬اﺳ ﻤﻪ )‪ (TLINE‬ﻳﻘ ﻮم ﺑﻌﻤﻞ ﺣﺴﺎﺑﺎت ﺗﺼﻤﻴﻢ اﻟﻤﺰدوج اﻻﺗﺠﺎهﻰ ﺑﺎﻻﺿﺎﻓﻪ‬
‫اﻟﻰ أﻧﻮاع أﺧﺮى ﻣﻦ اﻟﺤﺴﺎﺑﺎت‪ .‬راﺟﻊ ﻣﺮاﺟﻊ اﻻﻧﺘﺮﻧﺖ )‪.(i4,i5‬‬
‫اﻟﻤ ﺮﺟﻊ )‪ (14‬ﻳﺤ ﺘﻮى ﻋﻠ ﻰ ﺑ ﺮاﻣﺞ ﺑﻠﻐ ﺔ )‪ (BASIC‬ﻟﺘﺼ ﻤﻴﻢ اﻟﺨﻄ ﻴﻦ اﻟﺸ ﺮﻳﻄﻴﻴﻦ اﻟﻤ ﺰدوﺟﻴﻦ اﻟﻤﺘﻤﺎﺛﻠ ﻴﻦ ﻳﻘ ﻮم‬
‫ﺑﺤﺴﺎب )‪ (W,S‬ﺑﺪﻻﻟﺔ )‪ (Zoe , Zoo‬أو ﻣﻘﻠﻮﺑﻬﻤﺎ‪.‬‬
‫اﻟﻤﺮﺟﻊ )‪ (14‬ﻳﺤﺘﻮى ﻋﻠﻰ ﺑﺮاﻣﺞ ﺑﻠﻐﺔ )‪ (BASIC‬ﻟﺤﺴﺎب )‪ (W,S‬و ﻣﻌﻄﻰ)‪.(Zoe , Zoo‬‬
‫و ﻓ ﻴﻤﺎ ﻳﻠ ﻰ أﻳﻀ ﺎ ﻣﺠﻤ ﻮﻋﺔ )‪ (functions‬ﻣﻜ ﺘﻮﺑﻪ ﺑﻠﻐ ﺔ )‪ (C++‬اﻋ ﺘﻤﺎدا ﻋﻠ ﻰ اﻟﻤﻌ ﺎدﻻت واﻟﺒ ﺮاﻣﺞ اﻟﻤﻌﻄ ﺎﻩ ﻓ ﻰ‬
‫اﻟﻤ ﺮﺟﻊ )‪ (14‬ﻟﻌﻤ ﻞ ﺣﺴ ﺎﺑﺎت ﺗﺼ ﻤﻴﻢ اﻟﻤ ﺰدوج اﻻﺗﺠﺎه ﻰ ذو اﻟﺨﻄ ﻴﻦ اﻟﺸﺮﻳﻄﻴﻴﻦ اﻟﻤﺰدوﺟﻴﻦ اﻟﻤﺘﻤﺎﺛﻠﻴﻦ‪ .‬ﻣﺒﺪﺋﻴﺎ‬
‫ﻳﺘﻌ ﻴﻦ آ ﺘﺎﺑﺔ اﻟﺴﻄﻮر اﻟﺘﺎﻟﻴﻪ ﺑﺒﺮﻧﺎﻣﺞ )‪ (١-٤‬ﻗﺒﻞ ﻣﺠﻤﻮﻋﺔ )‪ (functions‬و هﻰ ﻟﻠﻌﻤﻞ ﺗﺤﺖ ) ‪Visual C and‬‬
‫‪.(Microsoft C++‬‬
‫اﻟﺠ ﺰء اﻻول ﺑ ﺮﻧﺎﻣﺞ )‪ (٢-٤‬ه ﻮ )‪ (function‬ﺑﺈﺳ ـﻢ )‪ (Zoe_Zoo_calculations‬ﻟﺤﺴ ﺎب )‪.(Zoe , Zoo‬‬
‫ﺑﺪﻻﻟﺔ ﻣﻌﺎﻣﻞ اﻻزدواج ﻟﻠﻤﺰدوج اﻻﺗﺠﺎهﻰ )‪. (coupling coefficient C‬‬
‫اﻟﺠ ﺰء اﻟﺜﺎﻧ ﻰ ﺑﺮﻧﺎﻣﺞ )‪ (٣-٤‬ﺑﻪ )‪ (function‬ﺑﺈﺳـﻢ )_‪ (Design_Coupled_Microstrip_Lines‬ﻟﺘﺼﻤﻴﻢ‬
‫اﻟﻤ ﺰدوج اﻻﺗﺠﺎه ﻰ أى ﺣﺴ ﺎب )‪ (W,S‬ﺑﺪﻻﻟ ﺔ )‪ .(Zoe , Zoo‬و ه ﻨﺎك ﻋ ﺪد اﺛﻨ ﻴﻦ )‪ (function‬ﺗﻘ ﻮم ﺑﺤﺴ ﺎب‬
‫ﺑﻌﺾ اﻟﻤﻌﺎدﻻت ﻣﻌﻬﺎ ﺗﻜﺘﺐ ﻓﻰ اﻟﺠﺰء اﻷﻋﻠﻰ ﻣﻨﻬﺎ‪.‬‬

‫‪147‬‬

‫ﻳﺮﺟ ﻰ اﻻﻧﺘ ﺒﺎﻩ اﻟ ﻰ أن اﻟﺴ ﻄﻮر اﻟﻄ ﻮﻳﻠﻪ ﻓ ﻰ ه ﺬﻩ اﻟﺒ ﺮاﻣﺞ ﺗ ﻢ آﺘﺎﺑ ﺘﻬﺎ ﻋﻠ ﻰ ﺳ ﻄﺮﻳﻦ أو ﻋ ﺪة أﺳ ﻄﺮ ﻟﺬﻟﻚ ﻋﻨﺪ آﺘﺎﺑﺔ‬
.(C++) ‫اﻟﺒﺮﻧﺎﻣﺞ ﻻﺳﺘﺨﺪاﻣﻪ ﻳﻨﺒﻐﻰ اﻋﺎدة آﺘﺎﺑﺔ اﻟﺴﻄﻮر اﻟﻨﺎﻗﺼﻪ ﻣﻌﺎ ﻓﻰ ﺳﻄﺮ واﺣﺪ و هﺬا ﺑﺪﻳﻬﻰ ﻟﻤﺴﺘﺨﺪﻣﻰ‬

#include <conio.h>
#include <stdio.h>
#include <iostream.h>
#include <math.h>
#include <fstream.h>
#include <iomanip.h>
#include <complex>
using namespace std;
typedef complex<double> COMPLEX;
inline complex<double> cmplx(double r,double i)
{ return ( complex<double> (r,i) ); }

(١-٤) ‫ﺑﺮﻧﺎﻣﺞ‬

void Zoe_Zoo_calculations(void)
{
double Zoe=1.0,Zoo=1.0,C=1.0,Cabs=1.0,Zo=50.0;
cout<<"\n Symmetric coupled lines Zoe , Zoo calculations : \n\n ";
cout<<"\n ENTER VALUE OF characteristic impedance in ohm e.g. [50] : ";
cin>>Zo;
cout<<"\n ENTER VALUE OF Coupling coefficient in dB e.g. [-10] : ";
cin>>C;
Cabs=pow(10.0,(C/20.0));
Zoe=Zo*sqrt( (1.0+Cabs) / (1.0-Cabs) );
Zoo=Zo*sqrt( (1.0-Cabs) / (1.0+Cabs) );
cout<<"\n Coupled Lines Parameters :";
cout<<"\n Coupling coefficient in dB = "<<C;
cout<<"\n characteristic impedance in ohm = "<<Zo;
cout<<"\n Coupling coefficient absolute = "<<Cabs;
cout<<"\n Zoe [ohm] = "<<Zoe;
cout<<"\n Zoo [ohm] = "<<Zoo;
}

(٢-٤) ‫ﺑﺮﻧﺎﻣﺞ‬

void Equations(double &V,double &U,double &G,double &AE,double &BE,double &ER,
double &AU,double &EF,double &CO,double &EFEO,double &AO,double &BO,
double &DO,double &F,double &H,double &CN,double &EFOO,
double &P1,double &P2,double &P3,double &P4,double &P5,double &P6,double &P7,double

148

&P8,
double &P9,double &P10,double &P11,double &P12,double &P13,double &P14,double &P15,
double &FEF,double &FOF,double &EFEF,double &EFOF,double &Q1,double &Q2,double
&Q3,
double &Q4,double &Q5,double &Q6,double &Q7,double &Q،٨double &Q9,double &Q10,
double &ZL,double &ZE,double &ZO,double &ZCE,double &ZCO,double &FU,double PI)
{
V = U * (20.0 + G * G) / (10.0 + G * G) + G * exp(-G);
AE = 1.0 + 1.0 / 49.0 * log((pow(V,4.0) + pow((V / 52.0),2.0)) / (pow(V,4.0) + 0.432)) + 1.0 / 18.7 *
log(1 + pow((V / 18.1),3.0));
BE = 0.564 * pow(((ER - 0.9) / (ER + 3.0)),0.053);
EFEO = (ER + 1.0) / 2.0 + (ER - 1.0) / 2.0 * pow((1.0 + 10.0 / V),(-AE * BE));
AU = 1.0 + 1.0 / 49.0 * log((pow(U,4.0) + pow((U / 52.0),2.0)) / (pow(U,4.0) + 0.432)) + 1.0 / 18.7 *
log(1 + pow((U / 18.1),3.0));
EF = (ER + 1.0) / 2.0 + (ER - 1.0) / 2.0 * pow((1.0 + 10.0 / U),(-AU * BE));
AO = 0.7287 * (EF - (ER + 1.0) / 2.0) * (1.0 - exp(-0.179 * U));
BO = 0.747 * ER / (0.15 + ER);
CO = BO - (BO - 0.207) * exp(-0.414 * U);
DO = 0.593 + 0.694 * exp(-0.562 * U);
EFOO = ((ER + 1.0) / 2.0 + AO - EF) * exp(-CO * pow(G,DO)) + EF;
CN = F * H * 0.000001;
P1 = 0.27488 + (0.6315 + 0.525 / pow((1.0 + 0.0157 * CN),20.0)) * U - 0.065683 * exp(-8.7513 * U);
P2 = 0.3362 * (1.0 - exp(-0.03442 * ER));
P3 = 0.0363 * exp(-4.6 * U) * (1.0 - exp(-1.0*pow((CN / 38.7),4.97)));
P4 = 1.0 + 2.751 * (1.0 - exp(-1.0*pow((ER / 15.916),8.0)));
P5 = 0.334 * exp(-3.3 * pow((ER / 15.0),3.0)) + 0.746;
P6 = P5 * exp(-1.0*pow((CN / 18),0.368));
P7 = 1.0 + 4.069 * P6 * pow(G,0.479) * exp(-1.374 * pow(G,0.595) - 0.17 * pow(G,2.5));
P8 = 0.7168 * (1.0 + 1.076 / (1.0 + 0.0576 * (ER - 1.0)));
P9 = P8 - 0.7913 * (1.0 - exp(-1.0*pow((CN / 20.0),1.424))) * atan(2.481 * pow((ER / 8.0),0.946));
P10 = 0.242 * pow((ER - 1),0.55);
P11 = 0.6366 * (exp(-0.3401 * CN) - 1.0) * atan(1.263 * pow((U / 3.0),1.629));
P12 = P9 + (1.0 - P9) / (1.0 + 1.183 * pow(U,1.376));
P13 = 1.695 * P10 / (0.414 + 1.605 * P10);
P14 = 0.8929 + 0.1072 * (1.0 - exp(-0.42 * pow((CN / 20.0),3.215)));
P15 = fabs(1.0 - 0.8928 * (1.0 + P11) * P12 * exp(-P13 * pow(G,1.092)) / P14);
FEF = P1 * P2 * pow(((P3 * P4 + 0.1844 * P7) * CN),1.5763);
FOF = P1 * P2 * pow(((P3 * P4 + 0.1844) * CN * P15),1.5763);
EFEF = ER - (ER - EFEO) / (1.0 + FEF);
EFOF = ER - (ER - EFOO) / (1.0 + FOF);
Q1 = 0.8695 * pow(U,0.194);
Q2 = 1.0 + 0.7519 * G + 0.189 * pow(G,2.31);
Q3 = 0.1975 + pow((16.6 + pow((8.399999 / G),6.0)),(-0.387)) + 1.0 / 241.0 * log(pow(G,10.0) /
(1.0 + pow((G / 3.4),10.0)));
Q4 = 2.0 * Q1 / (Q2 * (exp(-G) * pow(U,Q3) + (2.0 - exp(-G)) * pow(U,(-Q3))));
Q5 = 1.794 + 1.14 * log(1.0 + 0.638 / (G + 0.5170001 * pow(G,2.43)));
Q6 = 0.2305 + log(pow(G,10.0) / (1.0 + pow((G / 5.8),10.0))) / 281.3 + 1.0 / 5.1 *
log(1.0 + 0.598 * pow(G,1.154));
Q7 = (10.0 + 190.0 * G * G) / (1.0 + 82.3 * G * G * G);
Q8 = exp(-6.5 - 0.95 * log(G) - pow((G / 0.15),5.0));
Q9 = log(Q7) * (Q8 + 1.0 / 16.5);
Q10 = (Q2 * Q4 - Q5 * exp(log(U) * Q6 * pow(U,(-Q9)))) / Q2;
FU = 6.0 + (2.0 * PI - 6.0) * exp(-1.0*pow((30.666 / U),0.7528));
ZL = 60.0 / sqrt(EF) * log(FU / U + sqrt(1.0 + pow((2.0 / U),2.0)));
ZE = ZL * sqrt(EF / EFEO) / (1.0 - (ZL / 377.0) * sqrt(EF) * Q4) - ZCE;
ZO = ZL * sqrt(EF / EFOO) / (1.0 - (ZL / 377.0) * sqrt(EF) * Q10) - ZCO;
}

149

void Coupled_Microstrip_Lines_(double ZOE,double ZOO,double ER,double H,
double T,double F,double &W,double &S,double &EFEF,double &EFOF)
{
/*
Symmetric Coupled Microstrip Lines Calculations
input data:
Zoe[ohm] = ZOE = even mode characteristic impedance
Zoo[ohm] = ZOO = odd mode characteristic impedance
EPSILON R = ER = epsilon r
h [m] = H
= substrate (dielectric) thickness h
t [m] = T
= conductor thickness t
f [Hz] = F = frequency at which we calculate w and lampda guide
output data:
W[m] = microstrip line width w
S[m] = space between microstrip lines
eeffe = EFEF = even mode epsilon effective of f
eeffo= EFOF = odd mode epsilon effective of f
Conditions : \n 0.1 <= w/h <= 10 \n t <= 0.01h \n 1 <= epsilon_r <= 10
*/

\n

f <= 6 GHz

double ZCE,ZCO,PI,ZO,K,AW,UW,F2,F3,KK,U,G,ST,V,AE,BE,AU,EF,CO,EFEO;
double MO,NO,M1,N1,M2,N2,D1,D2,D3,D4,DETER;
double AO,BO,DO,CN,EFOO,P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12,P13;
double P14,P15,FEF,FOF,Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,Q9,Q10,ZL,ZE,FU;
int I;
ZCE = ZOE;
ZCO = ZOO;
PI = 3.141592653;
double A[7]={0.0,1.0,-0.301,3.209,-27.282,56.609,-37.746};
double B[7]={0.0,0.02,-0.623,17.192,-68.946,104.74,-16.148};
double C[7]={0.0,0.002,-0.347,7.171,-36.91,76.132,-51.616};
ZO = sqrt(ZCE * ZCO);
K = (ZCE - ZCO) / (ZCE + ZCO);
AW = exp(ZO / 42.4 * sqrt(ER + 1.0)) - 1.0;
UW = 8.0 / AW * sqrt(AW / 11.0 * (7.0 + 4.0 / ER) + 1.0 / 0.81 * (1.0 + 1.0 / ER));
F2 = 0.0;
F3 = 0.0;
for(I=1;I<=6;I++) { F2 = F2 + A[I] * pow(K,(I - 1)); }
if(K < 0.5)
{ KK = K; }
else
{ KK = 0.5; }
for(I=1;I<=6;I++) { F3 = F3 + (B[I] - C[I] * (9.600001 - ER)) * pow((0.6 - KK),(I - 1.0)); }
if(K >= 0.5) { F3 = 2 * F3 * (1 - K); }
U = fabs(UW * F2);
G = fabs(UW * F3);
ST = 0.00001;
ASTEP1:
Equations(V,U,G,AE,BE,ER,AU,EF,CO,EFEO,AO,BO,DO,F,H,CN,EFOO,P1,P2,P3,P4,P5,
P6,P7,P8,P9,P10,P11,P12,P13,P14,P15,FEF,FOF,EFEF,EFOF,Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,
Q9,Q10,ZL,ZE,ZO,ZCE,ZCO,FU,PI);
MO = ZE;
NO = ZO;
U = U + ST;

150

Equations(V,U,G,AE,BE,ER,AU,EF,CO,EFEO,AO,BO,DO,F,H,CN,EFOO,P1,P2,P3,P4,P5,
P6,P7,P8,P9,P10,P11,P12,P13,P14,P15,FEF,FOF,EFEF,EFOF,Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,
Q9,Q10,ZL,ZE,ZO,ZCE,ZCO,FU,PI);
M1 = ZE;
N1 = ZO;
U = U - ST;
G = G + ST;
Equations(V,U,G,AE,BE,ER,AU,EF,CO,EFEO,AO,BO,DO,F,H,CN,EFOO,P1,P2,P3,P4,P5,
P6,P7,P8,P9,P10,P11,P12,P13,P14,P15,FEF,FOF,EFEF,EFOF,Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,
Q9,Q10,ZL,ZE,ZO,ZCE,ZCO,FU,PI);
M2 = ZE;
N2 = ZO;
D1 = (M1 - MO) / ST;
D2 = (M2 - MO) / ST;
D3 = (N1 - NO) / ST;
D4 = (N2 - NO) / ST;
DETER = D1 * D4 - D2 * D3;
if(fabs(DETER) > 1E-09)
{
U = fabs(U - (MO * D4 - NO * D2) / DETER);
G = fabs(G + (MO * D3 - NO * D1) / DETER);
}
else
{
U = 1.01 * U;
goto ASTEP1;
}
Equations(V,U,G,AE,BE,ER,AU,EF,CO,EFEO,AO,BO,DO,F,H,CN,EFOO,P1,P2,P3,P4,P5,
P6,P7,P8,P9,P10,P11,P12,P13,P14,P15,FEF,FOF,EFEF,EFOF,Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,
Q9,Q10,ZL,ZE,ZO,ZCE,ZCO,FU,PI);
if((ZE * ZE + ZO * ZO) <= (ZCE * ZCO / 1000000))
{ W=U*H; S=G*H;
return ;
}
ST = 0.9 * ST;
goto ASTEP1;
}

void Design_Coupled_Microstrip_Lines_(void)
{
double ZOE,ZOO,ER,H,T,F,W,S,EFEF,EFOF;
AU:
printf("\n Conditions : \n 0.1 <= w/h <= 10 \n t <= 0.01h \n 1 <= epsilon_r <= 10
GHz" );
printf(" \n Enter even mode characteristic impedance Zoe [ohm]" : );
scanf("%lf",&ZOE);
printf(" \n Enter odd mode characteristic impedance Zoo [ohm]" : );
scanf("%lf",&ZOO);
printf(" \n Enter epsilon r" : );
scanf("%lf",&ER);
printf(" \n Enter substrate (dielectric) thickness h [m]" : );
scanf("%lf",&H);
printf(" \n Enter conductor thickness t [m]" : );
scanf("%lf",&T);
printf(" \n Enter frequency at which we calculate w and lampda guide [Hz]" : );
scanf("%lf",&F);
Coupled_Microstrip_Lines_(ZOE,ZOO,ER,H,T,F,W,S,EFEF,EFOF);
printf(" \n microstrip line width = %lf [m]",W);
printf(" \n space between microstrip lines = %lf [m]",S);
printf(" \n even mode epsilon effective of f = %lf ",EFEF);

151

\n

f <= 6

‫;)‪printf(" \n odd mode epsilon effective of f = %lf ",EFOF‬‬
‫;)"‪printf(" \n‬‬
‫;)"‪printf(" \n Enter 1 if you want to continue and Enter any letter to stop‬‬
‫;‪int p‬‬
‫;)‪scanf("%d",&p‬‬
‫} ;‪if(p==1) { int m=9; goto AU‬‬
‫;‪int h=8‬‬
‫}‬

‫ﻣﻠﺤﻮﻇﻪ ‪ :‬اﻟﺴﻄﻮر اﻟﻄﻮﻳﻠﻪ ﺗﻢ آﺘﺎﺑﺘﻬﺎ ﻋﻠﻰ ﻋﺪة أﺳﻄﺮ و ﺑﺨﻂ ﺳﻤﻴﻚ )‪.(Bold‬‬
‫ﺑﺮﻧﺎﻣﺞ )‪(٣-٤‬‬

‫اﻟﻤﺮﺟﻊ )‪ (2‬ﺑﻪ ﻣﺜﺎل رﻗﻤﻰ ﻟﺘﺼﻤﻴﻢ ﻣﺰدوج اﺗﺠﺎهﻰ )‪ (directional coupler‬ﻣﻮاﺻﻔﺎﺗﻪ آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫ﻣﻌﺎﻣ ﻞ اﻻزدواج اﻟﻤﻄﻠ ﻮب ﻟﻠﻤ ﺰدوج اﻻﺗﺠﺎه ﻰ )‪ (C = −10dB‬و ﺗ ﺮدد اﻟﻤﻨﺘﺼ ﻒ )‪ (fo = 5 GHz‬و اﻟﻤﻌﺎوﻗ ﻪ‬
‫اﻟﻤﻤﻴﺰﻩ )‪.(Zo = 50 Ω‬‬
‫أﻣﺎ اﻟﺸﺮﻳﺤﻪ اﻟﺸﺮﻳﻄﻴﻪ اﻟﻤﺴﺘﺨﺪﻣﻪ ﻓﻰ اﻟﺘﺼﻤﻴﻢ ﻓﻤﻮاﺻﻔﺎﺗﻬﺎ آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫ﺛﺎﺑﺖ اﻟﻌﺰل )‪ (εr = 9‬و ﺳﻤﻚ ﺷﺮﻳﺤﺔ اﻟﻌﺎزل )‪. (h = 1 mm‬‬
‫و آﺎﻧﺖ ﻧﺘﺎﺋﺞ اﻟﺤﺴﺎﺑﺎت آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫‪Zoo = 36 Ω ) -‬‬

‫&‬

‫‪ (Zoe = 69.5 Ω‬و ﺑﺎﺳﺘﺨﺪام اﺧﺘﺒﺎر ﻟﺼﺤﺔ هﺬﻩ اﻟﺤﺴﺎﺑﺎت آﺎﻧﺖ اﻟﻨﺘﻴﺠﻪ أن‬

‫‪Z oe Z oo = 50.2 Ω ≈ 50 Ω‬‬
‫‪ -‬و آﺎﻧﺖ اﻟﻘﻴﻢ‬

‫⎞‪⎛ w‬‬
‫‪ ⎜ ⎟ ≈ 0.85‬و‬
‫⎠‪⎝h‬‬

‫⎞‪⎛s‬‬
‫‪⎜ ⎟ ≈ 0.25‬‬
‫⎠‪⎝h‬‬

‫≈ ‪Zo‬‬

‫أو )‪, W ≈ 0.85 mm‬‬

‫‪(S ≈ 0.25 mm‬‬

‫‪ -‬و آﺎن ﺣﺴﺎب ﻃﻮل اﻟﺨﻄﻴﻦ اﻟﺸﺮﻳﻄﻴﻴﻦ )‪ (coupled lines length L‬ﺑﺎﺳﺘﺨﺪام اﻟﻤﻌﺎدﻟﻪ )‪: (4.51‬‬

‫‪= 8.42 mm‬‬
‫ﺣﻴﺚ‬

‫‪λgm‬‬
‫‪4‬‬

‫‪22.54 + 28.8‬‬
‫‪= 25.67 mm‬‬
‫‪2‬‬

‫=‪L‬‬

‫=‬

‫‪λge + λgo‬‬
‫‪2‬‬

‫= ‪λgm‬‬

‫ﻳﻤﻜ ﻦ ﻟﻤﺴ ﺘﺨﺪم ه ﺬا اﻟﻜ ﺘﺎب اﻋ ﺎدة اﻟﺤﺴ ﺎﺑﺎت اﻟﺨﺎﺻ ﻪ ﺑ ﻨﻔﺲ ه ﺬا اﻟﻤ ﺜﺎل ﺑﺎﺳ ﺘﺨﺪام ﺑ ﺮاﻣﺞ )‪ (C++‬و اﻟﻤﻌ ﺎدﻻت‬
‫اﻟﻤﻌﻄﺎﻩ أﻋﻼﻩ و اﻟﻤﻘﺎرﻧﻪ ﺑﻴﻦ اﻟﻨﺘﺎﺋﺞ‪.‬‬
‫ﺑﻌ ﺪ اﻧ ﺘﻬﺎء اﻟﺘﺼ ﻤﻴﻢ ﻳﺠ ﺐ اﺳ ﺘﺨﺪام أﺣ ﺪ ﺑ ﺮاﻣﺞ ﺗﺤﻠ ﻴﻞ دواﺋ ﺮ اﻟﻤﻴﻜ ﺮووﻳﻒ ﻣ ﺜﻞ ﺑ ﺮاﻣﺞ ) ‪Agilent ADS ,‬‬
‫‪ (Agilent Genesys, AWR Suite, APLAC, Ansoft Designer‬و ﻏﻴ ﺮهﺎ ﻟﻠ ﺘﺄآﺪ ﻣ ﻦ أداء اﻟﺪاﺋﺮﻩ )أو‬
‫اﻟﻤﺰدوج اﻻﺗﺠﺎهﻰ( ﻓﻰ هﺬﻩ اﻟﺤﺎﻟﻪ‪.‬‬
‫‪152‬‬

‫ﺗ ﻢ وﺿ ﻊ اﻟﻤ ﺰدوج اﻻﺗﺠﺎه ﻰ اﻟﻤﺬآ ﻮر ﻣﻮاﺻ ﻔﺎﺗﻪ أﻋ ﻼﻩ ﻋﻠ ﻰ ﺑ ﺮﻧﺎﻣﺞ ﻟﺘﺤﻠ ﻴﻞ دواﺋ ﺮ اﻟﻤﻴﻜ ﺮووﻳﻒ و ﺗ ﻢ ﺣﺴ ﺎب‬
‫ﺑﺎراﻣﺘ ﺮات إس )‪ (S-parameters‬ﻟﻠﻤﺰدوج اﻻﺗﺠﺎهﻰ ﻓﻰ اﻟﺤﻴﺰ اﻟﺘﺮددى ﻣﻦ )‪ (4.75 GHz‬اﻟﻰ )‪(5.25 GHz‬‬
‫أى ﺑﺎﺗﺴ ﺎع ﻣﻘ ﺪارﻩ )‪ (0.5 GHz = 500 MHz‬و ه ﻮ ﻳﻜﺎﻓ ﺊ اﻟﺤﻴ ﺰ اﻟﻨﺴ ﺒﻰ )‬

‫‪relative bandwidth‬‬

‫‪ (∆B=10%‬اﻟ ﺬى ﻳﻜ ﻮن ﻓ ﻴﻪ ﻣﻌﺎﻣ ﻞ اﻻزدواج ﻟﻠﻤ ﺰدوج اﻻﺗﺠﺎه ﻰ )‪ (C‬و ﺑﺎﻗ ﻰ اﻟﺨﺼ ﺎﺋﺺ ﻗ ﺮﻳﺒﻪ ﻣ ﻦ اﻟﻘ ﻴﻢ‬
‫اﻟﻤﻄﻠﻮﺑﻪ‪.‬‬

‫‪5.25 GHz - 4.75 GHz‬‬
‫‪0.5‬‬
‫= ‪X 100‬‬
‫‪X 100 = 10%‬‬
‫‪5 GHz‬‬
‫‪5‬‬

‫= ‪∆B‬‬

‫و ﻗﺪ ﻇﻬﺮت ﻧﺘﺎﺋﺞ اﻟﺘﺤﻠﻴﻞ ﻓﻰ اﻟﺤﻴﺰ اﻟﺘﺮددى اﻟﻤﻄﻠﻮب آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫ ﻣﻌﺎﻣ ﻞ اﻻزدواج ﻟﻠﻤ ﺰدوج اﻻﺗﺠﺎه ﻰ )‪ (S31dB = C‬ﻳﺘ ﺮاوح ﺑ ﻴﻦ )‪ (−11.5dB‬و )‪ (−12.5dB‬ﻓ ﻰ اﻟﺤﻴ ﺰ‬‫اﻟﺘﺮددى اﻟﻤﻄﻠﻮب و هﻰ ﻗﻴﻢ ﺑﻌﻴﺪﻩ ﻋﻦ اﻟﻘﻴﻤﻪ اﻟﻤﻄﻠﻮﺑﻪ )‪.(−10dB‬‬
‫ ﻣﻌﺎﻣ ﻞ اﻟﻌ ﺰل )‪ (Isolation Coefficient S41dB < −15.5dB‬و هﻰ ﻗﻴﻤﻪ ﻣﻤﺘﺎزﻩ ﻷن ﻣﻌﺎﻣﻞ اﻟﻌﺰل ﻳﺠﺐ‬‫أن ﻳﻜﻮن ﻣﻨﺨﻔﻀﺎ ﻟﻴﻤﻨﻊ ﻣﺮور اﻟﻤﻮﺟﻪ اﻟﻤﻨﺘﺸﺮﻩ داﺧﻞ اﻟﻤﺰدوج اﻻﺗﺠﺎهﻰ اﻟﻰ اﻟﻤﺨﺮج رﻗﻢ )‪ (4‬اﻟﻤﻌﺰول‪.‬‬
‫ ﻣﻌﺎﻣ ﻞ اﻻﻧﻌﻜ ﺎس ﻋ ﻨﺪ اﻟﻤ ﺪﺧﻞ رﻗ ﻢ )‪ (Reflection Coefficient S11dB < −18.7dB) : (1‬و ه ﻰ ﻗ ﻴﻤﻪ‬‫ﻣﻤ ﺘﺎزﻩ ﻷﻧ ﻪ ﻳﺠ ﺐ أن ﻳﻜ ﻮن ﻣﻨﺨﻔﻀ ﺎ ﻟﻴﺴ ﻤﺢ ﺑﻤ ﺮور )ﻻ ﻳﻌﻜ ﺲ( ﻣﻌﻈ ﻢ اﻟﻤ ﻮﺟﻪ اﻟﻘﺎدﻣ ﻪ اﻟ ﻰ داﺧ ﻞ اﻟﻤ ﺰدوج‬
‫اﻻﺗﺠﺎهﻰ ‪.‬‬
‫ ﻣﻌﺎﻣ ﻞ اﻻرﺳ ﺎل ﻣ ﻦ اﻟﻤﺨ ﺮج رﻗ ﻢ )‪ (1‬اﻟ ﻰ اﻟﻤﺨ ﺮج رﻗ ﻢ )‪Transmission Coefficient S21dB ≈ ) : (2‬‬‫‪ (−0.5dB‬و ه ﻰ ﻗ ﻴﻤﻪ ﻣﻤ ﺘﺎزﻩ ﻷﻧ ﻪ ﻳﺠ ﺐ أن ﻳﻜ ﻮن ﻣ ﺮﺗﻔﻌﺎ ﻟﻴﺴﻤﺢ ﺑﻤﺮور ﻣﻌﻈﻢ اﻟﻤﻮﺟﻪ اﻟﻤﻨﺘﺸﺮﻩ داﺧﻞ اﻟﻤﺰدوج‬
‫اﻻﺗﺠﺎهﻰ اﻟﻰ )اﻟﺪاﺋﺮﻩ( أو اﻟﻤﻜﻮن اﻟﺬى ﻳﻠﻴﻪ اذا آﺎن ﻣﻮﺻﻼ ﺑﺎﻟﻤﺨﺮج )‪.(2‬‬
‫ﻓ ﻰ اﻟ ﻨﻬﺎﻳﻪ ﻳﺠ ﺐ اﻟﻘ ﻴﺎم ﺑﺎﻟ ﺒﺤﺚ ﻋ ﻦ اﻟﺤﻞ اﻷﻣﺜﻞ أى ﻋﻤﻞ )‪ (Optimization‬ﺑﺎﺳﺘﺨﺪام ﺑﺮﻧﺎﻣﺞ ﺗﺤﻠﻴﻞ اﻟﺪواﺋﺮ‬‫ﺑﻤﻌﻨ ﻰ ﺟﻌ ﻞ اﻟﺒ ﺮﻧﺎﻣﺞ ﻳﻐﻴ ﺮ ﻣ ﻦ أﺑﻌﺎد اﻟﺪاﺋﺮﻩ )اﻟﻤﺰدوج اﻻﺗﺠﺎهﻰ( ﺣﺘﻰ ﻧﺤﺼﻞ ﻋﻠﻰ أﺑﻌﺎد ﻧﻬﺎﺋﻴﻪ ﻟﻠﺪاﺋﺮﻩ ﺗﺤﻘﻖ أن‬
‫)‪ (S31dB = C ≈ −10dB‬ﻓ ﻰ اﻟﺤﻴ ﺰ اﻟﺘ ﺮددى اﻟﻤﻄﻠ ﻮب ﻣ ﻊ اﻟﺤﻔ ﺎظ ﻋﻠ ﻰ ﺑﺎﻗ ﻰ اﻟﻤﻮاﺻ ﻔﺎت ) ‪S11dB, S21dB,‬‬
‫‪ (S41dB‬ﻓﻰ اﻟﻤﻌﺪﻻت اﻟﻤﻄﻠﻮﺑﻪ‪.‬‬
‫و ﻳ ﺘﻄﻠﺐ ذﻟ ﻚ ﻣﻌ ﺮﻓﻪ ﺟﻴﺪﻩ ﺑﻜﻴﻔﻴﺔ اﺳﺘﺨﺪام و ﺗﺸﻐﻴﻞ أﺣﺪ ﺑﺮاﻣﺞ ﺗﺤﻠﻴﻞ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ ﻣﺜﻞ ﺑﺮاﻣﺞ ) ‪ADS ,‬‬
‫‪ (Genesys, AWR Suite, Ansoft Designer‬و ﻏﻴﺮهﺎ‪.‬‬
‫و ﻳﺠ ﺐ أن ﻧﻌ ﺮف أن اﻻﺳ ﺘﺨﺪام اﻟﺠ ﻴﺪ ﻟﺒ ﺮﻧﺎﻣﺞ أو أآﺜ ﺮ ﻣ ﻦ ه ﺬﻩ اﻟﺒ ﺮاﻣﺞ ﻳﻌ ﺪ ﺷ ﺮﻃﺎ أﺳﺎﺳ ﻴﺎ ﻟﺘﺼ ﻤﻴﻢ دواﺋ ﺮ‬
‫اﻟﻤﻴﻜﺮووﻳﻒ ﻋﻤﻮﻣﺎ و ﻣﻦ ﺿﻤﻨﻬﺎ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ‪.‬‬
‫و ﻗ ﺪ اﺗﻀ ﺢ ﻟ ﻨﺎ ﻣﻦ هﺬا اﻟﻤﺜﺎل ﻟﺘﺼﻤﻴﻢ ﻣﻜﻮن ﺷﺮﻳﻄﻰ أو داﺋﺮﻩ ﺻﻐﻴﺮﻩ )اﻟﻤﺰدوج اﻻﺗﺠﺎهﻰ( أن اﻟﻤﻌﺎدﻻت اﻷوﻟﻴﻪ‬
‫اﻟﺘ ﻰ ﺗ ﺆدى ﻟﺘﺼ ﻤﻴﻢ ﻣﺒﺪﺋ ﻰ ﺗﻜﻔ ﻰ ﻓﻘ ﻂ ﻟﺤﺴ ﺎب أﺑﻌ ﺎد ﻣﺒﺪﺋ ﻴﻪ ﻟﻠﺪاﺋ ﺮﻩ و ﻳﻤﻜ ﻦ أن ﺗﻈﻬ ﺮ ﻧﺘﺎﺋﺞ اﻟﺘﺤﻠﻴﻞ ﺑﺎﺳﺘﺨﺪام أﺣﺪ‬
‫ﺑ ﺮاﻣﺞ ﺗﺤﻠ ﻴﻞ دواﺋ ﺮ اﻟﻤﻴﻜ ﺮووﻳﻒ أن أداء اﻟﺪاﺋ ﺮﻩ ﻟ ﻴﺲ ﻣﺜﺎﻟ ﻴﺎ )أو ﻟ ﻴﺲ آﻤ ﺎ ه ﻮ ﻣﻄﻠ ﻮب( و ه ﺬا ﻳﻘ ﻮدﻧﺎ اﻟﻰ ﻋﻤﻞ‬
‫اﻟ ﺒﺤﺚ ﻋ ﻦ اﻟﺤ ﻞ اﻷﻣ ﺜﻞ )‪ (Optimization‬ﺑﺎﺳ ﺘﺨﺪام ﺑ ﺮﻧﺎﻣﺞ ﺗﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ ﺑﻤﻌﻨ ﻰ ﺗﻐﻴﻴ ﺮ أﺑﻌ ﺎد اﻟﺪاﺋﺮﻩ ﺑﻄﺮﻳﻘﻪ‬
‫رﻗﻤ ﻴﻪ )ﺁﻟ ﻴﻪ( ﻟﻠﺤﺼ ﻮل ﻋﻠ ﻰ اﻷداء اﻟﻤﻄﻠ ﻮب ﻟﻠﺪاﺋ ﺮﻩ ﻓ ﻰ اﻟ ﻨﻬﺎﻳﻪ و ه ﺬا اﻟﻤﺒﺪأ ﻳﺠﺐ أن ﻧﻌﺘﺒﺮﻩ أﺳﺎﺳﻴﺎ ﻟﻜﻞ ﺣﺎﻻت‬
‫ﺗﺼﻤﻴﻢ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ و اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ‪.‬‬

‫‪153‬‬

‫اذا آﺎﻧ ﺖ ﻣﻌ ﺎدﻻت اﻟﺘﺼ ﻤﻴﻢ اﻷوﻟ ﻴﻪ ﻏﻴ ﺮ دﻗ ﻴﻘﻪ أو ﺳ ﻴﺌﻪ ﻓﺎﻧﻬ ﺎ ﺗﺆدى اﻟﻰ اﻧﺘﺎج ﺗﺼﻤﻴﻢ ﻣﺒﺪﺋﻰ ﺳﺊ و ﻓﻰ هﺬﻩ اﻟﺤﺎﻟﻪ‬
‫ﻓ ﺎن ﻋﻤ ﻞ )‪ (Optimization‬ﺑﺎﺳ ﺘﺨﺪام ﺑﺮاﻣﺞ ﺗﺤﻠﻴﻞ اﻟﺪواﺋﺮ ﻟﻤﺤﺎوﻟﺔ اﻟﺤﺼﻮل ﻋﻠﻰ اﻷداء اﻟﻤﻄﻠﻮب ﺑﺘﻐﻴﻴﺮ أﺑﻌﺎد‬
‫اﻟﺪاﺋ ﺮﻩ ﻗ ﺪ ﻻ ﻳ ﺆدى ﻟﻠﺤﺼ ﻮل ﻋﻠ ﻰ ﻧﺘ ﻴﺠﻪ ﺳ ﺮﻳﻌﻪ ﺑ ﻞ ﻗ ﺪ ﻻ ﻳ ﺆدى ﻟﻠﺤﺼ ﻮل ﻋﻠ ﻰ اﻷداء اﻟﻤﻄﻠ ﻮب ﻟﻠﺪاﺋ ﺮﻩ أﺑ ﺪا و‬
‫ﺧﺼﻮﺻﺎ ﻓﻰ ﺣﺎﻟﺔ اﻟﺪواﺋﺮ اﻟﻜﺒﻴﺮﻩ و اﻟﻤﻌﻘﺪﻩ‪.‬‬
‫و اذا آﺎﻧ ﺖ ﻣﻌ ﺎدﻻت اﻟﺘﺼ ﻤﻴﻢ اﻷوﻟ ﻴﻪ ﺟ ﻴﺪﻩ )دﻗ ﻴﻘﻪ( ﻓﺎﻧﻬ ﺎ ﺗ ﺆدى اﻟ ﻰ ﻧﺘ ﻴﺠﻪ ﺳ ﺮﻳﻌﻪ أى اﻟﺤﺼ ﻮل ﻋﻠ ﻰ اﻷداء‬
‫اﻟﻤﻄﻠ ﻮب ﻟﻠﺪاﺋ ﺮﻩ ﺑﺴ ﺮﻋﻪ أو ﺑﻌ ﺪد ﻗﻠﻴﻞ ﻣﻦ اﻟﺨﻄﻮات و ﻟﻔﻬﻢ ذﻟﻚ ﻧﻌﻮد اﻟﻰ ﻣﺜﺎل اﻟﻤﺰدوج اﻻﺗﺠﺎهﻰ اﻟﻤﻌﻄﻰ أﻋﻼﻩ‬
‫و ﺑﻌﻤ ﻞ )‪ (Optimization‬ﺑﺎﺳﺘﺨﺪام ﺑﺮﻧﺎﻣﺞ ﺗﺤﻠﻴﻞ اﻟﺪواﺋﺮ ‪ ،‬اﺣﺘﺎج اﻟﺒﺮﻧﺎﻣﺞ اﻟﻰ ﻋﺪد ﺳﺒﻌﻪ و ﺧﻤﺴﻮن ﺗﻘﺮﻳﺐ أو‬
‫ﺧﻄ ﻮﻩ ﻓﻘ ﻂ )‪ (57 iterations‬ﻓ ﻰ أﻗ ﻞ ﻣ ﻦ ﻧﺼ ﻒ دﻗ ﻴﻘﻪ ﻋﻠﻰ ﺣﺎﺳﺐ )ﺑﻨﺘﻴﻮم أرﺑﻌﻪ( ﻟﻨﺤﺼﻞ ﻋﻠﻰ أﺑﻌﺎد ﺟﺪﻳﺪﻩ و‬
‫ﻧﻬﺎﺋﻴﻪ ﻟﻠﻤﺰدوج اﻻﺗﺠﺎهﻰ و هﻰ آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫)‪L=6.48mm‬‬

‫‪,‬‬

‫‪, W =0.86 mm‬‬

‫‪.(S = 0.19 mm‬‬

‫أﻣﺎ اﻷداء اﻟﻨﻬﺎﺋﻰ ﻟﻠﺪاﺋﺮﻩ ﺑﺎﺑﻌﺎدهﺎ اﻟﺠﺪﻳﺪﻩ ﻓﻰ اﻟﺤﻴﺰ اﻟﺘﺮددى اﻟﻤﻄﻠﻮب ﻓﻬﻮ آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫)‪(|S31|dB or S31dB = C ≈ −10dB‬‬

‫و‬

‫)‪(|S41|dB or S41dB < −18.22dB‬‬

‫و )‪(|S11|dB or S11dB < −17.58dB‬‬

‫و‬

‫)‪.(|S21|dB or S21dB ≈ −0.6dB‬‬

‫و هﻮ أداء ﻣﻤﺘﺎز ﻟﻠﻤﺰدوج اﻻﺗﺠﺎهﻰ‪.‬‬
‫ﺷ ﻜﻞ )‪ (٣٩ – ٤‬ﻳﻮﺿ ﺢ اﻷداء اﻟﻨﻬﺎﺋ ﻰ ﻟﻠﻤ ﺰدوج اﻻﺗﺠﺎه ﻰ ﺑﻌ ﺪ ﻋﻤ ﻞ )‪ (Optimization‬ﻣﺮﺳ ﻮﻣﺎ ﻓ ﻰ اﻟﺤﻴ ﺰ‬
‫اﻟﺘﺮددى ﻣﻦ )‪ (4.75 GHz‬اﻟﻰ )‪.(5.25 GHz‬‬
‫ﻳﻤﻜ ﻦ ﻟﻤﺴ ﺘﺨﺪم ه ﺬا اﻟﻜ ﺘﺎب اﻋ ﺎدة ﺗﺤﻠﻴﻞ و ﻋﻤﻞ )‪ (Optimization‬ﻟﻬﺬا اﻟﻤﺰدوج اﻻﺗﺠﺎهﻰ ﺑﺎﺳﺘﺨﺪام أى ﺑﺮﻧﺎﻣﺞ‬
‫ﻟﺘﺤﻠﻴﻞ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ و اﻟﻤﻘﺎرﻧﻪ ﺑﻴﻦ اﻟﻨﺘﺎﺋﺞ اﻟﺘﻰ ﻳﺤﺼﻞ ﻋﻠﻴﻬﺎ و اﻟﻨﺘﺎﺋﺞ اﻟﻤﺒﻴﻨﻪ ﻓﻰ ﺷﻜﻞ )‪.(٣٩ – ٤‬‬
‫و ﻓ ﻰ ﺣﺎﻟﺔ ﻋﺪم ﺗﻮﻓﺮ أﺣﺪ هﺬﻩ اﻟﺒﺮاﻣﺞ ﻋﻨﺪ ﻣﺴﺘﺨﺪم اﻟﻜﺘﺎب ﻓﻜﻤﺎ ذآﺮت ﻓﻰ اﻟﻔﺼﻞ اﻟﺜﺎﻟﺚ ﻓﺎن هﻨﺎك ﺑﺮاﻣﺞ ﺗﺤﻠﻴﻞ‬
‫دواﺋ ﺮ ﺗ ﻮزع ﻣ ﻨﻬﺎ ﻧﺴ ﺨﻪ ﻣﺠﺎﻧ ﻴﻪ أو ﺗﻌﻠﻴﻤ ﻴﻪ و ﻣ ﻦ أﻣ ﺜﻠﺔ ه ﺬﻩ اﻟﺒﺮاﻣﺞ ) ‪APLAC SV, Ansoft Designer‬‬
‫‪ (SV‬و ه ﻰ ﺑ ﺮاﻣﺞ ﺗ ﻮزﻋﻬﺎ ﺷﺮآﺘﻰ )‪ (APLAC, Ansoft‬ﻣﺠﺎﻧﺎ ﺑﻐﺮض اﻟﺪﻋﺎﻳﻪ ﻋﻠﻰ اﻋﺘﺒﺎر أﻧﻬﺎ ﻧﺴﺨﺔ ﻟﻠﻄﻠﺒﻪ‬
‫ﻣﺨﻔﻀ ﺔ اﻟﺨ ﻴﺎرات ﻟﺘﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ و اﻟ ﻨﻈﻢ و ه ﺬﻩ اﻟﺒ ﺮاﻣﺞ ﻳﻤﻜ ﻦ ﻃﻠ ﺒﻬﺎ ﺑﻤﺮاﺳ ﻠﺔ اﻟﺸ ﺮآﻪ اﻟﻤﻨ ﺘﺠﻪ أو ﺗﺤﻤ ﻴﻠﻬﺎ‬
‫ﺑﺎﺳﺘﺨﺪام اﻻﻧﺘﺮﻧﺖ ‪ .‬راﺟﻊ ﻣﺮاﺟﻊ اﻻﻧﺘﺮﻧﺖ أرﻗﺎم )‪.(i2,i3‬‬
‫ﻓ ﻰ اﻟﻔﺼ ﻞ اﻟﺨ ﺎﻣﺲ ﻣ ﻦ ه ﺬا اﻟﻜ ﺘﺎب ﺳ ﻴﺘﻢ اﻟﺘﻌ ﺮف ﻋﻠ ﻰ اﻟﻌﺪﻳﺪ ﻣﻦ اﻟﺒﺮاﻣﺞ اﻟﻤﺠﺎﻧﻴﻪ و اﻟﻤﺒﺎﻋﻪ ﺗﺠﺎرﻳﺎ ﻟﻠﺘﺤﻠﻴﻞ و‬
‫اﻟﺘﺼﻤﻴﻢ ﻣﻊ ﻋﻨﺎوﻳﻦ اﻻﻧﺘﺮﻧﺖ اﻟﺨﺎﺻﻪ ﺑﻬﺎ‪.‬‬

‫‪154‬‬

‫]‪|S31| [dB] vs F[GHz‬‬

‫]‪|S11| [dB] vs F[GHz‬‬

‫]‪|S41| [dB] vs F[GHz‬‬

‫]‪|S21| [dB] vs F[GHz‬‬

‫ﺷﻜﻞ )‪ : (٣٩ – ٤‬ﺑﺎراﻣﺘﺮات إس )‪ (dB‬ﻟﻠﻤﺰدوج اﻻﺗﺠﺎهﻰ ﻣﺮﺳﻮﻣﻪ ﻣﻊ اﻟﺘﺮدد )‪.(GHz‬‬
‫ﻋﻤﻠ ﻴﺔ ﺗﺤﻠ ﻴﻞ اﻟﻤ ﺰدوج اﻻﺗﺠﺎه ﻰ )‪ (directional coupler‬ﺗﻌﻨ ﻰ ﺣﺴ ﺎب )‪ (Zoe , Zoo‬ﺑﺪﻻﻟ ﺔ أﺑﻌﺎد اﻟﻤﺰدوج‬
‫اﻻﺗﺠﺎه ﻰ و ه ﻰ ﻋ ﺮض آ ﻞ ﺧ ﻂ ﺷﺮﻳﻄﻰ ﻓﻴﻪ )‪ (W‬و اﻟﻤﺴﺎﻓﻪ ﺑﻴﻦ اﻟﺨﻄﻴﻦ )‪ ، (S‬و ﻳﻤﻜﻦ اﻟﺮﺟﻮع ﻟﻠﻤﺮﺟﻊ )‪(11‬‬
‫ﻟﻠﺤﺼﻮل ﻋﻠﻰ اﻟﻤﻌﺎدﻻت اﻟﺨﺎﺻﻪ ﺑﺬﻟﻚ‪.‬‬
‫ه ﻨﺎك ﺑ ﺮاﻣﺞ ﻣ ﺜﻞ اﻟﺒ ﺮﻧﺎﻣﺞ اﻟﻤﺠﺎﻧ ﻰ )‪ (TXLine‬و ﻏﻴ ﺮﻩ ﺗﻘ ﻮم ﺑﻌﻤ ﻞ ﺣﺴ ﺎﺑﺎت ﺗﺤﻠﻴﻞ اﻟﻤﺰدوج اﻻﺗﺠﺎهﻰ‪ .‬راﺟﻊ‬
‫ﻣﺮﺟﻊ اﻻﻧﺘﺮﻧﺖ )‪.(i6‬‬
‫أﻣ ﺎ اﻟﺨﻄ ﻴﻦ اﻟﺸ ﺮﻳﻄﻴﻴﻦ اﻟﻤ ﺰدوﺟﻴﻦ اﻟﻐﻴ ﺮ ﻣﺘﻤﺎﺛﻠ ﻴﻦ )‪(nonsymmetrical microstrip coupled lines‬‬
‫ﻓ ﻴﻜﻮن ﻋﺮﺿ ﻴﻦ اﻟﺨﻄ ﻴﻦ اﻟﺸ ﺮﻳﻄﻴﻴﻦ ﻏﻴ ﺮ ﻣﺘﺴ ﺎوﻳﺎن و ﻟﺪراﺳ ﺔ ه ﺬﻩ اﻟﺤﺎﻟﻪ و ﻣﻌﺎدﻻت اﻟﺘﺼﻤﻴﻢ و اﻟﺘﺤﻠﻴﻞ ‪ ،‬ﻳﻤﻜﻦ‬
‫اﻟﺮﺟﻮع ﻟﻠﻤﺮاﺟﻊ )‪.(11,20‬‬
‫ه ﻨﺎك أﻧ ﻮاع أﺧ ﺮى ﻟﻠﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﻤ ﺰدوﺟﻪ ﻣ ﺜﻞ اﻟﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﻤﺰدوﺟﻪ اﻟﻤﻨﺤﻨﻴﻪ أو اﻟﻤﺜﻨﻴﻪ و آﺬﻟﻚ‬
‫اﻟﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﻤ ﺘﻌﺪدﻩ اﻟﻤ ﺰدوﺟﻪ )‪ (multiple microstrip coupled lines‬و ﻏﻴ ﺮهﺎ و ﻟﺪراﺳﺔ ﺗﺼﻤﻴﻢ‬
‫و ﺗﺤﻠﻴﻞ هﺬﻩ اﻷﻧﻮاع ﻳﻤﻜﻦ اﻟﺮﺟﻮع ﻟﻠﻤﺮاﺟﻊ )‪.(11,20‬‬
‫ﺑ ﺮاﻣﺞ ﺗﺤﻠ ﻴﻞ دواﺋ ﺮ اﻟﻤﻴﻜ ﺮووﻳﻒ اﻟﺤﺪﻳ ﺜﻪ ﺗﺤ ﺘﻮى ﻋﻠ ﻰ ﻧﻤ ﺎذج دﻗ ﻴﻘﻪ ﻣﻜﺎﻓ ﺌﻪ ﻟﻠﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﻤﺰدوﺟﻪ ﺳﻮاء‬
‫اﻟﻤ ﺘﻤﺎﺛﻠﻪ أو ﻏﻴﺮ اﻟﻤﺘﻤﺎﺛﻠﻪ أو اﻟﻤﺜﻨﻴﻪ أو اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﻤﺘﻌﺪدﻩ اﻟﻤﺰدوﺟﻪ و ﻏﻴﺮهﺎ و ﻳﺘﻌﻴﻦ ﻓﻘﻂ ﻋﻠﻰ ﻣﺴﺘﺨﺪم‬
‫اﻟﺒﺮﻧﺎﻣﺞ اﺧﺘﻴﺎر اﻟﻨﻤﺎذج )أو اﻟﺮﻣﻮز( اﻟﺘﻰ ﻳﺮﻏﺐ ﻓﻰ اﺿﺎﻓﺘﻬﺎ ﻟﻠﺪاﺋﺮﻩ‪.‬‬

‫‪155‬‬

‫ﻣﺮاﺟﻊ اﻟﻔﺼﻞ اﻟﺮاﺑﻊ‬
‫اﻟﺴﻨﻪ‬

‫ﻣﻜﺎن اﻟﻨﺸﺮ‬/‫دار اﻟﻨﺸﺮ‬

‫اﻟﻨﺎﺷﺮﻳﻦ‬/‫اﻟﻤﺆﻟﻔﻴﻦ‬

1987

Artech House

1992

John Wiley & Sons

1990

Prentice Hall

2004

Newnes

1996

Artech House

2005

Artech House

2001

Springer

2000

Artech House

2003

Artech House

2005

Artech House

1991

Artech House

Brian C. Wadell

2005

John Wiley & Sons

I. A. Glover,
S. R. Pennock
P. R. Shepherd

2005

John Wiley & Sons

David M. Pozar

1990

Artech House

Stanislaw
Rosloniec

1999

Artech House

Pieter L.D. Abrie

2001

John Wiley & Sons

2003

Artech House

Jia-Sheng Hong
M. J. Lancaster
Rowan Gilmore
Les Besser

2001

APLAC Solutions Corporation.

‫اﺳﻢ اﻟﻜﺘﺎب أو اﻟﻮﺛﻴﻘﻪ‬

Hoffmann, R. K.,

Handbook of Microwave
Integrated Circuits
T. C. Edwards
Foundations for Microstrip
nd
Circuit Design (2 edition)
Fooks , E. H., and Microwave
Engineering
Zakarevicius , R. Using Microstrip Circuits
A.
Leo
Passive RF and Microwave
G. Maloratsky
Integrated Circuits
Gupta , K. C., Microstrip
Lines
and
Garg , Ramesh , Slotlines , (2nd edition )
and Bahl, I. J.
Gunter Kompa
Practical Microstrip Design
And Applications
Mitsuo Makimoto, Microwave Resonators and
Sadahiko
Filters
For
Wireless
Yamashita
Communication
Q.J. Zhang,
Neural Networks for RF and
K.C. Gupta
Microwave Design
Inder Bahl
Lumped Elements for RF
and Microwave Circuits
Noyan Kinayman Modern Microwave Circuits
M. I. Aksun

156

Transmission Line Design
Handbook
Microwave Devices, Circuits
and
Subsystems
for
Communications
Engineering
Microwave Engineering
rd
(3 edition)
Algorithms for ComputerAided Design of Linear
Microwave Circuits
Design of RF and
Microwave Amplifiers and
Oscillators
Microstrip Filters for
RF/Microwave Applications
Practical RF Circuit Design
for Modern Wireless
Systems, Vol. 1, Passive
Circuits and Systems
APLAC TM 7.61 Reference
Manual Vol.3,“ Passive RF
components”

1
2
3
4
5
6
7
8
9
10
11
12

13
14
15
16
17

18

‫ﺗﺎﺑﻊ ﻣﺮاﺟﻊ اﻟﻔﺼﻞ اﻟﺮاﺑﻊ‬
‫اﻟﺴﻨﻪ‬

‫ﻣﻜﺎن اﻟﻨﺸﺮ‬/‫دار اﻟﻨﺸﺮ‬

‫اﻟﻨﺎﺷﺮﻳﻦ‬/‫اﻟﻤﺆﻟﻔﻴﻦ‬

‫اﺳﻢ اﻟﻜﺘﺎب أو اﻟﻮﺛﻴﻘﻪ‬

1999

Faculty of
Engineering - Ain
Shams University

Hesham I. M. AL
Anwar

19

Artech House

R. K. Mongia

Computer Aided Design of
Microwave Planar Six-Port
Reflection Analyzer(M.Sc.
thesis)
RF and Microwave Coupled
nd
Line Circuits, (2 edition )

2007

Computer Aided Design of
Microwave Planar Diode
Detectors (Ph.D. thesis)

21

I. J. Bahl
P. Bhartia
J. Hong
2002

Faculty of
Engineering - Cairo
University

Hesham I. M. AL
Anwar

20

‫ﻤﺭﺍﺠﻊ ﺍﻻﻨﺘﺭﻨﺕ‬
: ‫( اﻟﻤﺘﺨﺼﺼﻪ ﻓﻰ اﻟﻨﻤﺬﺟﻪ أو اﻧﺘﺎج ﻧﻤﺎذج ﻟﻤﻜﻮﻧﺎت اﻟﺘﺮددات اﻟﻌﺎﻟﻴﻪ‬Modelithics) ‫ﻣﻮﻗﻊ ﺷﺮآﺔ‬

i1

www.modelithics.com
: ‫( اﻟﻤﻨﺘﺠﻪ ﻟﺒﺮاﻣﺞ اﻟﺘﺤﻠﻴﻞ و اﻟﺘﺼﻤﻴﻢ و ﻏﻴﺮهﺎ‬Ansoft) ‫ﻣﻮﻗﻊ ﺷﺮآﺔ‬

i2

: ‫( اﻟﻤﻨﺘﺠﻪ ﻟﺒﺮاﻣﺞ اﻟﺘﺤﻠﻴﻞ و اﻟﺘﺼﻤﻴﻢ و ﻏﻴﺮهﺎ‬APLAC) ‫ﻣﻮﻗﻊ ﺷﺮآﺔ‬

i3

: ‫( و ﻏﻴﺮﻩ‬Agilent Genesys) ‫( اﻟﻤﻨﺘﺠﻪ ﻟﺒﺮﻧﺎﻣﺞ‬Agilent) ‫ﻣﻮﻗﻊ ﻟﺸﺮآﺔ‬

i4

http://www.ansoft.com/
http://www.aplac.com
http://eesof.tm.agilent.com
: ‫( و ﻏﻴﺮﻩ‬LineComp) ‫( اﻟﻤﻨﺘﺠﻪ ﻟﺒﺮﻧﺎﻣﺞ‬WAVECON) ‫ﻣﻮﻗﻊ ﻟﺸﺮآﺔ‬

i5

http://www.waveconsoft.com/

: ‫( اﻟﻤﺠﺎﻧﻰ‬TXLine) ‫ﻣﻮﻗﻊ اﻻﻧﺘﺮﻧﺖ و راﺑﻂ اﻟﺘﺤﻤﻴﻞ ﻟﺒﺮﻧﺎﻣﺞ‬
http://web.awrcorp.com/
http://web.awrcorp.com/products/txline.html
http://web.awrcorp.com/Products/Microwave_Office/TXLine.zip

157

i6

‫‪Chapter 5 : Computer Aided Design and Analysis Programs‬‬
‫اﻟﻔﺼﻞ اﻟﺨﺎﻣﺲ ‪ :‬ﺑﺮاﻣﺞ اﻟﺘﺼﻤﻴﻢ و اﻟﺘﺤﻠﻴﻞ ﺑﻮاﺳﻄﺔ اﻟﺤﺎﺳﺐ‬

‫)ﻤﻘﻁﻊ ‪ (١-٥‬ﻤﻘﺩﻤﻪ ‪:‬‬
‫ﻓﻜ ﺮة ﻋﻤﻞ ﺑﺮﻧﺎﻣﺞ ﺣﺎﺳﺐ ﻳﻘﻮم ﺑﺤﺴﺎب )ﺗﻮﻗﻊ( أداء اﻟﺪواﺋﺮ اﻟﻜﻬﺮﺑﻴﻪ و اﻻﻟﻜﺘﺮوﻧﻴﻪ ﻗﺒﻞ ﺗﺼﻨﻴﻌﻬﺎ ﺗﻌﻮد اﻟﻰ ﺳﻨﻮات‬
‫ﻃﻮﻳﻠﻪ‪.‬‬
‫ﺑ ﺪأت ﺑ ﺮاﻣﺞ ﺗﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ ﺑﺎﺳ ﺘﺨﺪام اﻟﺤﺎﺳ ﺐ اﻟﺘ ﻰ ﻳﻌ ﺘﻤﺪ ﻋﻠ ﻴﻬﺎ ﻓ ﻰ اﻟﺴ ﺒﻌﻴﻨﺎت ﻣ ﻦ اﻟﻘ ﺮن اﻟﻌﺸﺮﻳﻦ و آﺎﻧﺖ هﺬﻩ‬
‫اﻟ ﺒﺪاﻳﻪ ﻓ ﻰ ﺑﻌ ﺾ اﻟﺸ ﺮآﺎت و اﻟﺠﺎﻣﻌ ﺎت ﻣ ﺜﻞ ﺑ ﺮﻧﺎﻣﺞ )‪ (SPICE‬اﻟ ﺬى ﺑ ﺪأت آﺘﺎﺑ ﺘﻪ ﻓﻰ ﺟﺎﻣﻌﺔ ﺑﻴﺮآﻠﻰ ﺑﺎﻟﻮﻻﻳﺎت‬
‫اﻟﻤﺘﺤﺪﻩ اﻷﻣﺮﻳﻜﻴﻪ و ﺑﺮﻧﺎﻣﺞ )‪ (APLAC‬اﻟﺬى ﺑﺪأت آﺘﺎﺑﺘﻪ ﻓﻰ ﺟﺎﻣﻌﺔ هﻠﺴﻨﻜﻰ ﻟﻠﺘﻜﻨﻮﻟﻮﺟﻴﺎ ﺑﻔﻨﻠﻨﺪا‪.‬‬
‫و ﻟﻢ ﺗﻜﻦ هﺬﻩ اﻟﺒﺮاﻣﺞ ﻓﻰ ﻧﺴﺨﻬﺎ اﻷوﻟﻴﻪ ﻣﺼﻤﻤﻪ ﻟﺘﺤﻠﻴﻞ دواﺋﺮ اﻟﺘﺮدد اﻟﻌﺎﻟﻰ و اﻟﻤﻴﻜﺮووﻳﻒ و ﻟﻜﻦ ﺗﻢ ﺗﻌﺪﻳﻠﻬﺎ ﻓﻴﻤﺎ‬
‫ﺑﻌﺪ ﻟﺘﺴﻤﺢ ﺑﻬﺬا اﻟﻌﻤﻞ‪.‬‬
‫أﻣﺎ أواﺋﻞ اﻟﺒﺮاﻣﺞ اﻟﺘﻰ ﺗﻢ اﻧﺘﺎﺟﻬﺎ ﺗﺠﺎرﻳﺎ ﺑﻌﺪ ذﻟﻚ ﻟﺘﺤﻠﻴﻞ دواﺋﺮ اﻟﺘﺮدد اﻟﻌﺎﻟﻰ و اﻟﻤﻴﻜﺮووﻳﻒ ﻓﻜﺎﻧﺖ ﻋﺪﻳﺪﻩ ﻣﺜﻞ ‪:‬‬
‫)‪ (COMPACT, SUPERCOMPACT, TOUCHSTONE, MDS, MicrowaveSPICE, Esope‬و ﻏﻴﺮهﺎ‬
‫و ﻣﻌﻈﻤﻬﺎ ﻇﻬﺮ ﻓﻰ اﻟﺜﻤﺎﻧﻴﻨﺎت ﻣﻦ اﻟﻘﺮن اﻟﻌﺸﺮﻳﻦ و آﺎﻧﺖ أﻏﻠﻰ ﺛﻤﻨﺎ ﺑﻜﺜﻴﺮ ﻣﻦ ﺑﺮاﻣﺞ ﺗﺤﻠﻴﻞ اﻟﺪواﺋﺮ اﻟﻌﺎدﻳﻪ‪.‬‬
‫ﺑﻌ ﺾ ه ﺬﻩ اﻟﺒ ﺮاﻣﺞ اﺳ ﺘﻤﺮ اﻧ ﺘﺎﺟﻪ و ﺑﻌﻀﻬﺎ ﺗﻮﻗﻒ اﻧﺘﺎﺟﻪ و ﺑﻌﻀﻬﺎ ﺗﻢ ﺗﻄﻮﻳﺮﻩ أو دﻣﺠﻪ ﻣﻊ ﺑﺮﻧﺎﻣﺞ ﺁﺧﺮ ﻣﻊ ﺗﻐﻴﻴﺮ‬
‫اﻻﺳ ﻢ ﻓﻤ ﺜﻼ ﺑ ﺮﻧﺎﻣﺞ )‪ (MDS‬ﻣ ﻦ اﻧ ﺘﺎج ﺷ ﺮآﺔ )‪ (hp‬اﻷﻣ ﺮﻳﻜﻴﻪ و اﻟﺘ ﻰ أﺻ ﺒﺤﺖ )‪ (Agilent‬اﻵن ‪ ،‬ﺗﻢ ﺗﻄﻮﻳﺮﻩ‬
‫ﻓ ﻴﻤﺎ ﺑﻌ ﺪ ﻟﻴﺼ ﺒﺢ اﺳ ﻤﻪ ﺣﺎﻟ ﻴﺎ )‪ (Agilent ADS‬و هﻮ اﻷﻏﻠﻰ ﺛﻤﻨﺎ ﺑﻴﻦ ﺑﺮاﻣﺞ ﺗﺤﻠﻴﻞ دواﺋﺮ و أﻧﻈﻤﺔ اﻟﺘﺮدد اﻟﻌﺎﻟﻰ‬
‫و اﻟﻤﻴﻜﺮووﻳﻒ‪.‬‬
‫أﻣ ﺎ أواﺋ ﻞ اﻟﺒ ﺮاﻣﺞ اﻟﺘ ﻰ أﻧ ﺘﺠﺖ ﻓ ﻰ اﻟﺜﻤﺎﻧﻴ ﻨﺎت و اﻟﺘﺴ ﻌﻴﻨﺎت ﻣ ﻦ اﻟﻘ ﺮن اﻟﻌﺸ ﺮﻳﻦ ﻟﻌﻤ ﻞ اﻟﺘﺤﻠ ﻴﻞ ﺑﺎﻟﻄ ﺮق‬
‫اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴﻴﻪ ﺳﻮاء ﻟﺪواﺋﺮ اﻟﺘﺮدد اﻟﻌﺎﻟﻰ و اﻟﻤﻴﻜﺮووﻳﻒ أو ﻟﻠﻬﻮاﺋﻴﺎت أو ﻏﻴﺮهﺎ ﻓﻜﺎﻧﺖ ﻋﺪﻳﺪﻩ ﻣﺜﻞ ‪:‬‬
‫)‪ (EM-sim, hp HFSS, Magnet 2D &3Ds, MSC\EMAS, Sonnet EM‬و ﻏﻴ ﺮهﺎ و أﻳﻀ ﺎ ﺑﻌ ﺾ‬
‫ه ﺬﻩ اﻟﺒ ﺮاﻣﺞ اﺳ ﺘﻤﺮ اﻧ ﺘﺎﺟﻪ )أﺣ ﻴﺎﻧﺎ ﻣ ﻊ ﺗﻐﻴﻴ ﺮ اﻻﺳ ﻢ( و ﺑﻌﻀ ﻬﺎ ﺗﻮﻗ ﻒ اﻧ ﺘﺎﺟﻪ و ﺑﻌﻀ ﻬﺎ ﺗﻢ ﺗﻄﻮﻳﺮﻩ أو دﻣﺠﻪ ﻣﻊ‬
‫ﺑﺮﻧﺎﻣﺞ ﺁﺧﺮ آﻤﺎ هﻮ اﻟﺤﺎل ﺑﺎﻟﻨﺴﺒﻪ ﻟﻠﻜﺜﻴﺮ ﻣﻦ ﺑﺮاﻣﺞ ﺗﺤﻠﻴﻞ دواﺋﺮ اﻟﺘﺮدد اﻟﻌﺎﻟﻰ و اﻟﻤﻴﻜﺮووﻳﻒ‪.‬‬
‫أﻳﻀ ﺎ اﻧ ﺘﺠﺖ ﺑ ﺮاﻣﺞ ﻋﺎﻣ ﻪ ﻟﻌﻤ ﻞ اﻟﺘﺤﻠ ﻴﻞ ﺑﺎﻟﻄ ﺮق اﻟ ﺮﻗﻤﻴﻪ ﻣﺜﻞ )‪ (Finite Element Method‬و ﻏﻴﺮهﺎ ﺗﺼﻠﺢ‬
‫ﻟﺘﻄﺒ ﻴﻘﺎت اﻟﻬﻨﺪﺳ ﻪ اﻟﻜﻬ ﺮﺑﻴﻪ )اﻟﺘﺤﻠ ﻴﻞ ﺑﺎﻟﻄ ﺮق اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴﻴﻪ( و ﻏﻴﺮهﺎ ﻣﻦ اﻟﺘﺨﺼﺼﺎت اﻟﻬﻨﺪﺳﻴﻪ ‪ ،‬و ﻣﻦ هﺬﻩ‬
‫اﻟﺒﺮاﻣﺞ )‪ (ANSYS, COSMOS‬و ﻏﻴﺮهﺎ‪.‬‬

‫‪158‬‬

‫ﻓ ﻰ اﻟﺒ ﺮاﻣﺞ اﻷوﻟ ﻰ ﻟﺘﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ آﺎن ﺗﻮﺻﻴﻒ اﻟﺪواﺋﺮ اﻟﻤﺮاد ﺗﺤﻠﻴﻠﻬﺎ ﻳﺘﻢ ﻋﻦ ﻃﺮﻳﻖ آﺘﺎﺑﺔ وﺻﻒ آﺘﺎﺑﻰ ﻟﻠﺪاﺋﺮﻩ‬
‫)‪ (Netlist‬أو ﻗﺎﺋﻤ ﻪ ﻟﻤﻜﻮﻧﺎت اﻟﺪاﺋﺮﻩ ﻣﻜﺘﻮﺑﻪ ﺑﻄﺮﻳﻘﻪ ﻣﻌﻴﻨﻪ ﻟﺘﺘﻔﻖ ﻣﻊ ﺑﺮﻧﺎﻣﺞ اﻟﺘﺤﻠﻴﻞ‪ .‬و ﻳﺘﻢ ﺗﺸﻐﻴﻞ ﺑﺮﻧﺎﻣﺞ اﻟﺘﺤﻠﻴﻞ‬
‫ﺑﺎدﺧ ﺎل هﺬا اﻟﻮﺻﻒ اﻟﻜﺘﺎﺑﻰ و ﻳﻨﺘﺞ اﻟﺒﺮﻧﺎﻣﺞ اﻟﻘﻴﻢ اﻟﻤﺤﺴﻮﺑﻪ أو اﻟﺘﻰ ﻳﺘﻢ رﺳﻤﻬﺎ و اﻟﺘﻰ ﺗﺒﻴﻦ أداء اﻟﺪاﺋﺮﻩ ﻣﺜﻞ اﻟﺘﻴﺎر‬
‫و اﻟﻔﻮﻟﺖ و اﻟﻘﺪرﻩ ﻋﻨﺪ أى ‪ /‬آﻞ ﻧﻘﻄﻪ أو ﺟﺰء ﻣﻦ اﻟﺪاﺋﺮﻩ‪.‬‬
‫و آ ﺎن ه ﺬا اﻟﻮﺻ ﻒ اﻟﻜﺘﺎﺑ ﻰ ﻟﻠﺪاﺋ ﺮﻩ )‪ (Netlist‬ﺧﺎﺻ ﺎ ﺑﻜ ﻞ ﺑ ﺮﻧﺎﻣﺞ ﻋﻠ ﻰ ﺣ ﺪﻩ ﻓﺒﻴﻨﻤﺎ هﻨﺎك ﻣﺜﻼ ﻃﺮﻳﻘﻪ ﻟﻜﺘﺎﺑﺔ هﺬا‬
‫اﻟﻮﺻ ﻒ ﻟﺘﺸ ﻐﻴﻞ ﺑ ﺮﻧﺎﻣﺞ )‪ (SPICE‬و اﻟﺒ ﺮاﻣﺞ اﻟﻤ ﺘﻮاﻓﻘﻪ ﻣﻌ ﻪ ﻟﻌﻤ ﻞ ﺗﺤﻠ ﻴﻞ ﻟﺪاﺋ ﺮﻩ ﻣﻌﻴ ﻨﻪ ‪ ،‬ﻧﺠ ﺪ أن هﻨﺎك ﻃﺮﻳﻘﻪ‬
‫أﺧﺮى ﻣﺨﺘﻠﻔﻪ ﻟﻜﺘﺎﺑﺔ اﻟﻮﺻﻒ ﻟﻨﻔﺲ اﻟﺪاﺋﺮﻩ ﻟﺘﺸﻐﻴﻞ ﺑﺮﻧﺎﻣﺞ )‪ (APLAC‬ﻟﻌﻤﻞ ﺗﺤﻠﻴﻞ اﻟﺪاﺋﺮﻩ‪.‬‬
‫ﻓﻰ ﺑﺮﻧﺎﻣﺞ )‪ (APLAC‬ﻣﺜﻼ ﺗﺴﻤﻰ ﻃﺮﻳﻘﺔ اﻟﻜﺘﺎﺑﻪ ﻟﻐﻪ )‪.(APLAC language‬‬
‫و ﺗﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ ﺑﺎﺳ ﺘﺨﺪام اﻟﻮﺻﻒ اﻟﻜﺘﺎﺑﻰ ﻟﻠﺪاﺋﺮﻩ )‪ (Netlist‬ﻣﺎزال ﻣﺴﺘﻤﺮا ﺣﺘﻰ ﻳﻮﻣﻨﺎ هﺬا ﻓﻰ ﺑﻌﺾ اﻟﺒﺮاﻣﺞ و‬
‫ﺣﺘﻰ ﻓﻰ ﺑﻌﺾ اﻟﺒﺮاﻣﺞ اﻟﺤﺪﻳﺜﻪ اﻟﺘﻰ ﻇﻬﺮت ﻣﺆﺧﺮا‪.‬‬
‫ﺑﻌﺪ ﺗﻄﻮر ﻧﻈﻢ ﺗﺸﻐﻴﻞ اﻟﺤﻮاﺳﺐ ﻇﻬﺮت اﻟﻌﺪﻳﺪ ﻣﻦ اﻟﺒﺮاﻣﺞ اﻟﺘﻰ ﻳﺘﻢ ﻓﻴﻬﺎ ﺗﻮﺻﻴﻒ اﻟﺪاﺋﺮﻩ ﻓﻰ ﺷﻜﻞ )‪(Schematic‬‬
‫أى ﻓ ﻰ ﺷ ﻜﻞ رﺳ ﻢ ﻟﻠﺪاﺋﺮﻩ ﻳﺤﺘﻮى ﻋﻠﻰ رﻣﻮز اﻟﻤﻜﻮﻧﺎت و اﻟﻮﺻﻼت اﻟﺘﻰ ﺑﻴﻨﻬﺎ و ﻏﻴﺮ ذﻟﻚ ﻣﺜﻞ اﻟﻼاﺳﺘﻤﺮارﻳﺎت و‬
‫اﻟﻤﺨﺎرج و ﻣﺼﺎدر اﻟﻘﺪرﻩ اﻟﻰ ﺁﺧﺮﻩ‪.‬‬
‫ﺗﻄ ﻮرت ﺑ ﺮاﻣﺞ اﻟﺘﺤﻠ ﻴﻞ و اﻟﺘﺼ ﻤﻴﻢ ﺑﻮاﺳ ﻄﺔ اﻟﺤﺎﺳ ﺐ ﺗﻄ ﻮرا آﺒﻴ ﺮا ﻣﺆﺧ ﺮا و أﺻ ﺒﺢ ﻳﻌ ﺘﻤﺪ ﻋﻠ ﻴﻬﺎ اﻋﺘﻤﺎدا رﺋﻴﺴﻴﺎ‬
‫ﻟﻼﻧ ﺘﺎج اﻟﺼ ﻨﺎﻋﻰ ﻟﺪواﺋ ﺮ و ﻧﻈ ﻢ اﻟﺘ ﺮدد اﻟﻌﺎﻟ ﻰ و اﻟﻤﻴﻜ ﺮووﻳﻒ و ﻇﻬ ﺮت ﺑ ﺮاﻣﺞ اﻟﺘﺼ ﻤﻴﻢ ﺑﻮاﺳ ﻄﺔ اﻟﺤﺎﺳ ﺐ اﻟﺘﻰ‬
‫ﺗﺼ ﻤﻢ أﻧ ﻮاع ﻣﻌﻴ ﻨﻪ ﻣ ﻦ اﻟﺪواﺋ ﺮ و ﺑ ﺮاﻣﺞ اﻟ ﻨﻤﺬﺟﻪ و ﻇﻬ ﺮت ﺑ ﺮاﻣﺞ ﻋﺎﻣ ﻪ ﻣﺮﺗﻔﻌﺔ اﻟﺜﻤﻦ ﺟﺪا ﺗﻘﻮم ﺑﺎﺟﺮاء اﻟﺘﺤﻠﻴﻞ‬
‫ﺑﺎﻟﻌﺪﻳﺪ ﻣﻦ اﻟﻄﺮق و ﺗﺠﺮى اﻟﺘﻮﻟﻴﻒ و اﺧﺘﻴﺎر اﻟﺤﻞ اﻷﻣﺜﻞ ﻟﻠﺪاﺋﺮﻩ و ﻋﻤﻠﻴﺎت اﻟﺘﺼﻨﻴﻊ ﺑﻮاﺳﻄﺔ اﻟﺤﺎﺳﺐ‪.‬‬

‫)ﻤﻘﻁﻊ ‪ (٢-٥‬ﻁﺭﻕ ﺘﺤﻠﻴل ﺩﻭﺍﺌﺭ ﺍﻟﺘﺭﺩﺩ ﺍﻟﻌﺎﻟﻰ ﻭ ﺍﻟﻤﻴﻜﺭﻭﻭﻴﻑ ﻭ ﺘﻌﺎﺭﻴﻑ ﻫﺎﻤﻪ ‪:‬‬
‫اﻟﻄ ﺮﻳﻘﺔ اﻟ ﺮﻗﻤﻴﺔ اﻟﻌﺎﻣ ﺔ اﻟﻨﻘﻄ ﻴﻪ اﻟﻤﻌﺪﻟ ﻪ ﻟﺘﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ )‪ (Modified Nodal Analysis‬اﻟﺘ ﻰ ﺗﺤﺴﺐ اﻟﻔﻮﻟﺖ‬
‫ﻋ ﻨﺪ آ ﻞ ﻧﻘﻄ ﻪ و اﻟﺘﻴﺎر ﻓﻰ آﻞ ﻓﺮع ﺗﺼﻠﺢ أﻳﻀﺎ ﻟﺘﺤﻠﻴﻞ دواﺋﺮ اﻟﺘﺮدد اﻟﻌﺎﻟﻰ ﺑﺸﺮط ﺗﻮﻓﺮ اﻟﻨﻤﺎذج )اﻟﺪواﺋﺮ اﻟﻤﻜﺎﻓﺌﻪ‬
‫ﻟﻠﻤﻜﻮﻧﺎت( اﻟﺪﻗﻴﻘﻪ‪.‬‬
‫ﺣ ﻴﺚ ﻳ ﺘﻢ ﺗﻜ ﻮﻳﻦ اﻟﻤﻌ ﺎدﻻت اﻟﺘ ﻰ ﺗﻤ ﺜﻞ ﻗ ﻴﻢ اﻟﺘ ﻴﺎر و اﻟﻔ ﻮﻟﺖ ﻓ ﻰ آ ﻞ أﺟﺰاء اﻟﺪاﺋﺮﻩ و ﻳﺘﻢ ﺗﺮﺗﻴﺐ هﺬﻩ اﻟﻤﻌﺎدﻻت ﻓﻰ‬
‫ﺻﻮرة ﻣﺼﻔﻮﻓﺎت ‪ ،‬ﺛﻢ ﺗﺴﺘﺨﺪم اﻟﻄﺮق اﻟﺮﻗﻤﻴﻪ ﻣﺜﻞ )‪(Newton's method, Sparse Matrix Technique‬‬
‫و ﻏﻴﺮهﺎ ﻟﺤﻞ هﺬﻩ اﻟﻤﻌﺎدﻻت ﻣﻌﺎ ﻟﻴﻨﺘﺞ ﻣﻦ ﺣﻞ هﺬﻩ اﻟﻤﻌﺎدﻻت ﻗﻴﻤﺔ اﻟﻔﻮﻟﺖ ﻋﻨﺪ آﻞ ﻧﻘﻄﻪ و اﻟﺘﻴﺎر ﻓﻰ آﻞ ﻓﺮع‪.‬‬
‫و هﺬﻩ اﻟﻄﺮﻳﻘﻪ ﻣﺒﻨﻰ ﻋﻠﻴﻬﺎ اﻟﻜﺜﻴﺮ ﻣﻦ اﻟﺒﺮاﻣﺞ اﻟﻤﺴﺘﺨﺪﻣﻪ ﻓﻰ اﻟﺘﺤﻠﻴﻞ ﻣﺜﻞ )‪.(SPICE‬‬
‫اﻟﻤ ﺮﺟﻊ )‪ (5‬ﻳﺸ ﺮح ه ﺬﻩ اﻟﻄ ﺮق و ﻳﺤ ﺘﻮى أﻳﻀ ﺎ ﻋﻠ ﻰ ﺑ ﺮﻧﺎﻣﺞ ﻋ ﺎم ﻣﻜﺘﻮب ﺑﻠﻐﺔ )‪ (FORTRAN‬ﻟﺘﺤﻠﻴﻞ اﻟﺪواﺋﺮ‬
‫ﺑﺎﻟﻄﺮﻳﻘﻪ اﻟﻨﻘﻄﻴﻪ )‪.(Modified Nodal Analysis‬‬
‫ﻃ ﺮق اﻟﺘﺤﻠ ﻴﻞ اﻟﺨﻄ ﻴﻪ )‪ (Linear Analysis Methods‬ﺗﺴ ﺘﺨﺪم ﻟﺘﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ اﻟﺨﺎﻣﻠ ﻪ )‪ (passive‬اﻟﺘ ﻰ ﻻ‬
‫ﻳﻮﺟﺪ ﺑﻬﺎ ﻣﻜﻮﻧﺎت )ﻏﻴﺮ ﺧﻄﻴﻪ ‪.(Nonlinear‬‬

‫‪159‬‬

‫ﻟﻜ ﻦ ﻃ ﺮق اﻟﺘﺤﻠ ﻴﻞ اﻟﺨﻄ ﻴﻪ ﺗﺴ ﺘﺨﺪم ﻟﺘﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ اﻟﻔﻌﺎﻟ ﻪ )‪ (active‬اﻟﺘ ﻰ ﻳﻜ ﻮن ﺑﻬ ﺎ ﻣﻜ ﻮﻧﺎت ﻏﻴ ﺮ ﺧﻄ ﻴﻪ ﻣﺜﻞ‬
‫)اﻟﺘﺮاﻧﺰﻳﺴ ﺘﻮر( اذا ﺗ ﻢ ﺗﻤﺜ ﻴﻞ اﻟﺘﺮاﻧﺰﻳﺴ ﺘﻮر ﺑﻨﻤﻮذج ﺧﻄﻰ )‪ (Linear Model‬أو ﺑﺎراﻣﺘﺮات ﺧﻄﻴﻪ ﻣﺜﻞ ) ‪Z or‬‬
‫‪.(Y or S parameters‬‬
‫ه ﻨﺎك ﻃ ﺮق ﺗﺤﻠ ﻴﻞ ﻟﺤﺴﺎب ﺑﺎراﻣﺘﺮات اس )‪ (S parameters analysis‬ﻟﻠﺪاﺋﺮﻩ ﻣﺒﻨﻴﻪ ﻋﻠﻰ ﻣﻌﺮﻓﺔ )أو ﺣﺴﺎب(‬
‫ﺑﺎراﻣﺘ ﺮات اس ﻟﻜ ﻞ ﻣﻜ ﻮن ﻓ ﻰ اﻟﺪاﺋ ﺮﻩ ‪ ،‬و ه ﺬﻩ اﻟﻄ ﺮق ﻣ ﺘﻌﺪدﻩ ﻣ ﺜﻞ ) ‪Connection Scattering Matrix‬‬
‫‪ (Approach, Multiport Connection Method, Analysis by Subnetwork Growth Method‬و‬
‫ﻏﻴﺮهﺎ ﻣﻦ اﻟﻄﺮق‪.‬‬
‫اﻟﻤ ﺮﺟﻊ )‪ (1‬ﻳﺤ ﺘﻮى ﻋﻠ ﻰ ﺑ ﺮﻧﺎﻣﺞ ﻋ ﺎم ﻣﻜ ﺘﻮب ﺑﻠﻐ ﺔ )‪ (FORTRAN‬ﺑﺎﺳ ﻢ )‪ (MCAP‬ﻟﺘﺤﻠ ﻴﻞ اﻟﺪواﺋﺮ ﺑﺤﺴﺎب‬
‫ﺑﺎراﻣﺘ ﺮات اس )‪ (S parameters analysis‬ﻟﻠﺪواﺋ ﺮ اﻟﺸ ﺮﻳﻄﻴﻪ و اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﺪﻗ ﻴﻘﻪ ) ‪microstrip and‬‬
‫‪.(stripline circuits‬‬
‫اﻟﻤ ﺮﺟﻊ )‪ (2‬ﻳﺤ ﺘﻮى ﻋﻠ ﻰ ﺑﺮاﻣﺞ ﺑﻠﻐﺔ )‪ (FORTRAN‬ﻟﻠﺤﻞ ﺑﻄﺮﻳﻘﺔ ) ‪Connection Scattering Matrix‬‬
‫‪ (Approach‬و ﺧ ﻮارزﻣﺎت )‪ (Algorithms‬ﻳﻤﻜ ﻦ اﺳ ﺘﺨﺪاﻣﻬﺎ ﻟﻌﻤ ﻞ ﺑ ﺮﻧﺎﻣﺞ ﻋ ﺎم ﻳﻘﻮم ﺑﻌﻤﻞ ﺗﺤﻠﻴﻞ ﺑﺎرﻣﺘﺮات‬
‫اس )‪ (S parameters analysis‬و أﻧ ﻮاع أﺧ ﺮى ﻣ ﻦ اﻟﺘﺤﻠ ﻴﻞ ﻟﺪواﺋ ﺮ اﻟﺘ ﺮدد اﻟﻌﺎﻟ ﻰ و اﻟﻤﻴﻜ ﺮووﻳﻒ اﻟﺨﻄ ﻴﻪ و‬
‫ﻳﻤﻜ ﻦ ﺗﻌ ﺪﻳﻠﻬﺎ ﻟﺘﺼ ﻠﺢ أﻳﻀ ﺎ ﻟﻠﺪواﺋ ﺮ اﻟﻐﻴ ﺮ ﺧﻄ ﻴﻪ ) و ه ﺬا ﻣ ﺎ اﻋ ﺘﻤﺪ ﻋﻠ ﻴﻪ أﺣﺪ اﻟﺒﺮاﻣﺞ ﻣﻨﺨﻔﻀﺔ اﻟﺘﻜﺎﻟﻴﻒ اﻟﻤﻨﺘﺠﻪ‬
‫ﺗﺠﺎرﻳﺎ(‪.‬‬
‫ﻃ ﺮق اﻟﺘﺤﻠ ﻴﻞ اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴ ﻰ اﻟ ﺮﻗﻤﻴﻪ ﺗﺴ ﺘﺨﺪم ﻟﺘﺤﻠ ﻴﻞ دواﺋ ﺮ اﻟﺘ ﺮدد اﻟﻌﺎﻟ ﻰ و اﻟﻤﻴﻜﺮووﻳﻒ ﺑﺎﺳﺘﺨﺪام اﻟﺤﺎﺳﺐ‬
‫ﺑﺘﻄﺒﻴﻖ ﻣﻌﺎدﻻت ﻣﺎآﺴﻮﻳﻞ ﻋﻠﻰ اﻟﺪاﺋﺮﻩ و ﺣﻠﻬﺎ ﺑﻄﺮق رﻗﻤﻴﻪ و هﻰ ﺗﺤﻘﻖ دﻗﻪ ﻋﺎﻟﻴﻪ ﻓﻰ اﻟﺘﺤﻠﻴﻞ ﺑﺎﻟﻨﺴﺒﻪ ﻟﻠﺪواﺋﺮ )أو‬
‫أﺟﺰاء اﻟﺪواﺋﺮ( اﻟﺨﺎﻣﻠﻪ‪.‬‬
‫أﻣ ﺎ ﻟﺘﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ اﻟﻐﻴ ﺮ ﺧﻄ ﻴﻪ ﻣ ﺜﻞ ﻣﻜﺒ ﺮات اﻟﻘ ﺪرﻩ و اﻟﻤﺎزﺟ ﺎت و اﻟﻤﺬﺑ ﺬﺑﺎت و ﻏﻴﺮهﺎ ﻓﻼﺑﺪ ﻣﻦ اﺳﺘﺨﺪام ﻃﺮق‬
‫اﻟﺘﺤﻠﻴﻞ اﻟﻐﻴﺮ ﺧﻄﻴﻪ اﻷﻧﺴﺐ ﻟﻬﺬا اﻟﻐﺮض‪.‬‬
‫ه ﻨﺎك اﻟﻌﺪﻳ ﺪ ﻣ ﻦ ﻃ ﺮق اﻟﺘﺤﻠ ﻴﻞ اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴ ﻰ ﻣ ﺜﻞ ) ‪Finite Element Method, Finite Difference‬‬
‫‪ (Method, Method of Lines, Transmission Line Modeling method, Moment Method‬و‬
‫ﻏﻴﺮهﺎ‪.‬‬
‫ﻃ ﺮق اﻟﺘﺤﻠ ﻴﻞ اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴ ﻰ ه ﻰ ﻃ ﺮق ﻋﺎﻣ ﻪ ﻻ ﺗﺴ ﺘﺨﺪم ﻟﺘﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ ﻓﻘ ﻂ و ﻟﻜ ﻦ أﻳﻀﺎ ﺗﺴﺘﺨﺪم ﻓﻰ ﺗﺤﻠﻴﻞ‬
‫اﻟﻬﻮاﺋﻴﺎت و ﻏﻴﺮهﺎ ﻣﻦ اﻟﺤﺴﺎﺑﺎت‪.‬‬
‫ﻃ ﺮق اﻟﺘﺤﻠ ﻴﻞ اﻟﻐﻴ ﺮ ﺧﻄ ﻴﻪ )‪ (Nonlinear Analysis Methods‬ﺗﺴ ﺘﺨﺪم ﻟﺘﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ اﻟﺘ ﻰ ﻳ ﻮﺟﺪ ﺑﻬ ﺎ‬
‫ﻣﻜﻮﻧﺎت )ﻏﻴﺮ ﺧﻄﻴﻪ ‪ (Nonlinear‬ﻳﺘﻢ ﺗﻤﺜﻴﻠﻬﺎ ﺑﻨﻤﺎذج ﻏﻴﺮ ﺧﻄﻴﻪ و ﻳﻜﻮن ﻧﻮع اﻟﺘﺤﻠﻴﻞ )اﻟﺤﺴﺎﺑﺎت( وﻗﺘﻰ أو ﻣﻊ‬
‫اﻟ ﻮﻗﺖ )‪ (Time Domain‬ﺣ ﻴﺚ ﺗﺤﺴ ﺐ ﻗ ﻴﻢ اﻟﺘﺤﻠ ﻴﻞ )اﻟﺘ ﻴﺎر أو اﻟﻔ ﻮﻟﺖ ﻣ ﺜﻼ( ﻣ ﻊ اﻟ ﻮﻗﺖ أو ﻳﻜ ﻮن ﻧ ﻮع اﻟﺘﺤﻠ ﻴﻞ‬
‫)اﻟﺤﺴ ﺎﺑﺎت( ﻣ ﻊ اﻟﺘ ﺮدد )‪ (Frequency Domain‬ﺣ ﻴﺚ ﺗﺤﺴ ﺐ ﻗﻴﻢ اﻟﺘﺤﻠﻴﻞ )اﻟﺘﻴﺎر أو اﻟﻔﻮﻟﺖ ﻣﺜﻼ( ﻣﻊ اﻟﺘﺮدد و‬
‫هﻨﺎك ﻃﺮق ﺗﻤﺰج ﺑﻴﻦ اﻟﻨﻮﻋﻴﻦ‪.‬‬
‫ﻃ ﺮﻳﻘﺔ اﻟﺘﺤﻠ ﻴﻞ اﻟﻌﺎﺑ ﺮ أو اﻟﻤ ﺆﻗﺖ اﻟﻐﻴﺮ ﺧﻄﻴﻪ ﻣﻊ اﻟﻮﻗﺖ )‪ (Transient Time Domain‬اﻟﻤﺴﺘﺨﺪﻣﻪ ﻓﻰ ﺗﺤﻠﻴﻞ‬
‫اﻟﺪواﺋ ﺮ اﻟﻜﻬ ﺮﺑﻴﻪ ﻓ ﻰ اﻟﺘ ﺮددات اﻟﻤﻨﺨﻔﻀ ﻪ ﺗﺴ ﺘﺨﺪم أﻳﻀ ﺎ ﻓ ﻰ ﺗﺤﻠ ﻴﻞ دواﺋ ﺮ اﻟﺘ ﺮدد اﻟﻌﺎﻟ ﻰ و اﻟﻤﻴﻜ ﺮووﻳﻒ‪ .‬و ه ﺬﻩ‬
‫اﻟﻄﺮﻳﻘﻪ ﺗﺼﻠﺢ ﻟﺘﺤﻠﻴﻞ ﺟﻤﻴﻊ أﻧﻮاع اﻟﺪواﺋﺮ اﻟﻐﻴﺮ ﺧﻄﻴﻪ و اﻟﺨﻄﻴﻪ‪.‬‬

‫‪160‬‬

‫وﻓ ﻴﻬﺎ ﻳ ﺘﻢ آ ﺘﺎﺑﺔ ﻣﻌ ﺎدﻻت اﻟﺘ ﻴﺎر و اﻟﻔ ﻮﻟﺖ ﺑﺎﻟﺪاﺋ ﺮﻩ ﻓ ﻰ ﺻ ﻮرة ﻣﻌ ﺎدﻻت ﺗﻔﺎﺿ ﻠﻴﻪ ﻣ ﻊ اﻟ ﻮﻗﺖ ) ‪time-domain‬‬
‫‪ (differential equations‬ﻋﻠﻰ هﻴﺌﺔ ﻣﺼﻔﻮﻓﺎت ﺛﻢ ﻳﺘﻢ ﺣﻞ هﺬﻩ اﻟﻤﻌﺎدﻻت ﻣﻌﺎ ﺑﺎﻟﻄﺮق اﻟﺮﻗﻤﻴﻪ‪.‬‬
‫و ﻳﺴ ﺘﺨﺪم ﺗﺤ ﻮﻳﻞ ﻓﻮرﻳ ﺮ ﻟ ﺘﺤﻮﻳﻞ ﻗ ﻴﻢ اﻷداء اﻟﻤﺤﺴ ﻮﺑﻪ ﻣ ﻊ اﻟ ﻮﻗﺖ ﺑﻬ ﺬﻩ اﻟﻄ ﺮﻳﻘﻪ اﻟﻰ ﻗﻴﻢ ﻣﺤﺴﻮﺑﻪ ﻣﻊ اﻟﺘﺮدد ﻋﻨﺪ‬
‫اﻟﺤﺎﺟﻪ ﻟﺬﻟﻚ‪.‬‬
‫ه ﺬﻩ اﻟﻄ ﺮﻳﻘﻪ ﻏﻴ ﺮ ﻣﻨﺎﺳﺒﻪ ﻟﺘﺤﻠﻴﻞ دواﺋﺮ ﺗﺤﺘﻮى ﻋﻠﻰ ﻣﻜﻮﻧﺎت ﻣﻌﺒﺮ ﻋﻨﻬﺎ ﺑﺪﻻﻟﺔ ﺑﺎراﻣﺘﺮات اس ﻟﻜﻦ ﺑﻌﺾ اﻟﺒﺮاﻣﺞ‬
‫ﺗﻘﻮم ﺑﺘﺤﻮﻳﻞ هﺬﻩ اﻟﺒﺎرﻣﺘﺮات اﻟﻰ ﺑﺎرﻣﺘﺮات ﻣﻘﻠﻮب اﻟﻤﻌﺎوﻗﻪ )‪ (Y parameters‬ﻻﺗﻤﺎم اﻟﺤﺴﺎﺑﺎت ﻣﻊ اﻟﻮﻗﺖ‪.‬‬
‫أﻣ ﺎ )‪ (Volterra Series Method‬ﻓﻬ ﻰ ﻃ ﺮﻳﻘﺔ ﺗﺤﻠ ﻴﻞ ﻏﻴ ﺮ ﺧﻄ ﻴﻪ ﻣ ﻊ اﻟﺘ ﺮدد و ﺗﺼ ﻠﺢ ﻟﺘﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ ذات‬
‫اﻟﻘ ﺪرﻩ اﻟﻤﻨﺨﻔﻀ ﻪ أو ذات اﻟﻐﻴ ﺮ ﺧﻄ ﻴﻪ اﻟﻀ ﻌﻴﻔﻪ )‪ (weakly nonlinear circuits‬ﻣ ﺜﻞ ﻣﻜﺒ ﺮات اﻻﺷ ﺎرﻩ‬
‫اﻟﺼ ﻐﻴﺮﻩ )‪ (small-signal amplifier‬و ﻏﻴ ﺮهﺎ و اﻟﺘ ﻰ ﻋﺎدة ﺗﻜﻮن ﻣﻮﺟﻮدﻩ ﻓﻰ ﻧﻈﻢ اﻻﺳﺘﻘﺒﺎل و آﺬﻟﻚ اﻟﺪواﺋﺮ‬
‫اﻟﺘﻰ ﺑﻬﺎ أآﺜﺮ ﻣﻦ ﻣﺼﺪر ﻟﻼﺷﺎرﻩ اﻟﻀﻌﻴﻔﻪ‪.‬‬
‫و ﻳﻤﻜ ﻦ ﺑﻬ ﺬﻩ اﻟﻄ ﺮﻳﻘﻪ ﺣﺴ ﺎب ﻗ ﻴﻢ أداء اﻟﺪاﺋ ﺮﻩ ﻣ ﺜﻞ اﻟﺘ ﻴﺎر و اﻟﻔ ﻮﻟﺖ و ﺣﺴ ﺎب اﻟ ﺘﻌﺪﻳﻞ اﻟﺪاﺧﻠ ﻰ‬
‫)‪ (intermodulation characteristics‬و ﻏﻴﺮهﺎ‪.‬‬
‫أﻣﺎ ﺗﺤﻠﻴﻞ اﻟﺪواﺋﺮ ذات اﻟﻘﺪرﻩ اﻟﻌﺎﻟﻴﻪ أو ذات اﻟﻐﻴﺮ ﺧﻄﻴﻪ اﻟﻘﻮﻳﻪ )‪ (strongly nonlinear circuits‬ﻣﺜﻞ ﻣﻜﺒﺮات‬
‫اﻟﻘ ﺪرﻩ و اﻟﻤﺎزﺟ ﺎت و ﺿ ﺎرﺑﺎت اﻟﺘ ﺮدد و ﻏﻴ ﺮهﺎ ﻓ ﻴﻤﻜﻦ اﺳ ﺘﺨﺪام ﻃﺮﻳﻘﺔ )‪ (Harmonic Balance Method‬و‬
‫هﻰ ﻃﺮﻳﻘﺔ ﺗﺤﻠﻴﻞ ﻏﻴﺮ ﺧﻄﻴﻪ ﻣﻊ اﻟﺘﺮدد ‪.‬‬
‫ﻃ ﺮﻳﻘﺔ )‪ (Harmonic Balance‬ﻳ ﺘﻢ ﻓ ﻴﻬﺎ ﺗﻘﺴ ﻴﻢ اﻟﺪاﺋ ﺮﻩ اﻟ ﻰ ﻗﺴ ﻤﻴﻦ ﻗﺴ ﻢ ﺧﻄﻰ و ﻗﺴﻢ ﻏﻴﺮ ﺧﻄﻰ و ﻳﺘﻢ ﺣﺴﺎب‬
‫اﻟﺘﻴﺎر و اﻟﻔﻮﻟﺖ ﺑﻴﻦ اﻟﺠﺰﺋﻴﻦ ﺑﻄﺮﻳﻘﻪ رﻗﻤﻴﻪ ﻟﻠﺒﺤﺚ ﻋﻦ اﻟﺤﻞ اﻷﻣﺜﻞ‪.‬‬
‫و ﺗﺴ ﺘﺨﺪم ه ﺬﻩ اﻟﻄ ﺮﻳﻘﻪ ﻟﺘﺤﻠﻴﻞ اﻟﺪواﺋﺮ اﻟﺘﻰ ﺑﻬﺎ ﻣﺼﺪر أو أآﺜﺮ ﻟﻼﺷﺎرﻩ ذات اﻟﻘﺪرﻩ اﻟﻘﻮﻳﻪ و ﺗﺘﻤﻴﺰ ﺑﺄن اﻟﻤﺴﺘﺨﺪم‬
‫ﻳﺤﺪد اﻟﺘﺮددات اﻟﺘﻰ ﻳﺘﻢ ﻋﻨﺪهﺎ ﺣﺴﺎب أداء اﻟﺪاﺋﺮﻩ‪.‬‬
‫ﻃ ﺮﻳﻘﺔ )‪ (Large Signal/Small Signal Analysis‬ه ﻰ ﻃ ﺮﻳﻘﺔ ﺗﺤﻠ ﻴﻞ ﻏﻴ ﺮ ﺧﻄ ﻴﻪ ﺗﺴ ﺘﺨﺪم ﻟﺘﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ‬
‫اﻟﺘ ﻰ ﺑﻬ ﺎ ﻣﺼ ﺪران ﻟﻜ ﻞ ﻣ ﻨﻬﻤﺎ ﺗ ﺮدد ﻣﺨ ﺘﻠﻒ ﻋ ﻦ اﻵﺧﺮ و أﺣﺪهﻤﺎ ذو ﻗﺪرﻩ ﺿﻌﻴﻔﻪ ﺟﺪا و اﻵﺧﺮ ذو ﻗﺪرﻩ أﻋﻠﻰ‪ .‬و‬
‫هﺬا ﻣﻨﺎﺳﺐ ﻟﺘﺤﻠﻴﻞ اﻟﻤﺎزﺟﺎت‪.‬‬
‫و ه ﺬﻩ اﻟﻄ ﺮﻳﻘﻪ ﺗﻌ ﺘﻤﺪ ﻋﻠ ﻰ ﻃ ﺮﻳﻘﺔ )‪ (Harmonic Balance‬ﻟﻠﺘﺤﻠﻴﻞ ﺑﺎﺳﺘﺨﺪام اﻟﻤﺼﺪر ذو اﻻﺷﺎرﻩ اﻷﻋﻠﻰ ﻗﺪرﻩ‬
‫وﺣﺪﻩ أوﻻ ﺛﻢ ﺗﺠﺮى ﻋﻤﻠﻴﺎت ﺗﺤﻮﻳﻞ و ﺣﺴﺎﺑﺎت أﺧﺮى ﻟﺘﺤﻠﻴﻞ اﻟﺪاﺋﺮﻩ آﻜﻞ ﺑﺎﺳﺘﺨﺪﻟﻢ اﻟﻤﺼﺪرﻳﻦ‪.‬‬
‫أﻣ ﺎ ﻃ ﺮﻳﻘﺔ )‪ (Large-Signal Scattering Parameters Analysis‬ﻓﻬﻰ ﻃﺮﻳﻘﺔ ﺗﺤﻠﻴﻞ ﻏﻴﺮ ﺧﻄﻴﻪ ﻣﻊ اﻟﺘﺮدد‬
‫ﻟﺤﺴﺎب ﺑﺎراﻣﺘﺮات اس اﻻﺷﺎرﻩ اﻟﻌﺎﻟﻴﻪ ﻟﻠﺪواﺋﺮ اﻟﺘﻰ ﺗﻌﻤﻞ ﺑﺎﻟﻘﺪرﻩ اﻟﻌﺎﻟﻴﻪ‪.‬‬
‫و اﻟﻔﻜ ﺮﻩ اﻟﺘ ﻰ ﻧ ﺒﻌﺖ ﻣ ﻨﻬﺎ ه ﺬﻩ اﻟﻄ ﺮﻳﻘﻪ ه ﻰ أن اﻟﻤﻜﻮﻧﺎت اﻟﻐﻴﺮ ﺧﻄﻴﻪ )ﻣﺜﻞ اﻟﺘﺮاﻧﺰﻳﺴﺘﻮر( ﺗﺘﻐﻴﺮ ﺑﺎراﻣﺘﺮات اس‬
‫اﻟﺨﺎﺻ ﻪ ﺑﻬ ﺎ ﻣ ﻊ اﻟﻘ ﺪرﻩ اﻟﻌﺎﻟ ﻴﻪ ﻟ ﺬﻟﻚ ﻳﺘﻢ ﺣﺴﺎب ﺑﺎرﻣﺘﺮات اس اﻻﺷﺎرﻩ اﻟﻌﺎﻟﻴﻪ ﻟﻠﺪاﺋﺮﻩ ﻋﻨﺪ آﻞ ﻗﻴﻤﻪ ﻟﻠﻘﺪرﻩ اﻟﻌﺎﻟﻴﻪ‬
‫ﺑﻬﺎ‪ .‬و هﺬﻩ اﻟﻄﺮﻳﻘﻪ ﻣﻔﻴﺪﻩ ﻣﻊ دواﺋﺮ اﻟﻘﺪرﻩ اﻟﻌﺎﻟﻴﻪ ﻣﺜﻞ ﻣﻜﺒﺮات اﻟﻘﺪرﻩ‪.‬‬
‫ﺗﺤﻠ ﻴﻞ اﻟﺪاﺋ ﺮﻩ أو اﻟ ﻨﻈﺎم ﺑﺎﺳ ﺘﺨﺪام ﻗ ﻴﻢ أو ﻧﻤ ﺎذج ﻣﻜﻮﻧﺎت ﻣﺜﺎﻟﻴﻪ )‪ (ideal components‬و ﺑﺎﺳﺘﺨﺪام أﺑﻌﺎد )ﺛﺎﺑﺘﻪ‬
‫أو ﻣﺜﺎﻟﻴﻪ( ﻟﻠﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ و ﻏﻴﺮهﺎ ﻟﻴﺲ ﻋﻤﻠﻴﺎ و ﻻ ﻳﺨﺪم اﻻﻧﺘﺎج اﻟﺼﻨﺎﻋﻰ و اﻻﻧﺘﺎج اﻟﻜﺜﻴﻒ ) ‪Mass‬‬
‫‪.(Production‬‬
‫ﻧﻈ ﺮا ﻟﻜ ﻮن اﻟﺪواﺋ ﺮ و اﻟ ﻨﻈﻢ ﺗﺘﻌ ﺮض ﻟﺘﻐﻴ ﺮ اﻟﻈ ﺮوف اﻟﻤﻨﺎﺧ ﻴﻪ )ﺗﻐﻴ ﺮ درﺟ ﺔ اﻟﺤ ﺮارﻩ و اﻟ ﺮﻃﻮﺑﻪ واﻟﻀ ﻐﻂ( و‬
‫ﺗﺘﻌ ﺮض ﻻﻧ ﻮاع ﻣ ﻦ اﻻﺷ ﻌﺎﻋﺎت اﻟﻤﻨﺘﺸ ﺮﻩ ﻓ ﻰ اﻟﻬ ﻮاء أو اﻟﻔ ﺮاغ )ﻣ ﺜﻞ اﻷﺷ ﻌﻪ اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴﻴﻪ و ﻏﻴﺮهﺎ( ﻟﺬﻟﻚ‬
‫‪161‬‬

‫ﻳﺤ ﺪث ﺗﻐﻴﻴ ﺮ ﻓ ﻰ ﻗ ﻴﻢ اﻟﻤﻜ ﻮﻧﺎت ﺑﻤ ﺮور اﻟ ﺰﻣﻦ ﻓﻀ ﻼ ﻋ ﻦ اﻟﺴ ﻤﺎﺣﻴﻪ أو اﻟﺪﻗﻪ ﻓﻰ ﺗﺼﻨﻴﻊ هﺬﻩ اﻟﻤﻜﻮﻧﺎت ﻟﺬﻟﻚ هﻨﺎك‬
‫أﻧ ﻮاع ﺗﺤﻠ ﻴﻞ اﻟﺤﺴﺎﺳﻴﻪ )‪ (Sensitivity Analysis‬اﻟﺘﻰ ﺗﺤﺴﺐ أداء اﻟﺪاﺋﺮﻩ و اﻟﺘﻐﻴﺮ ﻓﻰ هﺬا اﻷداء ﺑﺪﻻﻟﺔ اﻟﺘﻐﻴﺮ‬
‫)اﻟﻤ ﺘﻮﻗﻊ أو اﻟﻄﺒﻴﻌ ﻰ أو اﻟﻔﻌﻠ ﻰ( ﻟﻘ ﻴﻢ ﻣﻜ ﻮﻧﺎت اﻟﺪاﺋ ﺮﻩ و أﺑﻌﺎده ﺎ ‪ ،‬و ﺑﻬﺬا ﻳﻤﻜﻦ ﺣﺴﺎب )أو ﺗﻮﻗﻊ( ﺷﻜﻞ اﻟﺘﻐﻴﻴﺮ ﻓﻰ‬
‫أداء اﻟﺪاﺋﺮﻩ‪.‬‬
‫و ﻧﻈ ﺮا ﻟﻮﺟ ﻮد اﻟﺴ ﻤﺎﺣﻴﻪ )أو ﻧﺴ ﺒﺔ اﻟﺨﻄ ﺄ( ﻓ ﻰ ﻗ ﻴﻢ اﻟﻤﻜ ﻮﻧﺎت اﻟﻌﻴﻨ ﻴﻪ و وﺟ ﻮد اﻟﺴ ﻤﺎﺣﻴﻪ ﻓﻰ ﺗﺼﻨﻴﻊ اﻟﺨﻄﻮط و‬
‫اﻟﻤﻜ ﻮﻧﺎت اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﺪﻗ ﻴﻘﻪ و ﻏﻴ ﺮهﺎ ‪ ،‬ﻳﺴ ﺘﺨﺪم ﺗﺤﻠ ﻴﻞ )‪ (Yield Analysis‬ﻟﺤﺴ ﺎب ﻧﺴ ﺒﺔ ﻧﺠ ﺎح اﻟﺪاﺋ ﺮﻩ ﺑﻌ ﺪ‬
‫اﻟﺘﺼ ﻨﻴﻊ ﺑﺪﻻﻟ ﺔ اﻟﺴﻤﺎﺣﻴﻪ و دﻗﺔ اﻟﺘﺼﻨﻴﻊ ﻟﻠﻤﻜﻮﻧﺎت ﺑﺎﻟﺪاﺋﺮﻩ‪ .‬و ﻳﻤﻜﻦ ﺑﻬﺬا اﻟﺘﺤﻠﻴﻞ ﺣﺴﺎب )أو ﺗﻮﻗﻊ( ﺷﻜﻞ اﻟﺘﻐﻴﻴﺮ‬
‫ﻓﻰ أداء اﻟﺪاﺋﺮﻩ‪.‬‬
‫و ﺑﺎﺳ ﺘﺨﺪام ﻃ ﺮق اﻟﺘﺤﻠ ﻴﻞ )‪ (Yield and Sensitivity Analysis‬ﻣ ﻊ ﻃ ﺮق اﺧﺘ ﻴﺎر اﻟﺤ ﻞ اﻷﻣ ﺜﻞ‬
‫)‪ (Optimization‬ﻳﻤﻜ ﻦ ﺗﺤﺪﻳ ﺪ اﻟ ﺘﻌﺪﻳﻞ اﻟﻤﻄﻠﻮب ﻓﻰ ﻗﻴﻢ و أﺑﻌﺎد ﻣﻜﻮﻧﺎت اﻟﺪاﺋﺮﻩ ﻟﻠﺤﺼﻮل ﻋﻠﻰ اﻷداء اﻟﻤﻄﻠﻮب‬
‫ﻟﻠﺪاﺋﺮﻩ ﻣﻊ ﺗﺤﻘﻴﻖ ﻧﺴﺒﺔ ﻧﺠﺎح ﻋﺎﻟﻴﻪ ﻟﻠﺪاﺋﺮﻩ )أو رﻓﻊ ﻧﺴﺒﺔ اﻟﻨﺠﺎح(‪.‬‬
‫و ﻳﻌ ﺘﻤﺪ ﻋﻠ ﻰ ذﻟ ﻚ اﻻﻧ ﺘﺎج اﻟﺼ ﻨﺎﻋﻰ ﺑﺠﺎﻧ ﺐ ﻧﺘﺎﺋﺞ ﻗﻴﺎس ﻋﻴﻨﺎت ﻣﺨﺘﻠﻔﻪ ﻣﺼﻨﻮﻋﻪ ﻟﻨﻔﺲ اﻟﺪاﺋﺮﻩ ﻓﻴﺘﺨﺬ ﻗﺮار اﻻﻧﺘﺎج‬
‫ﻣﺜﻼ اذا آﺎﻧﺖ ﻧﺴﺒﺔ ﻧﺠﺎح اﻟﺪاﺋﺮﻩ ﻋﺎﻟﻴﻪ أو ﻣﻘﺒﻮﻟﻪ ﻟﻠﺘﺼﻨﻴﻊ‪.‬‬
‫أﻣ ﺎ ﺗﺤﻠ ﻴﻞ اﻟﺸﻮﺷﺮﻩ أو ﺗﺤﻠﻴﻞ اﻟﺘﺸﻮﻳﺶ )‪ (Noise Analysis‬ﻓﻬﻮ ﺗﺤﻠﻴﻞ اﻟﺪاﺋﺮﻩ أو اﻟﻨﻈﺎم ﻣﻊ اﻷﺧﺬ ﻓﻰ اﻻﻋﺘﺒﺎر‬
‫ﻣﺼ ﺎدر اﻟﺸﻮﺷﺮﻩ )‪ (Noise Sources‬ﺳﻮاء ﻣﺼﺎدر اﻟﺸﻮﺷﺮﻩ اﻟﻤﻜﺎﻓﺌﻪ اﻟﻤﻮﺟﻮدﻩ ﻓﻰ ﺑﻌﺾ اﻟﻤﻜﻮﻧﺎت ﺑﺎﻟﺪاﺋﺮﻩ‬
‫أو ﻏﻴ ﺮهﺎ و ﻳﻤﻜ ﻦ ﺣﺴ ﺎب ﻗ ﻴﻢ ﻣ ﺜﻞ ﻣﺪﻟ ﻮل اﻟﺸﻮﺷ ﺮﻩ )‪ (Noise Figure‬و ﻧﺴ ﺒﺔ اﻻﺷ ﺎرﻩ اﻟ ﻰ اﻟﺸﻮﺷ ﺮﻩ ) ‪S/N‬‬
‫‪ (ratio‬و ﻗﺪرة اﻟﺸﻮﺷﺮﻩ و ﻏﻴﺮهﺎ ﻋﻨﺪ ﻣﺨﺎرج اﻟﺪاﺋﺮﻩ و أﺟﺰاﺋﻬﺎ اﻟﻤﺨﺘﻠﻔﻪ‪.‬‬
‫ﻳﻤﻜ ﻦ ﺗﺤﻤ ﻴﻞ اﻟﻌﺪﻳ ﺪ ﻣ ﻦ ﺑﺮاﻣﺞ اﻟﺘﺤﻠﻴﻞ اﻟﻤﻜﺘﻮﺑﻪ ﻓﻰ ﺻﻮرة )‪ (Source Code‬ﻣﻦ اﻻﻧﺘﺮﻧﺖ و ﻣﻦ ﺿﻤﻨﻬﺎ ﺑﺮاﻣﺞ‬
‫ﻣﻜﺘﻮﺑﻪ ﺑﻠﻐﺔ )‪ (C++‬و ﻣﻠﻔﺎت ﺗﻌﻤﻞ ﺗﺤﺖ )‪ (MATLAB‬و ﻏﻴﺮهﺎ ﻟﻤﺨﺘﻠﻒ ﻃﺮق اﻟﺘﺤﻠﻴﻞ‪.‬‬
‫اﻟﺪواﺋﺮ اﻟﻔﻌﺎﻟﻪ و اﻟﻐﻴﺮ ﺧﻄﻴﻪ ﺳﻴﺘﻢ ﺷﺮح ﺗﺼﻤﻴﻤﻬﺎ ﻓﻰ آﺘﺐ ﻻﺣﻘﻪ ﻣﻦ ﺳﻠﺴﺔ ﺗﺒﺴﻴﻂ اﻟﺘﻜﻨﻮﻟﻮﺟﻴﺎ اﻟﻌﺎﻟﻴﻪ‪.‬‬
‫أﻣ ﺎ ﺑﺎﻟﻨﺴ ﺒﻪ ﻟﻠﺪواﺋ ﺮ اﻟﻤﺸ ﺮوح ﺗﺼ ﻤﻴﻤﻬﺎ ﻓ ﻰ ه ﺬا اﻟﻜ ﺘﺎب و ه ﻰ دواﺋ ﺮ ﺧﺎﻣﻠﻪ )‪ (Passive‬ﻓﻴﻜﻔﻰ اﻻهﺘﻤﺎم ﺑﻄﺮق‬
‫ﺗﺤﻠ ﻴﻞ ﺑﺎرﻣﺘ ﺮات اس و اﻟﺘﺤﻠ ﻴﻞ اﻟﺨﻄ ﻰ و اﻟﺘﺤﻠ ﻴﻞ اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴ ﻰ ﻓﻘ ﻂ‪ .‬و ه ﺬﻩ اﻷﻧ ﻮاع ﻣ ﻦ اﻟﺘﺤﺎﻟ ﻴﻞ ﺗﺘﻮﻓ ﺮ‬
‫ﻣﺠﺘﻤﻌﺔ ﻓﻰ اﻟﺒﺮاﻣﺞ اﻟﺤﺪﻳﺜﻪ اﻟﻌﺎﻣﻪ ﻟﺘﺤﻠﻴﻞ دواﺋﺮ اﻟﺘﺮدد اﻟﻌﺎﻟﻰ و اﻟﻤﻴﻜﺮووﻳﻒ‪.‬‬

‫‪162‬‬

‫)ﻤﻘﻁﻊ ‪ (٣-٥‬ﺒﺭﺍﻤﺞ ﺘﺤﻠﻴل ﻭ ﺘﺼﻤﻴﻡ ﺩﻭﺍﺌﺭ ﺍﻟﺘﺭﺩﺩ ﺍﻟﻌﺎﻟﻰ ﻭ ﺍﻟﻤﻴﻜﺭﻭﻭﻴﻑ ﺍﻟﺤﺩﻴﺜﻪ ‪:‬‬
‫ﺗ ﺘﻌﺪد اﻟﺒ ﺮاﻣﺞ اﻟﺤﺪﻳ ﺜﻪ ﻟﺘﺤﻠ ﻴﻞ و ﺗﺼ ﻤﻴﻢ اﻟﺪواﺋ ﺮ و اﻷﻧﻈﻤ ﻪ و دواﺋ ﺮ اﻟﺘ ﺮدد اﻟﻌﺎﻟ ﻰ و اﻟﻤﻴﻜ ﺮووﻳﻒ ﻣ ﻦ ﺣ ﻴﺚ‬
‫اﻻﻣﻜﺎﻧ ﻴﺎت و اﻟﻮﻇﺎﺋ ﻒ ﻓﻬ ﻨﺎك ﺣ ﺰم اﻟﺒ ﺮاﻣﺞ اﻟﺤﺪﻳ ﺜﻪ اﻟﻌﺎﻣ ﻪ ﻟﺘﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ و اﻷﻧﻈﻤ ﻪ و دواﺋ ﺮ اﻟﺘ ﺮدد اﻟﻌﺎﻟ ﻰ و‬
‫اﻟﻤﻴﻜ ﺮووﻳﻒ و اﻟﺘ ﻰ ﺗﻘ ﻮم ﺑﺘﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ و اﻷﻧﻈﻤ ﻪ ﺑﻌ ﺪة ﻃ ﺮق و ﺗﻨ ﺘﺞ اﻟﻤﺨﻄ ﻂ اﻟﻨﻬﺎﺋﻰ ﻟﻠﺪواﺋﺮ و ﻳﺘﻤﻴﺰ ﺑﻌﺾ‬
‫ﻣﻨﻬﺎ ﺑﺎﻣﻜﺎﻧﻴﺎت اﺿﺎﻓﻴﻪ ﻣﺜﻞ وﺟﻮد اﻣﻜﺎﻧﻴﺎت أو اﺧﺘﻴﺎرات )‪ (modules or options‬ﺗﺴﻤﺢ ﺑﻌﻤﻞ ﺣﺴﺎﺑﺎت ﺗﺼﻤﻴﻢ‬
‫ﺧﻄ ﻮط اﻻرﺳ ﺎل اﻟﻤﺨ ﺘﻠﻔﻪ أو اﻣﻜﺎﻧ ﻴﺎت ﺗﺴ ﻤﺢ ﺑﺘﺼ ﻤﻴﻢ أﻧ ﻮاع ﻣﺨ ﺘﻠﻔﻪ ﻣ ﻦ اﻟﺪواﺋ ﺮ أو اﻣﻜﺎﻧﻴﺎت ﺗﺴﻤﺢ ﺑﺎﻧﺘﺎج ﻧﻤﺎذج‬
‫ﻟﻠﻤﻜﻮﻧﺎت أو اﻣﻜﺎﻧﻴﺔ اﻟﺘﺼﻨﻴﻊ ﺑﻮاﺳﻄﺔ اﻟﺤﺎﺳﺐ اﻟﻰ ﻏﻴﺮ ذﻟﻚ‪.‬‬
‫و ﻗﺪ ﻳﺘﻜﻮن ﺑﻌﻀﻬﺎ ﻣﻦ ﻣﺠﻤﻮﻋﻪ ﻣﻦ اﻟﺒﺮاﻣﺞ اﻟﻤﻨﻔﺼﻠﻪ اﻟﺘﻰ ﺗﺆدى ﻋﻤﻠﻴﺎت اﻟﺘﺼﻤﻴﻢ و اﻟﺘﺤﻠﻴﻞ ﺑﻄﺮق ﻣﺨﺘﻠﻔﻪ‪.‬‬
‫و ﺟﻤ ﻴﻊ اﻟﺒ ﺮاﻣﺞ اﻟﺤﺪﻳ ﺜﻪ اﻟﻌﺎﻣ ﻪ ﻟﺘﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ ﺗﺤ ﺘﻮى ﻋﻠ ﻰ ﻣﻜﺘ ﺒﺎت ﻣﺒﻨ ﻴﻪ )‪ (built-in-libraries‬ﻟ ﻨﻤﺎذج‬
‫اﻟﻤﻜ ﻮﻧﺎت اﻟﻌﻴﻨ ﻴﻪ اﻟﻤﻨ ﺘﺠﻪ ﺗﺠﺎرﻳ ﺎ ﻟ ﺒﻌﺾ اﻟﺸ ﺮآﺎت )ﻣﻘﺎوﻣ ﺎت و ﻣﻠﻔ ﺎت و ﻣﻜ ﺜﻔﺎت و دﻳﻮدات و ﺗﺮاﻧﺰﻳﺴﺘﻮرات و‬
‫ﻏﻴ ﺮهﺎ( ﺑﺎﻻﺿ ﺎﻓﻪ اﻟ ﻰ ﻣﻜﺘ ﺒﺎت ﻣﺒﻨ ﻴﻪ ﻟﻠﺘﻜﻨﻮﻟﻮﺟ ﻴﺎت اﻟﻤﺨﺘﻠﻔﻪ و ﻣﻦ ﺿﻤﻨﻬﺎ اﻟﺨﻄﻮط و اﻟﻤﻜﻮﻧﺎت اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ‬
‫و ﺑﻬﺎ اﻣﻜﺎﻧﻴﺔ اﺿﺎﻓﺔ ﻣﻜﺘﺒﺎت ﻧﻤﺎذج أﺧﺮى‪.‬‬
‫و ه ﺬﻩ اﻟﺒ ﺮاﻣﺞ ﺗﺘﻤﻴ ﺰ ﺑﺎﻣﻜﺎﻧ ﻴﺔ اﻟﻌﻤﻞ ﻣﻊ )أو ﻣﻦ ﺧﻼل أو ﺗﺤﺖ ‪ (under‬ﺑﺮاﻣﺞ أﺧﺮى ﻟﻠﺘﺤﻠﻴﻞ و اﻟﺘﺼﻤﻴﻢ ﻟﻴﻤﻜﻦ‬
‫ﻣﺸﺎرآﺔ و ﻣﻘﺎرﻧﺔ اﻟﻨﺘﺎﺋﺞ‪.‬‬
‫و اﻟﺒ ﺮاﻣﺞ اﻟﺤﺪﻳ ﺜﻪ اﻟﻌﺎﻣ ﻪ ﻟﺘﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ و اﻷﻧﻈﻤ ﻪ ﺗ ﺘﻜﻮن ﻋ ﺎدة ﻣ ﻦ اﺧﺘ ﻴﺎرات )‪ (modules or options‬ﻷن‬
‫اﻟﺒ ﺮﻧﺎﻣﺞ آﻜ ﻞ ﻳﻜ ﻮن ﻣ ﺮﺗﻔﻊ اﻟ ﺜﻤﻦ ﺟ ﺪا و ﻳ ﺒﻠﻎ ﺛﻤ ﻨﻪ ﻋﺸ ﺮات اﻵﻻف ﻣ ﻦ اﻟ ﺪوﻻرات ﻟﻜ ﻦ ﻋ ﻨﺪ اﺧﺘ ﻴﺎر اﻟﻤﺸ ﺘﺮى‬
‫ﻟﻼﺧﺘﻴﺎرات اﻟﺘﻰ ﻳﺤﺘﺎﺟﻬﺎ ﻓﻘﻂ ﻳﻜﻮن اﻟﺜﻤﻦ اﻟﻤﺪﻓﻮع أﻗﻞ‪.‬‬
‫اﻟﺠ ﺪول )‪ (١ - ٥‬ﻳﺤﺘﻮى ﻋﻠﻰ ﺑﻌﺾ ﻣﻦ أﺳﻤﺎء اﻟﺒﺮاﻣﺞ اﻟﻌﺎﻣﻪ ﻟﺘﺤﻠﻴﻞ دواﺋﺮ اﻟﺘﺮدد اﻟﻌﺎﻟﻰ و اﻟﻤﻴﻜﺮووﻳﻒ و أﺳﻤﺎء‬
‫اﻟﺸﺮآﺎت اﻟﻤﻨﺘﺠﻪ و ﻋﻨﺎوﻳﻨﻬﺎ ﻋﻠﻰ اﻻﻧﺘﺮﻧﺖ‪.‬‬

‫اﻟﻌﻨﻮان ﻋﻠﻰ اﻻﻧﺘﺮﻧﺖ‬

‫اﺳﻢ اﻟﺸﺮآﻪ‬

‫‪http://www.agilent.com‬‬

‫اﺳﻢ اﻟﺒﺮﻧﺎﻣﺞ‬
‫‪Agilent‬‬

‫‪http://eesof.tm.agilent.com‬‬

‫‪Agilent ADS‬‬
‫‪Agilent Genesys‬‬

‫‪http://www.ansoft.com/‬‬

‫‪Ansoft‬‬

‫‪Ansoft Designer‬‬

‫‪http://www.awrcorp.com‬‬

‫‪AWR‬‬

‫‪AWR Suite‬‬

‫‪http://www.linmic.com‬‬

‫‪AC Microwave GmbH‬‬

‫‪LINMIC‬‬

‫ﺟﺪول )‪ : (١ - ٥‬أﻣﺜﻠﻪ ﻟﺒﺮاﻣﺞ ﻋﺎﻣﻪ ﻟﺘﺤﻠﻴﻞ دواﺋﺮ اﻟﺘﺮدد اﻟﻌﺎﻟﻰ و اﻟﻤﻴﻜﺮووﻳﻒ‬

‫‪163‬‬

‫ﻗ ﺪ ﻳﺤ ﺪث أن ﺗ ﻨﺪﻣﺞ ﺷ ﺮآﺘﺎن )أو أآﺜ ﺮ( ﻣﻨﺘﺠ ﺘﺎن ﻟﺒ ﺮاﻣﺞ اﻟﺘﺤﻠ ﻴﻞ و اﻟﺘﺼ ﻤﻴﻢ أو أن ﺗﺸ ﺘﺮى ﺷ ﺮآﻪ ﻣ ﻦ ه ﺬا اﻟ ﻨﻮع‬
‫ﺷ ﺮآﻪ أﺧ ﺮى ﺗﻌﻤ ﻞ ﻓ ﻰ ﻧﻔ ﺲ اﻟﻤﺠﺎل ‪ ،‬ﻋﻠﻰ ﺳﺒﻴﻞ اﻟﻤﺜﺎل ﺷﺮآﺔ )‪ (AWR‬ﻗﺎﻣﺖ ﺑﺸﺮاء ﺷﺮآﺔ )‪ ، (APLAC‬و‬
‫ﺷ ﺮآﺔ )‪ (Mentor Graphics‬ﻗﺎﻣ ﺖ ﺑﺸﺮاء ﺷﺮآﺔ )‪ ، (ANACAD‬و ﺷﺮآﺔ )‪ (Agilent‬ﻗﺎﻣﺖ ﺑﺸﺮاء ﺷﺮآﺔ‬
‫)‪ (Eagleware‬اﻟﻰ ﻏﻴﺮ ذﻟﻚ ﻣﻦ اﻷﻣﺜﻠﻪ و ﻗﺪ ﻳﺤﺘﻔﻆ اﻟﺒﺮﻧﺎﻣﺞ اﻟﺬى ﺗﻢ ﺷﺮاء اﻟﺸﺮآﻪ اﻟﻤﻨﺘﺠﻪ ﻟﻪ ﺑﺎﺳﻤﻪ أو ﻗﺪ ﻳﺘﻐﻴﺮ‬
‫اﺳﻤﻪ أو ﻗﺪ ﻳﺘﻢ ادراج هﺬا اﻟﺒﺮﻧﺎﻣﺞ ﻟﻠﻌﻤﻞ ﺗﺤﺖ )أو ﻣﻊ( ﺑﺮﻧﺎﻣﺞ ﺁﺧﺮ‪.‬‬
‫ان اﻧ ﺘﺎج ﺑ ﺮﻧﺎﻣﺞ ﻋﺎم ﻟﺘﺤﻠﻴﻞ اﻟﺪواﺋﺮ و اﻷﻧﻈﻤﻪ و دواﺋﺮ اﻟﺘﺮدد اﻟﻌﺎﻟﻰ و اﻟﻤﻴﻜﺮووﻳﻒ ﻳﺤﺘﺎج اﻟﻰ ﻋﺸﺮات اﻟﻌﺎﻣﻠﻴﻦ‬
‫ﻣﻦ اﻟﻤﺒﺮﻣﺠﻴﻦ اﻟﻤﺘﺨﺼﺼﻴﻦ ﻣﺮﺗﻔﻌﻰ اﻟﻤﺴﺘﻮى و اﻟﻰ اﻷﻟﻮف ﻣﻦ ﺳﺎﻋﺎت اﻟﻌﻤﻞ )ﺗﺴﺎوى ﺳﻨﻮات(‪.‬‬
‫ﻓ ﻰ ﻣﻌﻈ ﻢ اﻷﺣ ﻴﺎن ﻋ ﻨﺪﻣﺎ ﺗﻘ ﻮم ﺷ ﺮآﻪ ﻣﻨ ﺘﺠﻪ ﻟﺒ ﺮاﻣﺞ اﻟﺘﺤﻠ ﻴﻞ و اﻟﺘﺼ ﻤﻴﻢ ﺑﺸﺮاء ﺷﺮآﻪ أﺧﺮى ﻳﻜﻮن اﻟﻬﺪف ﺷﺮاء‬
‫اﻟﺒ ﺮاﻣﺞ اﻟﺘ ﻰ ﺗﻨ ﺘﺠﻬﺎ اﻟﺸ ﺮآﻪ اﻟﻤﺸ ﺘﺮاﻩ ﻧﻈ ﺮا ﻟﻤﻤﻴ ﺰاﺗﻬﺎ ﻣ ﺜﻞ اﻟﺪﻗ ﻪ ﻓ ﻰ اﻟﺤﺴ ﺎﺑﺎت و ﺳ ﻬﻮﻟﺔ اﻻﺳ ﺘﺨﺪام و ﺷ ﻴﻮع‬
‫اﻻﺳﺘﺨﺪام و ﻏﻴﺮهﺎ‪.‬‬
‫أو أن ﺗﻜ ﻮن اﻟﺸ ﺮآﻪ اﻟﻤﺸ ﺘﺮﻳﻪ ﻏﻴ ﺮ ﻣﻨ ﺘﺠﻪ ﻟﺒ ﺮاﻣﺞ ﺗﻌﻤ ﻞ ﺑﻄ ﺮق ﻣﻌﻴﻨﻪ ﻟﺘﺤﻠﻴﻞ اﻟﺪواﺋﺮ ﻓﺘﺸﺘﺮى اﻟﺒﺮاﻣﺞ اﻟﺘﻰ ﺗﻘﻮم‬
‫ﺑﺎﻟﺘﺤﻠ ﻴﻞ ﺑﻬ ﺬﻩ اﻟﻄ ﺮق ﻟﺘﺤﺴ ﻴﻦ اﻣﻜﺎﻧ ﻴﺎت ﻣﻨ ﺘﺠﺎت اﻟﺸ ﺮآﻪ اﻟﻤﺸ ﺘﺮﻳﻪ ‪ ،‬و ﻗ ﺪ ﺗﻘ ﻮم ﺷ ﺮآﻪ ﺑﺸ ﺮاء ه ﺬﻩ اﻟﺒ ﺮاﻣﺞ ﻣ ﻦ‬
‫ﺟﺎﻣﻌﻪ ﻣﻌﻴﻨﻪ ﺑﻬﺎ ﻣﺸﺎرﻳﻊ ﺑﺤﺜﻴﻪ ﻻﻧﺘﺎج هﺬا اﻟﻨﻮع ﻣﻦ اﻟﺒﺮاﻣﺞ‪.‬‬
‫ﻳﻤﻜﻨ ﻨﺎ اﻵن أن ﻧﻔﻬﻢ أن أى ﻣﺆﺳﺴﻪ أو ﺷﺮآﻪ ﺗﺮﻏﺐ ﻓﻰ اﻟﺪﺧﻮل اﻟﻰ ﻣﺠﺎل اﻧﺘﺎج ﺑﺮاﻣﺞ ﺗﺤﻠﻴﻞ اﻟﺪواﺋﺮ و اﻷﻧﻈﻤﻪ و‬
‫دواﺋ ﺮ اﻟﺘ ﺮدد اﻟﻌﺎﻟ ﻰ و اﻟﻤﻴﻜ ﺮووﻳﻒ ﻻﺑ ﺪ أن ﻻ ﺗ ﺒﺪأ ﻣ ﻦ ﻧﻘﻄ ﺔ اﻟﺼ ﻔﺮ ‪ ،‬ﺑ ﻞ ﻳﺠ ﺐ أن ﺗﻜ ﻮن اﻟ ﺒﺪاﻳﻪ ﺑﺸ ﺮاء ﻣﺼﺪر‬
‫ﺑ ﺮﻧﺎﻣﺞ )‪ (Source Code‬ﻟﻠﺘﺤﻠ ﻴﻞ ﺳ ﻮاء آ ﺎن ذﻟ ﻚ ﻣ ﻦ ﺟﺎﻣﻌ ﻪ أو ﺷ ﺮآﻪ ‪ ،‬و ﻳﻜ ﻮن ه ﺬا اﻟﺒ ﺮﻧﺎﻣﺞ ﻣﻌ ﺘﻤﺪ ﻋﻠ ﻴﻪ‬
‫)ﻧ ﺘﺎﺋﺠﻪ ﻣﺨﺘﺒ ﺮﻩ ﺑﺎﻟﻜﺎﻣ ﻞ( و ﺳ ﻬﻞ اﻟﺘﻄﻮﻳ ﺮ و ﻣﻌ ﻪ وﺛﺎﺋ ﻖ واﻓ ﻴﻪ ﻟﻠﺸ ﺮح ‪ ،‬ﺛ ﻢ ﺗ ﺒﺪأ اﻟﻤﺆﺳﺴﻪ أو اﻟﺸﺮآﻪ ﺑﻌﺪ ذﻟﻚ ﻓﻰ‬
‫ﺗﻄﻮﻳﺮ اﻟﺒﺮﻧﺎﻣﺞ ﺑﻌﺪ ﺗﺤﺪﻳﺪ أهﺪاف اﻟﺘﻄﻮﻳﺮ ﺑﺎﺳﺘﺨﺪام ﻣﺒﺮﻣﺠﻴﻦ ﻣﺘﺨﺼﺼﻴﻦ‪.‬‬
‫أﻣ ﺎ اﻟﺸ ﺮآﺎت اﻟﻤﻨ ﺘﺠﻪ ﻟﺪواﺋ ﺮ و أﻧﻈﻤ ﺔ اﻟﺘ ﺮدد اﻟﻌﺎﻟ ﻰ و اﻟﻤﻴﻜ ﺮووﻳﻒ ﻓﻼ ﺗﺤﺘﺎج اﻟﻰ اﻧﺘﺎج ﺑﺮاﻣﺞ ﻋﺎﻣﻪ ﻟﻠﺘﺤﻠﻴﻞ ﺑﻞ‬
‫ﺗﺤﺘﺎج اﻟﻰ ﺷﺮاؤهﺎ ﻓﻘﻂ ﻣﻊ ﻣﻼﺣﻈﺔ أن هﺬﻩ اﻟﺒﺮاﻣﺞ ﻳﺒﻠﻎ ﺛﻤﻨﻬﺎ ﻋﺸﺮات اﻵﻻف ﻣﻦ اﻟﺪوﻻرات ‪.‬‬
‫ﻓﻌﻠ ﻰ ﺳ ﺒﻴﻞ اﻟﻤ ﺜﺎل ﻳ ﺒﻠﻎ ﺳﻌﺮ ﺑﺮﻧﺎﻣﺞ )‪ (Agilent ADS‬ﺣﺎﻟﻴﺎ ﻣﺎﺋﻪ و ﻋﺸﺮون أﻟﻒ دوﻻر ﺑﻴﻨﻤﺎ ﻳﺒﻠﻎ ﺳﻌﺮ ﺑﺮﻧﺎﻣﺞ‬
‫)‪ (AWR Suite‬ﺣﺎﻟﻴﺎ أآﺜﺮ ﻣﻦ اﺛﻨﺎن و أرﺑﻌﻮن أﻟﻒ دوﻻر‪.‬‬
‫ﻟﻜ ﻦ ﻣﻌﻈ ﻢ اﻟﺒ ﺮاﻣﺞ اﻟﻌﺎﻣ ﻪ ﻟﺘﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ و اﻷﻧﻈﻤ ﻪ ﻓ ﻰ اﻟﺘ ﺮدد اﻟﻌﺎﻟ ﻰ و اﻟﻤﻴﻜ ﺮووﻳﻒ ﺗ ﺘﻜﻮن ﻣ ﻦ أﺟ ﺰاء‬
‫)‪ (Modules‬ﻓ ﻴﻤﻜﻦ ﺷ ﺮاء اﺧﺘ ﻴﺎرات )‪ (Options‬ﻣﻌﻴ ﻨﻪ و ﺗ ﺮك اﺧﺘ ﻴﺎرات أﺧ ﺮى ﻟ ﻴﻘﻞ اﻟﺴ ﻌﺮ اﻟﻜﻠ ﻰ ﻟﺸ ﺮاء‬
‫اﻟﺒﺮﻧﺎﻣﺞ‪ .‬ﻟﺬﻟﻚ ﻳﺨﺘﺎر اﻟﻤﺸﺘﺮى اﻻﺧﺘﻴﺎرات اﻟﻤﻨﺎﺳﺒﻪ ﻟﻨﻮع اﻟﻌﻤﻞ اﻟﺬى ﻳﻘﻮم ﺑﻪ ﻓﻘﻂ‪.‬‬
‫و أﻳﻀﺎ هﺬﻩ اﻟﺒﺮاﻣﺞ ﺗﺒﺎع ﻟﻠﺠﺎﻣﻌﺎت و اﻟﻤﺆﺳﺴﺎت اﻟﺘﻌﻠﻴﻤﻴﻪ ﺑﺄﺳﻌﺎر ﻣﺨﻔﻀﻪ‪.‬‬
‫و هﻨﺎك ﺗﺤﺬﻳﺮ واﺟﺐ اﻟﺬآﺮ ‪ ،‬ﻓﻘﺎﻧﻮﻧﺎ ﻳﺠﺐ ﺷﺮاء ﺑﺮﻧﺎﻣﺞ اﻟﺘﺤﻠﻴﻞ و ﻣﻠﺤﻘﺎﺗﻪ ﻣﻦ اﻟﺸﺮآﻪ اﻟﻤﻨﺘﺠﻪ أﻣﺎ اﻟﺤﺼﻮل ﻋﻠﻰ‬
‫هﺬﻩ اﻟﺒﺮاﻣﺞ ﺑﺎﺳﺘﺨﺪام اﻻﻧﺘﺮﻧﺖ و ﺑﺎﺳﺘﺨﺪام ﺑﺮاﻣﺞ ﻣﺸﺎرآﺔ اﻟﻤﻠﻔﺎت ﻣﺜﻞ ) ‪eMule, eMulePlus, LimeWire,‬‬
‫‪ (Kazza, iMesh, Shareaza, Bit Torrent, Bit Search, Azureus‬و ﻏﻴ ﺮهﺎ ﻓﻬ ﺬا ﻏﻴ ﺮ ﻗﺎﻧﻮﻧ ﻰ و‬
‫ﻳﻌ ﺮض اﻟﻤﺴ ﺘﺨﺪم ﻟﻠﻤﺴ ﺎﺋﻠﻪ اﻟﻘﺎﻧﻮﻧ ﻴﻪ و ﻻ ﻳﺨﻠ ﻮ ﻣ ﻦ ﻣﺨﺎﻃ ﺮ ﻓﻘ ﺪ ﻳﺤ ﺘﻮى ه ﺬا اﻟﺒ ﺮﻧﺎﻣﺞ اﻟﻤﻨﺴ ﻮخ ﻋﻠ ﻰ ﻓﻴ ﺮوس أو‬
‫ﺑ ﺮﻧﺎﻣﺞ ﺗﺠﺴ ﺲ )‪ virus or spyware‬ﻳﺤ ﺘﺎج ﻣﻀ ﺎد ﻟﻠﻔﻴﺮوﺳ ﺎت ‪ antivirus‬ﻻزاﻟ ﺘﻪ( و ﻗ ﺪ ﻳﻜ ﻮن اﻟﺒ ﺮﻧﺎﻣﺞ‬
‫اﻟﻤﻨﺴ ﻮخ ﻧ ﺎﻗﺺ ﻟ ﺒﻌﺾ اﻟﺨ ﻴﺎرات و أﻳﻀ ﺎ ﺑﻌ ﺾ اﻟﺸ ﺮآﺎت اﻟﻤﻨ ﺘﺠﻪ ﻟﺒ ﺮاﻣﺞ اﻟﺘﺤﻠ ﻴﻞ ﻗﺎﻣ ﺖ ﺑ ﺘﻌﺪﻳﻞ ﻓﻰ ﺑﺮاﻣﺠﻬﺎ‬
‫ﺑﺤﻴﺚ ﺗﺮﺳﻞ اﻟﻌﻨﻮان )‪ (IP address‬اﻟﺨﺎص ﺑﺎﻟﺤﺎﺳﺐ اﻟﺬى ﻳﻌﻤﻞ ﻋﻠﻴﻪ اﻟﺒﺮﻧﺎﻣﺞ اﻟﻤﻨﺴﻮخ ﻣﺒﺎﺷﺮة اﻟﻰ اﻟﺸﺮآﻪ اذا‬

‫‪164‬‬

‫آ ﺎن ه ﺬا اﻟﺤﺎﺳ ﺐ ﻣﻮﺻ ﻼ ﺑﺸ ﺒﻜﺔ اﻻﻧﺘﺮﻧﺖ أﺛﻨﺎء ﺗﺸﻐﻴﻞ اﻟﺒﺮﻧﺎﻣﺞ اﻟﻤﻨﺴﻮخ و ﻳﺘﻢ ﻣﻼﺣﻘﺔ اﻟﻤﺴﺘﺨﺪم ﻗﺎﻧﻮﻧﻴﺎ ‪ ،‬ﻟﺬﻟﻚ‬
‫ﻳﻨﺒﻐﻰ اﻟﺤﺼﻮل ﻋﻠﻰ هﺬﻩ اﻟﺒﺮاﻣﺞ ﺑﻄﺮﻳﻘﻪ ﻗﺎﻧﻮﻧﻴﻪ ﺑﺸﺮاؤهﺎ ﻣﻦ اﻟﺸﺮآﺎت اﻟﻤﻨﺘﺠﻪ‪.‬‬
‫و ه ﻨﺎك ﺑ ﺮاﻣﺞ ﻣﺠﺎﻧ ﻴﻪ ﻟﺘﺤﻠ ﻴﻞ دواﺋ ﺮ اﻟﺘ ﺮدد اﻟﻌﺎﻟ ﻰ و اﻟﻤﻴﻜ ﺮووﻳﻒ ﺳ ﻴﺄﺗﻰ ذآﺮهﺎ ﻓﻰ هﺬا اﻟﻤﻘﻄﻊ وهﻨﺎك ﺑﺮاﻣﺞ‬
‫اﻟﺘﺤﻠﻴﻞ اﻟﺘﻰ ﺗﻜﻮن ﻣﺘﻮﻓﺮﻩ ﻋﻠﻰ اﻻﻧﺘﺮﻧﺖ ﻣﻦ ﻧﻮع )‪ (shareware‬و هﻨﺎك ﺑﺮاﻣﺞ ﻣﻨﺨﻔﻀﺔ اﻟﺴﻌﺮ و ذات اﻣﻜﺎﻧﻴﺎت‬
‫ﻣﺤﺪدﻩ ﻣﺜﻞ ﺑﺮاﻣﺞ )‪ (C/NL2, GSPICE, SCALC, LINC2‬و ﻏﻴﺮهﺎ‪.‬‬
‫ﻟ ﺘﻌﻠﻢ اﺳ ﺘﺨﺪام ﺑ ﺮﻧﺎﻣﺞ ﻣﻌ ﻴﻦ ﻟﺘﺤﻠ ﻴﻞ اﻟﺪواﺋﺮ و اﻷﻧﻈﻤﻪ و دواﺋﺮ اﻟﺘﺮدد اﻟﻌﺎﻟﻰ و اﻟﻤﻴﻜﺮووﻳﻒ ﻳﺤﺘﺎج اﻟﻤﺴﺘﺨﺪم اﻟﻰ‬
‫اﻟﻜ ﺘﺎﻟﻮج )و ه ﻮ ﻏﺎﻟ ﺒﺎ ﻳﻜ ﻮن ﻣ ﻊ اﻟﺒ ﺮﻧﺎﻣﺞ ﻓ ﻰ ﺻ ﻮرة ﻣﻠﻔ ﺎت( أو ﻣﻠﻔ ﺎت اﻟﻔ ﻴﺪﻳﻮ اﻟﺘﻌﻠﻴﻤ ﻴﻪ )‪(video tutorials‬‬
‫اﻟﺨﺎﺻ ﻪ ﺑﺎﻟﺒ ﺮﻧﺎﻣﺞ و ه ﻰ ﺗﺨﺘﺼ ﺮ وﻗ ﺖ و ﻣﺠﻬ ﻮد اﻟ ﺒﺪأ ﻓ ﻰ اﺳ ﺘﺨﺪام اﻟﺒ ﺮﻧﺎﻣﺞ و ﺗﻨ ﺘﺠﻬﺎ ﻣﻌﻈ ﻢ اﻟﺸ ﺮآﺎت اﻟﻤﻨﺘﺠﻪ‬
‫ﻟﺒﺮاﻣﺞ اﻟﺘﺤﻠﻴﻞ‪.‬‬
‫اﻟﺒ ﺮاﻣﺞ اﻟﺤﺪﻳ ﺜﻪ اﻟﻌﺎﻣ ﻪ ﻟﺘﺤﻠ ﻴﻞ دواﺋ ﺮ اﻟﺘ ﺮدد اﻟﻌﺎﻟ ﻰ و اﻟﻤﻴﻜ ﺮووﻳﻒ ﻗ ﺪ ﺗﺨ ﺘﻠﻒ ﻓ ﻰ ﺷ ﻜﻞ اﻟﻘ ﻮاﺋﻢ و اﻻﺧﺘ ﻴﺎرات و‬
‫ﺑﻌﺾ اﻟﺮﻣﻮز و ﺗﻘﻨﻴﺔ اﻟﻌﻤﻞ ﻟﻜﻦ هﻨﺎك ﺧﺼﺎﺋﺺ ﻋﺎﻣﻪ أو ﺧﻄﻮات ﻋﺎﻣﻪ ﻟﻠﻌﻤﻞ ﻣﺸﺘﺮآﻪ ﺑﻴﻨﻬﺎ‪.‬‬
‫و اﻟﺨﺼ ﺎﺋﺺ اﻟﻌﺎﻣ ﻪ ﻟﻄ ﺮﻳﻘﺔ اﻟﻌﻤ ﻞ )ﺧﻄ ﻮات اﻟﻌﻤ ﻞ( ﺑﺎﻟﺒﺮاﻣﺞ اﻟﺤﺪﻳﺜﻪ اﻟﻌﺎﻣﻪ ﻟﺘﺤﻠﻴﻞ اﻟﺪواﺋﺮ و اﻷﻧﻈﻤﻪ و دواﺋﺮ‬
‫اﻟﺘﺮدد اﻟﻌﺎﻟﻰ و اﻟﻤﻴﻜﺮووﻳﻒ ﻳﻤﻜﻦ وﺻﻔﻬﺎ آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫)‪ (١‬ادﺧ ﺎل وﺻ ﻒ اﻟﺪاﺋ ﺮﻩ ‪ :‬أو ﺗﻮﺻ ﻴﻒ اﻟﺪاﺋ ﺮﻩ اﻟﻤ ﺮاد ﺗﺤﻠ ﻴﻠﻬﺎ و ﻳﻤﻜ ﻦ أن ﻳ ﺘﻢ ﻋ ﻦ ﻃ ﺮﻳﻖ آﺘﺎﺑﺔ وﺻﻒ آﺘﺎﺑﻰ‬
‫ﻟﻠﺪاﺋ ﺮﻩ )‪ (Netlist‬و ه ﻮ ﻋ ﺒﺎرﻩ ﻋ ﻦ ﻗﺎﺋﻤ ﻪ ﻟﻤﻜ ﻮﻧﺎت اﻟﺪاﺋ ﺮﻩ ﻣﻜ ﺘﻮﺑﻪ ﺑﻄﺮﻳﻘﻪ ﻣﻌﻴﻨﻪ ﻟﺘﺘﻔﻖ ﻣﻊ ﺑﺮﻧﺎﻣﺞ اﻟﺘﺤﻠﻴﻞ )ﻟﻜﻞ‬
‫ﺑ ﺮﻧﺎﻣﺞ ﻃ ﺮﻳﻘﻪ ﻣﻌﻴ ﻨﻪ ﻟﻜ ﺘﺎﺑﺔ اﻟﻘﺎﺋﻤ ﻪ( و ﻳﻜ ﻮن اﻟﻮﺻ ﻒ أو اﻟﻘﺎﺋﻤﻪ )‪ (Netlist‬اﻣﺎ ﻓﻰ ﻣﻠﻒ )‪ (input file‬ﻣﻌﻴﻦ او‬
‫ﻧﺎﻓﺬﻩ ﻣﻌﻴﻨﻪ )‪ (Window‬ﻣﺨﺼﺼﻪ ﻻدﺧﺎل وﺻﻒ اﻟﺪاﺋﺮﻩ‪ .‬و ﻳﺒﻴﻦ اﻟﺸﻜﻞ )‪ (١ - ٥‬ﻣﺜﺎل ﻋﻠﻰ ذﻟﻚ‪.‬‬

‫ﺷﻜﻞ )‪ : (١ - ٥‬ﻣﺜﺎل ﻟﺘﻮﺻﻴﻒ داﺋﺮﻩ ﻳﺮاد ﺗﺤﻠﻴﻠﻬﺎ ﻋﻦ ﻃﺮﻳﻖ آﺘﺎﺑﺔ وﺻﻒ آﺘﺎﺑﻰ ﻟﻠﺪاﺋﺮﻩ )‪.(Netlist‬‬

‫‪165‬‬

‫أو ﻳﻤﻜ ﻦ ادﺧ ﺎل وﺻ ﻒ اﻟﺪاﺋ ﺮﻩ ﻋ ﻦ ﻃ ﺮﻳﻖ ﺗﻮﺻ ﻴﻒ اﻟﺪاﺋ ﺮﻩ ﻓ ﻰ ﺷ ﻜﻞ )‪ (Schematic‬أى ﻓ ﻰ ﺷﻜﻞ رﺳﻢ رﻣﺰى‬
‫ﻟﻠﺪاﺋ ﺮﻩ ﻳﺤ ﺘﻮى ﻋﻠ ﻰ رﻣ ﻮز اﻟﻤﻜ ﻮﻧﺎت و اﻟﻮﺻ ﻼت اﻟﺘ ﻰ ﺑﻴ ﻨﻬﺎ و اﻟﻼاﺳ ﺘﻤﺮارﻳﺎت و ﻏﻴ ﺮ ذﻟ ﻚ ﻣ ﺜﻞ اﻟﻤﺨ ﺎرج و‬
‫ﻣﺼﺎدر اﻟﻘﺪرﻩ اﻟﻰ ﺁﺧﺮﻩ‪.‬‬
‫ﺣﻴﺚ ﻳﺨﺘﺎر ﻣﺴﺘﺨﺪم اﻟﺒﺮﻧﺎﻣﺞ )ﻣﻦ ﻗﺎﺋﻤﻪ( اﻟﺮﻣﻮز اﻟﺘﻰ ﻳﺮﻏﺐ ﻓﻴﻬﺎ ﺛﻢ ﻳﻀﻌﻬﺎ ﺑﻄﺮﻳﻘﺔ )اﻟﺴﺤﺐ و اﻻﺳﻘﺎط ‪drag‬‬
‫‪ (and drop‬ﻣ ﺜﻼ ﻣ ﻊ اﺿ ﺎﻓﺔ آﻞ ﻣﺎ ﻳﺤﺘﺎﺟﻪ ﺗﻮﺻﻴﻒ اﻟﺪاﺋﺮﻩ ﻣﻦ رﻣﻮز اﻟﻼاﺳﺘﻤﺮارﻳﺎت و اﻟﻤﺨﺎرج و ﻏﻴﺮهﺎ و‬
‫ﻳﺘﻢ اﺧﺘﻴﺎر أداة اﻟﺮﺑﻂ )‪ (wiring‬ﺑﻴﻦ اﻟﻤﻜﻮﻧﺎت و اﻟﺘﻮﺻﻴﻞ ﺑﻴﻨﻬﺎ‪ .‬و ﻳﺒﻴﻦ ﺷﻜﻞ )‪ (٢ - ٥‬ﻣﺜﺎل ﻋﻠﻰ ذﻟﻚ‪.‬‬
‫ﻏﺎﻟ ﺒﺎ ﻳﺤ ﺘﻮى اﻟﺒ ﺮﻧﺎﻣﺞ اﻟﻌ ﺎم ﻟﻠﺘﺤﻠ ﻴﻞ ﻋﻠ ﻰ ﻣﻜﺘ ﺒﺎت ﻣﺒﻨ ﻴﻪ )‪ (built-in libraries‬ﺗﺤ ﺘﻮى ﻋﻠ ﻰ ﻧﻤ ﺎذج )أو دواﺋ ﺮ‬
‫ﻣﻜﺎﻓ ﺌﻪ( ﻟﻠﻤﻜ ﻮﻧﺎت اﻟﻌﻴﻨﻴﻪ و اﻟﻤﻨﺘﺠﻪ ﺗﺠﺎرﻳﺎ و اﻟﻤﻜﻮﻧﺎت اﻟﺨﺎﺻﻪ ﺑﺎﻟﺘﻜﻨﻮﻟﻮﺟﻴﺎت اﻟﻤﺨﺘﻠﻔﻪ و ﺑﻌﺾ اﻟﺒﺮاﻣﺞ ﺗﺤﺘﻮى‬
‫ﻋﻠ ﻰ ﻣﻜﺘ ﺒﺔ ﻧﻤ ﺎذج ﻟﻠﻤﻜ ﻮﻧﺎت ﻣﺒﻨ ﻴﻪ ﻋﻠ ﻰ اﻟﺘﺤﻠ ﻴﻞ اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴﻰ )‪ (electromagnetic based models‬أو‬
‫ﻋﻠ ﻰ ﻣﻜﺘ ﺒﺔ ﻧﻤ ﺎذج ﻟﻠﻤﻜ ﻮﻧﺎت ﻣﺒﻨ ﻴﻪ ﻋﻠ ﻰ اﻟﺨﻼﻳ ﺎ اﻟﻤﺨ ﻴﻪ اﻟﺼ ﻨﺎﻋﻴﻪ )‪ (ANN based models‬ﻟﻤﺨ ﺘﻠﻒ‬
‫اﻟﺘﻜﻨﻮﻟﻮﺟ ﻴﺎت و ﻣﻦ ﺿﻤﻨﻬﺎ اﻟﺨﻄﻮط و اﻟﻤﻜﻮﻧﺎت اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ و ﻳﻤﻜﻦ ﻟﻠﻤﺴﺘﺨﺪم اﺿﺎﻓﺔ ﻧﻤﺎذج )أو ﻣﻜﺘﺒﺎت أو‬
‫ﻣﺠﻤﻮﻋﺔ ﻧﻤﺎذج( اﺿﺎﻓﻴﻪ ﻟﻠﺒﺮﻧﺎﻣﺞ )‪.(user defined models‬‬

‫ﺷﻜﻞ )‪ : (٢ - ٥‬ﻣﺜﺎل ﻟﻮﺻﻒ رﻣﺰى )‪ (Schematic‬ﻟﺪاﺋﺮﻩ ﻣﻌﻴﻨﻪ ﺑﻪ ﺑﻌﺾ رﻣﻮز اﻟﻤﻜﻮﻧﺎت و اﻟﻼاﺳﺘﻤﺮارﻳﺎت‬
‫و ﻣﺨﺮج اﻟﺪاﺋﺮﻩ و اﻟﻮﺻﻼت اﻟﺘﻰ ﺑﻴﻨﻬﺎ‪.‬‬

‫)‪ (٢‬ﻋﻤ ﻞ ﺗﺤﻠ ﻴﻞ اﻟﺪاﺋ ﺮﻩ ‪ :‬أى ﺣﺴ ﺎب أداء اﻟﺪاﺋ ﺮﻩ و ذﻟ ﻚ ﺑﻌ ﺪ اﺧﺘﻴﺎر ﻃﺮﻳﻘﺔ اﻟﺘﺤﻠﻴﻞ ﺳﻮاء آﺎﻧﺖ ﺧﻄﻴﻪ ) ‪linear‬‬
‫‪ (analysis‬أو ﻏﻴ ﺮ ﺧﻄ ﻴﻪ )‪ (nonlinear analysis‬أو آﻬﺮوﻣﻐﻨﺎﻃﻴﺴ ﻴﻪ )‪ (electromagnetic analysis‬و‬
‫ﻳﻤﻜﻦ ﺑﺎﺳﺘﺨﺪام اﻟﺒﺮﻧﺎﻣﺞ اﺧﺘﻴﺎر ﻋﻤﻞ ﺗﺤﻠﻴﻞ اﻟﺪاﺋﺮﻩ ﺑﻌﺪة ﻃﺮق ﻟﻠﺘﺤﻠﻴﻞ ﻣﻌﺎ‪.‬‬

‫‪166‬‬

‫و ه ﻨﺎك ﺧﺎﺻ ﻴﺔ )‪ (cosimulation‬اﻟﻤﻮﺟﻮدﻩ ﻓﻰ ﺑﻌﺾ ﺑﺮاﻣﺞ اﻟﺘﺤﻠﻴﻞ ﻣﺜﻞ )‪ (ADS, AWR‬و ﻏﻴﺮهﺎ ‪ ،‬و ﻓﻰ‬
‫ه ﺬﻩ اﻟﺨﺎﺻ ﻴﻪ ﻳ ﺘﻢ ﻣ ﺜﻼ ﻋﻤ ﻞ ﺗﺤﻠﻴﻞ ﺟﺰء أو أﺟﺰاء )ﺧﺎﻣﻠﻪ ‪ (passive‬ﻣﻦ اﻟﺪاﺋﺮﻩ ﺑﻄﺮﻳﻘﺔ آﻬﺮوﻣﻐﻨﺎﻃﻴﺴﻴﻪ ﺛﻢ ﻳﺘﻢ‬
‫اﺳ ﺘﺨﺪام اﻟﻨﺘ ﻴﺠﻪ ﻟﻌﻤ ﻞ ﺗﺤﻠ ﻴﻞ ﻟﻠﺪاﺋﺮﻩ آﻜﻞ ﺑﻄﺮﻳﻘﻪ أﺧﺮى )ﻏﻴﺮ ﺧﻄﻴﻪ ﻣﺜﻼ( ﻟﻠﺤﺼﻮل ﻋﻠﻰ دﻗﻪ ﻋﺎﻟﻴﻪ ﻓﻰ اﻟﺘﺤﻠﻴﻞ‬
‫اﻟﻜﻠ ﻰ ﻟﻠﺪاﺋ ﺮﻩ ‪ ،‬و ه ﺬا ﻣ ﺘﺎح ﻓ ﻰ آ ﻞ اﻟﺒ ﺮاﻣﺞ اﻟﺘ ﻰ ﺑﻬ ﺎ )‪ (Hierarchical Simulation‬أو اﻟﺘﺤﻠ ﻴﻞ اﻟﻤﻘﺴ ﻢ‬
‫)اﻟﻤﺘﺴﻠﺴﻞ( اﻟﻰ أﺟﺰاء‪.‬‬
‫ه ﻨﺎك ﺑ ﺮاﻣﺞ ﺗﻘ ﻮم ﺑﺎﻟﺘﺤﻠ ﻴﻞ ﻣ ﻦ ﺗﺤ ﺖ ﺑ ﺮاﻣﺞ أﺧﺮى أو ﺗﻤﺮر ﻧﺘﻴﺠﺔ اﻟﺘﺤﻠﻴﻞ اﻟﻰ ﺑﺮاﻣﺞ أﺧﺮى و اﻷﻣﺜﻠﻪ ﻋﺪﻳﺪﻩ ﺟﺪا‬
‫ﻋﻠﻰ ذﻟﻚ آﻤﺎ هﻮ ﻣﺸﺮوح أدﻧﺎﻩ ﻓﻰ هﺬا اﻟﻤﻘﻄﻊ‪.‬‬
‫ﺑﻌ ﺪ أن ﻳﺠ ﺮى اﻟﺒ ﺮﻧﺎﻣﺞ ﺗﺤﻠ ﻴﻞ اﻟﺪاﺋﺮﻩ ﻳﺘﻢ رﺳﻢ أداء اﻟﺪاﺋﺮﻩ ﺳﻮاء آﺎن ﺑﺎراﻣﺘﺮات اس ﻟﻠﺪاﺋﺮﻩ )أو ﻷﺟﺰاء ﻣﻨﻬﺎ( أو‬
‫اﻟﻔ ﻮﻟﺖ )اﻟﺠﻬ ﺪ( ﻋ ﻨﺪ ﻧﻘ ﺎط ﻣﻌﻴ ﻨﻪ ﺑﺎﻟﺪاﺋﺮﻩ أو اﻟﺘﻴﺎر اﻟﻤﺎر ﻓﻰ ﻓﺮوع ﻣﻌﻴﻨﻪ ﺑﺎﻟﺪاﺋﺮﻩ أو اﻟﻘﺪرﻩ اﻟﺨﺎرﺟﻪ )أو اﻟﻤﻮﺟﻮدﻩ‬
‫ﻋ ﻨﺪ ﺟ ﺰء ﻣﻌ ﻴﻦ( أو رﺳ ﻢ آﻤ ﻴﺎت ﻣﻌﻴ ﻨﻪ آﺎﻟﺘ ﻰ ﺗﻨ ﺘﺞ ﻣ ﻦ اﻟﺘﺤﻠ ﻴﻞ اﻟﻐﻴ ﺮ ﺧﻄ ﻰ ﻣ ﺜﻞ ﻣﻀ ﺎﻋﻔﺎت اﻟ ﺘﻌﺪﻳﻞ‬
‫)‪ (intermodulation products IM‬و ﻧﻘﻂ اﻟﺘﻘﺎﻃﻊ )‪ (intercept point IP‬و ﻣﺴﺎرات ﺳﺤﺐ اﻟﺤﻤﻞ ) ‪load‬‬
‫‪ (pull contours‬و ﻏﻴ ﺮهﺎ‪ .‬آﻤ ﺎ ﻳﻤﻜ ﻦ ﺗﻌ ﺮﻳﻒ آﻤ ﻴﺎت أﺧ ﺮى ﻷداء اﻟﺪاﺋ ﺮﻩ ﺳ ﻮاء ﺧﻄ ﻴﻪ أو ﻏﻴ ﺮ ﺧﻄ ﻴﻪ ﻟﻴ ﺘﻢ‬
‫ﺣﺴﺎﺑﻬﺎ و رﺳﻤﻬﺎ ﺑﻮاﺳﻄﺔ ﺑﺮﻧﺎﻣﺞ اﻟﺘﺤﻠﻴﻞ‪.‬‬
‫و ﻳ ﺘﻢ رﺳ ﻢ أداء اﻟﺪاﺋ ﺮﻩ ﻓ ﻰ أﺷ ﻜﺎل ﻣﺨ ﺘﻠﻔﻪ ﺳ ﻮاء رﺳ ﻢ ﺑﻤﺤ ﺎور أﻓﻘ ﻴﻪ و رأﺳ ﻴﻪ )‪ (rectangular‬أو رﺳ ﻢ ﻗﻄﺒ ﻰ‬
‫)‪ (polar‬أو ﻋﻠ ﻰ ﻣﺨﻄ ﻂ ﺳﻤﻴﺚ )‪ (Smith Chart‬أو ﻗﺪ ﻳﺘﻢ ﺑﻴﺎن اﻷداء ﻓﻰ ﺻﻮرة ﺟﺪاول اﻟﻰ ﺁﺧﺮ ﻃﺮق ﻋﺮض‬
‫اﻷداء‪ .‬آﻤﺎ ﻓﻰ اﻷﺷﻜﺎل )‪ (٣ - ٥‬و )‪ (٤ - ٥‬و )‪.(٥ - ٥‬‬

‫ﺷﻜﻞ )‪ : (٣ - ٥‬ﻣﺜﺎل ﻟﺮﺳﻢ أداء داﺋﺮﻩ ﻓﻰ ﺷﻜﻞ ﻣﺤﺎور أﻓﻘﻴﻪ و رأﺳﻴﻪ‪.‬‬

‫‪167‬‬

‫ﺷﻜﻞ )‪ : (٤ - ٥‬ﻣﺜﺎل ﻟﺮﺳﻢ أداء داﺋﺮﻩ ﻋﻠﻰ ﻣﺨﻄﻂ ﺳﻤﻴﺚ )‪.(Smith Chart‬‬

‫ﺷﻜﻞ )‪ : (٥ - ٥‬ﻣﺜﺎل ﻟﺮﺳﻢ أداء داﺋﺮﻩ ﻋﻠﻰ ﻣﺤﺎور ﻗﻄﺒﻴﻪ )‪.(polar‬‬

‫)‪ (٣‬اﻟﺘﻮﻟ ﻴﻒ و اﻟ ﺒﺤﺚ ﻋﻦ اﻟﺤﻞ اﻷﻣﺜﻞ ‪ :‬ﺑﻌﺪ اﺟﺮاء ﺗﺤﻠﻴﻞ اﻟﺪاﺋﺮﻩ أو ﺣﺴﺎب أداء اﻟﺪاﺋﺮﻩ و اﻟﺬى ﻏﺎﻟﺒﺎ ﻣﺎ ﻳﻜﻮن‬
‫ﺑﻌ ﻴﺪ ﺑﻨﺴ ﺒﺔ ﻣ ﺎ ﻋ ﻦ اﻷداء اﻟﻤﻄﻠ ﻮب ‪ ،‬و ﻓ ﻰ ه ﺬﻩ اﻟﺤﺎﻟ ﻪ اﻣ ﺎ أن ﻧﻘ ﻮم ﺑﻮاﺳ ﻄﺔ اﻟﺒ ﺮﻧﺎﻣﺞ ﺑﻌﻤ ﻞ ﺗﻮﻟﻴﻒ )‪(Tuning‬‬
‫ﺑﻄ ﺮﻳﻘﻪ ﻳﺪوﻳﻪ ﺑﻤﻌﻨﻰ ﺗﻐﻴﻴﺮ ) أو اﺧﺘﻴﺎر( ﻗﻴﻢ ﻣﻜﻮﻧﺎت اﻟﺪاﺋﺮﻩ ﺑﻤﻌﺮﻓﺔ ﻣﺴﺘﺨﺪم اﻟﺒﺮﻧﺎﻣﺞ )ﻋﻦ ﻃﺮﻳﻖ ﺗﺤﺮﻳﻚ ﻣﺆﺷﺮ‬
‫أو ﻣﺆﺷ ﺮات ﻟﺘﻐﻴﻴ ﺮ ﻗ ﻴﻢ و أﺑﻌ ﺎد ﻣﻜ ﻮﻧﺎت ﺑﺎﻟﺪاﺋﺮﻩ ﻣﺜﻼ( ‪ ،‬و ﻳﺘﻢ هﺬا اﻟﺘﻮﻟﻴﻒ أﺛﻨﺎء ﻣﺸﺎهﺪة اﻟﺘﻐﻴﻴﺮ ﻓﻰ أداء اﻟﺪاﺋﺮﻩ‬

‫‪168‬‬

‫)أى أﺛ ﻨﺎء ﻣﺸ ﺎهﺪة ﻣﻨﺤﻨ ﻴﺎت اﻷداء ﻟﻠﺪاﺋ ﺮﻩ و ه ﻰ ﺗ ﺘﺠﺪد آﻠﻤ ﺎ ﻳ ﺘﻢ ﺗﻐﻴﻴ ﺮ ﻓ ﻰ ﻗﻴﻢ و أﺑﻌﺎد ﻣﻜﻮﻧﺎت اﻟﺪاﺋﺮﻩ( ﺑﻐﺮض‬
‫اﻟﺤﺼ ﻮل ﻋﻠ ﻰ اﻷداء اﻟﻤﻄﻠ ﻮب ﻟﻠﺪاﺋﺮﻩ ﻓﻰ اﻟﻨﻬﺎﻳﻪ )أو اﻻﻗﺘﺮاب ﻣﻦ اﻷداء اﻟﻤﻄﻠﻮب(‪ .‬و ﻳﺒﻴﻦ ﺷﻜﻞ )‪ (٦ - ٥‬ﻣﺜﺎﻻ‬
‫ﻟﻌﻤﻠﻴﺔ ﺗﻮﻟﻴﻒ‪.‬‬

‫ﺷﻜﻞ )‪ : (٦ - ٥‬ﻣﺜﺎل ﻟﻌﻤﻠﻴﺔ ﺗﻮﻟﻴﻒ ﻗﻴﻢ ﻣﻜﺜﻒ و ﻃﻮل ﺧﻂ ﺷﺮﻳﻄﻰ ﻓﻰ داﺋﺮﻩ ﻣﻌﻴﻨﻪ و ﻳﺘﻢ ذﻟﻚ ﺣﺘﻰ اﻟﺤﺼﻮل‬
‫ﻋﻠﻰ اﻷداء اﻟﻤﻄﻠﻮب‪.‬‬

‫أو ﻧﻘ ﻮم ﺑﻮاﺳ ﻄﺔ اﻟﺒ ﺮﻧﺎﻣﺞ ﺑﻌﻤ ﻞ اﻟ ﺒﺤﺚ ﻋ ﻦ اﻟﺤ ﻞ اﻷﻣ ﺜﻞ )‪ (Optimization‬ﺑﻤﻌﻨ ﻰ ﺗﻐﻴﻴﺮ أﺑﻌﺎد اﻟﺪاﺋﺮﻩ ﺑﻄﺮﻳﻘﻪ‬
‫رﻗﻤ ﻴﻪ ﻣ ﺜﻞ ) ‪Newton's Method, Nelder-Mead's Method, Genetic Algorithm, Random‬‬
‫‪Optimization, Davidon-Fletcher-Powell Optimization, Simplex Optimization,‬‬
‫‪ (Simulated Annealing,‬و ﻏﻴ ﺮهﺎ ﻟﻠﺤﺼ ﻮل ﻋﻠ ﻰ اﻷداء اﻟﻤﻄﻠ ﻮب ﻟﻠﺪاﺋ ﺮﻩ و ﻳ ﺘﻢ ذﻟ ﻚ ﺑﻄ ﺮﻳﻘﻪ اوﺗﻮﻣﺎﺗﻴﻜ ﻴﻪ‬
‫)ﺁﻟﻴﻪ( ﺑﻮاﺳﻄﺔ ﺑﺮﻧﺎﻣﺞ اﻟﺘﺤﻠﻴﻞ ﺑﻨﺎء ﻋﻠﻰ اﺧﺘﻴﺎر اﻟﻤﺴﺘﺨﺪم‪.‬‬
‫ﻓ ﻰ ﺑﻌ ﺾ اﻟﺤ ﺎﻻت ﻳﻤﻜ ﻦ اﺳ ﺘﺨﺪام آ ﻼ ﻣ ﻦ اﻟﺘﻮﻟ ﻴﻒ )‪ (Tuning‬و اﻟ ﺒﺤﺚ ﻋ ﻦ اﻟﺤ ﻞ اﻷﻣ ﺜﻞ )‪(Optimization‬‬
‫ﻟﺘﺤﻘﻴﻖ اﻷداء اﻟﻤﻄﻠﻮب ﻟﻠﺪاﺋﺮﻩ ﻓﻰ اﻟﻨﻬﺎﻳﻪ‪.‬‬
‫و ه ﻨﺎك ﺧﺎﺻ ﻴﺔ )‪ (cooptimization‬اﻟﻤﻮﺟ ﻮدﻩ ﻓ ﻰ ﺑﻌ ﺾ ﺑ ﺮاﻣﺞ اﻟﺘﺤﻠ ﻴﻞ ﻣﺜﻞ )‪ (Agilent ADS‬و ﻏﻴﺮﻩ و‬
‫اﻟﺘ ﻰ ﺗﺴ ﺘﺨﺪم ﺧﺎﺻ ﻴﺔ )‪ (cosimulation‬اﻟﻤﺸ ﺮوﺣﻪ ﺳﺎﺑﻘﺎ ﻓﻰ اﻟﺒﺤﺚ ﻋﻦ اﻟﺤﻞ اﻷﻣﺜﻞ ﻣﻊ دﻗﻪ ﻋﺎﻟﻴﻪ ﻓﻰ اﻟﺘﺤﻠﻴﻞ ‪،‬‬
‫و هﺬا ﻣﻤﻜﻦ ﻓﻰ آﻞ اﻟﺒﺮاﻣﺞ اﻟﺘﻰ ﺑﻬﺎ )‪ (Hierarchical Simulation‬أو اﻟﺘﺤﻠﻴﻞ اﻟﻤﺘﺴﻠﺴﻞ اﻟﻰ أﺟﺰاء‪.‬‬
‫ﻓ ﻰ ﺣ ﺎﻻت اﻻﻧ ﺘﺎج اﻟﺼ ﻨﺎﻋﻰ و اﻟﻜﺜ ﻴﻒ و اﻻﻧ ﺘﺎج ذو اﻟﺪﻗ ﻪ اﻟﻌﺎﻟ ﻴﻪ ﻳ ﺘﻢ اﻟﻠﺠﻮء اﻟﻰ ﻋﻤﻞ )‪(Yield Analysis‬‬
‫ﺑﻮاﺳ ﻄﺔ ﺑ ﺮﻧﺎﻣﺞ اﻟﺘﺤﻠ ﻴﻞ ﻟﺤﺴ ﺎب ﻧﺴ ﺒﺔ ﻧﺠ ﺎح اﻟﺪاﺋ ﺮﻩ ﺑﻌ ﺪ اﻟﺘﺼ ﻨﻴﻊ ﻣ ﻊ ادﺧ ﺎل اﻟﺴﻤﺎﺣﻴﻪ و دﻗﺔ اﻟﺘﺼﻨﻴﻊ ﻟﻠﻤﻜﻮﻧﺎت‬
‫ﺑﺎﻟﺪاﺋ ﺮﻩ و دﻗ ﺔ ﺗﺼ ﻨﻴﻊ أﺑﻌ ﺎد اﻟﺨﻄ ﻮط ‪.‬‬

‫آﻤ ﺎ ﻳﻤﻜ ﻦ اﻟ ﺒﺤﺚ ﻋ ﻦ اﻟﺤ ﻞ اﻷﻣ ﺜﻞ ﻣﻊ ادﺧﺎل اﻟﺴﻤﺎﺣﻴﻪ و دﻗﺔ اﻟﺘﺼﻨﻴﻊ‬

‫ﻟﻠﻤﻜ ﻮﻧﺎت و اﻟﺨﻄ ﻮط ﺑﺎﻟﺪاﺋ ﺮﻩ )‪ (Yield Optimization‬و ذﻟ ﻚ ﻟ ﺮﻓﻊ ﻧﺴ ﺒﺔ ﻧﺠ ﺎح اﻟﺪاﺋﺮﻩ ﺑﻌﺪ اﻟﺘﺼﻨﻴﻊ ‪ .‬ﻓﻘﻂ‬
‫ﻳ ﺘﻄﻠﺐ ذﻟ ﻚ ﻣﻌ ﺮﻓﺔ ﻧﺴ ﺒﺔ اﻟﺴ ﻤﺎﺣﻴﻪ ﻓ ﻰ اﻟﻤﻜ ﻮﻧﺎت ﺑﺎﻟﺪاﺋ ﺮﻩ ﻣ ﺜﻞ )اﻟﻤﻘﺎوﻣ ﺎت و اﻟﻤﻜ ﺜﻔﺎت ( و ﻏﻴ ﺮهﺎ و ﻣﻌﺮﻓﺔ دﻗﺔ‬

‫‪169‬‬

‫ﺗﺼ ﻨﻴﻊ أﺑﻌ ﺎد اﻟﺨﻄ ﻮط و اﻟﻤﻜ ﻮﻧﺎت اﻟﺸ ﺮﻳﻄﻴﻪ ﺑﺎﺳﺘﺨﺪام ﻣﺎآﻴﻨﺔ اﻟﺘﺼﻨﻴﻊ )و ﻻ ﻳﻐﻨﻰ ذﻟﻚ ﻋﻦ ﺗﻨﻔﻴﺬ و اﺧﺘﺒﺎر ﻋﻴﻨﺎت‬
‫أوﻟﻴﻪ ﻟﻠﺪاﺋﺮﻩ و ﻣﻘﺎرﻧﺔ ﻧﺘﺎﺋﺞ اﻟﺘﺤﻠﻴﻞ و اﻻﺧﺘﺒﺎر(‪.‬‬
‫)‪ (٤‬اﺳ ﺘﺨﺮاج اﻟﻤﺨﻄ ﻂ اﻟﻨﻬﺎﺋ ﻰ ‪ :‬ﺑﻌ ﺪ ﺗﺤﻘ ﻴﻖ اﻷداء اﻟﻤﻄﻠ ﻮب ﻟﻠﺪاﺋ ﺮﻩ ﻳ ﺘﻢ اﺳﺘﺨﺮاج اﻟﻤﺨﻄﻂ )‪ (Layout‬اﻟﻨﻬﺎﺋﻰ‬
‫ﻟﻠﺪاﺋ ﺮﻩ و اﻟ ﺬى ﻳﻨ ﺘﺠﻪ اﻟﺒ ﺮﻧﺎﻣﺞ و ﻳﻤﻜ ﻦ ﻃ ﺒﺎﻋﺔ اﻟﻤﺨﻄ ﻂ اﻟﻨﻬﺎﺋ ﻰ ﻋﻠ ﻰ ورق أو ﻋﻠ ﻰ )‪ (Mask‬ﻗ ﻨﺎع أو رﻗﺎﻗ ﻪ‬
‫ﺑﻼﺳﺘﻴﻜﻴﻪ ﺷﻔﺎﻓﻪ ﻻﺳﺘﺨﺪاﻣﻬﺎ ﻓﻰ ﻃﺒﺎﻋﺔ اﻟﺪاﺋﺮﻩ‪ .‬و ﻳﺒﻴﻦ ﺷﻜﻞ )‪ (٧ - ٥‬ﻣﺜﺎل ﻟﺬﻟﻚ‪.‬‬

‫ﺷﻜﻞ )‪ : (٧ - ٥‬ﻣﺜﺎل ﻟﻤﺨﻄﻂ داﺋﺮﻩ ﻣﻌﻴﻨﻪ ﺗﻢ اﻧﺘﺎﺟﻪ ﺑﻮاﺳﻄﺔ ﺑﺮﻧﺎﻣﺞ ﻋﺎم ﻟﻠﺘﺤﻠﻴﻞ‪.‬‬

‫و ﻳﻤﻜ ﻦ ﻣ ﻊ ﺑﻌ ﺾ اﻟﺒ ﺮاﻣﺞ اﺳ ﺘﺨﺪام ﻣﺎآﻴ ﻨﻪ ﻣ ﻦ ﻧ ﻮع )‪ (Computer Numerically Controlled CNC‬أى‬
‫)ﻣﺎآﻴ ﻨﻪ ﻳ ﺘﻢ اﻟ ﺘﺤﻜﻢ ﻓ ﻴﻬﺎ رﻗﻤﻴﺎ ﺑﺎﺳﺘﺨﺪام اﻟﺤﺎﺳﺐ( ﻟﺘﺼﻨﻴﻊ اﻟﺪاﺋﺮﻩ ﻣﺒﺎﺷﺮة ﻋﻦ ﻃﺮﻳﻖ ﺗﻤﺮﻳﺮ اﻟﻤﻠﻒ اﻟﻤﺤﺘﻮى ﻋﻠﻰ‬
‫اﻟﻤﺨﻄ ﻂ )‪ (Layout‬اﻟﻨﻬﺎﺋ ﻰ ﻟﻠﺪاﺋ ﺮﻩ و اﻟ ﺬى ﻳﻨ ﺘﺠﻪ اﻟﺒ ﺮﻧﺎﻣﺞ ﻓ ﻰ ﺻ ﻮرة ﻣﻠ ﻒ ﻟ ﻪ ﻓ ﻮرﻣﺎت ﻣﻌﻴ ﻨﻪ ﻣﺜﻞ‬
‫)‪ (DXF, GDSII, Gerber, PAD,...etc.‬و ﻏﻴ ﺮهﺎ و ﻳ ﺘﻢ ﺗﻤﺮﻳ ﺮ ه ﺬا اﻟﻤﻠ ﻒ ﻣﻦ اﻟﺤﺎﺳﺐ ﻟﻠﻤﺎآﻴﻨﻪ ﻋﻦ ﻃﺮﻳﻖ‬
‫آ ﺎرت اﺿ ﺎﻓﻰ )‪ (extension card‬ﻣ ﻦ ﻧ ﻮع )‪ (GPIB or HPIB‬ﻣ ﺜﻼ )أو أى ﻧ ﻮع ﺁﺧ ﺮ( ﻳ ﺘﻢ ﺗ ﺮآﻴﺒﻪ ﻓ ﻰ‬
‫اﻟﺤﺎﺳ ﺐ و ﺗﻮﺻ ﻴﻠﻪ ﻋ ﻦ ﻃ ﺮﻳﻖ آﺎﺑ ﻞ ﻣ ﻦ ﻧﻔ ﺲ اﻟ ﻨﻮع اﻟ ﻰ اﻟﻤﺎآﻴ ﻨﻪ اﻟﺘ ﻰ ﺗﻌﻤ ﻞ آﻔﺮﻳ ﺰﻩ و ﻣ ﺜﻘﺎب و ﺗﻘ ﻮم ﺑﺘﺼ ﻨﻴﻊ‬
‫اﻟﺪاﺋ ﺮﻩ ﻣﺒﺎﺷ ﺮة ‪ ،‬و ﺗﺴ ﻤﻰ ه ﺬﻩ اﻟﻌﻤﻠ ﻴﻪ اﻟﺘﺼ ﻨﻴﻊ ﺑﻮاﺳ ﻄﺔ اﻟﺤﺎﺳ ﺐ ) ‪Computer Aided Manufacturing‬‬
‫‪ . (CAM‬و ﻳﺒﻴﻦ اﻟﺸﻜﻞ )‪ (٨ - ٥‬رﺳﻤﺎ ﺗﻮﺿﻴﺤﻴﺎ ﻟﻬﺬﻩ اﻟﻌﻤﻠﻴﻪ‪.‬‬

‫‪170‬‬

‫اﻟﺸﻜﻞ )‪ : (٨ - ٥‬رﺳﻢ ﺗﻮﺿﻴﺤﻰ ﻟﻌﻤﻠﻴﻪ اﻟﺘﺼﻨﻴﻊ ﺑﻮاﺳﻄﺔ اﻟﺤﺎﺳﺐ ﺑﺎﺳﺘﺨﺪام آﺎرت اﺿﺎﻓﻰ ﻣﻦ ﻧﻮع )‪(GPIB‬‬
‫ﻣﺜﺒﺖ ﺑﺎﻟﺤﺎﺳﺐ و ﻣﻮﺻﻞ ﺑﻜﺎﺑﻞ اﻟﻰ ﻣﺎآﻴﻨﻪ ﻣﻦ ﻧﻮع )‪.(CNC‬‬

‫هﻨﺎك ﺑﺮاﻣﺞ ﻣﺜﻞ )‪ (Agilent ADS‬وﻏﻴﺮﻩ ﻳﻤﻜﻨﻬﺎ ﻗﺮاءة اﻟﻘﻴﺎﺳﺎت ﻣﺒﺎﺷﺮة ﻣﻦ ﺟﻬﺎز اﻟﻘﻴﺎس ﻋﻦ ﻃﺮﻳﻖ آﺎﺑﻞ ﻣﻦ‬
‫ﻧ ﻮع )‪ (GPIB or HPIB‬ﻣ ﺜﻼ ﻣﻮﺻ ﻞ ﺑ ﻴﻦ ﺟﻬ ﺎز اﻟﻘ ﻴﺎس و اﻟﺤﺎﺳ ﺐ ﻋﻦ ﻃﺮﻳﻖ آﺎرت اﺿﺎﻓﻰ ﻣﻦ ﻧﻔﺲ اﻟﻨﻮع‬
‫ﻣﺜ ﺒﺖ ﻓ ﻰ اﻟﺤﺎﺳﺐ ﺳﻮاء ﻟﺮﺳﻢ ﻧﺘﺎﺋﺞ اﻟﻘﻴﺎس ﺑﺎﺳﺘﺨﺪام اﻟﺒﺮﻧﺎﻣﺞ أو ﻟﺮﺳﻢ )ﻋﻤﻞ( ﻣﻘﺎرﻧﻪ ﺑﻴﻦ ﻧﺘﺎﺋﺞ اﻟﺘﺤﻠﻴﻞ و ﻧﺘﺎﺋﺞ‬
‫اﻟﻘﻴﺎس أو ﻻﺳﺘﺨﺪام ﻧﺘﺎﺋﺞ ﻗﻴﺎس اﻟﺪاﺋﺮﻩ )أو اﻟﻤﻜﻮن( ﻓﻰ اﻟﻨﻤﺬﺟﻪ ) أى ﻋﻤﻞ ﻧﻤﻮذج ﻟﻠﺪاﺋﺮﻩ أو اﻟﻤﻜﻮن( أو ﻻﺳﺘﺨﺪام‬
‫ﻧ ﺘﺎﺋﺞ ﻗ ﻴﺎس اﻟﺪاﺋ ﺮﻩ )أو اﻟﻤﻜ ﻮن( ﻓ ﻰ ﻋﻤ ﻞ ﺗﺤﻠ ﻴﻞ ﻟﺪاﺋ ﺮﻩ أآﺒ ﺮ أو ﻟﺠ ﺰء ﻣ ﻦ ﻧﻈﺎم أو ﻟﻨﻈﺎم آﺎﻣﻞ ﺗﻜﻮن اﻟﺪاﺋﺮﻩ )أو‬
‫اﻟﻤﻜﻮن( اﻟﻤﻘﺎﺳﻪ ﻧﺘﺎﺋﺠﻬﺎ ﺟﺰءا ﻣﻨﻪ آﻤﺎ ﻳﻮﺿﺢ اﻟﺸﻜﻞ )‪. (٩ - ٥‬‬

‫ﺷﻜﻞ )‪ : (٩ - ٥‬رﺳﻢ رﻣﺰى ﻟﺘﺤﻠﻴﻞ ﻧﻈﺎم ﺑﻪ داﺋﺮﻩ ﻣﻨﻔﺬﻩ و ﻣﻘﺎﺳﻪ )‪.(DUT‬‬

‫ﻳﺒ ﻴﻦ ﺷﻜﻞ )‪ (٩ - ٥‬ﻣﺜﺎل ﻟﺮﺳﻢ رﻣﺰى ﻟﻤﺎ ﻳﻘﻮم ﺑﻪ اﻟﺒﺮﻧﺎﻣﺞ ﻓﺎﻟﺪاﺋﺮﻩ اﻟﻤﻨﻔﺬﻩ )أو اﻟﻤﻜﻮن( ﻓﻰ اﻟﻤﻨﺘﺼﻒ )‪(DUT‬‬
‫ﻗ ﺪ ﺗ ﻢ ﻗ ﻴﺎس أداﺋﻬ ﺎ ﺑﻮاﺳ ﻄﺔ ﺟﻬ ﺎز اﻟﻘ ﻴﺎس و ﺗﻤﺮﻳ ﺮ اﻟﻨﺘﺎﺋﺞ ﻟﻠﺤﺎﺳﺐ أﻣﺎ رﻣﺰان اﻟﺪاﺋﺮﺗﺎن )أو اﻟﻤﻜﻮﻧﺎن( اﻟﻤﺘﺼﻼن‬
‫ﻣ ﻦ اﻟﻴﻤ ﻴﻦ و اﻟﻴﺴ ﺎر )‪ (A,B‬ﻓﻠ ﻢ ﻳ ﺘﻢ ﺗﺼ ﻨﻴﻌﻬﻤﺎ ﺑﻌ ﺪ ‪ ،‬و ﻋ ﻦ ﻃ ﺮﻳﻖ اﻟﻤﺤﺎآ ﺎﻩ )‪ (simulation‬ﻳ ﺘﻢ ﺣﺴ ﺎب اﻷداء‬
‫‪171‬‬

‫اﻟﻜﻠ ﻰ ﻟﻠ ﺜﻼﺛﺔ دواﺋ ﺮ و هﻰ ﻣﺘﺼﻠﻪ ﻣﻌﺎ )أو ﺟﺰء ﻣﻦ اﻟﻨﻈﺎم أو اﻟﻨﻈﺎم آﺎﻣﻼ(‪ .‬ﻟﻼﺳﺘﻔﺎدﻩ ﻣﻦ ﻧﺘﻴﺠﺔ اﻟﺘﺤﻠﻴﻞ ﻓﻰ اﻟﻌﺪﻳﺪ‬
‫ﻣﻦ اﻟﺤﺴﺎﺑﺎت و ﻣﻦ ﺿﻤﻨﻬﺎ ﺗﻌﺪﻳﻞ )أو ﺗﺤﺴﻴﻦ( ﺗﺼﻤﻴﻢ اﻷﺟﺰاء اﻟﺘﻰ ﺳﻴﺘﻢ ﺗﻨﻔﻴﺬهﺎ ﻓﻴﻤﺎ ﺑﻌﺪ‪.‬‬
‫ﻓ ﻴﻤﺎ ﻳﻠ ﻰ ﺳ ﺮد ﻣﺨﺘﺼ ﺮ ﻻﻣﻜﺎﻧ ﻴﺎت ﺑﻌ ﺾ اﻟﺒ ﺮاﻣﺞ اﻟﻌﺎﻣ ﻪ ﻟﺘﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ و اﻷﻧﻈﻤ ﻪ و دواﺋ ﺮ اﻟﺘ ﺮدد اﻟﻌﺎﻟ ﻰ و‬
‫اﻟﻤﻴﻜﺮووﻳﻒ‪.‬‬
‫أوﻻ ﺑﺮﻧﺎﻣﺞ )‪: (Agilent ADS‬‬
‫ﻳﻌﺘﺒ ﺮ ﻣ ﻦ أه ﻢ اﻟﺒ ﺮاﻣﺞ اﻟﻌﺎﻣ ﻪ ﻟﺘﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ و اﻷﻧﻈﻤ ﻪ و دواﺋ ﺮ اﻟﺘﺮدد اﻟﻌﺎﻟﻰ و اﻟﻤﻴﻜﺮووﻳﻒ و هﻮ اﻷﻏﻠﻰ ﺛﻤﻨﺎ‬
‫ﺑﺎﻟﻨﺴﺒﻪ ﻟﻠﺒﺮاﻣﺞ اﻟﻤﻨﺘﺠﻪ ﺗﺠﺎرﻳﺎ ﻓﻰ هﺬا اﻟﻤﺠﺎل‪.‬‬
‫ﻳﻤﻜ ﻦ ﻟﻬ ﺬا اﻟﺒ ﺮﻧﺎﻣﺞ ﺗﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ اﻟﻤﺼ ﻤﻤﻪ ﺑﺘﻜﻨﻮﻟﻮﺟ ﻴﺎت ﻣﺨ ﺘﻠﻔﻪ ﻣ ﺜﻞ اﻟﺪواﺋ ﺮ اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ و ﺗﻜﻨﻮﻟﻮﺟﻴﺎت‬
‫)‪ (RFIC, MMIC‬و ﻏﻴ ﺮهﺎ ﺳ ﻮاء ﺑﻄ ﺮق اﻟﺘﺤﻠ ﻴﻞ اﻟﺨﻄ ﻴﻪ و ﻏﻴ ﺮ اﻟﺨﻄ ﻴﻪ و اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴ ﻴﻪ و اﻧ ﺘﺎج ﻣﺨﻄﻂ‬
‫اﻟﺪواﺋ ﺮ و ﺗﺤﻠ ﻴﻞ اﻟ ﻨﻈﻢ ‪ .‬آﻤ ﺎ ﻳ ﻮﺟﺪ ﺑﻬ ﺬا اﻟﺒ ﺮﻧﺎﻣﺞ )‪ (Interfaces‬أو اﻣﻜﺎﻧﻴﺎت ﻣﺒﺎدﻟﺔ و ﺗﻤﺮﻳﺮ اﻟﻨﺘﺎﺋﺞ ﻣﻊ ﺑﺮاﻣﺞ‬
‫أﺧ ﺮى ﻣ ﺜﻞ )‪ (Sonnet Suite, Cadence Design System, Mentor Graphics‬و ﻏﻴ ﺮهﺎ و ﻳﻤﻜ ﻦ أﻳﻀ ﺎ‬
‫اﺳ ﺘﻘﺒﺎل ﻧ ﺘﺎﺋﺞ اﻟ ﻨﻤﺬﺟﻪ ﻣ ﻦ ﺑ ﺮاﻣﺞ اﻟ ﻨﻤﺬﺟﻪ ﻣ ﺜﻞ )‪ (NeuroModeler, ICCAP‬و ﻏﻴ ﺮهﺎ و اﻟﺘ ﻰ ﺗﻨ ﺘﺞ ﻧﻤ ﺎذج‬
‫ﻣﻜﻮﻧﺎت ﺗﺴﺘﺨﺪم ﻣﺒﺎﺷﺮة ﻣﻊ ﺑﺮﻧﺎﻣﺞ )‪. (Agilent ADS‬‬
‫ﺑﺮﻧﺎﻣﺞ )‪ (Agilent ADS‬ﻳﻘﻮم ﺑﻌﻤﻞ ﻃﺮق اﻟﺘﺤﻠﻴﻞ اﻵﺗﻴﻪ ) ‪DC analysis, AC analysis, S-Parameters‬‬
‫‪analysis, Harmonic Balance, Circuit Envelope Simulation, Transient Time Domain,‬‬
‫‪ (Envelope Simulation, Yield Analysis, Electromagnetic Analysis‬و ﺑ ﻪ اﻣﻜﺎﻧ ﻴﺔ اﻟ ﺒﺤﺚ ﻋ ﻦ‬
‫اﻟﺤ ﻞ اﻷﻣ ﺜﻞ )‪ (Optimization‬ﺑﺎﻟﻌﺪﻳ ﺪ ﻣ ﻦ اﻟﻄ ﺮق ﺑﺎﻻﺿ ﺎﻓﻪ اﻟ ﻰ )‪ (Yield Optimization‬و اﻣﻜﺎﻧ ﻴﺎت‬
‫)‪ (cooptimization and cosimulation‬اﻟﻤﺬآﻮرﻩ أﻋﻼﻩ‪.‬‬
‫و ﻳﺤﺘﻮى اﻟﺒﺮﻧﺎﻣﺞ ﻋﻠﻰ )‪ (design guide‬أو اﻣﻜﺎﻧﻴﺎت ارﺷﺎد ﻟﺘﺼﻤﻴﻢ و ﺗﺤﻠﻴﻞ أﻧﻮاع ﻣﺨﺘﻠﻔﻪ ﻣﻦ اﻟﺪواﺋﺮ‪.‬‬
‫و ﻳ ﻮﺟﺪ ﺑﺎﻟﺒﺮﻧﺎﻣﺞ )‪ (module‬أو ﺟﺰء اﺳﻤﻪ )‪ (Esyn‬ﻟﺘﺼﻤﻴﻢ دواﺋﺮ اﻟﺘﻮﻓﻴﻖ و اﻟﻔﻼﺗﺮ و ﻳﻮﺟﺪ أﻳﻀﺎ ﺟﺰء اﺳﻤﻪ‬
‫)‪ (LINECALC‬ﻟﺘﺼﻤﻴﻢ و ﺗﺤﻠﻴﻞ أﻧﻮاع ﻣﺨﺘﻠﻔﻪ ﻣﻦ ﺧﻄﻮط اﻻرﺳﺎل و ﻣﻦ ﺿﻤﻨﻬﺎ اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ‪.‬‬
‫ﺛﺎﺗﻴﺎ ﺑﺮﻧﺎﻣﺞ )‪: (Agilent Genesys‬‬
‫ﺑ ﺮﻧﺎﻣﺞ ﻋ ﺎم ﻟﺘﺤﻠﻴﻞ اﻟﺪواﺋﺮ و اﻷﻧﻈﻤﻪ و دواﺋﺮ اﻟﺘﺮدد اﻟﻌﺎﻟﻰ و اﻟﻤﻴﻜﺮووﻳﻒ و ﻳﻤﺘﺎز هﺬا اﻟﺒﺮﻧﺎﻣﺞ ﺑﺄﻧﻪ ﻳﺘﻜﻮن ﻣﻦ‬
‫أﺟﺰاء )‪ (modules‬ﻳﻤﻜﻦ ﺷﺮاء أﺣﺪهﺎ أو ﺑﻌﺾ ﻣﻨﻬﺎ ﻟﺘﺨﻔﻴﺾ ﻣﺠﻤﻮع اﻟﺜﻤﻦ اﻟﻨﻬﺎﺋﻰ‪.‬‬
‫ﻳﻤﻜ ﻦ ﻟﻬ ﺬا اﻟﺒ ﺮﻧﺎﻣﺞ ﺗﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ اﻟﻤﺼ ﻤﻤﻪ ﺑﺘﻜﻨﻮﻟﻮﺟ ﻴﺎت ﻣﺨ ﺘﻠﻔﻪ ﻣ ﺜﻞ اﻟﺪواﺋ ﺮ اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﺪﻗ ﻴﻘﻪ ﺳ ﻮاء ﺑﻄ ﺮق‬
‫اﻟﺘﺤﻠ ﻴﻞ اﻟﺨﻄ ﻴﻪ و ﻏﻴ ﺮ اﻟﺨﻄ ﻴﻪ و اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴ ﻴﻪ و اﻧ ﺘﺎج ﻣﺨﻄ ﻂ اﻟﺪواﺋ ﺮ ﺑﺎﻻﺿ ﺎﻓﻪ اﻟ ﻰ اﻣﻜﺎﻧ ﻴﺔ ﺗﺤﻠﻴﻞ اﻟﻨﻈﻢ‬
‫)‪.(SPECTRASYS Module‬‬
‫اﻟﺒ ﺮﻧﺎﻣﺞ آ ﺎن ﻣ ﻦ اﻧ ﺘﺎج ﺷ ﺮآﺔ )‪ (Eagleware‬و آ ﺎن ﻳﺴ ﻤﻰ )‪ (Eagleware Genesys‬ﺣﺘ ﻰ ﺗﻢ ﺷﺮاء ﺷﺮآﺔ‬
‫)‪ (Eagleware‬ﺑﻮاﺳﻄﺔ ﺷﺮآﺔ )‪ (Agilent‬ﻟﻴﺄﺧﺬ اﺳﻤﻪ اﻟﺤﺎﻟﻰ‪.‬‬
‫اﻣﻜﺎﻧ ﻴﺎت )‪ (synthesis modules‬أو أﺟ ﺰاء اﻟﺘﺼ ﻤﻴﻢ ﺑﺎﻟﺒ ﺮﻧﺎﻣﺞ ﻋﺪﻳ ﺪﻩ ﻣ ﺜﻞ ) ‪FILTER, M/FILTER,‬‬
‫‪A/FILTER, EQUALIZE, MATCH, OSCILLATOR, PLL, MIXER, AMPLIFIER,‬‬
‫‪ (S/FILTER, TLINE‬ﻟﺘﺼ ﻤﻴﻢ أﻧ ﻮاع ﻋﺪﻳ ﺪﻩ ﻣ ﻦ اﻟﻔﻼﺗﺮ و دواﺋﺮ اﻟﺘﻮﻓﻴﻖ و اﻟﻤﺬﺑﺬﺑﺎت و ﻣﺬﺑﺬﺑﺎت اﻟﺤﻠﻘﻪ ﻣﻐﻠﻘﺔ‬
‫‪172‬‬

‫اﻟﻄ ﻮر )‪ (PLL‬و اﻟﻤﻜﺒ ﺮات و اﻟﻤﺎزﺟ ﺎت ‪ ،‬و ﺗﺼ ﻤﻴﻢ أﻧ ﻮاع ﻣﺨ ﺘﻠﻔﻪ ﻣ ﻦ ﺧﻄ ﻮط اﻻرﺳ ﺎل و ﺗﺼﻤﻴﻢ أﻧﻮاع ﻣﺨﺘﻠﻔﻪ‬
‫ﻣﻦ اﻟﻤﺰدوج اﻻﺗﺠﺎهﻰ و ﻏﻴﺮهﺎ‪.‬‬
‫‪.‬و ﻳ ﻮﺟﺪ ﺑﺎﻟﺒ ﺮﻧﺎﻣﺞ اﻣﻜﺎﻧ ﻴﺔ اﻟ ﺒﺤﺚ ﻋﻦ اﻟﺤﻞ اﻷﻣﺜﻞ )‪ (Optimization‬ﺑﺎﻻﺿﺎﻓﻪ اﻟﻰ ) ‪Yield Analysis and‬‬
‫‪.(Optimization‬‬
‫و ﻳﺴ ﺘﺨﺪم اﻟﺒ ﺮﻧﺎﻣﺞ ﻓ ﻰ ﺗﺸ ﻐﻴﻞ ﻣﺎآﻴﻨﺎت )‪ (CNC‬ﻟﺘﺼﻨﻴﻊ اﻟﺪواﺋﺮ اﻟﻤﻄﺒﻮﻋﻪ و اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ آﻤﺎ ﻳﻮﺟﺪ‬
‫ﺑﺎﻟﺒ ﺮﻧﺎﻣﺞ اﻣﻜﺎﻧ ﻴﺔ )‪ (TEST LINK‬ﻟﻘ ﺮاءة ﻧ ﺘﺎﺋﺞ أﺟﻬ ﺰة اﻟﻘ ﻴﺎس اﻟﻤﺨ ﺘﻠﻔﻪ ﻣ ﺜﻞ ) ‪Network Analyzer,‬‬
‫‪ (Spectrum Analyzer, Oscilloscope‬ﻣﻦ أﻧﻮاع ﻣﺨﺘﻠﻔﻪ ﻋﻦ ﻃﺮﻳﻖ آﺮوت )‪. (GPIB or RS-232‬‬
‫ﺛﺎﻟﺜﺎ ﺑﺮﻧﺎﻣﺞ )‪: (AWR Suite‬‬
‫ﻳﺘﻜﻮن اﻟﺒﺮﻧﺎﻣﺞ ﻣﻦ أﺟﺰاء ﻣﺨﺘﻠﻔﻪ )‪.(Microwave Office, Analog Office, VSS, SI‬‬
‫ﻳﻤﻜ ﻦ ﻟﻬ ﺬا اﻟﺒ ﺮﻧﺎﻣﺞ ﺗﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ اﻟﻤﺼ ﻤﻤﻪ ﺑﺘﻜﻨﻮﻟﻮﺟ ﻴﺎت ﻣﺨ ﺘﻠﻔﻪ ﻣ ﺜﻞ اﻟﺪواﺋ ﺮ اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ و ﺗﻜﻨﻮﻟﻮﺟﻴﺎت‬
‫)‪ (RFIC, MMIC‬و ﻏﻴ ﺮهﺎ ﺳ ﻮاء ﺑﻄ ﺮق اﻟﺘﺤﻠ ﻴﻞ اﻟﺨﻄ ﻴﻪ و ﻏﻴ ﺮ اﻟﺨﻄ ﻴﻪ و اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴ ﻴﻪ ﺑﺎﺳ ﺘﺨﺪام‬
‫)‪ (Microwave Office, Analog Office‬و ﺗﺤﻠﻴﻞ اﻟﻨﻈﻢ ﺑﺎﺳﺘﺨﺪام )‪. (VSS‬‬
‫ﻳﻨ ﺘﺞ اﻟﺒ ﺮﻧﺎﻣﺞ ﻗ ﻮاﺋﻢ )‪ (Netlist‬ﻟﻠﺘﺤﻠ ﻴﻞ ﻣ ﺘﻮاﻓﻘﻪ ﻣ ﻊ )‪ (SPICE‬و ﻧﺎﺗﺠ ﻪ ﻣ ﻦ اﻟﺘﺤﻠ ﻴﻞ اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴ ﻰ‪ .‬وﻣ ﻦ‬
‫ﺿ ﻤﻦ ﻣﺤ ﺘﻮﻳﺎت اﻟﻤﻜﺘ ﺒﺎت اﻟﻤﺒﻨ ﻴﻪ ﺑﺎﻟﺒ ﺮﻧﺎﻣﺞ )‪ (built-in libraries‬ﻣﻜﺘ ﺒﺔ ﻧﻤ ﺎذج ﻟﻠﻤﻜ ﻮﻧﺎت ﻣﺒﻨ ﻴﻪ ﻋﻠ ﻰ اﻟﺘﺤﻠ ﻴﻞ‬
‫اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴ ﻰ )‪ (electromagnetic based models‬ﻟﻤﺨ ﺘﻠﻒ اﻟﺘﻜﻨﻮﻟﻮﺟ ﻴﺎت و ﻣ ﻦ ﺿ ﻤﻨﻬﺎ اﻟﺨﻄ ﻮط و‬
‫اﻟﻤﻜ ﻮﻧﺎت اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﺪﻗ ﻴﻘﻪ و ﻳﻤﻜﻦ ﻟﻠﻤﺴﺘﺨﺪم اﺿﺎﻓﺔ ﻧﻤﺎذج أﺧﺮى ﻣﺒﻨﻴﻪ ﻋﻠﻰ اﻟﺘﺤﻠﻴﻞ اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴﻰ ﺑﺎﺳﺘﺨﺪام‬
‫اﻟﺒﺮﻧﺎﻣﺞ‪.‬‬
‫و ﻳ ﻮﺟﺪ ﺑﺎﻟﺒ ﺮﻧﺎﻣﺞ اﻣﻜﺎﻧ ﻴﺔ اﻟ ﺒﺤﺚ ﻋ ﻦ اﻟﺤﻞ اﻷﻣﺜﻞ )‪ (Optimization‬ﺑﺎﻻﺿﺎﻓﻪ اﻟﻰ ) ‪Yield Analysis and‬‬
‫‪.(Optimization‬‬
‫ﻳﺘﻢ اﻧﺘﺎج ﻣﺨﻄﻂ اﻟﺪواﺋﺮ )‪ (layout‬ﻣﻊ اﻣﻜﺎﻧﻴﺔ ﺗﺼﺤﻴﺢ‪/‬اﺧﺘﺒﺎر اﻷﺧﻄﺎء )‪.(DRC‬‬
‫ﻳ ﻮﺟﺪ ﺑﻬ ﺬا اﻟﺒﺮﻧﺎﻣﺞ )‪ (Interfaces‬أو اﻣﻜﺎﻧﻴﺎت ﻣﺒﺎدﻟﺔ و ﺗﻤﺮﻳﺮ اﻟﻨﺘﺎﺋﺞ ﻣﻊ ﺑﺮاﻣﺞ أﺧﺮى ﻣﺜﻞ ) ‪Sonnet Suite,‬‬
‫‪ (Zeland, Mentor Graphics, ADS,‬و ﻏﻴ ﺮهﺎ آﻤ ﺎ ﻳﺴ ﺘﻘﺒﻞ اﻟﺒ ﺮﻧﺎﻣﺞ ﺗﺼ ﻤﻴﻤﺎت ﻣ ﻦ ﺑ ﺮاﻣﺞ ﺷ ﺮآﺔ‬
‫)‪ (Ampsa‬ﻟﺘﺼ ﻤﻴﻢ دواﺋ ﺮ اﻟﺘﻮﻓ ﻴﻖ و اﻟﻔﻼﺗ ﺮ و اﻟﻤﻜﺒ ﺮات و ﻳﻤﻜ ﻨﻪ اﺳ ﺘﻘﺒﺎل ﺗﺼ ﻤﻴﻢ اﻟﻔﻼﺗ ﺮ اﻟ ﻨﺎﺗﺠﻪ ﻣ ﻦ ﺑ ﺮﻧﺎﻣﺞ‬
‫)‪ .(Nuhertz Filter‬ه ﺬا ﻏﻴ ﺮ اﻣﻜﺎﻧ ﻴﺔ ﺗﺼ ﻤﻴﻢ ﺑﻌ ﺾ اﻟﻔﻼﺗ ﺮ )‪ (Filter Wizard‬اﻟﺪاﺧﻠ ﻴﻪ ‪ .‬و اﻣﻜﺎﻧ ﻴﺔ ) ‪Load‬‬
‫‪ (Pull Wizard‬ﻟﺘﺴ ﻬﻴﻞ ﺗﺼ ﻤﻴﻢ ﻣﻜﺒ ﺮات اﻟﻘ ﺪرﻩ‪ .‬و ﻳ ﻮﺟﺪ ﺑﺎﻟﺒ ﺮﻧﺎﻣﺞ اﻣﻜﺎﻧ ﻴﺔ )‪ (TestWave‬ﻟﻘ ﺮاءة اﻟﻨ ﺘﺎﺋﺞ ﻣ ﻦ‬
‫أﺟﻬﺰة اﻟﻘﻴﺎس اﻟﻤﺨﺘﻠﻔﻪ ‪.‬‬
‫راﺑﻌﺎ ﺑﺮﻧﺎﻣﺞ )‪: (Ansoft Designer‬‬
‫ه ﺬا اﻟﺒ ﺮﻧﺎﻣﺞ ﻳﻘ ﻮم ﺑﺘﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ اﻟﻤﺼ ﻤﻤﻪ ﺑﺘﻜﻨﻮﻟﻮﺟ ﻴﺎت ﻣﺨ ﺘﻠﻔﻪ ﻣ ﺜﻞ اﻟﺪواﺋ ﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ و ﺗﻜﻨﻮﻟﻮﺟﻴﺎت‬
‫)‪ (RFIC, MMIC‬و ﻏﻴ ﺮهﺎ ﺳ ﻮاء ﺑﻄ ﺮق اﻟﺘﺤﻠﻴﻞ اﻟﺨﻄﻴﻪ و ﻏﻴﺮ اﻟﺨﻄﻴﻪ و اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴﻴﻪ اﻟﺴﻄﺤﻴﻪ و ﺛﻼﺛﻴﺔ‬
‫اﻷﺑﻌﺎد ﺑﺎﺳﺘﺨﺪام )‪ (Ansoft HFSS‬و ﺗﺤﻠﻴﻞ اﻟﻨﻈﻢ‪.‬‬
‫و ﺗﺘﻮﻓ ﺮ اﻣﻜﺎﻧ ﻴﺎت اﻟﺘﺼ ﻤﻴﻢ ﺑﺎﻟﺒﺮﻧﺎﻣﺞ ﻣﺜﻞ ﺗﺼﻤﻴﻢ أﻧﻮاع ﻣﺨﺘﻠﻔﻪ ﻣﻦ ﺧﻄﻮط اﻻرﺳﺎل و ﺗﺼﻤﻴﻢ اﻟﻔﻼﺗﺮ ﻣﻊ اﻣﻜﺎﻧﻴﺔ‬
‫ﺗﺼﻤﻴﻢ دواﺋﺮ اﻟﺘﻮﻓﻴﻖ ﺑﺎﺳﺘﺨﺪام ﻣﺨﻄﻂ ﺳﻤﻴﺚ ﻟﻮﺟﻮد أداﻩ ﻻﺳﺘﻌﻤﺎل هﺬا اﻟﻤﺨﻄﻂ ﺑﺎﻟﺒﺮﻧﺎﻣﺞ‪.‬‬
‫‪173‬‬

‫ﻳ ﻮﺟﺪ ﺑﻬ ﺬا اﻟﺒ ﺮﻧﺎﻣﺞ اﻣﻜﺎﻧﻴﺎت ﻣﺒﺎدﻟﺔ و ﺗﻤﺮﻳﺮ اﻟﻨﺘﺎﺋﺞ ﻣﻊ ﺑﺮاﻣﺞ أﺧﺮى ﻣﺜﻞ ) ‪Cadence, Mentor Graphics,‬‬
‫‪. (Zuken, Synopsys,‬‬
‫و ﻳﺴ ﺘﺨﺪم اﻟﺒ ﺮﻧﺎﻣﺞ ﻓ ﻰ ﺗﺸ ﻐﻴﻞ ﻣﺎآﻴ ﻨﺎت )‪ (CNC‬ﻟﺘﺼ ﻨﻴﻊ اﻟﺪواﺋ ﺮ اﻟﻤﻄ ﺒﻮﻋﻪ و اﻟﺪواﺋ ﺮ اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﺪﻗ ﻴﻘﻪ ﺑﺎﻧ ﺘﺎج‬
‫ﻣﺨﻄﻂ اﻟﺪواﺋﺮ ﺑﻔﻮرﻣﺎت )‪.(DXF, GDSII‬‬
‫ﺧﺎﻣﺴﺎ ﺑﺮﻧﺎﻣﺞ )‪: (LINMIC‬‬
‫ه ﺬا اﻟﺒ ﺮﻧﺎﻣﺞ ﻳﻘ ﻮم ﺑﺘﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ اﻟﻤﺼ ﻤﻤﻪ ﺑﺘﻜﻨﻮﻟﻮﺟ ﻴﺎت ﻣﺨ ﺘﻠﻔﻪ ﻣ ﺜﻞ اﻟﺪواﺋ ﺮ اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﺪﻗ ﻴﻘﻪ و دواﺋ ﺮ‬
‫)‪ (MMIC‬و دواﺋ ﺮ اﻟﺨ ﻂ اﻟﻤﺤ ﻮرى و ﻏﻴﺮهﺎ ﺳﻮاء ﺑﻄﺮق اﻟﺘﺤﻠﻴﻞ اﻟﺨﻄﻴﻪ و ﻏﻴﺮ اﻟﺨﻄﻴﻪ و اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴﻴﻪ و‬
‫ه ﻮ ﻻ ﻳﻘ ﻮم ﺑﺘﺤﻠ ﻴﻞ اﻟ ﻨﻈﻢ ‪ .‬و ﻳﻨ ﺘﺞ اﻟﺒ ﺮﻧﺎﻣﺞ ﻗﻮاﺋﻢ )‪ (Netlist‬ﻟﻠﺘﺤﻠﻴﻞ ﻣﺘﻮاﻓﻘﻪ ﻣﻊ )‪ (SPICE‬و ﻧﺎﺗﺠﻪ ﻣﻦ اﻟﺘﺤﻠﻴﻞ‬
‫اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴﻰ‪.‬‬
‫و ﻣﻦ ﺿﻤﻦ اﻟﻤﻜﺘﺒﺎت اﻟﻤﺒﻨﻴﻪ ﺑﺎﻟﺒﺮﻧﺎﻣﺞ )‪ (built-in libraries‬ﻣﻜﺘﺒﻪ ﻟﻤﻜﻮﻧﺎت اﻟﺨﻂ اﻟﻤﺤﻮرى ﻣﺒﻨﻴﻪ ﻋﻠﻰ اﻟﺘﺤﻠﻴﻞ‬
‫اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴﻰ‪.‬‬
‫ﻳ ﻮﺟﺪ ﺑﻬ ﺬا اﻟﺒ ﺮﻧﺎﻣﺞ اﻣﻜﺎﻧ ﻴﺔ اﻧ ﺘﺎج ﻧﻤ ﺎذج )دواﺋ ﺮ ﻣﻜﺎﻓ ﺌﻪ( ﻟﻠﻤﻜ ﻮﻧﺎت اﻟﻐﻴ ﺮ ﺧﻄ ﻴﻪ ﻣ ﺜﻞ ﺗﺮاﻧﺰﻳﺴ ﺘﻮرات ) ‪FET,‬‬
‫‪ .(HEMT‬و ﻳﻘﻮم ﺑﻌﻤﻞ ﺗﺤﻠﻴﻞ ﺧﻄﻰ و ﻏﻴﺮ ﺧﻄﻰ ﻣﺒﻨﻰ ﻋﻠﻰ اﻷﺑﻌﺎد اﻟﻬﻨﺪﺳﻴﻪ )اﻟﻔﻴﺰﻳﻘﻴﻪ( ﻟﻠﻤﻜﻮﻧﺎت اﻟﻔﻌﺎﻟﻪ‪.‬‬
‫ﻳ ﻮﺟﺪ ﺑﺎﻟﺒ ﺮﻧﺎﻣﺞ اﻣﻜﺎﻧ ﻴﺎت ﻣ ﺒﺎدﻟﺔ و ﺗﻤﺮﻳ ﺮ اﻟﻨ ﺘﺎﺋﺞ ﻣ ﻊ ﺑ ﺮﻧﺎﻣﺞ )‪ . (Zeland Suite‬و ﻳﺴﺘﺨﺪم اﻟﺒﺮﻧﺎﻣﺞ ﻓﻰ اﻧﺘﺎج‬
‫ﻣﺨﻄﻄﺎت اﻟﺪواﺋﺮ اﻟﻤﻄﺒﻮﻋﻪ و اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ ﺑﻔﻮرﻣﺎت )‪ (IE3D, GDSII‬و ﻏﻴﺮهﺎ‪.‬‬
‫اﻟﻌﻨﻮان ﻋﻠﻰ اﻻﻧﺘﺮﻧﺖ أو راﺑﻂ اﻟﺘﺤﻤﻴﻞ‬

‫اﺳﻢ اﻟﺒﺮﻧﺎﻣﺞ‬

‫اﺳﻢ اﻟﺸﺮآﻪ‬

‫‪SONNET‬‬

‫‪http://www.sonnetsoftware.com‬‬

‫‪Sonnet Software Inc.‬‬

‫‪http://www.cst.com/‬‬

‫‪CST‬‬

‫‪http://www.remcom.com/‬‬

‫‪Remcom Inc.‬‬

‫‪XFDTD‬‬

‫‪http://www.memresearch.com/em3ds.‬‬

‫‪MEM Research‬‬

‫‪EM3DS‬‬

‫‪CST Microwave‬‬
‫‪Studio‬‬

‫‪htm‬‬
‫‪IMST GmbH‬‬

‫‪http://www.empire.de/‬‬

‫‪EMPIRE Xccel‬‬

‫‪3D Electromagnetic Analysis for Waveguide Technology and Antennas‬‬
‫‪http://www.mician.com/‬‬

‫‪Mician‬‬

‫‪http://www.mig-germany.com‬‬

‫‪MIG Microwave‬‬

‫‪µWave Wizard‬‬
‫‪WASP-Net‬‬

‫‪Innovation Group‬‬
‫ﺟﺪول )‪ : (٢ - ٥‬أﻣﺜﻠﻪ ﻟﺒﻌﺾ ﺑﺮاﻣﺞ اﻟﺘﺤﻠﻴﻞ اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴﻰ و أﺳﻤﺎء اﻟﺸﺮآﺎت و ﻋﻨﺎوﻳﻨﻬﺎ‪.‬‬

‫‪174‬‬

‫اﻟﺒ ﺮاﻣﺞ اﻟﻤﻨ ﺘﺠﻪ ﺗﺠﺎرﻳ ﺎ ﻟﻠﺘﺤﻠ ﻴﻞ اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴ ﻰ ﺗﺨ ﺘﻠﻒ ﻣ ﻦ ﺣ ﻴﺚ اﻟﻮﻇ ﺒﻔﻪ و اﻻﻣﻜﺎﻧ ﻴﺎت ﻓﻬ ﻨﺎك ﺑ ﺮاﻣﺞ ﺗﻌﻤ ﻞ‬
‫ﺑﻄ ﺮق )‪ (3D Electromagnetic Analysis‬أى ﻟﻠﺘﺤﻠ ﻴﻞ اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴ ﻰ اﻟﺜﻼﺛ ﻰ اﻷﺑﻌ ﺎد ﻣ ﺜﻞ ﺑ ﺮاﻣﺞ‬
‫) ‪EMPIRE Xccel, CST‬‬

‫‪EM3DS, Ansoft HFSS, Zeland Fidelity, Remcom XFDTD,‬‬

‫‪ (Microwave Studio‬و ﻏﻴﺮهﺎ و هﻰ ﺗﺼﻠﺢ ﻟﺘﺤﻠﻴﻞ ﺟﻤﻴﻊ أﻧﻮاع دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ اﻟﺨﺎﻣﻠﻪ‪.‬‬
‫و ه ﻨﺎك ﺑ ﺮاﻣﺞ ﺗﺼ ﻠﺢ ﻟﻌﻤ ﻞ ﺗﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ اﻟﺴ ﻄﺤﻴﻪ )و ﻣ ﻦ ﺿ ﻤﻨﻬﺎ اﻟﺪواﺋ ﺮ اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﺪﻗ ﻴﻘﻪ( ﺑﺎﻟﻄ ﺮق‬
‫اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴ ﻴﻪ و ﻳﻄﻠ ﻖ ﻋﻠ ﻰ ذﻟﻚ اﻟﻨﻮع ﻣﻦ اﻟﺘﺤﻠﻴﻞ ﻣﺼﻄﻠﺢ )‪ (2.5D Electromagnetic Analysis‬ﻣﺜﻞ‬
‫ﺑﺮاﻣﺞ ) ‪Zeland IE3D, Agilent ADS Momentum, EMPLAN, Sonnet emSuite, IMST COPLAN,‬‬

‫‪ (JansenMicrowave SFPMIC‬و ﻏﻴﺮهﺎ‪.‬‬
‫و ﻳﻮﺿﺢ اﻟﺠﺪول )‪ (٢ - ٥‬أﻣﺜﻠﻪ ﻟﺒﻌﺾ ﺑﺮاﻣﺞ اﻟﺘﺤﻠﻴﻞ اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴﻰ و أﺳﻤﺎء اﻟﺸﺮآﺎت و ﻋﻨﺎوﻳﻨﻬﺎ‪.‬‬
‫ﺗﺠ ﺪر اﻻﺷ ﺎرﻩ اﻟ ﻰ أن ﺑ ﺮاﻣﺞ ) ‪WASP-NET , Mician MICROWAVE WIZARD or µwave‬‬
‫‪ (WIZARD‬ﺗﺴ ﺘﻌﻤﻞ ﻟﺘﻜﻨﻮﻟﻮﺟ ﻴﺎ ﻣﺮﺷ ﺪ اﻟﻤ ﻮﺟﻪ )‪ (Waveguide technology‬ﻟﻜ ﻨﻬﺎ ذآ ﺮت ﻓ ﻰ ﺟ ﺪول‬
‫)‪ (٢ - ٥‬ﻻﺳ ﺘﻜﻤﺎل اﻟﻤﻌﻠ ﻮﻣﺎت ﻟﻤ ﻦ ﻳ ﺪرس أو ﻳﻌﻤ ﻞ ﻓ ﻰ ﻣﺠ ﺎل ﺗﺼ ﻤﻴﻢ أﻧﻈﻤﺔ اﻟﺘﺮدد اﻟﻌﺎﻟﻰ و اﻟﻤﻴﻜﺮووﻳﻒ ﺣﻴﺚ‬
‫هﻨﺎك أﻧﻈﻤﻪ آﺜﻴﺮﻩ ﺑﻬﺎ دواﺋﺮ ﺗﺼﻨﻊ ﺑﺘﻜﻨﻮﻟﻮﺟﻴﺎ ﻣﺮﺷﺪ اﻟﻤﻮﺟﻪ‪.‬‬
‫هﻨﺎك اﻟﻌﺪﻳﺪ ﻣﻦ ﺑﺮاﻣﺞ اﻟﺘﺤﻠﻴﻞ اﻟﻤﺠﺎﻧﻴﻪ ‪:‬‬
‫ﺣ ﻴﺚ ﺗ ﻮﺟﺪ ﺑ ﺮاﻣﺞ ﻣﺠﺎﻧ ﻴﻪ ﻋﺎﻣ ﻪ ﻟﺘﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ ﻣ ﺜﻞ ) ‪ (Ansoft Designer SV, APLAC SV‬و ﻏﻴﺮهﺎ و‬
‫ه ﻨﺎك ﺑ ﺮاﻣﺞ ﺗﺤﻠ ﻴﻞ ﻣﺤ ﺪدة اﻟﻮﻇ ﻴﻔﻪ ﻣ ﺜﻞ ﺑﺮﻧﺎﻣﺞ )‪ (RFSim99‬و هﻮ ﺑﺮﻧﺎﻣﺞ ﻣﺠﺎﻧﻰ ﻟﻠﺘﺤﻠﻴﻞ اﻟﺨﻄﻰ ﻳﻘﻮم ﺑﻌﻤﻞ‬
‫ﺗﺤﻠﻴﻞ اﻟﺪواﺋﺮ و ﻳﻨﺘﺞ ﺑﺎراﻣﺘﺮات اس ﻟﻬﺎ ‪ .‬راﺟﻊ ﻣﺮﺟﻊ اﻻﻧﺘﺮﻧﺖ )‪.(i6‬‬
‫و ﺑ ﺮﻧﺎﻣﺞ )‪ (ViPEC‬اﻟﻤﺠﺎﻧ ﻰ ﻟﻠﺘﺤﻠ ﻴﻞ اﻟﺨﻄ ﻰ و اﻟﻐﻴ ﺮ ﺧﻄ ﻰ ‪ ،‬ﻳﻘﻮم ﺑﻌﻤﻞ ﺗﺤﻠﻴﻞ اﻟﺪواﺋﺮ و ﻳﻨﺘﺞ ﺑﺎراﻣﺘﺮات اس‬
‫ﻟﻬﺎ ‪ .‬راﺟﻊ ﻣﺮﺟﻊ اﻻﻧﺘﺮﻧﺖ )‪.(i7‬‬
‫و ﺑ ﺮﻧﺎﻣﺞ )‪ (HBFree‬اﻟﻤﺠﺎﻧ ﻰ ﻟﻠﺘﺤﻠ ﻴﻞ اﻟﻐﻴ ﺮ ﺧﻄ ﻰ ﻳﻌﻤ ﻞ ﺑﻄ ﺮﻳﻘﺔ )‪ . (Harmonic Balance‬راﺟ ﻊ ﻣ ﺮﺟﻊ‬
‫اﻻﻧﺘﺮﻧﺖ )‪.(i8‬‬
‫آﻤ ﺎ ﻳ ﻮﺟﺪ اﻟﻌﺪﻳ ﺪ ﻣ ﻦ اﻟﺒ ﺮاﻣﺞ اﻟﻤﺠﺎﻧ ﻴﻪ ﻟﻠﺘﺤﻠ ﻴﻞ اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴ ﻰ ﻣ ﺜﻞ ) ‪Sonnet Lite, Windows FDTD‬‬
‫‪ (Software , Arpeggio‬و ﻏﻴﺮهﺎ‪ .‬راﺟﻊ ﻣﺮاﺟﻊ اﻻﻧﺘﺮﻧﺖ )‪.(i10, i11, i12‬‬
‫ﺑﺎﻟﻨﺴ ﺒﻪ ﻟﺒ ﺮاﻣﺞ اﻟﺘﺼ ﻤﻴﻢ ‪ ،‬ه ﻨﺎك ﺑ ﺮاﻣﺞ ﺗﺼ ﻤﻴﻢ ﻣﺠﺎﻧ ﻴﻪ و أﺧ ﺮى ﺗﺒﺎع ﺗﺠﺎرﻳﺎ ﻟﻌﻤﻞ أﻧﻮاع ﻣﺨﺘﻠﻔﻪ ﻣﻦ اﻟﺘﺼﻤﻴﻤﺎت‬
‫ﻣ ﺜﻞ ﺗﺼ ﻤﻴﻢ دواﺋﺮ اﻟﺘﻮﻓﻴﻖ )‪ (Matching Networks‬و ﺗﺼﻤﻴﻢ اﻟﻤﻜﺒﺮات )‪ (Amplifiers‬و ﺗﺼﻤﻴﻢ اﻟﻤﺬﺑﺬﺑﺎت‬
‫)‪ (Oscillators‬و ﻣﺬﺑ ﺬﺑﺎت اﻟﺤﻠﻘ ﻪ ﻣﻐﻠﻘ ﺔ اﻟﻄ ﻮر )‪ (PLL‬و ﺗﺼ ﻤﻴﻢ اﻟﻔﻼﺗ ﺮ )‪ (Filters‬و ﺗﺼ ﻤﻴﻢ اﻟﻤﺎزﺟ ﺎت‬
‫)‪ (Mixers‬اﻟﻰ ﺁﺧﺮﻩ‪.‬‬
‫ﻧﺬآ ﺮ ﻣ ﻨﻬﺎ أﻣ ﺜﻠﻪ ﻋﻠ ﻰ ﺑ ﺮاﻣﺞ ﺗﺼﻤﻴﻢ دواﺋﺮ اﻟﺘﻮﻓﻴﻖ )‪ (Matching Networks‬ﻓﻬﻨﺎك ﺑﺮاﻣﺞ ﻟﺘﺼﻤﻴﻢ أﻧﻮاع ﻣﻦ‬
‫دواﺋﺮ اﻟﺘﻮﻓﻴﻖ ﻣﺜﻞ ) ‪ (ZZMatch, Mosaic, Wmatch‬و ﻏﻴﺮهﺎ‪.‬‬
‫ﺑ ﺮﻧﺎﻣﺞ )‪ (Mosaic‬ﻣ ﻦ ﺷ ﺮآﺔ )‪ (AMPSA‬ﻳﻤﻜ ﻨﻪ ﺗﺼ ﻤﻴﻢ أﻧ ﻮاع ﻣﺨ ﺘﻠﻔﻪ ﻣ ﻦ دواﺋ ﺮ اﻟﺘﻮﻓ ﻴﻖ ﻣ ﻊ اﻣﻜﺎﻧ ﻴﺔ ادراج‬
‫اﻟﺘﺼﻤﻴﻢ ﻓﻰ ﺑﺮﻧﺎﻣﺞ ﺁﺧﺮ )‪.(AWR Suite‬‬

‫‪175‬‬

‫و آﻤ ﺎ ذآ ﺮت ﻣ ﻦ ﻗ ﺒﻞ ه ﻨﺎك ﺑﺮاﻣﺞ ﻋﺎﻣﻪ ﺗﺤﺘﻮى ﻋﻠﻰ اﺧﺘﻴﺎرات أو أﺟﺰاء )‪ (modules‬ﻟﺘﺼﻤﻴﻢ دواﺋﺮ اﻟﺘﻮﻓﻴﻖ‬
‫ﻣﺜﻞ )‪ (Esyn‬و هﻮ ﺟﺰء ﻣﻦ )‪ (Agilent ADS‬و ﻣﺜﻞ )‪ (MATCH‬و هﻮ ﺟﺰء ﻣﻦ )‪.(Agilent Genesys‬‬
‫ﺑ ﺮاﻣﺞ اﻟﻌﻤ ﻞ ﺑﻤﺨﻄ ﻂ ﺳ ﻤﻴﺚ )‪ (Smith Chart‬ﺗﺼ ﻠﺢ أﻳﻀﺎ ﻟﺘﺼﻤﻴﻢ أﻧﻮاع آﺜﻴﺮﻩ ﻣﻦ دواﺋﺮ اﻟﺘﻮﻓﻴﻖ ﻣﻨﻬﺎ ﻣﺎ ﻳﺒﺎع‬
‫ﺗﺠﺎرﻳ ﺎ ﻣ ﺜﻞ ﺑ ﺮاﻣﺞ ) ‪(winSMITH, Advanced Automated Smith Chart, ARRL Microsmith‬‬
‫و ه ﻨﺎك أﻳﻀ ﺎ ﺑ ﺮاﻣﺞ ﻣﺠﺎﻧ ﻴﻪ ﻟﻠﻌﻤ ﻞ ﺑﻤﺨﻄ ﻂ ﺳ ﻤﻴﺚ )‪ (Smith Chart‬ﻣ ﺜﻞ ﺑ ﺮﻧﺎﻣﺞ ) ‪RFdude.com Smith‬‬
‫‪ (Chart Program, Windows Smith Chart/Impedance Matching Tool, RFMatch‬وﻏﻴ ﺮهﺎ‪.‬‬
‫راﺟﻊ ﻣﺮاﺟﻊ اﻻﻧﺘﺮﻧﺖ )‪.(i12, i13, i14, i15‬‬
‫ه ﻨﺎك أﻳﻀ ﺎ أﻣ ﺜﻠﻪ ﻋﺪﻳ ﺪﻩ ﻋﻠ ﻰ ﺑ ﺮاﻣﺞ ﺗﺼ ﻤﻴﻢ دواﺋ ﺮ اﻟﻤﻜﺒ ﺮات )‪ (Amplifiers‬اﻟﻤﻨ ﺘﺠﻪ ﺗﺠﺎرﻳ ﺎ ﻣ ﺜﻞ ﺑ ﺮﻧﺎﻣﺞ‬
‫)‪ (PACAD‬ﻟﺘﺼ ﻤﻴﻢ أﻧ ﻮاع ﻣﺨ ﺘﻠﻔﻪ ﻣ ﻦ ﻣﻜﺒ ﺮات اﻟﻘ ﺪرﻩ و ﺑ ﺮﻧﺎﻣﺞ ) ‪MultiMatch Amplifier Design‬‬
‫‪ (Wizard‬ﻣ ﻦ ﺷ ﺮآﺔ )‪ (AMPSA‬ﻳﻤﻜ ﻨﻪ ﺗﺼ ﻤﻴﻢ دواﺋ ﺮ اﻟﺘﻮﻓﻴﻖ ﻷﻧﻮاع ﻣﺨﺘﻠﻔﻪ ﻣﻦ اﻟﻤﻜﺒﺮات و ادراج اﻟﺘﺼﻤﻴﻢ‬
‫ﻓ ﻰ ﺑﺮﻧﺎﻣﺞ )‪ (AWR Suite‬و هﻨﺎك ﺑﺮاﻣﺞ ﻋﺎﻣﻪ ﺗﺤﺘﻮى ﻋﻠﻰ اﺧﺘﻴﺎرات أو أﺟﺰاء ﻟﺘﺼﻤﻴﻢ دواﺋﺮ اﻟﻤﻜﺒﺮات ﻣﺜﻞ‬
‫)‪ (Agilent Genesys‬اﻟﺬى ﻳﺤﺘﻮى ﻋﻠﻰ )‪ (AMPLIFIER module‬ﻟﺘﺼﻤﻴﻢ اﻟﻤﻜﺒﺮات ‪.‬‬
‫هﻨﺎك ﺑﺮﻧﺎﻣﺞ ﻣﺠﺎﻧﻰ )‪ (ClassE‬ﻟﺘﺼﻤﻴﻢ ﻣﻜﺒﺮات اﻟﻘﺪرﻩ ﻣﻦ ﻃﺮاز اى و ﻳﺼﺪر ﻗﺎﺋﻤﺔ ﺗﺤﻠﻴﻞ )‪ (Netlist‬ﻣﺘﻮاﻓﻘﻪ‬
‫ﻣﻊ )‪ .(SPICE‬راﺟﻊ ﻣﺮﺟﻊ اﻻﻧﺘﺮﻧﺖ )‪.(i17‬‬
‫ﻳ ﻮﺟﺪ اﻟﻌﺪﻳ ﺪ ﻣﻦ اﻟﺒﺮاﻣﺞ اﻟﻤﻨﺘﺠﻪ ﺗﺠﺎرﻳﺎ ﻟﺘﺼﻤﻴﻢ دواﺋﺮ اﻟﻤﺬﺑﺬﺑﺎت )‪ (Oscillators‬و ﻣﺬﺑﺬﺑﺎت اﻟﺤﻠﻘﻪ ﻣﻐﻠﻘﺔ اﻟﻄﻮر‬
‫)‪ ، (PLL‬و ه ﻨﺎك ﺑ ﺮاﻣﺞ ﻋﺎﻣ ﻪ ﺗﺤ ﺘﻮى ﻋﻠ ﻰ اﺧﺘ ﻴﺎرات أو أﺟ ﺰاء )‪ (modules‬ﻟﺘﺼ ﻤﻴﻢ دواﺋ ﺮ اﻟﻤﺬﺑ ﺬﺑﺎت و‬
‫)‪ (PLL‬ﻣﺜﻞ )‪.(Agilent Genesys‬‬
‫و ه ﻨﺎك ﺑ ﺮاﻣﺞ ﻣﺠﺎﻧ ﻴﻪ أﻳﻀ ﺎ ﻟﻬ ﺬا اﻟ ﻨﻮع ﻣ ﻦ اﻟﻌﻤ ﻞ ﻣ ﺜﻞ )‪ (PLL Design Assistant‬و ه ﻮ ﺑ ﺮﻧﺎﻣﺞ ﻣﺠﺎﻧ ﻰ‬
‫ﻟﺘﺼﻤﻴﻢ )‪ (PLL‬و هﻮ ﺟﺰء ﻣﻦ ﺑﺮﻧﺎﻣﺞ )‪ . (CPPSim‬راﺟﻊ ﻣﺮﺟﻊ اﻻﻧﺘﺮﻧﺖ )‪.(i18‬‬
‫أﻣ ﺎ ﺑ ﺮاﻣﺞ ﺗﺼ ﻤﻴﻢ دواﺋ ﺮ اﻟﻤﺎزﺟ ﺎت )‪ (Mixers‬ﻓﻬ ﻰ ﻗﻠ ﻴﻠﻪ و آﻤ ﺎ ذآ ﺮت ﻣﻦ ﻗﺒﻞ هﻨﺎك ﺑﺮاﻣﺞ ﻋﺎﻣﻪ ﺗﺤﺘﻮى ﻋﻠﻰ‬
‫اﺧﺘﻴﺎرات أو أﺟﺰاء )‪ (modules‬ﻟﺘﺼﻤﻴﻢ دواﺋﺮ اﻟﻤﺎزﺟﺎت ﻣﺜﻞ )‪.(Agilent Genesys‬‬
‫ﻳﻮﺟﺪ اﻟﻌﺪﻳﺪ ﻣﻦ ﺑﺮاﻣﺞ ﺗﺼﻤﻴﻢ دواﺋﺮ ﻓﻼﺗﺮ اﻟﺘﺮدد اﻟﻌﺎﻟﻰ و اﻟﻤﻴﻜﺮووﻳﻒ )‪ (Filters‬اﻟﻤﻨﺘﺠﻪ ﺗﺠﺎرﻳﺎ ﻓﻤﺜﻼ هﻨﺎك‬
‫ﺑﺮاﻣﺞ ﻟﺘﺼﻤﻴﻢ أﻧﻮاع ﻣﺨﺘﻠﻔﻪ ﻣﻦ اﻟﻔﻼﺗﺮ ﻣﺜﻞ )‪ (FILPRO, Parfil, FilterShop, Elliptic‬و ﻏﻴﺮهﺎ‪.‬‬
‫و ﺑﺮﻧﺎﻣﺞ )‪ (Nuhertz Filter‬ﻟﺘﺼﻤﻴﻢ اﻟﻔﻼﺗﺮ ﻣﻊ اﻣﻜﺎﻧﻴﺔ ادراج اﻟﺘﺼﻤﻴﻢ داﺧﻞ ﺑﺮﻧﺎﻣﺞ )‪(AWR Suite‬‬
‫و ه ﻨﺎك ﺑﺮاﻣﺞ ﻣﺠﺎﻧﻴﻪ ﻟﺘﺼﻤﻴﻢ اﻟﻔﻼﺗﺮ ﻣﺜﻞ ) ‪(AADE Filter Design, AADE Filter32, FilterCAD‬‬
‫‪ ،‬راﺟﻊ ﻣﺮاﺟﻊ اﻻﻧﺘﺮﻧﺖ )‪.(i19, i20, i21, i22, i23‬‬
‫ه ﻨﺎك ﺑ ﺮاﻣﺞ ﻣﻨﺨﻔﻀ ﻪ اﻟﺘﻜﺎﻟ ﻴﻒ ﺳ ﻮاء ﻟﻠﺘﺤﻠ ﻴﻞ أو ﻟﺘﺼ ﻤﻴﻢ أﻧ ﻮاع ﻣﺨﺘﻠﻔﻪ ﻣﻦ اﻟﺪواﺋﺮ‪ ،‬و هﻨﺎك ﺑﺮاﻣﺞ ﻣﻨﺨﻔﻀﺔ أو‬
‫ﻣﺘﻮﺳ ﻄﺔ اﻟ ﺜﻤﻦ ﻟﺘﺤﻠ ﻴﻞ اﻟﺪواﺋﺮ ﻣﺜﻞ )‪ (SCALC, LINC2, C/NL2, GSPICE‬و ﻏﻴﺮهﺎ و هﻨﺎك أﻳﻀﺎ ﺑﺮاﻣﺞ‬
‫ﻟﻠﺘﺼﻤﻴﻢ و اﻟﻨﻤﺬﺟﻪ و اﻟﺘﺤﻠﻴﻞ اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴﻰ ﻣﻨﺨﻔﻀﺔ اﻟﺘﻜﺎﻟﻴﻒ ﺗﻨﺘﺠﻬﺎ ﺷﺮآﺎت و دور ﻧﺸﺮ و ﺟﺎﻣﻌﺎت‪.‬‬
‫اﻟﺠ ﺪول )‪ (٣ - ٥‬ﻳﻮﺿ ﺢ أﻣ ﺜﻠﻪ ﻟﺒ ﺮاﻣﺞ ﻣﻨﺨﻔﻀ ﺔ اﻟﺘﻜﺎﻟ ﻴﻒ و وﻇ ﻴﻔﺔ آ ﻞ ﺑ ﺮﻧﺎﻣﺞ و ه ﻰ ﺟﻤﻴﻌﺎ ﻣﻦ اﻧﺘﺎج دار ﻧﺸﺮ‬
‫)‪ . (Artech House‬راﺟﻊ ﻣﺮﺟﻊ اﻻﻧﺘﺮﻧﺖ )‪.(i9‬‬

‫‪176‬‬

‫اﻟﺒﺮﻧﺎﻣﺞ‬

‫اﻟﻮﻇﻴﻔﻪ‬

‫‪EMPLAN‬‬

‫ﺑﺮﻧﺎﻣﺞ ﺗﺤﻠﻴﻞ آﻬﺮوﻣﻐﻨﺎﻃﻴﺴﻰ‬
‫ﺑ ﺮﻧﺎﻣﺠﺎن ﻳﻘ ﻮﻣﺎن ﺑ ﻨﻤﺬﺟﺔ و ﺗﺤﻠ ﻴﻞ و ﺣﺴ ﺎﺑﺎت ﺧﻄ ﻮط اﻻرﺳ ﺎل‬

‫‪LINPAR & MULTLIN‬‬

‫اﻟﻤﺨﺘﻠﻔﻪ‬
‫‪PACAD‬‬

‫ﺑﺮﻧﺎﻣﺞ ﻟﺘﺼﻤﻴﻢ اﻟﻤﻜﺒﺮات‬

‫‪TRANSLIN‬‬

‫ﺑﺮﻧﺎﻣﺞ ﻟﺘﺼﻤﻴﻢ و ﺗﺤﻠﻴﻞ ﺧﻄﻮط اﻻرﺳﺎل اﻟﻤﺨﺘﻠﻔﻪ‬

‫‪GSPICE‬‬

‫ﺑﺮﻧﺎﻣﺞ ﺗﺤﻠﻴﻞ ﻏﻴﺮ ﺧﻄﻰ ﻟﻠﺪواﺋﺮ‬

‫‪VisSim/microComm‬‬

‫ﺑﺮﻧﺎﻣﺞ ﻟﺘﺤﻠﻴﻞ اﻟﻨﻈﻢ‬
‫ﺑ ﺮﻧﺎﻣﺞ ﻳﻘ ﻮم ﺑﺘﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ و ﺣﺴ ﺎب ﺑﺎراﻣﺘ ﺮات اس ﻟﻬ ﺎ ﺑﻄ ﺮﻳﻘﻪ‬

‫‪C/NL2‬‬

‫ﺧﻄ ﻴﻪ و ﻳﻘ ﻮم ﺑﺘﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ ﺑﻄ ﺮﻳﻘﺔ )‪ (Volterra series‬اﻟﻐﻴ ﺮ‬
‫ﺧﻄﻴﻪ‬
‫ﺟﺪول )‪ : (٣ - ٥‬أﻣﺜﻠﻪ ﻟﺒﺮاﻣﺞ ﻣﻨﺨﻔﻀﺔ اﻟﺘﻜﺎﻟﻴﻒ ﻟﻠﺘﺤﻠﻴﻞ و اﻟﺘﺼﻤﻴﻢ ﻣﻦ اﻧﺘﺎج دار ﻧﺸﺮ )‪(Artech House‬‬

‫ﻣﻌﻈ ﻢ ﺑ ﺮاﻣﺞ اﻟﺘﺤﻠﻴﻞ ﺗﺴﺘﺨﺪم ﻧﻤﺎذج ﻟﻠﻤﻜﻮﻧﺎت ﻣﺘﻮاﻓﻘﻪ ﻣﻊ ﺑﺮﻧﺎﻣﺞ )‪ (SPICE‬و أﻳﻀﺎ هﻨﺎك ﺑﺮاﻣﺞ ﺗﺤﻠﻴﻞ ﻣﺘﻮاﻓﻘﻪ‬
‫ﻣﻊ ﺑﺮﻧﺎﻣﺞ )‪ (SPICE‬ﺗﺴﺘﺨﺪم ﻓﻰ ﺗﺤﻠﻴﻞ دواﺋﺮ اﻟﺘﺮدد اﻟﻌﺎﻟﻰ و اﻟﻤﻴﻜﺮووﻳﻒ ﻣﺜﻞ ) ‪HSPICE, MDSPICE,‬‬
‫‪ (GSPICE‬و ﻏﻴﺮهﺎ‪.‬‬
‫و ﺗﺤﻠﻴﻞ دواﺋﺮ اﻟﺘﺮدد اﻟﻌﺎﻟﻰ و اﻟﻤﻴﻜﺮووﻳﻒ ﻣﻤﻜﻦ ﺑﺎﺳﺘﺨﺪام ﺑﺮﻧﺎﻣﺞ )‪ (SPICE‬و اﻟﺒﺮاﻣﺞ اﻷﺧﺮى اﻟﻤﺘﻮاﻓﻘﻪ ﻣﻌﻪ‬
‫ﺑﺸ ﺮط اﺳ ﺘﺨﺪام اﻟ ﻨﻤﺎذج اﻟﺪﻗ ﻴﻘﻪ ﻟﻠﻤﻜ ﻮﻧﺎت و اﻟﺘ ﻰ ﺗﺤﻘ ﻖ دﻗﻪ ﻋﺎﻟﻴﻪ ﻓﻰ اﻟﺘﺮددات اﻟﻌﺎﻟﻴﻪ و هﻰ ﻣﺘﻮﻓﺮﻩ ﻓﻰ اﻟﻤﺮاﺟﻊ‬
‫اﻟﻤﺨ ﺘﻠﻔﻪ و ﻋ ﻦ ﻃ ﺮﻳﻖ اﻟﺸ ﺮآﺎت و ه ﻨﺎك ﻃ ﺮق آﺜﻴ ﺮﻩ ﻟﻌﻤﻠﻬ ﺎ آﻤ ﺎ ﻓ ﻰ ﻣ ﺮاﺟﻊ )‪ (6,7,8‬و ه ﻨﺎك ﺑ ﺮاﻣﺞ ﻟﻌﻤ ﻞ‬
‫اﻟ ﻨﻤﺎذج )أو اﻟﺪواﺋﺮ اﻟﻤﻜﺎﻓﺌﻪ( ﺗﺒﺎع ﺗﺠﺎرﻳﺎ ﻣﺜﻞ )‪(NeuroModeler, ICCAP, MODULE OF LINMIC‬‬
‫و ﻏﻴ ﺮهﺎ‪ .‬و ﺗﻨ ﺘﺞ ه ﺬﻩ اﻟﺒ ﺮاﻣﺞ ﻧﻤ ﺎذج ﻟﻠﻤﻜ ﻮﻧﺎت و اﻟﺪواﺋ ﺮ ﻣ ﺘﻮاﻓﻘﻪ ﻣ ﻊ ﻋ ﺪد ﻣ ﻦ ﺑ ﺮاﻣﺞ اﻟﺘﺤﻠ ﻴﻞ و آ ﺬﻟﻚ ﻧﻤ ﺎذج‬
‫)‪ (SPICE models‬ﻣﺘﻮاﻓﻘﻪ ﻣﻊ ﺑﺮﻧﺎﻣﺞ )‪ (SPICE‬و اﻟﺒﺮاﻣﺞ اﻟﻤﺘﻮاﻓﻘﻪ ﻣﻌﻪ‪.‬‬
‫و آﻤ ﺜﺎل ﻋﻠ ﻰ اﺳ ﺘﺨﺪام ﺑﻌ ﺾ اﻟﺒ ﺮاﻣﺞ ﻣﻌ ﺎ ه ﻨﺎك ﺑ ﺮاﻣﺞ ﻣ ﺜﻞ )‪ (NeuroModeler, ICCAP‬و ﻏﻴ ﺮهﺎ ﺗﻨ ﺘﺞ‬
‫ﻧﻤﺎذج ﺗﺴﺘﺨﺪم ﻣﺒﺎﺷﺮة ﻣﻊ ﺑﺮﻧﺎﻣﺞ )‪. (Agilent ADS‬‬
‫و ﻣﻮﺿﻮع اﻟﻨﻤﺬﺟﻪ )‪ (Modeling‬ﻳﺤﺘﺎج دراﺳﻪ ﻃﻮﻳﻠﻪ ﺧﺎرج ﻣﻮﺿﻮع اﻟﻜﺘﺎب ﻟﻜﻦ هﻨﺎك ﻋﺪد ﻣﻦ اﻟﻤﺮاﺟﻊ ﻳﻤﻜﻦ‬
‫اﺳ ﺘﺨﺪاﻣﻪ ﻓ ﻰ ه ﺬا اﻟﻤﻮﺿ ﻮع ﻣ ﺜﻞ اﻟﻤ ﺮاﺟﻊ )‪ ، (6,7,8‬آﻤ ﺎ ﻳ ﻮﺟﺪ ﻋ ﺪد آﺒﻴ ﺮ ﻣ ﻦ اﻟﻤﺮاﺟﻊ ﻳﺤﺘﻮى ﻋﻠﻰ ﻧﻤﺎذج أو‬
‫دواﺋﺮ ﻣﻜﺎﻓﺌﻪ ﻟﻠﻤﻜﻮﻧﺎت اﻟﻤﺨﺘﻠﻔﻪ‪.‬‬
‫و ه ﻨﺎك اﻟﻜﺜﻴ ﺮ ﻣﻦ اﻟﺸﺮآﺎت اﻟﻤﻨﺘﺠﻪ ﻟﻠﻤﻜﻮﻧﺎت ﺗﻨﺘﺞ ﻧﻤﺎذج أو دواﺋﺮ ﻣﻜﺎﻓﺌﻪ ﻟﻤﻨﺘﺠﺎﺗﻬﺎ ﻣﻦ اﻟﻤﻜﻮﻧﺎت و ﺗﻮﻓﺮهﺎ ﻋﻦ‬
‫ﻃﺮﻳﻖ ﺻﻔﺤﺎت اﻟﺒﻴﺎﻧﺎت و اﻻﻧﺘﺮﻧﺖ‪.‬‬

‫‪177‬‬

‫و آﻤ ﺎ ذآ ﺮت ﻣ ﻦ ﻗ ﺒﻞ ﻓﻬ ﻨﺎك ﺷ ﺮآﺎت ﻣﺘﺨﺼﺼ ﻪ ﻓ ﻰ اﻧﺘﺎج ﻧﻤﺎذج ﻟﻠﻤﻜﻮﻧﺎت اﻟﻤﻨﺘﺠﻪ ﺗﺠﺎرﻳﺎ و ﻏﻴﺮهﺎ ﻣﺜﻞ ﺷﺮآﺔ‬
‫)‪ (Modelithics‬اﻟﺘ ﻰ ﺗﻘ ﻮم ﺑﺒ ﻴﻊ ﻧﻤ ﺎذج ﻟﻠﻤﻜ ﻮﻧﺎت اﻟﻤﺨ ﺘﻠﻔﻪ و ﻣﻜﺘ ﺒﺎت ﻣﺒﻨ ﻴﻪ )‪ (built-in libraries‬ﻟ ﻨﻤﺎذج‬
‫اﻟﻤﻜ ﻮﻧﺎت ﻣ ﺘﻮاﻓﻘﻪ ﻣ ﻊ ﺑﻌﺾ ﺑﺮاﻣﺞ ﺗﺤﻠﻴﻞ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ اﻟﺤﺪﻳﺜﻪ ﻣﺜﻞ )‪ (ADS, AWR‬و ﻏﻴﺮهﺎ و ﻣﺘﻮاﻓﻘﻪ‬
‫ﻣﻊ ﺑﺮﻧﺎﻣﺞ )‪ .(SPICE‬أﻧﻈﺮ ﻣﺮﺟﻊ اﻻﻧﺘﺮﻧﺖ )‪.(i26‬‬
‫اﻟﻤﻌﻤ ﻞ اﻟﻤﺘﺨﺼ ﺺ ﻓ ﻰ ﺗﺼ ﻤﻴﻢ اﻟﺪواﺋ ﺮ و اﻷﻧﻈﻤ ﻪ و دواﺋ ﺮ اﻟﺘﺮدد اﻟﻌﺎﻟﻰ و اﻟﻤﻴﻜﺮووﻳﻒ ﻓﻘﻂ ﻳﺠﺐ أن ﻳﺤﺘﻮى‬
‫ﻋﻠﻰ ‪:‬‬
‫‪ -١‬ﺑ ﺮﻧﺎﻣﺞ ﻋ ﺎم واﺣ ﺪ ﻋﻠ ﻰ اﻷﻗ ﻞ ﻟﺘﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ و اﻷﻧﻈﻤ ﻪ و دواﺋ ﺮ اﻟﺘ ﺮدد اﻟﻌﺎﻟ ﻰ و اﻟﻤﻴﻜﺮووﻳﻒ ﻳﻐﻄﻰ ﺟﻤﻴﻊ‬
‫أﻧ ﻮاع اﻟﺘﺤﻠ ﻴﻞ اﻟﺨﻄ ﻴﻪ و اﻟﻐﻴ ﺮ ﺧﻄ ﻴﻪ و اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴ ﻴﻪ وﻏﻴ ﺮهﺎ‪ .‬و ﻓ ﻰ ﺣﺎﻟ ﺔ ﻋ ﺪم ﺗﻮﻓ ﺮ ﻧ ﻮع ﻣﻌ ﻴﻦ ﻣﻦ أﻧﻮاع‬
‫اﻟﺘﺤﻠﻴﻞ ﺑﺎﻟﺒﺮﻧﺎﻣﺞ ﻳﺘﻢ ﺷﺮاء اﻟﺒﺮﻧﺎﻣﺞ اﻟﺨﺎص ﺑﻬﺬا اﻟﻨﻮع ﻣﻦ اﻟﺘﺤﻠﻴﻞ‪.‬‬
‫‪ -٢‬ﺑﺮاﻣﺞ ﻟﺘﺼﻤﻴﻢ اﻷﻧﻮاع اﻟﻤﺨﺘﻠﻔﻪ ﻣﻦ اﻟﺪواﺋﺮ )ﻓﻼﺗﺮ ‪ ،‬ﻣﻜﺒﺮات ‪ ،‬ﻣﺬﺑﺬﺑﺎت ‪ ،‬اﻟﻰ ﺁﺧﺮﻩ(‪.‬‬
‫‪ -٣‬ﺑﺮﻧﺎﻣﺞ ﻧﻤﺬﺟﻪ )‪ (Modeling‬ﻻﻧﺘﺎج ﻧﻤﺎذج اﻟﻤﻜﻮﻧﺎت‪.‬‬
‫أﻣ ﺎ اﻟﻤﻌﻤ ﻞ اﻟﻤﺘﺨﺼ ﺺ ﻓ ﻰ ﺗﺼ ﻤﻴﻢ و اﻧ ﺘﺎج اﻟﺪواﺋ ﺮ و اﻷﻧﻈﻤ ﻪ و دواﺋ ﺮ اﻟﺘﺮدد اﻟﻌﺎﻟﻰ و اﻟﻤﻴﻜﺮووﻳﻒ ﻓﻴﺠﺐ أن‬
‫ﻳ ﺰﻳﺪ ﻋﻠ ﻰ اﻟ ﺜﻼﺛﺔ أﻧ ﻮاع ﺑ ﺮاﻣﺞ اﻟﻤﺬآ ﻮرﻩ أﻋ ﻼﻩ ﺑ ﺮﻧﺎﻣﺞ راﺑ ﻊ ﻟﺘﺸ ﻐﻴﻞ اﻟﻤﺎآﻴﻨﻪ ﻣﻦ ﻧﻮع )‪ (CNC‬اﻟﻘﺎﺋﻤﻪ ﺑﺘﺼﻨﻴﻊ‬
‫اﻟﺪواﺋﺮ أو ﺗﻮﻓﻴﺮ اﻣﻜﺎﻧﻴﺎت ﻃﺒﺎﻋﺔ اﻟﺪواﺋﺮ ﺑﺪﻗﺔ ﺗﺼﻨﻴﻊ ﻣﻨﺎﺳﺒﻪ‪.‬‬
‫ﻋﺎدة ﺗﻮﻓﺮ اﻟﺸﺮآﻪ اﻟﻤﻨﺘﺠﻪ ﻟﻤﺎآﻴﻨﺔ )‪ (CNC‬اﻟﺒﺮﻧﺎﻣﺞ اﻟﻤﺘﻮاﻓﻖ ﻣﻌﻬﺎ ‪ ،‬ﻋﻠﻰ ﺳﺒﻴﻞ اﻟﻤﺜﺎل ﺷﺮآﺔ )‪ (LPKF‬اﻟﻤﻨﺘﺠﻪ‬
‫ﻟﻬ ﺬا اﻟ ﻨﻮع ﻣ ﻦ اﻟﻤﺎآﻴ ﻨﺎت ﺗﻮﻓ ﺮ ﺑ ﺮﻧﺎﻣﺞ )‪ (LPKF CircuitCAM‬ﻟﻬ ﺬا اﻟﻌﻤ ﻞ و ه ﻮ ﻳﺼ ﻠﺢ ﻟﻠﺪواﺋ ﺮ اﻟﻤﻄ ﺒﻮﻋﻪ‬
‫اﻟﻌﺎدﻳﻪ و دواﺋﺮ اﻟﺘﺮدد اﻟﻌﺎﻟﻰ و اﻟﻤﻴﻜﺮووﻳﻒ‪.‬‬
‫ﻋﻠﻤ ﺎ ﺑﺄن هﻨﺎك ﺑﺮاﻣﺞ ﻋﺎﻣﻪ ﻣﺜﻞ )‪ (Agilent ADS, Agilent Genesys‬و ﻏﻴﺮهﺎ ﺗﺴﺘﺨﺪم ﻣﺒﺎﺷﺮة ﻣﻊ اﻟﻤﺎآﻴﻨﻪ‬
‫ﻣﻦ ﻧﻮع )‪ (CNC‬ﻟﺘﺼﻨﻴﻊ اﻟﺪواﺋﺮ‪.‬‬
‫ﻓ ﻰ اﻟﺨ ﺘﺎم أﻗ ﻮل ان اﺳ ﺘﺨﺪام اﻟﺒ ﺮاﻣﺞ اﻟﺤﺪﻳ ﺜﻪ ﻟﺘﺼ ﻤﻴﻢ و ﺗﺤﻠ ﻴﻞ دواﺋ ﺮ و أﻧﻈﻤ ﺔ اﻟﺘﺮدد اﻟﻌﺎﻟﻰ و اﻟﻤﻴﻜﺮووﻳﻒ ﻟﻴﺲ‬
‫اﺧﺘ ﻴﺎر ﺑ ﻞ ﻳﺠ ﺐ اﻋﺘ ﺒﺎرﻩ ﺷ ﺮط اﺳﺎﺳ ﻰ ﻟﺘﺼ ﻤﻴﻢ و اﻧ ﺘﺎج ه ﺬﻩ اﻟﺪواﺋ ﺮ و اﻷﻧﻈﻤ ﻪ ﺳ ﻮاء ﻟﻼﻧ ﺘﺎج اﻟﻤﻌﻤﻠ ﻰ ذو اﻟﺪﻗ ﻪ‬
‫اﻟﻌﺎﻟﻴﻪ أو اﻻﻧﺘﺎج اﻟﺼﻨﺎﻋﻰ ‪ ،‬ﻟﺬﻟﻚ ﻳﻄﻠﻖ ﻋﻠﻰ هﺬﻩ اﻟﺒﺮاﻣﺞ ﻣﺴﻤﻰ ﺑﺮاﻣﺞ ﺻﻨﺎﻋﻴﻪ )‪.(Industrial Software‬‬
‫آﻤ ﺎ ﻳﻄﻠ ﻖ ﻋﻠ ﻰ ه ﺬﻩ اﻟﺒ ﺮاﻣﺞ أﻳﻀ ﺎ أﺳ ﻤﺎء ﺑ ﺮاﻣﺞ اﻟﺘﺼ ﻤﻴﻢ ﺑﻮاﺳ ﻄﺔ اﻟﺤﺎﺳ ﺐ ) ‪Computer Aided Design‬‬
‫‪ (CAD‬و ﺑ ﺮاﻣﺞ اﻟﺘﺼ ﻤﻴﻢ اﻻﻟﻜﺘﺮوﻧ ﻰ ﺑﻄ ﺮﻳﻘﻪ ﺁﻟ ﻴﻪ ) ‪Electronic Design Automation Software or‬‬
‫‪ (EDA Software‬و ﺑ ﺮاﻣﺞ اﻟﺘﺼ ﻨﻴﻊ ﺑﻮاﺳ ﻄﺔ اﻟﺤﺎﺳ ﺐ ﺗﺴ ﻤﻰ ) ‪Computer Aided Manufacturing‬‬
‫‪ (Software or CAM Software‬و اﻟﻤﻮﺿ ﻮع آﻜ ﻞ ﻳﻄﻠ ﻖ ﻋﻠ ﻴﻪ اﻟﻬﻨﺪﺳ ﻪ ﺑﻤﺴ ﺎﻋﺪة اﻟﺤﺎﺳ ﺐ ) ‪Computer‬‬
‫‪ (Aided Engineering CAE‬أو اﻟﺘﺼ ﻤﻴﻢ اﻻﻟﻜﺘﺮوﻧ ﻰ ﺑﻄ ﺮﻳﻘﻪ ﺁﻟﻴﻪ ) ‪Electronic Design Automation‬‬
‫‪ (EDA‬و هﺬﻩ اﻟﻤﺴﻤﻴﺎت و اﺧﺘﺼﺎراﺗﻬﺎ ﺗﺴﻬﻞ اﻟﺒﺤﺚ ﻓﻰ اﻟﻤﺮاﺟﻊ و اﻟﺒﺤﺚ ﻋﻠﻰ اﻻﻧﺘﺮﻧﺖ ﻟﻤﻦ ﻳﺮﻏﺐ ﻓﻰ ذﻟﻚ‪.‬‬
‫ﻋﻤﻠ ﻴﺔ اﻟﺘﻐﻴﻴ ﺮ ﻓ ﻰ ﻣﺠ ﺎل اﻧ ﺘﺎج ﺑﺮاﻣﺞ اﻟﺘﺤﻠﻴﻞ و اﻟﺘﺼﻤﻴﻢ ﺳﺮﻳﻌﻪ ﺟﺪا ﻓﻤﻦ اﻟﻤﻤﻜﻦ أن ﻳﺤﺪث اﺛﻨﺎء آﺘﺎﺑﺔ هﺬا اﻟﻜﺘﺎب‬
‫أن ﺗﻘ ﻮم ﺷ ﺮآﻪ ﺑﺸ ﺮاء ﺷ ﺮآﻪ أﺧ ﺮى أو ﺗ ﻨﺪﻣﺞ ﻣﺠﻤ ﻮﻋﺔ ﺷ ﺮآﺎت أو ﻳﺘﻢ ﺗﻄﻮﻳﺮ ﺑﺮاﻣﺞ ﻣﻌﻴﻨﻪ ﻓﺘﺄﺧﺬ اﻟﺒﺮاﻣﺞ أﺳﻤﺎء‬
‫أﺧ ﺮى و ﺗﺘﻐﻴ ﺮ )ﺗ ﺰﻳﺪ( وﻇﺎﺋﻔﻬ ﺎ و ﻗ ﺪ ﺗﺨﺘﻔ ﻰ ﺑ ﺮاﻣﺞ أو ﺷ ﺮآﺎت و ﺗﻈﻬ ﺮ أﺧ ﺮى و ﻟﻤ ﺘﺎﺑﻌﺔ ذﻟ ﻚ هﻨﺎك ﻣﻮاﻗﻊ ﻋﻠﻰ‬
‫اﻻﻧﺘ ﺮﻧﺖ ﺗ ﺘﺠﺪد داﺋﻤ ﺎ و ﺗﺮﺻ ﺪ اﻻﺻﺪارات اﻟﺠﺪﻳﺪﻩ و اﻷﺳﻤﺎء اﻟﺠﺪﻳﺪﻩ ﻟﻠﺒﺮاﻣﺞ و اﻟﺸﺮآﺎت ﻣﺜﻞ ﻣﺮاﺟﻊ اﻻﻧﺘﺮﻧﺖ‬
‫)‪.(i23, i24, i25‬‬

‫‪178‬‬

‫ﻤﺭﺍﺠﻊ ﺍﻟﻔﺼل ﺍﻟﺨﺎﻤﺱ‬
‫اﻟﺴﻨﻪ‬

‫ﻣﻜﺎن اﻟﻨﺸﺮ‬/‫دار اﻟﻨﺸﺮ‬

‫اﻟﻨﺎﺷﺮﻳﻦ‬/‫اﻟﻤﺆﻟﻔﻴﻦ‬

‫اﺳﻢ اﻟﻜﺘﺎب أو اﻟﻮﺛﻴﻘﻪ‬

1981

Artech House

1991

Artech House

1998

Artech House

2003

Artech House

1983

Springer

Kishore Singhal,
Jiri Vlach

Computer Methods for
Circuit Analysis and
Design.

5

2000

Artech House
Artech House

2005

Artech House

John Wood
David Root

Neural Networks for RF and
Microwave Design
Behavioral Modeling of
Nonlinear
RF
and
Microwave Devices
Fundamentals of Nonlinear
Behavioral Modeling for RF
and Microwave Design

6

2000

Q.J. Zhang,
K.C. Gupta
Thomas R.
Turlington

1988

Van Nostrand
Reinhold Company

Analysis and Design of
Electronic Circuits Using
PCs

9

1995

McGraw-Hill Inc.

Electronic Circuit and
System Simulation
Methods

10

1993

Artech House

John
Greenbaum,
Les Besser,
Brian Biehl,
Bruce Pollard,
Robert Osann
Lawrence
Pillage,
Ronald A.
Rohrer,
Chandramouli
Visweswariah
Michael D.
Meehan,
John Purviance.

Yield and Reliability in
Microwave Circuit and
System Design

11

K C. Gupta

Computer-Aided Design of
Microwave Circuits
Janusz A
Introduction to Computer
Dobrowolski
Methods for Microwave
Circuit Analysis and Design
Paulo
J.
C. Computer-Aided Analysis of
Rodrigues
Nonlinear
Microwave
Circuits
Stephen A. Maas
Nonlinear Microwave and
RF Circuits, (2nd Edition)

179

1
2
3
4

7
8

‫ﻤﺭﺍﺠﻊ ﺍﻻﻨﺘﺭﻨﺕ‬
. ‫( اﻟﻤﻨﺘﺠﻪ ﻟﺒﺮاﻣﺞ اﻟﺘﺤﻠﻴﻞ و اﻟﺘﺼﻤﻴﻢ و ﻏﻴﺮهﺎ‬Agilent) ‫ﻣﻮﻗﻊ ﺷﺮآﺔ‬

i1

. ‫( اﻟﻤﻨﺘﺠﻪ ﻟﺒﺮاﻣﺞ اﻟﺘﺤﻠﻴﻞ و اﻟﺘﺼﻤﻴﻢ و ﻏﻴﺮهﺎ‬Ansoft) ‫ﻣﻮﻗﻊ ﺷﺮآﺔ‬

i2

http://www.ansoft.com/
http://www.ansoft.com/products/hf/ansoft_designer
. ‫( اﻟﻤﻨﺘﺠﻪ ﻟﺒﺮاﻣﺞ اﻟﺘﺤﻠﻴﻞ و اﻟﺘﺼﻤﻴﻢ و ﻏﻴﺮهﺎ‬APLAC) ‫ﻣﻮﻗﻊ ﺷﺮآﺔ‬

i3

http://www.agilent.com
http://eesof.tm.agilent.com

http://www.aplac.com
. ‫( اﻟﻤﻨﺘﺠﻪ ﻟﺒﺮاﻣﺞ اﻟﺘﺤﻠﻴﻞ و اﻟﺘﺼﻤﻴﻢ و ﻏﻴﺮهﺎ‬AWR) ‫ﻣﻮﻗﻊ ﺷﺮآﺔ‬

i4

http://www.awrcorp.com
http://www.appwave.com/Products/Microwave_Office/Overview.php
. (HSPICE) ‫( اﻟﻤﻨﺘﺠﻪ ﻟﺒﺮﻧﺎﻣﺞ‬Synopsys) ‫ﻣﻮﻗﻊ ﺷﺮآﺔ‬

i5

http://www.synopsys.com
‫( ﻟﻠﺘﺤﻠﻴﻞ اﻟﺨﻄﻰ و اﻧﺘﺎج ﺑﺎراﻣﺘﺮات اس‬RFSim99) ‫ﻣﻮﻗﻊ ﺗﺤﻤﻴﻞ اﻟﺒﺮﻧﺎﻣﺞ اﻟﻤﺠﺎﻧﻰ‬

i6

http://www.practicalrf.com/$Newsletter/e-letters/February2006/RFSim99.htm
‫( ﻟﻠﺘﺤﻠﻴﻞ اﻟﺨﻄﻰ و اﻟﻐﻴﺮ ﺧﻄﻰ و اﻧﺘﺎج ﺑﺎراﻣﺘﺮات اس‬ViPEC) ‫ﻣﻮﻗﻊ ﺗﺤﻤﻴﻞ اﻟﺒﺮﻧﺎﻣﺞ اﻟﻤﺠﺎﻧﻰ‬

i7

http://sourceforge.net/project/showfiles.php?group_id=19792
(Harmonic Balance) ‫( ﻟﻠﺘﺤﻠﻴﻞ اﻟﻐﻴﺮ ﺧﻄﻰ ﺑﻄﺮﻳﻘﺔ‬HBFree) ‫ﻣﻮﻗﻊ ﺗﺤﻤﻴﻞ اﻟﺒﺮﻧﺎﻣﺞ اﻟﻤﺠﺎﻧﻰ‬

i8

http://hbfree.sourceforge.net/
. (Artech House) ‫ﻣﻮﻗﻊ دار ﻧﺸﺮ‬

i9

http://www.artechhouse.com/
Sonnet ) ‫( ﻟﻠﺘﺤﻠﻴﻞ اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴﻰ ﻣﻦ اﻧﺘﺎج ﺷﺮآﺔ‬SONNET Lite) ‫ ﻣﻮﻗﻊ ﺗﺤﻤﻴﻞ اﻟﺒﺮﻧﺎﻣﺞ اﻟﻤﺠﺎﻧﻰ‬i10
:(Software Inc.
http://www.sonnetsoftware.com/lite
. ‫( ﻟﻠﺘﺤﻠﻴﻞ اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴﻰ‬Arpeggio) ‫ ﻣﻮﻗﻊ ﺗﺤﻤﻴﻞ اﻟﺒﺮﻧﺎﻣﺞ اﻟﻤﺠﺎﻧﻰ‬i11
http://www.angelfire.com/ca2/BlueFlyer/
‫( ﻟﻠﺘﺤﻠﻴﻞ اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴﻰ‬Windows FDTD Software) ‫ ﻣﻮﻗ ﻊ ﻟﺘﺤﻤ ﻴﻞ اﻟﺒ ﺮاﻣﺞ اﻟﻤﺠﺎﻧﻴﻪ – ﺑﺮﻧﺎﻣﺞ‬i12
Windows Smith Chart/Impedance ) ‫ و ﺑ ﺮﻧﺎﻣﺞ ﺗﺼ ﻤﻴﻢ دواﺋ ﺮ اﻟﺘﻮﻓ ﻴﻖ و اﻟﻌﻤﻞ ﺑﻤﺨﻄﻂ ﺳﻤﻴﺚ‬،
: (Matching Tool
http://pesona.mmu.edu.my/%7Ewlkung/
: (RFMatch) ‫ ﻣﻮﻗﻊ ﺗﺤﻤﻴﻞ ﺑﺮﻧﺎﻣﺞ ﻣﺠﺎﻧﻰ ﻟﻠﻌﻤﻞ ﺑﻤﺨﻄﻂ ﺳﻤﻴﺚ‬i13
http://www.elmarx.com/fontana/rfc16pro.zip

180

‫ﺘﺎﺒﻊ ﻤﺭﺍﺠﻊ ﺍﻻﻨﺘﺭﻨﺕ‬
‫‪ i14‬ﻣﻮﻗﻊ ﺗﺤﻤﻴﻞ ﺑﺮاﻣﺞ ﻣﺠﺎﻧﻴﻪ و ﻣﻌﻠﻮﻣﺎت ﺗﻘﻨﻴﻪ و راﺑﻂ اﻟﺘﺤﻤﻴﻞ ﻟﺒﺮﻧﺎﻣﺞ ﻣﺠﺎﻧﻰ ﻟﻠﻌﻤﻞ ﺑﻤﺨﻄﻂ ﺳﻤﻴﺚ ‪:‬‬
‫‪http://www.fritz.dellsperger.net/‬‬
‫‪http://www.fritz.dellsperger.net/Downloads/Setup_smith.exe‬‬
‫‪ i15‬ﻣﻮﻗﻊ ﻣﻌﻠﻮﻣﺎت ﻋﻦ ﻣﺨﻄﻂ ﺳﻤﻴﺚ )‪ (Smith Chart‬و ﺑﺮاﻣﺞ ﻟﻠﻌﻤﻞ ﺑﻪ ‪:‬‬
‫‪http://sss-mag.com/smith.html‬‬
‫‪ i16‬ﻣﻮﻗﻊ ﻟﺸﺮآﺔ )‪ (Ampsa‬اﻟﻤﻨﺘﺠﻪ ﻟﺒﺮاﻣﺞ )‪: (MULTIMATCH ADW, MOSAIC IMW‬‬
‫‪http://www.ampsa.com‬‬
‫‪ i17‬ﻣﻮﻗﻊ ﺗﺤﻤﻴﻞ )‪ (ClassE‬ﺑﺮﻧﺎﻣﺞ ﻣﺠﺎﻧﻰ ﻟﺘﺼﻤﻴﻢ ﻣﻜﺒﺮات اﻟﻘﺪرﻩ ﻣﻦ ﻃﺮاز اى ‪:‬‬
‫‪http://tonnesoftware.com/classe.html‬‬
‫‪ i18‬ﻣﻮاﻗ ﻊ ﺗﺤﻤ ﻴﻞ ﺑ ﺮﻧﺎﻣﺞ ﻣﺠﺎﻧ ﻰ )‪ (PLL Design Assistant‬ﻟﺘﺼ ﻤﻴﻢ )‪ (PLL‬و ه ﻮ ﺟ ﺰء ﻣ ﻦ ﺑ ﺮﻧﺎﻣﺞ‬
‫)‪ (CPPSim‬اﻟﻤﻌﻄﻰ ﻣﻮﻗﻊ ﺗﺤﻤﻴﻠﻪ ﻓﻰ اﻟﺴﻄﺮ اﻟﺜﺎﻟﺚ ‪:‬‬
‫‪http://www-mtl.mit.edu/researchgroups/perrottgroup/tools.html‬‬
‫‪http://www.cppsim.com/download.html‬‬
‫‪ i19‬ﻣﻮﻗﻊ ﻟﺸﺮآﺔ )‪ (WAVECON‬اﻟﻤﻨﺘﺠﻪ ﻟﺒﺮاﻣﺞ )‪ (Parfil, Elliptic‬و ﻏﻴﺮهﺎ ‪:‬‬
‫‪http://www.waveconsoft.com/‬‬
‫‪ i20‬ﻣﻮﻗﻊ ﻟﺸﺮآﺔ )‪ (Nuhertz‬اﻟﻤﻨﺘﺠﻪ ﻟﺒﺮﻧﺎﻣﺞ )‪: (Nuhertz Filter‬‬
‫‪http://www.filter-solutions.com/‬‬
‫‪ i21‬ﻣﻮﻗﻊ ﺗﺤﻤﻴﻞ ﺑﺮﻧﺎﻣﺞ ﻣﺠﺎﻧﻰ )‪ (FilterCAD‬ﻟﺘﺼﻤﻴﻢ اﻟﻔﻼﺗﺮ ‪:‬‬
‫‪http://www.linear.com/designtools/software/‬‬
‫‪ i22‬ﻣﻮﻗﻊ ﺗﺤﻤﻴﻞ ﺑﺮاﻣﺞ ﻣﺠﺎﻧﻴﻪ و ﻣﻌﻠﻮﻣﺎت ﺗﻘﻨﻴﻪ ﻟﺘﺼﻤﻴﻢ اﻟﻔﻼﺗﺮ و ﻏﻴﺮهﺎ ‪:‬‬
‫‪http://www.dxzone.com/catalog/Software/Filter_Design/‬‬
‫‪ i23‬ﻣﻮﻗﻊ ﻳﺘﺠﺪد داﺋﻤﺎ و ﺑﻪ أﺳﻤﺎء اﻟﺒﺮاﻣﺞ اﻟﻤﺒﺎﻋﻪ ﺗﺠﺎرﻳﺎ و اﻟﻤﺠﺎﻧﻴﻪ ﻓﻰ ﻣﻮاﺿﻴﻊ اﻟﺘﺼﻤﻴﻢ و اﻟﺘﺤﻠﻴﻞ و‬
‫ﻣﻌﻠﻮﻣﺎت ﺗﻘﻨﻴﻪ و ﻣﺮاﺟﻊ و ﻏﻴﺮهﺎ‪:‬‬
‫‪http://www.circuitsage.com/index.php‬‬
‫‪ i24‬ﻣﻮﻗﻊ ﻳﺘﺠﺪد داﺋﻤﺎ و ﺑﻪ أﺳﻤﺎء اﻟﺒﺮاﻣﺞ اﻟﻤﺒﺎﻋﻪ ﺗﺠﺎرﻳﺎ ﻓﻰ ﻣﻮاﺿﻴﻊ اﻟﺘﺼﻤﻴﻢ و اﻟﺘﺤﻠﻴﻞ ‪:‬‬
‫‪http://en.wikipedia.org/wiki/RF_microwave_CAE_CAD‬‬
‫‪ i25‬ﻣﻮﻗﻊ ﺗﺎﺑﻊ ﻟﻤﺠﻠﺔ )‪ (Microwave Journal‬ﻳﺘﺠﺪد داﺋﻤﺎ و ﺑﻪ أﺳﻤﺎء اﻟﺒﺮاﻣﺞ اﻟﻤﺒﺎﻋﻪ ﺗﺠﺎرﻳﺎ ﻓﻰ ﻣﻮاﺿﻴﻊ‬
‫اﻟﺘﺼﻤﻴﻢ و اﻟﺘﺤﻠﻴﻞ و ﻏﻴﺮهﺎ‪:‬‬
‫‪http://www.mwjournal.com/BuyersGuide/‬‬
‫‪Vendors.asp?ParentCatId=10&SubCatId=113&viewall=1‬‬
‫‪ i26‬ﻣﻮﻗﻊ ﺷﺮآﺔ )‪ (Modelithics‬اﻟﻤﺘﺨﺼﺼﻪ ﻓﻰ اﻟﻨﻤﺬﺟﻪ أو اﻧﺘﺎج ﻧﻤﺎذج ﻟﻤﻜﻮﻧﺎت اﻟﺘﺮددات اﻟﻌﺎﻟﻴﻪ‬
‫‪www.modelithics.com‬‬
‫‪ i27‬ﻣﻮﻗﻊ ﻟﺸﺮآﺔ )‪ (Applied Computational Sciences‬اﻟﻤﻨﺘﺠﻪ ﻟﺒﺮﻧﺎﻣﺞ )‪: (LINC2‬‬
‫‪http://www.appliedmicrowave.com/‬‬

‫‪181‬‬

‫‪Chapter 6 : Hybrid Couplers, Power Splitters and Bias Networks‬‬

‫اﻟﻔﺼﻞ اﻟﺴﺎدس ‪ :‬اﻟﻤﺰدوﺟﺎت اﻟﻤﺨﺘﻠﻄﻪ و ﻣﻘﺴﻤﺎت اﻟﻘﺪرﻩ و دواﺋﺮ اﻟﺘﻐﺬﻳﻪ‬

‫)ﻤﻘﻁﻊ ‪ (١-٦‬ﻤﻘﺩﻤﻪ ‪:‬‬
‫ﻳﻤﻜ ﻦ ﺗﻘﺴ ﻴﻢ دواﺋ ﺮ اﻟﺘ ﺮدد اﻟﻌﺎﻟ ﻰ و اﻟﻤﻴﻜﺮووﻳﻒ اﻟﻰ ﻧﻮﻋﻴﻦ ‪ ،‬دواﺋﺮ ﻓﻌﺎﻟﻪ )‪ (active circuits‬و دواﺋﺮ ﺧﺎﻣﻠﻪ‬
‫)‪.(passive circuits‬‬
‫اﻟﺪواﺋ ﺮ اﻟﻔﻌﺎﻟ ﻪ ﻣ ﺜﻞ دواﺋ ﺮ اﻟﻤﻜﺒ ﺮات )‪ (amplifiers‬و اﻟﻤﺬﺑ ﺬﺑﺎت )‪ (oscillators‬و اﻟﻤﺎزﺟ ﺎت )‪ (Mixers‬و‬
‫دواﺋ ﺮ ﺿ ﺮب اﻟﺘ ﺮدد أو ﺿ ﺎرﺑﺎت اﻟﺘ ﺮدد )‪ (frequency multipliers‬و دواﺋ ﺮ ﻗﺴ ﻢ اﻟﺘ ﺮدد أو ﻗﺎﺳ ﻤﺎت اﻟﺘﺮدد‬
‫)‪ (frequency dividers‬و ﻣﻤﻴ ﺰات اﻟﺘ ﺮدد )‪ (frequency discriminators‬و اﻟﻤﻌﺪﻻت )‪ (modulators‬و‬
‫ﺑﻌ ﺾ دواﺋ ﺮ ﻣﺤ ﺮﻓﺎت اﻟﻄ ﻮر أو ﻣﻐﻴﺮات اﻟﻄﻮر )‪ (phase shifters‬و اﻟﻤﻔﺎﺗﻴﺢ اﻻﻟﻜﺘﺮوﻧﻴﻪ‬

‫) ‪electronic‬‬

‫‪ (switches‬و دواﺋ ﺮ اﻟﻜﺎﺷ ﻔﺎت )‪ (detectors‬و ﻏﻴ ﺮهﺎ ﻣ ﻦ اﻟﺪواﺋ ﺮ اﻟﺘ ﻰ ﺗﺤ ﺘﻮى ﻋﻠ ﻰ ﻋﻨﺼﺮ أو ﻋﻨﺎﺻﺮ ﻓﻌﺎﻟﻪ‬
‫ﻣ ﺜﻞ اﻟﺪﻳ ﻮد و اﻟﺘﺮاﻧﺰﻳﺴ ﺘﻮر‪ .‬و ه ﺬﻩ اﻟﺪواﺋ ﺮ ﺳ ﻴﺘﻢ ﺷ ﺮح ﺗﺼﻤﻴﻤﻬﺎ ﻓﻰ اﻟﻜﺘﺐ اﻟﻼﺣﻘﻪ ﻣﻦ ﺳﻠﺴﻠﺔ ﺗﺒﺴﻴﻂ اﻟﺘﻜﻨﻮﻟﻮﺟﻴﺎ‬
‫اﻟﻌﺎﻟﻴﻪ‪.‬‬
‫اﻟﺪواﺋ ﺮ اﻟﺨﺎﻣﻠ ﻪ ﻣ ﺜﻞ اﻟﻔﻼﺗ ﺮ )‪ (Filters‬و دواﺋ ﺮ ﺗﻔ ﺮﻳﻖ اﻟﺘ ﺮدد أو ﻣﻔ ﺮﻗﺎت اﻟﺘﺮدد أو دواﺋﺮ ﺗﺤﺪﻳﺪ اﺗﺠﺎﻩ اﻻﺷﺎرﻩ‬
‫ﺣﺴ ﺐ اﻟﺘ ﺮدد )‪ (Diplexer‬و دواﺋ ﺮ اﻟﺘﻔ ﺮﻳﻖ ﺑ ﻴﻦ اﻟﻤﺮﺳ ﻞ و اﻟﻤﺴ ﺘﻘﺒﻞ أو ﻣﻔ ﺮﻗﺎت اﻻﺗﺠ ﺎﻩ )‪ (Duplexers‬و‬
‫دواﺋ ﺮ اﻟﺘﻮﻓ ﻴﻖ‬

‫)‪ (Matching Networks‬و اﻟﻤ ﺰدوﺟﺎت اﻟﻤﺨ ﺘﻠﻄﻪ )‪ (Hybrid Couplers‬و ﻣﻘﺴ ﻤﺎت‬

‫اﻟﻘ ﺪرﻩ )‪ (Power Splitters or Power Dividers‬و ﻣﺠﻤﻌ ﺎت اﻟﻘ ﺪرﻩ )‪ (Power Combiners‬و دواﺋ ﺮ‬
‫اﻟ ﺘﻐﺬﻳﻪ )‪ (Bias Networks‬و اﻟﻌ ﺎزﻻت )‪ (Isolators‬و اﻟﻤ ﻮﺟﻬﺎت ذات اﻟﺘ ﺮﺗﻴﺐ اﻟﺪاﺋ ﺮى أو اﻟﻤﺘﺘﺎﻟ ﻰ‬
‫)‪ (Circulators‬و ﻏﻴﺮهﺎ ﻣﻦ اﻟﺪواﺋﺮ اﻟﺘﻰ ﻻ ﺗﺤﺘﻮى ﻋﻠﻰ ﻋﻨﺎﺻﺮ ﻓﻌﺎﻟﻪ‪.‬‬
‫اﻟﻌﺪﻳ ﺪ ﻣﻦ اﻟﺪواﺋﺮ اﻟﻔﻌﺎﻟﻪ ﻳﺤﺘﻮى ﻓﻰ ﺗﺮآﻴﺒﻪ ﻋﻠﻰ داﺋﺮﻩ ﺧﺎﻣﻠﻪ أو ﻋﺪد ﻣﻦ اﻟﺪواﺋﺮ اﻟﺨﺎﻣﻠﻪ و اﻷﻣﺜﻠﻪ ﻋﻠﻰ ذﻟﻚ آﺜﻴﺮﻩ‬
‫ﺟﺪا ﻓﻰ دواﺋﺮ اﻟﻤﻜﺒﺮات و اﻟﻤﺎزﺟﺎت و ﺿﺎرﺑﺎت و ﻣﻘﺴﻤﺎت اﻟﺘﺮدد و اﻟﻤﻌﺪﻻت و ﻏﻴﺮهﺎ‪.‬‬
‫ﻳﺒ ﻴﻦ ﺷﻜﻞ )‪ (١ - ٦‬ﻣﺨﻄﻂ ﻟﺪاﺋﺮة ﻣﺎزج ﻣﻦ ﻧﻮع )‪ (single balanced mixer‬ﺗﺤﺘﻮى ﻋﻠﻰ أرﺑﻌﺔ دواﺋﺮ ﺧﺎﻣﻠﻪ‬
‫)‪ (passive networks‬ﻋ ﺒﺎرﻩ ﻋ ﻦ ﺛﻼﺛ ﺔ ﻓﻼﺗ ﺮ )اﺛ ﻨﺎن ﻣ ﻦ ﻧ ﻮع ‪ BPF‬و اﻟ ﺜﺎﻟﺚ ﻣ ﻦ ﻧ ﻮع ‪ (LPF‬و ﻣ ﺰدوج‬
‫ﻣﺨﺘﻠﻂ ﻣﻦ ﻧﻮع )‪.(Rat-Race Hybrid‬‬
‫و ﻳﺒﻴﻦ ﺷﻜﻞ )‪ (٢ - ٦‬ﻣﺨﻄﻂ ﻟﺪاﺋﺮة ﻣﻜﺒﺮ )‪ (amplifier‬ﺗﺤﺘﻮى ﻋﻠﻰ داﺋﺮﺗﻰ ﺗﻐﺬﻳﻪ )‪.(bias networks‬‬
‫و ﺳ ﻮف ﻳﺮآ ﺰ ه ﺬا اﻟﻔﺼﻞ و اﻟﻔﺼﻞ اﻟﻘﺎدم ﻋﻠﻰ ﺷﺮح ﺗﺼﻤﻴﻢ اﻟﻌﺪﻳﺪ ﻣﻦ اﻟﺪواﺋﺮ اﻟﺨﺎﻣﻠﻪ ﻣﻊ اﻋﻄﺎء أﻣﺜﻠﻪ ﻟﻠﺘﺼﻤﻴﻢ‬
‫‪ ،‬و ﺟﻤﻴﻊ اﻟﺤﺴﺎﺑﺎت اﻟﻤﺒﺪﺋﻴﻪ ﻓﻰ هﺬﻩ اﻷﻣﺜﻠﻪ ﺗﻌﺘﻤﺪ ﻋﻠﻰ اﻟﺒﺮاﻣﺞ اﻟﻤﺬآﻮرﻩ ﻓﻰ )ﻣﻘﻄﻊ ‪ (٧-٣‬ﻓﻰ اﻟﻔﺼﻞ اﻟﺜﺎﻟﺚ‪.‬‬

‫‪182‬‬

‫ﺷﻜﻞ )‪ : (١ - ٦‬داﺋﺮة ﻣﺎزج )‪ (mixer‬ﺗﺤﺘﻮى ﻋﻠﻰ أرﺑﻌﺔ دواﺋﺮ ﺧﺎﻣﻠﻪ )‪.(passive networks‬‬

‫ﺷﻜﻞ )‪ : (٢ - ٦‬داﺋﺮة ﻣﻜﺒﺮ )‪ (amplifier‬ﺗﺤﺘﻮى ﻋﻠﻰ داﺋﺮﺗﻰ ﺗﻐﺬﻳﻪ )‪.(bias networks‬‬

‫‪183‬‬

‫)ﻤﻘﻁﻊ ‪ (٢-٦‬ﺍﻟﻤﺯﺩﻭﺠﺎﺕ ﺍﻟﻤﺨﺘﻠﻁﻪ ‪: Hybrid Couplers‬‬
‫ﺗﻌ ﺮﻓﻨﺎ ﻋﻠ ﻰ ﺗﺼ ﻤﻴﻢ اﻟﻤ ﺰدوج اﻻﺗﺠﺎهﻰ )‪ (directional coupler‬آﻤﻜﻮن ﺷﺮﻳﻄﻰ أو داﺋﺮﻩ ﺷﺮﻳﻄﻴﻪ ذات أرﺑﻌﺔ‬
‫ﻣﺨﺎرج ﻓﻰ اﻟﻔﺼﻞ اﻟﺮاﺑﻊ و ﺗﻢ ﺗﻌﺮﻳﻒ ﻣﻮاﺻﻔﺎﺗﻪ و ﻋﻼﻗﺘﻬﺎ ﺑﺒﺎراﻣﺘﺮات اس‪.‬‬
‫اﻟﻤ ﺰدوﺟﺎت اﻟﻤﺨ ﺘﻠﻄﻪ أو اﻟﻘﺎرﻧ ﺎت اﻟﻤﺨ ﺘﻠﻄﻪ )‪ (Hybrid Couplers‬ﻳﻤﻜ ﻦ اﻋﺘ ﺒﺎرهﺎ أﻳﻀ ﺎ ﻣﻜ ﻮﻧﺎت ﺷﺮﻳﻄﻴﻪ أو‬
‫دواﺋ ﺮ ﺷ ﺮﻳﻄﻴﻪ ذات أرﺑﻌ ﺔ ﻣﺨ ﺎرج و ه ﻰ واﺳ ﻌﺔ اﻻﺳ ﺘﺨﺪام ﻓﻰ اﻟﻌﺪﻳﺪ ﻣﻦ اﻟﺪواﺋﺮ ﻣﺜﻞ اﻟﻤﻜﺒﺮات و اﻟﻤﺎزﺟﺎت و‬
‫ﺿﺎرﺑﺎت و ﻣﻘﺴﻤﺎت اﻟﺘﺮدد و اﻟﻤﻌﺪﻻت و ﻣﻘﺴﻤﺎت و ﻣﺠﻤﻌﺎت اﻟﻘﺪرﻩ و ﻣﻐﻴﺮات اﻟﻄﻮر و ﻏﻴﺮهﺎ‪.‬‬
‫ﺑﻌ ﺾ اﻟﺸ ﺮآﺎت اﻟﻤﻨ ﺘﺠﻪ ﻟﻠﻤ ﺰدوﺟﺎت اﻟﻤﺨ ﺘﻠﻄﻪ ﺗﻀ ﻌﻬﺎ ﺿ ﻤﻦ اﻟﻤﻼﺣ ﻖ أو اﻟﻜﻤﺎﻟ ﻴﺎت )‪ (accessories‬اﻟﻼزﻣ ﻪ‬
‫ﻟﻠﻤﻌﺎﻣﻞ و اﻻﺧﺘﺒﺎر و اﻟﻘﻴﺎس‪ .‬ﺷﻜﻞ )‪ (٣ - ٦‬ﻳﺒﻴﻦ أﺣﺪ اﻟﻤﺰدوﺟﺎت اﻟﻤﺨﺘﻠﻄﻪ اﻟﺘﻰ ﺗﺒﺎع ﺗﺠﺎرﻳﺎ‪.‬‬

‫ﺷﻜﻞ )‪ : (٣ - ٦‬ﻣﺰدوج ﻣﺨﺘﻠﻂ‬

‫ﺷﻜﻞ )‪ : (٤ - ٦‬رﺳﻢ رﻣﺰى ﻟﻠﻤﺰدوج اﻟﻤﺨﺘﻠﻂ )‪.(Hybrid Coupler‬‬

‫ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (٤ - ٦‬رﺳ ﻤﺎ رﻣ ﺰﻳﺎ ﻟﻠﻤ ﺰدوج اﻟﻤﺨ ﺘﻠﻂ )‪ (Hybrid Coupler‬ﻣ ﻊ ﺗ ﺮﻗﻴﻢ اﻟﻤﺨ ﺎرج و ﻳ ﺘﻢ ﺗﻌ ﺮﻳﻒ‬
‫اﻟﻤﺨﺎرج آﻤﺎ ﻳﻠﻰ ‪:‬‬
‫اﻟﻤﺨﺮج أو اﻟﻤﺪﺧﻞ رﻗﻢ )‪ (1‬ﻳﺴﻤﻰ )‪ (incident port or input port‬و اﻟﻘﺪرﻩ اﻟﺪاﺧﻠﻪ ﻣﻨﻪ )‪.(P1‬‬
‫اﻟﻤﺨﺮج رﻗﻢ )‪ (2‬ﻳﺴﻤﻰ اﻟﻤﺨﺮج اﻟﻤﺒﺎﺷﺮ )‪ (through port or direct port‬و اﻟﻘﺪرﻩ اﻟﺨﺎرﺟﻪ ﻣﻨﻪ )‪.(P2‬‬
‫اﻟﻤﺨ ﺮج رﻗ ﻢ )‪ (3‬ﻳﺴﻤﻰ اﻟﻤﺨﺮج اﻟﻤﺒﺎﺷﺮ اﻟﻤﺰدوج أو اﻟﻤﺮﺳﻞ اﻟﻴﻪ ) ‪Transmitted port or direct port or‬‬
‫‪ (direct coupled port‬و اﻟﻘﺪرﻩ اﻟﺨﺎرﺟﻪ ﻣﻨﻪ )‪.(P3‬‬
‫‪184‬‬

‫اﻟﻤﺨ ﺮج رﻗ ﻢ )‪ (4‬ﻳﺴ ﻤﻰ اﻟﻤﺨ ﺮج اﻟﻤﻌ ﺰول )‪ (isolated port or uncoupled port‬و اﻟﻘ ﺪرﻩ اﻟﺨﺎرﺟ ﻪ ﻣ ﻨﻪ‬
‫)‪.(P4‬‬
‫ﻳﺘﻢ ﺗﻌﺮﻳﻒ ﻣﻌﺎﻣﻞ اﻻزدواج ﻟﻠﻤﺰدوج اﻟﻤﺨﺘﻠﻂ )‪ (coupling coefficient C‬ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫)‪(6.1‬‬

‫]‪[dB‬‬

‫‪P3‬‬
‫‪P1‬‬

‫‪C = −10 log‬‬

‫أﻣﺎ ﻣﻌﺎﻣﻞ اﻟﻌﺰل ﻟﻠﻤﺰدوج اﻟﻤﺨﺘﻠﻂ )‪ (Isolation Coefficient‬ﻓﻴﺘﻢ ﺗﻌﺮﻳﻔﻪ آﻤﺎ ﻳﻠﻰ ‪:‬‬
‫)‪(6.2‬‬

‫]‪[dB‬‬

‫‪P4‬‬
‫‪P1‬‬

‫‪I = −10 log‬‬

‫أﻣﺎ ﻣﻌﺎﻣﻞ اﻻرﺳﺎل ﻟﻠﻤﺰدوج اﻟﻤﺨﺘﻠﻂ )‪ (Transmission Coefficient‬ﻓﻴﺘﻢ ﺗﻌﺮﻳﻔﻪ آﻤﺎ ﻳﻠﻰ ‪:‬‬
‫)‪(6.3‬‬

‫]‪[dB‬‬

‫‪P2‬‬
‫‪P1‬‬

‫‪T = 10 log‬‬

‫أﻣ ﺎ ﻣﻌﺎﻣ ﻞ اﻻﺗﺠ ﺎﻩ ﻟﻠﻤ ﺰدوج اﻟﻤﺨ ﺘﻠﻂ )‪ (Directivity‬ﻓﻴﺘﻢ ﺗﻌﺮﻳﻔﻪ ﺑﻴﻦ اﻟﻤﺨﺮج اﻟﻤﻌﺰول )‪ (4‬و اﻟﻤﺨﺮج اﻟﻤﺒﺎﺷﺮ‬
‫اﻟﻤﺰدوج )‪ (3‬آﻤﺎ ﻳﻠﻰ ‪:‬‬
‫)‪(6.4‬‬

‫]‪[dB‬‬

‫‪D=I−C‬‬

‫أﻣﺎ ﻋﻼﻗﺔ هﺬﻩ اﻟﻤﻌﺎﻣﻼت ﺑﺒﺎراﻣﺘﺮات اس )‪ (S-parameters‬ﻓﻬﻰ آﻤﺎ ﻳﻠﻰ ‪:‬‬
‫)‪(6.5‬‬

‫‪T = S 21 dB‬‬

‫‪,‬‬

‫‪I = S 41 dB‬‬

‫‪,‬‬

‫‪C = S31 dB‬‬

‫و آﻤ ﺎ ذآ ﺮت ﻓ ﻰ اﻟﻔﺼ ﻞ اﻟ ﺮاﺑﻊ ﻓ ﺎن ﺑﻌ ﺾ اﻟﻤ ﺮاﺟﻊ ﺗﺴ ﺘﺨﺪم )‪ (C = −|S31|dB‬ﺑ ﺪﻻ ﻣ ﻦ اﻻﺷ ﺎرﻩ اﻟﻤﻮﺟﺒﻪ و ﻻ‬
‫ﻳﻨﺒﻐﻰ أن ﻳﺆدى هﺬا اﻟﻰ ﻟﺒﺲ ﻓﻬﺬﻩ اﻻﺷﺎرﻩ اﻟﺴﺎﻟﺒﺔ ﺗﺴﺘﺨﺪم ﻟﻠﺘﻌﺒﻴﺮ ﻋﻦ اﻻﺗﺠﺎﻩ ﻓﻘﻂ ‪.‬‬
‫ﻓﻌ ﻨﺪﻣﺎ ﻳﺬآ ﺮ ﻣ ﺮﺟﻊ ﻣ ﺜﻼ أن هﻨﺎك )‪ (3 dB hybrid coupler‬أى اﻟﻤﺰدوج اﻟﻤﺨﺘﻠﻂ ذو اﻟﺜﻼﺛﺔ دﻳﺴﻴﺒﻞ ﻳﻌﻨﻰ ذﻟﻚ‬
‫أن ﻣﻌﺎﻣﻞ اﻻزدواج ﻟﻬﺬا اﻟﻤﺰدوج اﻟﻤﺨﺘﻠﻂ ﻳﺴﺎوى )‪ (−3 dB‬أى ﺛﻼﺛﻪ دﻳﺴﻴﺒﻞ ﺳﺎﻟﺒﻪ أو ﺛﻼﺛﻪ دﻳﺴﻴﺒﻞ ﻟﻸﺳﻔﻞ‪.‬‬
‫و ﻋ ﻨﺪﻣﺎ ﻳﺬآ ﺮ ﻣ ﺮﺟﻊ ﺁﺧ ﺮ أن ه ﻨﺎك )‪ (−3 dB hybrid coupler‬أى اﻟﻤ ﺰدوج اﻟﻤﺨ ﺘﻠﻂ ذو اﻟ ﺜﻼﺛﺔ دﻳﺴ ﻴﺒﻞ‬
‫اﻟﺴﺎﻟﺒﻪ ﻓﺬﻟﻚ ﻳﻌﻨﻰ أﻳﻀﺎ أن ﻣﻌﺎﻣﻞ اﻻزدواج ﻟﻬﺬا اﻟﻤﺰدوج اﻟﻤﺨﺘﻠﻂ ﻳﺴﺎوى )‪.(− 3 dB‬‬
‫ﻓﻰ ﺟﻤﻴﻊ اﻟﺤﺎﻻت ﻻﺑﺪ أن ﺗﻜﻮن ﻗﻴﻤﺔ ﻣﻌﺎﻣﻞ اﻻزدواج )‪ (C‬ﺑﺎﻟﺪﻳﺴﻴﺒﻞ ﺳﺎﻟﺒﻪ‪.‬‬
‫ﻳﺠ ﺐ أن ﺗﻜ ﻮن ﻣﻘﺎدﻳ ﺮ ﻣﻌ ﺎﻣﻼت اﻻﻧﻌﻜ ﺎس ﻋ ﻨﺪ اﻷرﺑﻌ ﺔ ﻣﺨ ﺎرج ﻣﻨﺨﻔﻀ ﻪ ‪ ،‬و ﻋﻠ ﻰ ﺳ ﺒﻴﻞ اﻟﻤ ﺜﺎل )‪ (S11‬ﻣﻌﺎﻣ ﻞ‬
‫اﻻﻧﻌﻜ ﺎس ﻋ ﻨﺪ اﻟﻤﺨ ﺮج )أو اﻟﻤ ﺪﺧﻞ( رﻗ ﻢ )‪ (1‬ﻳﺠ ﺐ أن ﻳﻜ ﻮن ﻣﻘ ﺪارﻩ ﻣﻨﺨﻔﻀ ﺎ )ﺑﻤﻌﻨ ﻰ اﻟﺘﻮﻓﻴﻖ ‪ matching‬ﺑﻴﻦ‬
‫ﻣﻌﺎوﻗﺘﻪ اﻟﻤﻤﻴﺰﻩ و اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ ﻟﻠﻤﺼﺪر( ﻟﻴﺴﻤﺢ ﺑﻤﺮور ﻣﻌﻈﻢ اﻟﻤﻮﺟﻪ اﻟﻘﺎدﻣﻪ اﻟﻰ داﺧﻞ اﻟﻤﺰدوج اﻟﻤﺨﺘﻠﻂ‪.‬‬
‫اﻟﺤﻴ ﺰ اﻟﻨﺴ ﺒﻰ ﻟﻠﻤ ﺰدوج اﻟﻤﺨ ﺘﻠﻂ ) ‪ (relative bandwidth = ∆B = {f2−f1}/fo‬اﻟ ﺬى ﺗﻜﻮن ﻓﻴﻪ اﻟﻤﻌﺎﻣﻼت‬
‫)‪ (C , I , T, D‬ﻗﺮﻳﺒﻪ ﻣﻦ اﻟﻘﻴﻢ اﻟﻤﻄﻠﻮﺑﻪ هﻮ أﺣﺪ أﺳﺲ اﻟﺘﺼﻤﻴﻢ و اﻻﺧﺘﻴﺎر ﻟﻠﻤﺰدوج اﻟﻤﺨﺘﻠﻂ ‪.‬‬
‫ﺣ ﻴﺚ )‪ (central frequency fo‬ه ﻮ اﻟﺘ ﺮدد ﻋ ﻨﺪ اﻟﻤﻨﺘﺼ ﻒ و )‪ (lower edge frequency f1‬ه ﻮ اﻟﺘﺮدد ﻋﻨﺪ‬
‫ﺑﺪاﻳﺔ اﻟﺤﻴﺰ اﻟﻤﻔﻴﺪ و )‪ (upper edge frequency f2‬هﻮ اﻟﺘﺮدد ﻋﻨﺪ ﻧﻬﺎﻳﺔ اﻟﺤﻴﺰ اﻟﻤﻔﻴﺪ ‪.‬‬
‫‪185‬‬

‫اﻟﻔﺮق ﻓﻰ اﻟﺰاوﻳﻪ ﺑﻴﻦ )‪ S21‬و ‪ ( S31‬ﻳﻌﺪ ﻣﻌﺎﻣﻼ ﻟﺘﺼﻤﻴﻢ و اﺧﺘﻴﺎر ﻧﻮع اﻟﻤﺰدوج اﻟﻤﺨﺘﻠﻂ‪.‬‬
‫‪o‬‬

‫ﻓﻬ ﻨﺎك أﻧﻮاع ﻣﻦ اﻟﻤﺰدوج اﻟﻤﺨﺘﻠﻂ ﺗﻜﻮن ﻓﻴﻬﺎ اﻟﺰاوﻳﻪ ) ‪ (∆φ = ∠S21 − ∠S31‬ﻣﺴﺎوﻳﻪ ﻟﺘﺴﻌﻴﻦ درﺟﻪ ) ‪(90‬‬
‫‪o‬‬

‫ﺑﻴ ﻨﻤﺎ ه ﻨﺎك أﻧﻮاع أﺧﺮى ﺗﻜﻮن ﻓﻴﻬﺎ هﺬﻩ اﻟﺰاوﻳﻪ ﻣﺴﺎوﻳﻪ ﻟﻤﺎﺋﻪ و ﺛﻤﺎﻧﻴﻦ درﺟﻪ ) ‪ ، (180‬و هﺬﻩ اﻟﺨﺎﺻﻴﻪ ﻗﺪ ﺗﺘﻮﻓﺮ‬
‫ﻋ ﻨﺪ ﺗ ﺮدد اﻟﻤﻨﺘﺼ ﻒ ﻓﻘ ﻂ )‪ (central frequency fo‬أو ﻗ ﺪ ﺗﺘﻮﻓ ﺮ ﻓ ﻰ ﺣﻴ ﺰ ﻣ ﻦ اﻟﺘ ﺮددات ﺣﺴ ﺐ ﺗﺼ ﻤﻴﻢ و ﻧﻮع‬
‫اﻟﻤﺰدوج اﻟﻤﺨﺘﻠﻂ‪.‬‬
‫ﺟﻤ ﻴﻊ اﻟﻤ ﺰدوﺟﺎت اﻟﻤﺨﺘﻠﻄﻪ ﺑﺄﻧﻮاﻋﻬﺎ اﻟﻤﺨﺘﻠﻔﻪ ﺗﺼﻠﺢ ﻷن ﺗﻜﻮن ﻣﻘﺴﻤﺎت و ﻣﺠﻤﻌﺎت ﻟﻠﻘﺪرﻩ اذا ﺗﻢ ﺗﻮﺻﻴﻞ )ﺣﻤﻞ‬
‫ﻣ ﺘﻮاﻓﻖ ‪ (matched load‬أى ﻣﻘﺎوﻣ ﻪ )ﺗﺴ ﺎوى اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻤﻴ ﺰﻩ ‪ (Zo = 50 Ω‬ﺑ ﻴﻦ اﻟﻤﺨ ﺮج اﻟﻤﻌ ﺰول‬
‫)‪ (isolated port‬و اﻷرض‪.‬‬

‫)ﻤﻘﻁﻊ ‪ (١-٢-٦‬ﺍﻟﻤﺯﺩﻭﺠﺎﺕ ﺍﻟﻤﺨﺘﻠﻁﻪ ﻤﻥ ﻨﻭﻉ ‪: Branch-Line Hybrid Couplers‬‬

‫أﺑﺴ ﻂ ﺷ ﻜﻞ ﻟﻠﻤ ﺰدوج اﻟﻤﺨ ﺘﻠﻂ ه ﻮ ﻧﻮع )‪ (Branch-Line Hybrid Coupler‬و اﻟﺘﺮﺟﻤﻪ اﻟﺤﺮﻓﻴﻪ ﻟﻼﺳﻢ )ﻓﺮع‬
‫‪o‬‬

‫– ﺧ ﻂ ﺑﻤﻌﻨ ﻰ ‪ (Branch-Line‬و ه ﻮ ﻳ ﺘﻜﻮن ﻣ ﻦ أرﺑﻌ ﺔ ﺧﻄ ﻮط ﺷ ﺮﻳﻄﻴﻪ آ ﻞ ﻣ ﻨﻬﻢ ﻃ ﻮﻟﻪ ﻳﻜﺎﻗ ﺊ )‪(90 ≡λg/4‬‬
‫ﺟﻪ( و اﺛ ﻨﺎن ﻣﻨﻬﻢ ﻟﻬﻤﺎ ﻣﻌﺎوﻗﻪ ﻣﻤﻴﺰﻩ ﺗﺴﺎوى )‪(Z1 =Zo‬‬
‫ﺣ ﻴﺚ )‪ guided wavelength λg‬ﻃ ﻮل اﻟﻤ ﻮﺟﻪ اﻟﻤ ﻮ ّ‬
‫و ﻳﺴ ﻤﻰ آ ﻼ ﻣ ﻨﻬﻤﺎ )ذراع ﻋﻠ ﻰ اﻟﺘﻮاﻟ ﻰ‬

‫‪ (series arm‬أﻣ ﺎ اﻵﺧ ﺮان ﻓﻠﻬﻤ ﺎ ﻣﻌﺎوﻗ ﻪ ﻣﻤﻴ ﺰﻩ ﺗﺴ ﺎوى‬

‫) ‪ ( Z 2 = Z o / 2‬و ﻳﺴ ﻤﻰ آ ﻼ ﻣ ﻨﻬﻤﺎ )ذراع ﻋﻠ ﻰ اﻟ ﺘﻮازى ‪ (shunt arm‬آﻤ ﺎ هﻮ ﻣﻮﺿﺢ ﻓﻰ اﻟﺠﺰء اﻷﻳﻤﻦ‬
‫ﻣﻦ ﺷﻜﻞ )‪. (٥ - ٦‬‬
‫ﻋﺎد ًة ﺗﻜﻮن اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ )‪ (Zo=50Ω‬ﻟﺬﻟﻚ ﺗﻜﻮن اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ اﻷﺧﺮى ) ‪.( Z o / 2 = 35.355 Ω‬‬
‫و اﻟﻤ ﺰدوج اﻟﻤﺨﺘﻠﻂ ﻣﻦ ﻧﻮع )‪ (Branch-Line Hybrid Coupler‬ﻟﻪ ﺷﻜﻠﻴﻦ اﻷول ﻣﺴﺘﻄﻴﻞ )‪(rectangular‬‬
‫و اﻟﺜﺎﻧ ﻰ ﻣﺴ ﺘﺪﻳﺮ )‪ (circular‬و ه ﻮ ﻳﻌ ﺪ )‪ (3 dB hybrid coupler‬ﺑﻤﻌﻨ ﻰ أن اﻟﻘ ﺪرﻩ اﻟﺨﺎرﺟ ﻪ ﻣﻨﻪ ﺗﻨﻘﺴﻢ اﻟﻰ‬
‫ﻧﺼ ﻔﻴﻦ ﻣﺘﺴ ﺎوﻳﻴﻦ ﺗﻘ ﺮﻳﺒﺎ ‪ ،‬اﻟﻨﺼﻒ اﻷول ﻳﺨﺮج ﻣﻦ اﻟﻤﺨﺮج رﻗﻢ )‪ (2‬و اﻟﻨﺼﻒ اﻟﺜﺎﻧﻰ ﻣﻦ اﻟﻘﺪرﻩ اﻟﺨﺎرﺟﻪ ﻳﺨﺮج‬
‫ﻣﻦ اﻟﻤﺨﺮج رﻗﻢ )‪.(3‬‬
‫أى أن ) ‪ ( C = S31 dB = −3dB‬و ) ‪ ( T = S 21 dB = −3dB‬ﺗﻘ ﺮﻳﺒﺎ و ذﻟ ﻚ ﻓ ﻰ اﻟﺤﻴﺰ اﻟﺘﺮددى اﻟﻨﺴﺒﻰ‬
‫ﻟﻠﻤ ﺰدوج اﻟﻤﺨ ﺘﻠﻂ )‪∆B‬‬

‫‪ (relative bandwidth‬و ﻳﺴ ﺎوى )‪ (10%‬ﺑﺎﻟﻨﺴ ﺒﻪ ﻟﻠﻤ ﺰدوج اﻟﻤﺨ ﺘﻠﻂ ﻣ ﻦ ﻧ ﻮع‬

‫)‪ (Branch-Line Hybrid Coupler‬و ﻳﻜ ﻮن ﻓ ﻴﻪ اﻷداء ﻣﻘ ﺒﻮﻻ ﻟﺠﻤ ﻴﻊ اﻟﺨﺼ ﺎﺋﺺ ‪ .‬و ان آ ﺎن ﻣﻌﺎﻣ ﻞ‬
‫اﻻزدواج )‪ (C‬ﻟﻬﺬا اﻟﻤﺰدوج اﻟﻤﺨﺘﻠﻂ ﻳﻜﻮن ﻣﻘﺒﻮﻻ ﻓﻰ ﺣﻴﺰ ﻧﺴﺒﻰ ﻳﺴﺎوى )‪.(20%‬‬
‫و ﻓ ﺮق زاوﻳ ﺔ اﻟﻄ ﻮر ﻟﻬ ﺬا اﻟﻤ ﺰدوج اﻟﻤﺨ ﺘﻠﻂ ) ‪ (∆φ = ∠S21 − ∠S31‬ﻳﺴ ﺎوى ﺗﺴ ﻌﻴﻦ درﺟ ﻪ ﻋ ﻨﺪ ﺗ ﺮدد‬
‫‪o‬‬

‫اﻟﻤﻨﺘﺼﻒ ﻟﺬﻟﻚ ﻳﻌﺪ )‪.(90 hybrid coupler or quadrature hybrid coupler‬‬
‫‪o‬‬

‫‪o‬‬

‫أﻣﺎ ﻓﻰ اﻟﺤﻴﺰ اﻟﻨﺴﺒﻰ ﻟﻬﺬا اﻟﻤﺰدوج اﻟﻤﺨﺘﻠﻂ )‪ (10%‬ﻓﺎن ﻓﺮق زاوﻳﺔ اﻟﻄﻮر ﻳﻜﻮن ﻓﻰ ﺣﺪود ) ‪.(90 ±5‬‬
‫‪186‬‬

‫ﻧﺘﻴﺠﺔ ﺗﻤﺎﺛﻞ اﻟﺸﻜﻞ اﻟﻬﻨﺪﺳﻰ ﻟﻠﺪاﺋﺮﻩ ﺣﻮل اﻟﻤﺤﻮرﻳﻦ اﻷﻓﻘﻰ و اﻟﺮأﺳﻰ ﻓﺎن ‪:‬‬
‫)‪ (S11=S22=S33=S44‬ﺑﻤﻌﻨ ﻰ ﺗﺴ ﺎوى ﺟﻤ ﻴﻊ ﻣﻌ ﺎﻣﻼت اﻻﻧﻌﻜ ﺎس ﻋﻨﺪ اﻷرﺑﻌﺔ ﻣﺨﺎرج و أﻳﻀﺎ ﻣﻦ ﺗﻤﺎﺛﻞ اﻟﺪاﺋﺮﻩ‬
‫ﻧﺠﺪ أن )‪ (S41=S32‬و هﺬا ﻳﻌﻨﻰ أن اﻟﻌﺰل ﺑﻴﻦ اﻟﻤﺨﺮﺟﻴﻦ )‪ (2 , 3‬ﻳﺴﺎوى اﻟﻌﺰل ﺑﻴﻦ اﻟﻤﺨﺮﺟﻴﻦ )‪.(1 , 4‬‬

‫ﺷﻜﻞ )‪ : (٥ - ٦‬ﻣﺨﻄﻂ اﻟﻤﺰدوج اﻟﻤﺨﺘﻠﻂ ﻣﻦ ﻧﻮع )‪ (Branch-Line Hybrid Coupler‬ﺑﺸﻜﻠﻴﻦ ﻣﺨﺘﻠﻔﻴﻦ ﻣﻊ‬
‫ﺑﻴﺎن اﻷﺑﻌﺎد و أرﻗﺎم اﻟﻤﺨﺎرج‪.‬‬

‫ﻣ ﺜﺎل )‪ : (١ – ٦‬ﻣﻄﻠ ﻮب ﺗﺼ ﻤﻴﻢ ﻣ ﺰدوج ﻣﺨ ﺘﻠﻂ ﻣ ﻦ ﻧ ﻮع )‪ (Branch-Line Hybrid Coupler‬ﺑﺸ ﻜﻠﻴﻪ‬
‫اﻟﻤﺴﺘﻄﻴﻞ و اﻟﻤﺴﺘﺪﻳﺮ ﻋﻨﺪ ﺗﺮدد )‪.(5 GHz‬‬
‫اﻟﺤﻞ ‪ :‬ﺗﻢ اﺧﺘﻴﺎر اﻟﺸﺮﻳﺤﻪ اﻟﺸﺮﻳﻄﻴﻪ ﺑﺎﻟﻤﻮاﺻﻔﺎت اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫ﺛﺎﺑﺖ اﻟﻌﺰل )‪. 3.38 = ( εr dielectric constant‬‬
‫ﺳﻤﻚ اﻟﻌﺎزل )‪. 1 mm = (h‬‬
‫ﺳﻤﻚ اﻟﻤﻮﺻﻞ )‪. 0.07 mm = (t‬‬
‫ﺗﻢ ﺣﺴﺎب اﻷﺑﻌﺎد اﻟﻤﺒﺪﺋﻴﻪ ﻟﻠﻤﺰدوج اﻟﻤﺨﺘﻠﻂ اﻟﻤﺴﺘﻄﻴﻞ اﻟﺸﻜﻞ آﻤﺎ ﻳﻠﻰ‪:‬‬
‫ﺣﺴ ﺐ اﻟﺒ ﻴﺎﻧﺎت اﻟﻤﻮﺿﺤﻪ ﻓﻰ ﺷﻜﻞ )‪ (٥ - ٦‬اﻟﺨﻄﻮط اﻟﺘﻰ ﻟﻬﺎ ﻣﻌﺎوﻗﻪ ﺗﺴﺎوى )‪ (Z1 = Zo = 50Ω‬آﺎن ﻋﺮﺿﻬﺎ‬
‫‪o‬‬

‫ﻳﺴﺎوى )‪ (W1 =2.25 mm‬و اﻟﻄﻮل اﻟﻤﻜﺎﻓﺊ ﻟـ )‪ (90 ≡λg/4‬ﻳﺴﺎوى )‪.(L1 = 9.16 mm‬‬
‫أﻣ ﺎ اﻟﺨﻄ ﺎن اﻵﺧ ﺮان ﻓﻠﻬﻤ ﺎ ﻣﻌﺎوﻗ ﻪ ﻣﻤﻴ ﺰﻩ ﺗﺴ ﺎوى ) ‪ ( Z 2 = Z o / 2 = 35.355 Ω‬آ ﺎن ﻋ ﺮض آ ﻞ ﻣ ﻨﻬﻤﺎ‬
‫‪o‬‬

‫ﻳﺴﺎوى )‪ (W2 =3.81 mm‬و اﻟﻄﻮل اﻟﻤﻜﺎﻓﺊ ﻟـ )‪ (90 ≡λg/4‬ﻳﺴﺎوى )‪.(L2 = 8.93 mm‬‬
‫و ﺗﻢ ﺣﺴﺎب اﻷﺑﻌﺎد اﻟﻤﺒﺪﺋﻴﻪ ﻟﻠﻤﺰدوج اﻟﻤﺨﺘﻠﻂ اﻟﻤﺴﺘﺪﻳﺮ اﻟﺸﻜﻞ آﻤﺎ ﻳﻠﻰ‪:‬‬

‫‪187‬‬

‫ﺑﻤ ﺎ أن اﻟﺨﻄ ﻮط ﺳ ﺘﻨﻔﺬ ﺑ ﻨﻔﺲ اﻷﺑﻌ ﺎد اﻟﻤﺤﺴ ﻮﺑﻪ أﻋ ﻼﻩ ﻟﻠﻤ ﺰدوج اﻟﻤﺨ ﺘﻠﻂ اﻟﻤﺴ ﺘﻄﻴﻞ أى ﺧﻄ ﺎن ﺑﻄ ﻮل )‪ (L1‬و‬
‫ﻋ ﺮض )‪ ، (W1‬و ﺧﻄ ﺎن ﺁﺧ ﺮان ﺑﻄ ﻮل )‪ (L2‬و ﻋ ﺮض )‪ ، (W2‬و ﻟﻜ ﻦ ﺑﺸ ﻜﻞ هﻨﺪﺳ ﻰ ﻣﺴ ﺘﺪﻳﺮ ﺣﺴ ﺐ اﻟﺒ ﻴﺎﻧﺎت‬
‫اﻟﻤﻮﺿﺤﻪ ﻓﻰ ﺷﻜﻞ )‪ .(٥ - ٦‬أى أن اﻟﺨﻄﻮط ﺳﺘﻨﻔﺬ ﺑﺸﻜﻞ ﻣﻨﺤﻨﻰ أو ﻋﻠﻰ ﺷﻜﻞ أﻗﻮاس‪.‬‬
‫ﺗﻢ ﺣﺴﺎب ﻧﺼﻒ ﻗﻄﺮ اﻷﻗﻮاس )‪ (R‬آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫‪2 π R = (2 L1) + (2 L2) = (2 × 9.16) + (2 × 8.93) = 36.18 mm‬‬

‫‪36.18 mm‬‬
‫‪= 5.758mm‬‬
‫‪2π‬‬

‫=‪R‬‬

‫و ﻗ ﻴﻤﺔ ﻧﺼ ﻒ ﻗﻄ ﺮ اﻷﻗ ﻮاس )‪ (R‬ﻳ ﺘﻢ ﺣﺴ ﺎﺑﻬﺎ ﻻدراﺟﻬ ﺎ ﻓ ﻰ ﻣﻌﻈ ﻢ ﺑ ﺮاﻣﺞ اﻟﺘﺤﻠ ﻴﻞ ﺣ ﻴﺚ ﻻ ﻳ ﺪرج ﻃ ﻮل اﻟﺨ ﻂ‬
‫اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ اﻟﻤﻨﺤﻨ ﻰ ﺑ ﻞ ﻳ ﺪرج ﻋﺮﺿ ﻪ و ﻃﻮل ﻧﺼﻒ ﻗﻄﺮﻩ و زاوﻳﺘﻪ اﻟﻬﻨﺪﺳﻴﻪ ‪ .‬و ﺣﺴﺐ اﻟﺠﺰء اﻷﻳﺴﺮ ﻣﻦ‬
‫‪o‬‬

‫ﺷﻜﻞ )‪ (٥ - ٦‬ﻓﺎن اﻟﺰاوﻳﺔ اﻟﻬﻨﺪﺳﻴﻪ ﻟﻜﻞ ﻗﻮس ﺗﺴﺎوى ) ‪.(90‬‬
‫ﻣﻠﺤ ﻮﻇﻪ هﺎﻣ ﻪ ‪ :‬ﻻﺣ ﻆ أن اﻟﻄ ﻮل اﻟﻜﻬﺮﺑ ﻰ )‪ (electrical length‬ﻟﻸرﺑﻌ ﺔ ﺧﻄﻮط ﺷﺮﻳﻄﻴﻪ )أو اﻷرﺑﻌﺔ أﻗﻮاس(‬
‫‪o‬‬

‫اﻟﻤﻜ ﻮﻧﻪ ﻟﻠﻤ ﺰدوج اﻟﻤﺨ ﺘﻠﻂ ه ﻮ )‪ (90 ≡λg/4‬و هﺬا ﻟﻴﺲ ﻟﻪ ﻋﻼﻗﻪ ﺑﺄن اﻟﺰاوﻳﺔ اﻟﻬﻨﺪﺳﻴﻪ ﻟﻠﺸﻜﻞ اﻟﻬﻨﺪﺳﻰ )‪(angle‬‬
‫‪o‬‬

‫ﻟﻜﻞ ﻗﻮس ﺗﺴﺎوى ) ‪.(90‬‬
‫ﺑﻌ ﺪ ﺣﺴ ﺎب اﻷﺑﻌ ﺎد اﻟﻤﺒﺪﺋ ﻴﻪ ﻟﻠﻤ ﺰدوج اﻟﻤﺨ ﺘﻠﻂ ﺑﺸ ﻜﻠﻴﻪ اﻟﻤﺴ ﺘﻄﻴﻞ و اﻟﻤﺴ ﺘﺪﻳﺮ ﺗ ﻢ ﻋﻤ ﻞ اﻟﺘﺤﻠﻴﻞ ﻟﻠﺪاﺋﺮﺗﻴﻦ ﺑﺎﺳﺘﺨﺪام‬
‫ﺑ ﺮﻧﺎﻣﺞ ﻟﺘﺤﻠ ﻴﻞ دواﺋ ﺮ اﻟﻤﻴﻜ ﺮووﻳﻒ و ﻟﺘﺤﺴ ﻴﻦ اﻷداء ﺗ ﻢ ﻋﻤ ﻞ اﻟ ﺒﺤﺚ ﻋ ﻦ اﻟﺤ ﻞ اﻷﻣ ﺜﻞ )‪(Optimization‬‬
‫ﻟﻠﺪاﺋﺮﺗﻴﻦ‪.‬‬
‫و آﺎﻧﺖ اﻷﺑﻌﺎد اﻟﻨﻬﺎﺋﻴﻪ ﺑﻌﺪ ﻋﻤﻞ )‪ (Optimization‬ﻟﻠﻤﺰدوج اﻟﻤﺨﺘﻠﻂ اﻟﻤﺴﺘﻄﻴﻞ اﻟﺸﻜﻞ آﻤﺎ ﻳﻠﻰ‪:‬‬
‫‪L1=8.62 mm‬‬

‫‪W1=2.35 mm‬‬

‫‪L2=6.73 mm‬‬

‫‪W2=3.64 mm‬‬

‫ﻣ ﻊ اﻻﺑﻘ ﺎء ﻋﻠ ﻰ ﻋ ﺮض اﻷرﺑﻌ ﺔ ﺧﻄ ﻮط اﻟﺨﺎرﺟ ﻴﻪ اﻟﻤﺘﺼ ﻠﻪ ﺑﺎﻟﻤﺨ ﺎرج آﻤ ﺎ ه ﻰ ﺑﻌ ﺮض )‪ (W=2.25mm‬و ﺗﻢ‬
‫اﺧﺘﻴﺎر ﻃﻮل آﻞ ﻣﻨﻬﺎ )‪.(L=6mm‬‬
‫و آﺎﻧﺖ اﻷﺑﻌﺎد اﻟﻨﻬﺎﺋﻴﻪ ﺑﻌﺪ ﻋﻤﻞ )‪ (Optimization‬ﻟﻠﻤﺰدوج اﻟﻤﺨﺘﻠﻂ اﻟﻤﺴﺘﺪﻳﺮ اﻟﺸﻜﻞ آﻤﺎ ﻳﻠﻰ‪:‬‬
‫‪W2=3.29 mm‬‬

‫‪W1=1.89 mm‬‬

‫و ﻧﺼ ﻒ ﻗﻄ ﺮ اﻷﻗ ﻮاس )‪ ، (R=4.59 mm‬ﻣﻊ اﻻﺑﻘﺎء ﻋﻠﻰ ﻋﺮض اﻷرﺑﻌﺔ ﺧﻄﻮط اﻟﺨﺎرﺟﻴﻪ اﻟﻤﺘﺼﻠﻪ ﺑﺎﻟﻤﺨﺎرج‬
‫آﻤﺎ هﻰ ﺑﻌﺮض )‪ (W=2.25mm‬و ﺗﻢ اﺧﺘﻴﺎر ﻃﻮل آﻞ ﻣﻨﻬﺎ )‪.(L=5mm‬‬
‫ﻻﺣ ﻆ اﻟﻔ ﺮق ﺑﻴﻦ اﻷﺑﻌﺎد ﺑﻌﺪ ﻋﻤﻞ اﻟﺒﺤﺚ ﻋﻦ اﻟﺤﻞ اﻷﻣﺜﻞ )‪ (Optimization‬ﻟﻠﺪاﺋﺮﺗﻴﻦ و ﻻﺣﻆ اﻟﻔﺮق ﻓﻰ اﻟﺸﻜﻞ‬
‫اﻟﻬﻨﺪﺳﻰ ﺑﻴﻨﻬﻤﺎ و اﻟﻔﺮق ﺑﻴﻦ اﻟﻼاﺳﺘﻤﺮارﻳﺎت )ﻋﻨﺪ اﻟﺘﻘﺎء ﺛﻼﺛﺔ ﺧﻄﻮط ﺷﺮﻳﻄﻴﻪ ﻣﻌﺎ( ﻓﻰ اﻟﺪاﺋﺮﺗﻴﻦ‪.‬‬
‫ﻧ ﺘﺎﺋﺞ اﻟﺘﺤﻠ ﻴﻞ اﻟﻨﻬﺎﺋ ﻴﻪ ﻟﻠﻤ ﺰدوج اﻟﻤﺨ ﺘﻠﻂ اﻟﻤﺴ ﺘﻄﻴﻞ ﻣﺒﻴ ﻨﻪ ﻓ ﻰ اﻟﺸﻜﻠﻴﻦ )‪ (٦ - ٦‬و )‪ (٧ - ٦‬ﻓﻰ اﻟﺤﻴﺰ اﻟﻨﺴﺒﻰ ﻟﻬﺬا‬
‫اﻟﻤ ﺰدوج اﻟﻤﺨ ﺘﻠﻂ )‪ (500MHz ≡ 10%‬أى ﻣ ﻦ )‪ (4.75 GHz‬اﻟﻰ )‪ .(5.25 GHz‬و ﻓﻰ ﻧﻔﺲ هﺬا اﻟﺤﻴﺰ آﺎن‬
‫‪o‬‬

‫‪o‬‬

‫ﻓﺮق زاوﻳﺔ اﻟﻄﻮر ﻟﻬﺬا اﻟﻤﺰدوج اﻟﻤﺨﺘﻠﻂ ) ‪ (∆φ = ∠S21 − ∠S31‬ﻳﺴﺎوى ) ‪.(90 ±0.5‬‬

‫‪188‬‬

‫ﺷﻜﻞ )‪ (٦ - ٦‬ﻳﺒﻴﻦ ﻗﻴﻢ )‪ (|S21|dB , |S31|dB‬ﻟﻠﻤﺰدوج اﻟﻤﺨﺘﻠﻂ اﻟﻤﺴﺘﻄﻴﻞ‪ .‬اﻻﻧﺤﺮاف ﻋﻦ )‪ (−3dB‬ﻻ ﻳﺰﻳﺪ ﻋﻦ‬
‫)‪ (0.075dB‬ﺑﺎﻟﻨﺴﺒﻪ ﻟـﻘﻴﻢ )‪ (|S21|dB , |S31|dB‬ﻓﻰ اﻟﺤﻴﺰ اﻟﻨﺴﺒﻰ و هﻰ ﻧﺘﻴﺠﻪ ﻣﻤﺘﺎزﻩ‪.‬‬
‫ﻣ ﻦ ﺷ ﻜﻞ )‪ (٧ - ٦‬ﻧﻼﺣ ﻆ أن ﻣﻌﺎﻣ ﻞ اﻻﻧﻌﻜ ﺎس )‪ (|S11|dB = |S22|dB < −20dB‬و أن اﻟﻌ ﺰل )‪ (I=|S41|dB‬أﻗ ﻞ‬
‫ﻣﻦ )‪ (−20dB‬و هﻰ ﻗﻴﻢ ﻣﻤﺘﺎزﻩ ﻟﻬﺬﻩ اﻟﺪاﺋﺮﻩ‪.‬‬

‫ﺷﻜﻞ )‪ : (٦ - ٦‬ﻗﻴﻢ )‪ (|S21|dB , |S31|dB‬ﻟﻠﻤﺰدوج اﻟﻤﺨﺘﻠﻂ اﻟﻤﺴﺘﻄﻴﻞ ﻓﻰ ﻣﺜﺎل )‪.(١ – ٦‬‬

‫ﺷﻜﻞ )‪ : (٧ - ٦‬ﻗﻴﻢ )‪ (|S11|dB , |S41|dB , |S22|dB‬ﻟﻠﻤﺰدوج اﻟﻤﺨﺘﻠﻂ اﻟﻤﺴﺘﻄﻴﻞ ﻓﻰ ﻣﺜﺎل )‪.(١ – ٦‬‬

‫‪189‬‬

‫ﻧ ﺘﺎﺋﺞ اﻟﺘﺤﻠ ﻴﻞ اﻟﻨﻬﺎﺋ ﻴﻪ ﻟﻠﻤ ﺰدوج اﻟﻤﺨ ﺘﻠﻂ اﻟﻤﺴ ﺘﺪﻳﺮ ﻣﺒﻴ ﻨﻪ ﻓ ﻰ اﻟﺸﻜﻠﻴﻦ )‪ (٨ - ٦‬و )‪ (٩ - ٦‬ﻓﻰ اﻟﺤﻴﺰ اﻟﻨﺴﺒﻰ ﻟﻬﺬا‬
‫اﻟﻤ ﺰدوج اﻟﻤﺨ ﺘﻠﻂ‪ .‬و ﻓ ﻰ ه ﺬا اﻟﺤﻴ ﺰ اﻟﻨﺴ ﺒﻰ آﺎن ﻓﺮق زاوﻳﺔ اﻟﻄﻮر ﻟﻬﺬا اﻟﻤﺰدوج اﻟﻤﺨﺘﻠﻂ )‪ (∆φ‬ﻳﺴﺎوى ﺗﺴﻌﻴﻦ‬
‫‪o‬‬

‫درﺟﻪ ﺑﺨﻄﺄ أﻗﺼﻰ ) ‪.(+0.6‬‬
‫ﺷ ﻜﻞ )‪ (٨ - ٦‬ﻳﺒ ﻴﻦ ﻗ ﻴﻢ )‪ (|S21|dB , |S31|dB‬ﻟﻠﻤ ﺰدوج اﻟﻤﺨﺘﻠﻂ اﻟﻤﺴﺘﺪﻳﺮ‪ .‬اﻻﻧﺤﺮاف ﻋﻦ )‪ (−3dB‬ﻻ ﻳﺰﻳﺪ ﻋﻦ‬
‫)‪ (0.083dB‬ﺑﺎﻟﻨﺴﺒﻪ ﻟـﻘﻴﻢ )‪ (|S21|dB , |S31|dB‬ﻓﻰ اﻟﺤﻴﺰ اﻟﻨﺴﺒﻰ و هﻰ ﻧﺘﻴﺠﻪ ﻣﻤﺘﺎزﻩ‪.‬‬
‫ﻣ ﻦ ﺷ ﻜﻞ )‪ (٩ - ٦‬ﻧﻼﺣ ﻆ أن ﻣﻌﺎﻣ ﻞ اﻻﻧﻌﻜ ﺎس )‪ (|S11|dB = |S22|dB < −20dB‬و أن اﻟﻌ ﺰل )‪ (I=|S41|dB‬أﻗ ﻞ‬
‫ﻣﻦ )‪.(−20dB‬‬

‫ﺷﻜﻞ )‪ : (٨ - ٦‬ﻗﻴﻢ )‪ (|S21|dB , |S31|dB‬ﻟﻠﻤﺰدوج اﻟﻤﺨﺘﻠﻂ اﻟﻤﺴﺘﺪﻳﺮ ﻓﻰ ﻣﺜﺎل )‪.(١ – ٦‬‬

‫ﺷﻜﻞ )‪ : (٩ - ٦‬ﻗﻴﻢ )‪ (|S11|dB , |S41|dB , |S22|dB‬ﻟﻠﻤﺰدوج اﻟﻤﺨﺘﻠﻂ اﻟﻤﺴﺘﺪﻳﺮ ﻓﻰ ﻣﺜﺎل )‪.(١ – ٦‬‬

‫‪190‬‬

‫ﺷﻜﻞ )‪ : (١٠ - ٦‬رﺳﻤﻴﻦ رﻣﺰﻳﻴﻦ ﻟﻠﻤﺰدوج اﻟﻤﺨﺘﻠﻂ ﻣﻦ ﻧﻮع )‪.(Branch-Line Hybrid Coupler‬‬

‫ﺗﻤﺮﻳﻦ ‪:‬‬
‫ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (١٠ - ٦‬رﺳ ﻤﻴﻦ رﻣ ﺰﻳﻴﻦ ﻟﻠﻤ ﺰدوج اﻟﻤﺨ ﺘﻠﻂ ﻣ ﻦ ﻧ ﻮع )‪(Branch-Line Hybrid Coupler‬‬
‫ﺑﻨﻮﻋﻴﻪ اﻟﻤﺴﺘﻄﻴﻞ و اﻟﻤﺴﺘﺪﻳﺮ ﻣﻊ ادراج رﻣﻮز اﻟﻼاﺳﺘﻤﺮارﻳﺎت‪.‬‬
‫ ﻗﺎرن ﺑﻴﻦ اﻟﺮﺳﻤﻴﻦ اﻟﺮﻣﺰﻳﻴﻦ ﻓﻰ هﺬا اﻟﺸﻜﻞ و ﺑﻴﻦ اﻟﻤﺨﻄﻄﺎن اﻟﻤﻮﺿﺤﺎن ﻓﻰ ﺷﻜﻞ )‪. (٥ - ٦‬‬‫ اﺳ ﺘﺨﺪم أﺣ ﺪ ﺑ ﺮاﻣﺞ ﺗﺤﻠ ﻴﻞ دواﺋﺮ اﻟﺘﺮدد اﻟﻌﺎﻟﻰ و اﻟﻤﻴﻜﺮووﻳﻒ اﻟﻤﺬآﻮرﻩ ﻓﻰ اﻟﻔﺼﻞ اﻟﺨﺎﻣﺲ ﻓﻰ ادﺧﺎل اﻟﺮﺳﻤﻴﻦ‬‫اﻟﺮﻣﺰﻳﻴﻦ ﻟﻬﺎﺗﻴﻦ اﻟﺪاﺋﺮﺗﻴﻦ‪.‬‬
‫ أﻋ ﺪ اﻟﺤﺴ ﺎﺑﺎت اﻟﻤﻌﻄ ﺎﻩ ﻓ ﻰ ﻣ ﺜﺎل )‪ (١ – ٦‬و ﻗ ﻢ ﺑﻌﻤ ﻞ ﺗﺤﻠ ﻴﻞ اﻟﺪاﺋ ﺮﺗﻴﻦ ﺛ ﻢ ﻗ ﻢ ﺑﻌﻤ ﻞ اﻟ ﺒﺤﺚ ﻋ ﻦ اﻟﺤ ﻞ اﻷﻣ ﺜﻞ‬‫)‪ (Optimization‬ﻟﻠﺪاﺋﺮﺗﻴﻦ و ﻗﺎرن اﻟﻨﺘﺎﺋﺞ اﻟﺘﻰ ﺣﺼﻠﺖ ﻋﻠﻴﻬﺎ ﻣﻊ اﻟﻤﻌﻄﺎﻩ ﻓﻰ اﻟﻤﺜﺎل‪.‬‬
‫ﻋﻤﻮﻣﺎ ﻟﺘﺤﻘﻴﻖ ﻧﺘﻴﺠﻪ ﺟﻴﺪﻩ ﻣﻦ دراﺳﺔ هﺬا اﻟﻜﺘﺎب ﻳﺠﺐ اﻋﺎدة اﻟﺤﺴﺎﺑﺎت اﻟﻤﻌﻄﺎﻩ ﻓﻰ ﺟﻤﻴﻊ اﻷﻣﺜﻠﻪ و ﻣﻘﺎرﻧﺔ اﻟﻨﺘﺎﺋﺞ‪.‬‬
‫آﻤ ﺎ ه ﻮ ﻣﺬآ ﻮر أﻋ ﻼﻩ ﻓ ﺎن ﺟﻤ ﻴﻊ اﻟﻤ ﺰدوﺟﺎت اﻟﻤﺨ ﺘﻠﻄﻪ ﺑﺄﻧﻮاﻋﻬﺎ اﻟﻤﺨﺘﻠﻔﻪ ﺗﺼﻠﺢ ﻷن ﺗﻜﻮن ﻣﻘﺴﻤﺎت و ﻣﺠﻤﻌﺎت‬
‫ﻟﻠﻘﺪرﻩ اذا ﺗﻢ ﺗﻮﺻﻴﻞ ﻣﻘﺎوﻣﻪ )ﺗﺴﺎوى اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ ‪ (Zo = 50 Ω‬ﺑﺎﻟﻤﺨﺮج اﻟﻤﻌﺰول )‪.(isolated port‬‬
‫و ﻟﺘﻮﺿ ﻴﺢ ه ﺬا اﻟﻤﻔﻬﻮم ‪ ،‬ﺷﻜﻞ )‪ (١١ - ٦‬ﻳﺒﻴﻦ ﻣﺰدوج ﻣﺨﺘﻠﻂ ﻣﻦ ﻧﻮع )‪(Branch-Line Hybrid Coupler‬‬
‫ﻳﺘﺼﻞ ﺑﻄﺮﻓﻪ اﻟﻤﻌﺰول )ﺣﻤﻞ ﻣﺘﻮاﻓﻖ ‪ (matched load‬أى ﻣﻘﺎوﻣﻪ )‪ (50Ω‬ﻣﺘﺼﻠﻪ ﺑﺎﻷرض ﻋﻦ ﻃﺮﻳﻖ )‪.(Via‬‬
‫ه ﺬﻩ اﻟﺪاﺋ ﺮﻩ ﺗﺼﻠﺢ آﻤﻘﺴﻢ ﻟﻠﻘﺪرﻩ )‪ (power splitter or divider‬اذا آﺎﻧﺖ اﻟﻘﺪرﻩ اﻟﺪاﺧﻠﻪ اﻟﻴﻬﺎ ﺗﺪﺧﻞ ﻣﻦ اﻟﻤﺪﺧﻞ‬
‫رﻗﻢ )‪ (1‬ﺣﻴﺚ ﺗﻨﻘﺴﻢ اﻟﻘﺪرﻩ اﻟﺨﺎرﺟﻪ ﺑﻴﻦ اﻟﻤﺨﺮﺟﻴﻦ )‪.(2 , 3‬‬
‫‪o‬‬

‫و هﻨﺎ ﺗﻨﻘﺴﻢ اﻟﻘﺪرﻩ اﻟﺨﺎرﺟﻪ ﺑﻴﻦ اﻟﻤﺨﺮﺟﻴﻦ اﻟﻰ ﻗﺴﻤﻴﻦ ﻣﺘﺴﺎوﻳﻴﻦ ﺗﻘﺮﻳﺒﺎ ﻣﻊ ﻓﺮق ﻓﻰ زاوﻳﺔ اﻟﻄﻮر ) ‪ (90‬آﻤﺎ هﻮ‬
‫ﻣﺬآﻮر أﻋﻼﻩ ﻟﻬﺬا اﻟﻨﻮع ﻣﻦ اﻟﻤﺰدوﺟﺎت اﻟﻤﺨﺘﻠﻄﻪ‪.‬‬
‫ﺑﻴ ﻨﻤﺎ ﺗﺴ ﺘﺨﺪم ﻧﻔ ﺲ اﻟﺪاﺋﺮﻩ آﻤﺠﻤﻊ ﻟﻠﻘﺪرﻩ )‪ (power combiner‬اذا آﺎﻧﺖ اﻟﻘﺪرﻩ اﻟﺪاﺧﻠﻪ اﻟﻴﻬﺎ ﺗﺪﺧﻞ ﻣﻦ اﻟﻤﺪﺧﻠﻴﻦ‬
‫رﻗﻤﻰ )‪ (2 , 3‬و ﺗﺨﺮج اﻟﻘﺪرﻩ اﻟﺨﺎرﺟﻪ ﻣﻦ اﻟﻤﺨﺮج رﻗﻢ )‪.(1‬‬

‫‪191‬‬

‫ﺷﻜﻞ )‪ : (١١ - ٦‬داﺋﺮة ﻣﺰدوج ﻣﺨﺘﻠﻂ ﻳﻌﻤﻞ آﻤﻘﺴﻢ ﻟﻠﻘﺪرﻩ أو آﻤﺠﻤﻊ ﻟﻠﻘﺪرﻩ‪.‬‬

‫)ﻤﻘﻁﻊ ‪ (٢-٢-٦‬ﺍﻟﻤﺯﺩﻭﺠﺎﺕ ﺍﻟﻤﺨﺘﻠﻁﻪ ﻤﻥ ﻨﻭﻉ ‪: Rat Race Hybrid coupler‬‬

‫ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (١٢ - ٦‬ﻣﺨﻄ ﻂ ﻗ ﺎرن ﻣﺨ ﺘﻠﻂ أو ﻣ ﺰدوج ﻣﺨ ﺘﻠﻂ ﻣ ﻦ ﻧﻮع )‪ (Rat Race Hybrid coupler‬و هﺬا‬
‫اﻟﻤﺰدوج اﻟﻤﺨﺘﻠﻂ ﻟﻪ اﺳﻢ ﺁﺧﺮ )‪.(Matched Hybrid T‬‬
‫اﻟﺪاﺋ ﺮﻩ أو اﻟﺤﻠﻘ ﻪ )‪ (Ring‬اﻟﻤﺮﺳ ﻮﻣﻪ ﻓ ﻰ اﻟﻤﺨﻄ ﻂ ﻳﻜ ﻮن ﻃ ﻮﻟﻬﺎ أﺣ ﺪ اﻟﻤﻀ ﺎﻋﻔﺎت اﻟﻔ ﺮدﻳﻪ ﻟ ـ )‪ (1.5 λg‬و ﺗﻜ ﻮن‬
‫اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻤﻴ ﺰﻩ ﻟﻸرﺑﻌ ﺔ ﺧﻄ ﻮط ﺷ ﺮﻳﻄﻴﻪ اﻟﻤﻜ ﻮﻧﻪ ﻟﻠﺤﻠﻘﻪ ﻣﺴﺎوﻳﻪ ﻟـ ) ‪ .( Z o 2‬ﺑﻴﻨﻤﺎ ﺗﺴﺎوى اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ‬
‫ﻟﻸرﺑﻌﺔ ﺧﻄﻮط ﺷﺮﻳﻄﻴﻪ اﻟﻤﺘﺼﻠﻪ ﺑﺎﻟﻤﺨﺎرج )‪.(Zo‬‬
‫ﻋﺎد ًة ﺗﻜﻮن اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ )‪ (Zo = 50 Ω‬ﻟﺬﻟﻚ ﺗﻜﻮن اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ اﻷﺧﺮى ) ‪.( Z o 2 = 70.71 Ω‬‬
‫اﻟﻄ ﻮل اﻟﻜﻬﺮﺑ ﻰ )‪ (electrical length‬ﻟ ﺜﻼﺛﺔ ﺧﻄ ﻮط ﺷ ﺮﻳﻄﻴﻪ )أو ﺛﻼﺛ ﺔ أﻗ ﻮاس( اﻟﻤﻜ ﻮﻧﻪ ﻟﻠﺤﻠﻘ ﻪ ﺑﺎﻟﻤ ﺰدوج‬
‫‪o‬‬

‫‪o‬‬

‫اﻟﻤﺨ ﺘﻠﻂ هﻮ )‪ (90 ≡λg/4‬ﺑﻴﻨﻤﺎ ﻃﻮل اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ )أو اﻟﻘﻮس( اﻟﺮاﺑﻊ ﻳﻜﻮن ﻣﻜﺎﻓﺌﺎ ﻟـ )‪ (270 ≡3λg/4‬آﻤﺎ هﻮ‬
‫ﻣﺒﻴﻦ ﻓﻰ ﺷﻜﻞ )‪.(١٢ - ٦‬‬
‫ﻓ ﻰ اﻟﺘ ﺮددات اﻟﻌﺎﻟ ﻴﻪ ﻣﻦ اﻟﻤﻴﻜﺮووﻳﻒ ﺗﻜﻮن اﻷﺑﻌﺎد ﺻﻐﻴﺮﻩ و ﻳﺼﻌﺐ ﺗﺼﻨﻴﻌﻬﺎ و ﻟﻜﻰ ﻳﻤﻜﻦ ﺗﻨﻔﻴﺬ اﻷرﺑﻌﺔ ﺧﻄﻮط‬
‫‪o‬‬

‫ﺷ ﺮﻳﻄﻴﻪ أو اﻷﻗ ﻮاس اﻟﻤﻜ ﻮﻧﻪ ﻟﻠﺤﻠﻘ ﻪ ﻳﻤﻜ ﻦ زﻳ ﺎدة ﻃ ﻮل آ ﻞ ﻣ ﻨﻬﺎ ﺑﻤﻘ ﺪار )‪ .(180 ≡λg/2‬أو ﻳﻤﻜ ﻦ اﻻﺑﻘ ﺎء ﻋﻠ ﻰ‬
‫أﻃ ﻮال اﻷﻗ ﻮاس آﻤ ﺎ هﻰ ﺑﺎﺳﺘﺜﻨﺎء اﻟﻘﻮس اﻷآﺒﺮ اﻟﻤﻮﺟﻮد ﺑﻴﻦ اﻟﻤﺨﺮﺟﻴﻦ )‪ (2 , 4‬ﻟﻴﻜﻮن ﻃﻮﻟﻪ ﻣﻜﺎﻓﺌﺎ ﻟـ )‪(5λg/4‬‬
‫ﺑﺪﻻ ﻣﻦ )‪ (3λg/4‬ﺣﺴﺒﻤﺎ ﺗﻘﺘﻀﻰ دﻗﺔ اﻟﺘﺼﻨﻴﻊ‪.‬‬
‫ﻓ ﻰ ﺣﺎﻟ ﺔ دﺧﻮل اﻟﻘﺪرﻩ ﻣﻦ اﻟﻤﺪﺧﻞ رﻗﻢ )‪ (1‬ﻓﺎن اﻟﻘﺪرﻩ اﻟﺨﺎرﺟﻪ ﻣﻦ اﻟﻤﺰدوج اﻟﻤﺨﺘﻠﻂ ﺗﻨﻘﺴﻢ ﺑﻴﻦ اﻟﻤﺨﺮﺟﻴﻦ ) ‪2 ,‬‬
‫‪ (3‬اﻟ ﻰ ﻗﺴﻤﻴﻦ ﻣﺘﺴﺎوﻳﻴﻦ أى أن ) ‪ ( S 31 dB = −3dB‬و ) ‪ ( S 21 dB = −3dB‬ﺗﻘﺮﻳﺒﺎ و ﻳﻜﻮن اﻟﻤﺨﺮج رﻗﻢ‬
‫‪192‬‬

‫)‪ (4‬ﻣﻌ ﺰوﻻ ﺗﻘ ﺮﻳﺒﺎ و ذﻟ ﻚ ﻓ ﻰ اﻟﺤﻴ ﺰ اﻟﺘ ﺮددى اﻟﻨﺴ ﺒﻰ ﻟﻬ ﺬا اﻟﻤﺰدوج اﻟﻤﺨﺘﻠﻂ )‪ (∆B‬و ﻳﺴﺎوى )‪ (20%‬و ﻳﻜﻮن‬
‫ﻓﻴﻪ اﻷداء ﺟﻴﺪا ﻟﺠﻤﻴﻊ اﻟﺨﺼﺎﺋﺺ ‪ .‬و ﺑﻌﺾ اﻟﻤﺮاﺟﻊ ﺗﺬآﺮ أدا ًء ﻣﻘﺒﻮﻻ ﻓﻰ ﺣﻴﺰ ﺗﺮددى ﻧﺴﺒﻰ ﻣﻘﺪارﻩ )‪.(27.6%‬‬

‫ﺷﻜﻞ )‪ : (١٢ - ٦‬ﻣﺰدوج ﻣﺨﺘﻠﻂ ﻣﻦ ﻧﻮع )‪.(Rat Race Hybrid coupler‬‬

‫‪o‬‬

‫و ﻓ ﺮق زاوﻳ ﺔ اﻟﻄ ﻮر ﻟﻬ ﺬا اﻟﻤ ﺰدوج اﻟﻤﺨ ﺘﻠﻂ ) ‪ (∆φ = ∠S21 − ∠S31‬ﻳﺴ ﺎوى ﺻ ﻔﺮ درﺟ ﻪ ) ‪ (0‬ﻋ ﻨﺪ ﺗ ﺮدد‬
‫اﻟﻤﻨﺘﺼ ﻒ أى أن اﻟﻘ ﺪرﻩ اﻟﺪاﺧﻠ ﻪ ﻣﻦ اﻟﻤﺪﺧﻞ رﻗﻢ )‪ (1‬ﺗﻨﻘﺴﻢ اﻟﻰ ﻗﺴﻤﻴﻦ ﻣﺘﺴﺎووﻳﻦ ﺑﻴﻦ اﻟﻤﺨﺮﺟﻴﻦ )‪ (2 , 3‬و ﺑﻨﻔﺲ‬
‫زاوﻳﺔ اﻟﻄﻮر ﻋﻨﺪ ﺗﺮدد اﻟﻤﻨﺘﺼﻒ‪.‬‬
‫و ﻣ ﻦ ﺗﻤﺎﺛ ﻞ اﻟﺸ ﻜﻞ اﻟﻬﻨﺪﺳ ﻰ ﻟﻠﺪاﺋ ﺮﻩ ﻓﺎﻧ ﻪ ﻓ ﻰ ﺣﺎﻟ ﺔ دﺧ ﻮل اﻟﻘ ﺪرﻩ ﻣ ﻦ اﻟﻤ ﺪﺧﻞ رﻗ ﻢ )‪ (3‬ﻓﺎﻧﻬ ﺎ ﺗﻨﻘﺴ ﻢ اﻟ ﻰ ﻗﺴ ﻤﻴﻦ‬
‫‪o‬‬

‫ﻣﺘﺴ ﺎووﻳﻦ ﺑ ﻴﻦ اﻟﻤﺨﺮﺟﻴﻦ )‪ (1 , 4‬و ﺑﻨﻔﺲ زاوﻳﺔ اﻟﻄﻮر ) ‪ ( ∠S13 − ∠S43 = 0‬ﻋﻨﺪ ﺗﺮدد اﻟﻤﻨﺘﺼﻒ و ﻳﻜﻮن‬
‫اﻟﻤﺨﺮج رﻗﻢ )‪ (2‬ﻣﻌﺰوﻻ ﺗﻘﺮﻳﺒﺎ ‪.‬‬
‫ﻟﻜ ﻦ ﻓﻰ ﺣﺎﻟﺔ دﺧﻮل اﻟﻘﺪرﻩ ﻣﻦ اﻟﻤﺪﺧﻞ رﻗﻢ )‪ (2‬ﻓﺎﻧﻬﺎ ﺗﻨﻘﺴﻢ ﻟﻘﺴﻤﻴﻦ ﻣﺘﺴﺎوﻳﻴﻦ ﺑﻴﻦ اﻟﻤﺨﺮﺟﻴﻦ )‪ (1 , 4‬و ﺑﻔﺮق ﻓﻰ‬
‫‪o‬‬

‫زاوﻳﺔ اﻟﻄﻮر ﻳﺴﺎوى ) ‪ ( ∠S12 − ∠S42 =180‬ﻋﻨﺪ ﺗﺮدد اﻟﻤﻨﺘﺼﻒ و ﻳﻜﻮن اﻟﻤﺨﺮج رﻗﻢ )‪ (3‬ﻣﻌﺰوﻻ ﺗﻘﺮﻳﺒﺎ‪.‬‬
‫و ﻣ ﻦ ﺗﻤﺎﺛ ﻞ اﻟﺸﻜﻞ اﻟﻬﻨﺪﺳﻰ ﻟﻠﺪاﺋﺮﻩ ﻓﺎﻧﻪ ﻓﻰ ﺣﺎﻟﺔ دﺧﻮل اﻟﻘﺪرﻩ ﻣﻦ اﻟﻤﺪﺧﻞ رﻗﻢ )‪ (4‬ﻓﺎﻧﻬﺎ ﺗﻨﻘﺴﻢ ﻟﻘﺴﻤﻴﻦ ﻣﺘﺴﺎوﻳﻴﻦ‬
‫‪o‬‬

‫ﺑ ﻴﻦ اﻟﻤﺨ ﺮﺟﻴﻦ )‪ (2 , 3‬و ﺑﻔ ﺮق ﻓ ﻰ زاوﻳ ﺔ اﻟﻄ ﻮر ﻳﺴ ﺎوى ) ‪ ( ∠S24 − ∠S34 =180‬ﻋ ﻨﺪ ﺗ ﺮدد اﻟﻤﻨﺘﺼﻒ و‬
‫ﻳﻜﻮن اﻟﻤﺨﺮج رﻗﻢ )‪ (1‬ﻣﻌﺰوﻻ ﺗﻘﺮﻳﺒﺎ ‪.‬‬
‫‪o‬‬

‫‪o‬‬

‫‪o‬‬

‫و ﻟﺬﻟﻚ ﻳﻌﺪ هﺬا اﻟﻤﺰدوج اﻟﻤﺨﺘﻠﻂ )‪ (180 hybrid coupler‬أو )‪.(0 / 180 hybrid coupler‬‬

‫‪193‬‬

‫و هﺬﻩ اﻟﺨﺼﺎﺋﺺ ﺗﺠﻌﻞ ﻣﻦ هﺬا اﻟﻤﺰدوج اﻟﻤﺨﺘﻠﻂ )‪ (Rat Race Hybrid coupler‬ﻣﻨﺎﺳﺒﺎ ﻟﻠﺪﺧﻮل ﻓﻰ ﺗﺼﻤﻴﻢ‬
‫ﺑﻌﺾ اﻟﺪواﺋﺮ ﻣﺜﻞ اﻟﻤﺎزﺟﺎت و ﻣﻮﻟﺪات اﻟﺠﺎﻧﺐ اﻷوﺣﺪ ﻣﻦ اﻟﺤﻴﺰ )‪ (SSB generators‬و ﻏﻴﺮهﺎ‪ .‬أﻧﻈﺮ اﻟﻤﺮﺟﻊ‬
‫)‪.(1‬‬
‫ﻓ ﻰ ﺑﻌ ﺾ اﻟﺤ ﺎﻻت ﻳ ﺘﻢ ﺗﻨﻔ ﻴﺬ اﻟﺪاﺋ ﺮﻩ أو اﻟﺤﻠﻘ ﻪ )‪ (Ring‬ﻟﻬ ﺬا اﻟﻤ ﺰدوج اﻟﻤﺨ ﺘﻠﻂ ﻋﻠ ﻰ ﺷ ﻜﻞ ﻏﻴﺮ داﺋﺮى )ﻣﺴﺘﻄﻴﻞ‬
‫ﻣﺜﻼ( ﻣﻊ اﻟﺤﻔﺎظ ﻋﻠﻰ أﺑﻌﺎد اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻷرﺑﻌﻪ اﻟﻤﻜﻮﻧﻪ ﻟﻠﺤﻠﻘﻪ و اﻟﻤﺒﻴﻨﻪ ﻓﻰ ﺷﻜﻞ )‪.(١٢ - ٦‬‬
‫ﻣ ﺜﺎل )‪ : (٢ – ٦‬ﻣﻄﻠ ﻮب ﺗﺼ ﻤﻴﻢ ﻣ ﺰدوج ﻣﺨ ﺘﻠﻂ ﻣ ﻦ ﻧ ﻮع )‪ (Rat Race Hybrid Coupler‬اﻟﻤﺒ ﻴﻦ ﻓﻰ ﺷﻜﻞ‬
‫)‪ (١٢ - ٦‬ﻋﻨﺪ ﺗﺮدد )‪.(4 GHz‬‬
‫اﻟﺤﻞ ‪:‬‬

‫ﺗﻢ اﺧﺘﻴﺎر اﻟﺸﺮﻳﺤﻪ اﻟﺸﺮﻳﻄﻴﻪ ﺑﺎﻟﻤﻮاﺻﻔﺎت اﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫ﺛﺎﺑﺖ اﻟﻌﺰل )‪ ( εr =2.2‬و ﺳﻤﻚ اﻟﻌﺎزل )‪ (h = 1.575 mm‬و ﺳﻤﻚ اﻟﻤﻮﺻﻞ )‪. (t = 0.07 mm‬‬
‫ﺗﻢ ﺣﺴﺎب اﻷﺑﻌﺎد اﻟﻤﺒﺪﺋﻴﻪ ﻟﻠﻤﺰدوج اﻟﻤﺨﺘﻠﻂ آﻤﺎ ﻳﻠﻰ‪:‬‬
‫ﺣﺴ ﺐ اﻟﺒ ﻴﺎﻧﺎت اﻟﻤﻮﺿ ﺤﻪ ﻓ ﻰ اﻟﺸ ﻜﻞ )‪ (١٢ - ٦‬اﻟﺨﻄ ﻮط اﻟﺘ ﻰ ﻟﻬ ﺎ ﻣﻌﺎوﻗ ﻪ ﺗﺴ ﺎوى )‪ (Zo = 50Ω‬آ ﺎن ﻋﺮﺿﻬﺎ‬
‫ﻳﺴﺎوى )‪ (Wo =4.78 mm‬و ﺗﻢ اﺧﺘﻴﺎر ﻃﻮل آﻞ ﻣﻨﻬﺎ ﻳﺴﺎوى )‪.(Lo = 5 mm‬‬
‫اﻟﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ )اﻷﻗ ﻮاس( اﻟﻤﻜ ﻮﻧﻪ ﻟﻠﺤﻠﻘ ﻪ و اﻟﺘ ﻰ ﻟﻬ ﺎ ﻣﻌﺎوﻗﻪ ﺗﺴﺎوى ) ‪ ( Z o 2 = 70.71 Ω‬آﺎن ﻋﺮﺿﻬﺎ‬
‫‪o‬‬

‫ﻳﺴ ﺎوى )‪ (W1 =2.69 mm‬و اﻟﻄ ﻮل اﻟﻤﻜﺎﻓ ﺊ ﻟ ـ )‪ (90 ≡λg/4‬ﻳﺴ ﺎوى )‪ (L1 = 13.872 mm‬و اﻟﻄ ﻮل‬
‫‪o‬‬

‫اﻟﻤﻜﺎﻓﺊ ﻟـ )‪ (270 ≡3λg/4‬ﻳﺴﺎوى )‪. (L2 = 41.616 mm‬‬
‫ﺗﻢ ﺣﺴﺎب ﻧﺼﻒ ﻗﻄﺮ اﻷﻗﻮاس )‪ (R‬اﻟﻤﻜﻮﻧﻪ ﻟﻠﺤﻠﻘﻪ آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫‪2 π R = (3 L1) + (L2) = (3 × 13.872) + (41.616) = 83.232 mm‬‬
‫‪83.232 mm‬‬
‫‪= 13.247mm‬‬
‫‪2π‬‬

‫=‪R‬‬

‫ﻗ ﻴﻤﺔ ﻧﺼﻒ ﻗﻄﺮ اﻷﻗﻮاس )‪ (R‬ﻳﺘﻢ ﺣﺴﺎﺑﻬﺎ ﻻدراﺟﻬﺎ ﻓﻰ ﻣﻌﻈﻢ ﺑﺮاﻣﺞ اﻟﺘﺤﻠﻴﻞ ﺣﻴﺚ ﻻ ﻳﺪرج ﻃﻮل اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ‬
‫اﻟﺪﻗﻴﻖ اﻟﻤﻨﺤﻨﻰ ﺑﻞ ﻳﺪرج ﻋﺮﺿﻪ و ﻃﻮل ﻧﺼﻒ ﻗﻄﺮﻩ و زاوﻳﺘﻪ اﻟﻬﻨﺪﺳﻴﻪ ‪.‬‬
‫آﻤ ﺎ ذآ ﺮت ﻓ ﻰ اﻟﻤ ﺜﺎل اﻟﺴﺎﺑﻖ ﻓﺎن هﻨﺎك ﻓﺮق ﺑﻴﻦ اﻟﻄﻮل اﻟﻜﻬﺮﺑﻰ )‪ (electrical length‬ﻟﻠﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ‬
‫اﻟﻤﻨﺤﻨﻰ ﻋﻠﻰ ﺷﻜﻞ ﻗﻮس و ﺑﻴﻦ اﻟﺰاوﻳﻪ اﻟﻬﻨﺪﺳﻴﻪ )‪ (geometrical angle‬ﻟﺸﻜﻠﻪ اﻟﻬﻨﺪﺳﻰ‪.‬‬
‫ﻣ ﻦ ﺷ ﻜﻞ )‪ (١٢ - ٦‬ﻧﻼﺣ ﻆ أن اﻟﻄﻮل اﻟﻜﻬﺮﺑﻰ ﻟﺜﻼﺛﺔ ﺧﻄﻮط ﺷﺮﻳﻄﻴﻪ )أو اﻟﺜﻼﺛﺔ أﻗﻮاس( اﻟﻤﻜﻮﻧﻪ ﻟﺤﻠﻘﻪ اﻟﻤﺰدوج‬
‫‪o‬‬

‫‪o‬‬

‫اﻟﻤﺨﺘﻠﻂ ﻳﻜﺎﻓﺊ )‪ (90 ≡λg/4‬ﻟﻜﻞ ﻗﻮس ﻓﻴﻬﻢ و اﻟﺰاوﻳﺔ اﻟﻬﻨﺪﺳﻴﻪ ﻟﻜﻞ ﻗﻮس ﻣﻦ اﻟﺜﻼﺛﻪ ﺗﺴﺎوى ) ‪.(60‬‬
‫‪o‬‬

‫ﺑﻴ ﻨﻤﺎ اﻟﻘ ﻮس اﻟ ﺮاﺑﻊ اﻟﻤﻮﺟ ﻮد ﺑﺎﻟﺤﻠﻘ ﻪ ﻧﺠ ﺪ أن ﻃ ﻮﻟﻪ اﻟﻜﻬﺮﺑ ﻰ ﻳﻜﺎﻓ ﺊ )‪ (270 ≡3λg/4‬و اﻟﺰاوﻳﺔ اﻟﻬﻨﺪﺳﻴﻪ ﻟﺸﻜﻠﻪ‬
‫‪o‬‬

‫اﻟﻬﻨﺪﺳﻰ ﺗﺴﺎوى ) ‪.(180‬‬
‫ﺗ ﻢ ﻋﻤ ﻞ ﺗﺤﻠ ﻴﻞ ﻟﺪاﺋ ﺮة اﻟﻤﺰدوج اﻟﻤﺨﺘﻠﻂ ﺑﺎﺳﺘﺨﺪام ﺑﺮﻧﺎﻣﺞ ﻟﺘﺤﻠﻴﻞ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ و ﻳﺒﻴﻦ اﻟﺸﻜﻠﻴﻦ )‪ (١٣ - ٦‬و‬
‫)‪ (١٤ - ٦‬ﻧ ﺘﺎﺋﺞ اﻟﺘﺤﻠ ﻴﻞ ﻓ ﻰ اﻟﺤﻴ ﺰ اﻟﻨﺴ ﺒﻰ ﻟﻬ ﺬا اﻟﻤ ﺰدوج اﻟﻤﺨ ﺘﻠﻂ )‪ (800MHz ≡ 20%‬أى ﻣﻦ )‪(3.6 GHz‬‬
‫اﻟﻰ )‪.(4.4 GHz‬‬

‫‪194‬‬

‫ﺷ ﻜﻞ )‪ (١٣ - ٦‬ﻳﺒ ﻴﻦ ﻗ ﻴﻢ )‪ (|S21|dB , |S31|dB‬ﻟﻠﻤ ﺰدوج اﻟﻤﺨ ﺘﻠﻂ‪ .‬اﻻﻧﺤ ﺮاف ﻋ ﻦ )‪ (−3dB‬ﻻ ﻳ ﺰﻳﺪ ﻋ ﻦ‬
‫)‪ (0.37dB‬ﺑﺎﻟﻨﺴﺒﻪ ﻟـﻘﻴﻢ )‪ (|S21|dB‬و ﻻ ﻳﺰﻳﺪ ﻋﻦ )‪ (0.21dB‬ﺑﺎﻟﻨﺴﺒﻪ ﻟـﻘﻴﻢ )‪ (|S31|dB‬ﻓﻰ اﻟﺤﻴﺰ اﻟﻨﺴﺒﻰ‪.‬‬
‫ﺷ ﻜﻞ )‪ (١٤ - ٦‬ﻳﺒ ﻴﻦ أن ﻣﻌﺎﻣ ﻞ اﻻﻧﻌﻜ ﺎس )‪ (|S11|dB < −23.81dB‬ﻓﻰ اﻟﺤﻴﺰ اﻟﻨﺴﺒﻰ و أن اﻟﻌﺰل ﻓﻰ ﻧﻔﺲ هﺬا‬
‫اﻟﺤﻴﺰ )‪.(|S41|dB < −23.1dB‬‬
‫ﻧ ﺘﺎﺋﺞ اﻟﺘﺤﻠ ﻴﻞ ﻣﻘ ﺒﻮﻟﻪ و ﻻ ﺗﺤ ﺘﺎج اﻟﺪاﺋ ﺮة ﻟﻌﻤ ﻞ اﻟ ﺒﺤﺚ ﻋ ﻦ اﻟﺤ ﻞ اﻷﻣ ﺜﻞ )‪ (Optimization‬ﺑﺎﻟ ﺮﻏﻢ ﻣ ﻦ أن ه ﺬا‬
‫ﻣﻤﻜﻦ ﻟﺘﺤﺴﻴﻦ اﻟﻨﺘﺎﺋﺞ أآﺜﺮ ﻣﻤﺎ هﻰ ﻋﻠﻴﻪ‪.‬‬

‫ﺷﻜﻞ )‪ : (١٣ - ٦‬ﻗﻴﻢ )‪ (|S21|dB , |S31|dB‬ﻟﻠﻤﺰدوج اﻟﻤﺨﺘﻠﻂ ﻓﻰ ﻣﺜﺎل )‪.(٢ – ٦‬‬

‫ﺷﻜﻞ )‪ : (١٤ - ٦‬ﻗﻴﻢ )‪ (|S11|dB , |S41|dB‬ﻟﻠﻤﺰدوج اﻟﻤﺨﺘﻠﻂ ﻓﻰ ﻣﺜﺎل )‪.(٢ – ٦‬‬

‫‪195‬‬

‫ه ﻨﺎك ﺗﻌ ﺪﻳﻼت ﻓﻰ ﺗﺼﻤﻴﻢ اﻟﻤﺰدوج اﻟﻤﺨﺘﻠﻂ ﻣﻦ ﻧﻮع )‪ (Rat Race Hybrid Coupler‬ﻟﺰﻳﺎدة اﻟﺤﻴﺰ اﻟﻨﺴﺒﻰ ﻟﻪ‬
‫ﻣﺬآﻮرﻩ ﻓﻰ ﺑﻌﺾ اﻟﻤﺮاﺟﻊ ‪.‬‬
‫أﺣ ﺪ ه ﺬﻩ اﻟ ﺘﻌﺪﻳﻼت ﻳﻌ ﺘﻤﺪ ﻋﻠ ﻰ ﻋﻤ ﻞ اﻟ ﺒﺤﺚ ﻋ ﻦ اﻟﺤ ﻞ اﻷﻣ ﺜﻞ )‪ (Optimization‬ﺑﺘﻐﻴﻴ ﺮ اﻟﻤﻌﺎوﻗ ﺎت اﻟﻤﻤﻴ ﺰﻩ‬
‫ﻟﻠﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﻤﻜﻮﻧﻪ ﻟﻠﺤﻠﻘﻪ و هﻨﺎك ﺗﻌﺪﻳﻞ ﺁﺧﺮ ﻳﻌﺘﻤﺪ ﻋﻠﻰ اﺿﺎﻓﺔ ﺧﻄﻮط ﺷﺮﻳﻄﻴﻪ ﺧﺎرﺟﻴﻪ ﻣﺘﺼﻠﻪ ﺑﺎﻷرﺑﻌﺔ‬
‫ﻣﺨ ﺎرج و ذات ﻣﻌﺎوﻗ ﺎت ﻣﻤﻴﺰﻩ ﻣﻌﻴﻨﻪ و هﻨﺎك ﺗﻌﺪﻳﻞ ﺛﺎﻟﺚ ﻳﻌﺘﻤﺪ ﻋﻠﻰ ﺗﻐﻴﻴﺮ اﻟﻤﻌﺎوﻗﺎت اﻟﻤﻤﻴﺰﻩ ﻟﻠﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ‬
‫اﻟﻤﻜ ﻮﻧﻪ ﻟﻠﺤﻠﻘ ﻪ ﻣ ﻊ اﺿ ﺎﻓﺔ ﺧﻄ ﻮط ﺷ ﺮﻳﻄﻴﻪ ﺧﺎرﺟﻴﻪ ﻣﺘﺼﻠﻪ ﺑﺎﻷرﺑﻌﺔ ﻣﺨﺎرج و هﺬا ﻣﻮﺿﺢ ﻓﻰ اﻟﺸﻜﻞ )‪(١٥ - ٦‬‬
‫اﻟ ﺬى ﻳﺒ ﻴﻦ ﻣﺨﻄ ﻂ ﻣﺨ ﺘﻠﻒ ﺗﻤﺎﻣ ﺎ ﻟﻠﻤ ﺰدوج اﻟﻤﺨ ﺘﻠﻂ ﻣ ﻦ ﻧ ﻮع )‪ (Rat Race Hybrid Coupler‬ﻋﻦ اﻟﻤﻌﺮوض‬
‫ﺳ ﺎﺑﻘﺎ ﻓ ﻰ ﺷ ﻜﻞ )‪ .(١٢ - ٦‬ﻟﻜﻦ هﺬا اﻟﺘﻌﺪﻳﻞ ﻳﺆدى اﻟﻰ زﻳﺎدة اﻟﺤﻴﺰ اﻟﺘﺮددى ﻟﻠﻤﺰدوج اﻟﻤﺨﺘﻠﻂ ﻣﻦ هﺬا اﻟﻨﻮع ﺑﻨﺴﺒﺔ‬
‫)‪ . (1.84‬أﻧﻈﺮ اﻟﻤﺮﺟﻊ )‪.(2‬‬

‫ﺷﻜﻞ )‪ : (١٥ - ٦‬ﻣﺰدوج ﻣﺨﺘﻠﻂ ﻣﻦ ﻧﻮع )‪ (Rat Race Hybrid Coupler‬ﻣﻌﺪل و واﺳﻊ اﻟﺤﻴﺰ اﻟﺘﺮددى‪.‬‬

‫ه ﻨﺎك ﻃ ﺮﻳﻘﻪ أﺧ ﺮى ﻟ ﺰﻳﺎدة اﻟﺤﻴ ﺰ اﻟﺘ ﺮددى ﻟﻠﻤ ﺰدوج اﻟﻤﺨﺘﻠﻂ ﻣﻦ ﻧﻮع )‪ (Rat Race Hybrid Coupler‬و هﻰ‬
‫‪o‬‬

‫اﺳ ﺘﺒﺪال اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ )أو اﻟﻘ ﻮس( اﻷﻃ ﻮل اﻟﻤﻜ ﻮن ﻟﻠﺤﻠﻘ ﻪ و اﻟ ﺬى ﻳﻜ ﻮن ﻃ ﻮﻟﻪ ﻣﻜﺎﻓ ﺌﺎ ﻟ ـ )‪(270 ≡3λg/4‬‬
‫‪o‬‬

‫ﺑﻤ ﺰدوج اﺗﺠﺎه ﻰ )‪ (directional coupler‬ﻣﻨﺤﻨ ﻰ ﻋﻠ ﻰ ﺷ ﻜﻞ ﻗ ﻮس ﻃ ﻮﻟﻪ ﻳﻜﺎﻓ ﺊ )‪ (90 ≡λg/4‬و ﻣﻨﺘﻬ ﻰ ﻋ ﻨﺪ‬
‫ﻃﺮﻓﻴﻦ ﻣﻦ أﻃﺮﻓﻪ ﺑﻮﺻﻠﺘﻴﻦ اﻟﻰ اﻷرض )‪ (2 Vias‬و ﻳﺘﻢ ﺣﺴﺎب اﻟﻤﻌﺎوﻗﺘﻴﻦ اﻟﻤﻤﻴﺰﺗﻴﻦ ﻟﻪ ﺑﺎﻟﻤﻌﺎدﻟﺘﻴﻦ اﻟﺘﺎﻟﻴﺘﻴﻦ ‪:‬‬

‫) (‬
‫‪= (2 − 2 ) Z‬‬

‫)‪(6.6‬‬

‫‪Z oe = 2 + 2 Z o‬‬

‫)‪(6.7‬‬

‫‪Z oo‬‬

‫‪o‬‬

‫ﻋ ﺎد ًة ﺗﻜ ﻮن اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻤﻴ ﺰﻩ )‪ (Zo=50Ω‬ﻟ ﺬﻟﻚ ﺗﻜ ﻮن ﻗﻴﻤﺘ ﻰ اﻟﻤﻌﺎوﻗﺘ ﻴﻦ اﻟﻤﻤﻴ ﺰﺗﻴﻦ )‪ (Zoe=170.7Ω‬و‬
‫)‪.(Zoo=29.3Ω‬‬

‫‪196‬‬

‫و ﻳﻮﺿ ﺢ ﺷ ﻜﻞ )‪ (١٦ - ٦‬ﻣﺨﻄﻂ ﻟﻬﺬا اﻟﻤﺰدوج اﻟﻤﺨﺘﻠﻂ اﻟﻤﻌﺪل )‪(Modified Rat Race Hybrid Coupler‬‬
‫ﻣﻊ ﺗﻮﺿﻴﺢ اﻷﺑﻌﺎد و أرﻗﺎم اﻟﻤﺨﺎرج‪.‬‬

‫ﺷﻜﻞ )‪ : (١٦ - ٦‬ﻣﺨﻄﻂ ﻣﺰدوج ﻣﺨﺘﻠﻂ ﻣﻌﺪل ﻣﻦ ﻧﻮع )‪.(Modified Rat Race Hybrid Coupler‬‬

‫اﻟﻤ ﺮﺟﻊ )‪ (1‬ﻳﻌﻄ ﻰ ﺗﺼ ﻤﻴﻢ ﻣﻌ ﺪل ﻟ ﺰﻳﺎدة اﻟﺤﻴ ﺰ اﻟﺘ ﺮددى ﻟﻠﻤ ﺰدوج اﻟﻤﺨ ﺘﻠﻂ ﻣ ﻦ ﻧ ﻮع ) ‪Rat Race Hybrid‬‬
‫‪ (Coupler‬ﻣ ﻊ اﺳ ﺘﺒﺪال اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ )أو اﻟﻘ ﻮس( اﻷﻃ ﻮل اﻟﻤﻜ ﻮن ﻟﻠﺤﻠﻘ ﻪ و اﻟ ﺬى ﻳﻜ ﻮن ﻃ ﻮﻟﻪ ﻣﻜﺎﻓ ﺌﺎ ﻟ ـ‬
‫‪o‬‬

‫)‪ (270 ≡3λg/4‬ﺑﻤ ﺰدوج اﺗﺠﺎه ﻰ )‪ (directional coupler‬ﻣﻨﺤﻨ ﻰ ﻋﻠﻰ ﺷﻜﻞ ﻗﻮس و ﻟﻜﻦ ﺑﺄﺑﻌﺎد ﻣﺨﺘﻠﻔﻪ ﺗﻤﺎﻣﺎ‬
‫ﻋﻦ اﻟﻤﺒﻴﻨﻪ ﻓﻰ ﺷﻜﻞ )‪ (١٦ - ٦‬و ﻣﻊ ﺗﻐﻴﻴﺮ اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ ﻟﻠﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﻤﻜﻮﻧﻪ ﻟﻠﺤﻠﻘﻪ‪.‬‬

‫‪197‬‬

‫)ﻤﻘﻁﻊ ‪ (٣-٢-٦‬ﺍﻟﻤﺯﺩﻭﺠﺎﺕ ﺍﻟﻤﺨﺘﻠﻁﻪ ﻤﻥ ﻨﻭﻉ ﻻﻨﺞ ‪: Lange coupler‬‬

‫ﻳﺴ ﺘﻌﻤﻞ ﻣ ﺰدوج ﻻﻧ ﺞ )‪ (Lange coupler‬ﻟﺘﺤﻘ ﻴﻖ ﻣﻌﺎﻣ ﻞ ازدواج )‪ (coupling coefficient C‬ﺑﻘ ﻴﻢ ﺻﻐﻴﺮﻩ‬
‫ﻋﻠ ﻰ ﺳ ﺒﻴﻞ اﻟﻤ ﺜﺎل )‪ (3 dB , 6 dB , ...‬ﻓ ﻰ ﺣﻴ ﺰ ﺗ ﺮددى واﺳ ﻊ ﻳﺼ ﻞ أو ﻳ ﺘﻌﺪى )‪ (Octave Bandwidth‬أى‬
‫اﻟﺤﻴ ﺰ اﻟﺘ ﺮددى اﻟ ﺬى ﻳﻜ ﻮن ﻓﻴﻪ اﻟﺤﺪ اﻷﻋﻠﻰ ﻟﻠﺘﺮدد )‪ (f2‬ﻳﺴﺎوى ﺿﻌﻒ اﻟﺤﺪ اﻷدﻧﻰ ﻟﻠﺘﺮدد )‪ (f1‬ﺑﺎﻟﺤﻴﺰ ﻣﺜﻼ ﻣﻦ‬
‫)‪ (3GHz‬اﻟﻰ )‪ (6GHz‬أو ﻣﻦ )‪ (4GHz‬اﻟﻰ )‪ (8GHz‬و هﻜﺬا ‪.‬‬
‫‪o‬‬

‫و ﻓ ﺮق زاوﻳ ﺔ اﻟﻄ ﻮر ﻟﻬ ﺬا اﻟﻤ ﺰدوج اﻟﻤﺨﺘﻠﻂ ) ‪ (∆φ = ∠S21 − ∠S31‬ﻳﺴﺎوى ﺗﺴﻌﻴﻦ درﺟﻪ ) ‪ (90‬ﻋﻨﺪ ﺗﺮدد‬
‫‪o‬‬

‫اﻟﻤﻨﺘﺼﻒ ﻟﺬﻟﻚ ﻳﻌﺪ )‪ (90 hybrid coupler‬أو )‪.(quadrature hybrid‬‬
‫ﻳ ﺘﻜﻮن ﻣ ﺰدوج ﻻﻧ ﺞ )‪ (Lange coupler‬ﻣ ﻦ ﻋ ﺪد ﻣ ﻦ اﻟﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﻤﺰدوﺟﻪ اﻟﻤﺘﻌﺪدﻩ )ﺗﺴﻤﻰ اﻷﺻﺎﺑﻊ(‬
‫ﺗﺘﺼﻞ ﺑﻴﻨﻬﺎ ﺑﻌﺪد ﻣﻦ اﻷﺳﻼك ذات ﻗﻄﺮ ﻣﻌﻴﻦ‪.‬‬
‫اﻟﺸﻜﻞ اﻷﺳﺎﺳﻰ ﻟﻤﺰدوج ﻻﻧﺞ ﻳﺘﻜﻮن ﻣﻦ ﻋﺪد زوﺟﻰ ﻣﻦ اﻷﺻﺎﺑﻊ ‪.‬‬
‫ﺷ ﻜﻞ )‪ (١٧ - ٦‬ﻳﻮﺿ ﺢ ﻣ ﺰدوج ﻻﻧ ﺞ )‪ (Lange coupler‬ﻓ ﻰ ﺷ ﻜﻠﻪ اﻷﺳﺎﺳ ﻰ ذو اﻷرﺑﻌ ﺔ أﺻ ﺎﺑﻊ )‪Four-‬‬
‫‪.(Finger Lange coupler‬‬
‫ﺷ ﻜﻞ )‪ (١٨ - ٦‬ﻳﻮﺿ ﺢ ﻣ ﺰدوج ﻻﻧ ﺞ )‪ (Lange coupler‬ﻓ ﻰ ﺷ ﻜﻠﻪ ذو اﻟﺴ ﺘﺔ أﺻ ﺎﺑﻊ ) ‪Six-Finger Lange‬‬
‫‪ (coupler‬و ﺗﻢ رﺳﻢ اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ ﺑﺎﻟﻠﻮن اﻷﺳﻮد و اﻷﺳﻼك ﺑﺎﻟﻠﻮن اﻟﺮﻣﺎدى ﻓﻰ هﺬا اﻟﺸﻜﻞ‪.‬‬

‫ﺷﻜﻞ )‪ : (١٧ - ٦‬ﻣﺰدوج ﻻﻧﺞ ذو اﻷرﺑﻌﺔ أﺻﺎﺑﻊ )‪.(Four-Finger Lange coupler‬‬

‫‪198‬‬

‫ه ﻨﺎك ﻣﺸ ﻜﻠﻪ ﻓ ﻰ ﻣﺰدوج ﻻﻧﺞ و هﻰ أن أﺑﻌﺎد اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ و اﻟﻤﺴﺎﻓﺎت ﺑﻴﻨﻬﺎ ﻏﺎﻟﺒﺎ ﺗﻜﻮن ﺻﻐﻴﺮﻩ ﺟﺪا‬
‫)ﺗﺼ ﻞ اﻟ ﻰ ﻋ ﺪد ﻗﻠ ﻴﻞ ﻣ ﻦ اﻟﻤﻴﻜﺮوﻣﺘ ﺮات( ﻳﺼ ﻌﺐ ﺗﺼ ﻨﻴﻌﻬﺎ آﻤ ﺎ ﻳﺼ ﻌﺐ ﺗﺼ ﻨﻴﻊ اﻷﺳ ﻼك اﻟﺘ ﻰ ﺗﺘﺼﻞ ﺑﺎﻟﺨﻄﻮط‬
‫اﻟﺸﺮﻳﻄﻴﻪ‪ .‬و هﺬﻩ اﻷﺑﻌﺎد اﻟﺼﻐﻴﺮﻩ ﺗﺤﺘﺎج اﻟﻰ دﻗﻪ ﻋﺎﻟﻴﻪ ﻓﻰ اﻟﺘﺼﻨﻴﻊ ﻣﺜﻞ اﻟﺪﻗﻪ اﻟﺘﻰ ﺗﻮﻓﺮهﺎ ﻣﺎآﻴﻨﺎت )‪ (CNC‬ذات‬
‫ﻗﺎﻃﻊ اﻟﻠﻴﺰر‪.‬‬
‫ﺷ ﻜﻞ )‪ (١٩ - ٦‬ﻳﻮﺿ ﺢ ﻣ ﺰدوج ﻻﻧ ﺞ اﻟﻤﻌ ﺪل أو ﻏﻴ ﺮ اﻟﻤﺜﻨ ﻰ )‪ (Unfolded Lange coupler‬و ﻳﻤ ﺘﺎز ﺑ ﻨﻔﺲ‬
‫ﺧﺼﺎﺋﺺ ﻣﺰدوج ﻻﻧﺞ اﻷﺳﺎﺳﻰ و ﻟﻜﻦ ﺑﻤﺨﻄﻂ ﻣﺨﺘﻠﻒ‪ .‬راﺟﻊ اﻟﻤﺮاﺟﻊ )‪(3,5‬‬

‫ﺷﻜﻞ )‪ : (١٨ - ٦‬ﻣﺰدوج ﻻﻧﺞ ذو اﻟﺴﺘﺔ أﺻﺎﺑﻊ )‪.(Six-Finger Lange coupler‬‬

‫ﺷﻜﻞ )‪ : (١٩ - ٦‬ﻣﺰدوج ﻻﻧﺞ اﻟﻤﻌﺪل أو ﻏﻴﺮ اﻟﻤﺜﻨﻰ )‪(Unfolded Lange coupler‬‬

‫‪199‬‬

‫ﺧﻄﻮات ﺗﺼﻤﻴﻢ ﻣﺰدوج ﻻﻧﺞ ذو اﻷرﺑﻌﺔ أﺻﺎﺑﻊ )‪ (Four-Finger Lange coupler‬ﻣﻌﻄﺎﻩ آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫أوﻻ – ﻳﻜ ﻮن ﻣﻌﻄ ﻰ ﻣﻌﺎﻣ ﻞ اﻻزدواج )‪ (coupling coefficient C‬و ﻣ ﻨﻪ ﻳ ﺘﻢ ﺣﺴ ﺎب آ ﻞ ﻣ ﻦ ﻣ ﻦ اﻟﻤﻌﺎوﻗ ﻪ‬
‫اﻟﻤﻤﻴﺰﻩ ﻟﺘﺮﺗﻴﺐ اﻟﻤﺠﺎل اﻟﺰوﺟﻰ )‪ (Zoe‬و اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ ﻟﺘﺮﺗﻴﺐ اﻟﻤﺠﺎل اﻟﻔﺮدى )‪ (Zoo‬ﻣﻦ اﻟﻤﻌﺎدﻟﺘﻴﻦ اﻟﺘﺎﻟﻴﺘﻴﻦ ‪:‬‬

‫)‪(6.8‬‬

‫⎞‬
‫⎟‬
‫‪⎟ Zo‬‬
‫⎟‬
‫⎠‬

‫⎛‬
‫‪⎜ 4C − 3 + 9 − 8C 2‬‬
‫⎜ = ‪Z oe‬‬
‫‪⎜ 2C 1 − C‬‬
‫‪1+ C‬‬
‫⎝‬

‫)‪(6.9‬‬

‫⎞‬
‫⎟‬
‫‪⎟ Zo‬‬
‫⎟‬
‫⎠‬

‫⎛‬
‫‪⎜ 4C + 3 − 9 − 8C 2‬‬
‫⎜=‬
‫‪⎜ 2C 1 + C‬‬
‫‪1− C‬‬
‫⎝‬

‫‪Z oo‬‬

‫و اﻟ ﺘﻌﻮﻳﺾ ﺑﻘ ﻴﻤﺔ ﻣﻌﺎﻣ ﻞ اﻻزدواج )‪ (C‬ﻓ ﻰ هﺎﺗ ﻴﻦ اﻟﻤﻌﺎدﻟﺘ ﻴﻦ ﻳﻜﻮن ﺑﺎﻟﻘﻴﻤﻪ اﻟﻤﻄﻠﻘﻪ )‪ (absolute value‬و ﻟﻴﺲ‬
‫ﺑﺎﻟﺪﻳﺴﻴﺒﻞ‪ .‬و ﻳﺘﻢ ﺣﺴﺎب اﻟﻘﻴﻤﻪ اﻟﻤﻄﻠﻘﻪ ﻟﻤﻌﺎﻣﻞ اﻻزدواج ﻣﻦ اﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫)‪(6.10‬‬

‫) ‪Cabsolute = 10 (C dB / 20‬‬

‫ﺛﺎﻧ ﻴﺎ – ﺑﺪﻻﻟ ﺔ آﻞ ﻣﻦ اﻟﻤﻌﺎوﻗﺘﻴﻦ اﻟﻤﻤﻴﺰﺗﻴﻦ )‪ (Zoe‬و )‪ (Zoo‬ﻳﺘﻢ ﺣﺴﺎب ﻋﺮض آﻞ ﺧﻂ ﺷﺮﻳﻄﻰ )‪ (W‬و اﻟﻤﺴﺎﻓﺎت‬
‫ﺑﻴﻦ اﻟﺨﻄﻮط )‪ (S‬و ذﻟﻚ ﺑﻨﻔﺲ اﻟﻤﻌﺎدﻻت و ﺑﺮاﻣﺞ اﻟﺤﺎﺳﺐ اﻟﻤﻌﻄﺎﻩ ﻓﻰ ﻣﻘﻄﻊ )‪ (٤-٤‬ﺑﺎﻟﻔﺼﻞ اﻟﺮاﺑﻊ‪.‬‬
‫ﺛﺎﻟ ﺜﺎ – ﻳ ﺘﻢ ﺣﺴ ﺎب ﻃ ﻮل اﻟﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﻤﻜﺎﻓ ﺊ ﻟ ـ )‪ (λg/4‬اﻟﻤﻮﺿ ﺢ ﻓ ﻰ ﺷ ﻜﻞ )‪ (١٧ - ٦‬ﻣ ﻦ اﻟﻤﻌﺎدﻟ ﻪ‬
‫)‪ (4.51‬ﺑﺎﻟﻔﺼﻞ اﻟﺮاﺑﻊ‪.‬‬
‫اﻟﻤ ﺮﺟﻊ )‪ (3‬ﻳﻌﻄ ﻰ ﻣﻌ ﺎدﻻت ﻣﺨ ﺘﻠﻔﻪ ﻋ ﻦ اﻟﻤﻌﻄ ﺎﻩ أﻋ ﻼﻩ ﻟﺘﺼﻤﻴﻢ ﻣﺰدوج ﻻﻧﺞ‪ .‬و اﻟﻤﺮﺟﻊ )‪ (4‬ﻳﻌﻄﻰ ﻣﻌﺎدﻻت و‬
‫ﺟﺪاول و ﻣﻨﺤﻨﻴﺎت ﻟﺘﺼﻤﻴﻢ ﻋﺪة أﺷﻜﺎل ﻣﻦ ﻣﺰدوج ﻻﻧﺞ و ﻣﻦ ﺿﻤﻨﻬﺎ ﻣﺰدوج ﻻﻧﺞ ذو اﻷرﺑﻌﺔ و اﻟﺴﺘﺔ أﺻﺎﺑﻊ‪.‬‬
‫اﻟﻤﺮﺟﻊ )‪ (4‬ﻳﻌﻄﻰ ﻣﺜﺎﻻ رﻗﻤﻴﺎ ﻟﺘﺼﻤﻴﻢ ﻣﺰدوج ﻻﻧﺞ ذو اﻟﺴﺘﺔ أﺻﺎﺑﻊ )‪.(Six-Finger Lange coupler‬‬
‫اﻟﻤ ﺮﺟﻊ )‪ (3‬ﻳﻌﻄ ﻰ ﻣ ﺜﺎﻻ رﻗﻤ ﻴﺎ ﻟﺘﺼ ﻤﻴﻢ ﻣ ﺰدوج ﻻﻧ ﺞ ذو اﻷرﺑﻌ ﺔ أﺻ ﺎﺑﻊ )‪(Four-Finger Lange coupler‬‬
‫ﺑﻴﺎﻧﺎﺗﻪ آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫ﻣﻌﺎﻣ ﻞ اﻻزدواج )‪ (coupling coefficient‬ﻋ ﻨﺪ ﺗ ﺮدد )‪ (10GHz‬ﻳﺴ ﺎوى )‪ (– 10dB‬أو ﺑﺎﻟﻘ ﻴﻤﻪ اﻟﻤﻄﻠﻘ ﻪ‬

‫ﻳﺴﺎوى ‪= 0.3162‬‬

‫) ‪( −10 / 20‬‬

‫‪. C absolute = 10‬‬

‫ﻣﻠﺤ ﻮﻇﻪ ‪ :‬اﻟﻤ ﺮﺟﻊ ﻳﺬآ ﺮ أن اﻟﺪاﺋ ﺮﻩ ﻓ ﻰ ه ﺬا اﻟﻤﺜﺎل ﺗﻌﻄﻰ )‪ (10 dB of coupling‬و آﻤﺎ ﺷﺮﺣﺖ ﺳﺎﺑﻘﺎ ﻓﺎن هﺬا‬
‫ﻳﻌﻨﻰ أن )‪ (C dB = – 10dB‬أو ﻋﺸﺮﻩ دﻳﺴﻴﺒﻞ ﺳﺎﻟﺒﻪ‪.‬‬
‫اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ )‪ (Zo=50 Ω‬و ﻣﻮاﺻﻔﺎت اﻟﺸﺮﻳﺤﻪ اﻟﺸﺮﻳﻄﻴﻪ آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫ﺛﺎﺑﺖ اﻟﻌﺰل )‪ ( εr =2.23‬و ﺳﻤﻚ اﻟﻌﺎزل )‪. (h = 0.234 mm‬‬
‫ﺗﻢ ﺣﺴﺎب آﻞ ﻣﻦ اﻟﻤﻌﺎوﻗﺘﻴﻦ اﻟﻤﻤﻴﺰﺗﻴﻦ )‪ (Zoe = 124 Ω‬و )‪.(Zoo = 80 Ω‬‬

‫‪200‬‬

‫و ﻣ ﻨﻬﺎ ﺗ ﻢ ﺣﺴ ﺎب ﻋ ﺮض آ ﻞ ﺧﻂ ﺷﺮﻳﻄﻰ )‪ (W = 0.593 mm‬و اﻟﻤﺴﺎﻓﺎت ﺑﻴﻦ اﻟﺨﻄﻮط )‪(S = 0.024 mm‬‬
‫أى )‪ (24 µm‬و هﻰ ﻣﺴﺎﻓﻪ ﻳﺼﻌﺐ ﺗﻨﻔﻴﺬهﺎ ﺑﺎﻣﻜﺎﻧﻴﺎت ﻃﺒﺎﻋﺔ اﻟﺪواﺋﺮ اﻟﻌﺎدﻳﻪ و ﺑﺎﻟﺘﺎﻟﻰ ﻳﺼﻌﺐ ﺗﻨﻔﻴﺬ اﻟﺪاﺋﺮﻩ‪.‬‬
‫ﻣ ﻦ ﻣﻌﻠ ﻮﻣﺎت اﻟﻔﺼ ﻞ اﻟ ﺜﺎﻟﺚ ﻧﻌ ﺮف أن اﺳﺘﻌﻤﺎل ﺷﺮﻳﺤﻪ ذات ﺳﻤﻚ )‪ (h‬أآﺒﺮ و ﺛﺎﺑﺖ ﻋﺰل )‪ (εr‬أﺻﻐﺮ ﻳﺆدى اﻟﻰ‬
‫زﻳ ﺎدة أﺑﻌ ﺎد اﻟﺪاﺋ ﺮﻩ و ه ﺬا اﻟﺤ ﻞ ﻗ ﺪ ﻳﺠﻌ ﻞ ﻣ ﻦ اﻟﺘﻨﻔﻴﺬ ﻣﻤﻜﻨﺎ ﻓﻰ ﺣﺎﻟﺔ ﻣﺰدوج ﻻﻧﺞ اذا اﺗﻴﺤﺖ اﻻﻣﻜﺎﻧﺎت اﻟﺘﻰ ﺗﺴﻤﺢ‬
‫ﺑﺪﻗﺔ ﺗﺼﻨﻴﻊ ﻋﺎﻟﻴﻪ‪.‬‬

‫)ﻤﻘﻁﻊ ‪ (٤-٢-٦‬ﺃﻨﻭﺍﻉ ﺃﺨﺭﻯ ﻤﻥ ﺍﻟﻤﺯﺩﻭﺠﺎﺕ ﺍﻟﻤﺨﺘﻠﻁﻪ ‪:‬‬

‫ه ﻨﺎك أﻧ ﻮاع أﺧ ﺮى ﻋﺪﻳ ﺪﻩ ﻣ ﻦ اﻟﻤ ﺰدوﺟﺎت اﻟﻤﺨ ﺘﻠﻄﻪ ذات ﻣﻮاﺻ ﻔﺎت ﺗﺨ ﺘﻠﻒ ﻋ ﻦ اﻟﻤﺸ ﺮوﺣﻪ ﺳﺎﺑﻘﺎ ‪ ،‬ﻋﻠﻰ ﺳﺒﻴﻞ‬
‫اﻟﻤ ﺜﺎل هﻨﺎك اﻟﻤﺰدوﺟﺎت اﻟﻤﺨﺘﻠﻄﻪ ﻣﺘﻌﺪدة اﻟﻤﻘﺎﻃﻊ )‪ (Multisection Branch-Line Hybrids‬و اﻟﻤﺰدوﺟﺎت‬
‫اﻟﻤﺨ ﺘﻠﻄﻪ ﻟ ﺘﺤﻮﻳﻞ اﻟﻤﻌﺎوﻗ ﻪ )‪ (Impedance Transforming Hybrids‬و اﻟﻤ ﺰدوﺟﺎت اﻻﺗﺠﺎه ﻴﻪ ﻣ ﺘﻌﺪدة‬
‫اﻟﻤﻘﺎﻃ ﻊ )‪ (Multisection Coupled-Line Couplers‬و اﻟﻤ ﺰدوﺟﺎت اﻟﻤﺨ ﺘﻠﻄﻪ اﻟﻤﺤ ﺘﻮﻳﻪ ﻋﻠ ﻰ )ﻣﻜ ﻮﻧﺎت‬
‫ﻋﻴﻨﻴﻪ ‪ (lumped components‬و ﻏﻴﺮهﺎ‪ .‬راﺟﻊ اﻟﻤﺮاﺟﻊ )‪(3,5,17‬‬
‫اﻟﻤ ﺰدوﺟﺎت اﻟﻤﺨ ﺘﻠﻄﻪ ﻣ ﺘﻌﺪدة اﻟﻤﻘﺎﻃ ﻊ )‪ (Multisection Branch-Line Hybrids‬ﺻ ﻤﻤﺖ ﻟﻠﺤﺼ ﻮل ﻋﻠ ﻰ‬
‫ﻣﻌﺎﻣ ﻞ ازدواج )‪ (CdB = − 3 dB‬و ﻓ ﺮق زاوﻳ ﺔ ﻃ ﻮر ) ‪ (∆φ = ∠S21 − ∠S31‬ﻳﺴ ﺎوى ﺗﺴ ﻌﻴﻦ درﺟ ﻪ ﻓ ﻰ‬
‫ﺣﻴ ﺰ ﻧﺴ ﺒﻰ أآﺜ ﺮ ﻣ ﻦ )‪ (10%‬و اﻟ ﺬى ﺗﺤﻘﻘ ﻪ اﻟﻤ ﺰدوﺟﺎت اﻟﻤﺨ ﺘﻠﻄﻪ ﻣ ﻦ ﻧ ﻮع )‪ (Branch-Line Hybrid‬آﻤ ﺎ‬
‫ﺷﺮﺣﺖ ﺳﺎﺑﻘﺎ‪.‬‬
‫اﻟﻤﺮاﺟﻊ )‪ (1,17‬ﺑﻬﺎ ﻣﻌﺎدﻻت و ﻣﻌﻠﻮﻣﺎت ﺗﺼﻤﻴﻢ اﻟﻤﺰدوﺟﺎت اﻟﻤﺨﺘﻠﻄﻪ ﻣﺘﻌﺪدة اﻟﻤﻘﺎﻃﻊ‪.‬‬

‫ﺷﻜﻞ )‪ : (٢٠ - ٦‬ﻣﺨﻄﻂ ﻟﻤﺰدوج ﻣﺨﺘﻠﻂ ذو أرﺑﻌﺔ ﻣﻘﺎﻃﻊ )ﺧﻤﺴﺔ أﻓﺮع رأﺳﻴﻪ ‪.(5 branches‬‬

‫‪201‬‬

‫ﺷﻜﻞ )‪ (٢٠ - ٦‬ﻳﺒﻴﻦ ﻣﺨﻄﻂ ﻟﻤﺰدوج ﻣﺨﺘﻠﻂ ذو أرﺑﻌﺔ ﻣﻘﺎﻃﻊ أى )ﺧﻤﺴﺔ أﻓﺮع رأﺳﻴﻪ ‪.(5 branches‬‬
‫و ﺷ ﻜﻞ )‪ (٢١ - ٦‬ﻳﺒ ﻴﻦ ﻣﺨﻄﻂ ﻟﻤﺰدوج ﻣﺨﺘﻠﻂ ذو ﻣﻘﻄﻌﻴﻦ أى )ﺛﻼﺛﺔ أﻓﺮع رأﺳﻴﻪ ‪ (3 branches‬ﻣﻊ ﺑﻴﺎن أرﻗﺎم‬
‫اﻟﻤﺨﺎرج و اﻷﺑﻌﺎد و هﻰ ﺗﻌﺮﱠف ﺑﺎﻟﻤﻌﺎدﻻت اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫‪Zo‬‬

‫‪2 −1‬‬

‫= ‪ZE‬‬

‫‪,‬‬

‫‪Zo‬‬
‫‪2‬‬

‫= ‪ZM‬‬

‫ﺣﻴﺚ اﻟﻤﻌﺎوﻗﻪ )‪ (Zo = 50Ω‬ﻋﺎدة‪.‬‬
‫و ﻓ ﻴﻤﺎ ﻳﻠ ﻰ ﻣ ﺜﺎل ﺗﺼ ﻤﻴﻢ رﻗﻤ ﻰ ﻟﻠﻤﻘﺎرﻧ ﻪ ﺑ ﻴﻦ اﻟﻤ ﺰدوﺟﺎت اﻟﻤﺨ ﺘﻠﻄﻪ ﻣ ﻦ ﻧ ﻮع )‪ (Branch-Line Hybrids‬و‬
‫اﻟﻤﺰدوج اﻟﻤﺨﺘﻠﻂ ذو اﻟﻤﻘﻄﻌﻴﻦ‪.‬‬

‫ﺷﻜﻞ )‪ : (٢١ - ٦‬ﻣﺨﻄﻂ ﻟﻤﺰدوج ﻣﺨﺘﻠﻂ ذو ﻣﻘﻄﻌﻴﻦ )ﺛﻼﺛﺔ أﻓﺮع رأﺳﻴﻪ ‪.(3 branches‬‬

‫ﻣ ﺜﺎل )‪ : (٣ – ٦‬ﻓ ﻰ ﻣ ﺜﺎل )‪ (١ – ٦‬ﺗ ﻢ ﺗﺼ ﻤﻴﻢ ﻣ ﺰدوج ﻣﺨﺘﻠﻂ ﻣﻦ ﻧﻮع )‪(Branch-Line Hybrid Coupler‬‬
‫ﺑﺸ ﻜﻠﻴﻪ اﻟﻤﺴ ﺘﻄﻴﻞ و اﻟﻤﺴ ﺘﺪﻳﺮ ﻋ ﻨﺪ ﺗ ﺮدد )‪ (5 GHz‬ﺑﺎﺳ ﺘﺨﺪام ﺷﺮﻳﺤﻪ ﺷﺮﻳﻄﻴﻪ ﺑﺎﻟﻤﻮاﺻﻔﺎت اﻟﺘﺎﻟﻴﻪ ‪ :‬ﺛﺎﺑﺖ اﻟﻌﺰل‬
‫)‪ ( εr =3.38‬و ﺳﻤﻚ اﻟﻌﺎزل )‪ (h = 1 mm‬و ﺳﻤﻚ اﻟﻤﻮﺻﻞ )‪. (t = 0.07 mm‬‬
‫ﻣﻄﻠ ﻮب ﺗﺼ ﻤﻴﻢ ﻣ ﺰدوج ﻣﺨ ﺘﻠﻂ ذو ﻣﻘﻄﻌ ﻴﻦ )ﺛﻼﺛ ﺔ أﻓﺮع رأﺳﻴﻪ ‪ (3 branches‬اﻟﻤﺒﻴﻦ ﻗﻰ ﺷﻜﻞ )‪ (٢١ - ٦‬ﻋﻨﺪ‬
‫ﺗﺮدد )‪ (5 GHz‬و ﺑﺎﺳﺘﺨﺪام ﻧﻔﺲ اﻟﺸﺮﻳﺤﻪ اﻟﺸﺮﻳﻄﻴﻪ اﻟﻤﺴﺘﺨﺪﻣﻪ ﻓﻰ ﻣﺜﺎل )‪.(١ – ٦‬‬
‫اﻟﺤﻞ ‪:‬‬
‫ﺗﻢ ﺣﺴﺎب اﻷﺑﻌﺎد اﻟﻤﺒﺪﺋﻴﻪ ﻟﻠﻤﺰدوج اﻟﻤﺨﺘﻠﻂ ذو اﻟﻤﻘﻄﻌﻴﻦ آﻤﺎ ﻳﻠﻰ‪:‬‬
‫ﺣﺴﺐ اﻟﺒﻴﺎﻧﺎت اﻟﻤﻮﺿﺤﻪ ﻓﻰ ﺷﻜﻞ )‪ (٢١ - ٦‬اﻟﺨﻄﻮط اﻷرﺑﻌﻪ اﻟﻤﺘﺼﻠﻪ ﺑﺎﻟﻤﺨﺎرج اﻟﺘﻰ ﻟﻬﺎ ﻣﻌﺎوﻗﻪ ﺗﺴﺎوى ) = ‪Zo‬‬
‫‪ (50Ω‬آﺎن ﻋﺮﺿﻬﺎ ﻳﺴﺎوى )‪. (Wo =2.25 mm‬‬

‫‪202‬‬

‫‪Z‬‬
‫⎛‬
‫⎞‬
‫اﻟﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﺘ ﻰ ﻟﻬ ﺎ ﻣﻌﺎوﻗ ﻪ ﻣﻤﻴ ﺰﻩ ﺗﺴ ﺎوى ⎟ ‪ ⎜ Z M = o = 35.355 Ω‬آ ﺎن ﻋ ﺮض آ ﻞ ﻣ ﻨﻬﻢ‬
‫‪2‬‬
‫⎝‬
‫⎠‬
‫‪o‬‬

‫ﻳﺴﺎوى )‪ (WM =3.81 mm‬و اﻟﻄﻮل اﻟﻤﻜﺎﻓﺊ ﻟـ )‪ (90 ≡λg/4‬ﻳﺴﺎوى )‪.(LM = 8.93 mm‬‬
‫‪Zo‬‬
‫⎛‬
‫⎞‬
‫أﻣ ﺎ اﻟﺨﻄ ﺎن اﻟﻠ ﺬان ﻟﻬﻤ ﺎ ﻣﻌﺎوﻗ ﻪ ﻣﻤﻴ ﺰﻩ ﺗﺴ ﺎوى ⎟ ‪= 120.71 Ω‬‬
‫= ‪ ⎜ Z E‬ﻓﻜ ﺎن ﻋ ﺮض آ ﻞ ﻣ ﻨﻬﻤﺎ‬
‫‪2 −1‬‬
‫⎝‬
‫⎠‬
‫‪o‬‬

‫ﻳﺴﺎوى )‪ (WE =0.28 mm‬و اﻟﻄﻮل اﻟﻤﻜﺎﻓﺊ ﻟـ )‪ (90 ≡λg/4‬ﻳﺴﺎوى )‪.(LE = 9.88 mm‬‬
‫ﻋﻨﺪ ﺗﺤﻠﻴﻞ اﻟﺪاﺋﺮﻩ و رﺳﻢ ﻣﺨﻄﻄﻬﺎ ﻧﻜﺘﺸﻒ أن هﻨﺎك ﻣﺸﻜﻠﻪ ﻓﻰ اﻟﺸﻜﻞ اﻟﻬﻨﺪﺳﻰ ﻟﻠﺪاﺋﺮﻩ ﺣﻴﺚ )‪(LM = 8.93 mm‬‬
‫ﺑﻴ ﻨﻤﺎ )‪ (LE = 9.88 mm‬و ه ﺬا ﻣﻌ ﻨﺎﻩ أن اﻟ ﺜﻼﺛﺔ أﻓ ﺮع اﻟﺮأﺳ ﻴﻪ ﻟﻴﺴ ﺖ ﺑ ﻨﻔﺲ اﻟﻄ ﻮل و ﺑﺎﻟﺘﺎﻟ ﻰ ﻻ ﻧﺴ ﺘﻄﻴﻊ رﺳ ﻢ‬
‫اﻟﺪاﺋﺮﻩ ﺑﺸﻜﻠﻬﺎ اﻟﺼﺤﻴﺢ اﻟﻤﺒﻴﻦ ﻓﻰ ﺷﻜﻞ )‪.(٢١ - ٦‬‬
‫ﻟ ﺬﻟﻚ ﻧﻠﺠ ﺄ ﻟﺘﻐﻴﻴ ﺮ ﺑﺴ ﻴﻂ ﻓ ﻰ اﻟﺘﺼ ﻤﻴﻢ ﻟﺤ ﻞ ه ﺬﻩ اﻟﻤﺸ ﻜﻠﻪ و ه ﻮ ﺟﻌ ﻞ ﻃ ﻮل اﻟﺨ ﻂ )اﻟﻔﺮع( اﻟﺮأﺳﻰ اﻷوﺳﻂ ﻣﺴﺎوﻳﺎ‬
‫ﻟﻄﻮل اﻟﺨﻄﻴﻦ اﻟﺮأﺳﻴﻴﻦ )اﻟﻔﺮﻋﻴﻦ( اﻵﺧﺮﻳﻦ أى ﻳﺴﺎوى )‪.(LE = 9.88 mm‬‬
‫ﺑﻌ ﺪ اﻧ ﺘﻬﺎء اﻟﺘﺼ ﻤﻴﻢ اﻟﻤﺒﺪﺋ ﻰ ‪ ،‬ﺗ ﻢ ﻋﻤ ﻞ ﺗﺤﻠ ﻴﻞ ﻟﺪاﺋ ﺮة اﻟﻤ ﺰدوج اﻟﻤﺨ ﺘﻠﻂ ذو اﻟﻤﻘﻄﻌ ﻴﻦ ﺑﺸ ﻜﻠﻬﺎ اﻟﻤﻌ ﺪل ﺑﺎﺳ ﺘﺨﺪام‬
‫ﺑ ﺮﻧﺎﻣﺞ ﻟﺘﺤﻠ ﻴﻞ دواﺋ ﺮ اﻟﻤﻴﻜ ﺮووﻳﻒ و وﺟ ﺪ ان اﻟﺪاﺋ ﺮة ﺗﺤ ﺘﺎج ﻟﻌﻤ ﻞ اﻟ ﺒﺤﺚ ﻋ ﻦ اﻟﺤ ﻞ اﻷﻣ ﺜﻞ )‪(Optimization‬‬
‫ﺑﺘﻐﻴﻴﺮ اﻷﺑﻌﺎد ﻟﻠﺤﺼﻮل ﻋﻠﻰ اﻷداء اﻟﻤﻄﻠﻮب و ﺗﻢ ﻋﻤﻞ ذﻟﻚ ﺑﺎﺳﺘﺨﺪام ﺑﺮﻧﺎﻣﺞ ﺗﺤﻠﻴﻞ اﻟﺪواﺋﺮ‪.‬‬
‫اﻷﺑﻌﺎد اﻟﻨﻬﺎﺋﻴﻪ ﻟﻠﺪاﺋﺮﻩ ﺑﻌﺪ ﻋﻤﻞ )‪ (Optimization‬آﺎﻧﺖ آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫‪WE=0.38 mm‬‬

‫‪WM=3.7 mm‬‬

‫‪LE=8.63 mm‬‬

‫‪LM=8 mm‬‬

‫و ﺗ ﻢ اﻻﺑﻘ ﺎء ﻋﻠ ﻰ ﻋ ﺮض اﻟﺨﻄ ﻮط اﻷرﺑﻌ ﻪ اﻟﻤﺘﺼﻠﻪ ﺑﺎﻟﻤﺨﺎرج آﻤﺎ هﻮ ﻳﺴﺎوى )‪ (Wo =2.25 mm‬أﻣﺎ ﻃﻮل آﻞ‬
‫ﻣﻨﻬﺎ ﻓﻜﺎن )‪ .(Lo=8 mm‬و ﻳﺒﻴﻦ اﻟﺸﻜﻞ )‪ (٢٢ - ٦‬اﻟﻤﺨﻄﻂ اﻟﻨﻬﺎﺋﻰ ﻟﻠﺪاﺋﺮﻩ‪.‬‬

‫ﺷﻜﻞ )‪ : (٢٢ - ٦‬اﻟﻤﺨﻄﻂ اﻟﻨﻬﺎﺋﻰ ﻟﺪاﺋﺮة اﻟﻤﺰدوج اﻟﻤﺨﺘﻠﻂ ذو اﻟﻤﻘﻄﻌﻴﻦ‪.‬‬

‫‪203‬‬

‫و ﻳﺒ ﻴﻦ اﻟﺸ ﻜﻠﻴﻦ )‪ (٢٣ - ٦‬و )‪ (٢٤ - ٦‬ﻧ ﺘﺎﺋﺞ اﻟﺘﺤﻠ ﻴﻞ ﻓ ﻰ ﺣﻴ ﺰ ﻧﺴ ﺒﻰ ﻳﺴ ﺎوى )‪ (1GHz ≡ 20%‬أى ﻣ ﻦ‬
‫)‪ (4.5 GHz‬اﻟ ﻰ )‪ .(5.5 GHz‬و ﻓ ﻰ ه ﺬا اﻟﺤﻴ ﺰ اﻟﻨﺴ ﺒﻰ آ ﺎن ﻓ ﺮق زاوﻳ ﺔ اﻟﻄ ﻮر ﻟﻬ ﺬا اﻟﻤ ﺰدوج اﻟﻤﺨ ﺘﻠﻂ‬
‫‪o‬‬

‫) ‪ (∆φ = ∠S21 − ∠S31‬ﻳﺴﺎوى ﺗﺴﻌﻴﻦ درﺟﻪ ﺑﺨﻄﺄ أﻗﺼﻰ ) ‪.(±0.46‬‬
‫ﺷ ﻜﻞ )‪ (٢٣ - ٦‬ﻳﺒﻴﻦ ﻗﻴﻢ )‪ (|S21|dB , |S31|dB‬ﻟﻠﻤﺰدوج اﻟﻤﺨﺘﻠﻂ ذو اﻟﻤﻘﻄﻌﻴﻦ‪ .‬اﻻﻧﺤﺮاف ﻋﻦ )‪ (−3dB‬ﻻ ﻳﺰﻳﺪ‬
‫ﻋﻦ )‪ (0.2dB‬ﺑﺎﻟﻨﺴﺒﻪ ﻟـﻘﻴﻢ )‪ (|S21|dB , |S31|dB‬ﻓﻰ اﻟﺤﻴﺰ اﻟﺘﺮددى و هﻰ ﻧﺘﻴﺠﻪ ﻣﻤﺘﺎزﻩ‪.‬‬
‫ﻣ ﻦ ﺷ ﻜﻞ )‪ (٢٤ - ٦‬ﻧﻼﺣ ﻆ أن ﻣﻌﺎﻣ ﻞ اﻻﻧﻌﻜﺎس )‪ (|S11|dB < −22.59dB‬و أن اﻟﻌﺰل ﺑﻴﻦ اﻟﻤﺨﺮﺟﻴﻦ رﻗﻢ )‪(1‬‬
‫و رﻗﻢ )‪ (4‬أى )‪ (I=|S41|dB‬أﻗﻞ ﻣﻦ )‪.(−22.59 dB‬‬

‫ﺷﻜﻞ )‪ : (٢٣ - ٦‬ﻗﻴﻢ )‪ (|S21|dB , |S31|dB‬ﻟﻠﻤﺰدوج اﻟﻤﺨﺘﻠﻂ ﻓﻰ ﻣﺜﺎل )‪.(٣ – ٦‬‬

‫ﺷﻜﻞ )‪ : (٢٤ - ٦‬ﻗﻴﻢ )‪ (|S11|dB , |S41|dB‬ﻟﻠﻤﺰدوج اﻟﻤﺨﺘﻠﻂ ﻓﻰ ﻣﺜﺎل )‪.(٣ – ٦‬‬

‫‪204‬‬

‫ﻗ ﺎرن ﺑ ﻴﻦ ﻣﻮاﺻ ﻔﺎت اﻟﻤ ﺰدوج اﻟﻤﺨ ﺘﻠﻂ ذو اﻟﻤﻘﻄﻌ ﻴﻦ اﻟﺬى ﺗﻢ ﺗﺼﻤﻴﻤﻪ ﻓﻰ ﻣﺜﺎل )‪ (٣ – ٦‬و ﺑﻴﻦ داﺋﺮﺗﻰ اﻟﻤﺰدوج‬
‫اﻟﻤﺨ ﺘﻠﻂ ﻣ ﻦ ﻧ ﻮع )‪ (Branch-Line Hybrid Coupler‬ﺑﺸ ﻜﻠﻴﻪ اﻟﻤﺴ ﺘﻄﻴﻞ و اﻟﻤﺴ ﺘﺪﻳﺮ اﻟﻠﺘﺎن ﺗﻢ ﺗﺼﻤﻴﻤﻬﻤﺎ ﻓﻰ‬
‫ﻣﺜﺎل )‪. (١ – ٦‬‬
‫ﺟﻤ ﻴﻊ أﻧ ﻮاع اﻟﻤ ﺰدوﺟﺎت اﻟﻤﺨ ﺘﻠﻄﻪ اﻟﺘ ﻰ ﺷ ﺮﺣﺖ ﺗﺼ ﻤﻴﻤﻬﺎ ﺳ ﺎﺑﻘﺎ ﺗﻔﺘ ﺮض وﺟ ﻮد ﻣﻌﺎوﻗ ﻪ ﺛﺎﺑ ﺘﺔ اﻟﻘ ﻴﻤﻪ )‪ (Zo‬ﻋ ﻨﺪ‬
‫اﻟﻤﺨﺎرج اﻷرﺑﻌﻪ ‪ .‬و ﻋﺎدة ﺗﻜﻮن )‪.(Zo = 50Ω‬‬
‫و آﻤ ﺎ ﺗ ﻮﺟﺪ دواﺋ ﺮ ﻳ ﺘﻢ ﺗﺼﻤﻴﻤﻬﺎ ﻟﺘﺤﻮﻳﻞ اﻟﻤﻌﺎوﻗﻪ )‪ (impedance transformation‬أو اﻟﺘﻮﻓﻴﻖ )‪(matching‬‬
‫ﺑ ﻴﻦ ﻣﻌﺎوﻗﺘ ﻴﻦ ﻏﻴ ﺮ ﻣﺘﺴ ﺎوﻳﺘﻴﻦ ‪ ،‬ﻓﺎﻧ ﻨﺎ ﻧﺠ ﺪ دواﺋ ﺮ اﻟﻤ ﺰدوﺟﺎت اﻟﻤﺨ ﺘﻠﻄﻪ ﻟﺘﺤﻮﻳﻞ اﻟﻤﻌﺎوﻗﻪ‬

‫) ‪Impedance‬‬

‫‪ (Transforming Hybrids‬و اﻟﺘ ﻰ ﺗﻘ ﻮم ﺑ ﻨﻔﺲ ﻋﻤ ﻞ اﻟﻤ ﺰدوﺟﺎت اﻟﻤﺨ ﺘﻠﻄﻪ اﻟﻤﺸ ﺮوﺣﻪ ﺳ ﺎﺑﻘﺎ و ﻟﻜﻦ ﻣﻊ وﺟﻮد‬
‫ﻣﻌﺎوﻗﺎت ﻏﻴﺮ ﻣﺘﺴﺎوﻳﻪ ﻋﻨﺪ اﻟﻤﺨﺎرج‪.‬‬
‫اﻟﻤ ﺮاﺟﻊ )‪ (2,17‬ﺗﺸ ﺮح ﺗﺼ ﻤﻴﻢ أﻧ ﻮاع ﻣﺨ ﺘﻠﻔﻪ ﻣ ﻦ اﻟﻤ ﺰدوﺟﺎت اﻟﻤﺨ ﺘﻠﻄﻪ ﻟ ﺘﺤﻮﻳﻞ اﻟﻤﻌﺎوﻗ ﻪ ) ‪Impedance‬‬
‫‪.(Transforming Hybrids‬‬
‫ﺷ ﻜﻞ )‪ (٢٥ - ٦‬ﻳﺒ ﻴﻦ ﻣﺨﻄ ﻂ ﻣ ﺰدوج ﻣﺨ ﺘﻠﻂ ﻟ ﺘﺤﻮﻳﻞ اﻟﻤﻌﺎوﻗ ﻪ ﻣ ﻦ ﻧ ﻮع ) ‪Branch-Line Impedance‬‬
‫‪ (Transforming Hybrid‬ﻣﻊ ﺗﻮﺿﻴﺢ أرﻗﺎم اﻟﻤﺨﺎرج و اﻷﺑﻌﺎد‪.‬‬

‫ﺷﻜﻞ )‪ : (٢٥ - ٦‬ﻣﺰدوج ﻣﺨﺘﻠﻂ ﻟﺘﺤﻮﻳﻞ اﻟﻤﻌﺎوﻗﻪ ﻣﻦ ﻧﻮع ) ‪Branch-Line Impedance‬‬
‫‪.(Transforming Hybrid‬‬

‫اﻟﻤﻌﺎوﻗﻪ ﻋﻨﺪ اﻟﻤﺪﺧﻞ رﻗﻢ )‪ (1‬ﺗﺴﺎوى )‪ (ZoS‬و هﻰ ﺗﺴﺎوى اﻟﻤﻌﺎوﻗﻪ ﻋﻨﺪ اﻟﻤﺨﺮج رﻗﻢ )‪ (4‬اﻟﻤﻌﺰول‪.‬‬
‫اﻟﻤﻌﺎوﻗﻪ ﻋﻨﺪ اﻟﻤﺨﺮﺟﻴﻦ رﻗﻤﻰ )‪ (2 , 3‬ﺗﺴﺎوى )‪.(ZoL‬‬
‫و ﻳﺘﻢ ﺣﺴﺎب اﻟﻤﻌﺎوﻗﺎت )‪ (Z1, Z2‬ﺑﺪﻻﻟﺔ اﻟﻤﻌﺎوﻗﺎت ﻋﻨﺪ اﻟﻤﺨﺎرج )‪ (ZoS , ZoL‬ﻣﻦ اﻟﻤﻌﺎدﻻت اﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫‪205‬‬

‫‪Z oS‬‬
‫‪K‬‬

‫)‪(6.11‬‬

‫‪Z oS Z oL‬‬
‫‪1+ K 2‬‬

‫)‪(6.12‬‬

‫‪Z1Z oL‬‬
‫‪Z oS‬‬

‫)‪(6.13‬‬

‫= ‪Z1‬‬

‫= ‪Z2‬‬
‫= ‪Z3‬‬

‫ﺣ ﻴﺚ )‪ (K‬ه ﻰ ﻧﺴ ﺒﺔ ﺗﻘﺴ ﻴﻢ اﻟﻔ ﻮﻟﺖ اﻟﺨ ﺎرج ﻣ ﻦ اﻟﻤﺨ ﺮﺟﻴﻦ أرﻗ ﺎم )‪ (2‬و )‪ (3‬ﻓﻰ ﺣﺎﻟﺔ دﺧﻮل اﻻﺷﺎرﻩ ﻣﻦ اﻟﻤﺪﺧﻞ‬
‫رﻗﻢ )‪. (1‬‬
‫هﺬا اﻟﻤﺰدوج اﻟﻤﺨﺘﻠﻂ ﻳﻌﻄﻰ ﺣﻴﺰ ﻧﺴﺒﻰ ﻳﺼﻞ اﻟﻰ )‪ (20%‬ﺗﻘﺮﻳﺒﺎ‪.‬‬
‫و ﻟﺘﺤﻘ ﻴﻖ ﺣﻴ ﺰ ﻧﺴ ﺒﻰ أآﺒ ﺮ ﻣ ﻦ )‪ (20%‬ﻳﻤﻜ ﻦ اﺳ ﺘﻌﻤﺎل ﻣ ﺰدوج ﻣﺨ ﺘﻠﻂ ﻟ ﺘﺤﻮﻳﻞ اﻟﻤﻌﺎوﻗ ﻪ ﻣ ﺘﻌﺪد اﻟﻤﻘﺎﻃ ﻊ‬
‫)‪.(multisection or multi-stage impedance-transforming hybrid‬‬
‫ﺷ ﻜﻞ )‪ (٢٦ - ٦‬ﻳﺒ ﻴﻦ ﻣﺨﻄ ﻂ ﻣ ﺰدوج ﻣﺨ ﺘﻠﻂ ذو ﻣﻘﻄﻌ ﻴﻦ ﻟ ﺘﺤﻮﻳﻞ اﻟﻤﻌﺎوﻗ ﻪ ﻣ ﻦ ﻧ ﻮع )‪2 Section Branch-‬‬
‫‪ (Line Impedance Transforming Hybrid‬ﻣﻊ ﺗﻮﺿﻴﺢ أرﻗﺎم اﻟﻤﺨﺎرج و اﻷﺑﻌﺎد‪.‬‬

‫ﺷﻜﻞ )‪ : (٢٦ - ٦‬ﻣﺰدوج ﻣﺨﺘﻠﻂ ذو ﻣﻘﻄﻌﻴﻦ ﻟﺘﺤﻮﻳﻞ اﻟﻤﻌﺎوﻗﻪ‪.‬‬

‫اﻟﻤﻌﺎوﻗﻪ ﻋﻨﺪ اﻟﻤﺪﺧﻞ رﻗﻢ )‪ (1‬ﺗﺴﺎوى )‪ (ZoS‬و هﻰ ﺗﺴﺎوى اﻟﻤﻌﺎوﻗﻪ ﻋﻨﺪ اﻟﻤﺨﺮج رﻗﻢ )‪ (4‬اﻟﻤﻌﺰول‪.‬‬
‫اﻟﻤﻌﺎوﻗﻪ ﻋﻨﺪ اﻟﻤﺨﺮﺟﻴﻦ رﻗﻤﻰ )‪ (2 , 3‬ﺗﺴﺎوى )‪.(ZoL‬‬
‫و ﻳﺘﻢ ﺣﺴﺎب اﻟﻤﻌﺎوﻗﺎت )‪ (Z1, Z2 , Z3, Z4‬ﺑﺪﻻﻟﺔ اﻟﻤﻌﺎوﻗﺎت ﻋﻨﺪ اﻟﻤﺨﺎرج )‪ (ZoS , ZoL‬ﻣﻦ اﻟﻤﻌﺎدﻻت اﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫‪206‬‬

‫⎞ ‪⎛ t2 − r‬‬
‫⎟⎟‬
‫⎜⎜ ‪Z1 = Z oS r‬‬
‫‪t‬‬
‫‪−‬‬
‫‪r‬‬
‫⎝‬
‫⎠‬

‫)‪(6.14‬‬
‫‪2‬‬

‫)‪(6.15‬‬

‫⎞‪⎛r‬‬
‫⎟ ⎜‪r -‬‬
‫⎠‪⎝t‬‬

‫⎟⎞ )‬

‫)‪(6.16‬‬

‫⎟‬
‫⎠‬

‫‪Z = Z3 Z oS‬‬
‫‪2‬‬
‫‪2‬‬

‫(‬

‫‪⎛ r t2 − r‬‬
‫⎜ ‪Z 4 = Z oS‬‬
‫‪⎜ t −1‬‬
‫⎝‬

‫ﺣ ﻴﺚ )‪ (K2‬ه ﻰ ﻧﺴ ﺒﺔ ﺗﻘﺴ ﻴﻢ اﻟﻘ ﺪرﻩ اﻟﺨﺎرﺟ ﻪ ﻣﻦ اﻟﻤﺨﺮﺟﻴﻦ أرﻗﺎم )‪ (2‬و )‪ (3‬ﻓﻰ ﺣﺎﻟﺔ دﺧﻮل اﻻﺷﺎرﻩ ﻣﻦ اﻟﻤﺪﺧﻞ‬
‫رﻗﻢ )‪ ، (1‬و ) ‪ ( r‬هﻰ ﻧﺴﺒﺔ ﺗﺤﻮﻳﻞ اﻟﻤﻌﺎوﻗﻪ )‪.(ZoL / ZoS‬‬
‫و ﺣﻴﺚ‬

‫‪t = 4 1+ K 2‬‬

‫)‪(6.17‬‬

‫ﻳﻔﻀﻞ اﺧﺘﻴﺎر ) ‪ ( r‬ﻧﺴﺒﺔ ﺗﺤﻮﻳﻞ اﻟﻤﻌﺎوﻗﻪ ﺑﻴﻦ )‪ (0.7‬و )‪ (1.3‬ﻟﺘﺤﻘﻴﻖ أﺑﻌﺎد ﻣﻨﺎﺳﺒﻪ ﻟﻠﺘﻨﻔﻴﺬ‪.‬‬
‫اﺧﺘﻴﺎر )‪ (Z2 = Z3‬ﻳﻌﻄﻰ أآﺒﺮ ﺣﻴﺰ ﺗﺮددى ﻧﺴﺒﻰ ﻟﻬﺬا اﻟﻤﺰدوج اﻟﻤﺨﺘﻠﻂ‪.‬‬
‫اﻟﻤ ﺮﺟﻊ )‪ (2‬ﻳﻌﻄ ﻰ ﻣ ﺜﺎل رﻗﻤ ﻰ ﻟﺤﺴ ﺎﺑﺎت ﻣ ﺰدوج ﻣﺨﺘﻠﻂ ذو ﻣﻘﻄﻌﻴﻦ ﻟﺘﺤﻮﻳﻞ اﻟﻤﻌﺎوﻗﻪ ﻣﻦ )‪ (ZoS = 50 Ω‬اﻟﻰ‬
‫)‪ (ZoL = 35 Ω‬ﻣﻊ ﻧﺴﺒﺔ ﻣﺘﺴﺎوﻳﻪ ﻟﺘﻘﺴﻴﻢ اﻟﻘﺪرﻩ اﻟﺨﺎرﺟﻪ ﻣﻦ اﻟﻤﺨﺮﺟﻴﻦ أرﻗﺎم )‪ (2‬و )‪ (3‬أى )‪.(K2=1‬‬
‫و ﺑﺎﻟﺘﻌﻮﻳﺾ ﻓﻰ اﻟﻤﻌﺎدﻻت ﻣﻦ )‪ (6.14‬اﻟﻰ )‪ (6.17‬آﺎﻧﺖ ﻗﻴﻢ اﻟﻤﻌﺎوﻗﺎت آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫)‪(Z1 = 72.5 Ω , Z2 = Z3 = 29.6 Ω , Z4 = 191.25 Ω‬‬
‫وﻳﺬآﺮ اﻟﻤﺮﺟﻊ )‪ (2‬أن اﻷداء آﺎن ﺟﻴﺪا ﻓﻰ ﺣﻴﺰ ﻧﺴﺒﻰ ﻣﻘﺪارﻩ )‪.(25%‬‬
‫ﻳ ﺘﻢ ﺗ ﺮآﻴﺐ )ﺣﻤﻞ ﻣﺘﻮاﻓﻖ ‪ (matched load‬أى ﻣﻘﺎوﻣﻪ ﻗﻴﻤﺘﻬﺎ )‪ (ZoS‬ﻋﻨﺪ اﻟﻤﺨﺮج رﻗﻢ )‪ (4‬اﻟﻤﻌﺰول ﻓﻰ ﺣﺎﻟﺔ‬
‫اﺳ ﺘﺨﺪام أى ﻣ ﻦ اﻟﻤ ﺰدوﺟﻴﻦ اﻟﻤﺨﺘﻠﻄﻴﻦ ﻓﻰ ﺷﻜﻞ )‪ (٢٥ - ٦‬و ﺷﻜﻞ )‪ (٢٦ - ٦‬آﻤﻘﺴﻢ ﻟﻠﻘﺪرﻩ ﺑﺎﻋﺘﺒﺎر أن اﻻﺷﺎرﻩ‬
‫ﺗﺪﺧﻞ ﻣﻦ اﻟﻤﺪﺧﻞ رﻗﻢ )‪ (1‬و ﺗﺨﺮج ﻣﻦ اﻟﻤﺨﺮﺟﻴﻦ أرﻗﺎم )‪ (2‬و )‪.(3‬‬

‫ﺷﻜﻞ )‪ : (٢٧ - ٦‬ﻣﺰدوج اﺗﺠﺎهﻰ ﻣﺘﻤﺎﺛﻞ ذو ﺛﻼﺛﺔ ﻣﻘﺎﻃﻊ‪.‬‬

‫‪207‬‬

‫اﻟﻤ ﺮﺟﻊ )‪ (4‬ﻳﺤ ﺘﻮى ﻋﻠ ﻰ ﻣﻌ ﺎدﻻت و ﻣﻌﻠﻮﻣﺎت ﺗﺼﻤﻴﻢ اﻟﻤﺰدوﺟﺎت اﻻﺗﺠﺎهﻴﻪ ﻣﺘﻌﺪدة اﻟﻤﻘﺎﻃﻊ ) ‪Multisection‬‬
‫‪ (Coupled-Line Couplers‬ﺑﻨﻮﻋ ﻴﻬﺎ اﻟﻤ ﺘﻤﺎﺛﻞ )‪ (symmetrical‬و ﻏﻴ ﺮ اﻟﻤ ﺘﻤﺎﺛﻞ )‪ (Asymmetrical‬و‬
‫اﻟﻤﺮﺟﻊ )‪ (5‬ﺑﻪ ﻣﻌﺎدﻻت ﺗﺼﻤﻴﻢ اﻟﻤﺰدوﺟﺎت اﻻﺗﺠﺎهﻴﻪ ﻣﺘﻌﺪدة اﻟﻤﻘﺎﻃﻊ اﻟﻤﺘﻤﺎﺛﻠﻪ و ﻳﻌﻄﻰ ﻣﺜﺎل رﻗﻤﻰ ﻟﻠﺘﺼﻤﻴﻢ‪.‬‬
‫ه ﺬا اﻟ ﻨﻮع ﻣ ﻦ اﻟﻤ ﺰدوﺟﺎت اﻻﺗﺠﺎه ﻴﻪ ﺻ ﻤﻢ ﻟ ﺰﻳﺎدة اﻟﺤﻴ ﺰ اﻟﻨﺴ ﺒﻰ ﻷآﺜ ﺮ ﻣ ﻦ )‪ (10%‬و ه ﻰ ﻗ ﻴﻤﺔ اﻟﺤﻴ ﺰ اﻟﻨﺴ ﺒﻰ‬
‫ﻟﻠﻤﺰدوج اﻻﺗﺠﺎهﻰ اﻟﻮاﺣﺪ‪.‬‬
‫ﻳﺒ ﻴﻦ اﻟﺸ ﻜﻞ )‪ (٢٧ - ٦‬ﻣﺨﻄ ﻂ ﻟﻤ ﺰدوج اﺗﺠﺎه ﻰ ﻣ ﺘﻤﺎﺛﻞ ذو ﺛﻼﺛ ﺔ ﻣﻘﺎﻃ ﻊ ) ‪Symmetrical 3 Section‬‬
‫‪ (Coupled-Line Coupler‬أو ) ‪.(3 Section Directional Coupler‬‬
‫و ﻳﺒﻴﻦ اﻟﺸﻜﻞ )‪ (٢٨ - ٦‬ﻣﺨﻄﻂ ﻟﻤﺰدوج اﺗﺠﺎهﻰ ﻏﻴﺮ ﻣﺘﻤﺎﺛﻞ ذو ﺛﻼﺛﺔ ﻣﻘﺎﻃﻊ ) ‪Asymmetrical 3 Section‬‬
‫‪.(Coupled-Line Coupler‬‬

‫ﺷﻜﻞ )‪ : (٢٨ - ٦‬ﻣﺰدوج اﺗﺠﺎهﻰ ﻏﻴﺮ ﻣﺘﻤﺎﺛﻞ ذو ﺛﻼﺛﺔ ﻣﻘﺎﻃﻊ‪.‬‬

‫ه ﻨﺎك أﻧ ﻮاع ﻋﺪﻳ ﺪﻩ ﻣ ﻦ اﻟﻤ ﺰدوﺟﺎت اﻟﻤﺨ ﺘﻠﻄﻪ اﻟﻤﺤ ﺘﻮﻳﻪ ﻋﻠ ﻰ )ﻣﻜ ﻮﻧﺎت ﻋﻴﻨ ﻴﻪ ‪(lumped components‬‬
‫ﺑﺎﻻﺿﺎﻓﻪ اﻟﻰ اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ‪.‬‬
‫ﻳﺒ ﻴﻦ اﻟﺸ ﻜﻞ )‪ (٢٩ - ٦‬رﺳ ﻢ رﻣ ﺰى ﻟﻤ ﺰدوج ﻣﺨ ﺘﻠﻂ ﻣ ﻦ ﻧ ﻮع )‪ (branch-line hybrid‬ﻣﺨﺘﺼ ﺮ اﻟﺤﺠ ﻢ أو‬
‫اﻟﻤﺴ ﺎﺣﻪ )‪ (Reduced-size branch-line quadrature hybrid‬و ه ﻮ ﻣﺼ ﻤﻢ ﻟﻴﻜﺎﻓ ﺊ اﻟﻤ ﺰدوج اﻟﻤﺨﺘﻠﻂ ﻣﻦ‬
‫ﻧ ﻮع )‪ (Branch-line Hybrid Coupler‬و ﻳﺤﻘ ﻖ ﻧﻔﺲ اﻷداء ﻣﻊ ﻣﺴﺎﺣﻪ أﺻﻐﺮ ﺣﻴﺚ اﺳﺘﺒﺪل آﻞ ﺧﻂ ﺷﺮﻳﻄﻰ‬
‫ﻃﻮﻟﻪ ﻳﻜﺎﻗﺊ )‪ (λg/4‬ﺑﻤﻜﺜﻔﺎن و ﺧﻂ ﺷﺮﻳﻄﻰ أﻗﺼﺮ ﻓﻰ اﻟﻄﻮل‪.‬‬
‫و ﻳﺘﻜﻮن هﺬا اﻟﻤﺰدوج اﻟﻤﺨﺘﻠﻂ ﻣﺨﺘﺼﺮ اﻟﺤﺠﻢ ﻣﻦ أرﺑﻌﺔ ﺧﻄﻮط ﺷﺮﻳﻄﻴﻪ و أرﺑﻌﺔ ﻣﻜﺜﻔﺎت‪.‬‬

‫‪208‬‬

‫ﺷﻜﻞ )‪ : (٢٩ - ٦‬ﻣﺰدوج ﻣﺨﺘﻠﻂ ﻣﻦ ﻧﻮع )‪ (Branch-line Hybrid‬ﻣﺨﺘﺼﺮ اﻟﺤﺠﻢ‪.‬‬

‫ﺷﻜﻞ )‪ : (٣٠ - ٦‬ﻣﺰدوج ﻣﺨﺘﻠﻂ ﻣﻦ ﻧﻮع )‪ (ring hybrid‬ﻣﺨﺘﺼﺮ اﻟﺤﺠﻢ‪.‬‬

‫و ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (٣٠ - ٦‬رﺳ ﻢ رﻣ ﺰى ﻟﻤ ﺰدوج ﻣﺨ ﺘﻠﻂ ﻣ ﻦ ﻧ ﻮع اﻟﺤﻠﻘ ﻪ )‪ (Ring Hybrid‬ﻣﺨﺘﺼ ﺮ اﻟﺤﺠ ﻢ‬
‫)‪ (Reduced-size Ring Hybrid‬و ه ﻮ ﻣﺼ ﻤﻢ ﻟﻴﻜﺎﻓ ﺊ اﻟﻤ ﺰدوج اﻟﻤﺨ ﺘﻠﻂ ﻣ ﻦ ﻧ ﻮع ) ‪Rat Race Hybrid‬‬
‫‪ (Coupler‬و ﻳﺤﻘﻖ ﻧﻔﺲ اﻷداء ﻣﻊ اﺧﺘﺼﺎر ﻣﺴﺎﺣﺔ اﻟﺪاﺋﺮﻩ‪ .‬و ﻳﺘﻜﻮن ﻣﻦ ﺛﻼﺛﺔ ﺧﻄﻮط ﺷﺮﻳﻄﻴﻪ و ﺛﻼﺛﺔ ﻣﻜﺜﻔﺎت‪.‬‬
‫و ﻧﻈ ﺮا ﻟﺼ ﻐﺮ ه ﺬﻩ اﻟﻤ ﺰدوﺟﺎت اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﻤﺨﺘﺼ ﺮﻩ ﻓ ﻰ اﻟﻤﺴ ﺎﺣﻪ ‪ ،‬ﻓﺎﻧﻬﺎ ﺗﺴﺘﺨﺪم أﻳﻀﺎ ﻓﻰ اﻟﺪواﺋﺮ اﻟﻤﺼﻨﻮﻋﻪ‬
‫ﺑﺘﻜﻨﻮﻟﻮﺟﻴﺎت أﺧﺮى ﻣﺜﻞ )‪.(MMIC‬‬
‫ﻳﻮﺟﺪ أﻳﻀﺎ أﻧﻮاع ﻋﺪﻳﺪﻩ ﻣﻦ اﻟﻤﺰدوﺟﺎت اﻟﻤﺨﺘﻠﻄﻪ اﻟﺘﻰ ﺗﺘﻜﻮن ﻣﻦ ﻣﻜﻮﻧﺎت ﻋﻴﻨﻴﻪ ﻓﻘﻂ ‪ .‬ارﺟﻊ ﻟﻠﻤﺮاﺟﻊ ) ‪.(1,6‬‬
‫و هﻨﺎك اﻟﻌﺪﻳﺪ ﻣﻦ أﻣﺜﻠﺔ اﻟﺘﺼﻤﻴﻢ ﻟﻤﺰدوﺟﺎت ﻣﺨﺘﻠﻄﻪ ﻣﻦ هﺬا اﻟﻨﻮع ﺑﺎﻟﻤﺮﺟﻊ )‪.(6‬‬

‫‪209‬‬

‫ﺑﻌ ﺾ اﻟﺒ ﺮاﻣﺞ اﻟﺤﺪﻳ ﺜﻪ اﻟﻌﺎﻣ ﻪ ﻟﺘﺤﻠ ﻴﻞ دواﺋ ﺮ اﻟﺘﺮدد اﻟﻌﺎﻟﻰ و اﻟﻤﻴﻜﺮووﻳﻒ ﺗﺤﺘﻮى ﻋﻠﻰ ﻣﻜﺘﺒﺎت ﻣﺒﻨﻴﻪ )‪built-in-‬‬
‫‪ (libraries‬ﻟ ﻨﻤﺎذج اﻟﻤﻜﻮﻧﺎت اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ و ﻣﻦ ﺿﻤﻨﻬﺎ ﻧﻤﺎذج ﻟﻠﻤﺰدوﺟﺎت اﻟﻤﺨﺘﻠﻄﻪ و ﻣﻘﺴﻤﺎت أو ﻣﺠﻤﻌﺎت‬
‫اﻟﻘﺪرﻩ و ﻏﻴﺮهﺎ‪.‬‬

‫)ﻤﻘﻁﻊ ‪ (٣-٦‬ﻤﻘﺴﻤﺎﺕ ﻭ ﻤﺠﻤﻌﺎﺕ ﺍﻟﻘﺩﺭﻩ ‪: Power Splitters and combiners‬‬

‫ﻣﻘﺴ ﻤﺎت اﻟﻘﺪرﻩ )‪ (Power Splitters or Power Dividers‬و ﻣﺠﻤﻌﺎت اﻟﻘﺪرﻩ )‪ (Power combiners‬ﻣﺜﻠﻬﺎ‬
‫ﻣ ﺜﻞ اﻟﻤ ﺰدوﺟﺎت اﻟﻤﺨ ﺘﻠﻄﻪ ﻳﻤﻜ ﻦ اﻋﺘ ﺒﺎرهﺎ أﻳﻀ ﺎ ﻣﻜ ﻮﻧﺎت ﺷ ﺮﻳﻄﻴﻪ أو دواﺋ ﺮ ﺷ ﺮﻳﻄﻴﻪ ﻣ ﺘﻌﺪدة اﻟﻤﺨ ﺎرج و ه ﻰ‬
‫واﺳﻌﺔ اﻻﺳﺘﺨﺪام ﻓﻰ اﻟﻌﺪﻳﺪ ﻣﻦ اﻟﺪواﺋﺮ ﻣﺜﻞ اﻟﻤﻜﺒﺮات و دواﺋﺮ ﺗﻐﺬﻳﺔ اﻟﻬﻮاﺋﻴﺎت و ﻏﻴﺮهﺎ‪.‬‬
‫ﺑﻌ ﺾ اﻟﺸ ﺮآﺎت اﻟﻤﻨ ﺘﺠﻪ ﻟﻤﻘﺴ ﻤﺎت و ﻣﺠﻤﻌ ﺎت اﻟﻘ ﺪرﻩ ﺗﻀ ﻌﻬﺎ ﺿ ﻤﻦ اﻟﻤﻼﺣ ﻖ أو اﻟﻜﻤﺎﻟ ﻴﺎت )‪(accessories‬‬
‫اﻟﻼزﻣﻪ ﻟﻠﻤﻌﺎﻣﻞ و اﻻﺧﺘﺒﺎر و اﻟﻘﻴﺎس‪ .‬ﺷﻜﻞ )‪ (٣١ - ٦‬ﻳﺒﻴﻦ أﺣﺪ ﻣﻘﺴﻤﺎت اﻟﻘﺪرﻩ اﻟﺘﻰ ﺗﺒﺎع ﺗﺠﺎرﻳﺎ‪.‬‬
‫ﺗﺤﻤ ﻞ اﻟﻘ ﺪرﻩ )‪ (power handling‬ﻣ ﻦ اﻟﺨﺼ ﺎﺋﺺ اﻟﻬﺎﻣﻪ ﻟﻤﻘﺴﻤﺎت و ﻣﺠﻤﻌﺎت اﻟﻘﺪرﻩ ‪ ،‬و ﻣﻦ ﻣﻌﻠﻮﻣﺎت اﻟﻔﺼﻞ‬
‫اﻷول ﺗﻢ ﺗﻮﺿﻴﺢ ﺧﺼﺎﺋﺺ اﻟﺸﺮاﺋﺢ اﻟﺸﺮﻳﻄﻴﻪ و ﻣﻦ ﺿﻤﻨﻬﺎ ﻣﻘﺪرة اﻟﻌﺎزل )‪ (Dielectric strength‬و اﻟﺘﻮﺻﻴﻞ‬
‫اﻟﺤﺮارى )‪ (Thermal Conductivity‬و ﻣﻨﻬﻤﺎ ﻳﻤﻜﻦ ﺣﺴﺎب أﻗﺼﻰ ﻗﺪرﻩ ﺗﺘﺤﻤﻠﻬﺎ اﻟﺸﺮﻳﺤﻪ‪.‬‬
‫آﻤﺎ ﻋﺮﻓﻨﺎ ﻣﻦ ﻣﻌﻠﻮﻣﺎت اﻟﻔﺼﻞ اﻷول أن هﻨﺎك ﺷﺮاﺋﺢ ﻻ ﺗﺴﺘﺨﺪم ﻓﻰ دواﺋﺮ اﻟﻘﺪرﻩ اﻟﻌﺎﻟﻴﻪ ﻣﺜﻞ اﻟﺸﺮاﺋﺢ اﻟﺒﻼﺳﺘﻴﻜﻴﻪ‬
‫و أن هﻨﺎك أﻧﻮاع ﺷﺮاﺋﺢ أﺧﺮى ﻣﺜﻞ اﻟﺸﺮاﺋﺢ اﻟﺴﻴﺮاﻣﻴﻜﻴﻪ ﺗﺴﺘﺨﺪم ﻟﺘﻄﺒﻴﻘﺎت اﻟﻘﺪرﻩ اﻟﻌﺎﻟﻴﻪ‪.‬‬
‫ﻣﻘﺴ ﻤﺎت و ﻣﺠﻤﻌ ﺎت اﻟﻘ ﺪرﻩ ﻻ ﺗﺴ ﺘﺨﺪم ﻓﻰ دواﺋﺮ اﻟﻘﺪرﻩ اﻟﻌﺎﻟﻴﻪ ﻓﻘﻂ ‪ ،‬ﻟﻜﻨﻬﺎ ﺗﺴﺘﺨﺪم أﻳﻀﺎ ﻓﻰ ﺗﻄﺒﻴﻘﺎت أﺧﺮى ذات‬
‫ﻗﺪرﻩ ﻣﻨﺨﻔﻀﻪ‪.‬‬
‫ﻳﻮﺿ ﺢ ﺷ ﻜﻞ )‪ (٣٢ - ٦‬رﺳ ﻢ رﻣ ﺰى ﻟﻤﻘﺴ ﻢ أو ﻣﺠﻤ ﻊ ﻟﻠﻘ ﺪرﻩ ﻟﻪ ﺛﻼﺛﺔ ﻣﺨﺎرج )أو ذو ﻣﺪﺧﻞ و ﻣﺨﺮﺟﻴﻦ( ) ‪2‬‬
‫‪ (Way Power Combiner/Divider‬ﻳﺴ ﺘﺨﺪم آﻤﻘﺴ ﻢ ﻟﻠﻘ ﺪرﻩ اﻟﺪاﺧﻠ ﻪ ﻣ ﻦ اﻟﻤ ﺪﺧﻞ رﻗ ﻢ )‪ (1‬ﻟﺘﺨ ﺮج ﻣ ﻦ‬
‫اﻟﻤﺨ ﺮﺟﻴﻦ )‪ ، (2 , 3‬و ﻳﺴ ﺘﺨﺪم آﻤﺠﻤ ﻊ ﻟﻠﻘ ﺪرﻩ اذا دﺧﻠ ﺖ اﺷ ﺎرﺗﺎن ﻣ ﻦ اﻟﻤﺪﺧﻠ ﻴﻦ )‪ (2 , 3‬ﻟﻴ ﺘﻢ ﺗﺠﻤ ﻴﻌﻬﻤﺎ و‬
‫ﺧﺮوﺟﻬﻤﺎ ﻣﻦ اﻟﻤﺨﺮج رﻗﻢ )‪.(1‬‬
‫و ﻗ ﺪ ﻳﻜ ﻮن ﻋ ﺪد اﻟﻤﺨ ﺎرج أآﺒ ﺮ ﻣ ﻦ ذﻟ ﻚ ﻓﻤﺜﻼ ﻳﻮﺿﺢ ﺷﻜﻞ )‪ (٣٣ - ٦‬رﺳﻢ رﻣﺰى ﻟﻤﻘﺴﻢ )أو ﻣﺠﻤﻊ( ﻟﻠﻘﺪرﻩ ذو‬
‫ﻋﺪد )‪ (N‬ﻣﻦ اﻟﻤﺨﺎرج ﺣﻴﺚ )‪. (N ≥ 3‬‬
‫و ﻳﻤﻜ ﻦ اﺳ ﺘﺨﺪام ﻋ ﺪد ﻣ ﻦ دواﺋ ﺮ ﻣﻘﺴ ﻢ )أو ﻣﺠﻤ ﻊ( ﻟﻠﻘ ﺪرﻩ ذو ﻣ ﺪﺧﻞ و ﻣﺨ ﺮﺟﻴﻦ ) ‪2 Way Power‬‬
‫‪ (Combiner/Divider‬ﻓ ﻰ ﻋﻤ ﻞ ﻣﻘﺴ ﻢ )أو ﻣﺠﻤ ﻊ( ﻟﻠﻘ ﺪرﻩ ذو ﻣ ﺪﺧﻞ و ﻋ ﺪد )‪ (N‬ﻣ ﻦ اﻟﻤﺨ ﺎرج ) ‪N Way‬‬
‫‪ (Power Combiner/Divider‬آﻤ ﺎ ه ﻮ ﻣﻮﺿ ﺢ ﻓ ﻰ ﺷ ﻜﻞ )‪ .(٣٤ - ٦‬و اﻟﻤ ﺮﺟﻊ )‪ (7‬ﻳﺤ ﺘﻮى ﻋﻠ ﻰ اﺛ ﺒﺎﺗﺎت‬
‫رﻳﺎﺿ ﻴﻪ ﻻﺳ ﺘﻌﻤﺎل هﺬﻩ اﻟﻄﺮﻳﻘﻪ ﻟﺒﻨﺎء ﻣﻘﺴﻤﺎت‪/‬ﻣﺠﻤﻌﺎت اﻟﻘﺪرﻩ ﻟﻼﺳﺘﺨﺪام ﻓﻰ دواﺋﺮ اﻟﻤﻜﺒﺮات و ﻳﺤﺴﺐ آﻔﺎءة هﺬﻩ‬

‫‪210‬‬

‫اﻟﻤﻘﺴ ﻤﺎت‪/‬اﻟﻤﺠﻤﻌ ﺎت ﻓ ﻰ ﺣﺎﻻت )أو ﺗﺼﻤﻴﻤﺎت( ﻣﺨﺘﻠﻔﻪ ﻟﻠﻤﻜﺒﺮات و ﻳﻌﻄﻰ أﻣﺜﻠﻪ ﻋﻤﻠﻴﻪ ﻋﻠﻰ اﻻﺳﺘﺨﺪام ﻓﻰ ﺑﻌﺾ‬
‫أﺟﻬﺰة اﻟﺮادار اﻟﻤﻨﺘﺠﻪ‪.‬‬

‫ﺷﻜﻞ )‪ : (٣١ - ٦‬ﻣﻘﺴﻢ )أو ﻣﺠﻤﻊ( ﻟﻠﻘﺪرﻩ‪.‬‬

‫ﺷﻜﻞ )‪ : (٣٢ - ٦‬رﺳﻢ رﻣﺰى ﻟﻤﻘﺴﻢ )أو ﻣﺠﻤﻊ( ﻟﻠﻘﺪرﻩ ذو ﻣﺪﺧﻞ و ﻣﺨﺮﺟﻴﻦ‪.‬‬

‫ﺷﻜﻞ )‪ : (٣٣ - ٦‬رﺳﻢ رﻣﺰى ﻟﻤﻘﺴﻢ )أو ﻣﺠﻤﻊ( ﻟﻠﻘﺪرﻩ ذو ﻣﺪﺧﻞ و ﻋﺪد )‪ (N‬ﻣﻦ اﻟﻤﺨﺎرج‪.‬‬

‫‪211‬‬

‫ﺷﻜﻞ )‪ : (٣٤ - ٦‬رﺳﻢ رﻣﺰى ﻟﻤﻘﺴﻢ )أو ﻣﺠﻤﻊ( ﻟﻠﻘﺪرﻩ ذو ﻣﺪﺧﻞ و ﻋﺪد )‪ (N‬ﻣﻦ اﻟﻤﺨﺎرج‪.‬‬

‫ﻓ ﻰ ﺷﻜﻞ )‪ (١١ - ٦‬ﺗﻢ ﺗﻮﺿﻴﺢ آﻴﻔﻴﺔ اﺳﺘﺨﺪام داﺋﺮة ﻣﺰدوج ﻣﺨﺘﻠﻂ ﻟﺘﻌﻤﻞ آﻤﻘﺴﻢ )أو ﻣﺠﻤﻊ( ﻟﻠﻘﺪرﻩ ﺑﺘﺮآﻴﺐ ﺣﻤﻞ‬
‫ﻣﺘﻮاﻓﻖ أو ﻣﻘﺎوﻣﻪ ﺗﺴﺎوى )‪ (50 Ω‬ﻣﻮﺻﻠﻪ ﺑﺎﻟﻤﺨﺮج اﻟﻤﻌﺰول و ﺑﺎﻷرض‪.‬‬
‫و ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (٣٥ - ٦‬آﻴﻔ ﻴﺔ اﺳﺘﺨﺪام ﺛﻼﺛﺔ دواﺋﺮ ﻣﻦ هﺬا اﻟﻤﺰدوج اﻟﻤﺨﺘﻠﻂ اﻟﻤﻮﺿﺢ ﻓﻰ ﺷﻜﻞ )‪ (١١ - ٦‬ﻟﻌﻤﻞ‬
‫ﻣﻘﺴ ﻢ )ﻣﺠﻤ ﻊ( ﻟﻠﻘ ﺪرﻩ ذو ﻣ ﺪﺧﻞ و أرﺑﻌ ﺔ ﻣﺨ ﺎرج )‪ (4 Way Power Combiner/Divider‬ﺑﺎﺳ ﺘﺨﺪام ﻧﻔ ﺲ‬
‫اﻟﻄ ﺮﻳﻘﻪ اﻟﻤﻮﺿ ﺤﻪ أﻋ ﻼﻩ ﻓ ﻰ ﺷ ﻜﻞ )‪ .(٣٤ - ٦‬و ﺳ ﻴﺘﻢ ﺷ ﺮح ه ﺬﻩ اﻟﻄ ﺮﻳﻘﻪ ﻓ ﻰ ﺁﺧ ﺮ هﺬا اﻟﻤﻘﻄﻊ ﺑﻌﺪ ﺷﺮح ﺑﻌﺾ‬
‫ﻣﻘﺴﻤﺎت اﻟﻘﺪرﻩ ذات اﻟﻤﺪﺧﻞ اﻟﻮاﺣﺪ و اﻟﻤﺨﺮﺟﻴﻦ‪.‬‬

‫ﺷﻜﻞ )‪ : (٣٥ - ٦‬ﻣﺨﻄﻂ ﻣﻘﺴﻢ )ﻣﺠﻤﻊ( ﻟﻠﻘﺪرﻩ ذو ﻣﺪﺧﻞ و أرﺑﻌﺔ ﻣﺨﺎرج‪.‬‬

‫‪212‬‬

‫ﻟﻴﺴﺖ آﻞ ﻣﻘﺴﻤﺎت و ﻣﺠﻤﻌﺎت اﻟﻘﺪرﻩ ﺗﺘﻜﻮن ﻣﻦ ﻣﺰدوﺟﺎت ﻣﺨﺘﻠﻄﻪ‪.‬‬
‫أﺑﺴ ﻂ ﺷ ﻜﻞ ﻟﻤﻘﺴ ﻤﺎت‪/‬ﻣﺠﻤﻌ ﺎت اﻟﻘﺪرﻩ هﻮ اﻟﻮﺻﻠﻪ ﻋﻠﻰ ﺷﻜﻞ ﺣﺮف )‪ (T‬أو )‪ ، (T or Y junction) (Y‬و ﻳﺒﻴﻦ‬
‫ﺷ ﻜﻞ )‪ (٣٦ - ٦‬رﺳ ﻢ رﻣ ﺰى ﻟﻮﺻ ﻠﻪ ﻋﻠ ﻰ ﺷ ﻜﻞ ﺣ ﺮف )‪ (T‬أو )‪ (Y‬ﺗ ﺘﻜﻮن ﻣ ﻦ ﺛﻼﺛ ﺔ ﺧﻄ ﻮط ﺷ ﺮﻳﻄﻴﻪ و ﺗ ﻢ‬
‫اﻻﺳﺘﻴﻌﺎض ﻋﻦ اﻟﻼاﺳﺘﻤﺮارﻳﻪ اﻟﻨﺎﺗﺠﻪ ﻣﻦ اﻟﺘﻘﺎء اﻟﺜﻼﺛﺔ ﺧﻄﻮط ﺑﻤﻘﻠﻮب اﻟﻤﻌﺎوﻗﻪ )‪.(jB‬‬
‫ه ﺬا اﻟ ﻨﻮع ﻣ ﻦ ﻣﻘﺴ ﻤﺎت اﻟﻘ ﺪرﻩ ﻻ ﻳﻮﻓ ﺮ ﻋ ﺰل ﺟ ﻴﺪ ﺑ ﻴﻦ اﻟﻤﺨ ﺎرج و ه ﺬﻩ اﻟﺨﺎﺻ ﻴﻪ ﺗﺠﻌﻠ ﻪ ﻏﻴ ﺮ ﻣﻨﺎﺳ ﺐ ﻟ ﺒﻌﺾ‬
‫اﻟﺘﻄﺒﻴﻘﺎت‪.‬‬

‫ﺷﻜﻞ )‪ : (٣٦ - ٦‬رﺳﻢ رﻣﺰى ﻟﻮﺻﻠﻪ ﻋﻠﻰ ﺷﻜﻞ ﺣﺮف )‪ (T‬أو )‪.(Y‬‬

‫وﻳﻌﻄﻰ اﻟﻤﺮﺟﻊ )‪ (5‬ﺷﺮﺣﺎ ﻟﻬﺬﻩ اﻟﺪاﺋﺮﻩ آﻤﺎ ﻳﻠﻰ‪.‬‬
‫ﻣﻘﻠﻮب اﻟﻤﻌﺎوﻗﻪ ﻋﻨﺪ ﻣﺪﺧﻞ ﻣﻘﺴﻢ اﻟﻘﺪرﻩ )‪ (Yin‬ﻳﻤﻜﻦ ﺣﺴﺎﺑﻪ آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫)‪(6.18‬‬

‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪+‬‬
‫=‬
‫‪Z1 Z 2 Z o‬‬

‫‪Yin = jB +‬‬

‫و ﺑﺎﻋﺘﺒﺎر اﻟﺪاﺋﺮﻩ دون ﻓﻘﺪ )‪ (lossless‬ﺗﺼﺒﺢ )‪(B=0‬‬

‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪+‬‬
‫=‬
‫‪Z1 Z 2 Z o‬‬

‫)‪(6.19‬‬

‫ﺑﺘﻄﺒ ﻴﻖ اﻟﻤﻌﺎدﻟ ﻪ )‪ (6.19‬ﻟﻌﻤ ﻞ ﻣﻘﺴ ﻢ ﻟﻠﻘ ﺪرﻩ ﻳﻘﺴ ﻢ اﻟﻘﺪرﻩ اﻟﺪاﺧﻠﻪ ﻣﻦ اﻟﻤﺪﺧﻞ رﻗﻢ )‪ (1‬ﻟﺘﺨﺮج ﻣﻨﻘﺴﻤﻪ اﻟﻰ ﻗﺴﻤﻴﻦ‬
‫ﻣﺘﺴﺎوﻳﻴﻦ ﻣﻦ اﻟﻤﺨﺮﺟﻴﻦ )‪ (2 , 3‬و ﺑﺎﺧﺘﻴﺎر )‪ (Zo = 50Ω‬ﺗﻜﻮن )‪.(Z1 = Z2 = 100Ω‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪+‬‬
‫=‬
‫‪100 100 50‬‬

‫‪213‬‬

‫ﻟﻜ ﻦ اذا أردﻧ ﺎ ﺗﻘﺴ ﻴﻢ اﻟﻘ ﺪرﻩ اﻟﺪاﺧﻠ ﻪ ﻣ ﻦ اﻟﻤﺪﺧﻞ رﻗﻢ )‪ (1‬ﻟﺘﺨﺮج ﻣﻨﻘﺴﻤﻪ اﻟﻰ ﻗﺴﻤﻴﻦ ﻏﻴﺮ ﻣﺘﺴﺎوﻳﻴﻦ ﻣﻦ اﻟﻤﺨﺮﺟﻴﻦ‬
‫)‪ (2 , 3‬ﻓﺎن هﺬا ﻣﻤﻜﻦ ﺣﺴﺐ اﺧﺘﻴﺎر ﻗﻴﻢ )‪. (Z1 , Z2‬‬
‫اﻟﻤ ﺮﺟﻊ )‪ (5‬ﻳﻌﻄ ﻰ ﻣ ﺜﺎل رﻗﻤ ﻰ ﻟﺘﺼ ﻤﻴﻢ ﻣﻘﺴ ﻢ ﻟﻠﻘ ﺪرﻩ ﻣ ﺘﻜﻮن ﻣ ﻦ وﺻ ﻠﻪ ﻋﻠ ﻰ ﺷ ﻜﻞ ﺣ ﺮف )‪ (T‬ﻟ ﻪ ﻣﻌﺎوﻗ ﻪ ﻋ ﻨﺪ‬
‫اﻟﻤ ﺪﺧﻞ رﻗ ﻢ )‪ (1‬ﺗﺴ ﺎوى )‪ (Zo = 50Ω‬ﻳﻘﺴ ﻢ اﻟﻘﺪرﻩ اﻟﺨﺎرﺟﻪ اﻟﻰ ﻗﺴﻤﻴﻦ ﻏﻴﺮ ﻣﺘﺴﺎوﻳﻴﻦ ﺑﻨﺴﺒﺔ )‪ (2:1‬أى أن ﺛﻠﺚ‬
‫اﻟﻘﺪرﻩ اﻟﺨﺎرﺟﻪ ﻳﺨﺮج ﻣﻦ اﻟﻤﺨﺮج رﻗﻢ )‪ (2‬ﺑﻴﻨﻤﺎ ﺛﻠﺜﻰ اﻟﻘﺪرﻩ اﻟﺨﺎرﺟﻪ ﻳﺨﺮج ﻣﻦ اﻟﻤﺨﺮج رﻗﻢ )‪.(3‬‬
‫و ﻳﻤﻜﻦ اﺳﺘﻨﺘﺎج ﻗﻴﻢ )‪ (Z1 , Z2‬اﻟﻠﺘﺎن ﺗﺤﻘﻘﺎن هﺬا اﻷداء ﻣﻦ ﺷﻜﻞ )‪ (٣٦ - ٦‬ﺑﺎﻟﻄﺮﻳﻘﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫ﺑﻔﺮض أن اﻟﻘﺪرﻩ اﻟﺪاﺧﻠﻪ ﻣﻦ اﻟﻤﺪﺧﻞ رﻗﻢ )‪ (1‬ﺗﺴﺎوى‬

‫‪1 Vo2‬‬
‫= ‪Pin‬‬
‫‪2 Zo‬‬

‫)‪(6.20‬‬

‫اﻟﻘﺪرﻩ اﻟﺨﺎرﺟﻪ ﻣﻦ اﻟﻤﺨﺮج رﻗﻢ )‪ (2‬ﺗﺴﺎوى ﺛﻠﺚ اﻟﻘﺪرﻩ اﻟﺪاﺧﻠﻪ ﻣﻦ اﻟﻤﺪﺧﻞ رﻗﻢ )‪(1‬‬
‫)‪(6.21‬‬

‫‪1 Vo2 1‬‬
‫⎞ ‪1⎛1 V2‬‬
‫⎟⎟ ‪= Pin = ⎜⎜ o‬‬
‫‪2 Z1 3‬‬
‫⎠ ‪3 ⎝ 2 Zo‬‬

‫= ‪P1‬‬

‫و ﻣﻨﻬﺎ )‪(Z1 = 3 Zo = 150Ω‬‬
‫اﻟﻘﺪرﻩ اﻟﺨﺎرﺟﻪ ﻣﻦ اﻟﻤﺨﺮج رﻗﻢ )‪ (3‬ﺗﺴﺎوى ﺛﻠﺜﻴﻦ اﻟﻘﺪرﻩ اﻟﺪاﺧﻠﻪ ﻣﻦ اﻟﻤﺪﺧﻞ رﻗﻢ )‪(1‬‬
‫)‪(6.22‬‬

‫‪1 Vo2 2‬‬
‫⎞ ‪2 ⎛ 1 Vo2‬‬
‫⎟‬
‫⎜⎜ = ‪= Pin‬‬
‫= ‪P2‬‬
‫‪2 Z2 3‬‬
‫⎠⎟ ‪3 ⎝ 2 Z o‬‬

‫‪3 Zo‬‬
‫⎛‬
‫⎞‬
‫و ﻣﻨﻬﺎ ⎟ ‪= 75 Ω‬‬
‫= ‪⎜ Z2‬‬
‫‪2‬‬
‫⎝‬
‫⎠‬

‫ﺗﻤ ﺮﻳﻦ ‪ :‬اﺳ ﺘﻨﺘﺞ ﻗ ﻴﻢ )‪ (Z1 , Z2‬ﻟﻠﻮﺻ ﻠﻪ ﻋﻠﻰ ﺷﻜﻞ ﺣﺮف )‪ (T‬أو )‪ (Y‬ﻟﺘﻘﺴﻴﻢ اﻟﻘﺪرﻩ ﺑﻴﻦ اﻟﻤﺨﺮﺟﻴﻦ ﺑﺤﻴﺚ ﺗﺨﺮج‬
‫ﻧﺴ ﺒﺔ )‪ (2/5‬ﻣ ﻦ اﻟﻘ ﺪرﻩ اﻟﺨﺎرﺟ ﻪ ﻣ ﻦ اﻟﻤﺨ ﺮج رﻗ ﻢ )‪ (2‬ﺑﻴ ﻨﻤﺎ ﺗﺨﺮج ﻧﺴﺒﺔ )‪ (3/5‬ﻣﻦ اﻟﻘﺪرﻩ اﻟﺨﺎرﺟﻪ ﻣﻦ اﻟﻤﺨﺮج‬
‫رﻗﻢ )‪ (3‬ﺑﺎﺗﺒﺎع ﻧﻔﺲ اﻟﻄﺮﻳﻘﻪ اﻟﻤﺬآﻮرﻩ أﻋﻼﻩ و ﻣﻊ اﻋﺘﺒﺎر )‪.(Zo = 50Ω‬‬
‫ﻣ ﺜﺎل )‪ : (٤ – ٦‬ﻣﻄﻠ ﻮب ﺗﺼ ﻤﻴﻢ ﻣﻘﺴ ﻤﻴﻦ ﻟﻠﻘ ﺪرﻩ ﻋﻠ ﻰ ﺷ ﻜﻞ ﺣ ﺮف )‪ ، (T‬اﻷول ﻳﻘﺴ ﻢ اﻟﻘ ﺪرﻩ ﺑﺎﻟﺘﺴ ﺎوى ﺑ ﻴﻦ‬
‫اﻟﻤﺨ ﺮﺟﻴﻦ و اﻟﺜﺎﻧ ﻰ ﻳﻘﺴ ﻢ اﻟﻘ ﺪرﻩ اﻟﺨﺎرﺟ ﻪ اﻟ ﻰ ﻗﺴ ﻤﻴﻦ ﻏﻴ ﺮ ﻣﺘﺴ ﺎوﻳﻴﻦ ﺑﻨﺴ ﺒﺔ )‪ (2:1‬ﻋ ﻨﺪ ﺗ ﺮدد )‪ (5 GHz‬ﻣﻊ‬
‫اﻋﺘ ﺒﺎر )‪ (Zo = 50Ω‬و ﺑﺎﺳ ﺘﺨﺪام ﺷ ﺮﻳﺤﻪ ﺷ ﺮﻳﻄﻴﻪ ﺑﺎﻟﻤﻮاﺻ ﻔﺎت اﻟﺘﺎﻟ ﻴﻪ ‪ :‬ﺛﺎﺑ ﺖ اﻟﻌ ﺰل )‪ (εr =3.38‬و ﺳ ﻤﻚ‬
‫اﻟﻌﺎزل )‪ (h = 1 mm‬و ﺳﻤﻚ اﻟﻤﻮﺻﻞ )‪. (t = 0.07 mm‬‬
‫اﻟﺤﻞ ‪:‬‬
‫أوﻻ ‪ -‬ﺗ ﻢ ﺣﺴ ﺎب اﻷﺑﻌ ﺎد اﻟﻤﺒﺪﺋ ﻴﻪ ﻟﻤﻘﺴ ﻢ اﻟﻘ ﺪرﻩ ﻋﻠ ﻰ ﺷ ﻜﻞ ﺣﺮف )‪ (T‬اﻟﺬى ﻳﻘﺴﻢ اﻟﻘﺪرﻩ ﺑﺎﻟﺘﺴﺎوى ﺑﻴﻦ اﻟﻤﺨﺮﺟﻴﻦ‬
‫آﻤﺎ ﻳﻠﻰ‪:‬‬

‫‪214‬‬

‫ﺣﺴ ﺐ اﻟﺒ ﻴﺎﻧﺎت اﻟﻤﻮﺿ ﺤﻪ ﻓ ﻰ ﺷ ﻜﻞ )‪ (٣٦ - ٦‬اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ ﻋ ﻨﺪ اﻟﻤ ﺪﺧﻞ رﻗ ﻢ )‪ (1‬ﻟ ﻪ ﻣﻌﺎوﻗﻪ ﺗﺴﺎوى ) = ‪Zo‬‬
‫‪o‬‬

‫‪ (50Ω‬آ ﺎن ﻋﺮﺿ ﻪ ﻳﺴ ﺎوى )‪ (Wo =2.25 mm‬و ﺗ ﻢ اﺧﺘ ﻴﺎر ﻃ ﻮل اﻟﺨ ﻂ ﻟﻴﻜﺎﻓ ﺊ )‪ (90 ≡λg/4‬و ﺗ ﻢ ﺣﺴ ﺎب‬
‫ﻃﻮﻟﻪ و آﺎن ﻳﺴﺎوى )‪.(Lo = 9.16 mm‬‬
‫اﻟﺨﻄ ﺎن اﻟﺸ ﺮﻳﻄﻴﺎن ﻋ ﻨﺪ اﻟﻤﺨ ﺮﺟﻴﻦ )‪ (2 , 3‬ﻟﻬﻤﺎ ﻣﻌﺎوﻗﻪ ﻣﻤﻴﺰﻩ ﺗﺴﺎوى )‪ (Z1 = Z2 =100 Ω‬آﺎن ﻋﺮض آﻞ‬
‫‪o‬‬

‫ﻣ ﻨﻬﻤﺎ ﻳﺴ ﺎوى )‪ (W1 = W2 =0.52 mm‬و ﺗ ﻢ اﺧﺘﻴﺎر ﻃﻮل آﻞ ﻣﻨﻬﻤﺎ ﻟﻴﻜﺎﻓﺊ )‪ (90 ≡λg/4‬و ﺑﺤﺴﺎب اﻟﻄﻮل‬
‫آﺎن ﻳﺴﺎوى )‪.(L1 = L2 = 9.71 mm‬‬
‫ﺷ ﻜﻞ )‪ (٣٧ - ٦‬ﻳﺒ ﻴﻦ ﻣﺨﻄ ﻂ ﻣﻘﺴ ﻢ اﻟﻘ ﺪرﻩ ﻋﻠ ﻰ ﺷ ﻜﻞ ﺣ ﺮف )‪ (T‬اﻟﺬى ﻳﻘﺴﻢ اﻟﻘﺪرﻩ ﺑﺎﻟﺘﺴﺎوى ﺑﻴﻦ اﻟﻤﺨﺮﺟﻴﻦ ﻣﻊ‬
‫ﺗﻮﺿﻴﺢ أرﻗﺎم اﻟﻤﺨﺎرج‪.‬‬

‫ﺷﻜﻞ )‪ : (٣٧ - ٦‬ﻣﻘﺴﻢ اﻟﻘﺪرﻩ ﻋﻠﻰ ﺷﻜﻞ ﺣﺮف )‪ (T‬اﻟﺬى ﻳﻘﺴﻢ اﻟﻘﺪرﻩ ﺑﺎﻟﺘﺴﺎوى ﺑﻴﻦ اﻟﻤﺨﺮﺟﻴﻦ‪.‬‬

‫ﻧﻈ ﺮﻳﺎ ﻟﻜ ﻰ ﺗﻨﻘﺴ ﻢ اﻟﻘ ﺪرﻩ اﻟﺨﺎرﺟ ﻪ اﻟ ﻰ ﻗﺴ ﻤﻴﻦ ﻣﺘﺴﺎوﻳﻴﻦ و ﻳﺨﺮج آﻞ ﻧﺼﻒ ﻣﻦ اﻟﻤﺨﺮﺟﻴﻦ )‪ ، (2 , 3‬ﺑﻤﻌﻨﻰ أن‬
‫آﻞ ﻣﻦ )‪ (|S21|dB , |S31|dB‬ﻳﺴﺎوى )‪ ] . (−3dB‬ﺗﺬآﺮ أن‬

‫‪[ 10 log (0.5) = −3‬‬

‫ﺗ ﻢ ﺗﺤﻠ ﻴﻞ اﻟﺪاﺋﺮﻩ ﺑﺎﺳﺘﺨﺪام ﺑﺮﻧﺎﻣﺞ ﻟﺘﺤﻠﻴﻞ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ ﻓﻰ ﺣﻴﺰ ﻧﺴﺒﻰ ﻳﺴﺎوى )‪ (500MHz ≡ 10%‬أى‬
‫ﻣﻦ )‪ (4.75 GHz‬اﻟﻰ )‪ (5.25 GHz‬و آﺎﻧﺖ اﻟﻨﺘﺎﺋﺞ آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫ﺷ ﻜﻞ )‪ (٣٨ - ٦‬ﻳﺒ ﻴﻦ ﻗ ﻴﻢ )‪ (|S21|dB , |S31|dB‬ﻟﻠﺪاﺋ ﺮﻩ ‪ ،‬اﻻﻧﺤ ﺮاف ﻋ ﻦ )‪ (−3dB‬ﻻ ﻳ ﺰﻳﺪ ﻋ ﻦ )‪(0.46dB‬‬
‫ﺑﺎﻟﻨﺴ ﺒﻪ ﻟـﻘﻴﻢ )‪ (|S21|dB‬و ﻻ ﻳﺰﻳﺪ ﻋﻦ )‪ (0.63dB‬ﺑﺎﻟﻨﺴﺒﻪ ﻟـﻘﻴﻢ )‪ (|S31|dB‬ﻓﻰ اﻟﺤﻴﺰ اﻟﺘﺮددى اﻟﺬى ﺗﻢ ﻓﻴﻪ اﻟﺘﺤﻠﻴﻞ‬
‫و هﻰ ﻧﺘﺎﺋﺞ ﻣﻘﺒﻮﻟﻪ ﺑﺎﻟﻨﺴﺒﻪ ﻟﻬﺬﻩ اﻟﺪاﺋﺮﻩ‪.‬‬
‫ﻣ ﻦ ﺷ ﻜﻞ )‪ (٣٩ - ٦‬ﻧﻼﺣ ﻆ أن ﻣﻌﺎﻣ ﻞ اﻻﻧﻌﻜﺎس )‪ ، (|S11|dB < −9.62dB‬و ﻣﻦ ﻧﻔﺲ اﻟﺸﻜﻞ ﻧﻼﺣﻆ أن اﻟﻌﺰل‬
‫ﺑ ﻴﻦ اﻟﻤﺨﺮﺟﻴﻦ رﻗﻢ )‪ (2‬و رﻗﻢ )‪ (3‬أى )‪ (|S23|dB‬أﻗﻞ ﻣﻦ )‪ (−9.46 dB‬و هﻰ ﻧﺘﺎﺋﺞ ﻣﻘﺒﻮﻟﻪ ﺑﺎﻟﻨﺴﺒﻪ ﻟﻬﺬﻩ اﻟﺪاﺋﺮﻩ‬
‫و ان آﺎﻧﺖ ﻏﻴﺮ ﻣﻨﺎﺳﺒﻪ ﻟﻠﻌﺪﻳﺪ ﻣﻦ اﻟﺘﻄﺒﻴﻘﺎت‪.‬‬
‫ﺷ ﻜﻞ )‪ (٤٠ - ٦‬ﻳﺒ ﻴﻦ أن ﻣﻌﺎﻣﻠ ﻰ اﻻﻧﻌﻜ ﺎس )‪ (|S22|dB > −3.65dB‬و )‪ (|S33|dB > −3.479dB‬و ه ﻰ ﻧ ﺘﺎﺋﺞ‬
‫ﺳﻴﺌﻪ ﺑﺎﻟﻨﺴﺒﻪ ﻟﻤﻌﻈﻢ اﻟﺘﻄﺒﻴﻘﺎت‪.‬‬
‫ﻋﻤﻮﻣﺎ ﻓﺎن ﺟﻤﻴﻊ هﺬﻩ اﻟﻨﺘﺎﺋﺞ ﻳﻤﻜﻦ ﺗﺤﺴﻴﻨﻬﺎ ﺑﺎﻟﺒﺤﺚ ﻋﻦ اﻟﺤﻞ اﻷﻣﺜﻞ )‪.(optimization‬‬

‫‪215‬‬

‫ﺷﻜﻞ )‪ : (٣٨ - ٦‬ﻗﻴﻢ )‪ (|S21|dB , |S31|dB‬ﻟﻤﻘﺴﻢ اﻟﻘﺪرﻩ ﺑﺎﻟﺘﺴﺎوى ﻋﻠﻰ ﺷﻜﻞ ﺣﺮف )‪.(T‬‬

‫ﺷﻜﻞ )‪ : (٣٩ - ٦‬ﻗﻴﻢ )‪ (|S11|dB , |S23|dB‬ﻟﻤﻘﺴﻢ اﻟﻘﺪرﻩ ﺑﺎﻟﺘﺴﺎوى ﻋﻠﻰ ﺷﻜﻞ ﺣﺮف )‪.(T‬‬

‫ﺷﻜﻞ )‪ : (٤٠ - ٦‬ﻗﻴﻢ )‪ (|S33|dB , |S22|dB‬ﻟﻤﻘﺴﻢ اﻟﻘﺪرﻩ ﺑﺎﻟﺘﺴﺎوى ﻋﻠﻰ ﺷﻜﻞ ﺣﺮف )‪.(T‬‬

‫‪216‬‬

‫ﺛﺎﻧ ﻴﺎ ‪ -‬ﺗ ﻢ ﺣﺴ ﺎب اﻷﺑﻌ ﺎد اﻟﻤﺒﺪﺋ ﻴﻪ ﻟﻤﻘﺴ ﻢ اﻟﻘﺪرﻩ ﻋﻠﻰ ﺷﻜﻞ ﺣﺮف )‪ (T‬اﻟﺬى ﻳﻘﺴﻢ اﻟﻘﺪرﻩ اﻟﺨﺎرﺟﻪ اﻟﻰ ﻗﺴﻤﻴﻦ ﻏﻴﺮ‬
‫ﻣﺘﺴﺎوﻳﻴﻦ ﺑﻨﺴﺒﺔ )‪ (2:1‬ﺑﻴﻦ اﻟﻤﺨﺮﺟﻴﻦ آﻤﺎ ﻳﻠﻰ‪:‬‬
‫ﻧﻌ ﺮف ﻣ ﻦ اﻟﻤﻌ ﺎدﻻت )‪ (6.21‬و )‪ (6.22‬أن ﻗ ﻴﻢ )‪ (Z1 = 150Ω‬و )‪ (Z2 = 75Ω‬ﻟﺘﻘﺴ ﻴﻢ اﻟﻘ ﺪرﻩ ﺑﻨﺴﺒﺔ )‪(2:1‬‬
‫ﺑﻴﻦ اﻟﻤﺨﺮﺟﻴﻦ‪.‬‬
‫ﻣ ﻦ اﻟﺒﻴﺎﻧﺎت اﻟﻤﻮﺿﺤﻪ ﻓﻰ ﺷﻜﻞ )‪ (٣٦ - ٦‬اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ ﻋﻨﺪ اﻟﻤﺪﺧﻞ رﻗﻢ )‪ (1‬ﻟﻪ ﻣﻌﺎوﻗﻪ ﺗﺴﺎوى )‪(Zo = 50Ω‬‬
‫‪o‬‬

‫آ ﺎن ﻋﺮﺿ ﻪ ﻳﺴ ﺎوى )‪ (Wo =2.25 mm‬و ﺗ ﻢ اﺧﺘ ﻴﺎر ﻃ ﻮل اﻟﺨ ﻂ ﻟﻴﻜﺎﻓ ﺊ )‪ (90 ≡λg/4‬و ﺗ ﻢ ﺣﺴﺎب ﻃﻮﻟﻪ و‬
‫آﺎن ﻳﺴﺎوى )‪.(Lo = 9.16 mm‬‬
‫اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ ﻋ ﻨﺪ اﻟﻤﺨ ﺮج رﻗ ﻢ )‪ (2‬ﻟﻪ ﻣﻌﺎوﻗﻪ ﺗﺴﺎوى )‪ (Z1 = 150 Ω‬آﺎن ﻋﺮﺿﻪ )‪ (W1 = 0.1 mm‬و‬
‫‪o‬‬

‫ﺗﻢ اﺧﺘﻴﺎر ﻃﻮل اﻟﺨﻂ ﻟﻴﻜﺎﻓﺊ )‪ (90 ≡λg/4‬و ﺗﻢ ﺣﺴﺎب ﻃﻮﻟﻪ و آﺎن ﻳﺴﺎوى )‪.(L1 = 10.1 mm‬‬
‫اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ ﻋﻨﺪ اﻟﻤﺨﺮج رﻗﻢ )‪ (3‬ﻟﻪ ﻣﻌﺎوﻗﻪ ﺗﺴﺎوى )‪ (Z2 = 75 Ω‬آﺎن ﻋﺮﺿﻪ )‪ (W2 =1.06 mm‬و ﺗﻢ‬
‫‪o‬‬

‫اﺧﺘﻴﺎر ﻃﻮل اﻟﺨﻂ ﻟﻴﻜﺎﻓﺊ )‪ (90 ≡λg/4‬و ﺗﻢ ﺣﺴﺎب ﻃﻮﻟﻪ و آﺎن ﻳﺴﺎوى )‪.(L2 = 9.47 mm‬‬
‫ﻧﻈ ﺮﻳﺎ ﻟﻜ ﻰ ﺗﻨﻘﺴ ﻢ اﻟﻘ ﺪرﻩ اﻟﺨﺎرﺟ ﻪ اﻟ ﻰ ﻗﺴ ﻤﻴﻦ ﻏﻴ ﺮ ﻣﺘﺴﺎوﻳﻴﻦ ﺑﻨﺴﺒﺔ )‪ (2:1‬ﺑﻤﻌﻨﻰ أن ﺛﻠﺚ اﻟﻘﺪرﻩ اﻟﺨﺎرﺟﻪ ﻳﺨﺮج‬
‫ﻣﻦ اﻟﻤﺨﺮج رﻗﻢ )‪ (2‬ﺑﻴﻨﻤﺎ ﺛﻠﺜﻰ اﻟﻘﺪرﻩ اﻟﺨﺎرﺟﻪ ﻳﺨﺮج ﻣﻦ اﻟﻤﺨﺮج رﻗﻢ )‪ (3‬و ﺑﺤﺴﺎب ﺑﺎراﻣﺘﺮات اس ﻧﺠﺪ أن هﺬا‬
‫ﻳﺆدى اﻟﻰ )‪ (|S21|dB = −4.77‬و )‪ (|S31|dB = −1.761‬وهﺬا ﻳﺘﺤﻘﻖ ﻓﻰ داﺋﺮﻩ ﻣﺜﺎﻟﻴﻪ‪.‬‬
‫ﺗﺬآﺮ أن‬

‫⎤ ‪⎡1‬‬
‫‪10 log ⎢ ⎥ = −4.77‬‬
‫⎦‪⎣3‬‬

‫و أن‬

‫⎤‪⎡2‬‬
‫‪10 log ⎢ ⎥ = −1.761‬‬
‫⎦‪⎣3‬‬

‫ﺗ ﻢ ﺗﺤﻠ ﻴﻞ اﻟﺪاﺋﺮﻩ ﺑﺎﺳﺘﺨﺪام ﺑﺮﻧﺎﻣﺞ ﻟﺘﺤﻠﻴﻞ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ ﻓﻰ ﺣﻴﺰ ﻧﺴﺒﻰ ﻳﺴﺎوى )‪ (500MHz ≡ 10%‬أى‬
‫ﻣﻦ )‪ (4.75 GHz‬اﻟﻰ )‪ (5.25 GHz‬و آﺎﻧﺖ اﻟﻨﺘﺎﺋﺞ ﻣﺨﺘﻠﻔﻪ ﻋﻦ اﻟﻘﻴﻢ اﻟﻤﺤﺴﻮﺑﻪ ﻧﻈﺮﻳﺎ ﺣﻴﺚ آﺎﻧﺖ ﻗﻴﻤﺔ‬
‫)‪ (|S21|dB = −7.05‬ﻋﻨﺪ )‪ (5 GHz‬و هﻰ ﻧﺘﻴﺠﻪ ﺳﻴﺌﻪ ‪ ،‬ﺑﻴﻨﻤﺎ )‪ (|S31|dB = −1.456‬ﻋﻨﺪ )‪ (5 GHz‬وهﻰ‬
‫ﻧﺘﻴﺠﻪ ﻗﺮﻳﺒﻪ ﻣﻦ اﻟﻤﻄﻠﻮب‪.‬‬
‫و ﻟﺘﺤﺴ ﻴﻦ هﺎﺗ ﻴﻦ اﻟﻘﻴﻤﺘ ﻴﻦ ﺗ ﻢ ﻋﻤ ﻞ اﻟ ﺒﺤﺚ ﻋ ﻦ اﻟﺤ ﻞ اﻷﻣ ﺜﻞ )‪ (optimization‬ﺑﺎﺳ ﺘﺨﺪام ﺑ ﺮﻧﺎﻣﺞ ﺗﺤﻠ ﻴﻞ دواﺋ ﺮ‬
‫اﻟﻤﻴﻜﺮووﻳﻒ و آﺎﻧﺖ اﻷﺑﻌﺎد اﻟﻨﻬﺎﺋﻴﻪ آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫‪W2=1.63 mm‬‬

‫‪W1=0.75 mm‬‬

‫‪Wo=2.25 mm‬‬

‫‪L2=9.09 mm‬‬

‫‪L1=8.56 mm‬‬

‫‪Lo=8.0 mm‬‬

‫و آﺎﻧ ﺖ ﻧ ﺘﺎﺋﺞ اﻟﺘﺤﻠﻴﻞ ﻋﻨﺪ )‪ (5 GHz‬آﺎﻟﺘﺎﻟﻰ ‪ (|S21|dB = −4.783) :‬و )‪ (|S31|dB = −1.782‬وهﻰ ﻧﺘﻴﺠﻪ‬
‫ﻗﺮﻳﺒﻪ ﺟﺪا ﻣﻦ اﻟﻘﻴﻢ اﻟﻤﺤﺴﻮﺑﻪ ﻧﻈﺮﻳﺎ‪.‬‬
‫ﻓ ﻰ اﻟﺤﻴ ﺰ اﻟﻨﺴ ﺒﻰ اﻟﻤﺴ ﺎوى ﻟـ )‪ (500MHz ≡ 10%‬آﺎﻧﺖ ﻗﻴﻢ )‪ (|S21|dB‬ﺗﺘﺮاوح ﺑﻴﻦ )‪ (−4.783‬و )‪(−4.78‬‬
‫ﺑﻴ ﻨﻤﺎ آﺎﻧ ﺖ ﻗ ﻴﻢ )‪ (|S31|dB‬ﺗﺘ ﺮاوح ﺑ ﻴﻦ )‪ (−1.782‬و )‪ (−1.788‬و ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (٤١ - ٦‬ﻗﻴﻤﺘﻰ )‪ (|S21|dB‬و‬
‫)‪ (|S31|dB‬ﻓﻰ هﺬا اﻟﺤﻴﺰ اﻟﺘﺮددى‪.‬‬

‫‪217‬‬

‫ﺷﻜﻞ )‪ : (٤١ - ٦‬ﻗﻴﻢ )‪ (|S21|dB , |S31|dB‬ﻟﻤﻘﺴﻢ اﻟﻘﺪرﻩ ﺑﻨﺴﺒﺔ )‪ (2:1‬ﻋﻠﻰ ﺷﻜﻞ ﺣﺮف )‪.(T‬‬

‫ﺷﻜﻞ )‪ : (٤٢ - ٦‬ﻗﻴﻢ )‪ (|S11|dB , |S23|dB‬ﻟﻤﻘﺴﻢ اﻟﻘﺪرﻩ ﺑﻨﺴﺒﺔ )‪ (2:1‬ﻋﻠﻰ ﺷﻜﻞ ﺣﺮف )‪.(T‬‬

‫ﺷﻜﻞ )‪ : (٤٣ - ٦‬ﻗﻴﻢ )‪ (|S33|dB , |S22|dB‬ﻟﻤﻘﺴﻢ اﻟﻘﺪرﻩ ﺑﻨﺴﺒﺔ )‪ (2:1‬ﻋﻠﻰ ﺷﻜﻞ ﺣﺮف )‪.(T‬‬

‫‪218‬‬

‫ﺷ ﻜﻞ )‪ (٤٢ - ٦‬ﻳﻮﺿ ﺢ أن ﻣﻌﺎﻣ ﻞ اﻻﻧﻌﻜ ﺎس )‪ (|S11|dB < −30.28dB‬و هﻰ ﻧﺘﻴﺠﻪ ﻣﻤﺘﺎزﻩ ‪ ،‬و ﻓﻰ ﻧﻔﺲ اﻟﺸﻜﻞ‬
‫ﻧﺠ ﺪ أن اﻟﻌ ﺰل ﺑ ﻴﻦ اﻟﻤﺨ ﺮﺟﻴﻦ رﻗ ﻢ )‪ (2‬و رﻗ ﻢ )‪ (3‬أى )‪ (|S23|dB‬أﻗ ﻞ ﻣ ﻦ )‪ (−6.514 dB‬و ه ﻰ ﻧﺘ ﻴﺠﻪ ﻏﻴ ﺮ‬
‫ﻣﻨﺎﺳﺒﻪ ﻟﻠﻌﺪﻳﺪ ﻣﻦ اﻟﺘﻄﺒﻴﻘﺎت‪.‬‬
‫ﺷ ﻜﻞ )‪ (٤٣ - ٦‬ﻳﺒﻴﻦ أن ﻣﻌﺎﻣﻠﻰ اﻻﻧﻌﻜﺎس )‪ (|S22|dB > −3.55dB‬و هﻰ ﻧﺘﻴﺠﻪ ﺳﻴﺌﻪ و )‪(|S33|dB < −9.5dB‬‬
‫و ه ﻰ ﻧﺘ ﻴﺠﻪ ﻣﻘ ﺒﻮﻟﻪ و ان آﺎﻧ ﺖ ﻻ ﺗﻨﺎﺳ ﺐ ﻣﻌﻈ ﻢ اﻟﺘﻄﺒﻴﻘﺎت‪ .‬ﻋﻤﻮﻣﺎ ﻓﺎن ﺟﻤﻴﻊ اﻟﻨﺘﺎﺋﺞ ﻳﻤﻜﻦ ﺗﺤﺴﻴﻨﻬﺎ أآﺜﺮ ﻣﻦ ذﻟﻚ‬
‫ﺑﺎﻟﺒﺤﺚ ﻋﻦ اﻟﺤﻞ اﻷﻣﺜﻞ‪.‬‬
‫و ﻟﻜ ﻦ ﻇﻬ ﺮ ﻟ ﻨﺎ ﻣﻦ ﻣﺜﺎل )‪ (٤ – ٦‬أن ﻣﻘﺴﻢ اﻟﻘﺪرﻩ ﻋﻠﻰ ﺷﻜﻞ ﺣﺮف )‪ (T‬أو )‪ (Y‬ﻻ ﻳﻨﺎﺳﺐ اﻟﺘﻄﺒﻴﻘﺎت اﻟﺘﻰ ﺗﺤﺘﺎج‬
‫اﻟ ﻰ ﻋ ﺰل ﺟ ﻴﺪ ﺑ ﻴﻦ اﻟﻤﺨ ﺮﺟﻴﻦ و ﻣﻌﺎﻣﻼت اﻧﻌﻜﺎس ﻣﻨﺨﻔﻀﻪ ﻋﻨﺪ ﺟﻤﻴﻊ اﻟﻤﺨﺎرج و ﻟﺘﺤﻘﻴﻖ هﺬﻩ اﻟﻤﻮاﺻﻔﺎت ﻳﺘﻌﻴﻦ‬
‫ﻋﻠﻰ اﻟﻤﺼﻤﻢ اﺳﺘﺨﺪام أﻧﻮاع أﺧﺮى ﻣﻦ ﻣﻘﺴﻤﺎت اﻟﻘﺪرﻩ ‪.‬‬
‫ﻣﻘﺴ ﻢ‪/‬ﻣﺠﻤ ﻊ اﻟﻘﺪرﻩ ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن )‪ (Wilkinson Power Divider/Combiner‬هﻮ أﺣﺪ أﻧﻮاع ﻣﻘﺴﻤﺎت‬
‫اﻟﻘﺪرﻩ اﻟﺘﻰ ﺗﺤﻘﻖ ﻋﺰل ﻣﻤﺘﺎز ﺑﻴﻦ اﻟﻤﺨﺮﺟﻴﻦ و ﻣﻌﺎﻣﻼت اﻧﻌﻜﺎس ﻣﻨﺨﻔﻀﻪ ﻋﻨﺪ ﺟﻤﻴﻊ اﻟﻤﺨﺎرج‪.‬‬
‫ه ﻨﺎك أﻧ ﻮاع ﻋﺪﻳ ﺪﻩ ﻣ ﻦ ﻣﻘﺴ ﻢ‪/‬ﻣﺠﻤﻊ اﻟﻘﺪرﻩ ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن‪ .‬و ﻳﺒﻴﻦ ﺷﻜﻞ )‪ (٤٤ - ٦‬رﺳﻢ رﻣﺰى ﻟﻤﻘﺴﻢ‪/‬ﻣﺠﻤﻊ‬
‫اﻟﻘﺪرﻩ ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن و هﻮ ﻳﺘﻤﻴﺰ ﺑﺤﻴﺰ ﺗﺮددى ﻳﺒﻠﻎ )‪ (one octave‬ﺗﻘﺮﻳﺒﺎ أى اﻟﺤﻴﺰ اﻟﺘﺮددى اﻟﺬى ﻳﻜﻮن ﻓﻴﻪ‬
‫اﻟﺤ ﺪ اﻷﻋﻠ ﻰ ﻟﻠﺘ ﺮدد )‪ (f2‬ﻳﺴ ﺎوى ﺿ ﻌﻒ اﻟﺤ ﺪ اﻷدﻧﻰ ﻟﻠﺘﺮدد )‪ (f1‬ﺑﺎﻟﺤﻴﺰ ﻣﺜﻼ ﻣﻦ )‪ (3GHz‬اﻟﻰ )‪ (6GHz‬أو‬
‫ﻣﻦ )‪ (4GHz‬اﻟﻰ )‪ (8GHz‬و هﻜﺬا ‪.‬‬
‫و ه ﻮ ﻳﻘﺴ ﻢ اﻟﻘ ﺪرﻩ اﻟﺪاﺧﻠ ﻪ ﻣ ﻦ اﻟﻤ ﺪﺧﻞ رﻗ ﻢ )‪ (1‬ﻟﺘﺨ ﺮج ﻣﻨﻘﺴﻤﻪ اﻟﻰ ﻗﺴﻤﻴﻦ ﻣﺘﺴﺎوﻳﻴﻦ ﻣﻦ اﻟﻤﺨﺮﺟﻴﻦ )‪ (2 , 3‬و‬
‫ﺑﻨﻔﺲ زاوﻳﺔ اﻟﻄﻮر )‪.(inphase‬‬
‫و ﻳ ﺘﻜﻮن ﻣﻘﺴ ﻢ اﻟﻘ ﺪرﻩ ﻣ ﻦ ﻧ ﻮع وﻳﻠﻜﻨﺴ ﻮن آﻤ ﺎ ﻓ ﻰ ﺷ ﻜﻞ )‪ (٤٤ - ٦‬ﻣ ﻦ ﺧﻄ ﻴﻦ ﺷ ﺮﻳﻄﻴﻴﻦ )ذراﻋ ﻴﻦ( ﻟﻜ ﻞ ﻣ ﻨﻬﻤﺎ‬
‫‪o‬‬

‫ﻣﻌﺎوﻗ ﻪ ﻣﻤﻴ ﺰﻩ ﻣﻘ ﺪارهﺎ ) ‪ ( Z o 2‬و ﻃ ﻮل آ ﻞ ﻣ ﻨﻬﻤﺎ ﻳﻜﺎﻓ ﺊ )‪ (90 ≡λg/4‬و ﻳﺘﺼ ﻞ ﺑﻄ ﺮﻓﻴﻬﻤﺎ ﻣﻘﺎوﻣ ﻪ ﻗﻴﻤ ﺘﻬﺎ‬
‫ﺗﺴﺎوى )‪ (2 Zo‬و هﻨﺎك ﺧﻂ ﺷﺮﻳﻄﻰ ﻋﻨﺪ آﻞ ﻣﺨﺮج ﻟﻪ ﻣﻌﺎوﻗﻪ ﻣﻤﻴﺰﻩ )‪.(Zo‬‬
‫ﺷ ﻜﻞ )‪ (٤٥ - ٦‬و ﺷ ﻜﻞ )‪ (٤٦ - ٦‬ﻳﻮﺿ ﺤﺎن ﻣﺨﻄﻄ ﻴﻦ ﻣﺨﺘﻠﻔ ﻴﻦ ﻟﻤﻘﺴ ﻢ اﻟﻘ ﺪرﻩ ﻣ ﻦ ﻧ ﻮع وﻳﻠﻜﻨﺴﻮن ذو ﻣﺪﺧﻞ و‬
‫ﻣﺨﺮﺟﻴﻦ‪.‬‬

‫ﺷﻜﻞ )‪ : (٤٤ - ٦‬رﺳﻢ رﻣﺰى ﻟﻤﻘﺴﻢ‪/‬ﻣﺠﻤﻊ اﻟﻘﺪرﻩ ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن‪.‬‬

‫‪219‬‬

‫ﺷﻜﻞ )‪ : (٤٥ - ٦‬ﻣﺨﻄﻂ ﻟﻤﻘﺴﻢ اﻟﻘﺪرﻩ ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن‪.‬‬

‫ﺷﻜﻞ )‪ : (٤٦ - ٦‬ﻣﺨﻄﻂ ﻟﻤﻘﺴﻢ اﻟﻘﺪرﻩ ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن ﻣﻨﻔﺬ ﺑﺸﻜﻞ ﻣﻘﻮس‪.‬‬

‫ﻳﻮﺿ ﺢ ﺷ ﻜﻞ )‪ (٤٧ - ٦‬ﻣﺨﻄ ﻂ ﻟﻤﻘﺴ ﻢ اﻟﻘ ﺪرﻩ ﻣ ﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن ﻓﻰ ﺷﻜﻞ ﻣﺨﺘﻠﻒ ﻋﻦ اﻟﻤﺒﻴﻦ أﻋﻼﻩ ﺣﻴﺚ أﺻﺒﺢ‬
‫‪o‬‬

‫ﻃ ﻮل آ ﻞ ﻣ ﻦ اﻟﺬراﻋ ﻴﻦ ﻳﻜﺎﻗ ﺊ )‪ (270 ≡3λg/4‬و ﺗ ﻢ اﺿﺎﻓﺔ ﺧﻄﻴﻦ ﺷﺮﻳﻄﻴﻴﻦ آﻞ ﻣﻨﻬﻢ ﻟﻪ ﻣﻌﺎوﻗﻪ ﻣﻤﻴﺰﻩ )‪ (Zo‬و‬
‫‪o‬‬

‫ﻃ ﻮﻟﻪ ﻳﻜﺎﻗ ﺊ )‪ (180 ≡λg/2‬و ﻳﺘﺼ ﻼن ﺑﺎﻟﻤﻘﺎوﻣ ﻪ ‪ .‬و ه ﺬا اﻟﺘﺼ ﻤﻴﻢ ﻳﺘ ﻴﺢ زﻳ ﺎدة ﻣﺴ ﺎﺣﺔ اﻟﺪاﺋ ﺮﻩ و ﺧﺎﺻ ﺔ ﻋ ﻨﺪ‬
‫اﺳ ﺘﺨﺪام ﺷ ﺮﻳﺤﻪ ذات ﺛﺎﺑ ﺖ ﻋﺰل )‪ (εr‬ﻋﺎﻟﻰ أو ﺳﻤﻚ ﻋﺎزل )‪ (h‬ﺻﻐﻴﺮ أو ﻋﻨﺪ ﺗﺼﻤﻴﻢ اﻟﺪاﺋﺮﻩ ﻓﻰ ﺗﺮدد ﻋﺎﻟﻰ ﻣﻦ‬
‫ﺣﻴ ﺰ اﻟﻤﻴﻜ ﺮووﻳﻒ‪ .‬و ه ﺬا اﻟﺘﺼ ﻤﻴﻢ ﻳﻘﻠ ﻞ ﺣ ﺪوث ﻗ ﺮن أو ازدواج )‪ (coupling‬ﺑ ﻴﻦ ذراﻋ ﻰ ﻣﻘﺴﻢ اﻟﻘﺪرﻩ ﻣﻦ ﻧﻮع‬
‫وﻳﻠﻜﻨﺴﻮن‪.‬‬

‫‪220‬‬

‫ﺷﻜﻞ )‪ : (٤٧ - ٦‬ﻣﺨﻄﻂ ﻟﻤﻘﺴﻢ اﻟﻘﺪرﻩ ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن ﺑﺎﺿﺎﻓﺔ ﺧﻄﻴﻦ اﺿﺎﻓﻴﻴﻦ‪.‬‬

‫اﻟﻤﻘﺎوﻣ ﻪ اﻟﻤﺴﺘﺨﺪﻣﻪ ﻓﻰ ﻣﻘﺴﻢ اﻟﻘﺪرﻩ ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن ﻣﺜﻠﻬﺎ ﻣﺜﻞ آﻞ اﻟﻤﻘﺎوﻣﺎت اﻟﻤﺴﺘﺨﺪﻣﻪ ﻓﻰ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ‬
‫اﻣ ﺎ أن ﺗﻜ ﻮن ﻣﻘﺎوﻣﻪ ﻣﺘﺮﺳﺒﻪ )‪ (deposited resistance‬أو ﻣﻘﺎوﻣﻪ ﻋﻴﻨﻴﻪ ﻣﻠﺤﻮﻣﻪ‪ .‬و ﺳﻨﺠﺪ أن ﻃﻮل و ﻋﺮض‬
‫اﻟﻤﻘﺎوﻣﻪ ﻳﺆﺛﺮ ﻋﻠﻰ ﺷﻜﻞ ﻣﺨﻄﻂ اﻟﺪاﺋﺮﻩ‪.‬‬
‫اﻟﻤﻘﺎوﻣ ﻪ اﻟﻤﺘﺮﺳ ﺒﻪ ﺗ ﻢ ﺷ ﺮﺣﻬﺎ ﻓ ﻰ ﻣﻘﻄ ﻊ )‪ (٣-٤‬ﻣ ﻦ اﻟﻔﺼﻞ اﻟﺮاﺑﻊ‪ .‬أﻣﺎ اﻟﻤﻘﺎوﻣﻪ ﻣﻦ ﻧﻮع )‪ (chip resistor‬اﻟﺘﻰ‬
‫ﻳﺘﻢ ﻟﺤﺎﻣﻬﺎ ﻋﻠﻰ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ ﻓﻬﻰ ﺗﻨﺘﺞ و ﺗﺒﺎع ﺗﺠﺎرﻳﺎ ﻓﻰ ﺷﻜﻞ ﻋﺒﻮات )‪ (Case‬ﻟﻬﺎ ﺣﺠﻢ ﻗﻴﺎﺳﻰ‪.‬‬
‫ه ﻨﺎك اﻟﻌﺪﻳ ﺪ ﻣ ﻦ اﻟﺪواﺋ ﺮ اﻟﻤﻜﺎﻓ ﺌﻪ ﻟﻠﻤﻘﺎوﻣﻪ ﻣﻦ ﻧﻮع )‪ (chip resistor‬ﻣﻨﻬﺎ اﻟﺒﺴﻴﻂ اﻟﺬى ﻳﻌﺘﻤﺪ ﻋﻠﻰ ﻗﻴﻤﺔ اﻟﻤﻘﺎوﻣﻪ‬
‫و ﺣﺠ ﻢ اﻟﻌ ﺒﻮﻩ و ﻣ ﻨﻬﺎ اﻟﻤﻌﻘ ﺪ اﻟﺬى ﻳﻌﺘﻤﺪ ﻋﻠﻰ اﻟﻮﺿﻊ اﻟﻬﻨﺪﺳﻰ ﻟﻠﻤﻘﺎوﻣﻪ و ﻗﻴﻤﺘﻬﺎ و أﺑﻌﺎدهﺎ‪ .‬ﺷﻜﻞ )‪ (٤٨ - ٦‬ﻳﺒﻴﻦ‬
‫أﺣﺪ اﻟﺪواﺋﺮ اﻟﻤﻜﺎﻓﺌﻪ ﻟﻠﻤﻘﺎوﻣﻪ اﻟﻌﻴﻨﻴﻪ ﻣﻦ ﻧﻮع )‪.(chip resistor‬‬

‫ﺷﻜﻞ )‪ : (٤٨ - ٦‬ﻣﻘﺎوﻣﻪ ﻣﻦ ﻧﻮع )‪ (chip resistor‬و داﺋﺮﻩ ﻣﻜﺎﻓﺌﻪ ﻣﺒﺴﻄﻪ ﻟﻬﺎ‪.‬‬

‫‪221‬‬

‫ه ﻨﺎك ﻋ ﺪة أﺣﺠ ﺎم ﻗﻴﺎﺳ ﻴﻪ ﻟﻠﻌ ﺒﻮﻩ )‪ (Case Size‬ﻟﻠﻤﻘﺎوﻣ ﻪ ﻣﻦ ﻧﻮع )‪ .(chip resistor‬ﻓﻨﺠﺪ ﻣﺜﻼ أن ﺣﺠﻢ اﻟﻌﺒﻮﻩ‬
‫رﻗ ﻢ )‪ (1206‬ﻟ ﻪ ﻃ ﻮل )‪ (L=3.2mm‬و ﻟ ﻪ ﻋ ﺮض )‪ (W=1.6mm‬و ﺗﻜ ﺘﺐ )‪ (3.05 x 1.6 mm2‬أى‬
‫)‪ ، (L x W‬ﺑﻴ ﻨﻤﺎ ﻧﺠ ﺪ أن ﺣﺠ ﻢ اﻟﻌ ﺒﻮﻩ رﻗ ﻢ )‪ (0402‬ﻟ ﻪ ﻃ ﻮل )‪ (L=1 mm‬و ﻟ ﻪ ﻋ ﺮض )‪ (W=0.5 mm‬و‬
‫ﺗﻜ ﺘﺐ )‪ . (1 x 0.5 mm2‬و ﺗﺘﻐﻴ ﺮ ﻗ ﻴﻢ ﻣﻜ ﻮﻧﺎت اﻟﺪاﺋ ﺮﻩ اﻟﻤﻜﺎﻓ ﺌﻪ ﻟﻠﻤﻘﺎوﻣ ﻪ ﻣ ﻦ ﻧ ﻮع )‪ (chip resistor‬ﺣﺴ ﺐ‬
‫ﺣﺠﻢ اﻟﻌﺒﻮﻩ )‪.(Case Size‬‬
‫ﻳﺒ ﻴﻦ ﺟﺪول )‪ (١ - ٦‬ﻗﻴﻢ ﻣﻜﻮﻧﺎت اﻟﺪاﺋﺮﻩ اﻟﻤﻜﺎﻓﺌﻪ ﻟﻠﻤﻘﺎوﻣﻪ ﻣﻦ ﻧﻮع )‪ (chip resistor‬اﻟﻤﺒﻴﻨﻪ ﻓﻰ ﺷﻜﻞ )‪(٤٨ - ٦‬‬
‫وﻓﻘﺎ ﻟﺤﺠﻢ اﻟﻌﺒﻮﻩ ﺣﺴﺐ اﻟﻤﺮﺟﻊ )‪.(8‬‬

‫اﻟﻤﻠﻒ‬

‫اﻟﻤﻜﺜﻒ‬

‫اﻟﻌﺮض‬

‫اﻟﻄﻮل‬

‫ﺣﺠﻢ اﻟﻤﻘﺎوﻣﻪ‬

‫)‪(nH‬‬

‫)‪(pF‬‬

‫)‪W (mm‬‬

‫)‪L (mm‬‬

‫‪Resistor size‬‬

‫‪0.4‬‬

‫‪0.05‬‬

‫‪0.8‬‬

‫‪1.6‬‬

‫‪0603‬‬

‫‪1‬‬

‫‪0.09‬‬

‫‪1.25‬‬

‫‪2‬‬

‫‪0805‬‬

‫‪2‬‬

‫‪0.05‬‬

‫‪1.6‬‬

‫‪3.2‬‬

‫‪1206‬‬

‫ﺟﺪول )‪ : (١ - ٦‬ﻗﻴﻢ ﻣﻜﻮﻧﺎت اﻟﺪاﺋﺮﻩ اﻟﻤﻜﺎﻓﺌﻪ ﻟﻠﻤﻘﺎوﻣﻪ اﻟﻤﺒﻴﻨﻪ ﻓﻰ ﺷﻜﻞ )‪ (٤٨ - ٦‬وﻓﻘﺎ ﻟﺤﺠﻢ اﻟﻌﺒﻮﻩ‪.‬‬

‫ه ﻨﺎك ﺷ ﺮآﺎت ﻋﺪﻳ ﺪﻩ ﻣﻨ ﺘﺠﻪ ﻟﻠﻤﻘﺎوﻣ ﺎت )‪ (chip resistors‬ﻣ ﺜﻞ ) ‪Pro-An Electronic Co Ltd, ATC,‬‬
‫‪ (AVX, Caddock Electronics‬و ﻏﻴﺮهﺎ‪.‬‬
‫ﺟﻤ ﻴﻊ اﻟﺒ ﺮاﻣﺞ اﻟﺤﺪﻳ ﺜﻪ اﻟﻌﺎﻣ ﻪ ﻟﺘﺤﻠﻴﻞ اﻟﺪواﺋﺮ ﺗﺤﺘﻮى ﻋﻠﻰ ﻣﻜﺘﺒﺎت ﻣﺒﻨﻴﻪ )‪ (built-in-libraries‬ﻟﻨﻤﺎذج اﻟﻤﻜﻮﻧﺎت‬
‫اﻟﻌﻴﻨ ﻴﻪ اﻟﻤﻨ ﺘﺠﻪ ﺗﺠﺎرﻳ ﺎ ﻟ ﺒﻌﺾ اﻟﺸ ﺮآﺎت ) و ﻣ ﻦ ﺿ ﻤﻨﻬﺎ اﻟﻤﻘﺎوﻣ ﺎت و ﻏﻴ ﺮهﺎ( ﺑﺎﻻﺿ ﺎﻓﻪ اﻟ ﻰ ﻣﻜﺘ ﺒﺎت ﻣﺒﻨ ﻴﻪ‬
‫ﻟﻠﺘﻜﻨﻮﻟﻮﺟ ﻴﺎت اﻟﻤﺨ ﺘﻠﻔﻪ‪ .‬و ﻗ ﺪ ﺗﻌ ﺘﻤﺪ اﻟﻤﻜﺘ ﺒﺎت اﻟﻤﺒﻨ ﻴﻪ ﻟﻠﻤﻘﺎوﻣ ﺎت )و آ ﻞ أﻧ ﻮاع اﻟﻤﻜ ﻮﻧﺎت اﻟﻌﻴﻨ ﻴﻪ( ﻋﻠ ﻰ اﻟﺪواﺋ ﺮ‬
‫اﻟﻤﻜﺎﻓ ﺌﻪ أو ﺑﺎراﻣﺘ ﺮات اس اﻟﻤﻘﺎﺳ ﻪ أو آﻠ ﻴﻬﻤﺎ‪ .‬و ﻳﺘﻌ ﻴﻦ ﻋﻠ ﻰ ﻣﺴ ﺘﺨﺪم اﻟﺒ ﺮﻧﺎﻣﺞ ﻓﻘ ﻂ اﺧﺘ ﻴﺎر رﻣ ﺰ اﻟﻤﻘﺎوﻣ ﻪ‬
‫اﻟﻤﺴﺘﺨﺪﻣﻪ و ادراﺟﻪ ﻓﻰ اﻟﺮﺳﻢ اﻟﺮﻣﺰى )‪ (Schematic‬ﻟﻠﺪاﺋﺮﻩ‪.‬‬
‫ﻓ ﻰ اﻟﺤﻴ ﺰ اﻟﻌﺎﻟ ﻰ ﻣ ﻦ ﺗ ﺮددات اﻟﻤﻴﻜ ﺮووﻳﻒ ﻳﻤﻜ ﻦ اﺳ ﺘﺨﺪام ﻃ ﺮﻳﻘﻪ أﺧ ﺮى ﻻدراج اﻟﻤﻘﺎوﻣ ﻪ اﻟﻤﻠﺤ ﻮﻣﻪ ﻓ ﻰ اﻟﺮﺳ ﻢ‬
‫اﻟﺮﻣ ﺰى ﻟﻠﺪاﺋ ﺮﻩ و ذﻟ ﻚ ﺑ ﺎدراج رﻣ ﺰ اﻟﻤﻘﺎوﻣ ﻪ ﻣﺘﺼ ﻼ ﻋﻠ ﻰ اﻟ ﺘﻮازى ﺑﺮﻣ ﺰ اﻟﻔﺠ ﻮﻩ اﻟﺘ ﻰ ﺗﻜﻮن ﺗﺤﺖ اﻟﻤﻘﺎوﻣﻪ و‬
‫ﻃ ﺮﻓﻴﻦ اﻟﺨﻄ ﻴﻦ اﻟﺸ ﺮﻳﻄﻴﻴﻦ اﻟ ﺬﻳﻦ ﻳﺘﻢ ﻟﺤﺎم اﻟﻤﻘﺎوﻣﻪ ﻋﻠﻴﻬﻤﺎ‪ .‬و هﺬا ﻳﺆدى اﻟﻰ ﻧﺘﻴﺠﻪ أدق ﻓﻰ اﻟﺘﺤﻠﻴﻞ‪ .‬و ﻳﻤﻜﻦ ﻋﻤﻞ‬
‫اﻟﻤ ﺜﻞ ﻣ ﻊ آ ﻞ اﻟﻤﻜ ﻮﻧﺎت اﻟﻌﻴﻨ ﻴﻪ اﻟﻤﻠﺤ ﻮﻣﻪ ﺑﺎﻟﺪاﺋ ﺮﻩ و آﻤ ﺜﺎل ﻋﻠ ﻰ ذﻟ ﻚ اﻟﻤﺮﺟﻊ )‪ (9‬ﻳﺴﺘﺨﺪم ﻧﻔﺲ اﻟﻔﻜﺮﻩ ﻓﻰ ﺗﺤﻠﻴﻞ‬
‫داﺋ ﺮﻩ ﺷ ﺮﻳﻄﻴﻪ ﺣﺘ ﻰ )‪ .(40 GHz‬أﻣ ﺎ ﻓ ﻰ اﻟﺤﻴ ﺰ اﻟﻤ ﻨﺨﻔﺾ ﻣ ﻦ ﺗ ﺮددات اﻟﻤﻴﻜ ﺮووﻳﻒ ﻓ ﻴﻜﻮن ﺗﺄﺛﻴ ﺮ اﻟﻔﺠ ﻮﻩ ﻓ ﻴﻪ‬
‫ﺿﻌﻴﻔﺎ ﻋﻠﻰ اﻷداء و ﻻ ﻧﺤﺘﺎج ﻟﻬﺬﻩ اﻟﻄﺮﻳﻘﻪ ﻟﺘﻤﺜﻴﻞ اﻟﻤﻘﺎوﻣﻪ اﻟﻤﻠﺤﻮﻣﻪ‪.‬‬
‫ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (٤٩ - ٦‬ﻣﻘﺎوﻣ ﻪ ﻣ ﻦ ﻧ ﻮع )‪ (chip resistor‬ﻣﻠﺤ ﻮﻣﻪ ﻓ ﻰ داﺋ ﺮﻩ ﺷ ﺮﻳﻄﻴﻪ ﻓ ﻮق ﻓﺠ ﻮﻩ ﻃﻮﻟﻬﺎ )‪ .(s‬و‬
‫ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (٥٠ - ٦‬رﺳ ﻢ رﻣ ﺰى ﻟﻠﻤﻘﺎوﻣ ﻪ ﻣﺘﺼﻼ ﻋﻠﻰ اﻟﺘﻮازى ﻣﻊ رﻣﺰ اﻟﻔﺠﻮﻩ و ﻃﺮﻓﻴﻦ اﻟﺨﻄﻴﻦ اﻟﺸﺮﻳﻄﻴﻴﻦ‬
‫اﻟﺬﻳﻦ ﻳﺘﻢ ﻟﺤﺎم اﻟﻤﻘﺎوﻣﻪ ﻋﻠﻴﻬﻤﺎ آﻤﺎ ﻳﺒﺪو ﻓﻰ ﻣﻌﻈﻢ ﺑﺮاﻣﺞ ﺗﺤﻠﻴﻞ اﻟﺪواﺋﺮ‪.‬‬
‫‪222‬‬

‫ﺷﻜﻞ )‪ : (٤٩ - ٦‬ﻣﻘﺎوﻣﻪ ﻣﻦ ﻧﻮع )‪ (chip resistor‬ﻣﻠﺤﻮﻣﻪ ﻓﻰ داﺋﺮﻩ ﺷﺮﻳﻄﻴﻪ‪.‬‬

‫ﺷﻜﻞ )‪ : (٥٠ - ٦‬رﺳﻢ رﻣﺰى ﻟﻤﻘﺎوﻣﻪ ﻣﻠﺤﻮﻣﻪ ﻓﻰ داﺋﺮﻩ ﺷﺮﻳﻄﻴﻪ ﻓﻮق ﻓﺠﻮﻩ‪.‬‬

‫ﻣﺜﺎل )‪ : (٥ – ٦‬ﻣﻄﻠﻮب ﺗﺼﻤﻴﻢ ﻣﻘﺴﻢ ﻟﻠﻘﺪرﻩ ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن ﻳﻘﺴﻢ اﻟﻘﺪرﻩ ﺑﺎﻟﺘﺴﺎوى ﻋﻨﺪ ﺗﺮدد )‪.(4 GHz‬‬
‫اﻟﺤﻞ ‪:‬‬

‫ﺗﻢ اﺧﺘﻴﺎر اﻟﺸﺮﻳﺤﻪ اﻟﺸﺮﻳﻄﻴﻪ ﺑﺎﻟﻤﻮاﺻﻔﺎت اﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫ﺛﺎﺑﺖ اﻟﻌﺰل )‪ (εr =2.2‬و ﺳﻤﻚ اﻟﻌﺎزل )‪ (h = 1.575 mm‬و ﺳﻤﻚ اﻟﻤﻮﺻﻞ )‪. (t = 0.07 mm‬‬
‫و ﺗﻢ اﺧﺘﻴﺎر ﻣﺨﻄﻂ اﻟﺪاﺋﺮﻩ اﻟﻤﺒﻴﻦ ﻓﻰ ﺷﻜﻞ )‪ (٤٥ - ٦‬ﻟﻠﺘﺼﻤﻴﻢ‪.‬‬
‫ﺗﻢ ﺣﺴﺎب اﻷﺑﻌﺎد اﻟﻤﺒﺪﺋﻴﻪ ﻟﻤﻘﺴﻢ ﻟﻠﻘﺪرﻩ ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن آﻤﺎ ﻳﻠﻰ‪:‬‬
‫ﺣﺴ ﺐ اﻟﺒ ﻴﺎﻧﺎت اﻟﻤﻮﺿ ﺤﻪ ﻓ ﻰ ﻓ ﻰ ﺷ ﻜﻞ )‪ (٤٥ - ٦‬اﻟﺨﻄ ﻮط اﻟﺘﻰ ﻟﻬﺎ ﻣﻌﺎوﻗﻪ ﺗﺴﺎوى )‪ (Zo = 50Ω‬آﺎن ﻋﺮﺿﻬﺎ‬
‫‪o‬‬

‫ﻳﺴﺎوى )‪ (Wo =4.78 mm‬و اﻟﻄﻮل اﻟﻤﻜﺎﻓﺊ ﻟـ )‪ (90 ≡λg/4‬ﻳﺴﺎوى )‪.(Lo = 13.61 mm‬‬

‫‪223‬‬

‫اﻟﺨﻄ ﻴﻦ اﻟﺸ ﺮﻳﻄﻴﻴﻦ )اﻟﺬراﻋ ﻴﻦ( اﻟﻤﻜﻮﻧ ﻴﻦ ﻟﻤﻘﺴ ﻢ ﻟﻠﻘ ﺪرﻩ ﻣ ﻦ ﻧ ﻮع وﻳﻠﻜﻨﺴ ﻮن آ ﻞ ﻣ ﻨﻬﻤﺎ ﻟ ﻪ ﻣﻌﺎوﻗ ﻪ ﺗﺴ ﺎوى‬
‫‪o‬‬

‫) ‪ ( Z o 2 = 70.71 Ω‬ﺗﻜﺎﻓ ﺊ ﻋ ﺮض ﻳﺴ ﺎوى )‪ (Wa =2.69 mm‬و اﻟﻄﻮل اﻟﻤﻜﺎﻓﺊ ﻟـ )‪ (90 ≡λg/4‬ﻳﺴﺎوى‬
‫)‪.(La = 13.87 mm‬‬
‫اﻟﻤﻘﺎوﻣ ﻪ ﺗﺴ ﺎوى )‪ (2 Zo= 100Ω‬و ﺗ ﻢ اﺧﺘ ﻴﺎر ﺣﺠ ﻢ اﻟﻤﻘﺎوﻣ ﻪ اﻟﻘﻴﺎﺳ ﻰ رﻗ ﻢ )‪ (1206‬ﺣ ﻴﺚ أن ﻃ ﻮل و ﻋ ﺮض‬
‫اﻟﻌ ﺒﻮﻩ ﻣﺘﻨﺎﺳ ﺐ ﻣ ﻊ اﻷﺑﻌ ﺎد اﻟﻤﺒﺪﺋ ﻴﻪ اﻟﻤﺤﺴ ﻮﺑﻪ أﻋ ﻼﻩ‪ .‬و ﺗ ﻢ اﺿﺎﻓﺔ ﺧﻄﻴﻦ ﺷﺮﻳﻄﻴﻴﻦ ﻗﺼﻴﺮﻳﻦ ﻓﻰ اﻟﻄﻮل )‪(Pads‬‬
‫ﻟﻠﺤﺎم اﻟﻤﻘﺎوﻣﻪ ﻋﻠﻴﻬﻤﺎ و آﺎن اﺧﺘﻴﺎر ﻋﺮض آﻞ ﻣﻨﻬﻢ )‪ (Wo =4.78 mm‬ﻟﻴﻜﺎﻓﺊ ﻣﻌﺎوﻗﻪ ﻣﻤﻴﺰﻩ )‪.(50Ω‬‬
‫ﺗ ﻢ ﺗﺤﻠ ﻴﻞ اﻟﺪاﺋ ﺮﻩ ﺑﺎﺳ ﺘﺨﺪام ﺑ ﺮﻧﺎﻣﺞ ﻟﺘﺤﻠ ﻴﻞ دواﺋ ﺮ اﻟﻤﻴﻜ ﺮووﻳﻒ ﻓ ﻰ ﺣﻴ ﺰ ﻧﺴ ﺒﻰ ﻳ ﺘﻌﺪى )‪ (one octave‬ﻣ ﻦ‬
‫)‪ (2.5 GHz‬اﻟ ﻰ )‪ (5.5 GHz‬و آﺎﻧ ﺖ اﻟﻨ ﺘﺎﺋﺞ ﻗ ﺮﻳﺒﻪ ﻣ ﻦ اﻟﻤ ﺘﻮﻗﻊ ﺣ ﻴﺚ آ ﺎن )‪(|S31|dB = |S21|dB ≈ −3 dB‬‬
‫ﺑﺨﻄ ﺄ أﻗﺼ ﻰ ﻣﻘ ﺪارﻩ )‪ .(0.416 dB‬و آ ﺎن اﻟﻌ ﺰل ﺑ ﻴﻦ اﻟﻤﺨ ﺮﺟﻴﻦ )‪ (|S32|dB < −10.46 dB‬أﻣ ﺎ ﻣﻌ ﺎﻣﻼت‬
‫اﻻﻧﻌﻜﺎس ﻋﻨﺪ اﻟﻤﺨﺎرج ﻓﻜﺎﻧﺖ ﻗﻴﻤﻬﺎ )‪ (|S11|dB < −10.78 dB‬ﺑﻴﻨﻤﺎ )‪.(|S33|dB = |S22|dB < −8.84 dB‬‬
‫ﺟﺪﻳ ﺮ ﺑﺎﻟﺬآ ﺮ أن اﻷداء ﻓ ﻰ اﻟﺤﻴ ﺰ اﻟﺘ ﺮددى ﻣ ﻦ )‪ (3.5 GHz‬اﻟ ﻰ )‪ (4.5 GHz‬أى ﻓ ﻰ ﺣﻴ ﺰ ﻧﺴﺒﻰ )‪ (25%‬آﺎن‬
‫آﺎﻟﺘﺎﻟ ﻰ ‪ (|S31|dB = |S21|dB ≈ −3 dB) :‬ﺑﺨﻄ ﺄ أﻗﺼ ﻰ ﻣﻘ ﺪارﻩ )‪ ، (0.093 dB‬و آ ﺎن اﻟﻌ ﺰل ﺑ ﻴﻦ اﻟﻤﺨ ﺮﺟﻴﻦ‬
‫)‪ (|S32|dB < −19 dB‬أﻣ ﺎ ﻣﻌ ﺎﻣﻼت اﻻﻧﻌﻜ ﺎس ﻋ ﻨﺪ اﻟﻤﺨ ﺎرج ﻓﻜﺎﻧ ﺖ ﻗ ﻴﻤﻬﺎ )‪ (|S11|dB < −18.41 dB‬ﺑﻴ ﻨﻤﺎ‬
‫)‪.(|S33|dB = |S22|dB < −15.21 dB‬‬
‫ﺗ ﻢ ﻋﻤ ﻞ اﻟ ﺒﺤﺚ ﻋ ﻦ اﻟﺤ ﻞ اﻷﻣ ﺜﻞ )‪ (optimization‬ﺑﺎﺳ ﺘﺨﺪام ﺑ ﺮﻧﺎﻣﺞ ﺗﺤﻠﻴﻞ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ ﻟﺘﺤﺴﻴﻦ اﻷداء‬
‫ﻓﻰ اﻟﺤﻴﺰ اﻟﺘﺮددى ﻣﻦ )‪ (2.5 GHz‬اﻟﻰ )‪ (5.5 GHz‬و آﺎﻧﺖ اﻷﺑﻌﺎد اﻟﻨﻬﺎﺋﻴﻪ آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫)‪ (Wa =2.95 mm‬و )‪ .(La = 12.53 mm‬و ﺗ ﻢ اﻟﺤﻔ ﺎظ ﻋﻠ ﻰ أﺑﻌ ﺎد اﻟ ﺜﻼﺛﺔ ﺧﻄ ﻮط ﻋ ﻨﺪ اﻟﻤﺨ ﺎرج آﻤ ﺎ ه ﻰ‬
‫)‪ (Wo =4.78 mm‬و )‪ .(Lo = 13.61 mm‬و ﻳﺒﻴﻦ ﺷﻜﻞ )‪ (٥١ - ٦‬اﻟﻤﺨﻄﻂ اﻟﻨﻬﺎﺋﻰ ﻟﻠﺪاﺋﺮﻩ‪.‬‬

‫ﺷﻜﻞ )‪ : (٥١ - ٦‬ﻣﺨﻄﻂ ﻣﻘﺴﻢ اﻟﻘﺪرﻩ ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن ﺑﺎﻷﺑﻌﺎد اﻟﻨﻬﺎﺋﻴﻪ ﻓﻰ ﻣﺜﺎل )‪(٥ – ٦‬‬
‫و آﺎﻧﺖ ﻧﺘﺎﺋﺞ اﻟﺘﺤﻠﻴﻞ ﻣﻦ )‪ (2.5 GHz‬اﻟﻰ )‪ (5.5 GHz‬آﻤﺎ ﻳﻠﻰ ‪:‬‬
‫)‪ (|S31|dB = |S21|dB ≈ −3 dB‬ﺑﺨﻄﺄ أﻗﺼﻰ ﻣﻘﺪارﻩ )‪ (0.247 dB‬آﻤﺎ هﻮ ﻣﺒﻴﻦ ﻓﻰ ﺷﻜﻞ )‪.(٥٢ - ٦‬‬
‫و ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (٥٣ - ٦‬ﻣﻌ ﺎﻣﻼت اﻻﻧﻌﻜ ﺎس ﻋ ﻨﺪ اﻟﻤﺨ ﺎرج و آﺎﻧ ﺖ ﻗ ﻴﻤﻬﺎ )‪ (|S11|dB < −12.95 dB‬ﺑﻴ ﻨﻤﺎ‬
‫)‪ .(|S33|dB = |S22|dB < −11.66 dB‬و ﻳﺒﻴﻦ ﺷﻜﻞ )‪ (٥٤ - ٦‬أن اﻟﻌﺰل ﺑﻴﻦ اﻟﻤﺨﺮﺟﻴﻦ ﻗﻴﻤﺘﻪ ) ‪|S32|dB < −11‬‬
‫‪.(dB‬‬
‫‪224‬‬

‫ﺷﻜﻞ )‪ : (٥٢ - ٦‬ﻗﻴﻢ )‪ (|S31|dB , |S21|dB‬ﻟﻤﻘﺴﻢ اﻟﻘﺪرﻩ ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن ﻓﻰ ﻣﺜﺎل )‪(٥ – ٦‬‬

‫ﺷﻜﻞ )‪ : (٥٣ - ٦‬ﻗﻴﻢ )‪ (|S11|dB , |S22|dB , |S33|dB‬ﻟﻤﻘﺴﻢ اﻟﻘﺪرﻩ ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن ﻓﻰ ﻣﺜﺎل )‪(٥ – ٦‬‬

‫ﺷﻜﻞ )‪ : (٥٤ - ٦‬ﻗﻴﻤﺔ اﻟﻌﺰل ﺑﻴﻦ اﻟﻤﺨﺮﺟﻴﻦ ﻟﻤﻘﺴﻢ اﻟﻘﺪرﻩ ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن ﻓﻰ ﻣﺜﺎل )‪(٥ – ٦‬‬

‫‪225‬‬

‫ﻟﺘﻄﺒ ﻴﻘﺎت و أﻧﻈﻤ ﺔ اﻟﻘ ﺪرﻩ اﻟﻌﺎﻟ ﻴﻪ ﻣ ﺜﻞ اﻟﻤﺮﺳ ﻼت اﻟﺘﻰ ﺗﻌﻤﻞ ﺑﻘﺪرﻩ ﻋﺎﻟﻴﻪ )‪ (high power transmitters‬ﻳﻤﻜﻦ‬
‫اﺳﺘﺨﺪام ﻣﻘﺴﻢ‪/‬ﻣﺠﻤﻊ اﻟﻘﺪرﻩ اﻟﻌﺎﻟﻴﻪ ﻣﻦ ﻧﻮع ﺟﻴﺰل )‪. (Gysel‬‬
‫و ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (٥٥ - ٦‬ﻣﺨﻄ ﻂ ﻣﻘﺴﻢ اﻟﻘﺪرﻩ ﻣﻦ ﻧﻮع ﺟﻴﺰل )‪ (Gysel‬ﻣﻊ ﺗﻮﺿﻴﺢ اﻷﺑﻌﺎد و أرﻗﺎم اﻟﻤﺨﺎرج ‪ ،‬و‬
‫ﺗ ﺘﻜﻮن ه ﺬﻩ اﻟﺪاﺋ ﺮﻩ ﻣ ﻦ ﺧﻄ ﻴﻦ ﺷ ﺮﻳﻄﻴﻴﻦ ﻟﻬﻤ ﺎ ﻣﻌﺎوﻗ ﻪ ﻣﻤﻴ ﺰﻩ ﺗﺴﺎوى ‪ Z1 = Z o 2‬و ﻃﻮل آﻞ ﻣﻨﻬﻤﺎ ﻳﻜﺎﻓﺊ‬
‫‪o‬‬

‫)‪ ، (90 ≡λg/4‬و ﺧ ﻂ ﺷ ﺮﻳﻄﻰ ﻟ ﻪ ﻣﻌﺎوﻗ ﻪ ﻣﻤﻴ ﺰﻩ ﺗﺴ ﺎوى‬

‫‪Zo‬‬
‫‪2‬‬

‫‪o‬‬

‫= ‪ Z 2‬و ﻃ ﻮﻟﻪ ﻳﻜﺎﻓ ﺊ )‪ (180 ≡λg/2‬و‬
‫‪o‬‬

‫ﺧﻄ ﻴﻦ ﺷ ﺮﻳﻄﻴﻴﻦ ﻟﻬﻤ ﺎ ﻣﻌﺎوﻗﻪ ﻣﻤﻴﺰﻩ ﺗﺴﺎوى )‪ (Zo‬و ﻃﻮل آﻞ ﻣﻨﻬﻤﺎ ﻳﻜﺎﻓﺊ )‪ ، (90 ≡λg/4‬و ﻣﻘﺎوﻣﺘﺎن ﻗﻴﻤﺔ آﻞ‬
‫ﻣﻨﻬﻤﺎ )‪. (Ro = Zo‬‬
‫ﻓﻰ ﺣﺎﻟﺔ )‪ (Ro = Zo = 50 Ω‬ﻓﺎن ) ‪( Z1 = Z o 2 = 70.71 Ω‬‬

‫‪Z‬‬
‫⎛‬
‫⎞‬
‫و ⎟ ‪⎜ Z 2 = o = 35.355 Ω‬‬
‫‪2‬‬
‫⎝‬
‫⎠‬

‫ﺷ ﻜﻞ )‪ (٥٦ - ٦‬ﻳﺒ ﻴﻦ ﻣﺨﻄ ﻂ ﺁﺧ ﺮ ﻟﻤﻘﺴ ﻢ اﻟﻘ ﺪرﻩ ﻣﻦ ﻧﻮع ﺟﻴﺰل ﻳﺘﻜﻮن ﻣﻦ ﻣﺪﺧﻞ و أرﺑﻌﺔ ﻣﺨﺎرج ﻋﻨﺪ آﻞ ﻣﻨﻬﻢ‬
‫ﺧ ﻂ ﺷﺮﻳﻄﻰ ﻟﻪ ﻣﻌﺎوﻗﻪ ﻣﻤﻴﺰﻩ )‪ (Zo‬و ﺑﺎﻟﻤﻘﺎرﻧﻪ ﺑﻴﻦ ﺷﻜﻞ )‪ (٥٥ - ٦‬و ﺷﻜﻞ )‪ (٥٦ - ٦‬ﻧﺠﺪ أﻧﻪ ﺗﻢ اﺳﺘﺒﺪال اﺛﻨﻴﻦ‬
‫ﻣ ﻦ ه ﺬﻩ اﻟﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ ﻋ ﻨﺪ اﻟﻤﺨ ﺮﺟﻴﻦ رﻗﻤ ﻰ )‪ (4 , 5‬ﻓ ﻰ ﺷﻜﻞ )‪ (٥٦ - ٦‬ﺑﻤﻘﺎوﻣﻪ ﻗﻴﻤﺘﻬﺎ )‪ (Ro = Zo‬ﻓﻰ‬
‫ﺷ ﻜﻞ )‪ (٥٥ - ٦‬ﻟﻠﻌﻤ ﻞ آﺤﻤﻞ ﻣﺘﻮاﻓﻖ )‪ (matched load‬ﻟﺘﻜﻮن ﻣﺘﻮاﻓﻘﻪ ﻟﺘﺤﻮﻳﻞ اﻟﺪاﺋﺮﻩ اﻟﻰ ﻣﻘﺴﻢ ﻗﺪرﻩ ذو ﻣﺪﺧﻞ‬
‫و ﻣﺨﺮﺟﻴﻦ ﻓﻘﻂ ‪ ،‬و ﻟﺘﻘﻮم هﺎﺗﻴﻦ اﻟﻤﻘﺎوﻣﺘﻴﻦ ﺑﺎﻣﺘﺼﺎص اﻟﻘﺪرﻩ اﻟﺨﺎرﺟﻪ ﻋﻨﺪ هﺬﻩ اﻟﻤﺨﺎرج‪.‬‬
‫ﻳﻤﻜﻦ اﺳﺘﺨﺪام ﻣﻘﺴﻢ اﻟﻘﺪرﻩ ﻣﻦ ﻧﻮع ﺟﻴﺰل )‪ (Gysel‬ﻓﻰ ﺗﻄﺒﻴﻘﺎت اﻟﻘﺪرﻩ اﻟﻤﻨﺨﻔﻀﻪ أﻳﻀﺎ‪ .‬ﻟﻜﻦ ﻓﻰ ﺣﺎﻟﺔ اﺳﺘﺨﺪاﻣﻪ‬
‫ﻓ ﻰ ﺗﻄﺒ ﻴﻘﺎت اﻟﻘ ﺪرﻩ اﻟﻌﺎﻟ ﻴﻪ ﻳ ﺘﻢ ﺗﻨﻔ ﻴﺬ اﻟﺪاﺋ ﺮﻩ ﺑﺎﺳ ﺘﺨﺪام ﺷ ﺮﻳﺤﻪ ﺷ ﺮﻳﻄﻴﻪ ﻣ ﻦ ﻣ ﺎدﻩ ﺳ ﻴﺮاﻣﻴﻜﻴﻪ أو ﻣ ﺎدﻩ ﺳ ﻴﺮاﻣﻴﻜﻴﻪ‬
‫ﻣﺨﻠ ﻮﻃﻪ ﻣ ﺜﻼ ﻟﺘ ﺘﺤﻤﻞ اﻟﻘ ﺪرﻩ و اﻟﺤ ﺮارﻩ اﻟﻌﺎﻟﻴﺘ ﻴﻦ ﻣ ﻊ اﺳ ﺘﺨﺪام ﻣﻘﺎوﻣ ﺎت اﻟﻘ ﺪرﻩ اﻟﻌﺎﻟ ﻴﻪ ) ‪High Power‬‬
‫‪ (Resistors‬أو ﻧﻬﺎﻳﺎت ﻟﻠﻘﺪرﻩ اﻟﻌﺎﻟﻴﻪ )‪ (High Power Terminations‬ﻓﻰ اﻟﺪاﺋﺮﻩ‪.‬‬

‫ﺷﻜﻞ )‪ : (٥٥ - ٦‬ﻣﺨﻄﻂ ﻣﻘﺴﻢ اﻟﻘﺪرﻩ اﻟﻌﺎﻟﻴﻪ ﻣﻦ ﻧﻮع ﺟﻴﺰل )‪ (Gysel‬ذو ﻣﺪﺧﻞ و ﻣﺨﺮﺟﻴﻦ‬

‫‪226‬‬

‫ﺷﻜﻞ )‪ : (٥٦ - ٦‬ﻣﺨﻄﻂ ﻣﻘﺴﻢ اﻟﻘﺪرﻩ اﻟﻌﺎﻟﻴﻪ ﻣﻦ ﻧﻮع ﺟﻴﺰل ذو ﻣﺪﺧﻞ و أرﺑﻌﺔ ﻣﺨﺎرج‬

‫و ﻣ ﻦ أﻣ ﺜﻠﺔ اﻟﺸ ﺮاﺋﺢ اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﻤﻨ ﺘﺠﻪ ﺗﺠﺎرﻳ ﺎ و اﻟﺘ ﻰ ﺗﺼ ﻠﺢ ﻟﻠﻘ ﺪرﻩ اﻟﻌﺎﻟ ﻴﻪ اﻟﺸ ﺮاﺋﺢ ) ‪TMM 3, TMM 4,‬‬
‫‪ (TMM 6, TMM 10, TMM 10i, RT/duroid 6006, RT/duroid 6010LM,‬ﻣ ﻦ اﻧ ﺘﺎج ﺷ ﺮآﺔ‬
‫)‪ (Rogers‬و آ ﺬﻟﻚ اﻟﺸ ﺮاﺋﺢ )‪ (AD600, TC600‬ﻣ ﻦ اﻧﺘﺎج ﺷﺮآﺔ )‪ (Arlon‬و ﻏﻴﺮهﺎ اﻟﻜﺜﻴﺮ ﻣﻦ اﻟﺸﺮاﺋﺢ اﻟﺘﻰ‬
‫ﺗﺼﻠﺢ ﻟﺘﻄﺒﻴﻘﺎت اﻟﻘﺪرﻩ اﻟﻌﺎﻟﻴﻪ و ﺗﻨﺘﺠﻬﺎ اﻟﻌﺪﻳﺪ ﻣﻦ اﻟﺸﺮآﺎت‪.‬‬
‫ﺗﺼ ﺪر اﻟﺸ ﺮآﺎت اﻟﻤﻨ ﺘﺠﻪ ﻟﻠﺸ ﺮاﺋﺢ اﻟﺸ ﺮﻳﻄﻴﻪ آ ﺘﺎﻟﻮﺟﺎت و ﺻ ﻔﺤﺎت ﺑ ﻴﺎﻧﺎت )‪ (datasheets‬و ﻏﻴ ﺮهﺎ ﻣ ﻦ‬
‫اﻻﺻﺪارات اﻟﺘﻰ ﻳﻤﻜﻦ اﺧﺘﻴﺎر اﻟﺸﺮﻳﺤﻪ اﻟﻤﻨﺎﺳﺒﻪ ﻣﻨﻬﺎ‪ .‬و ﺑﻌﺾ اﻟﺸﺮآﺎت ﺗﻜﺘﺐ اﻟﺘﻄﺒﻴﻘﺎت اﻟﺘﻰ ﺗﺼﻠﺢ ﻟﻬﺎ اﻟﺸﺮﻳﺤﻪ‬
‫ﻓﻰ ﺻﻔﺤﺎت اﻟﺒﻴﺎﻧﺎت اﻟﺨﺎﺻﻪ ﺑﻬﺎ‪.‬‬
‫ه ﻨﺎك اﻟﻌﺪﻳ ﺪ ﻣ ﻦ اﻟﺸ ﺮآﺎت ﺗﻨ ﺘﺞ ﻣﻘﺎوﻣ ﺎت ﻟﻠﻘ ﺪرﻩ اﻟﻌﺎﻟ ﻴﻪ أو ﻧﻬﺎﻳ ﺎت ﻟﻠﻘﺪرﻩ اﻟﻌﺎﻟﻴﻪ ﻟﻬﺎ أﺷﻜﺎل وﻣﻘﺎﺳﺎت ﺗﺨﺘﻠﻒ ﻋﻦ‬
‫اﻟﻤﻘﺎﺳ ﺎت اﻟﻘﻴﺎﺳ ﻴﻪ ﻟﻠﻤﻘﺎوﻣ ﺎت ﻣ ﻦ ﻧ ﻮع )‪ (chip resistors‬اﻟﻤﺸ ﺮوﺣﻪ ﺳ ﺎﺑﻘﺎ‪ .‬و ﺗﻮﻓ ﺮ ه ﺬﻩ اﻟﺸ ﺮآﺎت اﻟﻤﻌﻠﻮﻣﺎت‬
‫اﻟﺘﻘﻨ ﻴﻪ ﻋ ﻦ ه ﺬﻩ اﻟﻤﻘﺎوﻣ ﺎت ﻓ ﻰ ﺻ ﻔﺤﺎت اﻟﺒ ﻴﺎﻧﺎت )‪ (datasheets‬و اﻟﻤﻠﺤ ﻮﻇﺎت اﻟﺘﻘﻨ ﻴﻪ ) ‪Application or‬‬
‫‪ (Technical Notes‬و اﻟﻜﺘﺎﻟﻮﺟﺎت اﻟﺘﻰ ﺗﺼﺪرهﺎ‪.‬‬
‫ﻣ ﻦ اﻟﺸ ﺮآﺎت اﻟﻤﻨ ﺘﺠﻪ ﻟﻤﻘﺎوﻣ ﺎت و ﻧﻬﺎﻳ ﺎت اﻟﻘ ﺪرﻩ اﻟﻌﺎﻟ ﻴﻪ ) ‪TT electronics , Florida RF Labs,‬‬
‫‪ (Aeroflex, ATC‬و ﻏﻴﺮهﺎ‪.‬‬

‫‪227‬‬

‫ﺷﻜﻞ )‪ : (٥٧ - ٦‬ﺑﻌﺾ أﺷﻜﺎل ﻣﻘﺎوﻣﺎت اﻟﻘﺪرﻩ اﻟﻌﺎﻟﻴﻪ أو ﻧﻬﺎﻳﺎت اﻟﻘﺪرﻩ اﻟﻌﺎﻟﻴﻪ‪.‬‬

‫ﺷﻜﻞ )‪ : (٥٨ - ٦‬ﻃﺮﻳﻘﺔ ﺗﺜﺒﻴﺖ ﻣﻘﺎوﻣﻪ ﻟﻠﻘﺪرﻩ اﻟﻌﺎﻟﻴﻪ أو ﻧﻬﺎﻳﻪ ﻟﻠﻘﺪرﻩ اﻟﻌﺎﻟﻴﻪ ﺑﺪاﺋﺮﻩ ﺷﺮﻳﻄﻴﻪ‪.‬‬

‫‪228‬‬

‫ﻳﺒ ﻴﻦ ﺷﻜﻞ )‪ (٥٧ - ٦‬ﺑﻌﺾ أﺷﻜﺎل ﻣﻘﺎوﻣﺎت اﻟﻘﺪرﻩ اﻟﻌﺎﻟﻴﻪ أو ﻧﻬﺎﻳﺎت اﻟﻘﺪرﻩ اﻟﻌﺎﻟﻴﻪ ‪ ،‬و ﻧﻼﺣﻆ أن ﻣﻌﻈﻤﻬﺎ ﻳﺤﺘﻮى‬
‫ﻋﻠ ﻰ ﻣﺒ ّﺮد ﺣ ﺮارى )‪ (heat sink‬و ﺑ ﻪ ﻓ ﺘﺤﻪ )أو ﻓ ﺘﺤﺎت( داﺋ ﺮﻳﻪ ﺗﺴ ﺘﺨﺪم ﻓﻰ ﺗﺜﺒﻴﺖ اﻟﻤﻘﺎوﻣﻪ أو اﻟﻨﻬﺎﻳﻪ ﺑﺎﻷرض‬
‫)أو ﺑﻄ ﺒﻘﺔ اﻟﻤﻮﺻ ﻞ اﻷرﺿﻰ أو ﺑﻤﺒﺮد اﻟﺪاﺋﺮﻩ اﻟﺤﺮارى( ﻋﻦ ﻃﺮﻳﻖ ﻣﺴﻤﺎر آﻤﺎ هﻮ ﻣﻮﺿﺢ ﻓﻰ ﺷﻜﻞ )‪.(٥٨ - ٦‬‬
‫ﺣ ﻴﺚ ﻳ ﺘﻢ ﻟﺤ ﺎم ﻃ ﺮف اﻟﻤﻘﺎوﻣ ﻪ ﺑ ﺎﻟﺨﻂ اﻟﺸ ﺮﻳﻄﻰ أﻣ ﺎ اﻟﻤﺒ ّﺮد اﻟﺤ ﺮارى ﻓﻴ ﺘﻢ رﺑﻄ ﻪ ﺑﻄ ﺒﻘﺔ اﻟﻤﻮﺻﻞ اﻷرﺿﻰ ﻋﻦ‬
‫ﻃﺮﻳﻖ ﻣﺴﻤﺎر‪.‬‬
‫ﻗ ﺎرن ﺑ ﻴﻦ ﺷ ﻜﻞ )‪ (٥٧ - ٦‬و ﺷ ﻜﻞ )‪ (٥٨ - ٦‬ﻟﻔﻬ ﻢ ﻃ ﺮﻳﻘﺔ ﺗﻮﺻ ﻴﻞ و ﺗﺜﺒ ﻴﺖ ه ﺬا اﻟ ﻨﻮع ﻣﻦ اﻟﻤﻘﺎوﻣﺎت ذو اﻟﻤﺒ ّﺮد‬
‫اﻟﺤ ﺮارى‪ .‬و ﺗﺴ ﺘﺨﺪم ه ﺬﻩ اﻟﻄ ﺮﻳﻘﻪ أﻳﻀ ﺎ ﻓ ﻰ ﺗﻮﺻ ﻴﻞ و ﺗﺜﺒﻴﺖ ﻣﻌﻈﻢ اﻟﻤﻜﻮﻧﺎت اﻟﻌﻴﻨﻴﻪ ذات اﻟﻤﺒ ّﺮد اﻟﺤﺮارى اﻟﺘﻰ‬
‫ﺗﺴﺘﺨﺪم ﻓﻰ ﺗﻄﺒﻴﻘﺎت اﻟﻘﺪرﻩ اﻟﻌﺎﻟﻴﻪ ﻣﺜﻞ ﺗﺮاﻧﺰﻳﺴﺘﻮر اﻟﻘﺪرﻩ‪.‬‬
‫ﺑﻌ ﺾ ﻣﻘﺎوﻣ ﺎت أو ﻧﻬﺎﻳ ﺎت اﻟﻘ ﺪرﻩ اﻟﻌﺎﻟ ﻴﻪ ﻳ ﻮﺟﺪ ﺑﻬ ﺎ ﻗ ﻼوظ ﻟﻠﺘﺜﺒ ﻴﺖ ﻣﺒﺎﺷ ﺮة ﻓ ﻰ اﻟﻤﺒ ّﺮد اﻟﺤ ﺮارى ﻟﻠﺪاﺋﺮﻩ أو ﻃﺒﻘﺔ‬
‫اﻟﻤﻮﺻﻞ اﻷرﺿﻰ‪.‬‬
‫ﻣ ﺜﺎل )‪ : (٦ - ٦‬ﻣﻄﻠ ﻮب ﺗﺼ ﻤﻴﻢ ﻣﻘﺴ ﻢ اﻟﻘﺪرﻩ ﻣﻦ ﻧﻮع ﺟﻴﺰل )‪ (Gysel‬ﻟﺘﻘﺴﻴﻢ ﻗﺪرﻩ داﺧﻠﻪ ﻣﻘﺪارهﺎ )‪(10 Watts‬‬
‫ﻟﻘﺴﻤﻴﻦ ﻣﺘﺴﺎوﻳﻴﻦ ﻋﻨﺪ ﺗﺮدد )‪.(3 GHz‬‬
‫اﻟﺤ ﻞ ‪:‬‬

‫ﺗ ﻢ اﺧﺘﻴﺎر اﻟﺸﺮﻳﺤﻪ اﻟﺸﺮﻳﻄﻴﻪ ﻣﻦ ﻧﻮع )‪ (TMM 3‬اﻟﻤﺼﻨﻮﻋﻪ ﻣﻦ )‪ (Hydrocarbon Ceramic‬ﻣﻦ‬

‫اﻧﺘﺎج ﺷﺮآﺔ )‪ (Rogers‬ﺑﺎﻟﻤﻮاﺻﻔﺎت اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫ﺛﺎﺑ ﺖ اﻟﻌ ﺰل )‪ (εr =3.27‬و ﺳ ﻤﻚ اﻟﻌ ﺎزل )‪ (h = 1.524 mm‬و ﺳ ﻤﻚ اﻟﻤﻮﺻ ﻞ )‪ . (t = 0.07 mm‬و ﺑﺎﻗ ﻰ‬
‫اﻟﻤﻮاﺻﻔﺎت ﻓﻰ اﻟﻤﺮاﺟﻊ )‪.(11,12‬‬
‫ﺗ ﻢ اﺧﺘ ﻴﺎر اﻟﻤﻘﺎوﻣ ﺘﺎن ﺑﻘ ﻴﻤﺔ )‪ (50 Ω‬ﺑ ﺮﻗﻢ )‪ (FT10302N0050J‬ﻣ ﻦ اﻧ ﺘﺎج ﺷ ﺮآﺔ )‪ .(ATC‬و ه ﺬﻩ اﻟﻤﻘﺎوﻣ ﻪ‬
‫ﺗﺼ ﻠﺢ ﻟﻠﻌﻤ ﻞ ﺣﺘ ﻰ )‪ (18 GHz‬و ﺗ ﺘﺤﻤﻞ ﻗ ﺪرﻩ ﻣﻘ ﺪارهﺎ )‪ ، (20 Watts‬و ﺑﺎﻗﻰ اﻟﻤﻮاﺻﻔﺎت ﻓﻰ اﻟﻤﺮﺟﻊ )‪ (10‬و‬
‫ﻋﺒﻮة اﻟﻤﻘﺎوﻣﻪ ﻟﻬﺎ ﻧﻔﺲ ﻃﺮاز اﻟﺸﻜﻞ اﻟﻤﺒﻴﻦ ﻓﻰ ﺷﻜﻞ )‪.(٥٨ - ٦‬‬
‫ﺗﻢ ﺣﺴﺎب اﻷﺑﻌﺎد اﻟﻤﺒﺪﺋﻴﻪ ﻟﻤﻘﺴﻢ ﻟﻠﻘﺪرﻩ ﻣﻦ ﻧﻮع ﺟﻴﺰل )‪ (Gysel‬آﻤﺎ ﻳﻠﻰ‪:‬‬
‫ﺣﺴ ﺐ اﻟﺒ ﻴﺎﻧﺎت اﻟﻤﻮﺿ ﺤﻪ ﻓ ﻰ ﺷ ﻜﻞ )‪ (٥٥ - ٦‬اﻟﺨﻄ ﻮط اﻟﺘ ﻰ ﻟﻬ ﺎ ﻣﻌﺎوﻗ ﻪ ﺗﺴ ﺎوى )‪ (Zo = 50Ω‬آ ﺎن ﻋﺮﺿ ﻬﺎ‬
‫‪o‬‬

‫ﻳﺴﺎوى )‪ (Wo =3.53 mm‬و اﻟﻄﻮل اﻟﻤﻜﺎﻓﺊ ﻟـ )‪ (90 ≡λg/4‬ﻳﺴﺎوى )‪.(Lo = 15.45 mm‬‬
‫اﻟﺨﻄ ﻴﻦ اﻟﺸ ﺮﻳﻄﻴﻴﻦ اﻟﺮأﺳ ﻴﻴﻦ ﺑ ﻴﻦ اﻟﻤﺨﺮﺟﻴﻦ )‪ (2,3‬آﻞ ﻣﻨﻬﻤﺎ ﻟﻪ ﻣﻌﺎوﻗﻪ ﺗﺴﺎوى ) ‪( Z1 = Z o 2 = 70.71 Ω‬‬
‫‪o‬‬

‫ﺗﻜﺎﻓﺊ ﻋﺮض ﻳﺴﺎوى )‪ (W1 =1.9 mm‬و اﻟﻄﻮل اﻟﻤﻜﺎﻓﺊ ﻟـ )‪ (90 ≡λg/4‬ﻳﺴﺎوى )‪.(L1 = 15.86 mm‬‬
‫‪Z‬‬
‫⎛‬
‫⎞‬
‫اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﺮأﺳ ﻰ ﺑ ﻴﻦ اﻟﻤﻘﺎوﻣﺘ ﻴﻦ ﻟ ﻪ ﻣﻌﺎوﻗ ﻪ ⎟ ‪ ⎜ Z 2 = o = 35.355 Ω‬ﺗﻜﺎﻓ ﺊ ﻋ ﺮض ﻳﺴ ﺎوى‬
‫‪2‬‬
‫⎝‬
‫⎠‬
‫‪o‬‬

‫)‪ (W2 =5.95 mm‬و اﻟﻄﻮل اﻟﻤﻜﺎﻓﺊ ﻟـ )‪ (180 ≡λg/2‬ﻳﺴﺎوى )‪.(L2 = 30.18 mm‬‬
‫ه ﻨﺎك ﻣﺸ ﻜﻠﻪ ﻓ ﻰ اﻟﺸ ﻜﻞ اﻟﻬﻨﺪﺳ ﻰ ﻟﻠﺪاﺋ ﺮﻩ ﻓﻠﺘﺤﻘ ﻴﻖ اﻟﻤﺨﻄ ﻂ اﻟﻤﺮﺳ ﻮم ﻓ ﻰ ﺷ ﻜﻞ )‪ (٥٥ - ٦‬ﻳﺠ ﺐ أن ﻳﻜ ﻮن )‪(L2‬‬
‫ﻳﺴ ﺎوى ﺿﻌﻒ ﻃﻮل )‪ (L1‬و ﻟﻜﻦ ﻳﺘﻀﺢ ﻣﻦ اﻷﺑﻌﺎد اﻟﻤﺤﺴﻮﺑﻪ أﻋﻼﻩ أن )‪ (2 L1 = 31.72 mm‬أى ﺑﺰﻳﺎدﻩ ﻃﻔﻴﻔﻪ‬
‫ﻋ ﻦ )‪ (L2‬و ﻟ ﺬﻟﻚ ﻋ ﻨﺪ ﺗﺤﻠ ﻴﻞ اﻟﺪاﺋ ﺮﻩ و رﺳﻢ اﻟﻤﺨﻄﻂ ﻳﺘﻢ اﻟﺘﻌﻮﻳﺾ ﻓﻰ ﻓﺎرق اﻟﻄﻮل ﻟﻠﺤﺼﻮل ﻋﻠﻰ ﻣﺨﻄﻂ ﻣﺸﺎﺑﻪ‬
‫ﻟﺸﻜﻞ )‪.(٥٥ - ٦‬‬

‫‪229‬‬

‫ﺗ ﻢ ﺗﺤﻠ ﻴﻞ اﻟﺪاﺋ ﺮﻩ ﺑﺎﺳﺘﺨﺪام ﺑﺮﻧﺎﻣﺞ ﻟﺘﺤﻠﻴﻞ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ ﻓﻰ ﺣﻴﺰ ﻧﺴﺒﻰ ﻳﻜﺎﻓﺊ )‪ (1.2GHz ≡ 40%‬أى ﻣﻦ‬
‫)‪ (2.4 GHz‬اﻟ ﻰ )‪ .(3.6 GHz‬ﻣ ﻊ اﻟﻌﻠ ﻢ ﺑﺄﻧ ﻪ ﻳﻤﻜﻦ ﺗﺤﻘﻴﻖ ﻣﻮاﺻﻔﺎت ﺟﻴﺪﻩ ﻟﻤﻘﺴﻢ اﻟﻘﺪرﻩ ﻣﻦ ﻧﻮع ﺟﻴﺰل ﻓﻰ ﺣﻴﺰ‬
‫ﺗﺮددى أآﺒﺮ ﻣﻦ ذﻟﻚ‪.‬‬
‫ﺗ ﻢ ﻋﻤ ﻞ اﻟ ﺒﺤﺚ ﻋ ﻦ اﻟﺤ ﻞ اﻷﻣ ﺜﻞ )‪ (optimization‬ﺑﺎﺳ ﺘﺨﺪام ﺑ ﺮﻧﺎﻣﺞ ﺗﺤﻠﻴﻞ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ ﻟﺘﺤﺴﻴﻦ اﻷداء‬
‫ﻓﻰ اﻟﺤﻴﺰ اﻟﺘﺮددى ﻣﻦ )‪ (2.4 GHz‬اﻟﻰ )‪ (3.6 GHz‬و آﺎﻧﺖ اﻷﺑﻌﺎد اﻟﻨﻬﺎﺋﻴﻪ آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫‪W2=8 mm‬‬

‫‪W1=2.24 mm‬‬

‫‪Wo = 3.53 mm‬‬

‫‪L2=30.66 mm‬‬

‫‪L1=13.57 mm‬‬

‫‪Lo=13.13 mm‬‬

‫ﺗ ﻢ اﻟﺤﻔ ﺎظ ﻋﻠ ﻰ أﺑﻌ ﺎد اﻟﺨﻄ ﻮط اﻟﺘ ﻰ ﻟﻬ ﺎ ﻣﻌﺎوﻗ ﻪ ﺗﺴ ﺎوى )‪ (50Ω‬آﻤ ﺎ هﻰ )‪ ، (Wo = 3.53 mm‬و ﺗﻢ اﺿﺎﻓﺔ‬
‫ﺧﻄ ﻴﻦ ﺷ ﺮﻳﻄﻴﻴﻦ ﻗﺼ ﻴﺮﻳﻦ ﻓ ﻰ اﻟﻄ ﻮل )‪ (Pads‬ﻃ ﻮل آ ﻞ ﻣ ﻨﻬﻤﺎ )‪ (2 mm‬و آ ﺎن اﺧﺘ ﻴﺎر ﻋ ﺮض آ ﻞ ﻣ ﻨﻬﻤﺎ‬
‫)‪ (Wo =3.53 mm‬ﻟﻴﻜﺎﻓ ﺊ ﻣﻌﺎوﻗ ﻪ ﻣﻤﻴ ﺰﻩ )‪ (50Ω‬ﺑﻐ ﺮض ﻟﺤ ﺎم ﻃ ﺮف اﻟﻤﻘﺎوﻣ ﻪ ﻋﻠ ﻰ ه ﺬﻩ اﻟ ـ )‪ ، (Pad‬أﻣ ﺎ‬
‫اﻟﻄ ﺮف اﻵﺧﺮ ﻟﻠﻤﻘﺎوﻣﻪ )اﻟﻤﺒﺮد اﻟﺤﺮارى ﻟﻠﻤﻘﺎوﻣﻪ( ﻓﻴﺘﻢ ﺗﺜﺒﻴﺘﻪ ﺑﻄﺒﻘﺔ اﻟﻤﻮﺻﻞ اﻷرﺿﻰ آﻤﺎ هﻮ ﻣﻮﺿﺢ ﻓﻰ ﺷﻜﻞ‬
‫)‪.(٥٨ - ٦‬‬

‫ﺷﻜﻞ )‪ : (٥٩ - ٦‬ﻗﻴﻢ )‪ (|S31|dB , |S21|dB‬ﻟﻤﻘﺴﻢ اﻟﻘﺪرﻩ ﻣﻦ ﻧﻮع ﺟﻴﺰل ﻓﻰ ﻣﺜﺎل )‪(٦ – ٦‬‬

‫‪230‬‬

‫ﺷﻜﻞ )‪ : (٦٠ - ٦‬ﻗﻴﻢ )‪ (|S11|dB , |S22|dB , |S33|dB‬ﻟﻤﻘﺴﻢ اﻟﻘﺪرﻩ ﻣﻦ ﻧﻮع ﺟﻴﺰل ﻓﻰ ﻣﺜﺎل )‪(٦ – ٦‬‬

‫و آﺎﻧﺖ ﻧﺘﺎﺋﺞ ﺗﺤﻠﻴﻞ اﻟﺪاﺋﺮﻩ آﻤﺎ ﻳﻠﻰ ‪:‬‬
‫)‪ (|S31|dB = |S21|dB ≈ −3 dB‬ﺑﺨﻄﺄ أﻗﺼﻰ ﻣﻘﺪارﻩ )‪ (0.389 dB‬آﻤﺎ هﻮ ﻣﺒﻴﻦ ﻓﻰ ﺷﻜﻞ )‪.(٥٩ - ٦‬‬
‫و ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (٦٠ - ٦‬ﻣﻌ ﺎﻣﻼت اﻻﻧﻌﻜ ﺎس ﻋ ﻨﺪ اﻟﻤﺨ ﺎرج و آﺎﻧ ﺖ ﻗ ﻴﻤﺔ )‪ (|S11|dB < −17.61 dB‬ﺑﻴﻨﻤﺎ آﺎﻧﺖ‬
‫ﻗﻴﻢ )‪.(|S33|dB = |S22|dB < −14.99 dB‬‬
‫و ﻳﺒﻴﻦ ﺷﻜﻞ )‪ (٦١ - ٦‬أن اﻟﻌﺰل ﺑﻴﻦ اﻟﻤﺨﺮﺟﻴﻦ ﻗﻴﻤﺘﻪ )‪.(|S32|dB < −14.97 dB‬‬

‫ﺷﻜﻞ )‪ : (٦١ - ٦‬ﻗﻴﻤﺔ اﻟﻌﺰل ﺑﻴﻦ اﻟﻤﺨﺮﺟﻴﻦ ﻟﻤﻘﺴﻢ اﻟﻘﺪرﻩ ﻣﻦ ﻧﻮع ﺟﻴﺰل ﻓﻰ ﻣﺜﺎل )‪(٦ – ٦‬‬

‫‪231‬‬

‫ﺗ ﺘﻌﺪد ﻣﻘﺴ ﻤﺎت اﻟﻘ ﺪرﻩ ﺑﻄ ﺮﻳﻘﻪ ﻏﻴ ﺮ ﻣﺘﺴﺎوﻳﻪ ﺑﻴﻦ اﻟﻤﺨﺎرج ‪ ،‬و ﻣﻦ أآﺜﺮهﺎ اﻧﺘﺸﺎرا ﻣﻘﺴﻢ اﻟﻘﺪرﻩ ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن‬
‫اﻟﻐﻴ ﺮ ﻣﺘﺴ ﺎوى ﻓ ﻰ اﻟﺘﻘﺴ ﻴﻢ )‪ (Unequal Split Wilkinson Power Divider‬و ه ﻨﺎك أآﺜﺮ ﻣﻦ ﺗﺼﻤﻴﻢ ﻟﻪ و‬
‫ﻳﻌﻄ ﻰ اﻟﻤ ﺮﺟﻊ )‪ (5‬ﻣﻌ ﺎدﻻت اﻟﺘﺼ ﻤﻴﻢ ﻷﺑﺴ ﻂ ﺷ ﻜﻞ ﻣﻦ أﺷﻜﺎل ﻣﻘﺴﻢ اﻟﻘﺪرﻩ ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن اﻟﻐﻴﺮ ﻣﺘﺴﺎوى ﻓﻰ‬
‫اﻟﺘﻘﺴﻴﻢ و اﻟﻤﺒﻴﻦ رﺳﻤﻪ اﻟﺮﻣﺰى ﻓﻰ ﺷﻜﻞ )‪ (٦٢ - ٦‬و هﺬﻩ اﻟﻤﻌﺎدﻻت ﻣﻌﻄﺎﻩ آﺎﻵﺗﻰ ‪:‬‬
‫اﻟﻘﺪرﻩ اﻟﺪاﺧﻠﻪ ﻣﻦ اﻟﻤﺪﺧﻞ رﻗﻢ )‪ (1‬ﺗﻨﻘﺴﻢ ﺑﻨﺴﺒﺔ ﺗﻘﺴﻴﻢ ﺗﺴﺎوى )‪ (K2‬ﺑﻴﻦ اﻟﻤﺨﺮﺟﻴﻦ )‪ (2 , 3‬أى أن‬

‫‪P3‬‬
‫‪P2‬‬

‫)‪(6.23‬‬

‫= ‪K2‬‬
‫‪o‬‬

‫ﻃ ﻮل )اﻟ ﺬراع( أو اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﻤﺘﺼ ﻞ ﺑﺎﻟﻤﺨ ﺮج رﻗﻢ )‪ (3‬ﻳﻜﺎﻓﺊ )‪ (90 ≡λg/4‬و اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ ﻟﻪ ﺗﻌﻄﻰ‬
‫ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ‬

‫‪1+ K 2‬‬
‫‪K3‬‬

‫)‪(6.24‬‬

‫‪Z o3 = Z o‬‬
‫‪o‬‬

‫ﻃ ﻮل )اﻟ ﺬراع( أو اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﻤﺘﺼ ﻞ ﺑﺎﻟﻤﺨ ﺮج رﻗﻢ )‪ (2‬ﻳﻜﺎﻓﺊ )‪ (90 ≡λg/4‬و اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ ﻟﻪ ﺗﻌﻄﻰ‬
‫ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ‬

‫(‬

‫)‬

‫‪Z o 2 = Z o K 1 + K 2 = K 2 Z o3‬‬

‫)‪(6.25‬‬

‫اﻟﻤﻘﺎوﻣﻪ اﻟﻤﻮﺻﻠﻪ ﺑﻴﻦ اﻟﻤﺨﺮﺟﻴﻦ )‪ (2 , 3‬ﺗﻌﻄﻰ ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ‬

‫⎞‪1‬‬
‫⎛‬
‫⎟ ‪R = Zo ⎜ K +‬‬
‫⎠‪K‬‬
‫⎝‬

‫)‪(6.26‬‬

‫ﻣﻌﺎوﻗﺔ اﻟﻤﺨﺮج رﻗﻢ )‪ (2‬أو اﻟﻤﻘﺎوﻣﻪ ﻋﻨﺪ اﻟﻤﺨﺮج رﻗﻢ )‪ (2‬ﺗﺴﺎوى‬

‫‪R2 = Z o K‬‬

‫)‪(6.27‬‬

‫ﻣﻌﺎوﻗﺔ اﻟﻤﺨﺮج رﻗﻢ )‪ (3‬أو اﻟﻤﻘﺎوﻣﻪ ﻋﻨﺪ اﻟﻤﺨﺮج رﻗﻢ )‪ (3‬ﺗﺴﺎوى‬
‫)‪(6.28‬‬

‫‪K‬‬

‫‪Zo‬‬

‫= ‪R3‬‬

‫اﻟﻤﻌﺎوﻗﺔ ﻋﻨﺪ اﻟﻤﺨﺮﺟﻴﻦ )‪ (2 , 3‬ﻻ ﺗﺴﺎوى )‪ (Zo‬و هﺬا ﻻ ﻳﻨﺎﺳﺐ اﻟﻜﺜﻴﺮ ﻣﻦ اﻟﺘﻄﺒﻴﻘﺎت ‪.‬‬
‫ﻟ ﺬﻟﻚ ﻳﻤﻜ ﻦ اﺿ ﺎﻓﺔ ﺧﻄ ﻴﻦ ﺷ ﺮﻳﻄﻴﻴﻦ ﻟﻌﻤ ﻞ ﺗﻮﻓ ﻴﻖ )‪ (matching‬ﺣﺘ ﻰ ﺗﺼ ﺒﺢ اﻟﻤﻌﺎوﻗ ﺔ ﻋ ﻨﺪ اﻟﻤﺨ ﺮﺟﻴﻦ )‪(2 , 3‬‬
‫ﺗﺴﺎوى )‪ (Zo‬آﻤﺎ هﻮ ﻣﻮﺿﺢ ﻓﻰ ﺷﻜﻞ )‪.(٦٣ - ٦‬‬
‫‪o‬‬

‫ﻃﻮل آﻞ ﻣﻦ اﻟﺨﻄﻴﻦ اﻟﺸﺮﻳﻄﻴﻴﻦ اﻟﻤﻀﺎﻓﻴﻦ ﻳﻜﺎﻓﺊ )‪ (90 ≡λg/4‬و ﻣﻌﺎوﻗﺔ اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﻤﺘﺼﻞ ﺑﺎﻟﻤﺨﺮج رﻗﻢ‬
‫)‪ (2‬ﺗﺴﺎوى‬

‫‪Z L 2 = R2 Z o‬‬

‫)‪(6.29‬‬

‫‪232‬‬

‫و ﻣﻌﺎوﻗﺔ اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﻤﺘﺼﻞ ﺑﺎﻟﻤﺨﺮج رﻗﻢ )‪ (3‬ﺗﺴﺎوى‬

‫‪Z L 3 = R3 Z o‬‬

‫)‪(6.30‬‬

‫ﺷﻜﻞ )‪ : (٦٢ - ٦‬رﺳﻢ رﻣﺰى ﻷﺣﺪ أﺷﻜﺎل ﻣﻘﺴﻢ اﻟﻘﺪرﻩ ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن اﻟﻐﻴﺮ ﻣﺘﺴﺎوى ﻓﻰ اﻟﺘﻘﺴﻴﻢ‬

‫ﺷﻜﻞ )‪ : (٦٣ - ٦‬رﺳﻢ رﻣﺰى ﻟﻤﻘﺴﻢ اﻟﻘﺪرﻩ ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن اﻟﻐﻴﺮ ﻣﺘﺴﺎوى ﻓﻰ اﻟﺘﻘﺴﻴﻢ ﺑﻌﺪ اﺿﺎﻓﺔ ﺧﻄﻴﻦ‬
‫ﺷﺮﻳﻄﻴﻴﻦ ﻋﻨﺪ اﻟﻤﺨﺮﺟﻴﻦ‪.‬‬

‫‪233‬‬

‫ﺷﻜﻞ )‪ : (٦٤ - ٦‬ﻣﺨﻄﻂ ﺗﺼﻤﻴﻢ ﺁﺧﺮ ﻟﻤﻘﺴﻢ اﻟﻘﺪرﻩ ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن اﻟﻐﻴﺮ ﻣﺘﺴﺎوى ﻓﻰ اﻟﺘﻘﺴﻴﻢ‬

‫و ﻳﻌﻄ ﻰ اﻟﻤ ﺮﺟﻊ )‪ (1‬ﻣﻌ ﺎدﻻت اﻟﺘﺼ ﻤﻴﻢ ﻟﺸ ﻜﻞ ﺁﺧ ﺮ ﻟﻤﻘﺴ ﻢ اﻟﻘ ﺪرﻩ ﻣ ﻦ ﻧ ﻮع وﻳﻠﻜﻨﺴ ﻮن اﻟﻐﻴﺮ ﻣﺘﺴﺎوى ﻓﻰ اﻟﺘﻘﺴﻴﻢ‬
‫اﻟﻤﺒﻴﻦ ﻣﺨﻄﻄﻪ ﻓﻰ ﺷﻜﻞ )‪ (٦٤ - ٦‬و هﺬﻩ اﻟﻤﻌﺎدﻻت آﻤﺎ ﻳﻠﻰ ‪:‬‬
‫اﻟﻘﺪرﻩ اﻟﺪاﺧﻠﻪ ﻣﻦ اﻟﻤﺪﺧﻞ رﻗﻢ )‪ (1‬ﺗﻨﻘﺴﻢ ﺑﻨﺴﺒﺔ ﺗﻘﺴﻴﻢ ﺗﺴﺎوى )‪ (K2‬ﺑﻴﻦ اﻟﻤﺨﺮﺟﻴﻦ )‪ (2 , 3‬أى أن‬

‫‪P3‬‬
‫‪P2‬‬

‫)‪(6. 31‬‬

‫= ‪K2‬‬

‫‪o‬‬

‫ﻃﻮل اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺬى ﻟﻪ ﻣﻌﺎوﻗﻪ ﻣﻤﻴﺰﻩ )‪ (Z1‬ﻳﻜﺎﻓﺊ )‪ ، (90 ≡λg/4‬ﺣﻴﺚ )‪ (Z1‬ﺗﻌﻄﻰ ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ‬
‫‪1/ 4‬‬

‫⎞ ‪⎛ K‬‬
‫⎜ ‪Z1 = Z o‬‬
‫⎟ ‪2‬‬
‫⎠ ‪⎝1+ K‬‬

‫)‪(6.32‬‬

‫‪o‬‬

‫ﻃﻮل اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺬى ﻟﻪ ﻣﻌﺎوﻗﻪ ﻣﻤﻴﺰﻩ )‪ (Z2‬ﻳﻜﺎﻓﺊ )‪ ، (90 ≡λg/4‬ﺣﻴﺚ )‪ (Z2‬ﺗﻌﻄﻰ ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ‬

‫)‬

‫)‪(6.33‬‬

‫)‬

‫‪1/ 4‬‬

‫(‬

‫(‬

‫‪Z 2 = Zo K 3/ 4 1 + K 2‬‬
‫‪o‬‬

‫ﻃﻮل اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺬى ﻟﻪ ﻣﻌﺎوﻗﻪ ﻣﻤﻴﺰﻩ )‪ (Z3‬ﻳﻜﺎﻓﺊ )‪ ، (90 ≡λg/4‬ﺣﻴﺚ )‪ (Z3‬ﺗﻌﻄﻰ ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ‬

‫)‬

‫(‬

‫⎞ ‪⎛ 1 + K 2 1/ 4‬‬
‫⎟‬
‫⎜ ‪Z3 = Zo‬‬
‫⎟ ‪⎜ K 5/ 4‬‬
‫⎝‬
‫⎠‬

‫)‪(6.34‬‬

‫‪o‬‬

‫ﻃﻮل اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺬى ﻟﻪ ﻣﻌﺎوﻗﻪ ﻣﻤﻴﺰﻩ )‪ (Z4‬ﻳﻜﺎﻓﺊ )‪ ، (90 ≡λg/4‬ﺣﻴﺚ )‪ (Z4‬ﺗﻌﻄﻰ ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ‬

‫‪Z4 = Zo K‬‬

‫)‪(6.35‬‬

‫‪o‬‬

‫ﻃﻮل اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺬى ﻟﻪ ﻣﻌﺎوﻗﻪ ﻣﻤﻴﺰﻩ )‪ (Z5‬ﻳﻜﺎﻓﺊ )‪ ، (90 ≡λg/4‬ﺣﻴﺚ )‪ (Z5‬ﺗﻌﻄﻰ ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ‬

‫‪234‬‬

‫‪Z5 = Zo / K‬‬

‫)‪(6.36‬‬
‫ﻗﻴﻤﺔ اﻟﻤﻘﺎوﻣﻪ ﺗﻌﻄﻰ ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ‬

‫⎞ ‪⎛1+ K 2‬‬
‫⎟⎟‬
‫⎜⎜ ‪R = Z o‬‬
‫‪K‬‬
‫⎠‬
‫⎝‬

‫)‪(6.37‬‬

‫آﻤ ﺎ ﻳﻌﻄ ﻰ اﻟﻤ ﺮﺟﻊ )‪ (1‬ﻣ ﺜﺎﻻ رﻗﻤ ﻴﺎ ﻟﺘﺼ ﻤﻴﻢ ﻣﻘﺴ ﻢ اﻟﻘ ﺪرﻩ ﻣ ﻦ ﻧ ﻮع وﻳﻠﻜﻨﺴ ﻮن اﻟﻐﻴ ﺮ ﻣﺘﺴ ﺎوى ﻓ ﻰ اﻟﺘﻘﺴﻴﻢ اﻟﻤﺒﻴﻦ‬
‫ﻣﺨﻄﻄﻪ ﻓﻰ ﺷﻜﻞ )‪.(٦٤ - ٦‬‬
‫ﻣ ﺜﺎل )‪ : (٧ – ٦‬ﻣﻄﻠ ﻮب ﺗﺼ ﻤﻴﻢ ﻣﻘﺴ ﻢ اﻟﻘ ﺪرﻩ ﻣ ﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن اﻟﻐﻴﺮ ﻣﺘﺴﺎوى ﻓﻰ اﻟﺘﻘﺴﻴﻢ ) ‪Unequal Split‬‬
‫‪ (Wilkinson Power Divider‬ﻟﻴﻘﺴ ﻢ اﻟﻘ ﺪرﻩ اﻟﺨﺎرﺟ ﻪ اﻟ ﻰ ﻗﺴ ﻤﻴﻦ ﻏﻴ ﺮ ﻣﺘﺴ ﺎوﻳﻴﻦ ﺑﻨﺴ ﺒﺔ )‪ (2:1‬ﻋ ﻨﺪ ﺗ ﺮدد‬
‫)‪ (3 GHz‬ﻣﻊ اﻋﺘﺒﺎر )‪ (Zo = 50Ω‬و ﺑﺎﺳﺘﺨﺪام ﺷﺮﻳﺤﻪ ﺷﺮﻳﻄﻴﻪ ﺑﺎﻟﻤﻮاﺻﻔﺎت اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫ﺛﺎﺑﺖ اﻟﻌﺰل )‪ (εr =2.2‬و ﺳﻤﻚ اﻟﻌﺎزل )‪ (h = 1.575 mm‬و ﺳﻤﻚ اﻟﻤﻮﺻﻞ )‪. (t = 0.07 mm‬‬
‫اﻟﺤﻞ ‪:‬‬
‫ﺗ ﻢ اﺧﺘ ﻴﺎر اﻟﺪاﺋﺮﻩ اﻟﻤﻮﺿﺤﻪ ﻓﻰ ﺷﻜﻞ )‪ (٦٣ - ٦‬ﻟﻬﺬا اﻟﺘﺼﻤﻴﻢ‪ .‬و ﺗﻢ ﺣﺴﺎب اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ ﻟﻜﻞ ﺧﻂ ﺷﺮﻳﻄﻰ ﻣﻦ‬
‫اﻟﻤﻌ ﺎدﻻت )‪ (6.23‬اﻟ ﻰ )‪ (6.30‬اﻟﺘ ﻰ ﺗ ﺆدى اﻟ ﻰ ﺗﻘﺴ ﻴﻢ اﻟﻘ ﺪرﻩ اﻟﺨﺎرﺟ ﻪ اﻟ ﻰ ﻗﺴ ﻤﻴﻦ ﻏﻴ ﺮ ﻣﺘﺴﺎوﻳﻴﻦ ﺑﻨﺴﺒﺔ )‪(2:1‬‬
‫آﻤﺎ ﻳﻠﻰ ‪:‬‬

‫‪1+ K 2‬‬
‫‪= 51.49418 Ω‬‬
‫‪K3‬‬

‫‪P3‬‬
‫‪=2‬‬
‫‪P2‬‬

‫‪Z o3 = Z o‬‬

‫‪Z o 2 = K 2 Z o3 = 102.9884 Ω‬‬

‫⎞‪1‬‬
‫⎛‬
‫‪R = Z o ⎜ K + ⎟ = 106.066 Ω‬‬
‫⎠‪K‬‬
‫⎝‬
‫‪= 35.35534 Ω‬‬

‫‪K‬‬

‫‪Zo‬‬

‫= ‪K2‬‬

‫‪R2 = Z o K = 70.71068 Ω‬‬

‫= ‪R3‬‬

‫‪Z L 2 = R2 Z o = 59.46036 Ω‬‬

‫‪Z L 3 = R3 Z o = 42.04482 Ω‬‬
‫ﺗﻢ ﺣﺴﺎب اﻷﺑﻌﺎد اﻟﻤﺒﺪﺋﻴﻪ ﻟﻠﺪاﺋﺮﻩ آﻤﺎ ﻳﻠﻰ ‪:‬‬

‫ﺣﺴ ﺐ اﻟﺒ ﻴﺎﻧﺎت اﻟﻤﻮﺿ ﺤﻪ ﻓ ﻰ ﺷ ﻜﻞ )‪ (٦٣ - ٦‬اﻟﺨﻄ ﻮط اﻟﺘ ﻰ ﻟﻬ ﺎ ﻣﻌﺎوﻗ ﻪ ﺗﺴ ﺎوى )‪ (Zo = 50Ω‬آ ﺎن ﻋﺮﺿ ﻬﺎ‬
‫‪o‬‬

‫ﻳﺴﺎوى )‪ (Wo =4.77 mm‬و اﻟﻄﻮل اﻟﻤﻜﺎﻓﺊ ﻟـ )‪ (90 ≡λg/4‬ﻳﺴﺎوى )‪.(Lo = 18.19 mm‬‬
‫اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟ ﺬى ﻟﻪ ﻣﻌﺎوﻗﻪ ﺗﺴﺎوى ) ‪ ( Z o 3 = 51.49418 Ω‬آﺎن ﻋﺮﺿﻪ ﻳﺴﺎوى )‪(Wo3 =4.56 mm‬‬
‫‪o‬‬

‫و اﻟﻄﻮل اﻟﻤﻜﺎﻓﺊ ﻟـ )‪ (90 ≡λg/4‬ﻳﺴﺎوى )‪.(Lo3 = 18.21 mm‬‬
‫اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺬى ﻟﻪ ﻣﻌﺎوﻗﻪ ﺗﺴﺎوى ) ‪ ( Z o 2 = 102.9884 Ω‬آﺎن ﻋﺮﺿﻪ ﻳﺴﺎوى )‪ (Wo2 =1.22 mm‬و‬
‫‪o‬‬

‫اﻟﻄﻮل اﻟﻤﻜﺎﻓﺊ ﻟـ )‪ (90 ≡λg/4‬ﻳﺴﺎوى )‪.(Lo2 = 18.92 mm‬‬

‫‪235‬‬

‫اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟ ﺬى ﻟﻪ ﻣﻌﺎوﻗﻪ ﺗﺴﺎوى ) ‪ ( Z L 2 = 59.46036 Ω‬آﺎن ﻋﺮﺿﻪ ﻳﺴﺎوى )‪(WL2 =3.62 mm‬‬
‫‪o‬‬

‫و اﻟﻄﻮل اﻟﻤﻜﺎﻓﺊ ﻟـ )‪ (90 ≡λg/4‬ﻳﺴﺎوى )‪.(LL2 = 18.35 mm‬‬
‫اﻟﺨ ﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺬى ﻟﻪ ﻣﻌﺎوﻗﻪ ﺗﺴﺎوى ) ‪ ( Z L 3 = 42.04482 Ω‬آﺎن ﻋﺮﺿﻪ ﻳﺴﺎوى )‪(WL3 =6.16 mm‬‬
‫‪o‬‬

‫و اﻟﻄﻮل اﻟﻤﻜﺎﻓﺊ ﻟـ )‪ (90 ≡λg/4‬ﻳﺴﺎوى )‪.(LL3 = 18.03 mm‬‬
‫ﺗ ﻢ اﺧﺘ ﻴﺎر اﻟﻤﻘﺎوﻣ ﻪ ﺗﺴ ﺎوى )‪ (R = 106 Ω‬و اﺧﺘ ﻴﺎر ﺣﺠ ﻢ اﻟﻤﻘﺎوﻣ ﻪ اﻟﻘﻴﺎﺳ ﻰ رﻗ ﻢ )‪ .(1206‬و ﺗﻢ اﺿﺎﻓﺔ ﺧﻄﻴﻦ‬
‫ﺷﺮﻳﻄﻴﻴﻦ ﻗﺼﻴﺮﻳﻦ ﻓﻰ اﻟﻄﻮل )‪ (Pads‬ﻟﻠﺤﺎم اﻟﻤﻘﺎوﻣﻪ ﻋﻠﻴﻬﻤﺎ‪.‬‬
‫هﻨﺎك ﻣﺸﻜﻠﻪ ﻓﻰ اﻟﺸﻜﻞ اﻟﻬﻨﺪﺳﻰ ﻟﻠﺪاﺋﺮﻩ ﻓﻠﺘﺤﻘﻴﻖ ﺷﻜﻞ هﻨﺪﺳﻰ ﻣﻐﻠﻖ ﻟﻠﺪاﺋﺮﻩ ﻳﺠﺐ أن ﻳﻜﻮن )‪ (Lo2 =Lo3‬و آﺬﻟﻚ‬
‫)‪ (LL2 =LL3‬و ﻧﻼﺣ ﻆ ﻣ ﻦ اﻷﺑﻌ ﺎد اﻟﻤﺤﺴ ﻮﺑﻪ أﻋ ﻼﻩ أن ه ﻨﺎك ﻓ ﺮوق ﺑﺴﻴﻄﻪ ﻓﻰ اﻷﻃﻮال ﻟﺬﻟﻚ ﻳﺠﺐ ﺗﻌﻮﻳﺾ هﺬﻩ‬
‫اﻟﻔﺮوق ﻋﻨﺪ اﻟﺘﺤﻠﻴﻞ و رﺳﻢ اﻟﺸﻜﻞ اﻟﻬﻨﺪﺳﻰ ﻟﻠﺪاﺋﺮﻩ‪.‬‬
‫آﻤ ﺎ ذآ ﺮت ﻓ ﻰ ﻣ ﺜﺎل )‪ (٤ – ٦‬أﻧ ﻪ ﻧﻈ ﺮﻳﺎ ﻟﻜ ﻰ ﺗﻨﻘﺴ ﻢ اﻟﻘ ﺪرﻩ اﻟﺨﺎرﺟ ﻪ اﻟ ﻰ ﻗﺴ ﻤﻴﻦ ﻏﻴ ﺮ ﻣﺘﺴ ﺎوﻳﻴﻦ ﺑﻨﺴ ﺒﺔ )‪(2:1‬‬
‫ﺑﻤﻌﻨ ﻰ أن ﺛﻠﺚ اﻟﻘﺪرﻩ اﻟﺨﺎرﺟﻪ ﻳﺨﺮج ﻣﻦ اﻟﻤﺨﺮج رﻗﻢ )‪ (2‬ﺑﻴﻨﻤﺎ ﺛﻠﺜﻰ اﻟﻘﺪرﻩ اﻟﺨﺎرﺟﻪ ﻳﺨﺮج ﻣﻦ اﻟﻤﺨﺮج رﻗﻢ )‪(3‬‬
‫و ﺑﺤﺴﺎب ﺑﺎراﻣﺘﺮات اس ﻧﺠﺪ أن هﺬا ﻳﺆدى اﻟﻰ )‪ (|S21|dB = −4.77‬و )‪ (|S31|dB = −1.761‬وهﺬا ﻳﺘﺤﻘﻖ ﻓﻰ‬
‫داﺋﺮﻩ ﻣﺜﺎﻟﻴﻪ‪.‬‬
‫ﺗ ﻢ ﺗﺤﻠ ﻴﻞ اﻟﺪاﺋ ﺮﻩ ﺑﺎﺳ ﺘﺨﺪام ﺑ ﺮﻧﺎﻣﺞ ﻟﺘﺤﻠﻴﻞ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ ﻓﻰ ﺣﻴﺰ ﻧﺴﺒﻰ ﻳﺴﺎوى )‪ (1GHz ≡ 33.3%‬أى‬
‫ﻣ ﻦ )‪ (2.5 GHz‬اﻟ ﻰ )‪ (3.5 GHz‬و آﺎﻧ ﺖ اﻟﻨ ﺘﺎﺋﺞ ﻣﺨ ﺘﻠﻔﻪ ﻗﻠ ﻴﻼ ﻋﻦ اﻟﻘﻴﻢ اﻟﻤﺤﺴﻮﺑﻪ ﻧﻈﺮﻳﺎ ﻓﺘﻢ ﻋﻤﻞ اﻟﺒﺤﺚ ﻋﻦ‬
‫اﻟﺤ ﻞ اﻷﻣ ﺜﻞ ﻟﺘﺤﺴﻴﻦ ﻧﺘﺎﺋﺞ )‪ (|S21|dB‬و )‪ . (|S31|dB‬ﻣﻊ اﻟﻌﻠﻢ ﺑﺄﻧﻪ ﻳﻤﻜﻦ اﻟﺤﺼﻮل ﻋﻠﻰ أداء ﺟﻴﺪ ﻓﻰ ﺣﻴﺰ ﺗﺮددى‬
‫أآﺒﺮ ﻣﻦ ذﻟﻚ‪.‬‬
‫و آﺎﻧﺖ اﻷﺑﻌﺎد اﻟﻨﻬﺎﺋﻴﻪ آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫‪Wo =4.77 mm‬‬

‫‪Lo = 15 mm‬‬
‫‪Lo3=15.64 mm‬‬

‫‪Wo3=4.71 mm‬‬

‫‪Lo2=15.64 mm‬‬

‫‪Wo2=1.23 mm‬‬

‫‪LL3=16.98 mm‬‬

‫‪WL3=6.16 mm‬‬

‫‪LL2=16.98 mm‬‬

‫‪WL2=3.62 mm‬‬

‫و آﺎﻧﺖ ﻧﺘﺎﺋﺞ ﺗﺤﻠﻴﻞ اﻟﺪاﺋﺮﻩ آﻤﺎ ﻳﻠﻰ ‪:‬‬
‫أﻗﺼ ﻰ ﺧﻄ ﺄ ﻓ ﻰ ﻗ ﻴﻤﺔ )‪ (|S21|dB‬آ ﺎن )‪ (0.115 dB‬ﺑﻴﻨﻤﺎ أﻗﺼﻰ ﺧﻄﺄ ﻓﻰ ﻗﻴﻤﺔ )‪ (|S31|dB‬آﺎن )‪ (0.11 dB‬و‬
‫ﻳﺒﻴﻦ ﺷﻜﻞ )‪ (٦٥ - ٦‬ﻗﻴﻤﺘﻰ )‪ (|S21|dB‬و )‪.(|S31|dB‬‬
‫و ﻳﺒ ﻴﻦ ﺷﻜﻞ )‪ (٦٦ - ٦‬ﻣﻌﺎﻣﻼت اﻻﻧﻌﻜﺎس ﻋﻨﺪ اﻟﻤﺨﺎرج و آﺎﻧﺖ ﻗﻴﻤﺔ )‪ (|S11|dB < −17.58 dB‬و آﺎﻧﺖ ﻗﻴﻤﺔ‬
‫)‪ (|S22|dB < −11.92 dB‬ﺑﻴﻨﻤﺎ آﺎﻧﺖ ﻗﻴﻤﺔ )‪.(|S33|dB < −17.61 dB‬‬
‫و ﻳﺒﻴﻦ ﺷﻜﻞ )‪ (٦٧ - ٦‬أن ﻗﻴﻤﺔ اﻟﻌﺰل ﺑﻴﻦ اﻟﻤﺨﺮﺟﻴﻦ )‪.(|S32|dB < −13.69 dB‬‬
‫ﺷﻜﻞ )‪ (٦٨ - ٦‬ﻳﺒﻴﻦ اﻟﻤﺨﻄﻂ اﻟﻨﻬﺎﺋﻰ ﻟﻠﺪاﺋﺮﻩ‪.‬‬

‫‪236‬‬

‫ﺷﻜﻞ )‪ : (٦٥ - ٦‬ﻗﻴﻢ )‪ (|S31|dB , |S21|dB‬ﻟﻤﻘﺴﻢ اﻟﻘﺪرﻩ ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن ﻓﻰ ﻣﺜﺎل )‪(٧ – ٦‬‬

‫ﺷﻜﻞ )‪ : (٦٦ - ٦‬ﻗﻴﻢ )‪ (|S11|dB , |S22|dB , |S33|dB‬ﻟﻤﻘﺴﻢ اﻟﻘﺪرﻩ ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن ﻓﻰ ﻣﺜﺎل )‪(٧ – ٦‬‬

‫ﺷﻜﻞ )‪ : (٦٧ - ٦‬ﻗﻴﻤﺔ اﻟﻌﺰل ﺑﻴﻦ اﻟﻤﺨﺮﺟﻴﻦ ﻟﻤﻘﺴﻢ اﻟﻘﺪرﻩ ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن ﻓﻰ ﻣﺜﺎل )‪(٧ – ٦‬‬

‫‪237‬‬

‫ﺷﻜﻞ )‪ : (٦٨ - ٦‬ﻣﺨﻄﻂ ﻣﻘﺴﻢ اﻟﻘﺪرﻩ ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن ﻓﻰ ﻣﺜﺎل )‪(٧ – ٦‬‬

‫ﺟﻤ ﻴﻊ ﻣﻘﺴ ﻤﺎت‪/‬ﻣﺠﻤﻌ ﺎت اﻟﻘ ﺪرﻩ اﻟﻤﺸ ﺮوﺣﻪ أﻋ ﻼﻩ ﻻ ﻳ ﺘﻌﺪى اﻟﺤﻴ ﺰ اﻟﺘ ﺮددى ﻟﻬ ﺎ )‪ (octave bandwidth‬أى أن‬
‫)‪ (f2/f1 ≤ 2‬أى أن اﻟﺤ ﺪ اﻷﻋﻠ ﻰ ﻟﻠﺤﻴ ﺰ اﻟﺘ ﺮددى )‪ (f2‬ﻳﺴ ﺎوى ﺿ ﻌﻒ )أو أﻗ ﻞ ﻣ ﻦ ﺿ ﻌﻒ( اﻟﺤ ﺪ اﻷدﻧ ﻰ ﻟﻠﺤﻴ ﺰ‬
‫اﻟﺘﺮددى )‪. (f1‬‬

‫ﺷﻜﻞ )‪ : (٦٩ - ٦‬ﻣﺨﻄﻂ ﻣﻘﺴﻢ اﻟﻘﺪرﻩ ﻣﺘﻌﺪد اﻟﻤﻘﺎﻃﻊ ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن ذو ﻋﺪد )‪ (N‬ﻣﻦ اﻟﻤﻘﺎﻃﻊ‬

‫ﻣﻘﺴ ﻢ اﻟﻘ ﺪرﻩ ﻣ ﺘﻌﺪد اﻟﻤﻘﺎﻃ ﻊ ﻣ ﻦ ﻧ ﻮع وﻳﻠﻜﻨﺴ ﻮن )‪ (Multisecton Wilkinson Divider‬ه ﻮ أﺣ ﺪ ﻣﻘﺴ ﻤﺎت‬
‫اﻟﻘ ﺪرﻩ اﻟﺘ ﻰ ﻳ ﺘﻌﺪى ﺣﻴﺰهﺎ اﻟﺘﺮددى )‪ (octave bandwidth‬و ﻗﺪ ﻳﺼﻞ اﻟﻰ )‪ (decade bandwidth‬ﺑﻤﻌﻨﻰ أن‬
‫)‪ (f2/f1 ≤ 10‬أى أن اﻟﺤ ﺪ اﻷﻋﻠ ﻰ ﻟﻠﺤﻴ ﺰ اﻟﺘ ﺮددى )‪ (f2‬ﻗﺪ ﻳﺼﻞ اﻟﻰ ﻋﺸﺮة أﺿﻌﺎف اﻟﺤﺪ اﻷدﻧﻰ ﻟﻠﺤﻴﺰ اﻟﺘﺮددى‬
‫)‪ . (f1‬و ﻳﺒﻴﻦ اﻟﺸﻜﻞ )‪ (٦٩ - ٦‬ﻣﻘﺴﻢ اﻟﻘﺪرﻩ ﻣﺘﻌﺪد اﻟﻤﻘﺎﻃﻊ ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن ذو ﻋﺪد )‪ (N‬ﻣﻦ اﻟﻤﻘﺎﻃﻊ‪.‬‬
‫و ﻳ ﺘﻜﻮن ذراﻋ ﻰ ﻣﻘﺴ ﻢ اﻟﻘ ﺪرﻩ ﻣ ﺘﻌﺪد اﻟﻤﻘﺎﻃ ﻊ ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن )‪ (Multisecton Wilkinson Divider‬ﻣﻦ‬
‫‪o‬‬

‫ﻋﺪد ﻣﻦ اﻟﺨﻄﻮط ﻃﻮل آﻞ ﻣﻨﻬﺎ ﻳﻜﺎﻓﺊ ﻟـ )‪ (90 ≡λg/4‬و ﺗﻮﺟﺪ ﻣﻘﺎوﻣﻪ ﺗﺼﻞ ﺑﻴﻦ اﻟﺬراﻋﻴﻦ ﻋﻨﺪ ﻧﻬﺎﻳﺔ آﻞ ﻣﻘﻄﻊ‪.‬‬
‫و آﻠﻤ ﺎ زاد ﻋ ﺪد اﻟﻤﻘﺎﻃ ﻊ ﻳ ﺰداد اﻟﻌ ﺰل ﺑ ﻴﻦ اﻟﻤﺨ ﺮﺟﻴﻦ و ﻳ ﺰداد اﻟﺤﻴ ﺰ اﻟﺘﺮددى‪ .‬و ﻳﻌﻄﻰ اﻟﻤﺮﺟﻊ )‪ (1‬ﻣﻌﺎدﻻت و‬
‫ﻣﻨﺤﻨﻴﺎت اﻟﺘﺼﻤﻴﻢ ﺣﺘﻰ أرﺑﻌﺔ ﻣﻘﺎﻃﻊ‪.‬‬

‫‪238‬‬

‫ﻓ ﻰ ﺗﺼ ﻤﻴﻢ ﻣﻘﺴ ﻢ اﻟﻘﺪرﻩ ذو ﻣﻘﻄﻌﻴﻦ ﻓﻘﻂ ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن ﻳﺘﻢ اﺳﺘﺨﺪام اﻟﻤﻘﺎوﻣﺘﻴﻦ )‪ (R1,R2‬اﻟﻠﺘﺎن ﻳﻤﻜﻦ ﺣﺴﺎب‬
‫ﻗﻴﻤﺘﻴﻬﻤﺎ ﻣﻦ اﻟﻤﻌﺎدﻻت اﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫‪2 Z1 Z 2‬‬

‫) ‪(Z1 + Z 2 )(Z 2 − Z1 cot 2 P‬‬

‫)‪(6.38‬‬

‫) ‪2 R 2 (Z1 + Z 2‬‬
‫‪R 2 (Z1 + Z 2 ) − 2 Z 2‬‬

‫)‪(6.39‬‬

‫= ‪R2‬‬

‫= ‪R1‬‬

‫ﺣﻴﺚ‬

‫⎜⎛ ‪π‬‬

‫⎞ ⎤ ‪⎡ f 2 − f1‬‬
‫‪−‬‬
‫‪1‬‬
‫‪0‬‬
‫‪.‬‬
‫‪707‬‬
‫⎢‬
‫⎟⎟ ⎥‬
‫⎝⎜ ‪2‬‬
‫‪f‬‬
‫‪f‬‬
‫‪+‬‬
‫⎠⎦ ‪1‬‬
‫‪⎣ 2‬‬

‫=‪P‬‬

‫ﺣﻴﺚ اﻟﺤﺪ اﻷﻋﻠﻰ ﻟﻠﺤﻴﺰ اﻟﺘﺮددى )‪ (f2‬و اﻟﺤﺪ اﻷدﻧﻰ ﻟﻠﺤﻴﺰ اﻟﺘﺮددى )‪. (f1‬‬
‫و ﻳﺒ ﻴﻦ اﻟﻤ ﺮﺟﻊ )‪ (13‬ﻣ ﺜﺎﻻ رﻗﻤ ﻴﺎ ﻟﺘﺼ ﻤﻴﻢ ﻣﻘﺴ ﻢ اﻟﻘ ﺪرﻩ ذو ﻣﻘﻄﻌ ﻴﻦ ﻣ ﻦ ﻧ ﻮع وﻳﻠﻜﻨﺴ ﻮن ﻟ ﻪ ﺣﻴ ﺰ ﺗ ﺮددى ﻳﺴﺎوى‬
‫)‪ ، (octave bandwidth‬ﺑﻴﺎﻧﺎﺗﻪ آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫ﻣﻌﺎوﻗ ﺔ اﻟﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ ﻓ ﻰ اﻟﻤﻘﻄﻌ ﻴﻦ اﻷول و اﻟﺜﺎﻧ ﻰ )‪ (Z1 = 61 Ω , Z2 = 82 Ω‬ﺑﻴ ﻨﻤﺎ آﺎﻧ ﺖ ﻗ ﻴﻢ‬
‫اﻟﻤﻘﺎوﻣ ﺎت )‪ (R1 = 241 Ω , R2 = 98 Ω‬و ﺗﺤﻘ ﻖ ه ﺬﻩ اﻟﺪاﺋ ﺮﻩ ﻋ ﺰﻻ ﺑﻴﻦ اﻟﻤﺨﺮﺟﻴﻦ ﻣﻘﺪارﻩ )‪ (27.3 dB‬و‬
‫ﻳﺒﻴﻦ ﺷﻜﻞ )‪ (٧٠ - ٦‬رﺳﻤﺎ رﻣﺰﻳﺎ ﻟﻤﻘﺴﻢ اﻟﻘﺪرﻩ ذو ﻣﻘﻄﻌﻴﻦ ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن‪.‬‬

‫ﺷﻜﻞ )‪ : (٧٠ - ٦‬رﺳﻢ رﻣﺰى ﻟﻤﻘﺴﻢ اﻟﻘﺪرﻩ ذو ﻣﻘﻄﻌﻴﻦ ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن‬

‫ﻳﻤﻜ ﻦ ﺗﺤﻤ ﻴﻞ ﻣﻠ ﻒ )‪ (Excel‬ﻣﻦ ﻣﻮﻗﻊ ﻣﺮﺟﻊ اﻻﻧﺘﺮﻧﺖ )‪ (i1‬ﻳﻘﻮم ﺑﻌﻤﻞ ﺣﺴﺎﺑﺎت ﺗﺤﻠﻴﻞ ﻣﻘﺴﻢ اﻟﻘﺪرﻩ ذو ﻋﺪد )‪(N‬‬
‫ﻣ ﻦ اﻟﻤﻘﺎﻃ ﻊ )‪ (N Stage Wilkinson divider‬و ﻳ ﻮﺟﺪ ﺑﺎﻟﻤﻮﻗ ﻊ ﻋ ﺪد ﻣ ﻦ اﻷﻣ ﺜﻠﻪ اﻟ ﺮﻗﻤﻴﻪ ﻟﺪواﺋ ﺮ ﻣﻘﺴ ﻢ اﻟﻘﺪرﻩ‬
‫ﻣﺘﻌﺪد اﻟﻤﻘﺎﻃﻊ ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن ﻣﻊ ﻧﺘﺎﺋﺞ اﻟﺘﺤﻠﻴﻞ‪.‬‬
‫ﻳﻮﺟﺪ أﻳﻀﺎ ﻣﻘﺴﻤﺎت‪/‬ﻣﺠﻤﻌﺎت ﻟﻠﻘﺪرﻩ ذات ﻣﺪﺧﻞ و ﺛﻼﺛﺔ ﻣﺨﺎرج‪.‬‬
‫ﺷ ﻜﻞ )‪ (٧١ - ٦‬ﻳﺒﻴﻦ رﺳﻢ رﻣﺰى ﻟﻤﻘﺴﻢ اﻟﻘﺪرﻩ ذو ﻣﺪﺧﻞ و ﺛﻼﺛﺔ ﻣﺨﺎرج ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن ذو اﻟﻤﻘﻄﻌﻴﻦ و ﺷﻜﻞ‬
‫)‪ (٧٢ - ٦‬ﻳﺒﻴﻦ ﻣﺨﻄﻂ ﻟﻬﺬﻩ اﻟﺪاﺋﺮﻩ‪.‬‬
‫‪239‬‬

‫ﺑﺎﻋﺘﺒﺎر )‪ (Zo = 50Ω‬ﺗﻜﻮن ﻗﻴﻢ اﻟﻤﻌﺎوﻗﺎت اﻟﻤﻤﻴﺰﻩ و اﻟﻤﻘﺎوﻣﺎت ﻓﻰ هﺬﻩ اﻟﺪاﺋﺮﻩ آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫‪R2 = 200 Ω‬‬

‫‪Z2 = 65.8 Ω‬‬

‫‪R1 = 64.95 Ω‬‬

‫‪Z1 = 114 Ω‬‬

‫و ﺗﻘﺴ ﻢ ه ﺬﻩ اﻟﺪاﺋ ﺮﻩ اﻟﻘ ﺪرﻩ اﻟﺪاﺧﻠ ﻪ اﻟ ﻰ ﺛﻼﺛ ﺔ أﻗﺴ ﺎم ﻣﺘﺴ ﺎوﻳﻪ ﺗﺨ ﺮج ﻣ ﻦ اﻟﻤﺨ ﺎرج و ﺗﺤﻘ ﻖ ه ﺬﻩ اﻟﺪاﺋ ﺮﻩ ﻋﺰﻻ ﺑﻴﻦ‬
‫اﻟﺜﻼﺛﺔ ﻣﺨﺎرج ﻣﻘﺪارﻩ )‪ (20 dB‬ﻓﻰ ﺣﻴﺰ ﻣﻘﺪارﻩ )‪.(one octave‬‬
‫ﻻﺣ ﻆ أن )‪ (Z1 = 114 Ω‬و ه ﻰ ﻣﻌﺎوﻗ ﻪ ﻣﻤﻴ ﺰﻩ ﻋﺎﻟﻴﻪ ﻗﺪ ﻳﺼﻌﺐ ﺗﻨﻔﻴﺬهﺎ ﻋﻨﺪ اﺳﺘﺨﺪام اﺳﺘﺨﺪام ﺷﺮﻳﺤﻪ ذات ﺛﺎﺑﺖ‬
‫ﻋ ﺰل )‪ (εr‬ﻋﺎﻟ ﻰ أو ﺳ ﻤﻚ ﻋﺎزل )‪ (h‬ﺻﻐﻴﺮ أو ﻋﻨﺪ ﺗﺼﻤﻴﻢ اﻟﺪاﺋﺮﻩ ﻓﻰ ﺗﺮدد ﻋﺎﻟﻰ ﻣﻦ ﺣﻴﺰ اﻟﻤﻴﻜﺮووﻳﻒ‪ .‬و ﻟﺤﻞ‬
‫ه ﺬﻩ اﻟﻤﺸ ﻜﻠﻪ ﻳﻤﻜ ﻦ اﺳ ﺘﻌﻤﺎل ﺗﺼ ﻤﻴﻢ ﺁﺧ ﺮ ﻟﻤﻘﺴ ﻢ اﻟﻘ ﺪرﻩ ذو اﻟﻤ ﺪﺧﻞ و اﻟ ﺜﻼﺛﺔ ﻣﺨ ﺎرج ﻣ ﻦ ﻧ ﻮع وﻳﻠﻜﻨﺴ ﻮن ﻳﺴ ﻤﻰ‬
‫اﻟﺘﺼ ﻤﻴﻢ اﻟﻤﻌ ﺎد دﻣﺠ ﻪ )‪ (recombinant three-way Wilkinson divider‬و ه ﻮ أﻳﻀ ﺎ ذو ﻣﻘﻄﻌ ﻴﻦ ‪ ،‬و ﻓ ﻴﻪ‬
‫ﺗﻜﻮن أآﺒﺮ ﻣﻌﺎوﻗﻪ ﻣﻤﻴﺰﻩ ﻟﺨﻂ ﺷﺮﻳﻄﻰ ﺗﺴﺎوى )‪.(80 Ω‬‬

‫ﺷﻜﻞ )‪ : (٧١ - ٦‬رﺳﻢ رﻣﺰى ﻟﻤﻘﺴﻢ اﻟﻘﺪرﻩ ذو ﻣﺪﺧﻞ و ﺛﻼﺛﺔ ﻣﺨﺎرج ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن ذو اﻟﻤﻘﻄﻌﻴﻦ‬

‫ﺷﻜﻞ )‪ : (٧٢ - ٦‬ﻣﺨﻄﻂ ﻣﻘﺴﻢ اﻟﻘﺪرﻩ ذو ﻣﺪﺧﻞ و ﺛﻼﺛﺔ ﻣﺨﺎرج ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن ذو اﻟﻤﻘﻄﻌﻴﻦ‬

‫‪240‬‬

‫ﺷ ﻜﻞ )‪ (٧٣ - ٦‬ﻳﺒ ﻴﻦ رﺳ ﻢ رﻣ ﺰى ﻟﻤﻘﺴ ﻢ اﻟﻘ ﺪرﻩ ذو اﻟﻤ ﺪﺧﻞ و اﻟ ﺜﻼﺛﺔ ﻣﺨ ﺎرج ﻣ ﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن اﻟﻤﻌﺎد دﻣﺠﻪ و‬
‫ﺷﻜﻞ )‪ (٧٤ - ٦‬ﻳﺒﻴﻦ ﻣﺨﻄﻂ ﻟﻬﺬﻩ اﻟﺪاﺋﺮﻩ‪.‬‬
‫ﺑﺎﻋﺘﺒﺎر )‪ (Zo = 50Ω‬ﺗﻜﻮن ﻗﻴﻢ اﻟﻤﻌﺎوﻗﺎت اﻟﻤﻤﻴﺰﻩ و اﻟﻤﻘﺎوﻣﺎت ﻓﻰ هﺬﻩ اﻟﺪاﺋﺮﻩ آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫‪Z4 = 80 Ω‬‬

‫‪Z2 = Z3 =40 Ω‬‬

‫‪Z1 = 36 Ω‬‬

‫‪R2 = 100 Ω‬‬

‫‪R1 = 50 Ω‬‬

‫‪Z5 = Z6 = 40 Ω‬‬

‫و ﺗﻘﺴ ﻢ ه ﺬﻩ اﻟﺪاﺋ ﺮﻩ اﻟﻘ ﺪرﻩ اﻟﺪاﺧﻠ ﻪ اﻟ ﻰ ﺛﻼﺛ ﺔ أﻗﺴ ﺎم ﻣﺘﺴ ﺎوﻳﻪ ﺗﺨ ﺮج ﻣ ﻦ اﻟﻤﺨ ﺎرج و ﺗﺤﻘ ﻖ ه ﺬﻩ اﻟﺪاﺋ ﺮﻩ ﻋﺰﻻ ﺑﻴﻦ‬
‫اﻟﺜﻼﺛﺔ ﻣﺨﺎرج ﻳﺘﻌﺪى )‪ (20 dB‬ﻓﻰ ﺣﻴﺰ ﻧﺴﺒﻰ ﻣﻘﺪارﻩ )‪.(200%‬‬

‫ﺷﻜﻞ )‪ : (٧٣ - ٦‬رﺳﻢ رﻣﺰى ﻟﻤﻘﺴﻢ اﻟﻘﺪرﻩ ذو اﻟﻤﺪﺧﻞ و اﻟﺜﻼﺛﺔ ﻣﺨﺎرج ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن اﻟﻤﻌﺎد دﻣﺠﻪ‬

‫ﺷﻜﻞ )‪ : (٧٤ - ٦‬ﻣﺨﻄﻂ ﻣﻘﺴﻢ اﻟﻘﺪرﻩ ذو اﻟﻤﺪﺧﻞ و اﻟﺜﻼﺛﺔ ﻣﺨﺎرج ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن اﻟﻤﻌﺎد دﻣﺠﻪ‬

‫‪241‬‬

‫ﻧﻈ ﺮا ﻟﺼ ﻌﻮﺑﺔ اﻳﺠ ﺎد ﻧﻤ ﻮذج ﻟﻠﻼاﺳ ﺘﻤﺮارﻳﻪ اﻟ ﻨﺎﺗﺠﻪ ﻣ ﻦ اﻟ ﺘﻘﺎء اﻟ ﺜﻼﺛﺔ ﺧﻄ ﻮط ﺷ ﺮﻳﻄﻴﻪ اﻟﺘ ﻰ ﻟﻬ ﺎ ﻣﻌﺎوﻗ ﺎت ﻣﻤﻴﺰﻩ‬
‫ﺗﺴ ﺎوى )‪ (Z2 , Z3 , Z4‬و آ ﺬﻟﻚ اﻟﻼاﺳﺘﻤﺮارﻳﻪ اﻟﻨﺎﺗﺠﻪ ﻣﻦ اﻟﺘﻘﺎء اﻟﺜﻼﺛﺔ ﺧﻄﻮط ﺷﺮﻳﻄﻴﻪ اﻟﺘﻰ ﻟﻬﺎ ﻣﻌﺎوﻗﺎت ﻣﻤﻴﺰﻩ‬
‫ﺗﺴ ﺎوى )‪ (Z6 , Z4 , Z4‬ﻓﺎﻧ ﻪ ﻳﺘﻌ ﻴﻦ ﻋﻠ ﻰ اﻟﻤﺼ ﻤﻢ اﺳﺘﺨﺪام أﺣﺪى ﻃﺮق اﻟﺘﺤﻠﻴﻞ اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴﻴﻪ ﻟﺘﺤﻠﻴﻞ اﻟﺪاﺋﺮﻩ‬
‫و هﺬﻩ اﻟﻄﺮق ﻋﻤﻮﻣﺎ ﺗﺤﻘﻖ ﻧﺘﺎﺋﺞ دﻗﻴﻘﻪ ﻓﻰ ﺗﺤﻠﻴﻞ اﻟﺪواﺋﺮ اﻟﺨﺎﻣﻠﻪ آﻤﺎ هﻮ ﻣﻮﺿﺢ ﻓﻰ اﻟﻔﺼﻞ اﻟﺨﺎﻣﺲ‪.‬‬
‫و ﻳﻤﻜ ﻦ اﺳﺘﺨﺪام أﺣﺪى ﻃﺮق اﻟﺘﺤﻠﻴﻞ اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴﻴﻪ ﻻﺳﺘﺨﺮاج ﺑﺎراﻣﺘﺮات اس أو ﻧﻤﻮذج ﻟﻠﻼاﺳﺘﻤﺮارﻳﻪ ﺛﻢ ﺑﻌﺪ‬
‫ذﻟ ﻚ ﻳ ﺘﻢ اﺳ ﺘﺨﺪام ه ﺬا اﻟ ﻨﻤﻮذج )أو ﺑﺎراﻣﺘ ﺮات اس( ﻓ ﻰ ﺗﺤﻠﻴﻞ اﻟﺪاﺋﺮﻩ ﺑﻄﺮق ﺗﺤﻠﻴﻞ اﻟﺪواﺋﺮ اﻟﻌﺎدﻳﻪ و هﻰ اﻣﻜﺎﻧﻴﻪ‬
‫ﺗﺴﻤﺢ ﺑﻬﺎ ﻣﻌﻈﻢ اﻟﺒﺮاﻣﺞ اﻟﻌﺎﻣﻪ ﻟﺘﺤﻠﻴﻞ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ‪.‬‬
‫ﺷ ﻜﻞ )‪ (٧٥ - ٦‬ﻳﻮﺿ ﺢ ﻣﺨﻄ ﻂ ﻣﻘﺴ ﻢ ﻟﻠﻘ ﺪرﻩ ذو ﻣ ﺪﺧﻞ و ﺛﻼﺛﺔ ﻣﺨﺎرج ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن ﻣﺨﺘﺼﺮ ﻓﻰ اﻟﻤﺴﺎﺣﻪ‬
‫)‪ (Compact 3-Way Wilkinson Power Divider‬و ﻳﺬآ ﺮ اﻟﻤ ﺮﺟﻊ )‪ (15‬ﻣﻌﻠ ﻮﻣﺎت ﻋ ﻦ ﺗﺼ ﻤﻴﻢ ﻟﻬ ﺬﻩ‬
‫اﻟﺪاﺋﺮﻩ ﻣﻦ )‪ (1.7 GHz‬اﻟﻰ )‪ (2.1 GHz‬أى ﻓﻰ ﺣﻴﺰ ﻣﻨﺨﻔﺾ ﻣﻦ ﺗﺮددات اﻟﻤﻴﻜﺮووﻳﻒ‪.‬‬
‫و ﺗﻘﺴ ﻢ ه ﺬﻩ اﻟﺪاﺋﺮﻩ اﻟﻘﺪرﻩ اﻟﺪاﺧﻠﻪ اﻟﻰ ﺛﻼﺛﺔ أﻗﺴﺎم ﻣﺘﺴﺎوﻳﻪ ﺗﺨﺮج ﻣﻦ اﻟﻤﺨﺎرج ﺑﺨﻄﺄ أﻗﺼﻰ ﻣﻘﺪارﻩ )‪ (0.35dB‬و‬
‫ﺗﺤﻘﻖ اﻟﺪاﺋﺮﻩ ﻋﺰﻻ ﺑﻴﻦ اﻟﺜﻼﺛﺔ ﻣﺨﺎرج ﻳﺼﻞ اﻟﻰ )‪ (15 dB‬ﻓﻰ ﺣﻴﺰ ﻧﺴﺒﻰ ﻣﻘﺪارﻩ )‪.(21%‬‬

‫ﺷﻜﻞ )‪ : (٧٥ - ٦‬ﻣﺨﻄﻂ ﻣﻘﺴﻢ اﻟﻘﺪرﻩ ذو اﻟﻤﺪﺧﻞ و اﻟﺜﻼﺛﺔ ﻣﺨﺎرج ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن اﻟﻤﺨﺘﺼﺮ اﻟﻤﺴﺎﺣﻪ‬

‫ﻳﻮﺿﺢ اﻟﺸﻜﻞ )‪ (٧٦ - ٦‬ﻣﺨﻄﻂ ﻣﻘﺴﻢ اﻟﻘﺪرﻩ ذو اﻟﻤﺪﺧﻞ و اﻟﺜﻼﺛﺔ ﻣﺨﺎرج ﻣﻦ ﻧﻮع ﻟﻴﻢ ﻳﻮم ) ‪Lim-Eom 3-way‬‬
‫‪ .(power splitter‬و ﺗﺘﻤﻴﺰ هﺬﻩ اﻟﺪاﺋﺮﻩ ﺑﻤﻮاﺻﻔﺎت ﻣﺨﺘﻠﻔﻪ ﻋﻦ اﻷﻧﻮاع اﻟﻤﺸﺮوﺣﻪ أﻋﻼﻩ‪.‬‬
‫ﻓ ﻰ ﺣﺎﻟ ﺔ دﺧ ﻮل اﻟﻘ ﺪرﻩ ﻣ ﻦ اﻟﻤ ﺪﺧﻞ رﻗﻢ )‪ (1‬ﻳﻜﻮن اﻟﻤﺨﺮﺟﻴﻦ أرﻗﺎم )‪ (3 , 5‬ﻣﻌﺰوﻟﻴﻦ ﺑﻴﻨﻤﺎ ﺗﻨﻘﺴﻢ اﻟﻘﺪرﻩ اﻟﺨﺎرﺟﻪ‬
‫ﻣﻦ اﻟﻤﺨﺎرج أرﻗﺎم )‪ (2 , 4 , 6‬ﺑﻨﺴﺒﺔ )‪ (M:N:K‬ﻋﻠﻰ اﻟﺘﺮﺗﻴﺐ‪.‬‬
‫‪o‬‬

‫ﺟﻤ ﻴﻊ اﻟﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ ﺑﺎﻟﺪاﺋ ﺮﻩ ﻃ ﻮﻟﻬﺎ ﻳﻜﺎﻓ ﺊ )‪ (90 ≡λg/4‬ﻓ ﻴﻤﺎ ﻋ ﺪا اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻷوﺳ ﻂ اﻷﻓﻘ ﻰ ﻓﻄ ﻮﻟﻪ‬
‫‪o‬‬

‫ﻳﻜﺎﻓﺊ )‪. (180 ≡λg/2‬‬

‫‪242‬‬

‫ﺷﻜﻞ )‪ : (٧٦ - ٦‬ﻣﺨﻄﻂ ﻣﻘﺴﻢ اﻟﻘﺪرﻩ ذو اﻟﻤﺪﺧﻞ و اﻟﺜﻼﺛﺔ ﻣﺨﺎرج ﻣﻦ ﻧﻮع ﻟﻴﻢ ﻳﻮم‬

‫اﻟﻤﻌﺎوﻗﺎت اﻟﻤﻤﻴﺰﻩ ﻟﻤﻘﺴﻢ اﻟﻘﺪرﻩ ذو اﻟﻤﺪﺧﻞ و اﻟﺜﻼﺛﺔ ﻣﺨﺎرج ﻣﻦ ﻧﻮع ﻟﻴﻢ ﻳﻮم ﺗﻌﻄﻰ ﺑﺎﻟﻤﻌﺎدﻻت اﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫‪∆1‬‬
‫‪M‬‬

‫‪Z2 = Zo‬‬

‫‪∆2‬‬
‫‪N‬‬

‫‪Z4 = Zo‬‬

‫‪∆1‬‬
‫‪∆2‬‬

‫‪Z1 = Z o‬‬

‫‪Z3 = Zo‬‬
‫‪∆2‬‬
‫‪K‬‬

‫‪Z5 = Zo‬‬
‫‪∆1 = M + N + K‬‬

‫‪∆2 = N + K‬‬

‫ﻋﻠ ﻰ ﺳ ﺒﻴﻞ اﻟﻤ ﺜﺎل اذا آﺎن اﻟﻤﻄﻠﻮب ﺗﻘﺴﻴﻢ اﻟﻘﺪرﻩ ﺑﺤﻴﺚ )‪ (M = 3 , N = 2 , K = 1‬ﻓﺎن اﻟﻤﻌﺎوﻗﺎت اﻟﻤﻤﻴﺰﻩ‬
‫ﺗﻌﻄﻰ آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫‪Z5 = 1.73 Zo‬‬

‫‪Z4 = 1.22 Zo‬‬

‫‪Z1 = Z2 = 1.41 Zo‬‬

‫ﻣ ﻊ ﺗﻮﺻ ﻴﻞ ﻣﻘﺎوﻣﺘ ﻴﻦ ﻣﻘﺪار آﻞ ﻣﻨﻬﻤﺎ )‪ (R = Zo‬ﺑﺎﻟﻤﺨﺮﺟﻴﻦ أرﻗﺎم )‪ (3‬و )‪ (5‬اﻟﻤﻌﺰوﻟﻴﻦ ‪ ،‬ﻣﻊ ﺗﻮﺻﻴﻞ اﻟﻄﺮف‬
‫اﻵﺧﺮ ﻟﻜﻞ ﻣﻘﺎوﻣﻪ ﺑﺎﻷرض )أى ﺑﺘﺮآﻴﺐ ﺣﻤﻞ ﻣﺘﻮاﻓﻖ ‪ matched load‬ﻋﻨﺪ اﻟﻤﺨﺮﺟﻴﻦ أرﻗﺎم ‪ 3‬و ‪.(5‬‬

‫‪243‬‬

‫و ﺑ ﻨﻔﺲ اﻟﻤﻌﺎوﻗ ﺎت اﻟﻤﻤﻴﺰﻩ ﻳﻤﻜﻦ اﻟﺤﺼﻮل ﻋﻠﻰ ﺗﻘﺴﻴﻢ ﻣﺘﺴﺎوى ﻟﻠﻘﺪرﻩ ﺑﻤﻌﻨﻰ أن )‪ (M = N = K = 1‬و ذﻟﻚ ﻓﻰ‬
‫ﺣﺎﻟﺔ دﺧﻮل اﻟﻘﺪرﻩ اﻟﻰ اﻟﺪاﺋﺮﻩ ﻣﻦ اﻟﻤﺪﺧﻞ رﻗﻢ )‪.(4‬‬
‫هﻨﺎك اﻟﻌﺪﻳﺪ ﻣﻦ أﻧﻮاع ﻣﻘﺴﻤﺎت‪/‬ﻣﺠﻤﻌﺎت اﻟﻘﺪرﻩ اﻟﺘﻰ ﻟﻬﺎ ﻋﺪد أآﺒﺮ ﻣﻦ اﻟﻤﺨﺎرج‪.‬‬
‫ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (٧٧ - ٦‬رﺳ ﻢ رﻣ ﺰى ﻟﻤﻘﺴ ﻢ ﻗ ﺪرﻩ ذو ﻣ ﺪﺧﻞ و أرﺑﻌ ﺔ ﻣﺨﺎرج ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن ﻳﺘﻜﻮن ﻣﻦ أرﺑﻌﺔ‬
‫ﺧﻄ ﻮط ﺷ ﺮﻳﻄﻴﻪ و أرﺑﻌ ﺔ ﻣﻘﺎوﻣ ﺎت‪ .‬و ه ﺬﻩ اﻟﺪاﺋ ﺮﻩ ﺻﻐﻴﺮﻩ ﻓﻰ اﻟﻤﺴﺎﺣﻪ و ﻟﺬﻟﻚ ﻳﻤﻜﻦ ﺗﻨﻔﻴﺬهﺎ ﺑﺘﻜﻨﻮﻟﻮﺟﻴﺎت أﺧﺮى‬
‫ﻣ ﺜﻞ )‪ (RFIC, MMIC‬و ﻏﻴ ﺮهﺎ‪ .‬و ﺗﻘﺴ ﻢ ه ﺬﻩ اﻟﺪاﺋﺮﻩ اﻟﻘﺪرﻩ اﻟﺪاﺧﻠﻪ ﺑﺎﻟﺘﺴﺎوى ﺑﻴﻦ اﻷرﺑﻌﺔ ﻣﺨﺎرج و ﺗﺤﻘﻖ أداء‬
‫ﺟﻴﺪ ﻓﻰ ﺣﻴﺰ ﻧﺴﺒﻰ ﻳﺘﻌﺪى )‪.(130%‬‬

‫ﺷﻜﻞ )‪ : (٧٧ - ٦‬رﺳﻢ رﻣﺰى ﻟﻤﻘﺴﻢ اﻟﻘﺪرﻩ ذو ﻣﺪﺧﻞ و أرﺑﻌﺔ ﻣﺨﺎرج ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن‬

‫ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (٧٨ - ٦‬ﻣﻘﺴ ﻢ )أو ﻣﺠﻤ ﻊ( ﻟﻠﻘ ﺪرﻩ ذو ﻣ ﺪﺧﻞ و ﻋ ﺪد )‪ (N‬ﻣ ﻦ اﻟﻤﺨ ﺎرج ) ‪N Way Power‬‬
‫‪ (Combiner/Divider‬ﻋﻠﻰ ﺷﻜﻞ وﺻﻠﻪ ﺗﺘﻜﻮن ﻣﻦ ﺧﻂ ﺷﺮﻳﻄﻰ ﻣﺘﺼﻞ ﺑﺎﻟﻤﺪﺧﻞ ﻟﻪ ﻣﻌﺎوﻗﻪ ﻣﻤﻴﺰﻩ ‪Z o / N‬‬
‫‪o‬‬

‫و ﻃ ﻮﻟﻪ ﻳﻜﺎﻓ ﺊ )‪ ، (90 ≡λg/4‬و ﻋ ﺪد )‪ (N‬ﻣ ﻦ اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﺘﻰ ﻟﻬﺎ ﻣﻌﺎوﻗﻪ )‪ (Zo‬و ﻃﻮل آﻞ ﻣﻨﻬﺎ ﻳﻜﺎﻓﺊ‬
‫‪o‬‬

‫)‪ .(90 ≡λg/4‬و ﺗﻘﺴﻢ هﺬﻩ اﻟﺪاﺋﺮﻩ اﻟﻘﺪرﻩ اﻟﺪاﺧﻠﻪ ﺑﺎﻟﺘﺴﺎوى ﺑﻴﻦ اﻟﻤﺨﺎرج‪.‬‬
‫اﻟﻘﺪرﻩ اﻟﺨﺎرﺟﻪ ﻋﻨﺪ آﻞ ﻣﺨﺮج ﻳﻔﻘﺪ ﻣﻨﻬﺎ ﻧﻈﺮﻳﺎ ﻧﺴﺒﻪ ﺗﻌﺎدل ‪:‬‬

‫⎞ ‪1‬‬
‫⎛‬
‫⎟ ‪⎜1− 2‬‬
‫⎟ ‪N‬‬
‫⎜‬
‫⎟ ‪⎜ 2N −1‬‬
‫⎟‬
‫⎜‬
‫⎠‬
‫⎝‬
‫‪244‬‬

‫ﻳﻌﻴﺐ هﺬا اﻟﺘﺼﻤﻴﻢ أﻧﻪ ﻻ ﻳﺤﻘﻖ ﻋﺰﻻ ﺟﻴﺪا ﺑﻴﻦ اﻟﻤﺨﺎرج و ﻳﻤﻜﻦ اﻟﺘﻌﺒﻴﺮ ﻋﻦ ذﻟﻚ ﺑﺒﺎراﻣﺘﺮات اس ﺣﻴﺚ ‪:‬‬

‫⎞ ⎤‪⎡ N 2 − 1‬‬
‫⎟⎟ ⎥‪⎢ 2 N − 1‬‬
‫⎣‬
‫⎠⎦‬

‫‪⎛ 1‬‬
‫‪Sij = −10 log⎜⎜ 2‬‬
‫‪⎝N‬‬

‫ﺣﻴﺚ )‪ (i , j‬هﻰ أرﻗﺎم ﻣﺨﺎرج اﻟﺪاﺋﺮﻩ‪.‬‬

‫ﺷﻜﻞ )‪ : (٧٨ - ٦‬ﻣﻘﺴﻢ )أو ﻣﺠﻤﻊ( ﻟﻠﻘﺪرﻩ ذو ﻣﺪﺧﻞ و ﻋﺪد )‪ (N‬ﻣﻦ اﻟﻤﺨﺎرج‬

‫و ﻟﺘﺤﻘ ﻴﻖ ﻋ ﺰل أﻓﻀ ﻞ ﻣ ﻦ اﻟﺪاﺋ ﺮﻩ اﻟﺴ ﺎﺑﻘﻪ ﻳﻤﻜ ﻦ اﺳ ﺘﺨﺪام ﻣﻘﺴ ﻢ )أو ﻣﺠﻤ ﻊ( ﻟﻠﻘ ﺪرﻩ ذو ﻣ ﺪﺧﻞ و ﻋ ﺪد )‪ (N‬ﻣ ﻦ‬
‫اﻟﻤﺨ ﺎرج ﻣ ﻦ ﻧ ﻮع وﻳﻠﻜﻨﺴ ﻮن )‪ (Wilkinson N Way Power Combiner/Divider‬اﻟﻤﻮﺿﺢ ﺗﺼﻤﻴﻤﻪ ﻓﻰ‬
‫ﺷ ﻜﻞ )‪ .(٧٩ - ٦‬و ﺗﺤﻘ ﻖ ه ﺬﻩ اﻟﺪاﺋ ﺮﻩ ﻋ ﺰﻻ ﺟ ﻴﺪا ﺑ ﻴﻦ اﻟﻤﺨ ﺎرج و ﻟﻜ ﻦ اﻟﺤﻴ ﺰ اﻟﻨﺴ ﺒﻰ ﻟﻠﺪاﺋ ﺮﻩ ﻳﻘ ﻞ آﻠﻤ ﺎ زاد ﻋﺪد‬
‫اﻟﻤﺨﺎرج‪.‬‬

‫ﺷﻜﻞ )‪ : (٧٩ - ٦‬ﻣﻘﺴﻢ )أو ﻣﺠﻤﻊ( ﻟﻠﻘﺪرﻩ ذو ﻣﺪﺧﻞ و ﻋﺪد )‪ (N‬ﻣﻦ اﻟﻤﺨﺎرج ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن‬

‫‪245‬‬

‫ﻓ ﻰ ﺷ ﻜﻞ )‪ (٣٤ - ٦‬ﺗ ﻢ ﻧﻮﺿ ﻴﺢ آﻴﻔ ﻴﺔ اﺳ ﺘﺨﺪام ﻋ ﺪد ﻣ ﻦ دواﺋﺮ ﻣﻘﺴﻢ )أو ﻣﺠﻤﻊ( ﻟﻠﻘﺪرﻩ ذو ﻣﺪﺧﻞ و ﻣﺨﺮﺟﻴﻦ‬
‫)‪ (2 Way Power Combiner/Divider‬ﻓ ﻰ ﻋﻤ ﻞ ﻣﻘﺴ ﻢ )أو ﻣﺠﻤ ﻊ( ﻟﻠﻘ ﺪرﻩ ذو ﻣ ﺪﺧﻞ و ﻋ ﺪد )‪ (N‬ﻣ ﻦ‬
‫اﻟﻤﺨﺎرج )‪. (N Way Power Combiner/Divider‬‬
‫و ﻳﺴﻤﻰ هﺬا اﻟﺘﺼﻤﻴﻢ ﻟﻤﻘﺴﻤﺎت اﻟﻘﺪرﻩ ﺑﺎﻟﺒﻨﺎء اﻟﻤﺘﺤﺪ أو اﻟﻤﺸﺘﺮك )‪.(Corporate Structure‬‬
‫و ﻳﺒﻴﻦ ﺷﻜﻞ )‪ (٨٠ - ٦‬آﻴﻔﻴﺔ اﺳﺘﺨﺪام هﺬﻩ اﻟﻄﺮﻳﻘﻪ ﻟﻌﻤﻞ ﻣﻘﺴﻢ ﻗﺪرﻩ ذو ﺛﻤﺎﻧﻴﺔ ﻣﺨﺎرج ﺑﺎﺳﺘﺨﺪام ﺳﺒﻌﺔ دواﺋﺮ ﻣﻘﺴﻢ‬
‫ﻟﻠﻘﺪرﻩ ذو ﻣﺪﺧﻞ و ﻣﺨﺮﺟﻴﻦ‪ .‬و ﻳﺴﻤﻰ آﻞ )ﻋﻤﻮد( ﻓﻰ هﺬا اﻟﺘﺼﻤﻴﻢ ﻣﺮﺣﻠﻪ )‪.(Stage‬‬
‫ﺣﺴ ﺎب ﻋ ﺪد ﻣﻘﺴ ﻤﺎت اﻟﻘ ﺪرﻩ )‪ (M‬ذات اﻟﻤ ﺪﺧﻞ و اﻟﻤﺨﺮﺟﻴﻦ اﻟﻼزﻣﻪ ﻟﺒﻨﺎء ﻣﻘﺴﻢ ﻗﺪرﻩ ذو ﻋﺪد )‪ (X‬ﻣﻦ اﻟﻤﺮاﺣﻞ‬
‫‪X‬‬

‫ﻳﺘﻢ ﺑﺎﻟﻤﻌﺎدﻟﻪ ‪.(M = 2 – 1) :‬‬
‫و ﺑﺘﻄﺒﻴﻖ هﺬﻩ اﻟﻤﻌﺎدﻟﻪ ﻋﻠﻰ اﻟﺘﺼﻤﻴﻢ اﻟﻤﻮﺿﺢ ﻓﻰ ﺷﻜﻞ )‪ (٨٠ - ٦‬اﻟﻤﺘﻜﻮن ﻣﻦ ﺛﻼﺛﺔ ﻣﺮاﺣﻞ ﻓﺎﻧﻨﺎ ﻧﺤﺘﺎج اﻟﻰ ﺳﺒﻌﺔ‬
‫‪3‬‬

‫دواﺋﺮ ﻣﻘﺴﻢ ﻟﻠﻘﺪرﻩ ذو ﻣﺪﺧﻞ و ﻣﺨﺮﺟﻴﻦ )‪.(7 = 2 – 1‬‬

‫ﺷﻜﻞ )‪ : (٨٠ - ٦‬ﻣﻘﺴﻢ ﻗﺪرﻩ ذو ﺛﻤﺎﻧﻴﺔ ﻣﺨﺎرج ﺑﺎﺳﺘﺨﺪام اﻟﺒﻨﺎء اﻟﻤﺘﺤﺪ )‪.(Corporate Structure‬‬

‫و آﺘﻄﺒ ﻴﻖ ﻟﻬ ﺬﻩ اﻟﻄ ﺮﻳﻘﻪ ‪ ،‬ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (٨١ - ٦‬رﺳ ﻢ رﻣ ﺰى ﻟﻤﻘﺴ ﻢ ﻗ ﺪرﻩ ذو ﻣ ﺪﺧﻞ و أرﺑﻌ ﺔ ﻣﺨﺎرج ﻣﻦ ﻧﻮع‬
‫وﻳﻠﻜﻨﺴ ﻮن )‪ (Corporate 4 Way Wilkinson divider‬ﻣﺼ ﻤﻢ ﻣ ﻦ ﺗﺠﻤ ﻴﻊ ﻟ ﺜﻼﺛﺔ ﻣﻘﺴ ﻤﺎت ﻗ ﺪرﻩ ﻣ ﻦ ﻧ ﻮع‬
‫وﻳﻠﻜﻨﺴ ﻮن ذات اﻟﻤﺨ ﺮﺟﻴﻦ اﻟﻤﺒ ﻴﻦ ﻓ ﻰ ﺷ ﻜﻞ )‪ (٤٤ - ٦‬ﻣﻊ ازاﻟﺔ اﻟﺨﻄﻴﻦ اﻟﺸﺮﻳﻄﻴﻴﻦ ذوى اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ )‪(Zo‬‬
‫اﻟﻤﺘﺼﻠﻴﻦ ﺑﺎﻟﻤﺨﺮﺟﻴﻦ‪.‬‬
‫و ه ﺬﻩ اﻟﺪاﺋ ﺮﻩ أآﺒ ﺮ ﻧﺴ ﺒﻴﺎ ﻓ ﻰ اﻟﻤﺴ ﺎﺣﻪ ﻣ ﻦ ﺗﻠ ﻚ اﻟﻤﺒﻴ ﻨﻪ ﻓ ﻰ ﺷ ﻜﻞ )‪ . (٧٧ - ٦‬و ﺗﻘﺴ ﻢ هﺬﻩ اﻟﺪاﺋﺮﻩ اﻟﻘﺪرﻩ اﻟﺪاﺧﻠﻪ‬
‫ﺑﺎﻟﺘﺴ ﺎوى ﺑ ﻴﻦ اﻷرﺑﻌ ﺔ ﻣﺨ ﺎرج و ﺗﺤﻘ ﻖ أداء ﺟ ﻴﺪ ﻓ ﻰ ﺣﻴ ﺰ ﻧﺴﺒﻰ ﻳﺘﻌﺪى )‪ (130%‬و ﻟﻜﻦ ﺑﻜﻔﺎﺋﻪ ﺗﻘﻞ ﻋﻦ اﻟﺘﺼﻤﻴﻢ‬
‫اﻟﻤﺒﻴﻦ ﻓﻰ ﺷﻜﻞ )‪.(٧٧ - ٦‬‬

‫‪246‬‬

‫ﺷﻜﻞ )‪ : (٨١ - ٦‬ﻣﻘﺴﻢ ﻗﺪرﻩ ذو أرﺑﻌﺔ ﻣﺨﺎرج ﺑﺎﺳﺘﺨﺪام اﻟﺒﻨﺎء اﻟﻤﺘﺤﺪ‪.‬‬

‫ﺷ ﻜﻞ )‪ (٨٢ - ٦‬ﻳﻮﺿﺢ آﻴﻔﻴﺔ اﺳﺘﺨﺪام ﻋﺪد ﻣﻦ دواﺋﺮ ﻣﻘﺴﻢ )أو ﻣﺠﻤﻊ( ﻟﻠﻘﺪرﻩ ذو ﻣﺪﺧﻞ و ﻣﺨﺮﺟﻴﻦ ﻓﻰ ﻋﻤﻞ‬
‫ﻣﻘﺴﻢ )أو ﻣﺠﻤﻊ( ﻟﻠﻘﺪرﻩ ذو ﻣﺪﺧﻞ و ﻋﺪد )‪ (N‬ﻣﻦ اﻟﻤﺨﺎرج‪.‬‬
‫و ﻳﺴﻤﻰ هﺬا اﻟﺘﺼﻤﻴﻢ ﻟﻤﻘﺴﻤﺎت اﻟﻘﺪرﻩ ﺑﺎﻟﺒﻨﺎء اﻟﻤﺘﺴﻠﺴﻞ أو اﻟﻤﺘﻌﺎﻗﺐ )‪.(Serial or Chain Structure‬‬
‫و ﻳﺴﻤﻰ آﻞ )ﻣﻘﺴﻢ ﻟﻠﻘﺪرﻩ ذو ﻣﺪﺧﻞ و ﻣﺨﺮﺟﻴﻦ ( ﻓﻰ هﺬا اﻟﺘﺼﻤﻴﻢ ﻣﺮﺣﻠﻪ )‪.(Stage‬‬
‫ﻋﺪد اﻟﻤﺨﺎرج )‪ (N‬ﻟﻠﺪاﺋﺮﻩ اﻟﺘﻰ ﻟﻬﺎ )‪ (X‬ﻣﻦ اﻟﻤﺮاﺣﻞ ﻳﻌﻄﻰ ﺑﺎﻟﻤﻌﺎدﻟﻪ )‪.(N = X + 1‬‬
‫و ﺑﺘﻄﺒ ﻴﻖ ه ﺬﻩ اﻟﻤﻌﺎدﻟ ﻪ ﻋﻠ ﻰ اﻟﺘﺼ ﻤﻴﻢ اﻟﻤﻮﺿ ﺢ ﻓﻰ ﺷﻜﻞ )‪ (٨٢ - ٦‬اﻟﻤﺘﻜﻮن ﻣﻦ أرﺑﻌﺔ ﻣﺮاﺣﻞ ﻓﺎن ﻋﺪد اﻟﻤﺨﺎرج‬
‫ﻳﺴﺎوى ﺧﻤﺴﻪ‪.‬‬

‫ﺷﻜﻞ )‪ : (٨٢ - ٦‬ﻣﻘﺴﻢ ﻗﺪرﻩ ذو ﺧﻤﺴﺔ ﻣﺨﺎرج ﺑﺎﺳﺘﺨﺪام اﻟﺒﻨﺎء اﻟﻤﺘﺴﻠﺴﻞ )‪.(Serial Structure‬‬

‫‪247‬‬

‫و ﻳ ﺘﻢ ﺗﻄﺒ ﻴﻖ اﻟﻄﺮﻳﻘﺘﻴﻦ ﺳﻮاء ﻣﻘﺴﻤﺎت اﻟﻘﺪرﻩ ﺑﺎﻟﺒﻨﺎء اﻟﻤﺘﺤﺪ أو اﻟﻤﺸﺘﺮك )‪ (Corporate Structure‬أو ﻣﻘﺴﻤﺎت‬
‫اﻟﻘ ﺪرﻩ ﺑﺎﻟﺒ ﻨﺎء اﻟﻤﺘﺴﻠﺴ ﻞ أو اﻟﻤ ﺘﻌﺎﻗﺐ )‪ (Serial or Chain Structure‬ﻟﺒ ﻨﺎء ﻣﻘﺴ ﻤﺎت‪/‬ﻣﺠﻤﻌ ﺎت ﻟﻠﻘ ﺪرﻩ ﻣ ﺘﻌﺪدة‬
‫اﻟﻤﺨﺎرج ﻓﻰ اﻟﻌﺪﻳﺪ ﻣﻦ اﻟﺘﻄﺒﻴﻘﺎت‪.‬‬
‫ﻋﻠ ﻰ ﺳ ﺒﻴﻞ اﻟﻤ ﺜﺎل ﻳﻤﻜ ﻦ اﺳ ﺘﺨﺪام ﻋ ﺪد ﻣ ﻦ دواﺋ ﺮ اﻟﻤﻜﺒ ﺮات و ﺗﻮﺻ ﻴﻠﻬﺎ ﻣﻌﺎ ﻣﻦ أﺟﻞ اﻟﺤﺼﻮل ﻋﻠﻰ ﻣﻌﺎﻣﻞ ﺗﻜﺒﻴﺮ‬
‫أآﺒﺮ أو رﻓﻊ اﻟﻘﺪرﻩ اﻟﻜﻠﻴﻪ ﻟﻠﻤﻜﺒﺮ ﺑﺎﺳﺘﺨﺪام أى ﻣﻦ هﺎﺗﻴﻦ اﻟﻄﺮﻳﻘﺘﻴﻦ‪.‬‬
‫ﺷ ﻜﻞ )‪ (٨٣ - ٦‬ﻳﻮﺿ ﺢ آﻴﻔ ﻴﺔ اﺳ ﺘﺨﺪام ﻣﻘﺴ ﻤﺎت‪/‬ﻣﺠﻤﻌ ﺎت اﻟﻘ ﺪرﻩ ﺑﺎﻟﺒ ﻨﺎء اﻟﻤ ﺘﺤﺪ أو اﻟﻤﺸ ﺘﺮك ﻟﺘﺠﻤ ﻴﻊ اﻟﻘ ﺪرﻩ ﻣ ﻦ‬
‫أرﺑﻌ ﺔ ﻣﻜﺒ ﺮات‪ .‬و ﺷ ﻜﻞ )‪ (٨٤ - ٦‬ﻳﻮﺿ ﺢ آﻴﻔ ﻴﺔ اﺳ ﺘﺨﺪام ﻣﻘﺴ ﻤﺎت‪/‬ﻣﺠﻤﻌ ﺎت اﻟﻘ ﺪرﻩ ﺑﺎﻟﺒ ﻨﺎء اﻟﻤﺘﺴﻠﺴ ﻞ ﻟ ﻨﻔﺲ‬
‫اﻟﻐﺮض‪.‬‬
‫و ﺗﺴ ﺘﺨﺪم ه ﺬﻩ اﻟﻄ ﺮق ﻋ ﺎدة ﻓ ﻰ أﺟﻬ ﺰة ارﺳ ﺎل اﻟﺤﺎﻟ ﻪ اﻟﺠﺎﻣﺪﻩ ذات اﻟﻘﺪرﻩ اﻟﻌﺎﻟﻴﻪ ) ‪high power solid state‬‬
‫‪.(transmitters‬‬

‫ﺷﻜﻞ )‪ : (٨٣ - ٦‬ﻃﺮﻳﻘﺔ ﻋﻤﻞ ﻣﻜﺒﺮ ذو ﻣﻌﺎﻣﻞ ﺗﻜﺒﻴﺮ )أو ﻗﺪرﻩ( أآﺒﺮ ﺑﺎﺳﺘﺨﺪام أرﺑﻌﺔ دواﺋﺮ ﻣﻜﺒﺮات و ﺑﺎﺳﺘﺨﺪام‬
‫ﻣﻘﺴﻤﺎت‪/‬ﻣﺠﻤﻌﺎت اﻟﻘﺪرﻩ ﺑﺎﻟﺒﻨﺎء اﻟﻤﺘﺤﺪ أو اﻟﻤﺸﺘﺮك )‪(Corporate Structure‬‬

‫ﺷﻜﻞ )‪ : (٨٤ - ٦‬ﻃﺮﻳﻘﺔ ﻋﻤﻞ ﻣﻜﺒﺮ ذو ﻣﻌﺎﻣﻞ ﺗﻜﺒﻴﺮ )أو ﻗﺪرﻩ( أآﺒﺮ ﺑﺎﺳﺘﺨﺪام أرﺑﻌﺔ دواﺋﺮ ﻣﻜﺒﺮات و ﺑﺎﺳﺘﺨﺪام‬
‫ﻣﻘﺴﻤﺎت‪/‬ﻣﺠﻤﻌﺎت اﻟﻘﺪرﻩ ﺑﺎﻟﺒﻨﺎء اﻟﻤﺘﺴﻠﺴﻞ أو اﻟﻤﺘﻌﺎﻗﺐ )‪(Serial or Chain Structure‬‬

‫‪248‬‬

‫ﻣ ﺜﺎل )‪ : (٨ – ٦‬ﻣﻄﻠ ﻮب ﺗﺼ ﻤﻴﻢ ﻣﻘﺴ ﻢ ﻟﻠﻘ ﺪرﻩ ذو ﻣ ﺪﺧﻞ و أرﺑﻌﺔ ﻣﺨﺎرج ﻳﻘﺴﻢ اﻟﻘﺪرﻩ ﺑﺎﻟﺘﺴﺎوى ﻣﻦ )‪(2.8 GHz‬‬
‫اﻟﻰ )‪.(5.2 GHz‬‬
‫اﻟﺤﻞ ‪:‬‬
‫ﺗﻢ اﺧﺘﻴﺎر ﺗﺼﻤﻴﻢ اﻟﺪاﺋﺮﻩ ﻟﻴﻜﻮن ﻣﻦ ﻧﻮع اﻟﺒﻨﺎء اﻟﻤﺘﺤﺪ أو اﻟﻤﺸﺘﺮك )‪.(Corporate Structure‬‬
‫ﺣﺴ ﺐ اﻟﻄ ﺮﻳﻘﻪ اﻟﻤﺸ ﺮوﺣﻪ ﻓ ﻰ ﺷ ﻜﻞ )‪ (٨٠ - ٦‬ﻓﺎﻧﻪ ﻟﻠﺤﺼﻮل ﻋﻠﻰ ﻣﻘﺴﻢ ﻟﻠﻘﺪرﻩ ذو أرﺑﻌﺔ ﻣﺨﺎرج ﻓﺎﻧﻨﺎ ﻧﺤﺘﺎج اﻟﻰ‬
‫ﺛﻼﺛﺔ ﻣﻘﺴﻤﺎت ﻟﻠﻘﺪرﻩ ذات ﻣﺪﺧﻞ و ﻣﺨﺮﺟﻴﻦ‪ .‬و اﺧﺘﻴﺮت هﺬﻩ اﻟﻤﻘﺴﻤﺎت ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن‪.‬‬
‫ﺗ ﻢ اﺧﺘ ﻴﺎر ﺗﺼ ﻤﻴﻢ ﻣﻘﺴ ﻢ اﻟﻘﺪرﻩ ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن ذو اﻟﻤﺪﺧﻞ و اﻟﻤﺨﺮﺟﻴﻦ اﻟﺬى ﻳﻘﺴﻢ اﻟﻘﺪرﻩ ﺑﺎﻟﺘﺴﺎوى ﻣﻦ ) ‪2.5‬‬
‫‪ (GHz‬اﻟ ﻰ )‪ (5.5 GHz‬و اﻟ ﺬى ﺗ ﻢ ﺗﺼﻤﻴﻤﻪ ﻓﻰ ﻣﺜﺎل )‪ (٥ – ٦‬ﺣﻴﺚ أﻧﻪ ﻳﻌﻤﻞ ﻓﻰ ﺣﻴﺰ ﺗﺮددى أوﺳﻊ ﻣﻦ اﻟﺪاﺋﺮﻩ‬
‫اﻟﻤﻄﻠﻮب ﺗﺼﻤﻴﻤﻬﺎ و ﻟﻪ ﻧﻔﺲ ﺗﺮدد اﻟﻤﻨﺘﺼﻒ )‪.(4 GHz‬‬
‫ﻓﻰ ﻣﺜﺎل )‪ (٥ – ٦‬ﺗﻢ اﺧﺘﻴﺎر اﻟﺸﺮﻳﺤﻪ اﻟﺸﺮﻳﻄﻴﻪ ﺑﺎﻟﻤﻮاﺻﻔﺎت اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫ﺛﺎﺑﺖ اﻟﻌﺰل )‪ (εr =2.2‬و ﺳﻤﻚ اﻟﻌﺎزل )‪ (h = 1.575 mm‬و ﺳﻤﻚ اﻟﻤﻮﺻﻞ )‪. (t = 0.07 mm‬‬
‫و آﺎﻧﺖ اﻷﺑﻌﺎد اﻟﻨﻬﺎﺋﻴﻪ ﻟﻤﻘﺴﻢ اﻟﻘﺪرﻩ ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن ذو اﻟﻤﺪﺧﻞ و اﻟﻤﺨﺮﺟﻴﻦ ﻓﻰ ﻣﺜﺎل )‪ (٥ – ٦‬آﻤﺎ ﻳﻠﻰ‪:‬‬
‫أﺑﻌﺎد اﻟﺬراﻋﻴﻦ )‪ (Wa =2.95 mm‬و )‪ (La = 12.53 mm‬ﺣﺴﺐ اﻟﺒﻴﺎﻧﺎت اﻟﻤﻮﺿﺤﻪ ﻓﻰ ﻓﻰ ﺷﻜﻞ )‪.(٤٥ - ٦‬‬
‫و ﺗﻢ اﻟﺤﻔﺎظ ﻋﻠﻰ أﺑﻌﺎد اﻟﺜﻼﺛﺔ ﺧﻄﻮط ﻋﻨﺪ اﻟﻤﺨﺎرج آﻤﺎ هﻰ )‪ (Wo =4.78 mm‬و )‪.(Lo = 13.61 mm‬‬
‫و آ ﺎن اﺧﺘ ﻴﺎر اﻟﻤﻘﺎوﻣ ﻪ اﻟﺘ ﻰ ﺗﺴ ﺎوى )‪ (2 Zo= 100Ω‬ﺑ ﺎﻟﺤﺠﻢ اﻟﻘﻴﺎﺳ ﻰ رﻗ ﻢ )‪ .(1206‬و آ ﺎن رﺳ ﻢ اﻟﻤﺨﻄ ﻂ‬
‫اﻟﻨﻬﺎﺋﻰ ﻟﻠﺪاﺋﺮﻩ ﻓﻰ ﺷﻜﻞ )‪.(٥١ - ٦‬‬
‫ﺗ ﻢ ﺗﻮﺻ ﻴﻞ اﻟ ﺜﻼﺛﺔ ﻣﻘﺴ ﻤﺎت ﻟﻠﻘ ﺪرﻩ ﻣ ﻦ ﻧ ﻮع وﻳﻠﻜﻨﺴ ﻮن ذو اﻟﻤ ﺪﺧﻞ و اﻟﻤﺨ ﺮﺟﻴﻦ اﻟﻤﺼ ﻤﻢ ﻓ ﻰ ﻣ ﺜﺎل )‪(٥ – ٦‬‬
‫ﺑﺎﻟﻄ ﺮﻳﻘﻪ اﻟﻤﻮﺿ ﺤﻪ ﻓ ﻰ ﺷ ﻜﻞ )‪ (٨٥ - ٦‬ﺑﺎﺳ ﺘﺨﺪام ﺧﻄ ﻴﻦ ﺷ ﺮﻳﻄﻴﻴﻦ ﻣﺘﻤﺎﺛﻠﻴﻦ آﻞ ﻣﻨﻬﻤﺎ ﺑﻪ ﺛﻨﻴﺘﻴﻦ و أﺑﻌﺎد آﻞ ﺧﻂ‬
‫ﻣ ﻨﻬﻤﺎ اﻟﻤﺒﺪﺋ ﻴﻪ آﺎﻧ ﺖ )‪ (Wo =4.78 mm‬و )‪ .(Lext = 20 mm‬أى أﻧ ﻪ ﺗ ﻢ اﺧﺘ ﻴﺎر آ ﻞ ﻣ ﻨﻬﻤﺎ ﺑ ﻨﻔﺲ ﻋ ﺮض‬
‫اﻟﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﻤﺘﺼﻠﻪ ﺑﺎﻟﻤﺨﺎرج ﻓﻰ ﻣﻘﺴﻢ اﻟﻘﺪرﻩ ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن ذو اﻟﻤﺪﺧﻞ و اﻟﻤﺨﺮﺟﻴﻦ ﺣﺘﻰ ﻻ ﻳﺤﺪث‬
‫ﻋﺪم ﺗﻮاﻓﻖ )‪ (mismatch‬ﺑﻴﻦ اﻟﻤﻌﺎوﻗﺎت اﻟﻤﻤﻴﺰﻩ ﻟﻠﺨﻄﻮط ﻋﻨﺪ اﻟﺘﻘﺎﺋﻬﺎ‪.‬‬
‫ﻧﻈﺮﻳﺎ ﻟﻜﻰ ﺗﻨﻘﺴﻢ اﻟﻘﺪرﻩ اﻟﺪاﺧﻠﻪ ﻣﻦ اﻟﻤﺪﺧﻞ رﻗﻢ )‪ (1‬اﻟﻰ أرﺑﻌﺔ أﻗﺴﺎم ﻣﺘﺴﺎوﻳﻪ ﺗﺨﺮج ﻣﻦ اﻟﻤﺨﺎرج أرﻗﺎم ) ‪2 , 3 ,‬‬
‫‪ (4 , 5‬و ﺑﺤﺴﺎب ﺑﺎراﻣﺘﺮات اس ﻧﺠﺪ أن هﺬا ﻳﺆدى اﻟﻰ أن ‪:‬‬
‫)‪ (|S21|dB = |S31|dB = |S41|dB = |S51|dB = −6.02 dB‬وهﺬا ﻳﺘﺤﻘﻖ ﻓﻰ داﺋﺮﻩ ﻣﺜﺎﻟﻴﻪ‪.‬‬
‫ﺗﺬآﺮ أن‬

‫⎤‪⎡1‬‬
‫‪10 log ⎢ ⎥ = − 6.02‬‬
‫⎦‪⎣4‬‬

‫ﺗ ﻢ ﺗﺤﻠ ﻴﻞ اﻟﺪاﺋ ﺮﻩ ﺑﺎﺳ ﺘﺨﺪام ﺑﺮﻧﺎﻣﺞ ﻟﺘﺤﻠﻴﻞ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ ﻓﻰ اﻟﺤﻴﺰ اﻟﺘﺮددى اﻟﻤﻄﻠﻮب ﻣﻦ )‪ (2.8 GHz‬اﻟﻰ‬
‫)‪ (5.2 GHz‬و ﺗﻢ ﻋﻤﻞ اﻟﺒﺤﺚ ﻋﻦ اﻟﺤﻞ اﻷﻣﺜﻞ )‪ (optimization‬ﺑﺎﺳﺘﺨﺪام اﻟﺒﺮﻧﺎﻣﺞ‪.‬‬
‫و آﺎﻧﺖ اﻷﺑﻌﺎد اﻟﻨﻬﺎﺋﻴﻪ ﻟﻠﺪاﺋﺮﻩ آﻤﺎ ﻳﻠﻰ ‪:‬‬
‫‪Lext = 19 mm‬‬

‫‪Wa =2.95 mm‬‬

‫‪Wo =4.78 mm‬‬

‫‪La = 12.53 mm‬‬

‫‪Lo = 9 mm‬‬

‫‪249‬‬

‫و آﺎﻧﺖ ﻧﺘﺎﺋﺞ اﻟﺘﺤﻠﻴﻞ اﻟﻨﻬﺎﺋﻴﻪ آﻤﺎ ﻳﻠﻰ ‪:‬‬
‫)‪ (|S21|dB = |S31|dB = |S41|dB = |S51|dB ≈ −6.02 dB‬أى ﻗ ﺮﻳﺒﻪ ﻣ ﻦ اﻟﻤﺤﺴ ﻮﺑﻪ ﻧﻈ ﺮﻳﺎ و ﺑﺨﻄ ﺄ أﻗﺼ ﻰ‬
‫ﻣﻘﺪارﻩ )‪ .(0.197 dB‬و هﺬﻩ اﻟﻨﺘﺎﺋﺞ ﻣﻮﺿﺤﻪ ﻓﻰ ﺷﻜﻞ )‪.(٨٦ - ٦‬‬
‫و آﺎن اﻟﻌﺰل ﺑﻴﻦ اﻟﻤﺨﺎرج )‪ (|S32|dB = |S54|dB < −11.07 dB‬ﺑﻴﻨﻤﺎ آﺎﻧﺖ ﻗﻴﻢ‬
‫)‪ (|S24|dB = |S25|dB = |S34|dB = |S35|dB < −18.75 dB‬و هﺬﻩ اﻟﻨﺘﺎﺋﺞ ﻣﻮﺿﺤﻪ ﻓﻰ ﺷﻜﻞ )‪.(٨٧ - ٦‬‬
‫ﻣﻌﺎﻣﻞ اﻻﻧﻌﻜﺎس ﻋﻨﺪ اﻟﻤﺪﺧﻞ رﻗﻢ )‪ (1‬ﻓﻜﺎﻧﺖ ﻗﻴﻤﺘﻪ )‪ (|S11|dB < −14.25 dB‬آﻤﺎ ﻳﺒﻴﻦ ﺷﻜﻞ )‪.(٨٨ - ٦‬‬
‫ﺑﻴ ﻨﻤﺎ ﺑﺎﻗ ﻰ ﻣﻌ ﺎﻣﻼت اﻻﻧﻌﻜ ﺎس ﻋ ﻨﺪ اﻟﻤﺨ ﺎرج )‪ (|S22|dB = |S33|dB = |S44|dB = |S55|dB < −18.67 dB‬و‬
‫هﺬﻩ اﻟﻨﺘﺎﺋﺞ ﻣﻮﺿﺤﻪ ﻓﻰ ﺷﻜﻞ )‪.(٨٩ - ٦‬‬
‫و هﺬﻩ اﻟﻨﺘﺎﺋﺞ آﻠﻬﺎ ﺟﻴﺪﻩ و ﻳﻤﻜﻦ ﺗﺤﺴﻴﻨﻬﺎ أآﺜﺮ ﻣﻦ ذﻟﻚ ﺑﻌﻤﻞ اﻟﺒﺤﺚ ﻋﻦ اﻟﺤﻞ اﻷﻣﺜﻞ )‪.(optimization‬‬
‫و ﺑﺼ ﻔﻪ ﻋﺎﻣ ﻪ ﻓﺎﻧ ﻪ ﻳﻤﻜ ﻦ ﺗﺤﺴ ﻴﻦ اﻟﻨ ﺘﺎﺋﺞ أآﺜ ﺮ ﻣ ﻦ اﻟﻤﻌﻄ ﺎﻩ ﻟﺠﻤ ﻴﻊ أﻣ ﺜﻠﺔ اﻟﻜ ﺘﺎب ﺑﻌﻤ ﻞ اﻟ ﺒﺤﺚ ﻋ ﻦ اﻟﺤﻞ اﻷﻣﺜﻞ‬
‫)‪ (optimization‬ﺑﻄﺮق ﻣﺨﺘﻠﻔﻪ ﺑﺎﺳﺘﺨﺪام ﺑﺮاﻣﺞ ﺗﺤﻠﻴﻞ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ‪.‬‬

‫ﺷﻜﻞ )‪ : (٨٥ - ٦‬ﻣﺨﻄﻂ ﻣﻘﺴﻢ اﻟﻘﺪرﻩ ذو اﻟﻤﺪﺧﻞ و اﻷرﺑﻌﺔ ﻣﺨﺎرج ﻓﻰ ﻣﺜﺎل )‪(٨ – ٦‬‬

‫‪250‬‬

‫ﺷﻜﻞ )‪ : (٨٦ - ٦‬ﻣﻌﺎﻣﻼت اﻻرﺳﺎل ﻟﻤﻘﺴﻢ اﻟﻘﺪرﻩ ذو اﻟﻤﺪﺧﻞ و اﻷرﺑﻌﺔ ﻣﺨﺎرج ﻓﻰ ﻣﺜﺎل )‪(٨ – ٦‬‬

‫ﺷﻜﻞ )‪ : (٨٧ - ٦‬اﻟﻌﺰل ﺑﻴﻦ اﻟﻤﺨﺎرج ﻟﻤﻘﺴﻢ اﻟﻘﺪرﻩ ذو اﻟﻤﺪﺧﻞ و اﻷرﺑﻌﺔ ﻣﺨﺎرج ﻓﻰ ﻣﺜﺎل )‪(٨ – ٦‬‬

‫‪251‬‬

‫ﺷﻜﻞ )‪ : (٨٨ - ٦‬ﻣﻌﺎﻣﻞ اﻻﻧﻌﻜﺎس ﻋﻨﺪ اﻟﻤﺪﺧﻞ رﻗﻢ )‪ (1‬ﻟﻠﺪاﺋﺮﻩ ﻓﻰ ﻣﺜﺎل )‪(٨ – ٦‬‬

‫ﺷﻜﻞ )‪ : (٨٩ - ٦‬ﻣﻌﺎﻣﻼت اﻻﻧﻌﻜﺎس ﻋﻨﺪ اﻟﻤﺨﺎرج ﻟﻠﺪاﺋﺮﻩ ﻓﻰ ﻣﺜﺎل )‪(٨ – ٦‬‬

‫‪252‬‬

‫)ﻤﻘﻁﻊ ‪ (٤-٦‬ﺩﻭﺍﺌﺭ ﺍﻟﺘﻐﺫﻴﻪ ‪: Bias Networks‬‬

‫دواﺋ ﺮ اﻟ ﺘﻐﺬﻳﻪ ه ﻰ ﺟ ﺰء ﻣﻬ ﻢ ﻣ ﻦ اﻟﺪواﺋ ﺮ اﻟﻔﻌﺎﻟ ﻪ اﻟﻌﺎﻣﻠ ﻪ ﻓ ﻰ اﻟﺘ ﺮدد اﻟﻌﺎﻟ ﻰ و اﻟﻤﻴﻜ ﺮووﻳﻒ ‪ ،‬و ﺗﺴ ﺘﺨﺪم ﻟ ﺘﻐﺬﻳﺔ‬
‫اﻟﻌﻨﺼ ﺮ اﻟﻔﻌ ﺎل ﺑﺎﻟﻔ ﻮﻟﺖ )اﻟﺠﻬ ﺪ( و اﻟﺘ ﻴﺎر اﻟﻤﺴﺘﻤﺮ اﻟﻠﺬان ﻳﺤﺘﺎﺟﻬﻤﺎ و ﻓﻰ ﻧﻔﺲ اﻟﻮﻗﺖ ﻳﺠﺐ أن ﻳﻜﻮن ﺗﺼﻤﻴﻢ داﺋﺮة‬
‫اﻟ ﺘﻐﺬﻳﻪ ﻻ ﻳﺆﺛ ﺮ ﻋﻠ ﻰ أداء اﻟﺪاﺋ ﺮﻩ اﻟﻔﻌﺎﻟﻪ و ﻳﻤﻨﻊ ﺗﺴﺮب اﺷﺎرة اﻟﺘﺮدد اﻟﻌﺎﻟﻰ أو اﻟﻤﻴﻜﺮووﻳﻒ اﻟﻰ ﻣﺼﺪر اﻟﺘﻐﺬﻳﻪ أو‬
‫ﺗﺴﺮب اﻻﺷﺎرﻩ ﺑﺎﻻﺷﻌﺎع‪ .‬اﻟﻤﺮﺟﻊ )‪ (16‬ﺑﻪ ﻋﺪد ﻣﻦ أﺷﻜﺎل دواﺋﺮ اﻟﺘﻐﺬﻳﻪ اﻟﻤﺨﺘﻠﻔﻪ‪.‬‬
‫أﺑﺴ ﻂ ﺷ ﻜﻞ ﻟﺪواﺋ ﺮ اﻟ ﺘﻐﺬﻳﻪ اﻟﻤﺴ ﺘﺨﺪﻣﻪ ﻓ ﻰ اﻟﺘﺮددات اﻟﻌﺎﻟﻴﻪ و اﻟﻤﻴﻜﺮووﻳﻒ ﻳﺘﻜﻮن ﻣﻦ ﻣﻠﻒ و ﻣﻜﺜﻒ آﻤﺎ هﻮ ﻣﺒﻴﻦ‬
‫ﻓﻰ ﺷﻜﻞ )‪ (٩٠ - ٦‬اﻟﻰ اﻟﻴﻤﻴﻦ ‪.‬‬
‫اﻟﻄ ﺮف رﻗ ﻢ )‪ (3‬ﻳ ﺘﻢ ﺗﻮﺻ ﻴﻠﻪ ﺑﻤﺼ ﺪر اﻟ ﺘﻐﺬﻳﻪ ذو اﻟﻔ ﻮﻟﺖ و اﻟﺘ ﻴﺎر اﻟﻤﺴ ﺘﻤﺮ ‪ ،‬و اﻟﻄ ﺮف رﻗ ﻢ )‪ (2‬ﻳ ﺘﻢ ﺗﻮﺻ ﻴﻠﻪ‬
‫ﺑﺎﻟﻌﻨﺼﺮ اﻟﻔﻌﺎل اﻟﻤﺮاد ﺗﻐﺬﻳﺘﻪ ‪ ،‬و اﻟﻄﺮف رﻗﻢ )‪ (1‬ﻳﺘﻢ ﺗﻮﺻﻴﻠﻪ ﺑﺒﺎﻗﻰ اﻟﺪاﺋﺮﻩ‪.‬‬
‫اﻟﻤﻠ ﻒ ﻳﻤﺜﻞ ﻣﻌﺎوﻗﻪ ﻋﺎﻟﻴﻪ ﻓﻰ ﺗﺮددات اﻟﻤﻴﻜﺮووﻳﻒ ﻓﻴﻤﻨﻊ ﺗﺴﺮب اﺷﺎرة اﻟﺘﺮدد اﻟﻌﺎﻟﻰ أو اﻟﻤﻴﻜﺮووﻳﻒ اﻟﻰ ﻣﺼﺪر‬
‫اﻟﺘﻐﺬﻳﻪ و ﻓﻰ ﻧﻔﺲ اﻟﻮﻗﺖ ﻳﻤﺮر اﻟﺘﻴﺎر اﻟﻤﺴﺘﻤﺮ اﻟﻰ اﻟﻌﻨﺼﺮ اﻟﻔﻌﺎل ﺑﺪاﺋﺮة اﻟﻤﻴﻜﺮووﻳﻒ‪.‬‬
‫ﻓ ﻰ اﻟﺪواﺋ ﺮ اﻟﺸ ﺮﻳﻄﻴﻪ ﻳﻤﻜ ﻦ اﺳ ﺘﺨﺪام ﻣﻠ ﻒ ﻣﻠﺤ ﻮم أو ﺗﻨﻔ ﻴﺬ اﻟﻤﻠﻒ ﻓﻰ ﺻﻮرة )‪ (Meander Line‬ﻣﻄﺒﻮﻋﺎ ﻋﻠﻰ‬
‫اﻟﺪاﺋﺮﻩ اﻟﺸﺮﻳﻄﻴﻪ ] راﺟﻊ ﺷﻜﻞ )‪ (٣٠ – ٤‬ﻓﻰ اﻟﻔﺼﻞ اﻟﺮاﺑﻊ [‪.‬‬
‫أﻣ ﺎ اﻟﻤﻜ ﺜﻒ )‪ (DC blocking capacitor or coupling capacitor Cs‬ﻓﻴﻤ ﻨﻊ ﻣ ﺮور اﻟﺘ ﻴﺎر اﻟﻤﺴ ﺘﻤﺮ اﻟ ﻰ‬
‫ﺟ ﺰء اﻟﺪاﺋ ﺮﻩ اﻟﻤﺘﺼ ﻞ ﺑﺎﻟﻄ ﺮف رﻗ ﻢ )‪ (1‬و ﻳﻔﻀ ﻞ أن ﻳﻜ ﻮن ﻣ ﻦ ﻧ ﻮع )‪ (high Q chip capacitor‬و ﻗﻴﻤ ﺘﻪ‬
‫ﺗﺨ ﺘﻠﻒ ﺣﺴ ﺐ اﻟﺤﺎﺟ ﻪ ﻓ ﻰ اﻟﺪاﺋ ﺮﻩ ﻓ ﻴﻤﻜﻦ أن ﺗﻜ ﻮن ﻣﻨﺨﻔﻀ ﻪ )‪ 3pF‬ﻣ ﺜﻼ( و ﻳﻤﻜ ﻦ أن ﺗﻜ ﻮن ﻣ ﺮﺗﻔﻌﻪ )‪1000pF‬‬
‫ﻣ ﺜﻼ( ‪ .‬و ﻗ ﺪ ﻻ ﺗﺤ ﺘﺎج اﻟﺪاﺋﺮﻩ اﻟﻰ اﻟﻤﻜﺜﻒ )‪ (Cs‬اذا آﺎن هﻨﺎك ﻣﻜﻮن ﻳﻤﻨﻊ اﻟﺘﻴﺎر اﻟﻤﺴﺘﻤﺮ ﻣﻦ اﻟﻤﺮور ﻋﻨﺪ اﻟﻄﺮف‬
‫رﻗ ﻢ )‪ (1‬ﻣ ﺜﻞ )اﻟﻤ ﺰدوج اﻻﺗﺠﺎهﻰ أو اﻟﺨﻄﻴﻦ اﻟﺸﺮﻳﻄﻴﻴﻦ اﻟﻤﺰدوﺟﻴﻦ أو وﺟﻮد ﻓﺠﻮﻩ ﺑﺎﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ ‪ (Gap‬اﻟﻰ‬
‫ﺁﺧﺮﻩ‪.‬‬
‫ﺷ ﻜﻞ )‪ (٩٠ - ٦‬اﻟ ﻰ اﻟﻴﺴ ﺎر ﻳﺒ ﻴﻦ داﺋ ﺮة ﺗﻐﺬﻳ ﻪ ﺗﺼ ﻠﺢ ﻟﻠﺘﻨﻔ ﻴﺬ ﺑﺘﻜﻨﻮﻟﻮﺟ ﻴﺎ اﻟﺪواﺋ ﺮ اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﺪﻗ ﻴﻘﻪ ‪ ،‬و ﻓ ﻴﻬﺎ ﺗ ﻢ‬
‫اﺳ ﺘﺒﺪال اﻟﻤﻠ ﻒ ﺑﺨ ﻂ ﺷﺮﻳﻄﻰ دﻗﻴﻖ ذو ﻣﻌﺎوﻗﻪ ﻣﻤﻴﺰﻩ ﻣﺮﺗﻔﻌﻪ أآﺒﺮ ﻣﻦ ﺗﺴﻌﻴﻦ أوم )‪ (Zo > 90 Ω‬و ﻃﻮﻟﻪ ﻳﻜﺎﻓﺊ‬
‫‪o‬‬

‫)‪ (90 ≡λg/4‬ﺣ ﻴﺚ )‪ (guided wavelength λg‬و ﻳﻜ ﻮن ﻃ ﺮﻓﻪ ﻣﻮﺻ ﻞ ﺑﺪاﺋ ﺮة اﻟﻤﻴﻜ ﺮووﻳﻒ اﻟﻔﻌﺎﻟ ﻪ و‬
‫اﻟﻄ ﺮف اﻵﺧ ﺮ ﻳﺘﺼ ﻞ ﺑﻤﺼ ﺪر اﻟ ﺘﻐﺬﻳﻪ )أو ﺗﻮﺻ ﻴﻞ ﺑﺎﻷرض ﻣﻦ وﺟﻬﺔ ﻧﻈﺮ اﻟﻤﻴﻜﺮووﻳﻒ ‪microwave short‬‬
‫‪ (circuit‬أو )ﺗﻮﺻ ﻴﻞ اﻓﺘﺮاﺿ ﻰ ﺑ ﺎﻷرض ﻣ ﻦ وﺟﻬ ﺔ ﻧﻈ ﺮ اﻟﻤﻴﻜ ﺮووﻳﻒ ‪ (microwave virtual ground‬أو‬
‫ﻣﺴ ﺎﺣﻪ آﺒﻴﺮﻩ ﻧﺴﺒﻴﺎ ﻋﻠﻰ اﻟﺪاﺋﺮﻩ اﻟﺸﺮﻳﻄﻴﻪ ﺗﻜﺎﻓﺊ ﺗﻮﺻﻴﻞ اﻓﺘﺮاﺿﻰ ﺑﺎﻷرض ﻣﻦ وﺟﻬﺔ ﻧﻈﺮ اﻟﻤﻴﻜﺮووﻳﻒ ‪ ،‬و هﺬا‬
‫اﻟﺘﻮﺻ ﻴﻞ ﺑ ﺎﻷرض ﻳ ﺆدى اﻟ ﻰ اﺣ ﺪاث ) داﺋ ﺮﻩ ﻣﻔﺘﻮﺣﻪ ﻣﻦ وﺟﻬﺔ ﻧﻈﺮ اﻟﻤﻴﻜﺮووﻳﻒ ‪(microwave open circuit‬‬
‫‪o‬‬

‫أو ﻣﻌﺎوﻗ ﻪ ﻋﺎﻟ ﻴﻪ ﻋﻠ ﻰ ﺑﻌ ﺪ )‪ (90 ≡λg/4‬أى ﻋ ﻨﺪ ﻃ ﺮف اﻟﺨ ﻂ اﻟﺸﺮﻳﻄﻰ اﻟﻤﺘﺼﻞ ﺑﺪاﺋﺮة اﻟﻤﻴﻜﺮووﻳﻒ اﻟﻔﻌﺎﻟﻪ و‬
‫ﺑﺎﻟﺘﺎﻟﻰ ﻳﻤﻨﻊ ﺗﺴﺮب اﺷﺎرة اﻟﺘﺮدد اﻟﻌﺎﻟﻰ أو اﻟﻤﻴﻜﺮووﻳﻒ اﻟﻰ ﻣﺼﺪر اﻟﺘﻐﺬﻳﻪ و ﻓﻰ ﻧﻔﺲ اﻟﻮﻗﺖ ﻳﻤﺮر اﻟﺘﻴﺎر اﻟﻤﺴﺘﻤﺮ‬
‫اﻟﻰ اﻟﻌﻨﺼﺮ اﻟﻔﻌﺎل ﺑﺪاﺋﺮة اﻟﻤﻴﻜﺮووﻳﻒ آﻤﺎ هﻮ ﻣﺒﻴﻦ ﻓﻰ ﺷﻜﻞ )‪ (٩٠ - ٦‬اﻟﻰ اﻟﻴﺴﺎر‪.‬‬
‫و ﻳﻜﻮن اﻟﺘﻮﺻﻴﻞ ﺑﺎﻷﻃﺮاف رﻗﻢ )‪ (1 , 2‬ﺑﺎﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ‪.‬‬

‫‪253‬‬

‫داﺋﺮة ﺗﻐﺬﻳﻪ ﺑﺨﻂ ﺷﺮﻳﻄﻰ و ﻣﻜﺜﻒ‬

‫داﺋﺮة ﺗﻐﺬﻳﻪ ﺑﻤﻠﻒ و ﻣﻜﺜﻒ‬

‫ﺷﻜﻞ )‪ : (٩٠ - ٦‬رﺳﻢ رﻣﺰى ﻣﺒﺴﻂ ﻟﺪاﺋﺮﺗﻰ ﺗﻐﺬﻳﻪ‬

‫داﺋﺮة ﺗﻐﺬﻳﻪ ﺑﺨﻂ ﺷﺮﻳﻄﻰ و ﻣﻜﺜﻔﻴﻦ‬

‫داﺋﺮة ﺗﻐﺬﻳﻪ ﺑﻤﻜﻮﻧﺎت ﻋﻴﻨﻴﻪ‬

‫ﺷﻜﻞ )‪ : (٩١ - ٦‬رﺳﻢ رﻣﺰى ﻣﺒﺴﻂ ﻟﺪاﺋﺮﺗﻰ ﺗﻐﺬﻳﻪ ﻣﻊ اﺿﺎﻓﺔ ﻣﻜﺜﻒ )‪(Bypass Capacitor Cb‬‬

‫ﺷ ﻜﻞ )‪ (٩١ - ٦‬ﻳﺒ ﻴﻦ ﻧﻔ ﺲ اﻟﺪاﺋ ﺮﺗﻴﻦ اﻟﺴ ﺎﺑﻖ ﺗﻮﺿ ﻴﺤﻬﻤﺎ ﻓ ﻰ ﺷ ﻜﻞ )‪ (٩٠ - ٦‬ﻣ ﻊ اﺿ ﺎﻓﺔ ﻣﻜ ﺜﻒ اﺧﺘ ﻴﺎرى‬
‫)‪ (Bypass Capacitor Cb‬ﻳﺴ ﺘﺨﺪم ﻓ ﻰ ﺗﻮﺻ ﻴﻞ أى )‪ (spikes‬زﻳ ﺎدات أو ﺗﻐﻴﺮات ﻣﻔﺎﺟﺌﻪ ﻓﻰ اﻟﺘﻴﺎر اﻟﻘﺎدم ﻣﻦ‬
‫ﻣﺼ ﺪر اﻟ ﺘﻐﺬﻳﻪ اﻟ ﻰ اﻷرض و ﻳﻔﻀﻞ أن ﻳﻜﻮن اﻟﻤﻜﺜﻒ ﻣﻦ ﻧﻮع )‪ (high Q chip capacitor‬و ﻗﻴﻤﺘﻪ ﻗﺪ ﺗﻜﻮن‬
‫)‪ (100pF, 1000pF ...‬ﻣﺜﻼ‪.‬‬
‫ﻳﺒﻴﻦ ﺷﻜﻞ )‪ (٩٢ - ٦‬ﻣﺨﻄﻂ )‪ (layout‬ﻟﺪاﺋﺮة اﻟﺘﻐﺬﻳﻪ اﻟﻤﺒﻴﻨﻪ اﻟﻰ اﻟﻴﺴﺎر ﻓﻰ ﺷﻜﻞ )‪.(٩١ - ٦‬‬
‫‪o‬‬

‫ﺑﺎﻟﻨﻈ ﺮ اﻟ ﻰ ﺷ ﻜﻞ )‪ (٩٢ - ٦‬ﻧﺠ ﺪ أن ﻃ ﻮل اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﺮأﺳ ﻰ )‪ ، (Lb ≡ 90 ≡λg/4‬و اﻟﻤﻌﺎوﻗ ﺔ‬
‫اﻟﻤﻤﻴﺰﻩ ﻟﻠﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺮأﺳﻰ ﻣﺮﺗﻔﻌﻪ أآﺒﺮ ﻣﻦ ﺗﺴﻌﻴﻦ أوم )‪.(Zo > 90 Ω‬‬

‫‪254‬‬

‫و ه ﺬا اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﺮأﺳ ﻰ ﻣﺘﺼ ﻞ ﺑﺎﻟﺪاﺋ ﺮﻩ ﻣ ﻦ ﻃ ﺮﻓﻪ ]اﻟﻄ ﺮف اﻷﺳ ﻔﻞ آﻤﺎ ﻓﻰ ﺷﻜﻞ )‪ [(٩٢ - ٦‬ﺑﻴﻨﻤﺎ ﻃﺮﻓﻪ‬
‫اﻵﺧ ﺮ ﻣﺘﺼ ﻞ ﺑ ـ )‪ (PAD‬أو ﻣﺴﺎﺣﻪ أو ﺧﻂ ﺷﺮﻳﻄﻰ ذو ﻣﻌﺎوﻗﻪ ﻣﻤﻴﺰﻩ ﺻﻐﻴﺮﻩ )ذو ﻋﺮض آﺒﻴﺮ( ﻳﻜﻮن ﻣﻠﺤﻮم ﺑﻪ‬
‫اﻟﺴ ﻠﻚ اﻟﻤﻮﺻ ﻞ اﻟ ﻰ ﻣﺼ ﺪر ﺗﻐﺬﻳ ﺔ اﻟﺘ ﻴﺎر اﻟﻤﺴ ﺘﻤﺮ و ﻣﻠﺤ ﻮم ﺑ ﻪ ﻃ ﺮف اﻟﻤﻜ ﺜﻒ )‪ (Cb‬أﻣ ﺎ اﻟﻄ ﺮف اﻵﺧﺮ ﻟﻠﻤﻜﺜﻒ‬
‫ﻓﻴﻮﺻﻞ ﺑﺎﻷرض ﻋﻦ ﻃﺮﻳﻖ )‪.(Via‬‬
‫ﻧﺘ ﻴﺠﻪ ﻟﻠ ـ )‪ (PAD‬أو )اﻟﻤﺴ ﺎﺣﻪ أو اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ ذو اﻟﻌ ﺮض اﻟﻜﺒﻴ ﺮ( ﻓ ﺎن اﻟ ﻨﻘﻄﻪ )‪ (A‬ﻓ ﻰ ﺷ ﻜﻞ )‪(٩٢ - ٦‬‬
‫ﺗﻤ ﺜﻞ )ﺗﻮﺻ ﻴﻞ ﺑ ﺎﻷرض ﻣ ﻦ وﺟﻬ ﺔ ﻧﻈ ﺮ اﻟﻤﻴﻜ ﺮووﻳﻒ ‪ (microwave short circuit‬أو )ﺗﻮﺻ ﻴﻞ اﻓﺘﺮاﺿ ﻰ‬
‫ﺑ ﺎﻷرض ﻣﻦ وﺟﻬﺔ ﻧﻈﺮ اﻟﻤﻴﻜﺮووﻳﻒ ‪ (microwave virtual ground‬أو ﻣﻌﺎوﻗﻪ ﻣﻨﺨﻔﻀﻪ ﻋﻨﺪ اﻟﻨﻘﻄﻪ )‪، (A‬‬
‫و ه ﺬا ﻳ ﺆدى اﻟ ﻰ اﺣ ﺪاث ) داﺋﺮﻩ ﻣﻔﺘﻮﺣﻪ ﻣﻦ وﺟﻬﺔ ﻧﻈﺮ اﻟﻤﻴﻜﺮووﻳﻒ ‪ (microwave open circuit‬أو ﻣﻌﺎوﻗﻪ‬
‫‪o‬‬

‫ﻋﺎﻟ ﻴﻪ ﻋﻠ ﻰ ﺑﻌ ﺪ )‪ (90 ≡λg/4‬أى ﻋ ﻨﺪ ﻃ ﺮف اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﺮأﺳ ﻰ اﻟﻤﺘﺼ ﻞ ﺑﺪاﺋ ﺮة اﻟﻤﻴﻜ ﺮووﻳﻒ اﻟﻔﻌﺎﻟ ﻪ‬
‫) اﻟ ﻨﻘﻄﻪ ‪ (B‬و ﺑﺎﻟﺘﺎﻟ ﻰ ﺗﻤﻨﻊ هﺬﻩ اﻟﻤﻌﺎوﻗﻪ اﻟﻌﺎﻟﻴﻪ ﺗﺴﺮب اﺷﺎرة اﻟﺘﺮدد اﻟﻌﺎﻟﻰ أو اﻟﻤﻴﻜﺮووﻳﻒ اﻟﻰ اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ‬
‫اﻟﺮأﺳﻰ و اﻟﻰ ﻣﺼﺪر اﻟﺘﻐﺬﻳﻪ و ﻓﻰ ﻧﻔﺲ اﻟﻮﻗﺖ ﻳﻤﺮ اﻟﺘﻴﺎر اﻟﻤﺴﺘﻤﺮ اﻟﻰ اﻟﻌﻨﺼﺮ اﻟﻔﻌﺎل ﺑﺪاﺋﺮة اﻟﻤﻴﻜﺮووﻳﻒ‪.‬‬

‫ﺷﻜﻞ )‪ : (٩٢ - ٦‬ﻣﺨﻄﻂ )‪ (layout‬ﻟﺪاﺋﺮة اﻟﺘﻐﺬﻳﻪ اﻟﻤﺒﻴﻨﻪ اﻟﻰ اﻟﻴﺴﺎر ﻓﻰ ﺷﻜﻞ )‪(٩١ - ٦‬‬

‫ﻟ ﻮ ﻧﻈ ﺮﻧﺎ اﻟ ﻰ ﻣﺨﻄ ﻂ داﺋ ﺮة اﻟ ﺘﻐﺬﻳﻪ اﻟﻤﺒ ﻴﻦ ﻓ ﻰ ﺷ ﻜﻞ )‪ (٩٢ - ٦‬ﻧﺠ ﺪﻩ ﻳﺸ ﺒﻪ ﺣ ﺮف )‪ (T‬ﻣﻘﻠ ﻮﺑﺎ ‪ ،‬و ه ﺬﻩ اﻟﺪاﺋ ﺮﻩ‬
‫ﺗﺴﻤﻰ ﻣﺠﺎزا )‪ (Bias T or Bias Tee‬و هﻮ اﻻﺳﻢ اﻟﺘﺠﺎرى ﻟﻠﺪاﺋﺮﻩ‪.‬‬
‫و دواﺋ ﺮ اﻟ ﺘﻐﺬﻳﻪ ﻣ ﻦ ﻧﻮع )‪ (Bias Tee‬ﺗﺒﺎع ﺗﺠﺎرﻳﺎ ﺑﻌﺪة أﻧﻮاع ﻣﻨﻬﺎ ﺑﺘﻜﻨﻮﻟﻮﺟﻴﺎ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ و ﻣﻨﻬﺎ‬
‫ﺑﺘﻜﻨﻮﻟﻮﺟﻴﺎ اﻟﺨﻂ اﻟﻤﺤﻮرى و ﻣﻨﻬﺎ ﻣﺎ ﻳﺘﻢ ﻟﺤﺎﻣﻪ ﻋﻠﻰ ﺳﻄﺢ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ )‪.(Surface Mount Bias Tee‬‬

‫‪255‬‬

‫ﺷﻜﻞ )‪ : (٩٣ - ٦‬ﺻﻮرة دواﺋﺮ اﻟﺘﻐﺬﻳﻪ ﻣﻦ ﻧﻮع )‪ (Bias Tee‬ﺗﺒﺎع ﺗﺠﺎرﻳﺎ‬

‫ﻣ ﺜﺎل )‪ : (٩ – ٦‬ﻣﻄﻠ ﻮب ﺗﺼ ﻤﻴﻢ داﺋ ﺮة ﺗﻐﺬﻳ ﻪ ﻣ ﻦ ﻧ ﻮع )‪ (Bias Tee‬آﺎﻟﻤﺒﻴ ﻨﻪ ﻓﻰ ﺷﻜﻞ )‪ (٩٢ - ٦‬ﻟﺘﻐﺬﻳﺔ ﻣﻜﺒﺮ‬
‫ﻳﻌﻤﻞ ﻋﻨﺪ )‪.(3.5 GHz‬‬
‫اﻟﺤﻞ ‪ :‬ﺗﻢ اﺧﺘﻴﺎر اﻟﺸﺮﻳﺤﻪ اﻟﺸﺮﻳﻄﻴﻪ ﺑﺎﻟﻤﻮاﺻﻔﺎت اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫ﺛﺎﺑﺖ اﻟﻌﺰل )‪. 2.2 = ( εr dielectric constant‬‬
‫ﺳﻤﻚ اﻟﻌﺎزل )‪. 1.575 mm = (h‬‬
‫ﺳﻤﻚ اﻟﻤﻮﺻﻞ )‪. 0.07 mm = (t‬‬

‫و ﺗﻢ اﺧﺘﻴﺎر ﻗﻴﻢ اﻟﻤﻜﺜﻔﺎت )‪ (Cs =10pF‬و )‪ (Cb =1000pF‬و آﻼهﻤﺎ ﻣﻦ ﻧﻮع )‪.(high Q chip capacitor‬‬
‫‪o‬‬

‫و ﺗ ﻢ اﺧﺘ ﻴﺎر اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ ﻟﻠﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺮأﺳﻰ )‪ (Zo=100Ω‬و ﻣﻌﺮوف أن ﻃﻮﻟﻪ )‪(Lb ≡ 90 ≡λg/4‬‬
‫أﻣﺎ اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻷﻓﻘﻴﻪ ﻓﻤﻌﺮوف أن ﻣﻌﺎوﻗﺘﻬﺎ اﻟﻤﻤﻴﺰﻩ )‪ (50Ω‬آﻤﺎ هﻮ ﻣﻮﺿﺢ ﻓﻰ ﺷﻜﻞ )‪.(٩٢ - ٦‬‬
‫آﻤﺎ هﻮ ﻣﻌﻄﻰ ﻳﺠﺐ أن ﻳﺘﻢ ﺣﺴﺎب أﺑﻌﺎد اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ ﻋﻨﺪ ﺗﺮدد )‪.(3.5 GHz‬‬
‫اﻟﺤﺴﺎﺑﺎت اﻟﻤﺒﺪﺋﻴﻪ آﺎﻧﺖ آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫ﻃﻮل اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺮأﺳﻰ )‪ (L =16.18mm‬و ﻋﺮض اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ )‪.(w =1.32mm‬‬
‫و ﻋ ﺮض اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻷﻓﻘ ﻰ )‪ (wo =4.77mm‬و ﺗ ﻢ اﺧﺘ ﻴﺎر ﻃ ﻮل آ ﻞ ﺧ ﻂ ﺷ ﺮﻳﻄﻰ أﻓﻘﻰ )‪(Lo =10mm‬‬
‫ﻣﺒﺪﺋﻴﺎ‪ .‬و ﺗﻢ اﺧﺘﻴﺎر اﻟﻤﺴﺎﺣﻪ اﻟﻤﺒﺪﺋﻴﻪ ﻟﻠـ )‪ (PAD‬ﻓﻮق اﻟﻨﻘﻄﻪ )‪ (A‬ﻟﺘﻜﻮن )‪.(8mm × 8mm‬‬
‫ﺗﻢ وﺿﻊ اﻟﺪاﺋﺮﻩ ﻋﻠﻰ ﺑﺮﻧﺎﻣﺞ ﻟﺘﺤﻠﻴﻞ اﻟﺪواﺋﺮ و آﺎﻧﺖ اﻟﻨﺘﺎﺋﺞ ﻋﻨﺪ ﺗﺮدد )‪ (3.5 GHz‬آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫)‪−63.9dB‬‬

‫= ‪ (|S32|dB or S32dB‬و ه ﻰ ﻧﺘ ﻴﺠﻪ ﻣﻤ ﺘﺎزﻩ ﻟﻠﻌ ﺰل اﻟ ﺬى ﻳﺠ ﺐ أن ﺗﺤﺪﺛ ﻪ داﺋ ﺮة اﻟ ﺘﻐﺬﻳﻪ ﺑ ﻴﻦ‬

‫اﻟﻌﻨﺼﺮ اﻟﻔﻌﺎل )أو اﻟﻤﻜﺒﺮ( و ﻣﺼﺪر ﺗﻐﺬﻳﺔ اﻟﺘﻴﺎر اﻟﻤﺴﺘﻤﺮ‪.‬‬
‫و )‪ ( S31dB = −63.6dB‬و ه ﻰ ﻧﺘ ﻴﺠﻪ ﻣﻤ ﺘﺎزﻩ ﻟﻠﻌ ﺰل اﻟ ﺬى ﻳﺠ ﺐ أن ﺗﺤﺪﺛ ﻪ داﺋ ﺮة اﻟ ﺘﻐﺬﻳﻪ ﺑ ﻴﻦ ﺑﺎﻗ ﻰ اﻟﺪاﺋﺮﻩ و‬
‫ﻣﺼﺪر ﺗﻐﺬﻳﺔ اﻟﺘﻴﺎر اﻟﻤﺴﺘﻤﺮ‪.‬‬
‫ﻣﻠﺤ ﻮﻇﻪ ‪ :‬ﻟﻜ ﻮن ه ﺬﻩ اﻟﺪاﺋ ﺮﻩ ﺧﺎﻣﻠ ﻪ و ﻻ ﺗﺤ ﺘﻮى ﻋﻠ ﻰ ﻣﻜ ﻮﻧﺎت ﻓﻌﺎﻟ ﻪ أو ﻣ ﻦ اﻟﻔﻴ ﺮرﻳﺖ ) ‪passive and‬‬
‫‪ (reciprocal circuit‬ﻓﺎن )‪ (S32= S23‬و )‪ (S31= S13‬و هﻜﺬا‪.‬‬
‫أﻣﺎ ﺑﺎﻗﻰ اﻟﻨﺘﺎﺋﺞ ﻓﻜﺎﻧﺖ ﻣﻤﺘﺎزﻩ ‪:‬‬
‫‪256‬‬

‫)‪ (|S11|dB = |S22|dB = −24.48dB‬أى أن ﻣﻌ ﺎﻣﻼت اﻻﻧﻌﻜ ﺎس ﻋ ﻨﺪ اﻟﻤﺪﺧﻠ ﻴﻦ )‪ (1 , 2‬ﻣﻨﺨﻔﻀ ﻪ ﻻ ﺗﻌﻜ ﺲ‬
‫ﻧﺴ ﺒﻪ آﺒﻴﺮﻩ ﻣﻦ اﻻﺷﺎرﻩ اﻟﺪاﺧﻠﻪ ﻋﻨﺪهﻤﺎ و )‪ (S21dB = −0.03dB‬أى أن ﻣﻌﺎﻣﻞ اﻻرﺳﺎل ﺑﻴﻦ اﻟﻤﺪﺧﻠﻴﻦ )‪(1, 2‬‬
‫ﻣﺮﺗﻔﻊ و ﻳﺴﻤﺢ ﺑﻤﺮور اﻻﺷﺎرﻩ ﺑﻴﻨﻬﻤﺎ دون ﻓﻘﺪ آﺒﻴﺮ ‪.‬‬
‫و اﻟﺪاﺋ ﺮﻩ ﺑﻬ ﺬﻩ اﻷﺑﻌ ﺎد و اﻟﻨ ﺘﺎﺋﺞ ﻻ ﺗﺤ ﺘﺎج ﻟﻌﻤ ﻞ اﻟ ﺒﺤﺚ ﻋ ﻦ اﻟﺤ ﻞ اﻷﻣ ﺜﻞ )‪ (Optimization‬ﺳ ﻮاء ﻟﺘﺤﺴ ﻴﻦ‬
‫اﻷداء أو ﻟﺘﻐﻴﻴ ﺮ اﻷﺑﻌ ﺎد ﻣ ﻊ ﺗﺤﺴ ﻴﻦ )أو اﻟﻤﺤﺎﻓﻈ ﻪ ﻋﻠ ﻰ( اﻷداء‪ .‬و ﻟﻜ ﻦ ه ﺬا ﻻ ﻳﻤ ﻨﻊ ادﺧ ﺎل أﺑﻌﺎد داﺋﺮة اﻟﺘﻐﺬﻳﻪ )أو‬
‫ﺑﻌﺾ ﻣﻨﻬﺎ( ﻣﻊ أﺑﻌﺎد داﺋﺮة اﻟﻤﻜﺒﺮ ﻓﻰ ﻋﻤﻞ اﻟﺒﺤﺚ ﻋﻦ اﻟﺤﻞ اﻷﻣﺜﻞ )‪ (Optimization‬ﻟﺪاﺋﺮة اﻟﻤﻜﺒﺮ آﻜﻞ‪.‬‬
‫اﻟﺸ ﻜﻞ )‪ (٩٤ - ٦‬ﻳﺒ ﻴﻦ ﻣﺨﻄ ﻂ اﻟﺪاﺋﺮﻩ ﻣﻊ ﺗﻮﺿﻴﺢ اﻷﺑﻌﺎد و أرﻗﺎم اﻟﻤﺨﺎرج ‪ ،‬و ﻧﺘﻴﺠﺔ اﻟﺘﺤﻠﻴﻞ ﻟﻠﺪاﺋﺮﻩ ﻣﻌﻄﺎﻩ ﻓﻰ‬
‫اﻷﺷﻜﺎل ﻣﻦ )‪ (٩٥ - ٦‬اﻟﻰ )‪.(٩٧ - ٦‬‬

‫ﺷﻜﻞ )‪ : (٩٤ - ٦‬ﻣﺨﻄﻂ داﺋﺮة اﻟﺘﻐﺬﻳﻪ اﻟﻤﺼﻤﻤﻪ ﻓﻰ ﻣﺜﺎل ) ‪(٩ -٦‬‬

‫‪257‬‬

‫ﺷﻜﻞ )‪ : (٩٥ - ٦‬ﻣﻌﺎﻣﻼت اﻻﻧﻌﻜﺎس ﻟﺪاﺋﺮة اﻟﺘﻐﺬﻳﻪ اﻟﻤﺼﻤﻤﻪ ﻓﻰ ﻣﺜﺎل ) ‪(٩ -٦‬‬

‫ﺷﻜﻞ )‪ : (٩٦ - ٦‬ﻣﻌﺎﻣﻞ اﻻرﺳﺎل ﻟﺪاﺋﺮة اﻟﺘﻐﺬﻳﻪ اﻟﻤﺼﻤﻤﻪ ﻓﻰ ﻣﺜﺎل )‪(٩ – ٦‬‬

‫ﺷﻜﻞ )‪ : (٩٧ - ٦‬اﻟﻌﺰل ﺑﻴﻦ اﻟﻤﺨﺎرج ﻟﺪاﺋﺮة اﻟﺘﻐﺬﻳﻪ اﻟﻤﺼﻤﻤﻪ ﻓﻰ ﻣﺜﺎل )‪(٩ – ٦‬‬

‫‪258‬‬

‫ﺟﻤ ﻴﻊ دواﺋ ﺮ اﻟ ﺘﻐﺬﻳﻪ اﻟﻤﺸ ﺮوﺣﻪ ﺳ ﺎﺑﻘﺎ ﺗﺼ ﻠﺢ ﻟ ﺘﻐﺬﻳﺔ دواﺋ ﺮ اﻟﻤﻴﻜ ﺮووﻳﻒ ذات اﻟﺤﻴ ﺰ اﻟﺘ ﺮددى اﻟﻀ ﻴﻖ و ﺑﻌ ﺾ‬
‫اﻟﺪواﺋﺮ ذات اﻟﺤﻴﺰ اﻟﺘﺮددى اﻟﻮاﺳﻊ ‪.‬‬
‫ﻓ ﻰ ﺑﻌ ﺾ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ ذات اﻟﺤﻴﺰ اﻟﺘﺮددى اﻟﻮاﺳﻊ ﻓﺎن اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺮأﺳﻰ ذو اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ اﻟﻌﺎﻟﻴﻪ‬
‫ﻓ ﻰ دواﺋ ﺮ اﻟ ﺘﻐﺬﻳﻪ اﻟﻤﺸ ﺮوﺣﻪ ﺳ ﺎﺑﻘﺎ ﻳﻤﻜ ﻦ اﺳ ﺘﺒﺪاﻟﻪ ﺑﻔﻠﺘ ﺮ ﻣ ﻦ ﻧ ﻮع )‪ (Low Pass Filter LPF‬أو ﺑﻤﻨﺸ ﺄ ﻟﻤ ﻨﻊ‬
‫ﻣ ﺮور اﻟﺘ ﺮددات اﻟﻌﺎﻟ ﻴﻪ )‪ (Low Pass Structure‬ﻳﻤ ﻨﻊ ﻣ ﺮور )ﺗﺴ ﺮب( اﻻﺷ ﺎرﻩ ذات اﻟﺤﻴ ﺰ اﻟﺘ ﺮددى اﻟﻮاﺳ ﻊ‬
‫اﻟﻤ ﺎرﻩ ﻓ ﻰ داﺋ ﺮة اﻟﻤﻴﻜ ﺮووﻳﻒ اﻟ ﻰ داﺋ ﺮة اﻟ ﺘﻐﺬﻳﻪ و ﻳﺴ ﻤﺢ ﺑﻤ ﺮور اﻟﺘ ﻴﺎر اﻟﻤﺴ ﺘﻤﺮ اﻟ ﻰ اﻟﻌﻨﺼ ﺮ اﻟﻔﻌ ﺎل ﺑﺪاﺋ ﺮة‬
‫اﻟﻤﻴﻜﺮووﻳﻒ‪.‬‬
‫ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (٩٨ - ٦‬ﻣﺨﻄﻂ )‪ (layout‬ﻟﺪاﺋﺮة ﺗﻐﺬﻳﻪ ﺑﺎﺳﺘﺨﺪام ﻣﻨﺸﺄ ﻟﻤﻨﻊ ﻣﺮور اﻟﺘﺮددات اﻟﻌﺎﻟﻴﻪ ) ‪Low Pass‬‬
‫‪ (Structure‬ﺑﺪﻻ ﻣﻦ اﺳﺘﺨﺪام ﺧﻂ ﺷﺮﻳﻄﻰ دﻗﻴﻖ واﺣﺪ ذو ﻣﻌﺎوﻗﻪ ﻣﻤﻴﺰﻩ ﻋﺎﻟﻴﻪ‪.‬‬
‫ه ﺬا اﻟﻤﻨﺸ ﺄ ﻳﺘﻜﻮن ﻣﻦ ﺛﻼﺛﺔ ﺧﻄﻮط ﺷﺮﻳﻄﻴﻪ دﻗﻴﻘﻪ ‪ ،‬اﺛﻨﺎن ﻣﻨﻬﻢ ﻋﺮﺿﻬﻤﺎ ﺻﻐﻴﺮ أى ﻟﻬﻤﺎ ﻣﻌﺎوﻗﻪ ﻣﻤﻴﺰﻩ ﻋﺎﻟﻴﻪ ﻓﻰ‬
‫ﺣ ﺪود )‪ (Zhigh > 90 Ω‬ﻣﺜﻼ ‪ ،‬أﻣﺎ اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺜﺎﻟﺚ اﻟﻤﻨﺘﻬﻰ ﻧﻬﺎﻳﻪ ﻣﻔﺘﻮﺣﻪ و اﻟﻤﻮﺟﻮد ﺑﻴﻨﻬﻤﺎ ﻓﻬﻮ ذو ﻋﺮض‬
‫آﺒﻴ ﺮ أى ذو ﻣﻌﺎوﻗ ﻪ ﻣﻤﻴ ﺰﻩ ﻣﻨﺨﻔﻀ ﻪ ﺗﺘ ﺮاوح ﺑ ﻴﻦ ﻋﺸ ﺮﻳﻦ و أرﺑﻌ ﻴﻦ أوم )‪ (40 Ω > Zlow > 20 Ω‬ﻣ ﺜﻼ ‪،‬‬
‫‪o‬‬

‫أﻣ ﺎ ﻃ ﻮل ﺧﻄ ﻴﻦ ﻣ ﻦ اﻟﺨﻄ ﻮط اﻟﻤﻜ ﻮﻧﻪ ﻟﻠﻤﻨﺸ ﺄ ﻳﺴ ﺎوى )‪ (Lb ≡ 90 ≡λg/4‬ﻣﺒﺪﺋ ﻴﺎ آﻤ ﺎ ه ﻮ ﻣﻮﺿ ﺢ ﻓ ﻰ ﺷ ﻜﻞ‬
‫)‪ ، (٩٨ - ٦‬أﻣﺎ اﻟﺨﻂ اﻟﺜﺎﻟﺚ ﻓﻄﻮﻟﻪ اﺧﺘﻴﺎرى‪.‬‬
‫ﺣﻴﺚ ﻳﺘﻢ ﺣﺴﺎب أﺑﻌﺎد اﻟﻤﻨﺸﺄ ﻋﻨﺪ ﺗﺮدد اﻟﻤﻨﺘﺼﻒ )‪ (fc‬ﻟﻠﺤﻴﺰ اﻟﺘﺮددى اﻟﺬى ﺗﻌﻤﻞ ﻓﻴﻪ اﻟﺪاﺋﺮﻩ اﻟﻤﺮاد ﺗﻐﺬﻳﺘﻬﺎ ‪.‬‬
‫اﻟ ﻨﻘﻄﻪ )‪ (A‬ﻓ ﻰ ﺷ ﻜﻞ )‪ (٩٨ - ٦‬ﻳ ﻮﺟﺪ ﻋ ﻨﺪهﺎ ﻣﻌﺎوﻗ ﻪ ﻣﻨﺨﻔﻀ ﻪ أو )‪ (virtual ground‬ﺗﻮﺻ ﻴﻞ اﻓﺘﺮاﺿ ﻰ‬
‫ﺑ ﺎﻷرض ‪ ،‬ﺑﻴ ﻨﻤﺎ ﻳ ﻮﺟﺪ ) داﺋ ﺮﻩ ﻣﻔ ﺘﻮﺣﻪ ﻣ ﻦ وﺟﻬﺔ ﻧﻈﺮ اﻟﻤﻴﻜﺮووﻳﻒ ‪ (microwave open circuit‬أو ﻣﻌﺎوﻗﻪ‬
‫ﻋﺎﻟﻴﻪ ﻋﻨﺪ اﻟﻨﻘﻄﻪ )‪ (B‬ﻓﻰ آﻞ اﻟﺤﻴﺰ اﻟﺘﺮددى ﻟﻠﺪاﺋﺮﻩ‪.‬‬

‫ﺷﻜﻞ )‪ : (٩٨ - ٦‬ﻣﺨﻄﻂ )‪ (layout‬ﻟﺪاﺋﺮة ﺗﻐﺬﻳﻪ ﺑﺎﺳﺘﺨﺪام )‪.(Low Pass Structure‬‬

‫‪259‬‬

‫ﻣ ﺜﺎل )‪ : (١٠ – ٦‬ﻣﻄﻠ ﻮب ﺗﺼﻤﻴﻢ داﺋﺮة ﺗﻐﺬﻳﻪ آﺎﻟﻤﺒﻴﻨﻪ ﻓﻰ ﺷﻜﻞ )‪ (٩٨ - ٦‬ﻟﺘﻐﺬﻳﺔ ﻣﻜﺒﺮ ﻳﻌﻤﻞ ﻓﻰ اﻟﺤﻴﺰ اﻟﺘﺮددى‬
‫ﻣﻦ )‪ (3 GHz‬اﻟﻰ )‪. (5 GHz‬‬
‫اﻟﺤﻞ ‪ :‬ﺗﻢ اﺧﺘﻴﺎر اﻟﺸﺮﻳﺤﻪ اﻟﺸﺮﻳﻄﻴﻪ ﺑﺎﻟﻤﻮاﺻﻔﺎت اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫ﺛﺎﺑﺖ اﻟﻌﺰل )‪ ( εr =2.2‬و ﺳﻤﻚ اﻟﻌﺎزل )‪ (h = 1.575 mm‬و ﺳﻤﻚ اﻟﻤﻮﺻﻞ )‪. (t = 0.07 mm‬‬
‫و ﺗﻢ اﺧﺘﻴﺎر ﻗﻴﻢ اﻟﻤﻜﺜﻔﺎت )‪ (Cs =10pF‬و )‪ (Cb =1000pF‬و آﻼهﻤﺎ ﻣﻦ ﻧﻮع )‪.(high Q chip capacitor‬‬
‫ﺗﻤﺖ اﻟﺤﺴﺎﺑﺎت ﻋﻨﺪ ﺗﺮدد اﻟﻤﻨﺘﺼﻒ ﻟﻠﺪاﺋﺮﻩ )‪ (fc central frequency = 4 GHz‬و آﺎﻧﺖ آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫ﺑﺎﻟﻨﺴ ﺒﻪ ﻟﻠﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ ذو اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻨﺨﻔﻀ ﻪ ﺗ ﻢ اﺧﺘ ﻴﺎرهﺎ )‪ (30 Ω‬و ﺗ ﻢ ﺣﺴ ﺎب ﻃﻮﻟﻪ )‪(13.29 mm‬‬
‫وﻋﺮﺿﻪ )‪. (Zlow = 30 Ω ≡ Wlow= 9.78 mm‬‬
‫ﺑﺎﻟﻨﺴ ﺒﻪ ﻟﻠﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ ذو اﻟﻤﻌﺎوﻗ ﻪ اﻟﻌﺎﻟ ﻴﻪ ﺗ ﻢ اﺧﺘ ﻴﺎرهﺎ )‪ (100 Ω‬و ﺗ ﻢ ﺣﺴ ﺎب ﻃ ﻮﻟﻪ )‪(14.15 mm‬‬
‫وﻋﺮﺿﻪ )‪. (Zhigh = 100 Ω ≡ Whigh= 1.32 mm‬‬
‫أﻣﺎ ﻋﺮض اﻟﺨﻄﻮط اﻷﻓﻘﻴﻪ اﻟﻤﻜﺎﻓﺌﻪ ﻟﻤﻌﺎوﻗﻪ ﺧﻤﺴﻴﻦ أوم ﻓﻜﺎن )‪. (Zo = 50 Ω ≡ Wo=4.78 mm‬‬

‫ﺷﻜﻞ )‪ : (٩٩ - ٦‬ﻣﺨﻄﻂ داﺋﺮة اﻟﺘﻐﺬﻳﻪ اﻟﻤﺼﻤﻤﻪ ﻓﻰ ﻣﺜﺎل )‪.(١٠ – ٦‬‬

‫ﻧﺘ ﻴﺠﺔ ﺗﺤﻠ ﻴﻞ اﻟﺘﺼ ﻤﻴﻢ اﻟﻤﺒﺪﺋ ﻰ أﻇﻬ ﺮت أن آ ﻼ ﻣ ﻦ )‪ (S32dB < −62.9dB‬و )‪ (S31dB < −62.9dB‬ﻓ ﻰ‬
‫اﻟﺤﻴ ﺰ اﻟﺘ ﺮددى ﻣﻦ )‪ (3 GHz‬اﻟﻰ )‪ (5 GHz‬و هﻰ ﻧﺘﻴﺠﻪ ﻣﻤﺘﺎزﻩ ﻟﻠﻌﺰل اﻟﺬى ﻳﺠﺐ أن ﺗﺤﺪﺛﻪ داﺋﺮة اﻟﺘﻐﺬﻳﻪ ﺑﻴﻦ‬
‫ﻣﺼﺪر ﺗﻐﺬﻳﺔ اﻟﺘﻴﺎر اﻟﻤﺴﺘﻤﺮ ﻋﻨﺪ اﻟﻤﺨﺮج رﻗﻢ )‪ (3‬و ﻣﺪﺧﻠﻰ اﻟﺘﻮﺻﻴﻞ )‪. (1 , 2‬‬
‫ﻟﻜ ﻦ ﻳﺠ ﺐ أن ﻳ ﺘﻢ ﺗﻘﻴ ﻴﻢ أداء داﺋ ﺮة اﻟ ﺘﻐﺬﻳﻪ و اﻟﻤﻜﺒ ﺮ ﻣﻌ ﺎ ‪ ،‬ﻓ ﺒﻌﺪ اﻟﺘﺼﻤﻴﻢ اﻟﻤﺒﺪﺋﻰ ﻟﻜﻞ ﻣﻦ داﺋﺮة اﻟﺘﻐﺬﻳﻪ )أو دواﺋﺮ‬
‫اﻟ ﺘﻐﺬﻳﻪ اﻟﻠﺘ ﻰ ﻳﺤﺘﺎﺟﻬﺎ اﻟﻤﻜﺒﺮ( واﺳﺘﻜﻤﺎل ﺗﺼﻤﻴﻢ داﺋﺮة اﻟﻤﻜﺒﺮ ‪ ،‬ﻳﻨﺒﻐﻰ ﻓﻰ اﻟﻨﻬﺎﻳﻪ أن ﺗﻮﺿﻊ داﺋﺮة اﻟﻤﻜﺒﺮ ﻟﻠﺘﺤﻠﻴﻞ‬
‫‪260‬‬

‫و اﻟ ﺒﺤﺚ ﻋ ﻦ اﻟﺤﻞ اﻷﻣﺜﻞ )‪ (Optimization‬ﺑﺎﺳﺘﺨﺪام أﺣﺪ ﺑﺮاﻣﺞ ﺗﺤﻠﻴﻞ اﻟﺪواﺋﺮ و ﻳﺠﺐ أن ﻳﺘﻢ ذﻟﻚ ﻟﻠﺪاﺋﺮﻩ آﻜﻞ‬
‫ﺑﻤ ﺎ ﻓ ﻴﻬﺎ داﺋ ﺮة )أو دواﺋ ﺮ( اﻟ ﺘﻐﺬﻳﻪ ﻟﻨﺤﺼ ﻞ ﻓ ﻰ اﻟ ﻨﻬﺎﻳﻪ ﻋﻠ ﻰ اﻷداء اﻟﻤﻄﻠ ﻮب ﻟﻠﻤﻜﺒ ﺮ ﻓ ﻰ اﻟﺤﻴ ﺰ اﻟﺘ ﺮددى ﻣ ﻦ‬
‫)‪ (3 GHz‬اﻟﻰ )‪. (5 GHz‬‬
‫ﻳﺒ ﻴﻦ اﻟﺸ ﻜﻞ )‪ (٩٩ - ٦‬ﻣﺨﻄ ﻂ داﺋ ﺮة اﻟ ﺘﻐﺬﻳﻪ و ﺗﺒ ﻴﻦ اﻷﺷ ﻜﺎل ﻣ ﻦ )‪ (١٠٠ - ٦‬اﻟ ﻰ )‪ (١٠٢ - ٦‬أداء اﻟﺪاﺋ ﺮﻩ ﻓ ﻰ‬
‫اﻟﺤﻴﺰ اﻟﺘﺮددى اﻟﻤﻄﻠﻮب )‪.(3 to 5 GHz‬‬

‫ﺷﻜﻞ )‪ : (١٠٠ - ٦‬اﻟﻌﺰل ﺑﻴﻦ اﻟﻤﺨﺎرج ﻟﺪاﺋﺮة اﻟﺘﻐﺬﻳﻪ اﻟﻤﺼﻤﻤﻪ ﻓﻰ ﻣﺜﺎل )‪.(١٠ – ٦‬‬

‫ﺷﻜﻞ )‪ : (١٠١ - ٦‬ﻣﻌﺎﻣﻼت اﻻﻧﻌﻜﺎس ﻟﺪاﺋﺮة اﻟﺘﻐﺬﻳﻪ اﻟﻤﺼﻤﻤﻪ ﻓﻰ ﻣﺜﺎل )‪.(١٠ – ٦‬‬

‫‪261‬‬

‫ﺷﻜﻞ )‪ : (١٠٢ - ٦‬ﻣﻌﺎﻣﻞ اﻻرﺳﺎل ﻟﺪاﺋﺮة اﻟﺘﻐﺬﻳﻪ اﻟﻤﺼﻤﻤﻪ ﻓﻰ ﻣﺜﺎل )‪.(١٠ – ٦‬‬

‫ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (١٠٣ - ٦‬ﻣﺨﻄ ﻂ )‪ (layout‬ﻟﺪاﺋ ﺮة ﺗﻐﺬﻳ ﻪ ﺑﺎﺳ ﺘﺨﺪام ﻣﻨﺸ ﺄ ﻟﻤ ﻨﻊ ﻣ ﺮور اﻟﺘ ﺮددات اﻟﻌﺎﻟ ﻴﻪ ) ‪Low‬‬
‫‪ (Pass Structure‬و ﻟﻜ ﻨﻪ ﻳﺨ ﺘﻠﻒ ﻋ ﻦ اﻟﻤﺒ ﻴﻦ أﻋ ﻼﻩ ﻓ ﻰ ﺷ ﻜﻞ )‪ (٩٨ - ٦‬ﺣ ﻴﺚ ﻳﺘﻜﻮن اﻟﻤﻨﺸﺄ اﻟﺠﺪﻳﺪ ﻣﻦ ﺧﻄﻴﻦ‬
‫ﺷﺮﻳﻄﻴﻴﻦ و ﺧﻂ ﺷﺮﻳﻄﻰ ﻗﻄﺮى )‪.(radial line‬‬
‫اﻟﺨﻄ ﻴﻦ اﻟﺸ ﺮﻳﻄﻴﻴﻦ ﻋﺮﺿ ﻬﻤﺎ ﺻ ﻐﻴﺮ أى ﻟﻬﻤ ﺎ ﻣﻌﺎوﻗ ﻪ ﻣﻤﻴ ﺰﻩ ﻋﺎﻟ ﻴﻪ ﻓ ﻰ ﺣ ﺪود )‪ (Zo > 90 Ω‬ﻣ ﺜﻼ و ﻃ ﻮل‬
‫‪o‬‬

‫أﺣ ﺪهﻤﺎ ﻳﺴ ﺎوى ﻣﺒﺪﺋ ﻴﺎ )‪ ، (Lb ≡ 90 ≡λg/4‬أﻣ ﺎ اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﻘﻄ ﺮى و اﻟﻤﻮﺟ ﻮد ﺑﻴ ﻨﻬﻤﺎ ﻓﻬ ﻮ ذو زاوﻳ ﻪ‬
‫ﺗﺘ ﺮاوح ﺑ ﻴﻦ )‪ (135o > θ > 60o‬ﻣ ﺜﻼ ‪ ،‬أﻣ ﺎ ﻃ ﻮل ﻧﺼ ﻒ ﻗﻄﺮ اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﻘﻄﺮى )‪ (radius‬ﻓﻬﻮ ﻳﻜﺎﻓﺊ‬
‫)‪ (λg/4‬ﻣﺒﺪﺋ ﻴﺎ ‪ ،‬ﺣ ﻴﺚ ﻳ ﺘﻢ ﺣﺴ ﺎب أﺑﻌ ﺎد اﻟﻤﻨﺸ ﺄ ﻋ ﻨﺪ ﺗ ﺮدد اﻟﻤﻨﺘﺼﻒ )‪ (fc‬ﻟﻠﺤﻴﺰ اﻟﺘﺮددى اﻟﺬى ﺗﻌﻤﻞ ﻓﻴﻪ اﻟﺪاﺋﺮﻩ‬
‫اﻟﻤﺮاد ﺗﻐﺬﻳﺘﻬﺎ ‪.‬‬

‫ﺷﻜﻞ )‪ : (١٠٣ - ٦‬ﻣﺨﻄﻂ )‪ (layout‬ﻟﺪاﺋﺮة ﺗﻐﺬﻳﻪ ﺑﺎﺳﺘﺨﺪام )‪(radial line‬‬

‫‪262‬‬

‫ﻣ ﺜﺎل )‪ : (١١ – ٦‬ﻣﻄﻠ ﻮب ﺗﺼ ﻤﻴﻢ داﺋ ﺮة ﺗﻐﺬﻳﻪ آﺎﻟﻤﺒﻴﻨﻪ ﻓﻰ ﺷﻜﻞ )‪ (١٠٣ - ٦‬ﻟﺘﻐﺬﻳﺔ ﻧﻔﺲ اﻟﻤﻜﺒﺮ اﻟﺬى ﻳﻌﻤﻞ ﻓﻰ‬
‫اﻟﺤﻴﺰ اﻟﺘﺮددى ﻣﻦ )‪ (3 GHz‬اﻟﻰ )‪ (5 GHz‬ﺑﺎﺳﺘﺨﺪام ﻧﻔﺲ اﻟﺸﺮﻳﺤﻪ اﻟﻤﻌﻄﺎﻩ ﻓﻰ ﻣﺜﺎل )‪(١٠ – ٦‬‬
‫اﻟﺤﻞ ‪:‬‬
‫ﺗﻤﺖ اﻟﺤﺴﺎﺑﺎت ﻋﻨﺪ ﺗﺮدد اﻟﻤﻨﺘﺼﻒ ﻟﻠﺪاﺋﺮﻩ )‪ (4 GHz‬و آﺎﻧﺖ آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫ﺑﺎﻟﻨﺴ ﺒﻪ ﻟﻠﺨﻄ ﻴﻦ اﻟﺸ ﺮﻳﻄﻴﻴﻦ اﻟﺮأﺳ ﻴﻴﻦ ذوى اﻟﻤﻌﺎوﻗ ﻪ اﻟﻌﺎﻟ ﻴﻪ ﺗ ﻢ اﺧﺘ ﻴﺎرهﺎ )‪ (100 Ω‬و ﺗ ﻢ ﺣﺴ ﺎب ﻃﻮل آﻞ ﻣﻨﻬﻤﺎ‬
‫ﻟﻴﻜﻮن )‪ (14.15 mm‬وﻋﺮض آﻞ ﻣﻨﻬﻤﺎ )‪. (Zhigh = 100 Ω ≡ Whigh= 1.32 mm‬‬
‫أﻣﺎ ﻋﺮض اﻟﺨﻄﻮط اﻷﻓﻘﻴﻪ اﻟﻤﻜﺎﻓﺌﻪ ﻟﻤﻌﺎوﻗﻪ ﺧﻤﺴﻴﻦ أوم ﻓﻜﺎن )‪. (Zo = 50 Ω ≡ Wo=4.78 mm‬‬
‫و ﺗﻢ اﺧﺘﻴﺎر ﻗﻴﻢ اﻟﻤﻜﺜﻔﺎت )‪ (Cs =10pF‬و )‪ (Cb =1000pF‬و آﻼهﻤﺎ ﻣﻦ ﻧﻮع )‪.(high Q chip capacitor‬‬
‫أى أن ﺗﺼ ﻤﻴﻢ اﻟﺪاﺋ ﺮﻩ ﻓ ﻰ ه ﺬا اﻟﻤ ﺜﺎل ه ﻮ ﻧﻔ ﺲ ﺗﺼ ﻤﻴﻢ اﻟﺪاﺋ ﺮﻩ ﻓ ﻰ اﻟﻤ ﺜﺎل )‪ (١٠ – ٦‬اﻟﺴ ﺎﺑﻖ ﻣ ﻊ اﺳ ﺘﺒﺪال اﻟﺨ ﻂ‬
‫اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ ذو اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ اﻟﻤﻨﺨﻔﻀﻪ )‪ (Zlow‬ﺑﺎﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﻘﻄﺮى‪.‬‬
‫ﺑﺎﻟﻨﺴﺒﻪ ﻟﻠﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﻘﻄﺮى ﺗﻢ اﺧﺘﻴﺎر زاوﻳﺔ اﻟﻘﻮس ﻟﺘﻜﻮن )‪ (θ = 90o‬و ﻃﻮل ﻧﺼﻒ اﻟﻘﻄﺮ ﻳﻜﺎﻓﺊ )‪(λg/4‬‬
‫ﻟﺨﻂ ﻣﻌﺎوﻗﺘﻪ ﺧﻤﺴﻴﻦ أوم و ﻳﺴﺎوى )‪.(13.61 mm‬‬
‫ﻧﺘ ﻴﺠﺔ ﺗﺤﻠ ﻴﻞ اﻟﺘﺼ ﻤﻴﻢ اﻟﻤﺒﺪﺋ ﻰ أﻇﻬ ﺮت أن آ ﻼ ﻣﻦ )‪ (S32dB < −61.26dB‬و )‪ (S31dB < −61.26dB‬ﻓﻰ‬
‫اﻟﺤﻴﺰ اﻟﺘﺮددى ﻣﻦ )‪ (3 GHz‬اﻟﻰ )‪ (5 GHz‬و هﻰ ﻧﺘﻴﺠﻪ ﻣﻤﺘﺎزﻩ ﻟﻠﻌﺰل ﺑﻴﻦ ﻣﺨﺎرج اﻟﺪاﺋﺮﻩ‪.‬‬
‫و آﻤ ﺎ ذآ ﺮت ﻓ ﻰ اﻟﻤ ﺜﺎل اﻟﺴ ﺎﺑﻖ ﻓ ﺒﻌﺪ اﺳ ﺘﻜﻤﺎل ﺗﺼ ﻤﻴﻢ داﺋ ﺮة اﻟﻤﻜﺒ ﺮ ‪ ،‬ﻳﻨﺒﻐ ﻰ ﻓ ﻰ اﻟﻨﻬﺎﻳﻪ أن ﺗﻮﺿﻊ داﺋﺮة اﻟﻤﻜﺒﺮ‬
‫ﻟﻠﺘﺤﻠ ﻴﻞ و اﻟ ﺒﺤﺚ ﻋ ﻦ اﻟﺤ ﻞ اﻷﻣ ﺜﻞ )‪ (Optimization‬ﺑﺎﺳ ﺘﺨﺪام أﺣ ﺪ ﺑ ﺮاﻣﺞ ﺗﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ و ﻳﺠ ﺐ أن ﻳ ﺘﻢ ذﻟ ﻚ‬
‫ﻟﻠﺪاﺋ ﺮﻩ آﻜ ﻞ ﺑﻤ ﺎ ﻓ ﻴﻬﺎ داﺋ ﺮة )أو دواﺋﺮ( اﻟﺘﻐﺬﻳﻪ ﻟﻨﺤﺼﻞ ﻓﻰ اﻟﻨﻬﺎﻳﻪ ﻋﻠﻰ اﻷداء اﻟﻤﻄﻠﻮب ﻟﻠﻤﻜﺒﺮ ﻓﻰ اﻟﺤﻴﺰ اﻟﺘﺮددى‬
‫ﻣﻦ )‪ (3 GHz‬اﻟﻰ )‪. (5 GHz‬‬
‫ﻳﺒ ﻴﻦ اﻟﺸ ﻜﻞ )‪ (١٠٤ - ٦‬ﻣﺨﻄ ﻂ داﺋ ﺮة اﻟﺘﻐﺬﻳﻪ و ﺗﺒﻴﻦ اﻷﺷﻜﺎل ﻣﻦ )‪ (١٠٥ - ٦‬اﻟﻰ )‪ (١٠٧ - ٦‬أداء اﻟﺪاﺋﺮﻩ ﻓﻰ‬
‫اﻟﺤﻴﺰ اﻟﺘﺮددى اﻟﻤﻄﻠﻮب )‪.(3 to 5 GHz‬‬

‫ﺷﻜﻞ )‪ : (١٠٤ - ٦‬ﻣﺨﻄﻂ داﺋﺮة اﻟﺘﻐﺬﻳﻪ اﻟﻤﺼﻤﻤﻪ ﻓﻰ ﻣﺜﺎل )‪.(١١ – ٦‬‬

‫‪263‬‬

‫ﺷﻜﻞ )‪ : (١٠٥ - ٦‬اﻟﻌﺰل ﺑﻴﻦ اﻟﻤﺨﺎرج ﻟﺪاﺋﺮة اﻟﺘﻐﺬﻳﻪ اﻟﻤﺼﻤﻤﻪ ﻓﻰ ﻣﺜﺎل )‪.(١١ – ٦‬‬

‫ﺷﻜﻞ )‪ : (١٠٦ - ٦‬ﻣﻌﺎﻣﻼت اﻻﻧﻌﻜﺎس ﻟﺪاﺋﺮة اﻟﺘﻐﺬﻳﻪ اﻟﻤﺼﻤﻤﻪ ﻓﻰ ﻣﺜﺎل )‪.(١١ – ٦‬‬

‫ﺷﻜﻞ )‪ : (١٠٧ - ٦‬ﻣﻌﺎﻣﻞ اﻻرﺳﺎل ﻟﺪاﺋﺮة اﻟﺘﻐﺬﻳﻪ اﻟﻤﺼﻤﻤﻪ ﻓﻰ ﻣﺜﺎل )‪.(١١ – ٦‬‬

‫‪264‬‬

‫و ﻻﺧﺘﺼ ﺎر ﻣﺴﺎﺣﺔ اﻟﺪاﺋﺮﻩ ﻗﺪ ﻳﻀﻄﺮ اﻟﻤﺼﻤﻢ ﻻﺳﺘﺨﺪام ﺛﻨﻴﺎت ﻓﻰ اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ أو اﻣﺎﻟﺔ أﺣﺪ أو آﻼ اﻟﺨﻄﻴﻦ‬
‫اﻟﺸﺮﻳﻄﻴﻴﻦ اﻟﻤﻜﻮﻧﺎن ﻟﻠﻤﻨﺸﺄ آﻤﺎ ﻓﻰ ﺷﻜﻞ )‪.(١٠٨ - ٦‬‬

‫ﺷﻜﻞ )‪ : (١٠٨ - ٦‬اﺧﺘﺼﺎر ﻣﺴﺎﺣﺔ داﺋﺮة اﻟﺘﻐﺬﻳﻪ‪.‬‬

‫ﺷﻜﻞ )‪ : (١٠٩ - ٦‬ﻣﺨﻄﻂ )‪ (layout‬ﻟﺪاﺋﺮة ﺗﻐﺬﻳﻪ ﺑﺎﺳﺘﺨﺪام ﺧﻄﻴﻦ ﺷﺮﻳﻄﻴﻴﻦ ﻗﻄﺮﻳﻴﻦ‬

‫‪265‬‬

‫و ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (١٠٩ - ٦‬ﻣﺨﻄ ﻂ ﻣﺨ ﺘﻠﻒ ﻟﺪاﺋ ﺮة ﺗﻐﺬﻳ ﻪ واﺳ ﻌﺔ اﻟﺤﻴﺰ اﻟﺘﺮددى ﺗﺴﺘﺨﺪم ﺧﻄﻴﻦ ﺷﺮﻳﻄﻴﻴﻦ ﻗﻄﺮﻳﻴﻦ‬
‫ﻟﺒﻨﺎء اﻟﻤﻨﺸﺄ )‪ (low pass structure‬اﻟﻤﻮﺟﻮد ﺑﺪاﺋﺮة اﻟﺘﻐﺬﻳﻪ‪.‬‬
‫ﻳﺘﻜﻮن اﻟﻤﻨﺸﺄ ﻣﻦ ﺛﻼﺛﺔ ﺧﻄﻮط ﺷﺮﻳﻄﻴﻪ ذات ﻋﺮض ﺻﻐﻴﺮ أو ﻣﻌﺎوﻗﻪ ﻣﻤﻴﺰﻩ ﻋﺎﻟﻴﻪ ﻓﻰ ﺣﺪود )‪ (Zo > 90 Ω‬ﻣﺜﻼ‬
‫‪o‬‬

‫و ﻃ ﻮل اﺛﻨ ﻴﻦ ﻣ ﻨﻬﻢ ﻳﺴ ﺎوى ﻣﺒﺪﺋ ﻴﺎ )‪ ، (Lb ≡ 90 ≡λg/4‬أﻣ ﺎ زاوﻳ ﺔ آ ﻞ ﺧﻂ ﺷﺮﻳﻄﻰ ﻗﻄﺮى ﻓﺘﺘﺮاوح ﻣﺒﺪﺋﻴﺎ‬
‫ﺑ ﻴﻦ )‪ (135o > θ > 60o‬ﻣ ﺜﻼ ‪ ،‬أﻣ ﺎ ﻃ ﻮل ﻧﺼ ﻒ ﻗﻄ ﺮ آ ﻞ ﺧ ﻂ ﺷ ﺮﻳﻄﻰ ﻗﻄ ﺮى ﻓﻬﻮ ﻳﻜﺎﻓﺊ )‪ (λg/4‬ﻣﺒﺪﺋﻴﺎ ‪،‬‬
‫ﺣﻴﺚ ﻳﺘﻢ ﺣﺴﺎب أﺑﻌﺎد اﻟﻤﻨﺸﺄ ﻋﻨﺪ ﺗﺮدد اﻟﻤﻨﺘﺼﻒ )‪ (fc‬ﻟﻠﺤﻴﺰ اﻟﺘﺮددى اﻟﺬى ﺗﻌﻤﻞ ﻓﻴﻪ اﻟﺪاﺋﺮﻩ اﻟﻤﺮاد ﺗﻐﺬﻳﺘﻬﺎ ‪.‬‬
‫ﺑﺎﻟﻨﺴ ﺒﻪ ﻟﻠﻤﻜ ﺜﻔﺎت ﻣﻦ ﻧﻮع )‪ (high Q chip capacitor‬اﻟﻤﻮﺟﻮدﻩ ﻓﻰ دواﺋﺮاﻟﺘﻐﺬﻳﻪ اﻟﻤﺸﺮوﺣﻪ أﻋﻼﻩ ﻓﺎن ﺟﻤﻴﻊ‬
‫اﻟﺒ ﺮاﻣﺞ اﻟﺤﺪﻳ ﺜﻪ اﻟﻌﺎﻣ ﻪ ﻟﺘﺤﻠ ﻴﻞ دواﺋ ﺮ اﻟﻤﻴﻜ ﺮووﻳﻒ ﺗﺤ ﺘﻮى ﻋﻠ ﻰ ﻣﻜﺘ ﺒﺎت ﻣﺒﻨ ﻴﻪ )‪ (built-in-libraries‬ﻟ ﻨﻤﺎذج‬
‫اﻟﻤﻜ ﻮﻧﺎت اﻟﻌﻴﻨ ﻴﻪ اﻟﻤﻨﺘﺠﻪ ﺗﺠﺎرﻳﺎ ﻟﺒﻌﺾ اﻟﺸﺮآﺎت و ﻣﻦ ﺿﻤﻨﻬﺎ اﻟﻤﻜﺜﻔﺎت و ﻏﻴﺮهﺎ و ﻳﺘﻌﻴﻦ ﻋﻠﻰ اﻟﻤﺴﺘﺨﺪم اﺧﺘﻴﺎر‬
‫رﻣﺰ اﻟﻤﻜﺜﻒ اﻟﻤﻄﻠﻮب و ﺗﺤﺪﻳﺪ ﻗﻴﻤﺘﻪ ﻓﻘﻂ ‪.‬‬
‫و ﻟﻬ ﺬﻩ اﻟﻤﻜ ﺜﻔﺎت )‪ (chip capacitors‬اﻟﻌﺪﻳ ﺪ ﻣ ﻦ اﻟ ﻨﻤﺎذج و اﻟﺪواﺋ ﺮ اﻟﻤﻜﺎﻓ ﺌﻪ و ﻣ ﻦ ﺑﻴﻨﻬﺎ اﻟﺪاﺋﺮﻩ اﻟﻤﻜﺎﻓﺌﻪ اﻟﻤﺒﻴﻨﻪ‬
‫ﻓﻰ ﺷﻜﻞ )‪ (١١٠ - ٦‬و اﻟﺘﻰ ﻳﻤﻜﻦ اﺳﺘﺨﺪاﻣﻬﺎ ﻓﻰ ﺣﺴﺎب ﻣﻌﺎﻣﻞ )‪ (Q factor or quality factor‬ﻟﻠﻤﻜﺜﻒ‪.‬‬
‫ﺣﻴﺚ‬

‫‪⎛⎜ 1‬‬
‫⎟⎞‬
‫‪2‬‬
‫‪f‬‬
‫‪C‬‬
‫‪π‬‬
‫‪1‬‬
‫=⎠‬
‫=‪Q‬‬
‫⎝=‬
‫‪Rs‬‬
‫‪Rs‬‬
‫‪2 π f C Rs‬‬
‫‪Xc‬‬

‫ﺣﻴﺚ ﻗﻴﻤﺔ )‪ (C‬ﺑﺎﻟﻔﺎراد و )‪ (Rs‬ﺑﺎﻷوم و )‪ (f‬ﺑﺎﻟﻬﻴﺮﺗﺰ‪.‬‬
‫و اﻟﺸ ﺮآﺎت اﻟﻤﻨ ﺘﺠﻪ ﻟﻬ ﺬﻩ اﻟﻤﻜ ﺜﻔﺎت ﻣ ﺜﻞ )‪ (Johanson Technology, AVX, ATC‬و ﻏﻴ ﺮهﺎ ﺗﺼ ﺪر‬
‫ﺻﻔﺤﺎت ﺑﻴﺎﻧﺎت و آﺘﺎﻟﻮﺟﺎت ﺗﺤﺘﻮى ﻋﻠﻰ ﻣﻌﻠﻮﻣﺎت واﻓﻴﻪ ﻋﻦ ﻣﻘﺎﺳﺎت و ﻣﻮاﺻﻔﺎت اﻟﻤﻜﺜﻔﺎت اﻟﺘﻰ ﺗﻨﺘﺠﻬﺎ‪.‬‬
‫و ﺑﻌﺾ اﻟﺸﺮآﺎت ﺗﻌﻄﻰ اﻟﺪواﺋﺮ اﻟﻤﻜﺎﻓﺌﻪ أو ﺑﺎراﻣﺘﺮات اس اﻟﻤﻘﺎﺳﻪ ﻟﻠﻤﻜﺜﻔﺎت اﻟﺘﻰ ﺗﻨﺘﺠﻬﺎ‪.‬‬

‫ﺷﻜﻞ )‪ : (١١٠ - ٦‬داﺋﺮﻩ ﻣﻜﺎﻓﺌﻪ ﻟﻤﻜﺜﻒ ﻋﻴﻨﻰ ﻳﻌﻤﻞ ﻓﻰ اﻟﺘﺮددات اﻟﻌﺎﻟﻴﻪ‬

‫‪266‬‬

‫ﻤﺭﺍﺠﻊ ﺍﻟﻔﺼل ﺍﻟﺴﺎﺩﺱ‬
‫اﻟﺴﻨﻪ‬

‫ﻣﻜﺎن اﻟﻨﺸﺮ‬/‫دار اﻟﻨﺸﺮ‬

2003

John Wiley & Sons

‫اﻟﻨﺎﺷﺮﻳﻦ‬/‫اﻟﻤﺆﻟﻔﻴﻦ‬

2008

Inder Bahl
Prakash Bhartia
High
Frequency Andrei
Electronics
- Grebennikov
February 2008

2001

John Wiley & Sons

2007

Artech House

2005

John Wiley & Sons

T. C. Edwards ,
M. B. Steer
R. K. Mongia
I. J. Bahl
P. Bhartia
J. Hong
David M. Pozar

2006

Artech House

David Andrews

1985

Artech House

2001

John Wiley & Sons

E. Ostroff,
M. Borkowski,
H. Thomas,
J. Curtis.
Jeremy Everard

2001
2008
2002
2002
1990
1990

2008

2005

‫اﺳﻢ اﻟﻜﺘﺎب أو اﻟﻮﺛﻴﻘﻪ‬
Microwave Solid State
nd
Circuit Design (2 edition)
Power Combiners,
Impedance Transformers
and Directional Couplers:
Part III
Foundations of Interconnect
and Microstrip Design
RF and Microwave
Coupled
nd
Line Circuits, (2 edition )

1

Microwave Engineering
rd
(3 edition)
Lumped Element
Quadrature Hybrids
Solid-State Radar
Transmitters

5

Fundamentals of RF Circuit
Design with Low Noise
Oscillators
Jaakko Juntunen Microwave Engineering
APLAC Solutions
Europe 2001 CAD
Corporation
Benchmark
American Technical Ceramic (ATC)
High Power Resistive
Products Catalog
Rogers Corporation
TMM® Temperature Stable
Application Note : TM1.1000
Microwave Laminate
Rogers Corporation
High Frequency Circuit
Materials Product Selector
Guide
Engineering
Prentice Hall
Fooks , E. H., Microwave
and Zakarevicius Using Microstrip Circuits
, R. A.
Broadband Printed Circuit
R. Knochel
IEEE MTT-S
0°/180° Couplers and High
B. Mayer.
Int. Microwave
Symposium Digest
Power Inphase Power
Dividers
Power Combiners,
High
Frequency Andrei
Grebennikov
Impedance Transformers
Electronics –
and Directional Couplers:
January 2008
Part II
Artech House
Gunter Kompa
Practical Microstrip Design
And Applications

267

2

3
4

6
7

8
9
10
11
12
13
14

15

16

‫ﺘﺎﺒﻊ ﻤﺭﺍﺠﻊ ﺍﻟﻔﺼل ﺍﻟﺴﺎﺩﺱ‬
‫اﻟﺴﻨﻪ‬

‫ﻣﻜﺎن اﻟﻨﺸﺮ‬/‫دار اﻟﻨﺸﺮ‬

‫اﻟﻨﺎﺷﺮﻳﻦ‬/‫اﻟﻤﺆﻟﻔﻴﻦ‬

2006

John Wiley & Sons

Hee-Ran Ahn

1999

Faculty of
Engineering - Ain
Shams University

Hesham I. M. AL
Anwar

‫اﺳﻢ اﻟﻜﺘﺎب أو اﻟﻮﺛﻴﻘﻪ‬
Asymmetric Passive
Components
in Microwave Integrated
Circuits
Computer Aided Design of
Microwave Planar Six-Port
Reflection Analyzer(M.Sc.
thesis)

17

18

‫ﻤﺭﺍﺠﻊ ﺍﻻﻨﺘﺭﻨﺕ‬
‫ﻣﺠﻤﻌﺎت اﻟﻘﺪرﻩ و اﻟﻤﺰدوج اﻻﺗﺠﺎهﻰ و ﺑﻬﺎ رواﺑﻂ ﻟﻼﻧﺘﻘﺎل‬/‫ﺻ ﻔﺤﻪ ﻋﺎﻣ ﻪ ﻟﻠﻤﺰدوﺟﺎت اﻟﻤﺨﺘﻠﻄﻪ و ﻣﻘﺴﻤﺎت‬
:‫ﻟﺼﻔﺤﺎت أﺧﺮى ﺗﺸﺮح هﺬﻩ اﻟﺪواﺋﺮ‬
http://www.microwaves101.com/encyclopedia/couplers.cfm
: ‫ﺻﻔﺤﺔ ﻋﻤﻞ ﺣﺴﺎﺑﺎت ﻣﻘﺴﻢ اﻟﻘﺪرﻩ‬
http://www.microwaves101.com/encyclopedia/calpowerdivider.cfm
: ‫راﺑﻂ ﺗﺤﻤﻴﻞ ﻣﻠﻒ ﺣﺴﺎﺑﺎت ﻣﻘﺴﻢ اﻟﻘﺪرﻩ ﻣﻦ ﻧﻮع وﻳﻠﻜﻨﺴﻮن ﻣﺘﻌﺪد اﻟﻤﻘﺎﻃﻊ و ﺻﻔﺤﺔ اﻟﺸﺮح‬
http://www.microwaves101.com/downloads/Wilkinson101_Rev1.3.xls
http://www.microwaves101.com/encyclopedia/wilkinson_Excel.cfm
: ‫ﺻﻔﺤﺔ ﺗﺤﻤﻴﻞ اﻟﻤﻠﻔﺎت‬
http://www.microwaves101.com/content/downloads.cfm
(Rogers Corporation) ‫ﻣﻮﻗﻊ ﺷﺮآﺔ روﺟﺮز اﻟﻤﻨﺘﺠﻪ ﻟﻠﺸﺮاﺋﺢ اﻟﺸﺮﻳﻄﻴﻪ‬

i1

i2

http://www.rogers-corp.com/mwu/
‫( اﻟﻤﻨﺘﺠﻪ ﻟﻠﻤﻘﺎوﻣﺎت و ﻏﻴﺮهﺎ ﻣﻊ ﻣﻮﻗﻊ ﺑﺪﻳﻞ‬Pro-An Electronic Co Ltd) ‫ﻣﻮﻗﻊ ﺷﺮآﺔ‬

i3

http://www.proan.com.hk
http://www.globalsources.com/proan.co
‫( اﻟﻤﻨﺘﺠﻪ ﻟﻠﻤﻜﻮﻧﺎت اﻟﻌﻴﻨﻴﻪ‬AVX) ‫ﻣﻮﻗﻊ ﺷﺮآﺔ‬

i4

‫( اﻟﻤﻨﺘﺠﻪ ﻟﻠﻤﻜﻮﻧﺎت اﻟﻌﻴﻨﻴﻪ‬ATC) ‫ﻣﻮﻗﻊ ﺷﺮآﺔ‬

i5

‫( اﻟﻤﻨﺘﺠﻪ ﻟﻠﻤﻜﻮﻧﺎت اﻟﻌﻴﻨﻴﻪ و ﻏﻴﺮهﺎ‬Aeroflex) ‫ﻣﻮﻗﻊ ﺷﺮآﺔ‬

i6

‫( اﻟﻤﻨﺘﺠﻪ ﻟﻠﻤﻜﻮﻧﺎت اﻟﻌﻴﻨﻴﻪ‬Johanson Technology) ‫ﻣﻮﻗﻊ ﺷﺮآﺔ‬

i7

http://www.avxcorp.com/
http://www.atceramics.com
http:// www.aeroflex-kdi.com
http://www.johansontechnology.com

268

‫‪Chapter 7 : Filters and Multiplexers‬‬
‫اﻟﻔﺼﻞ اﻟﺴﺎﺑﻊ ‪ :‬دواﺋﺮ اﻟﻔﻠﺘﺮ و ﻣﻔﺮﻗﺎت اﻟﺘﺮدد‬

‫)ﻤﻘﻁﻊ ‪ (١-٧‬ﻤﻘﺩﻤﻪ ‪:‬‬

‫ﻻ ﻳﺨ ﺘﻠﻒ ﻣﻔﻬ ﻮم دواﺋ ﺮ اﻟﻔﻠﺘ ﺮ )‪ (Filters‬اﻟﻤﻌ ﺮوف ﻟ ﺪى ﻣﻬﻨﺪﺳ ﻰ اﻻﺗﺼ ﺎﻻت و اﻻﻟﻜﺘ ﺮوﻧﻴﺎت ﻓ ﻰ اﻟﺪواﺋ ﺮ اﻟﺘ ﻰ‬
‫ﺗﻌﻤﻞ ﻓﻰ ﺗﺮددات ﻣﻨﺨﻔﻀﻪ ﻋﻦ ﺗﻠﻚ اﻟﺘﻰ ﺗﻌﻤﻞ ﻓﻰ اﻟﺘﺮددات اﻟﻌﺎﻟﻴﻪ و اﻟﻤﻴﻜﺮووﻳﻒ‪.‬‬
‫اﻻﺧﺘﻼف ﻳﻜﻮن ﻓﻘﻂ ﻓﻰ ﻃﺮﻳﻘﺔ ﺗﻨﻔﻴﺬ و ﺗﻜﻨﻮﻟﻮﺟﻴﺎ ﺗﺼﻨﻴﻊ اﻟﻔﻠﺘﺮ‪.‬‬
‫أﻧ ﻮاع دواﺋ ﺮ اﻟﻔﻠﺘ ﺮ اﻟﺘ ﻰ ﺗﻌﻤ ﻞ ﻓ ﻰ اﻟﺘ ﺮددات اﻟﻌﺎﻟ ﻴﻪ و اﻟﻤﻴﻜ ﺮووﻳﻒ هﻰ ﻓﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ ) ‪Low‬‬
‫‪ (Pass Filter LPF‬و ﻓﻠﺘ ﺮ ﻣ ﺮور اﻟﺘ ﺮددات اﻟﻤ ﺮﺗﻔﻌﻪ )‪ (High Pass Filter HPF‬و ﻓﻠﺘ ﺮ ﻣﺮور ﺣﻴﺰ ﺗﺮددى‬
‫ﻣﻌﻴﻦ )‪ (Band Pass Filter BPF‬و ﻓﻠﺘﺮ اﻳﻘﺎف ﺗﺮدد أو ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ )‪.(Band Stop Filter BSF‬‬
‫و ه ﻨﺎك أﻧﻮاع أﺧﺮى ﻣﻦ دواﺋﺮ اﻟﻔﻠﺘﺮ ﺗﻌﻤﻞ ﻓﻰ اﻟﺘﺮددات اﻟﻌﺎﻟﻴﻪ و اﻟﻤﻴﻜﺮووﻳﻒ ﻣﺜﻞ ﻓﻠﺘﺮ ﻣﺮور ﺣﻴﺰﻳﻦ ﻣﻦ اﻟﺘﺮدد‬
‫)‪ (Dual Band Filter‬و ﻣﺜﻞ دواﺋﺮ اﻟﻔﻠﺘﺮ اﻟﻤﻮﺟﻬﻪ )‪ (Directional Filters‬ذات اﻷرﺑﻌﺔ ﻣﺨﺎرج‪.‬‬
‫ﻳﺒﻴﻦ ﺷﻜﻞ )‪ (١ – ٧‬رﻣﻮز ﺑﻌﺾ دواﺋﺮ اﻟﻔﻠﺘﺮ ﻣﻊ ﺑﻴﺎن أرﻗﺎم اﻟﻤﺨﺎرج آﻤﺎ ﺗﺒﺪو ﻓﻰ ﻣﻌﻈﻢ اﻟﻤﺮاﺟﻊ و ﺑﺮاﻣﺞ ﺗﺤﻠﻴﻞ‬
‫اﻟﺪواﺋﺮ و اﻟﻨﻈﻢ‪.‬‬
‫و ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (٢ – ٧‬اﻷداء اﻟﻨﻈ ﺮى ﻟﺒﻌﺾ أﻧﻮاع دواﺋﺮ اﻟﻔﻠﺘﺮ ﺑﺪﻻﻟﺔ ﺑﺎراﻣﺘﺮات اس )‪ ، (S Parameters‬ﻓﻔﻰ‬
‫ﻓﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ )‪ (LPF‬ﻣﺜﻼ ﻧﺠﺪ أن ﻣﻘﺪار ﻣﻌﺎﻣﻞ اﻻرﺳﺎل )‪ (|S21|dB‬ﻳﻜﻮن ﻗﺮﻳﺒﺎ ﻣﻦ اﻟﺼﻔﺮ ﻓﻰ‬
‫اﻟﺘ ﺮددات اﻟﻤﻨﺨﻔﻀ ﻪ ﺛ ﻢ ﻳﻨ ﺰل اﻟ ﻰ ﻣﺴ ﺘﻮى )‪ (−3dB‬ﻋ ﻨﺪ ﺗ ﺮدد اﻟﻘﻄ ﻊ )‪ (cut off frequency fc‬ﺛ ﻢ ﻳﺴﺘﻤﺮ ﻓﻰ‬
‫اﻻﻧﺨﻔ ﺎض ﻣ ﻊ زﻳ ﺎدة اﻟﺘ ﺮدد ﺑﻌ ﺪ ذﻟ ﻚ ﺑﻴ ﻨﻤﺎ ﻣﻘ ﺪار ﻣﻌﺎﻣﻞ اﻻﻧﻌﻜﺎس )‪ (|S11|dB‬ﻳﻜﻮن ﻣﻨﺨﻔﻀﺎ ﺣﺘﻰ ﺗﺮدد اﻟﻘﻄﻊ ﺛﻢ‬
‫ﻳﺮﺗﻔﻊ ﺑﻌﺪ ذﻟﻚ ﻟﻴﻜﻮن ﻗﺮﻳﺒﺎ ﻣﻦ اﻟﺼﻔﺮ ﺧﺎرج اﻟﺤﻴﺰ اﻟﺘﺮددى ﻟﻠﻔﻠﺘﺮ‪.‬‬
‫ﺑﻴ ﻨﻤﺎ ﻓ ﻰ ﻓﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﺮﺗﻔﻌﻪ )‪ (HPF‬ﻧﺠﺪ اﻟﻌﻜﺲ ‪ ،‬ﺣﻴﺚ ﻳﻜﻮن ﻣﻘﺪار ﻣﻌﺎﻣﻞ اﻻرﺳﺎل )‪ (|S21|dB‬ﻗﺮﻳﺒﺎ‬
‫ﻣ ﻦ اﻟﺼ ﻔﺮ ﻓ ﻰ اﻟﺘ ﺮددات اﻟﻤﺮﺗﻔﻌﻪ ﺛﻢ ﻳﻨﺰل اﻟﻰ ﻣﺴﺘﻮى )‪ (−3dB‬ﻋﻨﺪ ﺗﺮدد اﻟﻘﻄﻊ )‪ (cut off frequency fc‬ﺛﻢ‬
‫ﻳﺴ ﺘﻤﺮ ﻓ ﻰ اﻻﻧﺨﻔ ﺎض ﻣ ﻊ اﻧﺨﻔ ﺎض اﻟﺘ ﺮدد ‪ ،‬ﺑﻴ ﻨﻤﺎ ﻳﻜﻮن ﻣﻘﺪار ﻣﻌﺎﻣﻞ اﻻﻧﻌﻜﺎس )‪ (|S11|dB‬ﻗﺮﻳﺒﺎ ﻣﻦ اﻟﺼﻔﺮ ﺣﺘﻰ‬
‫ﺗ ﺮدد اﻟﻘﻄﻊ ﺛﻢ ﻳﻨﺨﻔﺾ ﺑﻌﺪ ذﻟﻚ ﻓﻰ اﻟﺘﺮددات اﻟﻤﺮﺗﻔﻌﻪ ﻟﻴﺴﻤﺢ ﺑﻤﺮور اﻻﺷﺎرﻩ اﻟﻰ داﺧﻞ اﻟﺪاﺋﺮﻩ ﻓﻰ اﻟﺤﻴﺰ اﻟﺘﺮددى‬
‫اﻟﻤﻔﻴﺪ ﻟﻠﻔﻠﺘﺮ‪.‬‬

‫‪269‬‬

‫ﻓﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ‬

‫ﻓﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﺮﺗﻔﻌﻪ‬

‫ﻓﻠﺘﺮ ﻣﺮور ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ‬

‫ﻓﻠﺘﺮ اﻳﻘﺎف ﺗﺮدد أو ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ‬

‫ﺷﻜﻞ )‪ : (١ – ٧‬رﻣﻮز ﺑﻌﺾ دواﺋﺮ اﻟﻔﻠﺘﺮ‬

‫ﻓﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ‬

‫ﻓﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﺮﺗﻔﻌﻪ‬

‫ﻓﻠﺘﺮ ﻣﺮور ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ‬

‫ﻓﻠﺘﺮ اﻳﻘﺎف ﺗﺮدد أو ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ‬

‫ﺷﻜﻞ )‪ : (٢ – ٧‬اﻷداء اﻟﻨﻈﺮى ﻟﺒﻌﺾ أﻧﻮاع دواﺋﺮ اﻟﻔﻠﺘﺮ‬

‫‪270‬‬

‫ﺗﺬآ ﺮ أﻧ ﻪ ﻋ ﻨﺪﻣﺎ ﻳﻜ ﻮن ﻣﻘ ﺪار ﻣﻌﺎﻣ ﻞ اﻻرﺳ ﺎل )‪ (|S21|dB = 0 dB‬ﻓﻬ ﺬا ﻣﻌ ﻨﺎﻩ أن ﻣﻘ ﺪارﻩ )‪ (|S21| = 1‬ﺑﺎﻟﻘ ﻴﻤﻪ‬
‫اﻟﻤﻄﻠﻘﻪ أى أﻧﻪ ﻻ ﻳﻮﺟﺪ ﻓﻘﺪ ﻓﻰ ﻗﺪرة اﻻﺷﺎرﻩ اﻟﻤﺎرﻩ ﻓﻰ اﻟﺪاﺋﺮﻩ‪.‬‬
‫ﺑﻴ ﻨﻤﺎ ﻋ ﻨﺪﻣﺎ ﻳﻜ ﻮن ﻣﻘ ﺪار ﻣﻌﺎﻣ ﻞ اﻻرﺳ ﺎل )‪ (|S21|dB = −10 dB‬ﻣ ﺜﻼ ﻓﻬ ﺬا ﻳﻌﻨ ﻰ ﻓﻘ ﺪا ﻣﻘ ﺪارﻩ )‪ (10 dB‬ﻓ ﻰ‬
‫اﻻﺷﺎرﻩ اﻟﻤﺎرﻩ ﺑﺎﻟﺪاﺋﺮﻩ‪.‬‬
‫و ﻋ ﻨﺪﻣﺎ ﻳﻜ ﻮن ﻣﻘ ﺪار ﻣﻌﺎﻣ ﻞ اﻻﻧﻌﻜ ﺎس )‪ (|S11|dB = 0 dB‬ﻓﻬ ﺬا ﻣﻌ ﻨﺎﻩ أن ﻣﻘﺪارﻩ )‪ (|S11| = 1‬ﺑﺎﻟﻘﻴﻤﻪ اﻟﻤﻄﻠﻘﻪ و‬
‫هﺬا ﻳﻌﻨﻰ اﻧﻌﻜﺎس اﻻﺷﺎرﻩ اﻟﺪاﺧﻠﻪ ﻋﻨﺪ اﻟﻤﺪﺧﻞ رﻗﻢ )‪ (1‬ﻟﻠﺪاﺋﺮﻩ ﺑﺎﻟﻜﺎﻣﻞ و ﻋﺪم ﻣﺮور أى ﺟﺰء ﻣﻨﻬﺎ داﺧﻞ اﻟﺪاﺋﺮﻩ‪.‬‬
‫ﻓﻰ ﻣﻌﻈﻢ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺨﺎﻣﻠﻪ )ﻣﺜﻞ اﻟﻔﻠﺘﺮ( ﻳﻤﻜﻦ اهﻤﺎل اﻟﻔﻘﺪ أو اﻋﺘﺒﺎر اﻟﺪاﺋﺮﻩ ﺑﻼ ﻓﻘﺪ )‪.(lossless‬‬
‫ﻣﻌﻈ ﻢ دواﺋ ﺮ اﻟﻔﻠﺘ ﺮ ﻓ ﻰ اﻟﺘ ﺮددات اﻟﻌﺎﻟ ﻴﻪ و اﻟﻤﻴﻜ ﺮووﻳﻒ ﺗﻌﺘﺒ ﺮ )‪ (reciprocal‬أى ذات ﺧﺼ ﺎﺋﺺ ﻣﺘﺴ ﺎوﻳﻪ ﻓ ﻰ‬
‫اﻻﺗﺠﺎﻩ اﻟﻌﻜﺴﻰ أو اﻟﻤﺘﺒﺎدل ﺑﻤﻌﻨﻰ أن‬

‫)‪ (S11 = S22‬و )‪.(S21 = S12‬‬

‫ﺑﺎﻟﻨﺴﺒﻪ ﻟﺪاﺋﺮﻩ ﺧﺎﻣﻠﻪ ذات ﻣﺨﺮﺟﻴﻦ ﻣﺜﻞ اﻟﻔﻠﺘﺮ هﻨﺎك ﺗﻌﺎرﻳﻒ ﻟﻤﻘﺎدﻳﺮ ﺗﻘ ّﻴﻢ اﻷداء ﻣﺜﻞ‬
‫‪ −‬ﻣﻘﺪار اﻟﻔﻘﺪ ﻓﻰ اﻻدﺧﺎل )‪ (Insertion Loss IL‬ﺑﺎﻟﺪﻳﺴﻴﺒﻞ ‪:‬‬
‫)‪(7.1‬‬

‫⎞ ‪⎛P‬‬
‫‪IL = − 10 log ⎜⎜ L ⎟⎟ dB‬‬
‫⎠ ‪⎝ PIN‬‬

‫ﺣﻴﺚ )‪ (PL‬هﻰ اﻟﻘﺪرﻩ اﻟﺨﺎرﺟﻪ ﻣﻦ اﻟﺪاﺋﺮﻩ و )‪ (PIN‬هﻰ اﻟﻘﺪرﻩ اﻟﺪاﺧﻠﻪ اﻟﻰ اﻟﺪاﺋﺮﻩ‪.‬‬
‫ﻓﻤ ﺜﻼ اذا آﺎﻧﺖ ﻗﻴﻤﺔ )‪ (IL = 3 dB‬ﻓﻬﺬا ﻣﻌﻨﺎﻩ أن ﻧﺼﻒ اﻟﻘﺪرﻩ اﻟﺪاﺧﻠﻪ اﻟﻰ اﻟﺪاﺋﺮﻩ ﻓﻘﻂ هﻮ اﻟﺬى ﻳﺨﺮج ﻣﻦ اﻟﺪاﺋﺮﻩ‬
‫أو أن )‪.(|S21|dB = −3 dB‬‬
‫‪ −‬ﻣﻘﺪار اﻟﻔﻘﺪ ﻓﻰ اﻟﺮﺟﻮع )‪ (Return Loss RL‬ﺑﺎﻟﺪﻳﺴﻴﺒﻞ ‪:‬‬

‫⎞ ‪⎛P‬‬
‫‪2‬‬
‫‪RL = − 10 log ⎜⎜ R ⎟⎟ = − 10 log ( Γo ) = − 20 log ( Γo ) dB‬‬
‫⎠ ‪⎝ PIN‬‬

‫)‪(7.2‬‬

‫ﺣﻴﺚ )‪ (PR‬هﻰ اﻟﻘﺪرﻩ اﻟﻤﻨﻌﻜﺴﻪ ﻣﻦ اﻟﺪاﺋﺮﻩ و )‪ (PIN‬هﻰ اﻟﻘﺪرﻩ اﻟﺪاﺧﻠﻪ اﻟﻰ اﻟﺪاﺋﺮﻩ و )‪ (Γo‬هﻮ ﻣﻌﺎﻣﻞ اﻻﻧﻌﻜﺎس‪.‬‬
‫ﻓﻤ ﺜﻼ اذا آﺎﻧ ﺖ ﻗ ﻴﻤﺔ )‪ (RL = 0 dB‬ﻓﻬ ﺬا ﻣﻌﻨﺎﻩ أن )‪ (PR = PIN‬أى أن آﻞ اﻟﻘﺪرﻩ اﻟﺪاﺧﻠﻪ ﻗﺪ اﻧﻌﻜﺴﺖ و ﻟﻢ ﻳﺪﺧﻞ‬
‫أى ﺟﺰء ﻣﻨﻬﺎ اﻟﻰ اﻟﺪاﺋﺮﻩ أو أن )‪.(|S11|dB = 0 dB‬‬
‫‪ −‬ﻣﻘﺪار اﻟﺮﻓﺾ )‪ (Filter Rejection RJ‬ﺑﺎﻟﺪﻳﺴﻴﺒﻞ ﻋﻨﺪ ﺗﺮدد ﻣﻌﻴﻦ ‪:‬‬
‫)‪(7.3‬‬

‫⎞ ‪⎛P‬‬
‫‪RJ = − 10 log ⎜⎜ L ⎟⎟ − (IL at f o ) dB‬‬
‫⎠ ‪⎝ PIN‬‬

‫ﺣ ﻴﺚ )‪ (PL‬ه ﻰ اﻟﻘ ﺪرﻩ اﻟﺨﺎرﺟ ﻪ ﻣ ﻦ اﻟﺪاﺋ ﺮﻩ ﻋ ﻨﺪ ﺗ ﺮدد ﻣﻌ ﻴﻦ و )‪ (PIN‬ه ﻰ اﻟﻘ ﺪرﻩ اﻟﺪاﺧﻠ ﻪ اﻟ ﻰ اﻟﺪاﺋ ﺮﻩ ﻋ ﻨﺪ ﻧﻔ ﺲ‬
‫اﻟﺘﺮدد و )‪ (IL at fo‬هﻮ ﻣﻘﺪار اﻟﻔﻘﺪ ﻓﻰ اﻻدﺧﺎل ﻋﻨﺪ ﺗﺮدد اﻟﻤﻨﺘﺼﻒ‪.‬‬
‫ﻟ ﻮ ﻓﺮﺿ ﻨﺎ أن ﻣﻘ ﺪار اﻟﻔﻘ ﺪ ﻓ ﻰ اﻻدﺧ ﺎل ﻋ ﻨﺪ ﺗ ﺮدد اﻟﻤﻨﺘﺼ ﻒ ﻳﺴﺎوى )‪ (1 dB‬ﻣﺜﻼ ‪ ،‬و أن ﻣﻘﺪار اﻟﻔﻘﺪ ﻓﻰ اﻻدﺧﺎل‬
‫ﻋ ﻨﺪ ﺗ ﺮدد ﻣﻌ ﻴﻦ )‪ (fx‬ﺧ ﺎرج اﻟﺤﻴ ﺰ اﻟﻤﻔﻴﺪ ﻟﻠﺪاﺋﺮﻩ ﻳﺴﺎوى )‪ (31 dB‬ﻓﻬﺬا ﻣﻌﻨﺎﻩ أن ﻣﻘﺪار اﻟﺮﻓﺾ ﻋﻨﺪ )‪ (fx‬ﻳﺴﺎوى‬
‫)‪.(RJ = 30 dB‬‬

‫‪271‬‬

‫ﺷﻜﻞ )‪ : (٣ – ٧‬ﻣﻌﺎﻣﻞ اﻟﻜﺴﺐ ﻟﻔﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ‬

‫ﺷﻜﻞ )‪ : (٤ – ٧‬ﻣﻌﺎﻣﻞ اﻟﻜﺴﺐ ﻟﻔﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﺮﺗﻔﻌﻪ‬

‫و هﻨﺎك ﺧﺼﺎﺋﺺ ﻟﺪاﺋﺮة اﻟﻔﻠﺘﺮ ﻳﺘﻢ ﻋﻠﻰ اﺳﺎﺳﻬﺎ اﻟﺘﺼﻤﻴﻢ و اﻻﺧﺘﻴﺎر ﻣﺜﻞ ﺣﻴﺰ اﻟﺜﻼﺛﻪ دﻳﺴﻴﺒﻞ )‪. (∆B3dB‬‬
‫ﺗﺒ ﻴﻦ اﻷﺷ ﻜﺎل ﻣ ﻦ )‪ (٣ – ٧‬اﻟ ﻰ )‪ (٦ – ٧‬ﻣﻘ ﺪار ﻣﻌﺎﻣ ﻞ اﻟﻜﺴﺐ )‪ (GT‬أو ﻣﻘﺪار ﻣﻌﺎﻣﻞ اﻻرﺳﺎل ﺑﺎﻟﺪﻳﺴﻴﺒﻞ ﻷرﺑﻌﺔ‬
‫أﻧ ﻮاع ﻣﺨ ﺘﻠﻔﻪ ﻣ ﻦ دواﺋ ﺮ اﻟﻔﻠﺘﺮ‪ .‬و ﺗﻮﺿﺢ هﺬﻩ اﻷﺷﻜﺎل أن ﺣﻴﺰ اﻟﺜﻼﺛﻪ دﻳﺴﻴﺒﻞ )‪ (∆B3dB‬هﻮ اﻟﺤﻴﺰ اﻟﺘﺮددى اﻟﻤﻔﻴﺪ‬
‫ﻟﻠﻔﻠﺘﺮ اﻟﺬى ﻳﻜﻮن ﻓﻴﻪ ﻣﻌﺎﻣﻞ اﻟﻜﺴﺐ أآﺒﺮ ﻣﻦ أو ﻳﺴﺎوى )‪. (−3dB‬‬
‫و ﻳﻤﺘﺪ هﺬا اﻟﺤﻴﺰ ﻣﻦ اﻟﺼﻔﺮ و ﺣﺘﻰ ﺗﺮدد اﻟﻘﻄﻊ )‪ (cut off frequency fc‬ﻓﻰ ﻓﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ‪.‬‬
‫ﺑﻴﻨﻤﺎ ﻳﺒﺪأ هﺬا اﻟﺤﻴﺰ ﻣﻦ ﺗﺮدد اﻟﻘﻄﻊ )‪ (fc‬و ﻳﻤﺘﺪ ﺣﺘﻰ أﻗﺼﻰ ﺗﺮدد ﻓﻰ ﻓﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﺮﺗﻔﻌﻪ‪.‬‬
‫و ﻓ ﻰ ﻓﻠﺘ ﺮ ﻣ ﺮور ﺣﻴ ﺰ ﺗ ﺮددى ﻣﻌ ﻴﻦ ﻳ ﺒﺪأ ﺣﻴ ﺰ اﻟ ﺜﻼﺛﻪ دﻳﺴ ﻴﺒﻞ )‪ (∆B3dB‬ﻣ ﻦ اﻟﺤ ﺪ اﻷدﻧ ﻰ ﻟﻠﺘ ﺮدد )‪ (f1‬اﻟ ﻰ اﻟﺤ ﺪ‬
‫اﻷﻋﻠﻰ ﻟﻠﺘﺮدد )‪ (f2‬و ﻳﻜﻮن ﺗﺮدد اﻟﻤﻨﺘﺼﻒ )‪ (fo‬ﻓﻰ ﻣﻨﺘﺼﻔﻪ‪.‬‬

‫‪272‬‬

‫ﺑﻴ ﻨﻤﺎ ﻓ ﻰ ﻓﻠﺘ ﺮ اﻳﻘ ﺎف ﺣﻴ ﺰ ﺗ ﺮددى ﻣﻌ ﻴﻦ ﻳﻐﻄ ﻰ ﺣﻴ ﺰ اﻟ ﺜﻼﺛﻪ دﻳﺴ ﻴﺒﻞ )‪ (∆B3dB‬آﻞ اﻟﺤﻴﺰ اﻟﺘﺮددى ﻣﺎ ﻋﺪا اﻟﺠﺰء‬
‫اﻟﻤﻮﻗ ﻮف اﻟﻤﻨﺤﺼ ﺮ ﺑ ﻴﻦ اﻟﺤ ﺪ اﻷدﻧ ﻰ ﻟﻠﺘ ﺮدد )‪ (f1‬اﻟ ﻰ اﻟﺤ ﺪ اﻷﻋﻠ ﻰ ﻟﻠﺘ ﺮدد )‪ (f2‬و ﻳﻜﻮن ﺗﺮدد اﻟﻤﻨﺘﺼﻒ )‪ (fo‬ﻓﻰ‬
‫ﻣﻨﺘﺼﻒ اﻟﺤﻴﺰ اﻟﻤﻮﻗﻮف‪.‬‬

‫ﺷﻜﻞ )‪ : (٥ – ٧‬ﻣﻌﺎﻣﻞ اﻟﻜﺴﺐ ﻟﻔﻠﺘﺮ ﻣﺮور ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ‬

‫ﺷﻜﻞ )‪ : (٦ – ٧‬ﻣﻌﺎﻣﻞ اﻟﻜﺴﺐ ﻟﻔﻠﺘﺮ اﻳﻘﺎف ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ‬

‫ﻋ ﻨﺪ ﺗﺼ ﻤﻴﻢ أى ﻣ ﻦ ه ﺬﻩ اﻷﻧ ﻮاع اﻷرﺑﻌ ﻪ ﻣ ﻦ دواﺋ ﺮ اﻟﻔﻠﺘ ﺮ اﻟﻤﺬآ ﻮرﻩ أﻋ ﻼﻩ ﻗ ﺪ ﻧﺤ ﺘﺎج اﻟ ﻰ ﺗﺤﻘ ﻴﻖ ﻗ ﻴﻤﻪ ﻣﻌﻴ ﻨﻪ‬
‫)ﻣﻨﺨﻔﻀ ﻪ ﻣ ﺜﻼ( ﻟﻤﻌﺎﻣ ﻞ اﻟﻜﺴ ﺐ أو ﻣﻌﺎﻣ ﻞ اﻻرﺳ ﺎل ﻋ ﻨﺪ ﺗ ﺮدد ﻣﻌ ﻴﻦ ﻳﻘ ﻊ ﺧﺎرج اﻟﺤﻴﺰ اﻟﻤﻔﻴﺪ ﻟﻠﻔﻠﺘﺮ أو ﻓﻰ اﻟﺤﻴﺰ‬
‫اﻟﻤﻮﻗ ﻮف )‪ (stop band‬و ﺑﺎﻟﺘﺎﻟ ﻰ ﻳﺘﻌ ﻴﻦ ﺗﺤﺪﻳ ﺪ ﻣ ﻴﻞ اﻟﺨ ﻂ اﻟ ﺪال ﻋﻠ ﻰ ﻗ ﻴﻤﺔ ﻣﻌﺎﻣﻞ اﻟﻜﺴﺐ ﻓﻰ اﻟﺤﻴﺰ اﻟﻤﻮﻗﻮف و‬
‫أﺣ ﺪ اﻟﺤﻠ ﻮل ﻟﺘﺤﻘ ﻴﻖ ذﻟ ﻚ ه ﻮ اﺧﺘ ﻴﺎر ﻧﻮع ﻣﻌﻴﻦ ﻣﻦ اﻷداء أو ﺗﻘﺮﻳﺐ ﻣﻌﻴﻦ ﻟﻠﻔﻠﺘﺮ )‪ (Filter Approximation‬و‬
‫ﺗﺤﺪﻳ ﺪ ﻋ ﺪد ﻣﻜﻮﻧﺎت أو رﺗﺒﺔ اﻟﻔﻠﺘﺮ و ﺗﺮآﻴﺒﻪ‪ .‬و ﻳﺒﻴﻦ ﺷﻜﻞ )‪ (٧ – ٧‬ﻣﺜﺎل ﻋﻠﻰ ﺗﻐﻴﺮ ﻣﻴﻞ ﻣﻌﺎﻣﻞ اﻟﻜﺴﺐ ﻟﻠﻔﻠﺘﺮ ﻓﻰ‬
‫اﻟﺤﻴﺰ اﻟﻤﻮﻗﻮف ﺑﺘﻐﻴﺮ ﻋﺪد اﻟﻤﻜﻮﻧﺎت أو رﺗﺒﺔ اﻟﻔﻠﺘﺮ )‪.(filter order n‬‬

‫‪273‬‬

‫و ﻧﻼﺣ ﻆ ﻣﻦ اﻟﺸﻜﻞ أن اﻟﻔﻠﺘﺮ اﻟﺬى ﻋﺪد ﻣﻜﻮﻧﺎﺗﻪ )‪ (n=3‬ﻳﺤﻘﻖ ﻓﻘﺪا ﻣﻘﺪارﻩ )‪ (– 20 dB‬ﻋﻨﺪ ﺗﺮدد أﻋﻠﻰ ﻣﻦ اﻟﺘﺮدد‬
‫اﻟ ﺬى ﻳﺼ ﻞ ﻋ ﻨﺪﻩ اﻟﻔﻘﺪ اﻟﻰ ﻧﻔﺲ اﻟﻘﻴﻤﻪ ﻓﻰ اﻟﻔﻠﺘﺮ اﻟﺬى ﻋﺪد ﻣﻜﻮﻧﺎﺗﻪ )‪ .(n=5‬و ﻧﻔﻬﻢ ﻣﻦ ذﻟﻚ أن زﻳﺎدة ﻋﺪد ﻣﻜﻮﻧﺎت‬
‫اﻟﻔﻠﺘﺮ ﻳﺤﻘﻖ ﻗﻄﻌﺎ أﻓﻀﻞ ﻓﻰ اﻟﺤﻴﺰ اﻟﺘﺮددى اﻟﻤﻮﻗﻮف )‪.(stop band‬‬

‫ﺷﻜﻞ )‪ : (٧ – ٧‬ﺗﻐﻴﺮ ﻣﻴﻞ ﻣﻌﺎﻣﻞ اﻟﻜﺴﺐ ﻟﻠﻔﻠﺘﺮ ﺑﺘﻐﻴﺮ ﻋﺪد اﻟﻤﻜﻮﻧﺎت‬

‫أﺣ ﻴﺎﻧﺎ ﻗﺪ ﻧﺤﺘﺎج اﻟﻰ ﻋﻤﻞ ﻓﻠﺘﺮ ذو ﻣﻌﺎﻣﻞ آﺴﺐ ﺛﺎﺑﺖ ﺗﻘﺮﻳﺒﺎ ﻓﻰ اﻟﺤﻴﺰ اﻟﻤﻔﻴﺪ ﻟﻠﻔﻠﺘﺮ ﺑﻴﻨﻤﺎ ﻓﻰ ﺣﺎﻻت أﺧﺮى ﻗﺪ ﻧﺴﻤﺢ‬
‫ﺑﻮﺟ ﻮد ﺗﻤ ﻮﺟﺎت ﻓ ﻰ اﻷداء ﻓ ﻰ اﻟﺤﻴ ﺰ اﻟﻤﻔ ﻴﺪ ﻟﻠﻔﻠﺘ ﺮ )‪ (ripples‬ﺑﻘ ﻴﻤﻪ ﻣﻌﻴ ﻨﻪ ﺑﺎﺳ ﺘﺨﺪام ﺗﻘ ﺮﻳﺐ ﻣﻌ ﻴﻦ ﻟﻠﻔﻠﺘ ﺮ‬
‫)‪ (Filter Approximation‬ﻳﺤ ﺪد ه ﺬا اﻟ ﻨﻮع ﻣ ﻦ اﻷداء و ﻳﺤﺪد أﻳﻀﺎ ﻣﻴﻞ اﻟﺨﻂ اﻟﺪال ﻋﻠﻰ ﻗﻴﻤﺔ ﻣﻌﺎﻣﻞ اﻟﻜﺴﺐ‬
‫ﻓﻰ اﻟﺤﻴﺰ اﻟﻤﻮﻗﻮف‪.‬‬
‫ﺑﺎﻟﻌ ﻮدﻩ اﻟ ﻰ ﻧﻈ ﺮﻳﺎت اﻟﻔﻠﺘﺮ )‪ (Filter Theory‬و ﺗﻘﺮﻳﺒﺎت اﻟﻔﻠﺘﺮ )‪ (Filter Approximations‬ﻧﻌﺮف أن هﻨﺎك‬
‫أﻧ ﻮاع ﻣﺸ ﻬﻮرﻩ ﻣ ﻦ ﺗﻘ ﺮﻳﺒﺎت اﻟﻔﻠﺘ ﺮ ذات ﺧﺼ ﺎﺋﺺ ﻣﻌﻴ ﻨﻪ ﻣ ﺜﻞ ﺑﺘ ﺮوورث )‪ (Butterworth‬و ﺗﺸ ﻴﺒﻰ ﺗﺸ ﻴﻒ‬
‫)‪ (Chebyshev‬و أداء اﻟﻘﻄ ﻊ اﻟ ﻨﺎﻗﺺ أو اﻟﻴﺒﺘ ﻴﻚ )‪ (Elliptic‬و ﺑﻴﺴ ﻞ )‪ (Bessel‬و ﻏﻴﺮهﺎ و ﺟﻤﻴﻌﻬﺎ ﺗﺤﺪد ﺷﻜﻞ‬
‫أداء اﻟﻔﻠﺘ ﺮ ﺳ ﻮاء ﻟﻤﻌﺎﻣ ﻞ اﻟﻜﺴ ﺐ ‪ GT‬أو ﻣﻌﺎﻣ ﻞ اﻟﻔﻘ ﺪ )‪ (attenuation‬أو ﻣﻌﺎﻣ ﻞ اﻻﻧﻌﻜﺎس و ﻳﺘﻢ ﺣﺴﺎب ذﻟﻚ ﻋﻦ‬
‫ﻃﺮﻳﻖ ﻣﻌﺎدﻻت و‪/‬أو ﺟﺪاول اﻟﺘﺼﻤﻴﻢ ﻟﻜﻞ ﻧﻮع ﻣﻦ هﺬﻩ اﻟﺘﻘﺮﻳﺒﺎت‪.‬‬
‫و ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (٨ – ٧‬ﻣﻘﺎرﻧ ﺔ ﺑ ﻴﻦ ﺑﻌ ﺾ ﺗﻘ ﺮﻳﺒﺎت اﻟﻔﻠﺘ ﺮ ‪ .‬ﺑﺸ ﻜﻞ ﻋ ﺎم ﻧﺠ ﺪ أن اﻟﻔﻠﺘ ﺮ ﻣ ﻦ ﻧ ﻮع ﺑﺘ ﺮوورث‬
‫)‪ (Butterworth‬ﻳﻤ ﺘﺎز ﺑﻤﻘ ﺪار ﻣﻌﺎﻣ ﻞ آﺴ ﺐ ﺛﺎﺑ ﺖ )‪ (maximally flat‬ﻓ ﻰ اﻟﺤﻴ ﺰ اﻟﻤﻔ ﻴﺪ ﺑﻴﻨﻤﺎ ﻳﺘﻤﻴﺰ اﻟﻔﻠﺘﺮ ﻣﻦ‬
‫ﻧ ﻮع ﺗﺸ ﻴﺒﻰ ﺗﺸ ﻴﻒ )‪ (Chebyshev‬ﺑﻘﻄ ﻊ أﻓﻀ ﻞ ﻣﻦ ﻓﻠﺘﺮ ﺑﺘﺮوورث ﻓﻰ اﻟﺤﻴﺰ اﻟﻤﻮﻗﻮف ﻟﻜﻦ ﻣﻘﺪار ﻣﻌﺎﻣﻞ آﺴﺐ‬
‫اﻟﻔﻠﺘﺮ ﻣﻦ ﻧﻮع ﺗﺸﻴﺒﻰ ﺗﺸﻴﻒ ﻳﻮﺟﺪ ﺑﻪ ﺗﻤﻮﺟﺎت )‪ (ripples‬ﻓﻰ اﻟﺤﻴﺰ اﻟﻤﻔﻴﺪ ﻟﻠﻔﻠﺘﺮ‪.‬‬
‫و ﻧﺠ ﺪ أن أﻓﻀ ﻞ ﻗﻄ ﻊ ﻓ ﻰ اﻟﺤﻴ ﺰ اﻟﻤﻮﻗ ﻮف ﻳﻜ ﻮن ﻟﻠﻔﻠﺘ ﺮ ﻣ ﻦ ﻧ ﻮع اﻟﻘﻄﻊ اﻟﻨﺎﻗﺺ أو اﻟﻴﺒﺘﻴﻚ )‪ (Elliptic‬ﻣﻊ وﺟﻮد‬
‫ﺗﻤ ﻮﺟﺎت )‪ (ripples‬ﻓ ﻰ اﻟﺤﻴ ﺰ اﻟﻤﻔ ﻴﺪ ﻟﻠﻔﻠﺘ ﺮ‪ .‬ﺑﻴﻨﻤﺎ ﻧﺠﺪ اﻟﻔﻠﺘﺮ ﻣﻦ ﻧﻮع ﺑﻴﺴﻞ )‪ (Bessel‬ﻳﺤﻘﻖ ﻣﺴﺘﻮى ﺛﺎﺑﺖ ﻓﻰ‬
‫ﺗﻐﻴﻴﺮ زاوﻳﺔ اﻟﻄﻮر ﻟﻜﻦ ﻳﻌﻴﺒﻪ ﻗﻄﻊ ﺳﺊ )ﺑﻄﺊ( ﻓﻰ ﻣﻘﺪار ﻣﻌﺎﻣﻞ اﻟﻜﺴﺐ ﻓﻰ اﻟﺤﻴﺰ اﻟﻤﻮﻗﻮف ﻟﻠﻔﻠﺘﺮ‪.‬‬

‫‪274‬‬

‫و ﻳﻤﻜ ﻦ اﻟ ﺮﺟﻮع ﻟﻠﻤ ﺮاﺟﻊ ﻣ ﻦ )‪ (1‬اﻟ ﻰ )‪ (8‬ﻟﻤ ﺮاﺟﻌﺔ ﻣﻌ ﺎدﻻت اﻷداء و ﻣﻨﺤﻨ ﻴﺎت و ﻣﻌ ﺎدﻻت اﻟﺘﺼ ﻤﻴﻢ ﻷﻧ ﻮاع‬
‫ﻣﺨﺘﻠﻔﻪ ﻣﻦ ﺗﻘﺮﻳﺒﺎت اﻟﻔﻠﺘﺮ‪.‬‬
‫اﻟﻤ ﺮﺟﻊ رﻗ ﻢ )‪ (8‬ﻳﺤ ﺘﻮى ﻋﻠ ﻰ ﺑ ﺮاﻣﺞ ﺑﻠﻐ ﺔ )‪ (BASIC‬ﻟﺤﺴ ﺎﺑﺎت ﺗﺼ ﻤﻴﻢ اﻟﻔﻠﺘ ﺮ اﻟﻤﻜ ﻮن ﻣ ﻦ ﻣﻜ ﻮﻧﺎت ﻋﻴﻨ ﻴﻪ‬
‫)‪ (lumped element filter‬ﺑﺄﻧﻮاع ﺗﻘﺮﻳﺒﺎت ﻓﻠﺘﺮ ﻣﺨﺘﻠﻔﻪ‪.‬‬

‫ﺷﻜﻞ )‪ : (٨ – ٧‬ﻣﻘﺎرﻧﺔ ﺑﻴﻦ ﺑﻌﺾ ﺗﻘﺮﻳﺒﺎت اﻟﻔﻠﺘﺮ‬

‫ﻋ ﻨﺪ ﺗﺼﻤﻴﻢ داﺋﺮة ﻓﻠﺘﺮ ﺑﺎﺳﺘﺨﺪام أﺣﺪ ﺗﻘﺮﻳﺒﺎت اﻟﻔﻠﺘﺮ )‪ ، (Filter Approximations‬ﻳﺘﻢ ﺣﺴﺎب )أو اﺧﺘﻴﺎر( ﻋﺪد‬
‫اﻟﻤﻜ ﻮﻧﺎت أو رﺗ ﺒﺔ اﻟﻔﻠﺘ ﺮ )‪ ، (filter order n‬ﺛ ﻢ ﺗﺴ ﺘﺨﺪم ﻣﻌ ﺎدﻻت )أو ﺟ ﺪاول( ﺗﺼ ﻤﻴﻢ اﻟﻔﻠﺘ ﺮ ﻓ ﻰ ﺣﺴ ﺎب ﻗ ﻴﻢ‬
‫ﻣﻜ ﻮﻧﺎت اﻟﻔﻠﺘ ﺮ اﻟﻤﺘﻄ ﺒﻌﻪ )‪ (normalized elements values gi‬ﻟﻔﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ )‪ (LPF‬و‬
‫ﻣﻨﻬﺎ ﻳﺘﻢ ﺣﺴﺎب ﻗﻴﻤﺔ اﻟﻤﻜﻮﻧﺎت اﻟﻨﻬﺎﺋﻴﻪ ﻟﻠﻔﻠﺘﺮ‪.‬‬
‫ﻣ ﻦ ﻗ ﻴﻢ ﻣﻜ ﻮﻧﺎت اﻟﻔﻠﺘ ﺮ اﻟﻤﺘﻄ ﺒﻌﻪ )‪ (gi‬اﻟﻤﺬآ ﻮرﻩ أﻋ ﻼﻩ ﻳﻤﻜﻦ ﺣﺴﺎب ﻗﻴﻢ ﻣﻜﻮﻧﺎت اﻟﻔﻠﺘﺮ اذا آﺎن ﻣﻦ ﻧﻮع ﺁﺧﺮ ﻏﻴﺮ‬
‫ﻓﻠﺘ ﺮ ﻣ ﺮور اﻟﺘ ﺮددات اﻟﻤﻨﺨﻔﻀ ﻪ )ﻣ ﺜﻼ ﻓﻠﺘ ﺮ ﻣ ﺮور اﻟﺘ ﺮددات اﻟﻤ ﺮﺗﻔﻌﻪ أو ﻓﻠﺘ ﺮ ﻣﺮور ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ أو ﻓﻠﺘﺮ‬
‫اﻳﻘﺎف ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ(‪.‬‬
‫و ﻣ ﻦ ﻗ ﻴﻢ ﻣﻜ ﻮﻧﺎت اﻟﻔﻠﺘ ﺮ اﻟﻤﺘﻄ ﺒﻌﻪ )‪ (gi‬اﻟﻤﺬآ ﻮرﻩ أﻋ ﻼﻩ ﻳﻤﻜ ﻦ أن ﻳ ﺒﺪأ ﺗﺼ ﻤﻴﻢ اﻟﻌﺪﻳﺪ ﻣﻦ دواﺋﺮ اﻟﻔﻠﺘﺮ اﻟﻌﺎﻣﻠﻪ ﻓﻰ‬
‫اﻟﺘﺮددات اﻟﻌﺎﻟﻴﻪ و اﻟﻤﻴﻜﺮووﻳﻒ‪.‬‬
‫ﻗ ﻴﻢ ﻣﻜ ﻮﻧﺎت اﻟﻔﻠﺘ ﺮ اﻟﻤﺘﻄ ﺒﻌﻪ )‪ (normalized elements values gi‬ﻷﺣ ﺪ ﺗﻘ ﺮﻳﺒﺎت اﻟﻔﻠﺘ ﺮ هﻰ ﻋﺒﺎرﻩ ﻋﻦ ﻗﻴﻢ‬
‫اﻟﻤﻜ ﻮﻧﺎت ﻟﻔﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ اﻟﺘﻰ ﺗﺤﻘﻖ أداء ﺗﻘﺮﻳﺐ ﻓﻠﺘﺮ ﻣﻌﻴﻦ ﻣﺜﻞ ﺑﺘﺮوورث )‪ (Butterworth‬أو‬
‫ﺗﺸﻴﺒﻰ ﺗﺸﻴﻒ )‪ (Chebyshev‬أو ﻏﻴﺮهﻤﺎ ﻣﻊ اﻋﺘﺒﺎر أن ﺗﺮدد اﻟﻘﻄﻊ ﻳﺴﺎوى )‪.(1‬‬

‫‪275‬‬

‫ﺷﻜﻞ )‪ : (٩ – ٧‬داﺋﺮﺗﻰ ﻓﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ )ﻣﻊ اﺧﺘﻴﺎر ‪(L1=g1‬‬

‫ﺷﻜﻞ )‪ : (١٠ – ٧‬داﺋﺮﺗﻰ ﻓﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ )ﻣﻊ اﺧﺘﻴﺎر ‪(C1=g1‬‬

‫‪276‬‬

‫ﻳﺒ ﻴﻦ ﺷﻜﻞ )‪ (٩ – ٧‬داﺋﺮﺗﻰ ﻓﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ ﻣﻦ ﻧﻮع )‪ (LC‬ﺑﺎﻟﻤﻜﻮﻧﺎت اﻟﻤﺘﻄﺒﻌﻪ )‪ (gi‬ﻓﻰ ﺣﺎﻟﺘﻰ‬
‫رﺗ ﺒﺔ اﻟﻔﻠﺘ ﺮ اﻟﻔ ﺮدﻳﻪ )اﻟﺠ ﺰء اﻷﻋﻠ ﻰ ﻣ ﻦ اﻟﺸ ﻜﻞ ‪ (n odd‬و اﻟ ﺰوﺟﻴﻪ )اﻟﺠ ﺰء اﻷﺳ ﻔﻞ ﻣ ﻦ اﻟﺸﻜﻞ ‪ (n even‬ﻓﻰ‬
‫ﺣﺎﻟﺔ اﺧﺘﻴﺎر اﻟﻌﻨﺼﺮ اﻷول ﻟﻴﻜﻮن ﻣﻠﻒ ‪ ،‬أى أن )‪ (L1 = g1‬و)‪ (C2 = g2‬و)‪ (L3 = g3‬و هﻜﺬا‪.‬‬
‫ﺑﻴ ﻨﻤﺎ ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (١٠ – ٧‬داﺋﺮﺗ ﻰ ﻓﻠﺘ ﺮ ﻣ ﺮور اﻟﺘ ﺮددات اﻟﻤﻨﺨﻔﻀ ﻪ ﺑﺎﻟﻤﻜ ﻮﻧﺎت اﻟﻤﺘﻄ ﺒﻌﻪ )‪ (gi‬ﻓﻰ ﺣﺎﻟﺘﻰ رﺗﺒﺔ‬
‫اﻟﻔﻠﺘ ﺮ اﻟﻔ ﺮدﻳﻪ )اﻟﺠ ﺰء اﻷﻋﻠ ﻰ ﻣ ﻦ اﻟﺸ ﻜﻞ ‪ (n odd‬و اﻟ ﺰوﺟﻴﻪ )اﻟﺠ ﺰء اﻷﺳ ﻔﻞ ﻣ ﻦ اﻟﺸ ﻜﻞ ‪ (n even‬ﻓﻰ ﺣﺎﻟﺔ‬
‫اﺧﺘﻴﺎر اﻟﻌﻨﺼﺮ اﻷول ﻟﻴﻜﻮن ﻣﻜﺜﻒ ‪ ،‬أى أن )‪ (C1 = g1‬و)‪ (L2 = g2‬و)‪ (C3 = g3‬و هﻜﺬا‪.‬‬
‫ﺑﺎﻟﻨﺴﺒﻪ ﻟﻠﻔﻠﺘﺮ ﻣﻦ ﻧﻮع ﺑﺘﺮوورث )‪ (Butterworth‬ﻓﺎﻧﻪ ﻓﻰ ﺣﺎﻟﺔ ﺗﺴﺎوى ﻣﻌﺎوﻗﺘﻲ اﻟﻤﺼﺪر و اﻟﺤﻤﻞ أو اﻟﻤﻘﺎوﻣﺘﻴﻦ‬
‫ﻋ ﻨﺪ ﻣﺪﺧﻠ ﻲ اﻟﻔﻠﺘ ﺮ أى )‪ (RS = go= RL = gn+1 = 1‬ﻳ ﺘﻢ ﺣﺴ ﺎب ﺑﺎﻗ ﻰ ﻣﻜ ﻮﻧﺎت اﻟﻔﻠﺘ ﺮ اﻟﻤﺘﻄ ﺒﻌﻪ )‪ (gi‬ﺑﺎﻟﻤﻌﺎدﻟ ﻪ‬
‫اﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫)‪(7.1‬‬

‫⎞ ]‪⎛ π [2k - 1‬‬
‫⎜ ‪g k = 2 sin‬‬
‫⎟‬
‫⎠ ‪⎝ 2n‬‬

‫‪, k = 1, 2, … , n‬‬

‫ﺟ ﺪول )‪ (١ - ٧‬ﻳﻌﻄ ﻰ ﻗ ﻴﻢ ﻣﻜ ﻮﻧﺎت اﻟﻔﻠﺘ ﺮ اﻟﻤﺘﻄ ﺒﻌﻪ )‪ (gi‬ﺑﺎﻟﻨﺴﺒﻪ ﻟﻠﻔﻠﺘﺮ ﻣﻦ ﻧﻮع ﺑﺘﺮوورث )‪ (Butterworth‬ﻓﻰ‬
‫ﺣﺎﻟﺔ ﺗﺴﺎوى ﻣﻌﺎوﻗﺘﻲ اﻟﻤﺼﺪر و اﻟﺤﻤﻞ ﺣﺘﻰ رﺗﺒﺔ اﻟﻔﻠﺘﺮ )‪.(n = 8‬‬

‫‪g6‬‬

‫‪g5‬‬

‫‪g4‬‬

‫‪g3‬‬

‫‪g9‬‬

‫‪g8‬‬

‫‪g7‬‬

‫‪1.0‬‬
‫‪0.5176 1.0‬‬
‫‪1.2470 0.4450 1.0‬‬
‫‪1.6629 1.1111 0.3902 1.0‬‬

‫‪1.0‬‬
‫‪0.6180‬‬
‫‪1.4142‬‬
‫‪1.8019‬‬
‫‪1.9615‬‬

‫‪1.0‬‬
‫‪0.7654‬‬
‫‪1.6180‬‬
‫‪1.9318‬‬
‫‪2.0‬‬
‫‪1.9615‬‬

‫‪1.0‬‬
‫‪1.0‬‬
‫‪1.8478‬‬
‫‪2.0‬‬
‫‪1.9318‬‬
‫‪1.8019‬‬
‫‪1.6629‬‬

‫‪g2‬‬
‫‪1.0‬‬
‫‪1.4142‬‬
‫‪2.0‬‬
‫‪1.8478‬‬
‫‪1.6180‬‬
‫‪1.4142‬‬
‫‪1.2470‬‬
‫‪1.1111‬‬

‫‪g1‬‬
‫‪2.0‬‬
‫‪1.4142‬‬
‫‪1.0‬‬
‫‪0.7654‬‬
‫‪0.6180‬‬
‫‪0.5176‬‬
‫‪0.4450‬‬
‫‪0.3902‬‬

‫‪n‬‬
‫‪1‬‬
‫‪2‬‬
‫‪3‬‬
‫‪4‬‬
‫‪5‬‬
‫‪6‬‬
‫‪7‬‬
‫‪8‬‬

‫ﺟﺪول )‪ : (١ - ٧‬ﻗﻴﻢ ﻣﻜﻮﻧﺎت اﻟﻔﻠﺘﺮ اﻟﻤﺘﻄﺒﻌﻪ )‪ (gi‬ﺑﺎﻟﻨﺴﺒﻪ ﻟﻠﻔﻠﺘﺮ ﻣﻦ ﻧﻮع ﺑﺘﺮوورث‬

‫ﺑﺎﻟﻨﺴﺒﻪ ﻟﻠﻔﻠﺘﺮ ﻣﻦ ﻧﻮع ﺗﺸﻴﺒﻰ ﺗﺸﻴﻒ )‪ (Chebyshev‬ﻳﺘﻢ ﺣﺴﺎب ﻣﻜﻮﻧﺎت اﻟﻔﻠﺘﺮ اﻟﻤﺘﻄﺒﻌﻪ )‪ (gi‬ﺑﺎﻟﻤﻌﺎدﻻت اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫‪go = 1‬‬

‫)‪(7.2‬‬

‫‪2 a1‬‬

‫)‪(7.3‬‬

‫)‪(7.4‬‬

‫‪γ‬‬

‫‪, k = 2, 3, … , n‬‬

‫‪277‬‬

‫= ‪g1‬‬

‫‪4 a k -1 a k‬‬
‫‪b k -1 g k -1‬‬

‫= ‪gk‬‬

‫)‪(7.5‬‬

‫‪for n odd‬‬
‫‪⎧⎪ 1‬‬
‫‪g n+1 = ⎨ coth 2 ⎛ β ⎞ for n even‬‬
‫⎟‪⎜ 4‬‬
‫⎩⎪‬
‫⎝‬
‫⎠‬

‫)‪(7.6‬‬

‫‪, k = 1, 2, … , n‬‬

‫⎞ ]‪⎛ π [2k - 1‬‬
‫⎜ ‪a k = sin‬‬
‫⎟‬
‫⎠ ‪⎝ 2n‬‬

‫)‪(7.7‬‬

‫‪, k = 1, 2, … , n‬‬

‫⎞ ‪⎛ kπ‬‬
‫⎜ ‪bk = γ 2 + sin 2‬‬
‫⎟‬
‫⎠ ‪⎝ n‬‬
‫⎞⎤‬
‫⎠⎦‬

‫‪A‬‬

‫⎛‬

‫⎡‬
‫⎣‬

‫)‪(7.8‬‬

‫⎢ ‪β = ln⎜⎜ coth‬‬
‫⎟‬
‫⎟ ⎥ ‪17.372‬‬

‫)‪(7.9‬‬

‫⎞ ‪⎛β‬‬
‫⎟‬
‫⎠ ‪⎝ 2n‬‬

‫⎝‬

‫⎜ ‪γ = sinh‬‬

‫)‬

‫)‪(7.10‬‬

‫(‬

‫‪A = 10 log 1 + ε 2‬‬

‫ﺣ ﻴﺚ )‪ (ε‬ه ﻮ ﻣﻘ ﺪار اﻟ ﺘﻤﻮﺟﺎت )‪ (ripples‬ﻓﻰ اﻟﺤﻴﺰ اﻟﻤﻔﻴﺪ ﻟﻠﻔﻠﺘﺮ ﺑﺎﻟﻘﻴﻤﻪ اﻟﻤﻄﻠﻘﻪ ﺑﻴﻨﻤﺎ )‪ (A‬هﻮ ﻣﻘﺪار اﻟﺘﻤﻮﺟﺎت‬
‫ﺑﺎﻟﺪﻳﺴﻴﺒﻞ‪.‬‬
‫اﻟﺠ ﺪاول ﻣﻦ )‪ (٢ - ٧‬اﻟﻰ )‪ (٦ - ٧‬ﺗﻌﻄﻰ ﻗﻴﻢ ﻣﻜﻮﻧﺎت اﻟﻔﻠﺘﺮ اﻟﻤﺘﻄﺒﻌﻪ )‪ (gi‬ﺑﺎﻟﻨﺴﺒﻪ ﻟﻠﻔﻠﺘﺮ ﻣﻦ ﻧﻮع ﺗﺸﻴﺒﻰ ﺗﺸﻴﻒ‬
‫)‪ (Chebyshev‬ﻓ ﻰ ﺣﺎﻟ ﺔ ﺗﺴ ﺎوى ﻣﻌﺎوﻗﺘ ﻲ اﻟﻤﺼ ﺪر و اﻟﺤﻤﻞ أى )‪ (RS = go= RL = gn+1 = 1‬ﻟﻘﻴﻢ ﺗﻤﻮﺟﺎت‬
‫)‪ (ripples‬ﻣﺨﺘﻠﻔﻪ‪.‬‬
‫‪g9‬‬

‫‪g8‬‬

‫‪g7‬‬

‫‪g6‬‬

‫‪g5‬‬

‫‪n g1‬‬
‫‪g2‬‬
‫‪g3‬‬
‫‪g4‬‬
‫‪3 1.18111 1.82142 1.18111‬‬

‫‪5 0.97660 1.68494 2.03666 1.68494 0.97660‬‬
‫‪7 0.91273 1.59470 2.00209 1.87037 2.00209 1.59470 0.91273‬‬
‫‪9 0.88538 1.55131 1.96146 1.86164 2.07173 1.86164 1.96146 1.55131 0.88538‬‬
‫ﺟﺪول )‪ : (٢ - ٧‬ﻗﻴﻢ ﻣﻜﻮﻧﺎت اﻟﻔﻠﺘﺮ اﻟﻤﺘﻄﺒﻌﻪ ﺑﺎﻟﻨﺴﺒﻪ ﻟﻠﻔﻠﺘﺮ ﻣﻦ ﻧﻮع ﺗﺸﻴﺒﻰ ﺗﺸﻴﻒ )اﻟﺘﻤﻮﺟﺎت = ‪(0.01 dB‬‬

‫‪g9‬‬

‫‪g8‬‬

‫‪g7‬‬

‫‪g6‬‬

‫‪g5‬‬

‫‪g4‬‬

‫‪g3‬‬

‫‪g2‬‬

‫‪g1‬‬

‫‪1.24466‬‬

‫‪1.50168‬‬

‫‪1.26152‬‬
‫‪2.22199‬‬

‫‪1.51955‬‬
‫‪1.68293‬‬

‫‪1.30134‬‬
‫‪2.23927‬‬
‫‪2.29571‬‬

‫‪1.55594‬‬
‫‪1.68038‬‬
‫‪1.68293‬‬

‫‪1.43286‬‬
‫‪2.24110‬‬
‫‪2.23927‬‬
‫‪2.22199‬‬

‫‪1.59373‬‬
‫‪1.55594‬‬
‫‪1.51955‬‬
‫‪1.50168‬‬

‫‪1.43286‬‬
‫‪1.30134‬‬
‫‪1.26152‬‬
‫‪1.24466‬‬

‫ﺟﺪول )‪ : (٣ - ٧‬ﻗﻴﻢ ﻣﻜﻮﻧﺎت اﻟﻔﻠﺘﺮ اﻟﻤﺘﻄﺒﻌﻪ ﺑﺎﻟﻨﺴﺒﻪ ﻟﻠﻔﻠﺘﺮ ﻣﻦ ﻧﻮع ﺗﺸﻴﺒﻰ ﺗﺸﻴﻒ )اﻟﺘﻤﻮﺟﺎت = ‪(0.1 dB‬‬

‫‪278‬‬

‫‪n‬‬
‫‪3‬‬
‫‪5‬‬
‫‪7‬‬
‫‪9‬‬

‫‪g9‬‬

‫‪g8‬‬

‫‪g7‬‬

‫‪g6‬‬

‫‪g5‬‬

‫‪g4‬‬

‫‪g3‬‬

‫‪g2‬‬

‫‪g1‬‬

‫‪1.5‬‬

‫‪1.40755‬‬

‫‪1.51189‬‬
‫‪2.44460‬‬

‫‪1.41692‬‬
‫‪1.54062‬‬

‫‪1.53996‬‬
‫‪2.45311‬‬
‫‪2.50767‬‬

‫‪1.43493‬‬
‫‪1.53492‬‬
‫‪1.54062‬‬

‫‪1.63306‬‬
‫‪2.44027‬‬
‫‪2.45311‬‬
‫‪2.44460‬‬

‫‪1.43616‬‬
‫‪1.43493‬‬
‫‪1.41692‬‬
‫‪1.40755‬‬

‫‪1.63306‬‬
‫‪1.53996‬‬
‫‪1.51189‬‬
‫‪1.50000‬‬

‫‪n‬‬
‫‪3‬‬
‫‪5‬‬
‫‪7‬‬
‫‪9‬‬

‫ﺟﺪول )‪ : (٤ - ٧‬ﻗﻴﻢ ﻣﻜﻮﻧﺎت اﻟﻔﻠﺘﺮ اﻟﻤﺘﻄﺒﻌﻪ ﺑﺎﻟﻨﺴﺒﻪ ﻟﻠﻔﻠﺘﺮ ﻣﻦ ﻧﻮع ﺗﺸﻴﺒﻰ ﺗﺸﻴﻒ )اﻟﺘﻤﻮﺟﺎت = ‪(0.25 dB‬‬

‫‪g9‬‬

‫‪g8‬‬

‫‪g7‬‬

‫‪g6‬‬

‫‪g5‬‬

‫‪g4‬‬

‫‪g3‬‬

‫‪g2‬‬

‫‪g1‬‬

‫‪1.78229‬‬

‫‪1.29208‬‬

‫‪1.78962‬‬
‫‪2.71630‬‬

‫‪1.29608‬‬
‫‪1.39214‬‬

‫‪1.80691‬‬
‫‪2.71773‬‬
‫‪2.77344‬‬

‫‪1.30248‬‬
‫‪1.38476‬‬
‫‪1.39214‬‬

‫‪1.86369‬‬
‫‪2.69145‬‬
‫‪2.71773‬‬
‫‪2.71630‬‬

‫‪1.28036‬‬
‫‪1.30248‬‬
‫‪1.29608‬‬
‫‪1.29208‬‬

‫‪1.86369‬‬
‫‪1.80691‬‬
‫‪1.78962‬‬
‫‪1.78229‬‬

‫‪n‬‬
‫‪3‬‬
‫‪5‬‬
‫‪7‬‬
‫‪9‬‬

‫ﺟﺪول )‪ : (٥ - ٧‬ﻗﻴﻢ ﻣﻜﻮﻧﺎت اﻟﻔﻠﺘﺮ اﻟﻤﺘﻄﺒﻌﻪ ﺑﺎﻟﻨﺴﺒﻪ ﻟﻠﻔﻠﺘﺮ ﻣﻦ ﻧﻮع ﺗﺸﻴﺒﻰ ﺗﺸﻴﻒ )اﻟﺘﻤﻮﺟﺎت = ‪(0.5 dB‬‬

‫‪g9‬‬

‫‪g8‬‬

‫‪g7‬‬

‫‪g6‬‬

‫‪g5‬‬

‫‪g4‬‬

‫‪g3‬‬

‫‪g2‬‬

‫‪g1‬‬

‫‪2.20246‬‬

‫‪1.13079‬‬

‫‪2.20391‬‬
‫‪3.15397‬‬

‫‪1.13061‬‬
‫‪1.20201‬‬

‫‪2.20715‬‬
‫‪3.14695‬‬
‫‪3.20772‬‬

‫‪1.12798‬‬
‫‪1.19368‬‬
‫‪1.20201‬‬

‫‪2.21565‬‬
‫‪3.10248‬‬
‫‪3.14695‬‬
‫‪3.15397‬‬

‫‪1.08839‬‬
‫‪1.12798‬‬
‫‪1.13061‬‬
‫‪1.13079‬‬

‫‪2.21565‬‬
‫‪2.20715‬‬
‫‪2.20391‬‬
‫‪2.20246‬‬

‫‪n‬‬
‫‪3‬‬
‫‪5‬‬
‫‪7‬‬
‫‪9‬‬

‫ﺟﺪول )‪ : (٦ - ٧‬ﻗﻴﻢ ﻣﻜﻮﻧﺎت اﻟﻔﻠﺘﺮ اﻟﻤﺘﻄﺒﻌﻪ ﺑﺎﻟﻨﺴﺒﻪ ﻟﻠﻔﻠﺘﺮ ﻣﻦ ﻧﻮع ﺗﺸﻴﺒﻰ ﺗﺸﻴﻒ )اﻟﺘﻤﻮﺟﺎت = ‪(1 dB‬‬

‫أﺣ ﻴﺎﻧﺎ ﻳ ﺮاد ﺗﺼ ﻤﻴﻢ ﻓﻠﺘ ﺮ )أو داﺋ ﺮة ﺗﻮﻓ ﻴﻖ( ﺑ ﻴﻦ ﻣﻌﺎوﻗﺘ ﻴﻦ )ﻣﻘﺎوﻣﺘ ﻴﻦ( ﻏﻴ ﺮ ﻣﺘﺴ ﺎوﻳﺘﻴﻦ )‪ (RS=R1‬و )‪(RL=R2‬‬
‫ﺣ ﻴﺚ )‪ . (R1 ≠ R2‬اﻟﻤﺮﺟﻊ )‪ (3‬ﻳﺤﺘﻮى ﻋﻠﻰ ﻃﺮق اﺛﺒﺎت و ﻣﻌﺎدﻻت هﺬا اﻟﻨﻮع ﻣﻦ اﻟﺪواﺋﺮ ﺑﺎﻻﺿﺎﻓﻪ اﻟﻰ ﻃﺮق‬
‫اﺛﺒﺎت و ﻣﻌﺎدﻻت أﻧﻮاع أﺧﺮى ﻣﻦ اﻟﺪواﺋﺮ اﻟﻤﻨﺘﻬﻴﻪ ﺑﺤﻤﻞ ﻣﻌﻘﺪ )‪.(complex load‬‬
‫ﻟﺘﺼﻤﻴﻢ ﻓﻠﺘﺮ ﻣﻦ ﻧﻮع ﺑﺘﺮوورث )‪ (Butterworth‬ﺑﻴﻦ ﻣﻌﺎوﻗﺘﻴﻦ ﻏﻴﺮ ﻣﺘﺴﺎوﻳﺘﻴﻦ )‪ (RS=R1‬و )‪ (RL=R2‬ﺣﻴﺚ‬
‫)‪ (R1 ≠ R2‬ﻳﺘﻢ ﺣﺴﺎب ﻣﻜﻮﻧﺎت اﻟﻔﻠﺘﺮ اﻟﻤﺘﻄﺒﻌﻪ ﺑﺎﻟﻤﻌﺎدﻻت اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫وﻓﻘﺎ ﻟﺸﻜﻞ )‪ (٩ – ٧‬و ﻟﺘﺤﻘﻴﻖ ﻣﻌﺎﻣﻞ آﺴﺐ ﻳﺴﺎوى‬
‫)‪(7.11‬‬

‫‪Kn‬‬
‫‪1 + ( ω / ωc ) 2n‬‬

‫‪0 ≤ Kn ≤ 1‬‬

‫‪279‬‬

‫= ) ‪G (ω 2‬‬

‫ﺣ ﻴﺚ )‪ (Kn‬ه ﻮ أﻗﺼ ﻰ ﻣﻌﺎﻣ ﻞ آﺴ ﺐ ﻋﻨﺪ ﺗﺮدد ﺻﻔﺮ ‪ ،‬و )‪ (ωc‬هﻮ ﺗﺮدد اﻟﻘﻄﻊ )‪(radian cutoff frequency‬‬
‫أو ﺣﻴﺰ اﻟﺜﻼﺛﻪ دﻳﺴﻴﺒﻞ )‪ .(3-dB bandwidth‬ﺗﺬآﺮ أن )‪.(ωc = 2 π fc‬‬
‫ﻳﺘﻢ ﺣﺴﺎب )‪ (L1 = g1‬وﻓﻘﺎ ﻟﺸﻜﻞ )‪ (٩ – ٧‬ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ‬
‫)‪2 R1 sin(π/2n‬‬
‫‪(1 - α ) ωc‬‬

‫)‪(7.12‬‬

‫= ‪L1‬‬

‫أﻣﺎ ﺑﺎﻗﻰ اﻟﻤﻜﻮﻧﺎت ﻓﻴﺘﻢ ﺣﺴﺎﺑﻬﺎ آﺎﻟﺘﺎﻟﻰ‬
‫)‪(7.13‬‬

‫‪4 sin γ 4m−3 sin γ 4m−1‬‬
‫] ‪ω [ 1 − 2 α cos γ 4m−2 + α 2‬‬

‫= ‪L2 m−1C2 m‬‬

‫)‪(7.14‬‬

‫‪4 sin γ 4m−1 sin γ 4m+1‬‬
‫] ‪ω [ 1 − 2 α cos γ 4m + α 2‬‬

‫= ‪L2 m+1C2 m‬‬

‫‪2‬‬
‫‪c‬‬

‫‪2‬‬
‫‪c‬‬

‫ﺣﻴﺚ‬
‫⎤ ‪⎡1‬‬
‫⎥‪m = 1, 2, 3, …, ⎢ n‬‬
‫⎦ ‪⎣2‬‬
‫)‪γm = (m π ) / (2 n‬‬

‫)‪(7.15‬‬
‫‪1/n‬‬

‫⎞ ) ‪⎛ 1 − (R 2 / R1‬‬
‫⎟⎟‬
‫⎜⎜ = ‪α‬‬
‫⎠ ) ‪⎝ 1 + (R 2 / R1‬‬

‫‪for R2 ≤ R1‬‬
‫‪1/n‬‬

‫‪for R2 ≥ R1‬‬

‫⎞ ‪⎛ (R / R ) − 1‬‬
‫⎟⎟‬
‫‪α = ⎜⎜ 2 1‬‬
‫⎠ ‪⎝ (R 2 / R1 ) + 1‬‬

‫ﻟﺘﺼ ﻤﻴﻢ ﻓﻠﺘ ﺮ ﻣ ﻦ ﻧ ﻮع ﺗﺸ ﻴﺒﻰ ﺗﺸ ﻴﻒ )‪ (Chebyshev‬ﺑ ﻴﻦ ﻣﻌﺎوﻗﺘ ﻴﻦ ﻏﻴ ﺮ ﻣﺘﺴ ﺎوﻳﺘﻴﻦ )‪ (RS=R1‬و )‪(RL=R2‬‬
‫ﺣﻴﺚ )‪ (R1 ≠ R2‬ﻳﺘﻢ ﺣﺴﺎب ﻣﻜﻮﻧﺎت اﻟﻔﻠﺘﺮ اﻟﻤﺘﻄﺒﻌﻪ ﺑﺎﻟﻤﻌﺎدﻻت اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫وﻓﻘﺎ ﻟﺸﻜﻞ )‪ (٩ – ٧‬و ﻟﺘﺤﻘﻴﻖ ﻣﻌﺎﻣﻞ آﺴﺐ ﻳﺴﺎوى‬
‫)‪(7.16‬‬

‫‪Kn‬‬
‫) ‪1 + ε C 2n ( ω / ωc‬‬

‫‪0 ≤ Kn ≤ 1‬‬

‫‪2‬‬

‫= ) ‪G (ω 2‬‬

‫ﺣ ﻴﺚ )‪ (Kn‬ﺛﺎﺑ ﺖ ‪ ،‬و )‪ (ωc‬ه ﻮ ﺗ ﺮدد اﻟﻘﻄ ﻊ )‪ (radian cutoff frequency‬أو ﺣﻴ ﺰ اﻟ ﺜﻼﺛﻪ دﻳﺴ ﻴﺒﻞ ) ‪3-dB‬‬
‫‪ ، (bandwidth‬و )‪ (ε‬هﻮ ﻣﻘﺪار ﻣﻌﺎﻣﻞ اﻟﺘﻤﻮﺟﺎت )‪ (ripple factor‬ﻓﻰ اﻟﺤﻴﺰ اﻟﻤﻔﻴﺪ ﻟﻠﻔﻠﺘﺮ‪.‬‬
‫ﻳﺘﻢ ﺣﺴﺎب )‪ (L1 = g1‬وﻓﻘﺎ ﻟﺸﻜﻞ )‪ (٩ – ٧‬ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ‬
‫‪2 R1 sin γ 1‬‬
‫) ‪ωc ( sinh a - sinh x‬‬

‫)‪(7.17‬‬
‫أﻣﺎ ﺑﺎﻗﻰ اﻟﻤﻜﻮﻧﺎت ﻓﻴﺘﻢ ﺣﺴﺎﺑﻬﺎ آﺎﻟﺘﺎﻟﻰ‬

‫‪280‬‬

‫= ‪L1‬‬

‫)‪(7.18‬‬

‫‪4 sin γ 4m−3 sin γ 4m−1‬‬
‫) ‪ω f 2m−1 (sinh a , sinh x‬‬

‫= ‪C2 m L2 m−1‬‬

‫)‪(7.19‬‬

‫‪4 sin γ 4m−1 sin γ 4m+1‬‬
‫) ‪ω f 2m (sinh a , sinh x‬‬

‫= ‪C2 m L2 m+1‬‬

‫‪2‬‬
‫‪c‬‬

‫‪2‬‬
‫‪c‬‬

‫ﺣﻴﺚ‬
‫⎤ ‪⎡1‬‬
‫⎥‪m = 1, 2, 3, …, ⎢ n‬‬
‫⎦ ‪⎣2‬‬
‫)‪γm = (m π ) / (2 n‬‬

‫)‪(7.20‬‬

‫)‪(7.23‬‬

‫)‪(7.21‬‬

‫‪1- kn‬‬
‫‪1‬‬
‫‪sinh -1‬‬
‫‪ε‬‬
‫‪n‬‬

‫=‪x‬‬

‫)‪(7.22‬‬

‫‪1‬‬
‫‪1‬‬
‫‪sinh -1‬‬
‫‪n‬‬
‫‪ε‬‬

‫=‪a‬‬

‫‪fm(sinh a , sinh x) = sinh2 a + sinh2 x + sin2 γ2m – 2 sinh a sinh x cos γ2m‬‬

‫‪for n odd,‬‬

‫⎤ ‪⎡ ⎛ (R / R ) − 1 ⎞ 2‬‬
‫‪2‬‬
‫‪1‬‬
‫⎥ ⎟⎟‬
‫⎜⎜ ‪K n = (1 + ε ) ⎢1 -‬‬
‫⎦⎥ ⎠ ‪⎢⎣ ⎝ (R 2 / R1 ) + 1‬‬

‫‪for n even.‬‬

‫⎤ ‪⎡ ⎛ 1 − (R / R ) ⎞ 2‬‬
‫‪2‬‬
‫‪1‬‬
‫⎥ ⎟⎟‬
‫⎜⎜ ‪K n = (1 + ε ) ⎢1 -‬‬
‫‪+‬‬
‫‪R‬‬
‫‪1‬‬
‫‪(R‬‬
‫‪/‬‬
‫⎝ ⎣⎢‬
‫‪2‬‬
‫⎥ ⎠ )‪1‬‬
‫⎦‬

‫‪2‬‬

‫‪2‬‬

‫ﺣ ﻴﺚ ﺗﺤﺴﺐ ﻗﻴﻢ اﻟﻤﻜﻮﻧﺎت اﻟﺤﻘﻴﻘﻴﻪ ﻟﻔﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ اﻟﻤﻌﻄﺎﻩ ﺑﺎﻟﻤﻌﺎدﻻت ﻣﻦ )‪ (7.11‬اﻟﻰ )‪(7.23‬‬
‫ﻧﺴﺒﺔ اﻟﻰ )‪ (R1‬و ﻋﻨﺪ ﺗﺮدد ﻗﻄﻊ )‪.(ωc = 2 π fc‬‬
‫ﻓ ﻰ اﻟﻌﺪﻳ ﺪ ﻣ ﻦ اﻟﺘﻄﺒ ﻴﻘﺎت ﻳﻜ ﻮن اﻟﻔﻠﺘ ﺮ ﻣ ﻦ ﻧ ﻮع ﺗﺸﻴﺒﻰ ﺗﺸﻴﻒ )‪ (Chebyshev‬أآﺜﺮ اﺳﺘﺨﺪاﻣﺎ ﻣﻦ اﻟﻔﻠﺘﺮ ﻣﻦ ﻧﻮع‬
‫ﺑﺘﺮوورث )‪.(Butterworth‬‬
‫ﺣ ﻴﺚ ﻳﻜ ﻮن اﻟﻘﻄ ﻊ ﻓ ﻰ اﻟﺤﻴ ﺰ اﻟﻤﻮﻗﻮف أﻓﻀﻞ )أﺳﺮع( ﻓﻰ ﺣﺎﻟﺔ ﺗﺸﻴﺒﻰ ﺗﺸﻴﻒ‪ .‬أى أن اﻟﻔﻠﺘﺮ ﻣﻦ ﻧﻮع ﺗﺸﻴﺒﻰ ﺗﺸﻴﻒ‬
‫ﻟﺪﻳﻪ اﺧﺘﻴﺎرﻳﻪ )‪ (selectivity‬أﻓﻀﻞ ﻣﻦ اﻟﻔﻠﺘﺮ ﻣﻦ ﻧﻮع ﺑﺘﺮوورث‪.‬‬
‫ﺑﺼ ﻔﻪ ﻋﺎﻣ ﻪ ﻋ ﻨﺪ ﺗﺼﻤﻴﻢ ﻓﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ )‪ (LPF‬ﻣﺜﻞ اﻟﻤﺒﻴﻦ ﻓﻰ اﻟﺸﻜﻠﻴﻦ )‪ (٩ – ٧‬و )‪(١٠ – ٧‬‬
‫و اﺧﺘ ﻴﺎر أو ﺣﺴﺎب ﻗﻴﻢ ﻣﻜﻮﻧﺎت اﻟﻔﻠﺘﺮ اﻟﻤﺘﻄﺒﻌﻪ )‪ (gi‬ﺑﺎﻟﻨﺴﺒﻪ ﻟﺘﻘﺮﻳﺐ ﻓﻠﺘﺮ ﻣﻌﻴﻦ‪ .‬ﺗﻜﻮن اﻟﻤﺮﺣﻠﻪ اﻟﺘﺎﻟﻴﻪ ﻓﻰ اﻟﺘﺼﻤﻴﻢ‬
‫هﻰ ﺣﺴﺎب ﻗﻴﻢ اﻟﻤﻜﻮﻧﺎت اﻟﺤﻘﻴﻘﻴﻪ )اﻟﻤﻠﻔﺎت و اﻟﻤﻜﺜﻔﺎت( ﻟﻠﻔﻠﺘﺮ ﺑﺎﺳﺘﺨﺪام اﻟﻤﻌﺎدﻻت اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫ﻟ ﻮ ﻓﺮﺿ ﻨﺎ أن اﻟﻤﻘﺎوﻣ ﻪ )أو اﻟﻤﻌﺎوﻗ ﺔ( ﻋ ﻨﺪ ﻃﺮﻓ ﻰ اﻟﻔﻠﺘﺮ ﺗﺴﺎوى )‪ (Zo‬ﺗﺼﺒﺢ ﻗﻴﻤﺔ آﻞ ﻣﻠﻒ ﺑﺪﻻﻟﺔ )‪ (gi‬اﻟﻤﻜﺎﻓﺌﻪ و‬
‫ﺗﺮدد اﻟﻘﻄﻊ )‪ (ωc = 2 π fc‬ﺗﺴﺎوى‬

‫‪gi Z o‬‬

‫)‪(7.24‬‬

‫‪ωc‬‬

‫‪281‬‬

‫= ‪Li‬‬

‫و ﻗﻴﻤﺔ آﻞ ﻣﻜﺜﻒ ﺑﺪﻻﻟﺔ )‪ (gi‬اﻟﻤﻜﺎﻓﺌﻪ و ﺗﺮدد اﻟﻘﻄﻊ )‪ (ωc = 2 π fc‬ﺗﺴﺎوى‬

‫‪gi‬‬

‫)‪(7.25‬‬

‫‪Z oωc‬‬

‫= ‪Ci‬‬

‫و ﺗﺴ ﻤﻰ ﻋﻤﻠ ﻴﺔ ﺣﺴ ﺎب ﻗﻴﻢ اﻟﻤﻜﻮﻧﺎت اﻟﺤﻘﻴﻘﻴﻪ ﻟﻠﻔﻠﺘﺮ اﻋﺎدة ﺗﻄﺒﻴﻊ )‪ (denormalization‬أو اﻋﺎدة ﻗﻴﺎس اﻟﻤﻜﻮﻧﺎت‬
‫ﺑﺎﻟﻨﺴ ﺒﻪ ﻟﻠﻤﻌﺎوﻗ ﻪ و اﻟﺘ ﺮدد )‪ .(impedance and frequency scaling‬و ه ﺬﻩ اﻟﺘﺴ ﻤﻴﺎت ﺟﺎﺋ ﺖ ﻣ ﻦ ﺣﻘ ﻴﻘﺔ أن‬
‫ﻣﻜ ﻮﻧﺎت اﻟﻔﻠﺘ ﺮ اﻟﻤﺘﻄ ﺒﻌﻪ )‪ (gi‬ﻣﺤﺴ ﻮﺑﻪ ﻋ ﻨﺪ ﺗ ﺮدد ﻗﻄ ﻊ ﻳﺴ ﺎوى )‪ (1‬و ﻣﻌﺎوﻗ ﻪ ﻃ ﺮﻓﻴﻪ ﻻ ﺗﺴ ﺎوى اﻟﻘ ﻴﻤﻪ اﻟﺤﻘﻴﻘ ﻴﻪ‬
‫ﺑﺎﻟﻨﺴ ﺒﻪ ﻟﻠﻔﻠﺘ ﺮ اﻟﻤ ﺮاد ﺗﺼ ﻤﻴﻤﻪ‪ .‬و ﺑﺎﺳ ﺘﺨﺪام اﻟﻤﻌﺎدﻟﺘ ﻴﻦ )‪ (7.24‬و )‪ (7.25‬ﺗﻨﺘﻬ ﻰ ﺣﺴ ﺎﺑﺎت اﻟﻤﻜ ﻮﻧﺎت اﻟﺤﻘﻴﻘ ﻴﻪ‬
‫ﺑﺎﻟﻨﺴﺒﻪ ﻟﻔﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ )‪.(LPF‬‬
‫ﻟﺘﺼ ﻤﻴﻢ دواﺋ ﺮ ﻣ ﻦ ﻧ ﻮع ﻓﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﺮﺗﻔﻌﻪ )‪ (HPF‬أو ﻓﻠﺘﺮ ﻣﺮور ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ )‪ (BPF‬أو ﻓﻠﺘﺮ‬
‫اﻳﻘ ﺎف ﺣﻴ ﺰ ﺗ ﺮددى ﻣﻌ ﻴﻦ )‪ (BSF‬ﻳﻤﻜﻨ ﻨﺎ اﺳ ﺘﺨﺪام ﺗﺤ ﻮﻳﻼت ﻣﻌﻴﻨﻪ )‪ (Filter Transformations‬ﻟﺘﺤﻮﻳﻞ آﻞ‬
‫ﻣﻠ ﻒ )‪ (L‬و ﻣﻜ ﺜﻒ )‪ (C‬ﻓ ﻰ ﻓﻠﺘ ﺮ ﻣ ﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ )‪ (LPF‬اﻟﻤﺒﻴﻦ ﻓﻰ اﻟﺸﻜﻠﻴﻦ )‪ (٩ – ٧‬و )‪(١٠ – ٧‬‬
‫اﻟﻰ ﻣﻜﻮﻧﺎت ﻣﻜﺎﻓﺌﻪ ﻓﻰ اﻟﺪواﺋﺮ اﻟﻤﺮاد ﺗﺼﻤﻴﻤﻬﺎ‪.‬‬

‫ﺷﻜﻞ )‪ : (١١ – ٧‬اﻟﺘﺤﻮﻳﻞ ﻣﻦ ﻓﻠﺘﺮ )‪ (LPF‬اﻟﻰ ﻓﻠﺘﺮ )‪(HPF‬‬

‫ﻋﻠ ﻰ ﺳ ﺒﻴﻞ اﻟﻤ ﺜﺎل ﻟﺘﺼ ﻤﻴﻢ ﻓﻠﺘ ﺮ ﻣ ﺮور اﻟﺘ ﺮددات اﻟﻤ ﺮﺗﻔﻌﻪ )‪ (HPF‬ﺑﺎﺳ ﺘﺨﺪام ﻗ ﻴﻢ اﻟﻤﻜ ﻮﻧﺎت اﻟﻤﺘﻄ ﺒﻌﻪ )‪ (gi‬ﻟﻔﻠﺘ ﺮ‬
‫ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ )‪ (LPF‬ﻳﻤﻜﻦ اﺳﺘﺨﺪام اﻟﺘﺤﻮﻳﻞ اﻟﻤﺒﻴﻦ ﻓﻰ ﺷﻜﻞ )‪.(١١ – ٧‬‬
‫ﺣﻴﺚ ﻳﺴﺘﺒﺪل آﻞ ﻣﻠﻒ ﻓﻰ ﻓﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ ﺑﻤﻜﺜﻒ ﻗﻴﻤﺘﻪ )‪(CHP‬‬
‫)‪(7.26‬‬

‫‪1‬‬
‫‪gi Z o ωc‬‬

‫= ‪C HP‬‬

‫ﺑﻴﻨﻤﺎ ﻳﺴﺘﺒﺪل آﻞ ﻣﻜﺜﻒ ﻓﻰ ﻓﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ ﺑﻤﻠﻒ ﻗﻴﻤﺘﻪ )‪(LHP‬‬
‫)‪(7.27‬‬

‫‪Zo‬‬

‫‪gi ωc‬‬

‫ﺣﻴﺚ ﺗﺮدد اﻟﻘﻄﻊ )‪.(ωc = 2 π fc‬‬
‫‪282‬‬

‫= ‪LHP‬‬

‫ﺷﻜﻞ )‪ : (١٢ – ٧‬اﻟﺘﺤﻮﻳﻞ ﻣﻦ ﻓﻠﺘﺮ )‪ (LPF‬اﻟﻰ ﻓﻠﺘﺮ )‪(BPF‬‬

‫و ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (١٢ – ٧‬اﻟ ﺘﺤﻮﻳﻞ ﻣ ﻦ ﻓﻠﺘ ﺮ ﻣ ﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ )‪ (LPF‬اﻟﻰ ﻓﻠﺘﺮ ﻣﺮور ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ‬
‫)‪ (BPF‬ﺑﺎﺳ ﺘﺒﺪال آ ﻞ ﻣﻠ ﻒ ﻓ ﻰ ﻓﻠﺘ ﺮ اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ ﺑﻤﻠﻒ ﻗﻴﻤﺘﻪ )‪ (Lserial‬و ﻣﻜﺜﻒ ﻗﻴﻤﺘﻪ )‪ (Cserial‬ﻣﺘﺼﻼن‬
‫ﻋﻠ ﻰ اﻟﺘﻮاﻟ ﻰ ‪ ،‬و اﺳ ﺘﺒﺪال آ ﻞ ﻣﻜ ﺜﻒ ﻓ ﻰ ﻓﻠﺘ ﺮ اﻟﺘ ﺮددات اﻟﻤﻨﺨﻔﻀ ﻪ ﺑﻤﻠ ﻒ ﻗﻴﻤ ﺘﻪ )‪ (Lparallel‬و ﻣﻜ ﺜﻒ ﻗﻴﻤ ﺘﻪ‬
‫)‪ (Cparallel‬ﻣﺘﺼﻼن ﻋﻠﻰ اﻟﺘﻮازى و ﻳﺒﻴﻦ ﺷﻜﻞ )‪ (١٢ – ٧‬رﺳﻢ رﻣﺰى ﻟﻬﺬا اﻟﺘﺤﻮﻳﻞ‪.‬‬
‫ﺑﺎﻟﻨﻈ ﺮ اﻟ ﻰ أداء ﻓﻠﺘ ﺮ ﻣﺮور ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ )‪ (BPF‬ﻓﻰ ﺷﻜﻞ )‪ (٥ – ٧‬ﺣﻴﺚ اﻟﺤﺪ اﻷدﻧﻰ ﻟﻠﺤﻴﺰ اﻟﺘﺮددى اﻟﻤﻔﻴﺪ‬
‫)‪ (f1‬و اﻟﺤ ﺪ اﻷﻋﻠ ﻰ ﻟﻠﺤﻴ ﺰ اﻟﺘ ﺮددى اﻟﻤﻔ ﻴﺪ )‪ (f2‬ﻳﻜ ﻮن ﺣﺴ ﺎب ﻣﻜ ﻮﻧﺎت ﻓﻠﺘ ﺮ ﻣ ﺮور ﺣﻴ ﺰ ﺗ ﺮددى ﻣﻌﻴﻦ )‪(BPF‬‬
‫ﺑﺪﻻﻟﺔ اﻟﻤﻜﻮﻧﺎت اﻟﻤﺘﻄﺒﻌﻪ )‪ (gi‬آﺎﻟﺘﺎﻟﻰ‪:‬‬

‫)‪(7.28‬‬
‫)‪(7.29‬‬

‫) ‪( f 2 − f1‬‬
‫) ‪2 π f1 f 2 (Z o g i‬‬
‫‪gi‬‬
‫‪2π ( f 2 − f1 )Z o‬‬

‫= ‪C serial‬‬

‫= ‪C parallel‬‬

‫‪Z o gi‬‬
‫) ‪2π ( f 2 − f1‬‬

‫‪,‬‬
‫‪,‬‬

‫= ‪L serial‬‬

‫‪( f 2 − f1 )Z o‬‬
‫) ‪2 π f1 f 2 (g i‬‬

‫= ‪L parallel‬‬

‫ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (١٣ – ٧‬اﻟ ﺘﺤﻮﻳﻞ ﻣ ﻦ ﻓﻠﺘ ﺮ ﻣ ﺮور اﻟﺘ ﺮددات اﻟﻤﻨﺨﻔﻀ ﻪ )‪ (LPF‬اﻟ ﻰ ﻓﻠﺘ ﺮ اﻳﻘ ﺎف ﺣﻴ ﺰ ﺗﺮددى ﻣﻌﻴﻦ‬
‫)‪ (BSF‬ﺑﺎﺳ ﺘﺒﺪال آ ﻞ ﻣﻠ ﻒ ﻓ ﻰ ﻓﻠﺘ ﺮ اﻟﺘ ﺮددات اﻟﻤﻨﺨﻔﻀ ﻪ ﺑﻤﻠ ﻒ ﻗﻴﻤﺘﻪ )‪ (SLparallel‬و ﻣﻜﺜﻒ ﻗﻴﻤﺘﻪ )‪(SCparallel‬‬
‫ﻣﺘﺼ ﻼن ﻋﻠﻰ اﻟﺘﻮازى ‪ ،‬و اﺳﺘﺒﺪال آﻞ ﻣﻜﺜﻒ ﻓﻰ ﻓﻠﺘﺮ اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ ﺑﻤﻠﻒ ﻗﻴﻤﺘﻪ )‪ (SLserial‬و ﻣﻜﺜﻒ ﻗﻴﻤﺘﻪ‬
‫)‪ (SCserial‬ﻣﺘﺼﻼن ﻋﻠﻰ اﻟﺘﻮاﻟﻰ و ﻳﺒﻴﻦ ﺷﻜﻞ )‪ (١٣ – ٧‬رﺳﻢ رﻣﺰى ﻟﻬﺬا اﻟﺘﺤﻮﻳﻞ‪.‬‬
‫ﺑﺎﻟﻨﻈ ﺮ اﻟ ﻰ أداء ﻓﻠﺘ ﺮ اﻳﻘ ﺎف ﺣﻴ ﺰ ﺗ ﺮددى ﻣﻌ ﻴﻦ )‪ (BSF‬ﻓ ﻰ ﺷ ﻜﻞ )‪ (٦ – ٧‬ﺣ ﻴﺚ اﻟﺤ ﺪ اﻷدﻧ ﻰ ﻟﻠﺤﻴ ﺰ اﻟﺘ ﺮددى‬
‫اﻟﻤﻮﻗ ﻮف )‪ (f1‬و اﻟﺤ ﺪ اﻷﻋﻠﻰ ﻟﻠﺤﻴﺰ اﻟﺘﺮددى اﻟﻤﻮﻗﻮف )‪ (f2‬ﻳﻜﻮن ﺣﺴﺎب ﻣﻜﻮﻧﺎت ﻓﻠﺘﺮ اﻳﻘﺎف ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ‬
‫)‪ (BSF‬ﺑﺪﻻﻟﺔ اﻟﻤﻜﻮﻧﺎت اﻟﻤﺘﻄﺒﻌﻪ )‪ (gi‬آﺎﻟﺘﺎﻟﻰ‪:‬‬

‫‪283‬‬

‫)‪(7.30‬‬
‫)‪(7.31‬‬

‫‪1‬‬
‫‪2π ( f 2 − f1 ) g i Z o‬‬

‫‪( f 2 − f1 )g i‬‬
‫) ‪2 π f 1 f 2 (Z o‬‬

‫= ‪SC parallel‬‬

‫= ‪SC serial‬‬

‫‪( f 2 − f1 ) g i Z o‬‬

‫‪,‬‬

‫‪2 π f1 f 2‬‬

‫‪Zo‬‬
‫‪2π ( f 2 − f1 )g i‬‬

‫‪,‬‬

‫= ‪SL parallel‬‬

‫= ‪SL serial‬‬

‫ﺷﻜﻞ )‪ : (١٣ – ٧‬اﻟﺘﺤﻮﻳﻞ ﻣﻦ ﻓﻠﺘﺮ )‪ (LPF‬اﻟﻰ ﻓﻠﺘﺮ )‪(BSF‬‬

‫ﻳﻌﻄ ﻰ اﻟﻤ ﺮﺟﻊ )‪ (8‬ﻣﻌ ﺎدﻻت ﺣﺴ ﺎب رﺗﺒﺔ اﻟﻔﻠﺘﺮ )‪ (filter order n‬ﺑﺎﻟﻨﺴﺒﻪ ﻟﻔﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ ﻣﻦ‬
‫ﻧ ﻮع ﺑﺘ ﺮوورث )‪ (Butterworth‬و ﺗﺸ ﻴﺒﻰ ﺗﺸ ﻴﻒ )‪ (Chebyshev‬وﻓﻘ ﺎ ﻟﻘ ﻴﻤﺔ اﻟﺘﻮهﻴﻦ )‪ (attenuation α‬ﻋﻨﺪ‬
‫ﺗﺮدد ﻣﻌﻴﻦ ﻳﻘﻊ ﻓﻰ اﻟﺤﻴﺰ اﻟﺘﺮددى اﻟﻤﻮﻗﻮف ﻳﺴﺎوى )‪.(ω‬‬
‫ﺑﺎﻟﻨﺴﺒﻪ ﻟﻔﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ ﻣﻦ ﻧﻮع ﺑﺘﺮوورث )‪ (Butterworth‬ﻳﺘﻢ ﺣﺴﺎب رﺗﺒﺔ اﻟﻔﻠﺘﺮ ﻣﻦ اﻟﻤﻌﺎدﻟﻪ‬
‫اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫)‪(7.32‬‬

‫)‬

‫(‬

‫‪log 10α / 10 − 1‬‬
‫⎞ ‪⎛ω‬‬
‫⎟⎟ ⎜⎜‪2 log‬‬
‫⎠ ‪⎝ ωc‬‬

‫=‪n‬‬

‫ﺣﻴﺚ ﻗﻴﻤﺔ اﻟﺘﻮهﻴﻦ ﺑﺎﻟﺪﻳﺴﻴﺒﻞ ﺗﺴﺎوى )‪ (α‬ﻋﻨﺪ اﻟﺘﺮدد ) ‪.(ω = 2 µ f‬‬
‫ﺑﻴﻨﻤﺎ ﺗﺮدد اﻟﻘﻄﻊ ﻳﺴﺎوى )‪.(ωc = 2 π fc‬‬
‫أﻣ ﺎ ﺑﺎﻟﻨﺴ ﺒﻪ ﻟﻔﻠﺘ ﺮ ﻣ ﺮور اﻟﺘ ﺮددات اﻟﻤﻨﺨﻔﻀ ﻪ ﻣ ﻦ ﻧ ﻮع ﺗﺸﻴﺒﻰ ﺗﺸﻴﻒ )‪ (Chebyshev‬ﻓﻴﺘﻢ ﺣﺴﺎب رﺗﺒﺔ اﻟﻔﻠﺘﺮ ﻣﻦ‬
‫اﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫‪284‬‬

‫)‪(7.33‬‬

‫⎞ ‪⎛ 10α / 10 − 1‬‬
‫⎟‬
‫⎜ ‪cosh −1‬‬
‫‪2‬‬
‫⎜‬
‫⎟‬
‫‪ε‬‬
‫⎝‬
‫⎠‬
‫=‪n‬‬
‫⎞ ‪⎛ω‬‬
‫⎟⎟ ⎜⎜ ‪cosh −1‬‬
‫⎠ ‪⎝ ωc‬‬

‫ﺣ ﻴﺚ ﻗ ﻴﻤﺔ اﻟﺘﻮه ﻴﻦ ﺑﺎﻟﺪﻳﺴ ﻴﺒﻞ ﺗﺴ ﺎوى )‪ (α‬ﻋ ﻨﺪ اﻟﺘ ﺮدد )‪ .(ω=2µf‬و ﺣﻴﺚ )‪ (ε‬هﻮ ﻣﻘﺪار اﻟﺘﻤﻮﺟﺎت )‪(ripples‬‬
‫ﻓﻰ اﻟﺤﻴﺰ اﻟﻤﻔﻴﺪ ﻟﻠﻔﻠﺘﺮ‪ .‬و ﺗﺮدد اﻟﻘﻄﻊ )‪.(ωc = 2 π fc‬‬
‫ﺗﺬآﺮ أن‬

‫)‬

‫(‬

‫‪cosh −1 x = ln x + x 2 − 1‬‬

‫اﻟﻤ ﺮﺟﻊ )‪ (4‬ﻳﻌﻄ ﻰ ﻣﻌ ﺎدﻻت و ﻣﺨﻄﻄ ﺎت ﻟﺤﺴ ﺎب رﺗ ﺒﺔ اﻟﻔﻠﺘ ﺮ )‪ (filter order n‬ﺑﺎﻟﻨﺴﺒﻪ ﻟﻔﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات‬
‫اﻟﻤﺮﺗﻔﻌﻪ )‪ (HPF‬و ﻓﻠﺘﺮ ﻣﺮور ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ )‪ (BPF‬و ﻓﻠﺘﺮ اﻳﻘﺎف ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ )‪.(BSF‬‬
‫اﻟﻤﺮاﺟﻊ )‪ (3 to 8 and 10‬ﺑﻬﺎ أﻣﺜﻠﺔ رﻗﻤﻴﺔ ﻟﺘﺼﻤﻴﻢ ﻋﺪد ﻣﻦ دواﺋﺮ اﻟﻔﻠﺘﺮ اﻟﻤﺨﺘﻠﻔﻪ ﺑﺎﻟﻤﻜﻮﻧﺎت اﻟﻌﻴﻨﻴﻪ‪.‬‬
‫ﻣ ﺜﺎل )‪ : (١ – ٧‬ﻣﻄﻠ ﻮب ﺗﺼ ﻤﻴﻢ ﻓﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ )‪ (LPF‬ﻣﻦ ﻧﻮع ﺑﺘﺮوورث )‪(Butterworth‬‬
‫ﻣ ﺜﻞ اﻟﻤﺒ ﻴﻦ ﻓﻰ ﺷﻜﻞ )‪ (٩ – ٧‬ﻋﻨﺪ ﺗﺮدد ﻗﻄﻊ )‪ (fc = 1.5 GHz‬و رﺗﺒﺔ اﻟﻔﻠﺘﺮ )‪ (n = 5‬ﻣﻊ اﻋﺘﺒﺎر اﻟﻤﻘﺎوﻣﻪ )أو‬
‫اﻟﻤﻌﺎوﻗﻪ( ﻋﻨﺪ ﻃﺮﻓﻰ اﻟﻔﻠﺘﺮ ﺗﺴﺎوى )‪.(50 Ω‬‬
‫اﻟﺤﻞ ‪:‬‬
‫اﻟﻤﻜﻮﻧﺎت اﻟﻤﺘﻄﺒﻌﻪ )‪ (gi‬ﻟﻠﻔﻠﺘﺮ ﻣﻦ ﻧﻮع ﺑﺘﺮوورث ﺑﺎﻟﻨﺴﺒﻪ ﻟﺮﺗﺒﺔ اﻟﻔﻠﺘﺮ )‪ (n = 5‬ﻣﻌﻄﺎﻩ ﻓﻰ اﻟﺠﺪول اﻟﺘﺎﻟﻰ‬
‫‪g5‬‬
‫‪0.618034‬‬

‫‪g4‬‬
‫‪1.61803‬‬

‫‪g2‬‬
‫‪1.61803‬‬

‫‪g3‬‬
‫‪2.0‬‬

‫‪g1‬‬
‫‪0.618034‬‬

‫و ﺑﺎﺳ ﺘﺨﺪام اﻟﻤﻌﺎدﻟﺘ ﻴﻦ )‪ (7.24‬و )‪ (7.25‬ﺗ ﻢ ﺣﺴ ﺎب ﻗ ﻴﻢ اﻟﻤﻜ ﻮﻧﺎت اﻟﺤﻘﻴﻘ ﻴﻪ ﻋ ﻨﺪ ﺗﺮدد ﻗﻄﻊ )‪ (fc =1.5 GHz‬و‬
‫آﺎﻧﺖ اﻟﻨﺘﺎﺋﺞ آﺎﻟﺘﺎﻟﻰ‬
‫]‪L5 [nH‬‬
‫‪3.278772‬‬

‫]‪C4 [pF‬‬
‫‪3.433566‬‬

‫]‪L3 [nH‬‬
‫‪10.61033‬‬

‫]‪C2 [pF‬‬
‫‪3.433566‬‬

‫ﻳﺒﻴﻦ ﺷﻜﻞ )‪ (١٤ – ٧‬أداء اﻟﻔﻠﺘﺮ و ﻳﺒﻴﻦ ﺷﻜﻞ )‪ (١٥ – ٧‬اﻟﺮﺳﻢ اﻟﺮﻣﺰى ﻟﻠﻔﻠﺘﺮ‪.‬‬

‫‪285‬‬

‫]‪L1 [nH‬‬
‫‪3.278772‬‬

‫ﺷﻜﻞ )‪ : (١٤ – ٧‬أداء ﻓﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ ﻣﻦ ﻧﻮع ﺑﺘﺮوورث ﻓﻰ ﻣﺜﺎل )‪(١ – ٧‬‬

‫ﺷﻜﻞ )‪ : (١٥ – ٧‬رﺳﻢ رﻣﺰى ﻟﻔﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ ذو رﺗﺒﺔ اﻟﻔﻠﺘﺮ )‪.(n = 5‬‬

‫ﻣ ﺜﺎل )‪ : (٢ – ٧‬ﻣﻄﻠﻮب ﺗﺼﻤﻴﻢ ﻓﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ)‪ (LPF‬ﻣﻦ ﻧﻮع ﺗﺸﻴﺒﻰ ﺗﺸﻴﻒ )‪(Chebyshev‬‬
‫ﻣﺜﻞ اﻟﻤﺒﻴﻦ ﻓﻰ ﺷﻜﻞ )‪ (١٥ – ٧‬ﻋﻨﺪ ﺗﺮدد ﻗﻄﻊ )‪ (fc = 1.5 GHz‬و رﺗﺒﺔ اﻟﻔﻠﺘﺮ )‪ (n = 5‬و ﻣﻘﺪار اﻟﺘﻤﻮﺟﺎت ﻓﻰ‬
‫اﻟﺤﻴﺰ اﻟﻤﻔﻴﺪ ﻟﻠﻔﻠﺘﺮ ﺑﺎﻟﺪﻳﺴﻴﺒﻞ )‪ (0.2 dB‬ﻣﻊ اﻋﺘﺒﺎر اﻟﻤﻘﺎوﻣﻪ )أو اﻟﻤﻌﺎوﻗﻪ( ﻋﻨﺪ ﻃﺮﻓﻰ اﻟﻔﻠﺘﺮ ﺗﺴﺎوى )‪.(50 Ω‬‬
‫اﻟﺤﻞ ‪:‬‬
‫اﻟﻤﻜ ﻮﻧﺎت اﻟﻤﺘﻄ ﺒﻌﻪ )‪ (gi‬ﻟﻠﻔﻠﺘ ﺮ ﻣ ﻦ ﻧ ﻮع ﺗﺸ ﻴﺒﻰ ﺗﺸ ﻴﻒ ﺑﺎﻟﻨﺴ ﺒﻪ ﻟ ﺮﺗﺒﺔ اﻟﻔﻠﺘ ﺮ )‪ (n = 5‬ﻣ ﻊ ﻣﻘ ﺪار اﻟ ﺘﻤﻮﺟﺎت ﻓ ﻰ‬
‫اﻟﺤﻴﺰ اﻟﻤﻔﻴﺪ ﻟﻠﻔﻠﺘﺮ ﺑﺎﻟﺪﻳﺴﻴﺒﻞ )‪ (0.2 dB‬ﻣﻌﻄﺎﻩ ﻓﻰ اﻟﺠﺪول اﻟﺘﺎﻟﻰ‬
‫‪g5‬‬
‫‪1.33948‬‬

‫‪g4‬‬
‫‪1.33701‬‬

‫‪g3‬‬
‫‪2.16609‬‬

‫‪g2‬‬
‫‪1.33701‬‬

‫‪g1‬‬
‫‪1.33948‬‬

‫ﺟﺪول )‪ : (٧ - ٧‬ﻗﻴﻢ اﻟﻤﻜﻮﻧﺎت اﻟﻤﺘﻄﺒﻌﻪ ﺑﺎﻟﻨﺴﺒﻪ ﻟﻠﻔﻠﺘﺮ ﻣﻦ ﻧﻮع ﺗﺸﻴﺒﻰ ﺗﺸﻴﻒ )اﻟﺘﻤﻮﺟﺎت = ‪(0.2 dB‬‬

‫‪286‬‬

‫و ﺑﺎﺳ ﺘﺨﺪام اﻟﻤﻌﺎدﻟﺘ ﻴﻦ )‪ (7.24‬و )‪ (7.25‬ﺗ ﻢ ﺣﺴ ﺎب ﻗ ﻴﻢ اﻟﻤﻜ ﻮﻧﺎت اﻟﺤﻘﻴﻘ ﻴﻪ ﻋ ﻨﺪ ﺗﺮدد ﻗﻄﻊ )‪ (fc =1.5 GHz‬و‬
‫آﺎﻧﺖ اﻟﻨﺘﺎﺋﺞ آﺎﻟﺘﺎﻟﻰ‬
‫]‪L5 [nH‬‬
‫‪7.10598‬‬

‫]‪C4 [pF‬‬
‫‪2.83724‬‬

‫]‪L3 [nH‬‬
‫‪11.4913‬‬

‫]‪C2 [pF‬‬
‫‪2.83724‬‬

‫]‪L1 [nH‬‬
‫‪7.10598‬‬

‫ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (١٦ – ٧‬أداء اﻟﻔﻠﺘ ﺮ و ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (١٧ – ٧‬ﻣﻘﺎرﻧ ﻪ ﺑ ﻴﻦ أداء اﻟﻔﻠﺘ ﺮ ﻣﻦ ﻧﻮع ﺑﺘﺮوورث اﻟﻤﺼﻤﻢ ﻓﻰ‬
‫ﻣ ﺜﺎل )‪ (١ – ٧‬و أداء اﻟﻔﻠﺘ ﺮ ﻣ ﻦ ﻧ ﻮع ﺗﺸ ﻴﺒﻰ ﺗﺸ ﻴﻒ اﻟﻤﺼ ﻤﻢ ﻓ ﻰ ﻣ ﺜﺎل )‪ (٢ – ٧‬و ﻧﻼﺣ ﻆ أن اﻟﻘﻄ ﻊ أﻓﻀ ﻞ )أو‬
‫أﺳﺮع( ﻓﻰ اﻟﺤﻴﺰاﻟﻤﻮﻗﻮف ﺑﺎﻟﻨﺴﺒﻪ ﻟﻠﻔﻠﺘﺮ ﻣﻦ ﻧﻮع ﺗﺸﻴﺒﻰ ﺗﺸﻴﻒ‪.‬‬

‫ﺷﻜﻞ )‪ : (١٦ – ٧‬أداء ﻓﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ ﻣﻦ ﻧﻮع ﺗﺸﻴﺒﻰ ﺗﺸﻴﻒ ﻓﻰ ﻣﺜﺎل )‪(٢ – ٧‬‬

‫ﺷﻜﻞ )‪ : (١٧ – ٧‬ﻣﻘﺎرﻧﻪ ﺑﻴﻦ أداء اﻟﻔﻠﺘﺮ ﻣﻦ ﻧﻮع ﺑﺘﺮوورث ﻓﻰ ﻣﺜﺎل )‪ (١ – ٧‬و أداء اﻟﻔﻠﺘﺮ ﻣﻦ ﻧﻮع‬
‫ﺗﺸﻴﺒﻰ ﺗﺸﻴﻒ ﻓﻰ ﻣﺜﺎل )‪(٢ – ٧‬‬

‫‪287‬‬

‫ﻣ ﺜﺎل )‪ : (٣ – ٧‬ﻣﻄﻠ ﻮب ﺗﺼﻤﻴﻢ ﻓﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﺮﺗﻔﻌﻪ )‪ (HPF‬ﻣﻦ ﻧﻮع ﺗﺸﻴﺒﻰ ﺗﺸﻴﻒ )‪(Chebyshev‬‬
‫ﻋ ﻨﺪ ﺗ ﺮدد ﻗﻄ ﻊ )‪ (fc = 1.5 GHz‬و رﺗ ﺒﺔ اﻟﻔﻠﺘ ﺮ )‪ (n = 5‬و ﻣﻘ ﺪار اﻟ ﺘﻤﻮﺟﺎت ﻓ ﻰ اﻟﺤﻴ ﺰ اﻟﻤﻔ ﻴﺪ ﻟﻠﻔﻠﺘﺮ ﺑﺎﻟﺪﻳﺴﻴﺒﻞ‬
‫)‪ (0.2 dB‬ﻣﻊ اﻋﺘﺒﺎر اﻟﻤﻘﺎوﻣﻪ )أو اﻟﻤﻌﺎوﻗﻪ( ﻋﻨﺪ ﻃﺮﻓﻰ اﻟﻔﻠﺘﺮ ﺗﺴﺎوى )‪.(50 Ω‬‬
‫اﻟﺤﻞ ‪:‬‬
‫اﻟﻤﻜ ﻮﻧﺎت اﻟﻤﺘﻄ ﺒﻌﻪ )‪ (gi‬ﻟﻠﻔﻠﺘ ﺮ ﻣ ﻦ ﻧ ﻮع ﺗﺸ ﻴﺒﻰ ﺗﺸ ﻴﻒ ﺑﺎﻟﻨﺴ ﺒﻪ ﻟ ﺮﺗﺒﺔ اﻟﻔﻠﺘ ﺮ )‪ (n = 5‬ﻣ ﻊ ﻣﻘ ﺪار اﻟ ﺘﻤﻮﺟﺎت ﻓ ﻰ‬
‫اﻟﺤﻴﺰ اﻟﻤﻔﻴﺪ ﻟﻠﻔﻠﺘﺮ ﺑﺎﻟﺪﻳﺴﻴﺒﻞ )‪ (0.2 dB‬ﻣﻌﻄﺎﻩ ﻓﻰ ﺟﺪول )‪.(٧ - ٧‬‬
‫و ﺑﺎﺳ ﺘﺨﺪام اﻟﻤﻌﺎدﻟﺘ ﻴﻦ )‪ (7.26‬و )‪ (7.27‬ﺗ ﻢ ﺣﺴ ﺎب ﻗ ﻴﻢ اﻟﻤﻜ ﻮﻧﺎت اﻟﺤﻘﻴﻘ ﻴﻪ ﻋ ﻨﺪ ﺗﺮدد ﻗﻄﻊ )‪ (fc =1.5 GHz‬و‬
‫آﺎﻧﺖ اﻟﻨﺘﺎﺋﺞ آﺎﻟﺘﺎﻟﻰ‬
‫]‪C5 [pF‬‬
‫‪1.584246‬‬

‫]‪L4 [nH‬‬
‫‪3.967932‬‬

‫]‪C3 [pF‬‬
‫‪0.9796758‬‬

‫]‪L2 [nH‬‬
‫‪3.967932‬‬

‫]‪C1 [pF‬‬
‫‪1.584246‬‬

‫ﻳﺒﻴﻦ ﺷﻜﻞ )‪ (١٨ – ٧‬أداء اﻟﻔﻠﺘﺮ و ﻳﺒﻴﻦ ﺷﻜﻞ )‪ (١٩ – ٧‬اﻟﺮﺳﻢ اﻟﺮﻣﺰى ﻟﻠﻔﻠﺘﺮ‪.‬‬

‫ﺷﻜﻞ )‪ : (١٨ – ٧‬أداء ﻓﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﺮﺗﻔﻌﻪ ﻣﻦ ﻧﻮع ﺗﺸﻴﺒﻰ ﺗﺸﻴﻒ ﻓﻰ ﻣﺜﺎل )‪(٣ – ٧‬‬

‫ﺷﻜﻞ )‪ : (١٩ – ٧‬رﺳﻢ رﻣﺰى ﻟﻔﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﺮﺗﻔﻌﻪ ذو رﺗﺒﺔ اﻟﻔﻠﺘﺮ )‪.(n = 5‬‬

‫‪288‬‬

‫ﻣ ﺜﺎل )‪ : (٤ – ٧‬ﻣﻄﻠ ﻮب ﺗﺼ ﻤﻴﻢ ﻓﻠﺘ ﺮ ﻣﺮور ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ )‪ (BPF‬ﻣﻦ ﻧﻮع ﺗﺸﻴﺒﻰ ﺗﺸﻴﻒ )‪(Chebyshev‬‬
‫ﻣ ﻦ ﺗ ﺮدد )‪ (f1 = 1 GHz‬اﻟ ﻰ ﺗ ﺮدد )‪ (f2 = 1.4 GHz‬و رﺗ ﺒﺔ اﻟﻔﻠﺘ ﺮ )‪ (n = 5‬و ﻣﻘ ﺪار اﻟ ﺘﻤﻮﺟﺎت ﻓ ﻰ اﻟﺤﻴ ﺰ‬
‫اﻟﻤﻔﻴﺪ ﻟﻠﻔﻠﺘﺮ ﺑﺎﻟﺪﻳﺴﻴﺒﻞ )‪ (0.2 dB‬ﻣﻊ اﻋﺘﺒﺎر اﻟﻤﻘﺎوﻣﻪ )أو اﻟﻤﻌﺎوﻗﻪ( ﻋﻨﺪ ﻃﺮﻓﻰ اﻟﻔﻠﺘﺮ ﺗﺴﺎوى )‪.(50 Ω‬‬
‫اﻟﺤﻞ ‪:‬‬
‫اﻟﻤﻜ ﻮﻧﺎت اﻟﻤﺘﻄ ﺒﻌﻪ )‪ (gi‬ﻟﻠﻔﻠﺘ ﺮ ﻣ ﻦ ﻧ ﻮع ﺗﺸ ﻴﺒﻰ ﺗﺸ ﻴﻒ ﺑﺎﻟﻨﺴ ﺒﻪ ﻟ ﺮﺗﺒﺔ اﻟﻔﻠﺘ ﺮ )‪ (n = 5‬ﻣ ﻊ ﻣﻘ ﺪار اﻟ ﺘﻤﻮﺟﺎت ﻓ ﻰ‬
‫اﻟﺤﻴﺰ اﻟﻤﻔﻴﺪ ﻟﻠﻔﻠﺘﺮ ﺑﺎﻟﺪﻳﺴﻴﺒﻞ )‪ (0.2 dB‬ﻣﻌﻄﺎﻩ ﻓﻰ ﺟﺪول )‪.(٧ - ٧‬‬
‫ﺑﺎﺳﺘﺨﺪام اﻟﻤﻌﺎدﻟﺘﻴﻦ )‪ (7.28‬و )‪ (7.29‬ﺗﻢ ﺣﺴﺎب ﻗﻴﻢ اﻟﻤﻜﻮﻧﺎت اﻟﺤﻘﻴﻘﻴﻪ و آﺎﻧﺖ اﻟﻨﺘﺎﺋﺞ آﺎﻟﺘﺎﻟﻰ‬
‫]‪L5 [nH‬‬
‫‪26.64811‬‬

‫]‪L4 [nH‬‬
‫‪1.700542‬‬

‫]‪L3 [nH‬‬
‫‪43.09299‬‬

‫]‪L2 [nH‬‬
‫‪1.700542‬‬

‫]‪L1 [nH‬‬
‫‪26.64811‬‬

‫]‪C5 [pF‬‬
‫‪0.6789626‬‬

‫]‪C4 [pF‬‬
‫‪10.63959‬‬

‫]‪C3 [pF‬‬
‫‪0.4198610‬‬

‫]‪C2 [pF‬‬
‫‪10.63959‬‬

‫]‪C1 [pF‬‬
‫‪0.6789626‬‬

‫ﺷﻜﻞ )‪ (٢٠ – ٧‬ﻳﺒﻴﻦ رﺳﻢ رﻣﺰى ﻟﻠﻔﻠﺘﺮ و ﺷﻜﻞ )‪ (٢١ – ٧‬ﻳﺒﻴﻦ أداء اﻟﻔﻠﺘﺮ‪.‬‬

‫ﺷﻜﻞ )‪ : (٢٠ – ٧‬رﺳﻢ رﻣﺰى ﻟﻔﻠﺘﺮ ﻣﺮور ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ ذو رﺗﺒﺔ )‪.(n = 5‬‬

‫ﺷﻜﻞ )‪ : (٢١ – ٧‬أداء ﻓﻠﺘﺮ ﻣﺮور ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ ﻣﻦ ﻧﻮع ﺗﺸﻴﺒﻰ ﺗﺸﻴﻒ ﻓﻰ ﻣﺜﺎل )‪(٤ – ٧‬‬

‫‪289‬‬

‫ﻣ ﺜﺎل )‪ : (٥ – ٧‬ﻣﻄﻠ ﻮب ﺗﺼ ﻤﻴﻢ ﻓﻠﺘ ﺮ اﻳﻘ ﺎف ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ )‪ (BSF‬ﻣﻦ ﻧﻮع ﺗﺸﻴﺒﻰ ﺗﺸﻴﻒ )‪(Chebyshev‬‬
‫ﻣ ﻦ ﺗ ﺮدد )‪ (f1 = 2.925 GHz‬اﻟ ﻰ ﺗ ﺮدد )‪ (f2 = 3.075 GHz‬و رﺗ ﺒﺔ اﻟﻔﻠﺘ ﺮ )‪ (n = 3‬و ﻣﻘﺪار اﻟﺘﻤﻮﺟﺎت ﻓﻰ‬
‫اﻟﺤﻴﺰ اﻟﻤﻔﻴﺪ ﻟﻠﻔﻠﺘﺮ ﺑﺎﻟﺪﻳﺴﻴﺒﻞ )‪ (0.5 dB‬ﻣﻊ اﻋﺘﺒﺎر اﻟﻤﻘﺎوﻣﻪ )أو اﻟﻤﻌﺎوﻗﻪ( ﻋﻨﺪ ﻃﺮﻓﻰ اﻟﻔﻠﺘﺮ ﺗﺴﺎوى )‪.(50 Ω‬‬
‫اﻟﺤﻞ ‪:‬‬
‫اﻟﻤﻜ ﻮﻧﺎت اﻟﻤﺘﻄﺒﻌﻪ )‪ (gi‬ﻟﻠﻔﻠﺘﺮ ﻣﻦ ﻧﻮع ﺗﺸﻴﺒﻰ ﺗﺸﻴﻒ ﺑﺎﻟﻨﺴﺒﻪ ﻟﺮﺗﺒﺔ اﻟﻔﻠﺘﺮ )‪ (n = 3‬ﻋﻨﺪﻣﺎ ﻳﻜﻮن ﻣﻘﺪار اﻟﺘﻤﻮﺟﺎت‬
‫ﻓﻰ اﻟﺤﻴﺰ اﻟﻤﻔﻴﺪ ﻟﻠﻔﻠﺘﺮ ﺑﺎﻟﺪﻳﺴﻴﺒﻞ )‪ (0.5 dB‬ﻣﻌﻄﺎﻩ ﻓﻰ اﻟﺠﺪول اﻟﺘﺎﻟﻰ‬
‫‪g3‬‬
‫‪1.5963‬‬

‫‪g2‬‬
‫‪1.0967‬‬

‫‪g1‬‬
‫‪1.5963‬‬

‫ﺑﺎﺳﺘﺨﺪام اﻟﻤﻌﺎدﻟﺘﻴﻦ )‪ (7.30‬و )‪ (7.31‬ﺗﻢ ﺣﺴﺎب ﻗﻴﻢ اﻟﻤﻜﻮﻧﺎت اﻟﺤﻘﻴﻘﻴﻪ و آﺎﻧﺖ اﻟﻨﺘﺎﺋﺞ آﺎﻟﺘﺎﻟﻰ‬
‫]‪L3 [nH‬‬
‫‪0.2118483‬‬

‫]‪L2 [nH‬‬
‫‪48.37389‬‬

‫]‪L1 [nH‬‬
‫‪0.2118483‬‬

‫]‪C3 [pF‬‬
‫‪13.29365‬‬

‫]‪C2 [pF‬‬
‫‪0.05821813‬‬

‫]‪C1 [pF‬‬
‫‪13.29365‬‬

‫ﺷﻜﻞ )‪ (٢٢ – ٧‬ﻳﺒﻴﻦ رﺳﻢ رﻣﺰى ﻟﻠﻔﻠﺘﺮ و ﺷﻜﻞ )‪ (٢٣ – ٧‬ﻳﺒﻴﻦ أداء اﻟﻔﻠﺘﺮ ‪.‬‬

‫ﺷﻜﻞ )‪ : (٢٢ – ٧‬رﺳﻢ رﻣﺰى ﻟﻔﻠﺘﺮ اﻳﻘﺎف ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ ذو رﺗﺒﺔ )‪.(n = 3‬‬

‫ﺷﻜﻞ )‪ : (٢٣ – ٧‬أداء ﻓﻠﺘﺮ اﻳﻘﺎف ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ ﻣﻦ ﻧﻮع ﺗﺸﻴﺒﻰ ﺗﺸﻴﻒ ﻓﻰ ﻣﺜﺎل )‪(٥ – ٧‬‬

‫‪290‬‬

‫ﻓ ﻰ ﺟﻤ ﻴﻊ اﻷﻣ ﺜﻠﻪ اﻟﺴ ﺎﺑﻘﻪ ﺗ ﻢ اﻟﺘﺼ ﻤﻴﻢ ﺑﻤﻜ ﻮﻧﺎت ﻋﻴﻨﻴﻪ ﻣﺜﺎﻟﻴﻪ‪ .‬و ﻟﻢ ﻳﺆﺧﺬ ﻓﻰ اﻻﻋﺘﺒﺎر )ﻣﻌﺎﻣﻞ ‪ (Q‬أو ) ‪quality‬‬
‫‪ (factor‬ﻟﻠﻤﻜ ﻮﻧﺎت‪ .‬ﻟﻜ ﻦ ﻋ ﻨﺪ ﺗﺤﻠ ﻴﻞ ﻓﻠﺘ ﺮ ﻳﺴ ﺘﺨﺪم ﻓ ﻴﻪ ﻣﻜ ﻮﻧﺎت ﻋﻴﻨﻴﻪ ﻟﻜﻞ ﻣﻨﻬﺎ )ﻣﻌﺎﻣﻞ ‪ (Q‬ﻣﻌﻴﻦ ﻳﺠﺐ أن ﻳﺆﺧﺬ‬
‫ذﻟ ﻚ ﻓ ﻰ اﻻﻋﺘﺒﺎر‪ .‬ﻋﻠﻰ ﺳﺒﻴﻞ اﻟﻤﺜﺎل آﻠﻤﺎ زاد )ﻣﻌﺎﻣﻞ ‪ (Q‬ﻟﻠﻤﻜﻮﻧﺎت اﻟﻌﻴﻨﻴﻪ ﻓﻰ ﻓﻠﺘﺮ ﻣﺮور ﺗﺮددات ﻣﻨﺨﻔﻀﻪ آﻠﻤﺎ‬
‫زاد اﺗﺴﺎع اﻟﺤﻴﺰ اﻟﻤﻔﻴﺪ ﻟﻠﻔﻠﺘﺮ‪.‬‬
‫اﻟﺸ ﺮآﺎت اﻟﻤﻨ ﺘﺠﻪ ﻟﻠﻤﻠﻔ ﺎت ﻣ ﻦ ﻧ ﻮع )‪ (chip inductor‬ﻣ ﺜﻞ ﺷ ﺮآﺎت )‬

‫‪TOKO, COILCRAFT,‬‬

‫‪ (PANASONIC, TDK‬و ﻏﻴ ﺮهﺎ ﺗﺼ ﺪر ﺻ ﻔﺤﺎت ﺑ ﻴﺎﻧﺎت و آﺘﺎﻟﻮﺟﺎت ﺗﺤﺘﻮى ﻋﻠﻰ ﻗﻴﻢ )ﻣﻌﺎﻣﻞ ‪ (Q‬ﻟﻠﻤﻠﻔﺎت‬
‫و اﻟﻤﻜ ﻮﻧﺎت اﻟﺘ ﻰ ﺗﻨ ﺘﺠﻬﺎ‪ .‬و ﻧﻔ ﺲ اﻟﻌﻤ ﻞ ﺗﻘ ﻮم ﺑ ﻪ اﻟﺸ ﺮآﺎت اﻟﻤﻨ ﺘﺠﻪ ﻟﻠﻤﻜ ﺜﻔﺎت ﻣ ﻦ ﻧ ﻮع )‪ (chip capacitor‬ﻣ ﺜﻞ‬
‫ﺷﺮآﺎت )‪ (ATC, EPCOS, TDK, Johanson Technology, AVX, MURATA‬و ﻏﻴﺮهﺎ‪.‬‬
‫و ﺑﻌﺾ اﻟﺸﺮآﺎت ﺗﻌﻄﻰ اﻟﺪواﺋﺮ اﻟﻤﻜﺎﻓﺌﻪ أو ﺑﺎراﻣﺘﺮات اس اﻟﻤﻘﺎﺳﻪ أو آﻠﻴﻬﻤﺎ ﻟﻠﻤﻜﻮﻧﺎت اﻟﻌﻴﻨﻴﻪ اﻟﺘﻰ ﺗﻨﺘﺠﻬﺎ‪.‬‬
‫ﺑﻌ ﺾ ﺑ ﺮاﻣﺞ ﺗﺼ ﻤﻴﻢ اﻟﻔﻠﺘ ﺮ أو اﻟﺒ ﺮاﻣﺞ اﻟﻌﺎﻣ ﻪ اﻟﺘ ﻰ ﺑﻬ ﺎ اﻣﻜﺎﻧ ﻴﻪ أو )‪ (module‬ﻟﺘﺼ ﻤﻴﻢ ﻓﻠﺘ ﺮ ﻣ ﺜﻞ ) ‪Agilent‬‬
‫‪ (Genesys , AWR Filter Wizard‬و ﻏﻴ ﺮهﺎ ﻳﻤﻜ ﻨﻬﺎ ﻋﻤ ﻞ ﺗﺼ ﻤﻴﻢ ﻣﺒﺪﺋ ﻰ ﻟﻠﻔﻠﺘ ﺮ ذو اﻟﻤﻜ ﻮﻧﺎت اﻟﻌﻴﻨ ﻴﻪ ﻣ ﻊ‬
‫ادراج ﻗﻴﻢ )ﻣﻌﺎﻣﻞ ‪ (Q‬ﻟﻠﻤﻜﻮﻧﺎت اﻟﻌﻴﻨﻴﻪ ﻓﻰ ﺣﺴﺎﺑﺎت اﻟﺘﺼﻤﻴﻢ‪.‬‬
‫ﺟﻤ ﻴﻊ اﻟﺒ ﺮاﻣﺞ اﻟﺤﺪﻳ ﺜﻪ اﻟﻌﺎﻣ ﻪ ﻟﺘﺤﻠ ﻴﻞ دواﺋ ﺮ اﻟﻤﻴﻜ ﺮووﻳﻒ ﺗﺤ ﺘﻮى ﻋﻠ ﻰ ﻣﻜﺘ ﺒﺎت ﻣﺒﻨ ﻴﻪ )‪(built-in-libraries‬‬
‫ﻟ ﻨﻤﺎذج اﻟﻤﻜ ﻮﻧﺎت اﻟﻌﻴﻨ ﻴﻪ اﻟﻤﻨﺘﺠﻪ ﺗﺠﺎرﻳﺎ ﻟﺒﻌﺾ اﻟﺸﺮآﺎت و ﻳﺘﻌﻴﻦ ﻋﻠﻰ اﻟﻤﺴﺘﺨﺪم اﺧﺘﻴﺎر رﻣﺰ اﻟﻤﻜﻮن اﻟﻤﻄﻠﻮب و‬
‫ﺗﺤﺪﻳﺪ ﻗﻴﻤﺘﻪ ﻓﻘﻂ‪.‬‬
‫اﻟﻤ ﺮﺟﻊ )‪ (11‬ﻳﻌﻄ ﻰ أﻣ ﺜﻠﻪ رﻗﻤ ﻴﻪ ﺑﺎﺳ ﺘﺨﺪام ﺑ ﺮﻧﺎﻣﺞ )‪ (Agilent Genesys‬ﻓ ﻰ ﺗﺤﻠ ﻴﻞ دواﺋ ﺮ ﻓﻠﺘ ﺮ ﺗ ﺘﻜﻮن ﻣ ﻦ‬
‫ﻣﻜ ﻮﻧﺎت ﻋﻴﻨ ﻴﻪ ﻣﺜﺎﻟ ﻴﻪ و أﺧ ﺮى ﺗ ﺘﻜﻮن ﻣ ﻦ ﻣﻜ ﻮﻧﺎت ﻋﻴﻨ ﻴﻪ ذات ﻗ ﻴﻢ ﻣﺤ ﺪدﻩ ﻟﻤﻌﺎﻣ ﻞ )‪ (Q‬و ﻳﻌﻄ ﻰ ﻣﻘﺎرﻧ ﻪ ﻟﻨ ﺘﺎﺋﺞ‬
‫اﻟﺘﺤﻠﻴﻞ‪.‬‬
‫و ﻟﻜ ﻦ ﺑﺼ ﻔﻪ ﻋﺎﻣ ﻪ اذا ﺗﻮﻓ ﺮت اﻣﻜﺎﻧ ﻴﺎت ﻗ ﻴﺎس ﺑﺎراﻣﺘ ﺮات اس ﻟﻠﻤﻜ ﻮﻧﺎت اﻟﻌﻴﻨ ﻴﻪ ﺑﺎﺳ ﺘﺨﺪام ﺟﻬ ﺎز ) ‪Network‬‬
‫‪ (Analyzer‬و ﻣﺜ ﺒﺖ ﻗ ﻴﺎس أو اﺧﺘ ﺒﺎر )‪ (test fixture‬ﺛ ﻢ اﺳ ﺘﺨﺪام ه ﺬﻩ اﻟﺒﺎراﻣﺘ ﺮات ﻓ ﻰ ﺗﺤﻠ ﻴﻞ داﺋ ﺮة اﻟﺘ ﺮدد‬
‫اﻟﻌﺎﻟﻰ أو اﻟﻤﻴﻜﺮووﻳﻒ اﻟﻤﺤﺘﻮﻳﻪ ﻋﻠﻰ هﺬﻩ اﻟﻤﻜﻮﻧﺎت ﻓﺎن ذﻟﻚ ﻳﺆدى اﻟﻰ ﻧﺘﺎﺋﺞ أدق ﻓﻰ اﻟﺘﺤﻠﻴﻞ‪.‬‬
‫ﻓ ﻰ ﺑﻌ ﺾ دواﺋ ﺮ اﻟﻔﻠﺘ ﺮ اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﺪﻗ ﻴﻘﻪ ﺗﺴ ﺘﺨﺪم ﻣﻜ ﻮﻧﺎت ﻋﻴﻨ ﻴﻪ ﻣ ﺜﻞ اﻟﻤﻜ ﺜﻔﺎت ﻣ ﻦ ﻧ ﻮع ) ‪high Q chip‬‬
‫‪ (capacitor‬و ﻏﻴﺮهﺎ ﻣﻊ اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ ﻟﺘﻜﻮﻳﻦ اﻟﻔﻠﺘﺮ‪.‬‬
‫ﺗﻨﻔ ﻴﺬ داﺋ ﺮة ﻓﻠﺘ ﺮ ﺑﻤﻜ ﻮﻧﺎت ﻋﻴﻨ ﻴﻪ ﻳﺼ ﻌﺐ ﺗﺤﻘ ﻴﻘﻪ ﻓ ﻰ اﻟﺘ ﺮددات اﻟﻌﺎﻟ ﻴﻪ ﻣ ﻦ ﺣﻴ ﺰ اﻟﻤﻴﻜ ﺮووﻳﻒ ﻟ ﺬﻟﻚ ﻏﺎﻟ ﺒﺎ ﻣ ﺎ ﻳ ﺘﻢ‬
‫اﺳ ﺘﺒﺪال اﻟﻤﻜ ﻮﻧﺎت اﻟﻌﻴﻨ ﻴﻪ ﺑﺨﻄ ﻮط ارﺳ ﺎل )ﺧﻄ ﻮط ﺷ ﺮﻳﻄﻴﻪ دﻗ ﻴﻘﻪ ﻣ ﺜﻼ( أو ﻋﻨﺎﺻ ﺮ رﻧ ﻴﻦ‬

‫) ‪resonsnce‬‬

‫‪ (elements‬ﺗﺼ ﻠﺢ ﻟﻠﻌﻤ ﻞ ﻓ ﻰ ه ﺬﻩ اﻟﺘ ﺮددات‪ .‬و ه ﻨﺎك اﻟﻌﺪﻳ ﺪ ﻣ ﻦ اﻟ ﺘﺤﻮﻳﻼت و اﻟﻤﻌ ﺎدﻻت اﻟﺘ ﻰ ﺗﺴ ﺘﺨﺪم ﻟﻌﻤ ﻞ‬
‫ﺣﺴﺎﺑﺎت اﻟﻤﻜﻮﻧﺎت اﻟﻤﻜﺎﻓﺌﻪ ﺣﺴﺐ ﻧﻮع اﻟﻔﻠﺘﺮ‪.‬‬
‫ﻳﺒﻴﻦ ﺷﻜﻞ )‪ (٢٤ – ٧‬أﻣﺜﻠﻪ ﻟﺒﻌﺾ دواﺋﺮ اﻟﻔﻠﺘﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ اﻟﺘﻰ ﻻ ﺗﺤﺘﻮى ﻋﻠﻰ ﻣﻜﻮﻧﺎت ﻋﻴﻨﻴﻪ‪.‬‬
‫اﻟﻤ ﺮﺟﻊ رﻗ ﻢ )‪ (9‬ﻳﺤ ﺘﻮى ﻋﻠ ﻰ ﺑ ﺮاﻣﺞ ﺑﻠﻐ ﺔ )‪ (BASIC‬ﻟﺤﺴ ﺎﺑﺎت ﺗﺼ ﻤﻴﻢ ﻋ ﺪة أﻧ ﻮاع ﻣﻦ دواﺋﺮ اﻟﻔﻠﺘﺮ اﻟﻌﺎﻣﻠﻪ ﻓﻰ‬
‫ﺗﺮددات اﻟﻤﻴﻜﺮووﻳﻒ ﺑﺎﻻﺿﺎﻓﻪ اﻟﻰ ﺣﺴﺎﺑﺎت أﺧﺮى ﺗﻔﻴﺪ ﺗﺼﻤﻴﻢ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ و ﺗﻜﻨﻮﻟﻮﺟﻴﺎت أﺧﺮى‪.‬‬
‫ﺗﺬآ ﺮ أﻧ ﻪ ﻓ ﻰ اﻟﻔﺼ ﻞ اﻟﺨ ﺎﻣﺲ ﻣ ﻦ ه ﺬا اﻟﻜ ﺘﺎب ﻣﻌﻠ ﻮﻣﺎت ﻋ ﻦ اﻟﺒ ﺮاﻣﺞ اﻟﻤﺠﺎﻧ ﻴﻪ و اﻟﻤﻨ ﺘﺠﻪ ﺗﺠﺎرﻳﺎ اﻟﺘﻰ ﺗﻘﻮم ﺑﻌﻤﻞ‬
‫ﺣﺴﺎﺑﺎت ﺗﺼﻤﻴﻢ دواﺋﺮ اﻟﻔﻠﺘﺮ اﻟﻌﺎﻣﻠﻪ ﻓﻰ ﺗﺮددات اﻟﻤﻴﻜﺮووﻳﻒ‪.‬‬

‫‪291‬‬

‫ﺷﻜﻞ )‪ : (٢٤ – ٧‬أﻣﺜﻠﻪ ﻟﺒﻌﺾ دواﺋﺮ اﻟﻔﻠﺘﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ‬
‫دواﺋﺮ اﻟﻔﻠﺘﺮ اﻟﻤﻨﺘﺠﻪ ﺗﺠﺎرﻳﺎ ﺗﺒﺎع ﻓﻰ أﺷﻜﺎل ﻣﺘﻌﺪدﻩ ﻣﻨﻬﺎ ﻋﻠﻰ ﺷﻜﻞ ﻋﺒﻮات ﻣﻨﺘﻬﻴﻪ ﺑﻤﻮﺻﻼت ﻣﺤﻮرﻳﻪ ) ‪coaxial‬‬
‫‪ (connectors‬أو ﻓ ﻰ أﺷ ﻜﺎل ﻳ ﺘﻢ ﻟﺤﺎﻣﻬ ﺎ ﻋﻠ ﻰ اﻟﺪاﺋ ﺮﻩ ) ‪leadless − surface mount SMT − drop-in −‬‬
‫‪ (plug-in‬و ﻏﻴﺮهﺎ‪ .‬و ﻳﺒﻴﻦ ﺷﻜﻞ )‪ (٢٥ – ٧‬أﻣﺜﻠﻪ ﻟﺒﻌﺾ دواﺋﺮ اﻟﻔﻠﺘﺮ اﻟﻤﻨﺘﺠﻪ ﺗﺠﺎرﻳﺎ‪.‬‬

‫ﺷﻜﻞ )‪ : (٢٥ – ٧‬أﻣﺜﻠﻪ ﻟﺒﻌﺾ دواﺋﺮ اﻟﻔﻠﺘﺮ اﻟﻤﻨﺘﺠﻪ ﺗﺠﺎرﻳﺎ‬

‫‪292‬‬

‫)ﻤﻘﻁﻊ ‪ (٢-٧‬ﺍﻟﻘﺎﻟﺒﺎﺕ ﻭ ﺘﺤﻭﻴﻼﺕ ﺸﺒﻜﺎﺕ ﺍﻟﻤﻜﻭﻨﺎﺕ ‪:‬‬
‫ه ﻨﺎك ﻧ ﻮﻋﺎن ﻣ ﻦ اﻟﻘﺎﻟ ﺒﺎت )‪ (inverters‬اﻟ ﻨﻮع اﻷول ه ﻮ ﻗﺎﻟ ﺒﺎت اﻟﻤﻌﺎوﻗ ﻪ )‪ (impedance inverters‬و اﻟﻨﻮع‬
‫اﻟﺜﺎﻧ ﻰ ه ﻮ ﻗﺎﻟ ﺒﺎت اﻟﻤﺴ ﺎﻣﺤﻪ أو ﻗﺎﻟ ﺒﺎت ﻣﻘﻠﻮب اﻟﻤﻌﺎوﻗﻪ )‪ ، (admittance inverters‬و ﻳﻮﺿﺢ ﺷﻜﻞ )‪(٢٦ – ٧‬‬
‫ﺗﻌﺮﻳﻒ آﻞ ﻣﻦ اﻟﻨﻮﻋﻴﻦ‪.‬‬

‫ﻗﺎﻟﺐ اﻟﻤﺴﺎﻣﺤﻪ أو ﻗﺎﻟﺐ ﻣﻘﻠﻮب اﻟﻤﻌﺎوﻗﻪ )‪(J‬‬

‫ﻗﺎﻟﺐ اﻟﻤﻌﺎوﻗﻪ )‪(K‬‬

‫ﺷﻜﻞ )‪ : (٢٦ – ٧‬ﺗﻌﺮﻳﻒ اﻟﻘﺎﻟﺒﺎت )‪.(inverters‬‬

‫ﺣ ﻴﺚ ﻳﻌ ﺮف ﻗﺎﻟ ﺐ اﻟﻤﻌﺎوﻗ ﻪ )‪ (K‬ﺑﺄﻧ ﻪ اﻟﻤﻜ ﻮن )أو ﺷ ﺒﻜﺔ اﻟﻤﻜ ﻮﻧﺎت( اﻟﻤﺘﺼ ﻞ ﻋﻨﺪ ﻃﺮﻓﻪ )ﻣﺨﺮﺟﻪ( ﻣﻌﺎوﻗﻪ )‪(Z‬‬
‫ﺑﺤﻴﺚ اذا ﺣﺴﺒﻨﺎ ﻗﻴﻤﺔ اﻟﻤﻌﺎوﻗﻪ ﻋﻨﺪ اﻟﻄﺮف )أو اﻟﻤﺨﺮج( اﻵﺧﺮ ﻧﺠﺪهﺎ ﺗﺴﺎوى‬

‫‪K2‬‬
‫= ‪Z‬‬
‫‪Z‬‬
‫‪ι‬‬

‫)‪(7.34‬‬
‫و ﻳﺴﻤﻰ ﻗﺎﻟﺐ اﻟﻤﻌﺎوﻗﻪ )‪.(K inverter‬‬

‫و ﻳﻌ ﺮف ﻗﺎﻟ ﺐ اﻟﻤﺴ ﺎﻣﺤﻪ أو ﻗﺎﻟ ﺐ ﻣﻘﻠ ﻮب اﻟﻤﻌﺎوﻗ ﻪ )‪ (J‬ﺑﺄﻧ ﻪ اﻟﻤﻜ ﻮن )أو ﺷ ﺒﻜﺔ اﻟﻤﻜ ﻮﻧﺎت( اﻟﻤﺘﺼ ﻞ ﻋ ﻨﺪ ﻃ ﺮﻓﻪ‬
‫)ﻣﺨ ﺮﺟﻪ( ﻣﻘﻠ ﻮب ﻣﻌﺎوﻗ ﻪ )‪ (Y‬ﺑﺤ ﻴﺚ اذا ﺣﺴ ﺒﻨﺎ ﻗ ﻴﻤﺔ ﻣﻘﻠ ﻮب اﻟﻤﻌﺎوﻗ ﻪ ﻋ ﻨﺪ اﻟﻄ ﺮف )أو اﻟﻤﺨ ﺮج( اﻵﺧ ﺮ ﻧﺠ ﺪهﺎ‬
‫ﺗﺴﺎوى‬

‫‪J2‬‬
‫‪Y‬‬

‫)‪(7.35‬‬

‫= ‪Yι‬‬

‫و ﻳﺴﻤﻰ ﻗﺎﻟﺐ ﻣﻘﻠﻮب اﻟﻤﻌﺎوﻗﻪ )‪.(J inverter‬‬
‫ﺗﻨﻔ ﻴﺬ ﻗﺎﻟ ﺐ اﻟﻤﻌﺎوﻗ ﻪ )‪ (K inverter‬أو ﻗﺎﻟ ﺐ ﻣﻘﻠ ﻮب اﻟﻤﻌﺎوﻗ ﻪ )‪ (J inverter‬ﻳﻤﻜ ﻦ أن ﻳ ﺘﻢ ﺑﻤﻜ ﻮﻧﺎت ﻋﻴﻨ ﻴﻪ أو‬
‫ﺧﻄ ﻮط ارﺳ ﺎل أو آﻠ ﻴﻬﻤﺎ أو ﺑﺪاﺋ ﺮة رﻧ ﻴﻦ أو ﻋﻨﺼ ﺮ رﻧ ﻴﻦ )‪ (resonator‬ﻳ ﺘﻜﻮن ﻣ ﻦ ﻣﻜ ﻮﻧﺎت ﻋﻴﻨ ﻴﻪ أو ﺧﻄ ﻮط‬
‫ارﺳﺎل أو آﻠﻴﻬﻤﺎ اﻟﻰ ﺁﺧﺮﻩ ‪ ،‬و ﻳﺘﻢ هﺬا اﻟﺘﻨﻔﻴﺬ وﻓﻘﺎ ﻟﻨﻮع اﻟﻔﻠﺘﺮ أو ﻧﻮع اﻟﺘﺤﻮﻳﻞ‪.‬‬

‫‪293‬‬

‫اﻟﻘﺎﻟ ﺒﺎت ﻟﻬ ﺎ ﺧﺼ ﺎﺋﺺ ﻣﻔﻴﺪﻩ ﻓﻰ ﺗﺤﻮﻳﻞ ﻣﻜﻮﻧﺎت اﻟﻔﻠﺘﺮ اﻟﻰ ﻣﻜﻮﻧﺎت أﺧﺮى ‪ ،‬و أﺑﺴﻂ ﻣﺜﺎل ﻋﻠﻰ ذﻟﻚ هﻮ اﻟﻤﺒﻴﻦ ﻓﻰ‬
‫ﺷ ﻜﻞ )‪ (٢٧ – ٧‬ﺣ ﻴﺚ ﻳﻤﻜ ﻦ اﻻﺳﺘﻌﺎﺿ ﻪ ﻋ ﻦ ﻣﻜ ﺜﻒ ﻣﻮﺻ ﻞ ﻋﻠﻰ اﻟﺘﻮازى )‪ (shunt capacitor‬ﺑﻤﻠﻒ ﻣﻮﺻﻞ‬
‫ﻋﻠﻰ اﻟﺘﻮاﻟﻰ ﻣﺘﺼﻞ ﻋﻨﺪ آﻞ ﻃﺮف ﻣﻦ ﻃﺮﻓﻴﻪ ﺑﻘﺎﻟﺐ ﻣﻌﺎوﻗﻪ )‪ (K‬و اﻟﻌﻜﺲ ﺻﺤﻴﺢ‪.‬‬
‫ﺑﻴ ﻨﻤﺎ ﻳﻤﻜ ﻦ اﺳ ﺘﺒﺪال ﻣﻠﻒ ﻣﻮﺻﻞ ﻋﻠﻰ اﻟﺘﻮاﻟﻰ )‪ (series inductor‬ﺑﻤﻜﺜﻒ ﻣﻮﺻﻞ ﻋﻠﻰ اﻟﺘﻮازى ﻣﺘﺼﻞ ﻋﻨﺪ آﻞ‬
‫ﻃﺮف ﻣﻦ ﻃﺮﻓﻴﻪ ﺑﻘﺎﻟﺐ ﻣﻘﻠﻮب ﻣﻌﺎوﻗﻪ )‪ (J‬و اﻟﻌﻜﺲ ﺻﺤﻴﺢ آﻤﺎ هﻮ اﻟﻤﺒﻴﻦ ﻓﻰ ﺷﻜﻞ )‪.(٢٨ – ٧‬‬

‫ﺷﻜﻞ )‪ : (٢٧ – ٧‬اﺳﺘﺒﺪال ﻣﻜﺜﻒ ﻋﻠﻰ اﻟﺘﻮازى ﺑﺪاﺋﺮﻩ ﻣﻜﺎﻓﺌﻪ و اﻟﻌﻜﺲ‪.‬‬

‫ﺷﻜﻞ )‪ : (٢٨ – ٧‬اﺳﺘﺒﺪال ﻣﻠﻒ ﻋﻠﻰ اﻟﺘﻮاﻟﻰ ﺑﺪاﺋﺮﻩ ﻣﻜﺎﻓﺌﻪ و اﻟﻌﻜﺲ‪.‬‬

‫ﺑﺎﺳ ﺘﺨﺪام اﻟﻘﺎﻟ ﺒﺎت ﻳﻤﻜﻨﻨﺎ ﺗﻐﻴﻴﺮ ﺗﻜﻮﻳﻦ ﻣﻜﻮﻧﺎت ﻓﻠﺘﺮ ﻣﻌﻴﻦ و اﺳﺘﺒﺪاﻟﻬﺎ ﺑﻤﻜﻮﻧﺎت أﺧﺮى ﻣﻊ اﻟﺤﺼﻮل ﻋﻠﻰ ﻧﻔﺲ أداء‬
‫اﻟﻔﻠﺘ ﺮ اﻟﻤﻄﻠ ﻮب‪ .‬و ﺑﺎﺳ ﺘﺨﺪام ه ﺬا اﻟﻤ ﺒﺪأ ﻳﻤﻜﻨ ﻨﺎ ﻣ ﺜﻼ ﺗﻐﻴﻴ ﺮ ﻣﻜ ﻮﻧﺎت ﻓﻠﺘ ﺮ ﻣ ﺮور اﻟﺘ ﺮددات اﻟﻤﻨﺨﻔﻀ ﻪ )‪(LPF‬‬
‫اﻟﻤﻌﻄ ﻰ ﻓﻰ ﺷﻜﻞ )‪ (٩ - ٧‬و ﺷﻜﻞ )‪ (١٠ – ٧‬ﻣﻊ اﻻﺑﻘﺎء ﻋﻠﻰ ﻧﻔﺲ أداء اﻟﻔﻠﺘﺮ ﻟﻴﺼﺒﺢ ﺗﻜﻮﻳﻦ ﻓﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات‬
‫اﻟﻤﻨﺨﻔﻀ ﻪ ﻋ ﺒﺎرﻩ ﻋ ﻦ ﻣﻠﻔ ﺎت ﻣﺘﺼ ﻠﻪ ﻋﻠ ﻰ اﻟﺘﻮاﻟ ﻰ ﻣ ﻊ ﻗﺎﻟ ﺒﺎت ﻣﻌﺎوﻗ ﻪ آﻤ ﺎ ه ﻮ ﻣﺒ ﻴﻦ ﻓ ﻰ ﺷ ﻜﻞ )‪ .(٢٩ – ٧‬ﺣ ﻴﺚ‬
‫ﺗﻌﻄﻰ ﻗﻴﻢ اﻟﻤﻜﻮﻧﺎت آﺎﻟﺘﺎﻟﻰ ‪:‬‬

‫‪Z o La1‬‬
‫‪g o g1‬‬

‫)‪(7.36‬‬

‫‪294‬‬

‫= ‪K 0,1‬‬

‫)‪(7.37‬‬

‫)‪Lai La (i+1‬‬

‫‪, i = 1,2, …, n−1‬‬

‫‪g i g i+1‬‬

‫‪Lan Z n+1‬‬
‫‪g n g n+1‬‬

‫)‪(7.38‬‬

‫= ‪K i , i+1‬‬

‫= ‪K n , n +1‬‬

‫أﻣﺎ ﻗﻴﻢ اﻟﻤﻠﻔﺎت )‪ (Lai‬و ﻣﻌﺎوﻗﺘﻰ اﻟﻤﺨﺮﺟﻴﻦ )‪ (Zo , Zn+1‬ﻓﻬﻰ اﺧﺘﻴﺎرﻳﻪ‪.‬‬

‫ﺷﻜﻞ )‪ : (٢٩ – ٧‬ﻓﻠﺘﺮ ﻣﺮور ﺗﺮددات ﻣﻨﺨﻔﻀﻪ ﺑﺎﺳﺘﺨﺪام ﻣﻠﻔﺎت ﻋﻠﻰ اﻟﺘﻮاﻟﻰ و ﻗﺎﻟﺒﺎت ﻣﻌﺎوﻗﻪ‪.‬‬

‫آﻤ ﺎ ﻳﻤﻜ ﻦ أن ﻳﺼ ﺒﺢ ﺗﻜ ﻮﻳﻦ ﻓﻠﺘ ﺮ ﻣ ﺮور اﻟﺘ ﺮددات اﻟﻤﻨﺨﻔﻀ ﻪ ﻋ ﺒﺎرﻩ ﻋ ﻦ ﻣﻜ ﺜﻔﺎت ﻣﺘﺼ ﻠﻪ ﻋﻠ ﻰ اﻟ ﺘﻮازى ﻣﺘﺼﻠﻪ‬
‫ﺑﻘﺎﻟ ﺒﺎت ﻣﻘﻠ ﻮب ﻣﻌﺎوﻗ ﻪ ﻣ ﻊ اﻻﺑﻘ ﺎء ﻋﻠ ﻰ ﻧﻔ ﺲ أداء اﻟﻔﻠﺘ ﺮ آﻤ ﺎ ه ﻮ ﻣﺒ ﻴﻦ ﻓ ﻰ ﺷ ﻜﻞ )‪ .(٣٠ – ٧‬ﺣ ﻴﺚ ﺗﻌﻄ ﻰ ﻗ ﻴﻢ‬
‫اﻟﻤﻜﻮﻧﺎت آﺎﻟﺘﺎﻟﻰ ‪:‬‬

‫‪YoCa1‬‬
‫‪g o g1‬‬

‫)‪(7.39‬‬

‫)‪(7.40‬‬

‫)‪CaiCa (i+1‬‬

‫‪, i = 1,2, …, n−1‬‬

‫)‪(7.41‬‬

‫= ‪J 0,1‬‬

‫‪g i gi+1‬‬
‫‪CanYn+1‬‬
‫‪g n g n+1‬‬

‫= ‪J n , n +1‬‬

‫أﻣﺎ ﻗﻴﻢ اﻟﻤﻜﺜﻔﺎت )‪ (Cai‬و ﻣﻘﻠﻮب اﻟﻤﻌﺎوﻗﻪ ﻋﻨﺪ اﻟﻤﺨﺮﺟﻴﻦ )‪ (Yo , Yn+1‬ﻓﻬﻰ اﺧﺘﻴﺎرﻳﻪ‪.‬‬

‫‪295‬‬

‫= ‪J i , i+1‬‬

‫ﺷﻜﻞ )‪ : (٣٠ – ٧‬ﻓﻠﺘﺮ ﻣﺮور ﺗﺮددات ﻣﻨﺨﻔﻀﻪ ﺑﺎﺳﺘﺨﺪام ﻣﻜﺜﻔﺎت ﻋﻠﻰ اﻟﺘﻮازى و ﻗﺎﻟﺒﺎت ﻣﻘﻠﻮب ﻣﻌﺎوﻗﻪ‪.‬‬

‫و ﻳﻤﻜ ﻦ اﺳ ﺘﻨﺘﺎج أﺷ ﻜﺎل ﻣﺨ ﺘﻠﻔﻪ ﻟﻔﻠﺘ ﺮ ﻣ ﺮور ﺣﻴ ﺰ ﺗ ﺮددى ﻣﻌ ﻴﻦ )‪ (BPF‬ﻳﺤ ﺘﻮى ﻋﻠ ﻰ ﻗﺎﻟ ﺒﺎت ﻣﻌﺎوﻗ ﻪ أو ﻗﺎﻟ ﺒﺎت‬
‫ﻣﻘﻠﻮب ﻣﻌﺎوﻗﻪ اﻋﺘﻤﺎدا ﻋﻠﻰ اﻟﺪاﺋﺮﺗﻴﻦ اﻟﻤﺒﻴﻨﺘﻴﻦ أﻋﻼﻩ ﻓﻰ ﺷﻜﻞ )‪ (٢٩ – ٧‬و ﺷﻜﻞ )‪.(٣٠ – ٧‬‬

‫ﺷﻜﻞ )‪ : (٣١ – ٧‬ﻓﻠﺘﺮ ﻣﺮور ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ ﺑﺎﺳﺘﺨﺪام ﻣﻜﻮﻧﺎت ﻋﻠﻰ اﻟﺘﻮاﻟﻰ و ﻗﺎﻟﺒﺎت ﻣﻌﺎوﻗﻪ‪.‬‬

‫ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (٣١ – ٧‬ﻓﻠﺘ ﺮ ﻣ ﺮور ﺣﻴ ﺰ ﺗ ﺮددى ﻣﻌ ﻴﻦ )‪ (BPF‬ﺑﺎﺳﺘﺨﺪام ﻣﻠﻔﺎت و ﻣﻜﺜﻔﺎت ﻋﻠﻰ اﻟﺘﻮاﻟﻰ و ﻗﺎﻟﺒﺎت‬
‫ﻣﻌﺎوﻗ ﻪ ﻣﺴ ﺘﻨﺘﺞ ﻣ ﻦ ﻣﻠ ﻒ ﻣ ﺮور اﻟﺘ ﺮددات اﻟﻤﻨﺨﻔﻀ ﻪ اﻟﻤﺒ ﻴﻦ ﻓ ﻰ ﺷﻜﻞ )‪ (٢٩ – ٧‬ﺣﻴﺚ ﻳﺘﻢ ﺣﺴﺎب ﻗﻴﻢ اﻟﻤﻠﻔﺎت و‬
‫اﻟﻤﻜﺜﻔﺎت ﻓﻰ ﺷﻜﻞ )‪ (٣١ – ٧‬ﺑﺪﻻﻟﺔ ﻗﻴﻢ اﻟﻤﻜﻮﻧﺎت ﻓﻰ ﺷﻜﻞ )‪ (٢٩ – ٧‬آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫)‪(7.42‬‬

‫)‪(7.43‬‬

‫‪, i = 1,2, … , n‬‬

‫⎞ ‪⎛ Ωc‬‬
‫⎟⎟‬
‫⎜⎜ ‪Ls i = La i‬‬
‫‪BW‬‬
‫‪ω‬‬
‫⎠ ‪OS‬‬
‫⎝‬
‫‪1‬‬
‫‪2‬‬
‫‪ωOS‬‬
‫‪Ls i‬‬

‫‪, i = 1,2, … , n‬‬

‫= ‪Cs i‬‬

‫ﺣﻴﺚ )‪ (Ωc rad/sec‬هﻮ ﺗﺮدد اﻟﻘﻄﻊ ﻟﻔﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ و ﻳﺴﺎوى )‪ (1‬ﻟﺤﺴﺎب ﻗﻴﻢ ﻣﺘﻄﺒﻌﻪ‪.‬‬

‫‪296‬‬

‫و ﺣﻴﺚ‬
‫)‪(7.44‬‬

‫‪ωOS = ω1 ω 2‬‬

‫‪,‬‬

‫‪ω 2 − ω1‬‬
‫‪ωOS‬‬

‫= ‪BW‬‬

‫ﻣﻊ ﺑﻘﺎء ﻗﻴﻢ ﻗﺎﻟﺒﺎت اﻟﻤﻌﺎوﻗﻪ )‪ (K‬ﺛﺎﺑﺘﻪ ﺑﺎﻟﻨﺴﺒﻪ ﻟﺘﺤﻮﻳﻞ اﻟﺘﺮدد و هﻰ ﻣﻌﻄﺎﻩ آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫)‪(7.45‬‬

‫)‪(7.46‬‬

‫‪Z o BW ωOS Ls1‬‬
‫‪Ω c g o g1‬‬
‫)‪Lsi Ls (i+1‬‬

‫‪, i = 1,2, …, n−1‬‬

‫)‪(7.47‬‬

‫‪g i gi+1‬‬

‫= ‪K 0,1‬‬

‫‪BW ωOS‬‬
‫‪Ωc‬‬

‫‪BW ωOS Lsn Z n+1‬‬
‫‪Ω c g n g n+1‬‬

‫= ‪K i , i+1‬‬

‫= ‪K n , n +1‬‬

‫ﺷﻜﻞ )‪ : (٣٢ – ٧‬ﻓﻠﺘﺮ ﻣﺮور ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ ﺑﺎﺳﺘﺨﺪام ﻣﻜﻮﻧﺎت ﻋﻠﻰ اﻟﺘﻮازى و ﻗﺎﻟﺒﺎت ﻣﻘﻠﻮب ﻣﻌﺎوﻗﻪ‪.‬‬

‫و ﺑﺎﻟﻤ ﺜﻞ ﻳﻤﻜ ﻦ اﺳ ﺘﻨﺘﺎج ﻗ ﻴﻢ ﻣﻜ ﻮﻧﺎت ﻓﻠﺘ ﺮ ﻣ ﺮور ﺣﻴ ﺰ ﺗ ﺮددى ﻣﻌ ﻴﻦ ﺑﺎﺳ ﺘﺨﺪام ﻣﻠﻔ ﺎت و ﻣﻜ ﺜﻔﺎت ﻋﻠ ﻰ اﻟﺘﻮازى و‬
‫ﻗﺎﻟ ﺒﺎت ﻣﻘﻠ ﻮب ﻣﻌﺎوﻗ ﻪ ﻣ ﺜﻞ اﻟﻤﺒ ﻴﻦ ﻓ ﻰ ﺷ ﻜﻞ )‪ (٣٢ – ٧‬و ه ﻰ ﻣﻌﻄ ﺎﻩ ﺑﺪﻻﻟ ﺔ اﻟﻤﻜ ﺜﻔﺎت اﻟﻤﺘﺼ ﻠﻪ ﻋﻠ ﻰ اﻟ ﺘﻮازى‬
‫آﺎﻟﺘﺎﻟﻰ ‪:‬‬

‫)‪(7.48‬‬

‫)‪(7.49‬‬

‫‪Yo BW ωOS C p1‬‬
‫‪Ω c g o g1‬‬
‫)‪C pi C p (i+1‬‬

‫‪, i = 1,2, …, n−1‬‬

‫‪g i g i+1‬‬

‫‪297‬‬

‫= ‪J 0,1‬‬

‫‪BW ωOS‬‬
‫‪Ωc‬‬

‫= ‪J i , i+1‬‬

‫‪BW ωOS C pnYn+1‬‬

‫)‪(7.50‬‬

‫‪Ω c g n g n+1‬‬

‫)‪(7.51‬‬

‫= ‪J n , n +1‬‬

‫‪1‬‬
‫‪ω Cp i‬‬

‫‪, i = 1,2, … , n‬‬

‫‪2‬‬
‫‪OS‬‬

‫= ‪Lp i‬‬

‫ﺟﻤ ﻴﻊ دواﺋﺮ اﻟﻔﻠﺘﺮ اﻟﻤﺴﺘﻨﺘﺠﻪ أﻋﻼﻩ ﻳﻤﻜﻦ ﺗﺤﻮﻳﻠﻬﺎ اﻟﻰ دواﺋﺮ ﻓﻠﺘﺮ ﺗﻌﻤﻞ ﻓﻰ ﺣﻴﺰ اﻟﺘﺮددات اﻟﻌﺎﻟﻴﻪ و اﻟﻤﻴﻜﺮووﻳﻒ ‪،‬‬
‫ﻟﻜ ﻦ هﻨﺎك ﺷﻜﻼن ﻋﺎ ّﻣﺎن ﻟﺪواﺋﺮ اﻟﻔﻠﺘﺮ ﻳﺴﻬﻞ ﺗﺤﻮﻳﻞ آﻞ ﻣﻨﻬﻤﺎ اﻟﻰ دواﺋﺮ ﺗﻌﻤﻞ ﻓﻰ ﺣﻴﺰ اﻟﻤﻴﻜﺮووﻳﻒ ﺑﺘﻜﻨﻮﻟﻮﺟﻴﺎت‬
‫ﻋﺪﻳ ﺪﻩ و ﻣﻨﻬﺎ ﺗﻜﻨﻮﻟﻮﺟﻴﺎ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ ﺑﺎﺳﺘﺨﺪام ﺧﻄﻮط ﺷﺮﻳﻄﻴﻪ دﻗﻴﻘﻪ أو ﻋﻨﺎﺻﺮ رﻧﻴﻦ ﺷﺮﻳﻄﻴﻪ دﻗﻴﻘﻪ‬
‫اﻟﻰ ﺁﺧﺮﻩ ‪ ،‬و هﻤﺎ ﻣﻮﺿﺤﺎن ﻓﻰ ﺷﻜﻞ )‪ (٣٣ – ٧‬و ﺷﻜﻞ )‪.(٣٤ – ٧‬‬

‫ﺷﻜﻞ )‪ : (٣٣ – ٧‬ﻓﻠﺘﺮ ﻣﺮور ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ ﺑﺎﺳﺘﺨﺪام ﻣﻌﺎوﻗﺎت ﻋﻠﻰ اﻟﺘﻮاﻟﻰ و ﻗﺎﻟﺒﺎت ﻣﻌﺎوﻗﻪ‪.‬‬

‫ﺗﻌﻄ ﻰ ﻗ ﻴﻢ ﻣﻜ ﻮﻧﺎت ﻓﻠﺘ ﺮ ﻣ ﺮور ﺣﻴ ﺰ ﺗ ﺮددى ﻣﻌ ﻴﻦ )‪ (BPF‬اﻟﻤ ﺘﻜﻮن ﻣ ﻦ ﻣﻌﺎوﻗ ﺎت ﻋﻠﻰ اﻟﺘﻮاﻟﻰ و ﻗﺎﻟﺒﺎت ﻣﻌﺎوﻗﻪ‬
‫اﻟﻤﺒﻴﻦ ﻓﻰ ﺷﻜﻞ )‪ (٣٣ – ٧‬آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫)‪(7.52‬‬

‫)‪(7.53‬‬

‫‪Z o BW x1‬‬
‫‪Ω c g o g1‬‬

‫= ‪K 0,1‬‬

‫‪xi xi+1‬‬
‫‪g i g i+1‬‬

‫‪BW‬‬
‫‪Ωc‬‬

‫‪, i = 1,2, …, n−1‬‬

‫)‪(7.54‬‬

‫‪BW x n Z n+1‬‬
‫‪Ω c g n g n+1‬‬

‫‪298‬‬

‫= ‪K i , i+1‬‬

‫= ‪K n , n +1‬‬

‫⎞‬
‫⎟‬
‫⎟‬
‫⎠ ‪OS‬‬

‫)‪(7.55‬‬

‫) ‪ωOS ⎛⎜ dX i (ω‬‬
‫= ‪xi‬‬
‫‪2 ⎜⎝ dω ω =ω‬‬

‫ﺣﻴﺚ اﻟﺘﻔﺎﺿﻞ ﻓﻰ اﻟﻤﻌﺎدﻟﻪ )‪ (7.55‬ﻳﻌﺒﺮ ﻋﻦ ﻣﻌﺪل ﺗﻐﻴﺮ اﻟﻤﻌﺎوﻗﻪ )‪ (Xi‬ﺑﺎﻟﻨﺴﺒﻪ ﻟﻠﺘﺮدد ﻋﻨﺪ اﻟﺘﺮدد )‪.(ωOS‬‬

‫ﺷﻜﻞ )‪ : (٣٤ – ٧‬ﻓﻠﺘﺮ ﻣﺮور ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ ﺑﺎﺳﺘﺨﺪام ﻣﺴﺎﻣﺤﺎت ﻋﻠﻰ اﻟﺘﻮازى و ﻗﺎﻟﺒﺎت ﻣﻘﻠﻮب ﻣﻌﺎوﻗﻪ‪.‬‬

‫ﺑﻴ ﻨﻤﺎ ﺗﻌﻄ ﻰ ﻗ ﻴﻢ ﻣﻜ ﻮﻧﺎت ﻓﻠﺘ ﺮ ﻣ ﺮور ﺣﻴ ﺰ ﺗ ﺮددى ﻣﻌ ﻴﻦ )‪ (BPF‬اﻟﻤ ﺘﻜﻮن ﻣ ﻦ ﻣﺴﺎﻣﺤﺎت ﻋﻠﻰ اﻟﺘﻮازى و ﻗﺎﻟﺒﺎت‬
‫ﻣﻘﻠﻮب ﻣﻌﺎوﻗﻪ اﻟﻤﺒﻴﻦ ﻓﻰ ﺷﻜﻞ )‪ (٣٤ – ٧‬آﺎﻟﺘﺎﻟﻰ ‪:‬‬

‫‪Yo BW B1‬‬
‫‪Ω c g o g1‬‬

‫)‪(7.56‬‬

‫)‪(7.57‬‬

‫‪bi bi+1‬‬
‫‪g i g i+1‬‬

‫‪, i = 1,2, …, n−1‬‬

‫‪BWbnYn+1‬‬
‫‪Ω c g n g n+1‬‬

‫)‪(7.58‬‬

‫)‪(7.59‬‬

‫⎞‬
‫⎟‬
‫⎟‬
‫⎠‬

‫‪OS‬‬

‫= ‪J 0,1‬‬
‫‪BW‬‬
‫‪Ωc‬‬

‫= ‪J i , i+1‬‬

‫= ‪J n , n +1‬‬

‫) ‪ωOS ⎛⎜ dBi (ω‬‬
‫‪2 ⎜⎝ dω ω =ω‬‬

‫= ‪bi‬‬

‫ﺣﻴﺚ اﻟﺘﻔﺎﺿﻞ ﻓﻰ اﻟﻤﻌﺎدﻟﻪ )‪ (7.59‬ﻳﻌﺒﺮ ﻋﻦ ﻣﻌﺪل ﺗﻐﻴﺮ ﻣﻘﻠﻮب اﻟﻤﻌﺎوﻗﻪ )‪ (Bi‬ﺑﺎﻟﻨﺴﺒﻪ ﻟﻠﺘﺮدد ﻋﻨﺪ اﻟﺘﺮدد )‪.(ωOS‬‬

‫‪299‬‬

‫ﺗ ﺘﻌﺪد اﻟﺪواﺋ ﺮ اﻟﻤﻜﺎﻓ ﺌﻪ ﻟﻘﺎﻟ ﺒﺎت اﻟﻤﻌﺎوﻗ ﻪ )‪ (K inverters‬و ﻗﺎﻟ ﺒﺎت ﻣﻘﻠ ﻮب اﻟﻤﻌﺎوﻗ ﻪ )‪ (J inverters‬ﺳ ﻮاء‬
‫ﺑﺎﻟﻤﻜﻮﻧﺎت اﻟﻌﻴﻨﻴﻪ أو ﺑﺨﻄﻮط اﻻرﺳﺎل أو آﻠﻴﻬﻤﺎ أو ﻋﻨﺎﺻﺮ اﻟﺮﻧﻴﻦ و ﻏﻴﺮهﺎ و اﻷﻣﺜﻠﻪ ﻋﻠﻰ ذﻟﻚ آﺜﻴﺮﻩ ﺟﺪا‪.‬‬
‫‪o‬‬

‫ﻳﻤﻜ ﻦ اﺳﺘﺒﺪال ﻗﺎﻟﺐ ﻣﻌﺎوﻗﻪ )‪ (K‬ﺑﺨﻂ ارﺳﺎل ﻃﻮﻟﻪ ﻳﻜﺎﻓﺊ )‪ (90 ≡λg/4‬و ﻟﻪ ﻣﻌﺎوﻗﻪ ﻣﻤﻴﺰﻩ ﺗﺴﺎوى )‪ (Zo = K‬و‬
‫‪o‬‬

‫ﺑﺎﻟﻤ ﺜﻞ ﻳﻤﻜ ﻦ اﺳ ﺘﺒﺪال ﻗﺎﻟﺐ ﻣﻘﻠﻮب ﻣﻌﺎوﻗﻪ )‪ (J‬ﺑﺨﻂ ارﺳﺎل ﻃﻮﻟﻪ ﻳﻜﺎﻓﺊ )‪ (90 ≡λg/4‬و ﻟﻪ ﻣﻌﺎوﻗﻪ ﻣﻤﻴﺰﻩ ﺗﺴﺎوى‬
‫)‪ .(Zo = 1/ J‬ﻣﻊ اﻟﻌﻠﻢ ﺑﺎن هﺬا اﻻﺳﺘﺒﺪال ﻳﺼﻠﺢ ﻓﻰ ﺣﻴﺰ ﺗﺮددى ﺿﻴﻖ‪.‬‬

‫ﺷﻜﻞ )‪ : (٣٥ – ٧‬دواﺋﺮ ﻣﻜﺎﻓﺌﻪ ﻟﻘﺎﻟﺐ ﻣﻌﺎوﻗﻪ )‪.(K‬‬

‫و ﻳﻤﻜ ﻦ اﺳ ﺘﺒﺪال ﻗﺎﻟ ﺐ ﻣﻌﺎوﻗ ﻪ )‪ (K‬ﺑﺪاﺋ ﺮﻩ ﺑﻬ ﺎ ﺧﻄﻴﻦ ارﺳﺎل ﻃﻮل آﻞ ﻣﻨﻬﻤﺎ اﻟﻜﻬﺮﺑﻰ ﻳﻜﺎﻓﺊ زاوﻳﻪ )‪ (φ/2‬و ﻟﻜﻞ‬
‫ﻣﻨﻬﻤﺎ ﻣﻌﺎوﻗﻪ ﻣﻤﻴﺰﻩ )‪ (Zo‬و ﻣﻠﻒ )أو ﻣﻜﺜﻒ( ﻋﻠﻰ اﻟﺘﻮازى آﻤﺎ هﻮ ﻣﺒﻴﻦ ﻓﻰ ﺷﻜﻞ )‪.(٣٥ – ٧‬‬
‫ﺣﻴﺚ‬

‫‪φ‬‬

‫)‪(7.60‬‬

‫‪2‬‬

‫‪K = Z o tan‬‬

‫⎞ ‪⎛ 2X‬‬

‫)‪(7.61‬‬

‫⎟⎟‬
‫⎜⎜ ‪φ = − tan -1‬‬
‫‪Z‬‬
‫⎠ ‪⎝ o‬‬

‫)‪(7.62‬‬

‫‪K / Zo‬‬
‫‪X‬‬
‫=‬
‫‪Z o 1 − (K / Z o )2‬‬

‫و ﻳﻤﻜ ﻦ اﺳﺘﺒﺪال ﻗﺎﻟﺐ ﻣﻘﻠﻮب ﻣﻌﺎوﻗﻪ )‪ (J‬ﺑﺪاﺋﺮﻩ ﺑﻬﺎ ﺧﻄﻴﻦ ارﺳﺎل ﻃﻮل آﻞ ﻣﻨﻬﻤﺎ اﻟﻜﻬﺮﺑﻰ ﻳﻜﺎﻓﺊ زاوﻳﻪ )‪ (φ/2‬و‬
‫ﻟﻜﻞ ﻣﻨﻬﻤﺎ ﻣﻌﺎوﻗﻪ ﻣﻤﻴﺰﻩ )‪ (Zo‬و ﻣﻠﻒ )أو ﻣﻜﺜﻒ( ﻋﻠﻰ اﻟﺘﻮاﻟﻰ آﻤﺎ هﻮ ﻣﺒﻴﻦ ﻓﻰ ﺷﻜﻞ )‪.(٣٦ – ٧‬‬
‫ﺣﻴﺚ‬

‫‪φ‬‬

‫)‪(7.63‬‬
‫)‪(7.64‬‬

‫‪2‬‬
‫⎞ ‪⎛ 2B‬‬

‫‪J = Yo tan‬‬

‫⎟⎟ ⎜⎜ ‪φ = − tan -1‬‬
‫⎠ ‪⎝ Yo‬‬
‫‪300‬‬

‫)‪(7.65‬‬

‫‪J / Yo‬‬
‫‪B‬‬
‫=‬
‫‪Yo 1 − (J / Yo )2‬‬

‫ﺷﻜﻞ )‪ : (٣٦ – ٧‬دواﺋﺮ ﻣﻜﺎﻓﺌﻪ ﻟﻘﺎﻟﺐ ﻣﻘﻠﻮب ﻣﻌﺎوﻗﻪ )‪.(J‬‬

‫ﺷﻜﻞ )‪ : (٣٧ – ٧‬أﻣﺜﻠﻪ ﻟﻠﻤﻜﻮﻧﺎت اﻟﺸﺮﻳﻄﻴﻪ اﻟﺘﻰ ﺗﺴﺘﺨﺪم ﻓﻰ اﺳﺘﺒﺪال ﻗﺎﻟﺐ اﻟﻤﻌﺎوﻗﻪ و ﻗﺎﻟﺐ ﻣﻘﻠﻮب اﻟﻤﻌﺎوﻗﻪ‬

‫ﺑﺸﻜﻞ ﻋﺎم ﻳﻤﻜﻦ اﺳﺘﺒﺪال ﻗﺎﻟﺐ ﻣﻌﺎوﻗﻪ )‪ (K‬ﺑﺄى ﺷﺒﻜﺔ ﻣﻜﻮﻧﺎت ﻟﻬﺎ ﻣﺼﻔﻮﻓﺔ )‪ (ABCD‬ﺗﺴﺎوى‬
‫)‪(7.66‬‬

‫⎤ ‪m jK‬‬
‫⎥‬
‫⎥ ‪0‬‬
‫⎦‬

‫‪⎡ 0‬‬
‫⎢ ⎤‪⎡A B‬‬
‫‪⎢C D ⎥ = ⎢± 1‬‬
‫⎣‬
‫⎦‬
‫‪⎣ jK‬‬

‫و ﺑﺸﻜﻞ ﻋﺎم ﻳﻤﻜﻦ اﺳﺘﺒﺪال ﻗﺎﻟﺐ ﻣﻘﻠﻮب ﻣﻌﺎوﻗﻪ )‪ (J‬ﺑﺄى ﺷﺒﻜﺔ ﻣﻜﻮﻧﺎت ﻟﻬﺎ ﻣﺼﻔﻮﻓﺔ )‪ (ABCD‬ﺗﺴﺎوى‬

‫‪301‬‬

‫⎤ ‪1‬‬
‫⎡‬
‫‪⎡A B⎤ ⎢ 0‬‬
‫‪±‬‬
‫=‬
‫⎥‪jJ‬‬
‫⎢ ⎥ ‪⎢C D‬‬
‫⎥‬
‫⎣‬
‫⎦‬
‫⎦ ‪0‬‬
‫‪⎣m j J‬‬

‫)‪(7.67‬‬

‫ﻋﻼﻣﺔ )‪ (±‬ﻓﻰ اﻟﻤﻌﺎدﻟﺘﻴﻦ )‪ (7.66‬و )‪ (7.67‬ﺗﺪل ﻋﻠﻰ اﻟﺘﻐﻴﻴﺮ ﻓﻰ زاوﻳﺔ اﻟﻄﻮر اﻟﺬى ﻳﺤﺪﺛﻪ ﻗﺎﻟﺐ اﻟﻤﻌﺎوﻗﻪ و ﻗﺎﻟﺐ‬
‫ﻣﻘﻠ ﻮب اﻟﻤﻌﺎوﻗ ﻪ ‪ .‬و ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (٣٧ – ٧‬ﺑﻌ ﺾ اﻷﻣ ﺜﻠﻪ ﻟﻠﻤﻜ ﻮﻧﺎت اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﺪﻗ ﻴﻘﻪ اﻟﺘ ﻰ ﺗﺴ ﺘﺨﺪم ﻓ ﻰ اﺳﺘﺒﺪال‬
‫ﻗﺎﻟ ﺐ اﻟﻤﻌﺎوﻗ ﻪ و ﻗﺎﻟ ﺐ ﻣﻘﻠ ﻮب اﻟﻤﻌﺎوﻗ ﻪ و ﻳﻤﻜ ﻦ ﺑﻬ ﺎ ﺗﺤﻘ ﻴﻖ أى ﻣ ﻦ اﻟﻤﻌﺎدﻟﺘ ﻴﻦ )‪ (7.66‬و )‪ (7.67‬و ﻳﻜ ﻮن‬
‫اﻻﺳﺘﺒﺪال وﻓﻘﺎ ﻟﻄﺮق ﻣﻌﻴﻨﻪ ﺣﺴﺐ ﻧﻮع اﻟﻔﻠﺘﺮ و أداؤﻩ‪.‬‬
‫ه ﻨﺎك ﻃ ﺮق و ﺗﺤ ﻮﻳﻼت ﻋﺎﻣ ﻪ ﻳ ﺘﻢ اﺳﺘﺨﺪاﻣﻬﺎ ﻟﻠﺘﺤﻮﻳﻞ ﺑﻴﻦ ﺷﺒﻜﺎت اﻟﻤﻜﻮﻧﺎت و ﺑﻌﻀﻬﺎ أو ﻻﻳﺠﺎد ﻣﻜﺎﻓﺌﺎت ﻟﺸﺒﻜﺎت‬
‫اﻟﻤﻜ ﻮﻧﺎت أو ﻻﻳﺠ ﺎد ﻣﻜﺎﻓ ﺌﺎت ﻟﻠﻤﻜ ﻮﻧﺎت ﻣﺜﻞ ﺗﺤﻮﻳﻼت رﻳﺘﺸﺎرد )‪ (Richard's Transformations‬و ﻣﻜﺎﻓﺌﺎت‬
‫آﻮرودا )‪ (Kuroda's Identities‬و ﻏﻴﺮهﺎ‪.‬‬
‫ﺗﺤ ﻮﻳﻼت رﻳﺘﺸ ﺎرد )‪ (Richard's Transformations‬ﺗﺴ ﺘﺨﺪم ﻻﻳﺠ ﺎد ﺷ ﺒﻜﺎت ﻣﻜ ﻮﻧﺎت ﻣﻜﺎﻓ ﺌﻪ ﻟﻠﻤﻜ ﻮﻧﺎت أو‬
‫ﻟﺸ ﺒﻜﺎت اﻟﻤﻜ ﻮﻧﺎت اﻟﻌﻴﻨ ﻴﻪ ‪ ،‬و ﻳ ﺘﻢ اﺳ ﺘﺨﺪاﻣﻪ ﻻﺳ ﺘﺒﺪال اﻟﻤﻜ ﻮﻧﺎت اﻟﻌﻴﻨ ﻴﻪ )أو ﺷ ﺒﻜﺎت اﻟﻤﻜ ﻮﻧﺎت اﻟﻌﻴﻨ ﻴﻪ( ﺑﺨﻄ ﻮط‬
‫ارﺳ ﺎل )أو ﺷ ﺒﻜﺔ ﻣﻜ ﻮﻧﺎت ﻣﻜ ﻮﻧﻪ ﻣ ﻦ ﺧﻄ ﻮط ارﺳﺎل ﺗﺘﻤﻴﺰ ﺑﻄﻮل آﻬﺮﺑﻰ ﻣﻮﺣﺪ ﻟﺠﻤﻴﻊ ﺧﻄﻮط اﻻرﺳﺎل( و ﻳﻄﻠﻖ‬
‫ﻋﻠﻰ اﻟﻄﻮل اﻟﻜﻬﺮﺑﻰ اﻟﻤﻮﺣﺪ )‪.(commensurate length or equal electrical length‬‬
‫وﻓﻘﺎ ﻟﺘﺤﻮﻳﻼت رﻳﺘﺸﺎرد )‪ (Richard's Transformations‬ﻳﻤﻜﻦ اﻋﺘﺒﺎر ﺧﻂ اﻻرﺳﺎل ذو اﻟﻄﻮل اﻟﻜﻬﺮﺑﻰ )‪(θ‬‬
‫و اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ )‪ (Zo‬ﻋﻨﺼﺮ أو )وﺣﺪة ﻋﻨﺼﺮ ‪ (Unit Element UE‬آﻤﺎ ﻳﻮﺿﺢ ﺷﻜﻞ )‪.(٣٨ – ٧‬‬

‫ﺷﻜﻞ )‪ : (٣٨ – ٧‬ﺧﻂ ارﺳﺎل ﻣﻜﺎﻓﺊ ﻟﻮﺣﺪة ﻋﻨﺼﺮ وﻓﻘﺎ ﻟﺘﺤﻮﻳﻼت رﻳﺘﺸﺎرد‪.‬‬
‫ﺣﻴﺚ ﻣﺼﻔﻮﻓﺔ )‪ (ABCD‬ﻟﺨﻂ اﻻرﺳﺎل ﺗﺴﺎوى‬
‫)‪(7.68‬‬

‫⎤ ‪j Z o sin θ‬‬
‫⎦⎥ ‪cos θ‬‬

‫‪⎡ A B ⎤ ⎡ cos θ‬‬
‫‪⎢C D ⎥ = ⎢ j sin θ / Z‬‬
‫‪o‬‬
‫⎣‬
‫⎣ ⎦‬

‫و ﻣﺼﻔﻮﻓﺔ )‪ (ABCD‬ﻟﻮﺣﺪة ﻋﻨﺼﺮ )ﻣﻘﺪارﻩ ‪ (Zo‬ﺗﺴﺎوى‬
‫)‪(7.69‬‬

‫⎤ ‪t Zo‬‬
‫⎦⎥ ‪1‬‬

‫⎤‪⎡A B‬‬
‫‪1 ⎡ 1‬‬
‫⎢‬
‫= ⎥ ‪⎢C D‬‬
‫‪1 − t 2 ⎣t / Z o‬‬
‫⎣‬
‫⎦‬

‫ﺣﻴﺚ‬
‫‪t = j tanθ‬‬

‫)‪(7.70‬‬

‫‪302‬‬

‫وﻓﻘ ﺎ ﻟ ﺘﺤﻮﻳﻼت رﻳﺘﺸ ﺎرد )‪ (Richard's Transformations‬ﻳﻤﻜ ﻦ اﺳ ﺘﺒﺪال اﻟﻤﻜ ﻮﻧﺎت اﻟﻌﻴﻨ ﻴﻪ ﺑﺨﻄ ﻮط ارﺳ ﺎل‬
‫ﻣﺒﺎﺷ ﺮة‪ .‬ﺣ ﻴﺚ ﻳﻤﻜ ﻦ اﺳ ﺘﺒﺪال ﻣﻠ ﻒ ذو ﻗ ﻴﻤﻪ ﺗﺴ ﺎوى )‪ (L‬و ذو ﻣﻌﺎوﻗ ﻪ ﺗﺴ ﺎوى )‪ (Z=jωL‬ﺑﺨ ﻂ ارﺳ ﺎل ذو ﻧﻬﺎﻳﻪ‬
‫ﻣﻮﺻ ﻠﻪ ﺑ ﺎﻷرض أو داﺋ ﺮﻩ ﻣﻐﻠﻘ ﻪ )‪ (short circuit end‬آﻤ ﺎ ﻳﻮﺿ ﺢ ﺷ ﻜﻞ )‪ . (٣٩ – ٧‬ﻓ ﺎذا اﺧﺘ ﺮﻧﺎ ﻣ ﺜﻼ ﻃ ﻮل‬
‫‪o‬‬

‫اﻟﺨﻂ اﻟﻜﻬﺮﺑﻰ ﻟﻴﻜﺎﻓﺊ )‪ (45 ≡λg/8‬ﺗﻜﻮن اﻟﻤﻌﺎوﻗﺔ اﻟﻤﻤﻴﺰﻩ ﻟﻠﺨﻂ ﺗﺴﺎوى ﻗﻴﻤﺔ اﻟﻤﻠﻒ )‪. (Zo = L‬‬

‫ﺷﻜﻞ )‪ : (٣٩ – ٧‬ﺧﻂ ارﺳﺎل ذو ﻧﻬﺎﻳﻪ ﻣﻐﻠﻘﻪ )‪ (short circuit‬ﻣﻜﺎﻓﺊ ﻟﻤﻠﻒ وﻓﻘﺎ ﻟﺘﺤﻮﻳﻼت رﻳﺘﺸﺎرد‪.‬‬

‫ﺑﻴ ﻨﻤﺎ ﻳﻤﻜ ﻦ اﺳ ﺘﺒﺪال ﻣﻜ ﺜﻒ ذو ﻗ ﻴﻤﻪ ﺗﺴ ﺎوى )‪ (C‬و ذو ﻣﻘﻠ ﻮب ﻣﻌﺎوﻗ ﻪ ﻳﺴﺎوى )‪ (Y=jωC‬ﺑﺨﻂ ارﺳﺎل ذو ﻧﻬﺎﻳﻪ‬
‫ﻣﻔ ﺘﻮﺣﻪ )‪ (open circuit end‬آﻤ ﺎ ﻳﻮﺿ ﺢ ﺷ ﻜﻞ )‪ .(٤٠ – ٧‬ﻓ ﺎذا اﺧﺘ ﺮﻧﺎ ﻣ ﺜﻼ ﻃ ﻮل اﻟﺨ ﻂ اﻟﻜﻬﺮﺑ ﻰ ﻟﻴﻜﺎﻓ ﺊ‬
‫‪o‬‬

‫)‪ (45 ≡λg/8‬ﺗﻜﻮن اﻟﻤﻌﺎوﻗﺔ اﻟﻤﻤﻴﺰﻩ ﻟﻠﺨﻂ ﺗﺴﺎوى ﻣﻘﻠﻮب ﻗﻴﻤﺔ اﻟﻤﻜﺜﻒ )‪. (Zo = 1 / C‬‬

‫ﺷﻜﻞ )‪ : (٤٠ – ٧‬ﺧﻂ ارﺳﺎل ذو ﻧﻬﺎﻳﻪ ﻣﻔﺘﻮﺣﻪ )‪ (open circuit‬ﻣﻜﺎﻓﺊ ﻟﻤﻜﺜﻒ وﻓﻘﺎ ﻟﺘﺤﻮﻳﻼت رﻳﺘﺸﺎرد‪.‬‬

‫‪303‬‬

‫ﻣﻜﺎﻓ ﺌﺎت آﻮرودا )‪ (Kuroda's Identities‬ﻳﺘﻢ ﺑﻮاﺳﻄﺘﻬﺎ اﻳﺠﺎد ﺷﺒﻜﺎت ﻣﻜﻮﻧﺎت ﻣﻜﺎﻓﺌﺔ أو ﺑﺪﻳﻠﻪ ﻟﺸﺒﻜﺎت ﻣﻜﻮﻧﺎت‬
‫أﺧﺮى‪.‬‬
‫ﻓ ﻰ ﺑﻌ ﺾ ﺗﺼ ﻤﻴﻤﺎت اﻟﻔﻠﺘ ﺮ ﻗ ﺪ ﻳﺤ ﺘﻮى اﻟﺘﺼ ﻤﻴﻢ اﻷﺻ ﻠﻰ ﻋﻠ ﻰ ﺧﻄﻮط ارﺳﺎل أو ﺷﺒﻜﺔ ﻣﻜﻮﻧﺎت ﻏﻴﺮ ﻗﺎﺑﻠﻪ ﻟﻠﺘﻨﻔﻴﺬ‬
‫ﻋﻤﻠﻴﺎ ﻓﻴﺘﻢ اﺳﺘﺨﺪام ﻣﻜﺎﻓﺌﺎت آﻮرودا ﻻﺳﺘﺒﺪاﻟﻬﺎ ﺑﺄﺧﺮى ذات أﺑﻌﺎد و ﻣﻮاﺻﻔﺎت ﻗﺎﺑﻠﻪ ﻟﻠﺘﻨﻔﻴﺬ‪.‬‬
‫و ﻳﻤﻜ ﻦ أﻳﻀ ﺎ ﺑﺎﺳ ﺘﺨﺪام ﻣﻜﺎﻓ ﺌﺎت آ ﻮرودا ادراج ﺧﻄ ﻮط ارﺳ ﺎل اﺿ ﺎﻓﻴﻪ )‪ (redundant‬ﻋﻠ ﻰ اﻟﺘﺼ ﻤﻴﻢ اﻷﺻ ﻠﻰ‬
‫ﻟﻠﻔﻠﺘﺮ دون ﺗﺄﺛﻴﺮ ﻋﻠﻰ اﻷداء و ﻳﺴﻤﻰ هﺬا اﻟﺘﺼﻤﻴﻢ اﻟﺠﺪﻳﺪ ﻟﻠﻔﻠﺘﺮ )‪.(redundant filter synthesis‬‬
‫أﺳﺎس اﺳﺘﻨﺘﺎج ﻣﻜﺎﻓﺌﺎت آﻮرودا )‪ (Kuroda's Identities‬هﻮ ﺟﻌﻞ ﻣﺼﻔﻮﻓﺔ )‪ (ABCD‬ﻟﺸﺒﻜﺔ اﻟﻤﻜﻮﻧﺎت اﻟﺒﺪﻳﻠﻪ‬
‫ﺗﺴﺎوى ﻣﺼﻔﻮﻓﺔ )‪ (ABCD‬ﻟﺸﺒﻜﺔ اﻟﻤﻜﻮﻧﺎت اﻷﺻﻠﻴﻪ‪.‬‬
‫ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (٤١ – ٧‬ﻣﺜﺎﻟ ﻴﻦ ﻟﻤﻜﺎﻓ ﺌﺎت آ ﻮرودا ﻳ ﺘﻢ ﻓ ﻴﻬﻤﺎ اﺳ ﺘﺒﺪال ﺷ ﺒﻜﺔ ﻣﻜﻮﻧﺎت أﺻﻠﻴﻪ ﺗﺘﻜﻮن ﻣﻦ ﻋﻨﺼﺮ ﻋﻴﻨﻰ‬
‫)ﻣﻠﻒ أو ﻣﻜﺜﻒ( ﻣﺘﺼﻞ ﺑﻮﺣﺪة ﻋﻨﺼﺮ )‪ (Unit Element UE‬ﺑﺸﺒﻜﻪ أﺧﺮى ﻣﻜﺎﻓﺌﻪ ﺣﻴﺚ ‪:‬‬
‫)‪(7.71‬‬

‫‪Z2‬‬
‫‪Z1‬‬

‫‪n2 = 1+‬‬
‫‪o‬‬

‫و ﺣ ﻴﺚ ﻳﻤﻜ ﻦ اﺳ ﺘﺒﺪال آ ﻞ وﺣ ﺪة ﻋﻨﺼ ﺮ )‪ (UE‬ﺑﺨ ﻂ ارﺳ ﺎل ﻃ ﻮﻟﻪ اﻟﻜﻬﺮﺑ ﻰ ﻳﻜﺎﻓ ﺊ )‪ (45 ≡λg/8‬و ﻟ ﻪ ﻣﻌﺎوﻗ ﻪ‬
‫ﻣﻤﻴﺰﻩ ﺗﺴﺎوى اﻟﻘﻴﻤﻪ اﻟﻤﻮﺿﺤﻪ ﻋﻠﻰ وﺣﺪة اﻟﻌﻨﺼﺮ ﻓﻰ ﺷﻜﻞ )‪.(٤١ – ٧‬‬

‫ﺷﻜﻞ )‪ : (٤١ – ٧‬اﺳﺘﺒﺪال ﺷﺒﻜﺔ ﻣﻜﻮﻧﺎت)ذات ﻣﻜﻮن ﻋﻴﻨﻰ و وﺣﺪة ﻋﻨﺼﺮ( ﺑﺄﺧﺮى وﻓﻘﺎ ﻟﻤﻜﺎﻓﺌﺎت آﻮرودا‪.‬‬

‫ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (٤٢ – ٧‬ﻣﺜﺎﻟ ﻴﻦ ﻟﻤﻜﺎﻓ ﺌﺎت آ ﻮرودا ﻳ ﺘﻢ ﻓ ﻴﻬﻤﺎ اﺳ ﺘﺒﺪال ﺷ ﺒﻜﺔ ﻣﻜ ﻮﻧﺎت أﺻ ﻠﻴﻪ ﺗ ﺘﻜﻮن ﻣ ﻦ ﺧ ﻂ ارﺳﺎل‬
‫ﻣﺘﺼﻞ ﺑﻮﺣﺪة ﻋﻨﺼﺮ )‪ (Unit Element UE‬ﺑﺸﺒﻜﻪ أﺧﺮى ﻣﻜﺎﻓﺌﻪ‪.‬‬

‫‪304‬‬

‫ﺣﻴﺚ ﻓﻰ اﻟﺠﺰء اﻷﻋﻠﻰ ﻣﻦ اﻟﺸﻜﻞ ﻳﺘﻢ ﺣﺴﺎب ﻗﻴﻢ ﺷﺒﻜﺔ اﻟﻤﻜﻮﻧﺎت اﻟﻤﻜﺎﻓﺌﻪ ﻣﻦ اﻟﻤﻌﺎدﻻت اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫)‪(7.72‬‬

‫‪Zo‬‬
‫‪1+ Z oYC‬‬

‫)‪(7.73‬‬

‫‪Z o2 YC‬‬
‫= ‪Z2‬‬
‫‪1 + Z oYC‬‬

‫= ‪Z1‬‬

‫و ﻓﻰ اﻟﺠﺰء اﻷﺳﻔﻞ ﻣﻦ اﻟﺸﻜﻞ ﻳﺘﻢ ﺣﺴﺎب ﻗﻴﻢ ﺷﺒﻜﺔ اﻟﻤﻜﻮﻧﺎت اﻟﻤﻜﺎﻓﺌﻪ ﻣﻦ اﻟﻤﻌﺎدﻻت اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫)‪(7.74‬‬
‫)‪(7.75‬‬

‫‪Z1 = Z o + Z C‬‬
‫‪ZC‬‬
‫) ‪Z o (Z o + Z C‬‬

‫= ‪Y2‬‬

‫ﺷﻜﻞ )‪ : (٤٢ – ٧‬اﺳﺘﺒﺪال ﺷﺒﻜﺔ ﻣﻜﻮﻧﺎت )ﺧﻂ ارﺳﺎل ﻣﺘﺼﻞ ﺑﻮﺣﺪة ﻋﻨﺼﺮ( ﺑﺄﺧﺮى وﻓﻘﺎ ﻟﻤﻜﺎﻓﺌﺎت آﻮرودا‪.‬‬

‫ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (٤٣ – ٧‬أﻣ ﺜﻠﻪ ﻟﻤﻜﺎﻓ ﺌﺎت آ ﻮرودا ﻳ ﺘﻢ ﻓ ﻴﻬﻤﺎ اﺳ ﺘﺒﺪال ﺧﻄ ﻮط ارﺳﺎل ﻣﺰدوﺟﻪ ﺑﺸﺒﻜﺔ ﻣﻜﻮﻧﺎت ﻣﻜﺎﻓﺌﻪ‪.‬‬
‫ﺣ ﻴﺚ )‪ (SC‬ﺗﻌﻨ ﻰ )ﻧﻬﺎﻳ ﻪ ﻣﻐﻠﻘ ﻪ أو ﻣﻮﺻ ﻠﻪ ﺑ ﺎﻷرض ‪ (Short Circuit End‬و )‪ (OC‬ﺗﻌﻨ ﻰ )ﻧﻬﺎﻳ ﻪ ﻣﻔ ﺘﻮﺣﻪ‬
‫‪ .(Open Circuit End‬و ه ﺬﻩ اﻷﻣ ﺜﻠﻪ ﺗﺼ ﻠﺢ ﻟﻠﺘﻄﺒﻴﻖ ﻓﻰ أﻧﻮاع ﻣﺨﺘﻠﻔﻪ ﻣﻦ دواﺋﺮ اﻟﻔﻠﺘﺮ و دواﺋﺮ أﺧﺮى و ﻳﻤﻜﻦ‬
‫اﻟﺮﺟﻮع ﻟﻠﻤﺮﺟﻊ )‪ (1‬ﻟﻤﻌﺮﻓﺔ اﻟﻤﻌﺎدﻻت اﻟﻤﺴﺘﺨﺪﻣﻪ ﻓﻰ آﻞ ﺗﺤﻮﻳﻞ ﺑﺸﻜﻞ )‪.(٤٣ – ٧‬‬

‫‪305‬‬

‫ﺷﻜﻞ )‪ : (٤٣ – ٧‬اﺳﺘﺒﺪال ﺧﻄﻮط ارﺳﺎل ﻣﺰدوﺟﻪ ﺑﺸﺒﻜﺔ ﻣﻜﻮﻧﺎت ﻣﻜﺎﻓﺌﻪ وﻓﻘﺎ ﻟﻤﻜﺎﻓﺌﺎت آﻮرودا‪.‬‬

‫ﻣ ﻦ أه ﻢ ﻓ ﻮاﺋﺪ ﻣﻜﺎﻓ ﺌﺎت آ ﻮرودا أﻧ ﻪ ﻋ ﻨﺪ اﺳ ﺘﺒﺪال ﻣﻜ ﻮﻧﺎت ﻓﻠﺘ ﺮ ﻋﻴﻨ ﻴﻪ ﺑﺎﺳ ﺘﺨﺪام ﺗﺤ ﻮﻳﻼت رﻳﺘﺸ ﺎرد اﻟﻤﺒﻴ ﻨﻪ ﻓ ﻰ‬
‫اﻟﺸ ﻜﻠﻴﻦ )‪ (٣٩ – ٧‬و )‪ ، (٤٠ – ٧‬ﺗﻈﻬ ﺮ ﻣﻜ ﻮﻧﺎت ﻓ ﻰ اﻟﻔﻠﺘ ﺮ اﻟ ﺒﺪﻳﻞ ﻣ ﺜﻞ ﺧ ﻂ ارﺳ ﺎل ﻣﻨﺘﻬ ﻰ ﻧﻬﺎﻳﻪ ﻣﻐﻠﻘﻪ ﻣﺘﺼﻞ‬
‫ﻋﻠ ﻰ اﻟﺘﻮاﻟ ﻰ أو ﺧ ﻂ ارﺳ ﺎل ﻣﻨﺘﻬﻰ ﻧﻬﺎﻳﻪ ﻣﻔﺘﻮﺣﻪ ﻣﺘﺼﻞ ﻋﻠﻰ اﻟﺘﻮاﻟﻰ و هﺬﻩ اﻟﻤﻜﻮﻧﺎت ﻻ ﻳﻤﻜﻦ ﺗﻨﻔﻴﺬهﺎ ﺑﺘﻜﻨﻮﻟﻮﺟﻴﺎ‬
‫اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ‪.‬‬
‫و ﻳﻤﻜ ﻦ ﺣ ﻞ ه ﺬﻩ اﻟﻤﺸ ﻜﻠﻪ ﺑﻮاﺳ ﻄﺔ ﻣﻜﺎﻓ ﺌﺎت آ ﻮرودا ﺑﺎﺿ ﺎﻓﺔ ﺧ ﻂ ارﺳ ﺎل ﻋﻠ ﻰ اﻟﺘﻮاﻟ ﻰ )‪ (redundant‬اﻟﻰ ﺧﻂ‬
‫اﻻرﺳ ﺎل اﻟ ﺬى ﻻ ﻳﻤﻜ ﻦ ﺗﻨﻔ ﻴﺬﻩ ﺛ ﻢ ﺗﺤ ﻮﻳﻠﻬﻤﺎ اﻟﻰ ﺷﺒﻜﺔ ﻣﻜﻮﻧﺎت أﺧﺮى ﺑﺪﻳﻠﻪ ﻳﻤﻜﻦ ﺗﻨﻔﻴﺬهﺎ‪ .‬و ﻳﺒﻴﻦ ﺷﻜﻞ )‪(٤٤ – ٧‬‬
‫ﻣﺜﺎﻟﻴﻦ ﻟﻬﺬﻩ اﻟﻌﻤﻠﻴﻪ‪.‬‬
‫آ ﻼ ﻣ ﻦ اﻟﺠ ﺰء اﻷﻋﻠ ﻰ و اﻷﺳ ﻔﻞ ﻓﻰ ﺷﻜﻞ )‪ (٤٤ – ٧‬ﻳﻮﺿﺢ اﺳﺘﺒﺪال ﺷﺒﻜﺔ ﻣﻜﻮﻧﺎت ﺑﻬﺎ ﺧﻂ ارﺳﺎل ﻣﻨﺘﻬﻰ ﻧﻬﺎﻳﻪ‬
‫ﻣﻐﻠﻘﻪ ﻣﺘﺼﻞ ﻋﻠﻰ اﻟﺘﻮاﻟﻰ )ﻻ ﻳﻤﻜﻦ ﺗﻨﻔﻴﺬﻩ ﻋﻤﻠﻴﺎ( ﺑﺸﺒﻜﺔ ﻣﻜﻮﻧﺎت ﺑﻬﺎ ﺧﻂ ارﺳﺎل ﻣﻨﺘﻬﻰ ﻧﻬﺎﻳﻪ ﻣﻔﺘﻮﺣﻪ ﻣﺘﺼﻞ ﻋﻠﻰ‬
‫اﻟ ﺘﻮازى وه ﺬا ﻳﻤﻜ ﻦ ﺗﻨﻔ ﻴﺬﻩ ﻋﻤﻠ ﻴﺎ‪ .‬ﺣ ﻴﺚ اﻟﻄ ﻮل اﻟﻜﻬﺮﺑ ﻰ )‪ (θ‬ﻣ ﻮﺣﺪ ﻟﺠﻤ ﻴﻊ ﺧﻄ ﻮط اﻻرﺳ ﺎل ﻓ ﻰ آ ﻞ داﺋ ﺮﺗﻴﻦ‬
‫ﻣﺘﻜﺎﻓﺌﺘﻴﻦ ﺑﺎﻟﺸﻜﻞ و )‪ (n2‬ﻣﻌﻄﻰ ﺑﺎﻟﻤﻌﺎدﻟﻪ )‪.(7.71‬‬

‫‪306‬‬

‫ﺷﻜﻞ )‪ : (٤٤ – ٧‬اﺳﺘﺒﺪال ﺷﺒﻜﺔ ﻣﻜﻮﻧﺎت ﺑﻬﺎ ﺧﻄﻮط ارﺳﺎل ﺑﺸﺒﻜﺔ ﻣﻜﻮﻧﺎت ﻣﻜﺎﻓﺌﻪ وﻓﻘﺎ ﻟﻤﻜﺎﻓﺌﺎت آﻮرودا‪.‬‬

‫ﻣ ﺜﺎل )‪ : (٦ – ٧‬ﻣﻄﻠ ﻮب ﺗﺼ ﻤﻴﻢ ﻓﻠﺘ ﺮ ﻣ ﺮور اﻟﺘ ﺮددات اﻟﻤﻨﺨﻔﻀ ﻪ )‪ (LPF‬ﺑﺎﻟﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ ﻣﻦ ﻧﻮع‬
‫ﺗﺸ ﻴﺒﻰ ﺗﺸ ﻴﻒ )‪ (Chebyshev‬ﻋ ﻨﺪ ﺗ ﺮدد ﻗﻄﻊ )‪ (fc = 1.5 GHz‬و رﺗﺒﺔ اﻟﻔﻠﺘﺮ )‪ (n = 3‬و ﻣﻘﺪار اﻟﺘﻤﻮﺟﺎت ﻓﻰ‬
‫اﻟﺤﻴﺰ اﻟﻤﻔﻴﺪ ﻟﻠﻔﻠﺘﺮ ﺑﺎﻟﺪﻳﺴﻴﺒﻞ )‪ (3 dB‬ﻣﻊ اﻋﺘﺒﺎر اﻟﻤﻌﺎوﻗﻪ ﻋﻨﺪ ﻃﺮﻓﻰ اﻟﻔﻠﺘﺮ ﺗﺴﺎوى )‪.(50 Ω‬‬
‫اﻟﺤﻞ ‪:‬‬
‫اﻟﻤﻜ ﻮﻧﺎت اﻟﻤﺘﻄﺒﻌﻪ )‪ (gi‬ﻟﻠﻔﻠﺘﺮ ﻣﻦ ﻧﻮع ﺗﺸﻴﺒﻰ ﺗﺸﻴﻒ ﺑﺎﻟﻨﺴﺒﻪ ﻟﺮﺗﺒﺔ اﻟﻔﻠﺘﺮ )‪ (n = 3‬ﻋﻨﺪﻣﺎ ﻳﻜﻮن ﻣﻘﺪار اﻟﺘﻤﻮﺟﺎت‬
‫ﻓﻰ اﻟﺤﻴﺰ اﻟﻤﻔﻴﺪ ﻟﻠﻔﻠﺘﺮ ﺑﺎﻟﺪﻳﺴﻴﺒﻞ )‪ (3 dB‬ﻣﻌﻄﺎﻩ ﻓﻰ اﻟﺠﺪول اﻟﺘﺎﻟﻰ ‪:‬‬
‫‪g3‬‬
‫‪3.3487‬‬

‫‪g2‬‬
‫‪0.7117‬‬

‫‪g1‬‬
‫‪3.3487‬‬

‫ﺷﻜﻞ )‪ : (٤٥ – ٧‬ﻓﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ ﺑﺎﻟﻤﻜﻮﻧﺎت اﻟﻤﺘﻄﺒﻌﻪ )اﻟﺨﻄﻮﻩ اﻷوﻟﻰ(‪.‬‬

‫‪307‬‬

‫اﻟﺨﻄ ﻮﻩ اﻷوﻟ ﻰ ﻓ ﻰ اﻟﺤ ﻞ ه ﻰ ﺗﺼ ﻤﻴﻢ ﻓﻠﺘ ﺮ ﻣ ﺮور اﻟﺘ ﺮددات اﻟﻤﻨﺨﻔﻀ ﻪ ﺑﺎﻟﻤﻜ ﻮﻧﺎت اﻟﻤﺘﻄ ﺒﻌﻪ ﻣﻊ ﺟﻌﻞ أول ﻣﻜﻮن‬
‫ﻣﻠﻒ )‪ (L1=g1‬ﻓﻴﻜﻮن )‪ (C2=g2‬و )‪ (L3=g3‬آﻤﺎ ﻓﻰ ﺷﻜﻞ )‪.(٤٥ – ٧‬‬
‫اﻟﺨﻄ ﻮﻩ اﻟﺜﺎﻧ ﻴﻪ ه ﻰ ﺗﺤﻮﻳﻞ آﻞ ﻣﻠﻒ )ﻋﻠﻰ اﻟﺘﻮاﻟﻰ( اﻟﻰ ﺧﻂ ارﺳﺎل ذو ﻧﻬﺎﻳﻪ ﻣﻐﻠﻘﻪ )‪ (short circuit‬ﻋﻠﻰ اﻟﺘﻮاﻟﻰ‬
‫‪o‬‬

‫أﻳﻀﺎ وﻓﻘﺎ ﻟﺘﺤﻮﻳﻼت رﻳﺘﺸﺎرد آﻤﺎ ﻓﻰ ﺷﻜﻞ )‪ .(٣٩ – ٧‬و ﺑﺎﺧﺘﻴﺎر ﻃﻮل ﺧﻂ اﻻرﺳﺎل ﻟﻴﻜﺎﻓﺊ )‪ (45 ≡λg/8‬ﺗﻜﻮن‬
‫اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻤﻴ ﺰﻩ ﻟﻪ ﺗﺴﺎوى ﻧﻔﺲ ﻗﻴﻤﺔ اﻟﻤﻠﻒ ‪ .‬أى أن اﻟﻤﻠﻒ )‪ (L1‬ﻳﺴﺘﺒﺪل ﺑﺨﻂ ارﺳﺎل ذو ﻧﻬﺎﻳﻪ ﻣﻐﻠﻘﻪ ﻟﻪ ﻣﻌﺎوﻗﺔ‬
‫ﺗﺴﺎوى )‪ (Z1=g1=3.3487 Ω‬ﻣﻮﺻﻞ ﻋﻠﻰ اﻟﺘﻮاﻟﻰ و اﻟﻤﻠﻒ )‪ (L3‬ﻳﺴﺘﺒﺪل ﺑﺨﻂ ارﺳﺎل ذو ﻧﻬﺎﻳﻪ ﻣﻐﻠﻘﻪ ﻟﻪ ﻣﻌﺎوﻗﺔ‬
‫ﺗﺴﺎوى )‪ (Z3=g3 =3.3487 Ω‬ﻣﻮﺻﻞ ﻋﻠﻰ اﻟﺘﻮاﻟﻰ‪.‬‬
‫و أﻳﻀ ﺎ ﺗﺤ ﻮﻳﻞ اﻟﻤﻜ ﺜﻒ )ﻋﻠ ﻰ اﻟ ﺘﻮازى ‪ (C2‬اﻟ ﻰ ﺧ ﻂ ارﺳ ﺎل ذو ﻧﻬﺎﻳ ﻪ ﻣﻔ ﺘﻮﺣﻪ )‪ (open circuit‬ﻋﻠ ﻰ اﻟ ﺘﻮازى‬
‫‪o‬‬

‫أﻳﻀﺎ وﻓﻘﺎ ﻟﺘﺤﻮﻳﻼت رﻳﺘﺸﺎرد آﻤﺎ ﻓﻰ ﺷﻜﻞ )‪ .(٤٠ – ٧‬و ﺑﺎﺧﺘﻴﺎر ﻃﻮل ﺧﻂ اﻻرﺳﺎل ﻟﻴﻜﺎﻓﺊ )‪ (45 ≡λg/8‬ﺗﻜﻮن‬
‫اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ ﻟﺨﻂ اﻻرﺳﺎل ﺗﺴﺎوى ﻣﻘﻠﻮب ﻗﻴﻤﺔ اﻟﻤﻜﺜﻒ )‪. (Z2= 1 / g2 = 1.405086 Ω‬‬
‫ﺷﻜﻞ )‪ (٤٦ – ٧‬ﻳﻮﺿﺢ اﻟﺨﻄﻮﻩ اﻟﺜﺎﻧﻴﻪ ﻣﻦ اﻟﺤﻞ ﻣﻊ ﺑﻴﺎن أرﻗﺎم ﺧﻄﻮط اﻻرﺳﺎل و ﻗﻴﻢ اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ‪.‬‬

‫ﺷﻜﻞ )‪ : (٤٦ – ٧‬ﺗﺤﻮﻳﻞ اﻟﻤﻜﻮﻧﺎت اﻟﻌﻴﻨﻴﻪ اﻟﻰ ﺧﻄﻮط ارﺳﺎل )اﻟﺨﻄﻮﻩ اﻟﺜﺎﻧﻴﻪ(‪.‬‬
‫اﻟﺨﻄ ﻮﻩ اﻟﺜﺎﻟ ﺜﻪ ﻣ ﻦ اﻟﺤﻞ ﺑﺎﺳﺘﺨﺪام ﻣﻜﺎﻓﺌﺎت آﻮرودا هﻰ اﺿﺎﻓﺔ ﺧﻄﻴﻦ ارﺳﺎل )‪ (a,b‬ﻋﻠﻰ اﻟﺘﻮاﻟﻰ ﻃﻮل آﻞ ﻣﻨﻬﻤﺎ‬
‫‪o‬‬

‫ﻳﻜﺎﻓ ﺊ )‪ (45 ≡λg/8‬ﻣ ﻊ ﺟﻌ ﻞ اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻤﻴﺰﻩ ﻟﻜﻞ ﻣﻨﻬﻤﺎ ﺗﺴﺎوى )‪ (Za =Zb = 1 Ω‬ﻟﻴﻜﻮﻧﺎ ﻣﺘﻮاﻓﻘﻴﻦ ﻣﻊ ﻣﻌﺎوﻗﺔ‬
‫اﻟﺤﻤﻞ )‪ (1 Ω‬و ﺑﺎﻟﺘﺎﻟﻰ ﻻ ﻳﺆﺛﺮان ﻋﻠﻰ أداء اﻟﻔﻠﺘﺮ‪ .‬ﺷﻜﻞ )‪ (٤٧ – ٧‬ﻳﻮﺿﺢ اﻟﺨﻄﻮﻩ اﻟﺜﺎﻟﺜﻪ ﻣﻦ اﻟﺤﻞ‪.‬‬

‫ﺷﻜﻞ )‪ : (٤٧ – ٧‬اﺿﺎﻓﺔ ﺧﻄﻴﻦ ارﺳﺎل )‪ (a,b‬ﻋﻠﻰ اﻟﺘﻮاﻟﻰ )اﻟﺨﻄﻮﻩ اﻟﺜﺎﻟﺜﻪ(‪.‬‬

‫‪308‬‬

‫ﺣ ﻴﺚ أﻧ ﻪ ﻻ ﻳﻤﻜ ﻦ ﺗﻨﻔ ﻴﺬ ﺧﻄ ﻮط اﻻرﺳ ﺎل اﻟﻤﻨﺘﻬ ﻴﻪ ﻧﻬﺎﻳ ﻪ ﻣﻐﻠﻘﻪ و اﻟﻤﺘﺼﻠﻪ ﻋﻠﻰ اﻟﺘﻮاﻟﻰ ) ‪series short circuit‬‬
‫‪ (transmission lines‬أرﻗ ﺎم )‪ (1 , 3‬ﺗﺼ ﺒﺢ اﻟﺨﻄ ﻮﻩ اﻟ ﺮاﺑﻌﻪ ﻣﻦ اﻟﺤﻞ ﺑﺎﺳﺘﺨﺪام ﻣﻜﺎﻓﺌﺎت آﻮرودا هﻰ ﺗﺤﻮﻳﻞ‬
‫اﻟﺨﻄﻴﻦ )‪ (a , 1‬اﻟﻰ ﺧﻂ ارﺳﺎل ﻋﻠﻰ اﻟﺘﻮاﻟﻰ )رﻗﻢ ‪ (e‬و ﺧﻂ ارﺳﺎل ذو ﻧﻬﺎﻳﻪ ﻣﻔﺘﻮﺣﻪ ﻋﻠﻰ اﻟﺘﻮازى )رﻗﻢ ‪، (d‬‬
‫و ﺗﺤ ﻮﻳﻞ اﻟﺨﻄ ﻴﻦ )‪ (3 , b‬اﻟ ﻰ ﺧ ﻂ ارﺳ ﺎل ﻋﻠ ﻰ اﻟﺘﻮاﻟ ﻰ )رﻗ ﻢ ‪ (m‬و ﺧﻂ ارﺳﺎل ذو ﻧﻬﺎﻳﻪ ﻣﻔﺘﻮﺣﻪ ﻋﻠﻰ اﻟﺘﻮازى‬
‫)رﻗﻢ ‪ (k‬وﻓﻘﺎ ﻟﻤﻜﺎﻓﺌﺎت آﻮرودا اﻟﻤﻮﺿﺤﻪ ﻓﻰ ﺷﻜﻞ )‪.(٤٤ – ٧‬‬
‫ﻣﻠﺤ ﻮﻇﻪ ‪ :‬ﻳﺠ ﺐ اﻟﺘﻔ ﺮﻗﻪ ﺑﻴﻦ رﺗﺒﺔ اﻟﻔﻠﺘﺮ )‪ (n = 3‬و ﺑﻴﻦ ﻣﻌﺎﻣﻞ اﻟﺘﺤﻮﻳﻞ اﻟﺨﺎص ﺑﻤﻜﺎﻓﺌﺎت آﻮرودا )‪ (n2‬اﻟﻤﻌﻄﻰ‬
‫ﺑﺎﻟﻤﻌﺎدﻟﻪ )‪ (7.71‬و اﻟﺬى ﻳﺴﺎوى ﻓﻰ ﺣﺎﻟﺘﻰ اﻟﺘﺤﻮﻳﻞ ﺑﺎﻟﺨﻄﻮﻩ اﻟﺮاﺑﻌﻪ‬
‫‪1‬‬
‫‪= 1.29862‬‬
‫‪3.3487‬‬

‫‪n2 = 1+‬‬

‫ﻧﺘ ﻴﺠﺔ اﻟﺨﻄ ﻮﻩ اﻟ ﺮاﺑﻌﻪ ه ﻰ أن ﺟﻤ ﻴﻊ ﺧﻄ ﻮط اﻻرﺳ ﺎل ﺑﺎﻟﻔﻠﺘ ﺮ أﺻ ﺒﺤﺖ ﻗﺎﺑﻠ ﻪ ﻟﻠﺘﻨﻔﻴﺬ ﺑﺎﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ و‬
‫ﻳﻮﺿﺢ ﺷﻜﻞ )‪ (٤٨ – ٧‬ﺷﻜﻞ اﻟﻔﻠﺘﺮ ﺑﻌﺪ اﻟﺘﺤﻮﻳﻞ‪ .‬أﻣﺎ ﻗﻴﻢ اﻟﻤﻌﺎوﻗﺎت اﻟﻤﻤﻴﺰﻩ ﻟﺨﻄﻮط اﻻرﺳﺎل ﻓﻬﻰ آﺎﻟﺘﺎﻟﻰ‪:‬‬

‫‪Ω‬‬

‫‪Zk‬‬
‫‪2‬‬

‫‪Ω‬‬

‫‪Zm‬‬
‫‪2‬‬

‫= ‪n Zb‬‬

‫= ‪n Z3‬‬

‫‪1.29862‬‬

‫‪4.348689‬‬

‫‪Ω‬‬

‫‪Z2‬‬

‫‪1.405086‬‬

‫‪Ω‬‬

‫‪Ze‬‬
‫‪2‬‬

‫‪Ω‬‬

‫‪Zd‬‬
‫‪2‬‬

‫= ‪n Z1‬‬

‫= ‪n Za‬‬

‫‪4.348689‬‬

‫‪1.29862‬‬

‫ﺷﻜﻞ )‪ : (٤٨ – ٧‬ﺷﻜﻞ اﻟﻔﻠﺘﺮ ﺑﻌﺪ اﻟﺘﺤﻮﻳﻞ اﻟﻰ ﺧﻄﻮط ارﺳﺎل ﻳﻤﻜﻦ ﺗﻨﻔﻴﺬهﺎ )اﻟﺨﻄﻮﻩ اﻟﺮاﺑﻌﻪ(‬

‫اﻟﺨﻄ ﻮﻩ اﻟﺨﺎﻣﺴ ﻪ ه ﻰ ﻋﻤ ﻞ ﻗ ﻴﺎس ﻟﻠﻤﻌﺎوﻗﺎت )‪ (impedance scaling‬ﺣﻴﺚ ﺗﻢ ﺣﺴﺎب ﺟﻤﻴﻊ اﻟﻤﻌﺎوﻗﺎت اﻟﻤﻤﻴﺰﻩ‬
‫أﻋ ﻼﻩ ﺑﺎﻟﻨﺴ ﺒﻪ ﻟﺤﻤﻠ ﻴﻦ ﻋﻨﺪ اﻟﻤﺨﺮﺟﻴﻦ آﻞ ﻣﻨﻬﻤﺎ ﻳﺴﺎوى )‪ (1 Ω‬و ﺑﺎﻟﺘﺎﻟﻰ ﻳﺘﻌﻴﻦ ﺿﺮب ﺟﻤﻴﻊ اﻟﻤﻌﺎوﻗﺎت ﻓﻰ )‪(50‬‬
‫ﻟﻠﺤﺼﻮل ﻋﻠﻰ اﻷرﻗﺎم اﻟﺤﻘﻴﻘﻴﻪ ﻟﻠﻤﻌﺎوﻗﺎت اﻟﻤﻤﻴﺰﻩ ﻟﺨﻄﻮط اﻻرﺳﺎل و هﻰ آﺎﻟﺘﺎﻟﻰ‬

‫‪Ω‬‬

‫‪Zk‬‬

‫‪64.931‬‬

‫‪Ω‬‬

‫‪Zm‬‬

‫‪217.434‬‬

‫‪Ω‬‬

‫‪Z2‬‬

‫‪70.2543‬‬
‫‪o‬‬

‫‪Ω‬‬

‫‪Ze‬‬

‫‪217.434‬‬

‫‪Ω‬‬

‫‪Zd‬‬

‫‪64.931‬‬

‫و ﺣ ﻴﺚ أﻧ ﻪ ﻗ ﺪ ﺗ ﻢ اﺧﺘ ﻴﺎر ﻃ ﻮل آ ﻞ ﺧ ﻂ ارﺳ ﺎل ﻟﻴﻜﺎﻓ ﺊ )‪ ، (45 ≡λg/8‬ﻳﻤﻜ ﻦ ﺗﺤ ﻮﻳﻞ ه ﺬﻩ اﻟﺨﻄ ﻮط اﻟ ﻰ ﺧﻄ ﻮط‬
‫ﺷﺮﻳﻄﻴﻪ دﻗﻴﻘﻪ‪.‬‬
‫اذا اﻟﺨﻄﻮﻩ اﻟﺴﺎدﺳﻪ هﻰ اﻟﺘﺤﻮﻳﻞ اﻟﻰ ﺧﻄﻮط ﺷﺮﻳﻄﻴﻪ دﻗﻴﻘﻪ ‪.‬‬

‫‪309‬‬

‫و ﻟﻠ ﺘﻐﻠﺐ ﻋﻠ ﻰ ﻣﺸ ﻜﻠﺔ آﺒ ﺮ اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻤﻴ ﺰﻩ ﻟﻠﺨﻄ ﻴﻦ رﻗﻤ ﻰ )‪ (e , m‬ﻳﻤﻜ ﻦ اﺧﺘ ﻴﺎر ﺛﺎﺑﺖ اﻟﻌﺰل )‪ (εr‬ﺻﻐﻴﺮا و‬
‫ﺳﻤﻚ اﻟﻌﺎزل )‪ (h‬آﺒﻴﺮا ﻟﻠﺸﺮﻳﺤﻪ اﻟﺸﺮﻳﻄﻴﻪ و ذﻟﻚ ﻟﻠﺤﺼﻮل ﻋﻠﻰ أﺑﻌﺎد ﻳﻤﻜﻦ ﺗﻨﻔﻴﺬهﺎ ﺑﺎﻟﺮﻏﻢ ﻣﻦ أن اﻟﺤﺴﺎﺑﺎت ﺳﺘﺘﻢ‬
‫ﻋﻨﺪ ﺗﺮدد ﻣﻨﺨﻔﺾ ﻓﻰ ﺣﻴﺰ اﻟﻤﻴﻜﺮووﻳﻒ و هﻮ ﺗﺮدد اﻟﻘﻄﻊ )‪.(fc = 1.5 GHz‬‬
‫ﺗﻢ اﺧﺘﻴﺎر اﻟﺸﺮﻳﺤﻪ اﻟﺸﺮﻳﻄﻴﻪ ﺑﺎﻟﻤﻮاﺻﻔﺎت اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫ﺛﺎﺑﺖ اﻟﻌﺰل )‪ ( εr =2.2‬و ﺳﻤﻚ اﻟﻌﺎزل )‪ (h = 3.175 mm‬و ﺳﻤﻚ اﻟﻤﻮﺻﻞ )‪. (t = 0.07 mm‬‬
‫ﺗﻢ ادراج ﺧﻄﻴﻦ ﺷﺮﻳﻄﻴﻴﻦ ﻋﻨﺪ اﻟﻤﺪﺧﻠﻴﻦ ﻟﻜﻞ ﻣﻨﻬﻤﺎ ﻣﻌﺎوﻗﻪ ﻣﻤﻴﺰﻩ )‪.(50 Ω‬‬
‫و ﻳﺒﻴﻦ ﺷﻜﻞ )‪ (٤٩ – ٧‬رﺳﻢ رﻣﺰى )‪ (schematic‬ﻟﻠﻔﻠﺘﺮ ﻣﻊ اﻳﻀﺎح رﻣﻮز اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ و أرﻗﺎم اﻟﻤﺨﺎرج‬
‫و ادراج اﻟﻼاﺳﺘﻤﺮارﻳﺎت ﻋﻠﻰ ﺷﻜﻞ ﺣﺮف ‪ (T discontinuities) T‬آﻤﺎ ﻳﺒﺪو ﻓﻰ ﻣﻌﻈﻢ ﺑﺮاﻣﺞ ﺗﺤﻠﻴﻞ اﻟﺪواﺋﺮ‪.‬‬

‫ﺷﻜﻞ )‪ : (٤٩ – ٧‬رﺳﻢ رﻣﺰى ﻟﻔﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ ﺑﺎﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ‪.‬‬

‫ﺗﻢ ﺣﺴﺎب ﻃﻮل )‪ (L‬و ﻋﺮض )‪ (W‬آﻞ ﺧﻂ ﺷﺮﻳﻄﻰ ﻋﻨﺪ ﺗﺮدد اﻟﻘﻄﻊ )‪ (fc = 1.5 GHz‬آﺎﻟﺘﺎﻟﻰ ‪:‬‬

‫‪Lk‬‬

‫]‪[mm‬‬

‫]‪[mm‬‬

‫‪18.41‬‬

‫‪Wk‬‬

‫]‪[mm‬‬

‫‪6.383‬‬

‫‪Lm‬‬

‫]‪[mm‬‬

‫‪19.62‬‬

‫]‪[mm‬‬

‫‪Wm‬‬

‫‪L2‬‬

‫]‪[mm‬‬

‫‪18.48‬‬

‫]‪[mm‬‬

‫‪0.149‬‬

‫‪W2‬‬
‫‪5.565‬‬

‫‪Le‬‬

‫]‪[mm‬‬

‫‪19.62‬‬

‫]‪[mm‬‬

‫‪We‬‬
‫‪0.149‬‬

‫‪Ld‬‬

‫‪18.41‬‬

‫]‪[mm‬‬

‫‪Wd‬‬
‫‪6.383‬‬

‫و آ ﺎن ﻋ ﺮض اﻟﺨ ﻂ ذو اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ )‪ (50 Ω‬ﻳﺴﺎوى )‪ (Wo= 9.698 mm‬و ﺗﻢ اﺧﺘﻴﺎر اﻟﻄﻮل اﻟﻤﺒﺪﺋﻰ ﻟﻪ‬
‫‪o‬‬

‫ﻟﻴﻜﺎﻓﺊ )‪ (45 ≡λg/8‬أو ﻳﺴﺎوى )‪.(Lo= 18.163 mm‬‬
‫ﺗ ﻢ ﻃ ﺮح )‪ (∆l = 1.431 mm‬ﻣ ﻦ ﻃ ﻮل اﻟﺨﻄ ﻴﻦ )‪ ، (Ld , Lk‬و ﻃ ﺮح )‪ (∆l = 1.401 mm‬ﻣ ﻦ ﻃ ﻮل‬
‫اﻟﺨﻂ )‪ (L2‬ﻟﻠﺘﻌﻮﻳﺾ ﻋﻦ )‪ (fringing effect‬اﻟﻨﺎﺗﺞ ﻋﻦ اﻟﻨﻬﺎﻳﻪ اﻟﻤﻔﺘﻮﺣﻪ ﻟﻠﺨﻄﻮط‪ .‬ﺣﻴﺚ )‪ (∆l‬ﻣﻌﻄﺎﻩ ﺑﺎﻟﻤﻌﺎدﻟﻪ‬
‫)‪ (4.2‬ﻓﻰ ﻣﻘﻄﻊ )‪ (١-٢-٤‬ﺑﺎﻟﻔﺼﻞ اﻟﺮاﺑﻊ و ﻳﻤﻜﻦ ﺣﺴﺎﺑﻬﺎ أﻳﻀﺎ ﺑﺒﺮﻧﺎﻣﺞ )‪ (١-٣‬و ﺑﺮﻧﺎﻣﺞ )‪ (٣-٣‬ﺑﺎﻟﻔﺼﻞ اﻟﺜﺎﻟﺚ‬
‫ﻣﻦ هﺬا اﻟﻜﺘﺎب‪.‬‬

‫‪310‬‬

‫ﺗ ﻢ ﺗﺤﻠ ﻴﻞ اﻟﺪاﺋ ﺮﻩ ﺑﺎﺳ ﺘﺨﺪام أﺣ ﺪ ﺑ ﺮاﻣﺞ ﺗﺤﻠ ﻴﻞ دواﺋ ﺮ اﻟﻤﻴﻜ ﺮووﻳﻒ ﺑﺎﻷﺑﻌ ﺎد اﻟﻤﺒﺪﺋ ﻴﻪ اﻟﻤﻌﻄ ﺎﻩ أﻋ ﻼﻩ و آﺎﻧﺖ ﻧﺘﻴﺠﺔ‬
‫اﻟﺘﺤﻠﻴﻞ ﺳﻴﺌﻪ ﺑﺎﻟﻨﺴﺒﻪ ﻟﻘﻴﻢ )‪ (|S21|dB‬و ﻗﻴﻢ )‪ (|S11|dB‬آﻤﺎ ﻳﻮﺿﺢ ﺷﻜﻞ )‪.(٥٠ – ٧‬‬
‫و ﺗﻔﺴ ﻴﺮ ذﻟ ﻚ ه ﻮ أﻧﻨﺎ ادرﺟﻨﺎ اﻟﻼاﺳﺘﻤﺮارﻳﺎت ﻋﻠﻰ ﺷﻜﻞ ﺣﺮف ‪ (T discontinuities) T‬ﻓﻰ اﻟﺘﺤﻠﻴﻞ و هﻮ ﻣﺎ ﻟﻢ‬
‫ﻳﺆﺧﺬ ﻓﻰ اﻻﻋﺘﺒﺎر ﻋﻨﺪ ﺗﺼﻤﻴﻢ اﻟﻔﻠﺘﺮ ﺑﺨﻄﻮط ارﺳﺎل ﻣﺜﺎﻟﻴﻪ‪ .‬و ﻟﻜﻦ ادراج اﻟﻼاﺳﺘﻤﺮارﻳﺎت ﻓﻰ اﻟﺘﺤﻠﻴﻞ أﻣﺮ ﻻﺑﺪ ﻣﻨﻪ‬
‫ﻋﻨﺪ ﺗﺤﻠﻴﻞ أى داﺋﺮﻩ ﺷﺮﻳﻄﻴﻪ ﻟﻠﺤﺼﻮل ﻋﻠﻰ أدق ﻧﺘﻴﺠﻪ ﻣﻤﻜﻨﻪ ﻟﺘﺤﻠﻴﻞ اﻟﺪاﺋﺮﻩ‪.‬‬

‫ﺷﻜﻞ )‪ : (٥٠ – ٧‬ﻧﺘﺎﺋﺞ ﺗﺤﻠﻴﻞ اﻟﻔﻠﺘﺮ ﺑﺎﻷﺑﻌﺎد اﻟﻤﺒﺪﺋﻴﻪ ﻓﻰ ﻣﺜﺎل )‪.(٦ – ٧‬‬

‫أى أن اﻟﺪاﺋ ﺮة ﺗﺤ ﺘﺎج ﻟﻌﻤ ﻞ اﻟ ﺒﺤﺚ ﻋ ﻦ اﻟﺤ ﻞ اﻷﻣ ﺜﻞ )‪ (Optimization‬ﺑﺘﻐﻴﻴ ﺮ اﻷﺑﻌ ﺎد ﻟﻠﺤﺼ ﻮل ﻋﻠ ﻰ اﻷداء‬
‫اﻟﻤﻄﻠ ﻮب أى ﺗﺤﺴ ﻴﻦ ﻗ ﻴﻢ )‪ (|S21|dB‬و )‪ (|S11|dB‬و ﺗ ﻢ ﻋﻤ ﻞ ذﻟ ﻚ ﺑﺎﺳ ﺘﺨﺪام ﺑ ﺮﻧﺎﻣﺞ ﺗﺤﻠ ﻴﻞ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ و‬
‫آﺎﻧﺖ اﻷﺑﻌﺎد اﻟﻨﻬﺎﺋﻴﻪ ﺑﻌﺪ ﻋﻤﻞ )‪ (Optimization‬آﺎﻟﺘﺎﻟﻰ ‪:‬‬

‫‪Lk‬‬

‫]‪[mm‬‬

‫]‪[mm‬‬

‫‪20.0‬‬

‫]‪[mm‬‬

‫‪Wk‬‬

‫‪7.89‬‬

‫‪Lm‬‬

‫]‪[mm‬‬

‫‪18.14‬‬

‫]‪[mm‬‬

‫‪Wm‬‬

‫‪L2‬‬

‫]‪[mm‬‬

‫‪23.0‬‬

‫]‪[mm‬‬

‫‪2.367‬‬

‫‪W2‬‬

‫‪9.0‬‬

‫‪Le‬‬

‫]‪[mm‬‬

‫‪18.14‬‬

‫]‪[mm‬‬

‫‪We‬‬

‫‪Ld‬‬

‫‪20.0‬‬

‫]‪[mm‬‬

‫‪2.367‬‬

‫‪Wd‬‬

‫‪7.89‬‬

‫و آﺎن ﻋﺮض اﻟﺨﻄﻴﻦ ﻋﻨﺪ اﻟﻤﺨﺮﺟﻴﻦ ﻳﺴﺎوى )‪ (Wo= 7.0 mm‬و اﻟﻄﻮل ﻳﺴﺎوى )‪.(Lo= 22.0 mm‬‬
‫و ﻳﻮﺿ ﺢ ﺷ ﻜﻞ )‪ (٥١ – ٧‬ﻧ ﺘﺎﺋﺞ ﺗﺤﻠ ﻴﻞ اﻟﻔﻠﺘ ﺮ ﺑﺎﻷﺑﻌ ﺎد اﻟﻨﻬﺎﺋ ﻴﻪ‪ .‬و ﻳﻮﺿ ﺢ ﺷﻜﻞ )‪ (٥٢ – ٧‬ﻣﺨﻄﻂ اﻟﻔﻠﺘﺮ و رﺳﻢ‬
‫ﺛﻼﺛﻰ اﻷﺑﻌﺎد ﻟﻪ‪.‬‬

‫‪311‬‬

‫ﺷﻜﻞ )‪ : (٥١ – ٧‬ﻧﺘﺎﺋﺞ ﺗﺤﻠﻴﻞ اﻟﻔﻠﺘﺮ ﺑﺎﻷﺑﻌﺎد اﻟﻨﻬﺎﺋﻴﻪ ﻓﻰ ﻣﺜﺎل )‪.(٦ – ٧‬‬

‫ﺷﻜﻞ )‪ : (٥٢ – ٧‬رﺳﻢ ﺛﻼﺛﻰ اﻷﺑﻌﺎد و ﻣﺨﻄﻂ اﻟﻔﻠﺘﺮ ﻓﻰ ﻣﺜﺎل )‪.(٦ – ٧‬‬

‫اﻟﻤ ﺮﺟﻊ )‪ (5‬ﻳﻌﻄﻰ ﻣﺜﺎل ﻟﺘﺼﻤﻴﻢ ﻓﻠﺘﺮ ﻣﺮور ﺗﺮددات ﻣﻨﺨﻔﻀﻪ ﺷﺮﻳﻄﻰ ﺑﺮﺗﺒﺔ ﻓﻠﺘﺮ ﺗﺴﺎوى )‪ (n=3‬ﻋﻨﺪ ﺗﺮدد ﻗﻄﻊ‬
‫)‪ (4 GHz‬و اﻟﻤ ﺮﺟﻊ )‪ (6‬ﻳﻌﻄ ﻰ ﻣ ﺜﺎﻻ ﺁﺧﺮ ﻻﺳﺘﺨﺪام ﻣﻜﺎﻓﺌﺎت آﻮرودا و ﺗﺤﻮﻳﻼت رﻳﺘﺸﺎرد ﻓﻰ اﺳﺘﺒﺪال ﻣﻜﻮﻧﺎت‬
‫ﻓﻠﺘﺮ ﻋﻴﻨﻴﻪ ﺑﺄﺧﺮى ﺷﺮﻳﻄﻴﻪ و ﻟﻜﻦ ﺑﺮﺗﺒﺔ ﻓﻠﺘﺮ ﺗﺴﺎوى )‪ (n=5‬ﻋﻨﺪ ﺗﺮدد ﻗﻄﻊ )‪.(10 GHz‬‬
‫اﻻﻋ ﺘﻤﺎد ﻋﻠ ﻰ اﻟ ﺘﺤﻮﻳﻼت اﻟﻌﺎﻣ ﻪ ﻓ ﻰ ﺗﺼ ﻤﻴﻢ دواﺋ ﺮ اﻟﻔﻠﺘ ﺮ اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﺪﻗ ﻴﻘﻪ ﻟ ﻴﺲ ه ﻮ اﻟﺤ ﻞ اﻟﻮﺣ ﻴﺪ ﻟﺘﺼ ﻤﻴﻢ ه ﺬﻩ‬
‫اﻟﺪواﺋﺮ ‪.‬‬
‫ﻓﻬ ﻨﺎك أﻧ ﻮاع آﺜﻴ ﺮﻩ ﻣ ﻦ دواﺋ ﺮ اﻟﻔﻠﺘ ﺮ اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﺪﻗ ﻴﻘﻪ ‪ ،‬و ﻗﺪ ﺳﺒﻖ اﻟﺘﻌﺮف ﻋﻠﻰ ﺑﻌﻀﻬﺎ ﻓﻰ ﺷﻜﻞ )‪ ، (٢٤ – ٧‬و‬
‫ﻳﻤﻜ ﻦ اﻟﻔﺼ ﻞ ﺑ ﻴﻦ دراﺳ ﺔ آ ﻞ ﻧ ﻮع ﻣ ﻨﻬﺎ ﻋﻠ ﻰ ﺣﺪﻩ‪ .‬و ﻟﻜﻞ ﻧﻮع ﻣﻦ هﺬﻩ اﻟﺪواﺋﺮ ﺗﻮﺟﺪ ﻣﻌﺎدﻻت ﺗﺼﻤﻴﻢ ﻣﻨﻬﺎ ﻣﺎ هﻮ‬
‫ﻣﺒﻨﻰ ﻋﻠﻰ اﻟﺘﺤﻮﻳﻼت اﻟﻌﺎﻣﻪ و ﻣﻨﻬﺎ ﻣﺎ ﻳﺨﺘﻠﻒ ﻓﻰ ﻃﺮﻳﻘﺔ اﻻﺳﺘﻨﺘﺎج‪.‬‬
‫اﻟﻤ ﺮاﺟﻊ )‪ (1,2,4,6,9‬ﺗﺤ ﺘﻮى ﻋﻠ ﻰ ﻣﻌﻠ ﻮﻣﺎت و ﻃ ﺮق اﺛ ﺒﺎت و ﻣﻌ ﺎدﻻت ﺗﺼ ﻤﻴﻢ ﻷﻧ ﻮاع ﻋﺪﻳ ﺪﻩ ﻣﻦ دواﺋﺮ اﻟﻔﻠﺘﺮ‬
‫اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ ‪.‬‬

‫‪312‬‬

‫)ﻤﻘﻁﻊ ‪ (٣-٧‬ﻓﻠﺘﺭ ﻤﺭﻭﺭ ﺍﻟﺘﺭﺩﺩﺍﺕ ﺍﻟﻤﻨﺨﻔﻀﻪ ﻤﻥ ﻨﻭﻉ‬

‫‪: Stepped Impedance‬‬

‫أﺣ ﺪ أﻧ ﻮاع دواﺋ ﺮ ﻓﻠﺘ ﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ اﻟﺸﺮﻳﻄﻴﻪ هﻮ ﻧﻮع )‪ (Stepped Impedance Filter‬أو ﻓﻠﺘﺮ‬
‫اﻟﻤﻌﺎوﻗﻪ اﻟﻤﺘﺪرﺟﻪ و ﻳﺒﻴﻦ ﺷﻜﻞ )‪ (٥٣ – ٧‬داﺋﺮﺗﻴﻦ ﻣﻦ هﺬا اﻟﻨﻮع ﻣﻦ اﻟﻔﻠﺘﺮ‪.‬‬
‫اﻟﺪاﺋ ﺮﻩ اﻟﻤﻮﺿ ﺤﻪ ﻓ ﻰ اﻟﺠﺰء اﻷﻳﻤﻦ ﻣﻦ اﻟﺸﻜﻞ هﻮ ﻓﻠﺘﺮ ذو رﺗﺒﺔ )‪ ، (n = 3‬ﺑﻴﻨﻤﺎ ﻳﻮﺿﺢ اﻟﺠﺰء اﻷﻳﺴﺮ ﻣﻦ اﻟﺸﻜﻞ‬
‫ﻓﻠﺘ ﺮ ذو رﺗ ﺒﺔ )‪ (n = 5‬ﻣﻮﺻ ﻞ ﺑﻤﻮﺻ ﻼت ﻣﺤﻮرﻳﻪ )‪ (coaxial connectors‬ﻣﻦ ﻧﻮع )‪ (SMA‬ﻋﻨﺪ ﻣﺨﺮﺟﻴﻪ‬
‫ﺗﻢ ﻋﺮﺿﻪ ﻣﻦ ﻗﺒﻞ ﻓﻰ اﻟﻔﺼﻞ اﻟﺜﺎﻟﺚ ﻣﻦ اﻟﻜﺘﺎب‪.‬‬

‫ﺷﻜﻞ )‪ : (٥٣ – ٧‬داﺋﺮﺗﻰ ﻓﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ ﻣﻦ ﻧﻮع )‪(Stepped Impedance‬‬

‫ﻓﻜ ﺮة ﺗﺼ ﻤﻴﻢ ه ﺬا اﻟ ﻨﻮع ﻣ ﻦ اﻟﻔﻠﺘ ﺮ ﺗﺄﺗ ﻰ ﻣ ﻦ اﺳ ﺘﺒﺪال ﻣﻜ ﻮﻧﺎت ﻓﻠﺘ ﺮ ﻣ ﺮور اﻟﺘ ﺮددات اﻟﻤﻨﺨﻔﻀ ﻪ ﻣ ﻦ ﻧ ﻮع ) ‪LC‬‬
‫‪ (ladder‬اﻟﻤﺒ ﻴﻦ ﻓ ﻰ اﻟﺸ ﻜﻠﻴﻦ )‪ (٩ – ٧‬و )‪ (١٠ – ٧‬ﺑﺨﻄ ﻮط ﺷ ﺮﻳﻄﻴﻪ دﻗ ﻴﻘﻪ‪ .‬ﺣ ﻴﺚ ﻳﺴ ﺘﺒﺪل آ ﻞ ﻣﻠ ﻒ ﺑﺨ ﻂ‬
‫ﺷ ﺮﻳﻄﻰ دﻗ ﻴﻖ ذو ﻣﻌﺎوﻗ ﻪ ﻣﻤﻴ ﺰﻩ ﻋﺎﻟ ﻴﻪ )‪ (Zhigh‬ﺑﻴ ﻨﻤﺎ ﻳﺴ ﺘﺒﺪل آ ﻞ ﻣﻜ ﺜﻒ ﺑﺨ ﻂ ﺷ ﺮﻳﻄﻰ دﻗﻴﻖ ذو ﻣﻌﺎوﻗﻪ ﻣﻤﻴﺰﻩ‬
‫ﻣﻨﺨﻔﻀﻪ )‪ (Zlow‬آﻤﺎ ﻳﻮﺿﺢ ﺷﻜﻞ )‪.(٥٤ – ٧‬‬

‫ﺷﻜﻞ )‪ : (٥٤ – ٧‬ﻓﻜﺮة ﺗﺼﻤﻴﻢ ﻓﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ ﻣﻦ ﻧﻮع )‪(Stepped Impedance‬‬

‫‪313‬‬

‫و ﻳﻜ ﻮن اﺧﺘ ﻴﺎر اﻟﻤﻌﺎوﻗﺎت اﻟﻤﻤﻴﺰﻩ ﺣﺴﺐ اﻟﺸﺮط )‪ .(Zlow < Zo < Zhigh‬و ﻓﻰ ﺣﺎﻟﺔ )‪ (Zo = 50 Ω‬ﻳﺘﻢ اﺧﺘﻴﺎر‬
‫اﻟﻤﻌﺎوﻗ ﺔ اﻟﻤﻤﻴ ﺰﻩ ﻟﻠﺨ ﻂ اﻟ ﺒﺪﻳﻞ ﻟﻠﻤﻜ ﺜﻒ ﻟ ﺘﻜﻮن ﺑ ﻴﻦ )‪ ، (20 Ω < Zlow < 40 Ω‬و ﻳ ﺘﻢ اﺧﺘ ﻴﺎر اﻟﻤﻌﺎوﻗ ﺔ اﻟﻤﻤﻴ ﺰﻩ‬
‫ﻟﻠﺨﻂ اﻟﺒﺪﻳﻞ ﻟﻠﻤﻠﻒ ﻟﺘﻜﻮن ﺑﻴﻦ )‪ (90 Ω < Zlow < 120 Ω‬ﻣﺜﻼ‪.‬‬
‫و آﻠﻤ ﺎ ﻗﻠ ﺖ ﻗ ﻴﻤﺔ اﻟﻤﻌﺎوﻗ ﺔ اﻟﻤﻤﻴ ﺰﻩ ﻟﻠﺨ ﻂ اﻟﺒﺪﻳﻞ ﻟﻠﻤﻜﺜﻒ )‪ (Zlow‬آﻠﻤﺎ آﺎن ذﻟﻚ ﺗﻘﺮﻳﺒﺎ ﺟﻴﺪا ﻟﻠﻤﻜﺜﻒ و ﻳﺰﻳﺪ ﻋﺮض‬
‫اﻟﺨﻂ اﻟﺒﺪﻳﻞ ﻟﻠﻤﻜﺜﻒ )‪.(Wlow‬‬
‫و آﻠﻤ ﺎ زادت ﻗ ﻴﻤﺔ اﻟﻤﻌﺎوﻗ ﺔ اﻟﻤﻤﻴ ﺰﻩ ﻟﻠﺨ ﻂ اﻟ ﺒﺪﻳﻞ ﻟﻠﻤﻠ ﻒ )‪ (Zhigh‬آﻠﻤ ﺎ آ ﺎن ذﻟ ﻚ ﺗﻘﺮﻳﺒﺎ ﺟﻴﺪا ﻟﻠﻤﻠﻒ و ﻳﻘﻞ ﻋﺮض‬
‫اﻟﺨﻂ اﻟﺒﺪﻳﻞ ﻟﻠﻤﻜﺜﻒ )‪ (Whigh‬و ﻳﺼﻌﺐ ﺗﻨﻔﻴﺬﻩ‪.‬‬
‫اذا اﻋﺘﺒ ﺮﻧﺎ أن ﻃ ﻮل اﻟﻤ ﻮﺟﻪ اﻟﻤ ﻮ ّ‬
‫ﺟﻪ ﻟﻠﺨ ﻂ اﻟ ﺒﺪﻳﻞ‬
‫ﺟﻪ ﻟﻠﺨ ﻂ اﻟ ﺒﺪﻳﻞ ﻟﻠﻤﻜ ﺜﻒ ه ﻮ )‪ (λg-low‬و ﻃ ﻮل اﻟﻤ ﻮﺟﻪ اﻟﻤ ﻮ ّ‬
‫ﻟﻠﻤﻠﻒ هﻮ )‪ ، (λg-high‬ﻳﻤﻜﻨﻨﺎ ﺣﺴﺎب ﻃﻮل اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺒﺪﻳﻞ ﻟﻠﻤﻜﺜﻒ ذو ﻗﻴﻤﻪ )‪ (C‬ﺗﻘﺮﻳﺒﺎ ﻣﻦ اﻟﻤﻌﺎدﻟﻪ ‪:‬‬
‫)‪(7.76‬‬

‫‪λ g −low −1‬‬
‫) ‪sin (ωc C Z low‬‬
‫‪2π‬‬

‫= ‪Llow‬‬

‫و ﻳﻤﻜﻨﻨﺎ ﺣﺴﺎب ﻃﻮل اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺒﺪﻳﻞ ﻟﻠﻤﻠﻒ ذو ﻗﻴﻤﻪ )‪ (L‬ﺗﻘﺮﻳﺒﺎ ﻣﻦ اﻟﻤﻌﺎدﻟﻪ ‪:‬‬
‫)‪(7.77‬‬

‫⎞‪⎛ω L‬‬
‫‪λ g −high‬‬
‫⎟ ‪sin −1 ⎜ c‬‬
‫⎟ ‪⎜Z‬‬
‫‪2π‬‬
‫⎠ ‪⎝ high‬‬

‫= ‪Lhigh‬‬

‫ﺣﻴﺚ )‪ (ωc = 2 π fc‬هﻮ ﺗﺮدد اﻟﻘﻄﻊ ﻟﻠﻔﻠﺘﺮ‪ .‬اﻟﻤﺮﺟﻊ )‪ (1‬ﻳﻌﻄﻰ اﻟﻤﻌﺎدﻻت اﻟﺪﻗﻴﻘﻪ ﻟﺤﺴﺎب )‪ (Llow‬و )‪.(Lhigh‬‬
‫ﻣ ﺜﺎل )‪ : (٧ – ٧‬ﻣﻄﻠ ﻮب ﺗﺼ ﻤﻴﻢ ﻓﻠﺘ ﺮ ﻣ ﺮور اﻟﺘ ﺮددات اﻟﻤﻨﺨﻔﻀ ﻪ )‪ (Stepped Impedance Filter‬ﻣﻦ ﻧﻮع‬
‫ﺗﺸ ﻴﺒﻰ ﺗﺸ ﻴﻒ )‪ (Chebyshev‬ﻋ ﻨﺪ ﺗ ﺮدد ﻗﻄ ﻊ )‪ (fc = 3 GHz‬و رﺗ ﺒﺔ اﻟﻔﻠﺘ ﺮ )‪ (n = 5‬و ﻣﻘ ﺪار اﻟ ﺘﻤﻮﺟﺎت ﻓ ﻰ‬
‫اﻟﺤﻴﺰ اﻟﻤﻔﻴﺪ ﻟﻠﻔﻠﺘﺮ ﺑﺎﻟﺪﻳﺴﻴﺒﻞ )‪ (0.1 dB‬ﻣﻊ اﻋﺘﺒﺎر اﻟﻤﻌﺎوﻗﻪ ﻋﻨﺪ ﻃﺮﻓﻰ اﻟﻔﻠﺘﺮ ﺗﺴﺎوى )‪.(50 Ω‬‬
‫اﻟﺤﻞ ‪:‬‬
‫اﻟﻤﻜ ﻮﻧﺎت اﻟﻤﺘﻄﺒﻌﻪ )‪ (gi‬ﻟﻠﻔﻠﺘﺮ ﻣﻦ ﻧﻮع ﺗﺸﻴﺒﻰ ﺗﺸﻴﻒ ﺑﺎﻟﻨﺴﺒﻪ ﻟﺮﺗﺒﺔ اﻟﻔﻠﺘﺮ )‪ (n = 5‬ﻋﻨﺪﻣﺎ ﻳﻜﻮن ﻣﻘﺪار اﻟﺘﻤﻮﺟﺎت‬
‫ﻓﻰ اﻟﺤﻴﺰ اﻟﻤﻔﻴﺪ ﻟﻠﻔﻠﺘﺮ ﺑﺎﻟﺪﻳﺴﻴﺒﻞ )‪ (0.1 dB‬ﻣﻌﻄﺎﻩ ﻓﻰ اﻟﺠﺪول اﻟﺘﺎﻟﻰ ‪:‬‬
‫‪g5‬‬
‫‪1.146813‬‬

‫‪g4‬‬
‫‪1.371213‬‬

‫‪g3‬‬
‫‪1.975003‬‬

‫‪g2‬‬
‫‪1.371213‬‬

‫‪g1‬‬
‫‪1.146813‬‬

‫اﻟﺨﻄ ﻮﻩ اﻷوﻟ ﻰ ه ﻰ ﺣﺴ ﺎب ﻗﻴﻢ اﻟﻤﻜﻮﻧﺎت اﻟﻌﻴﻨﻴﻪ )اﻟﻤﻠﻔﺎت و اﻟﻤﻜﺜﻔﺎت( ﻟﻔﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ ﻋﻨﺪ ﺗﺮدد‬
‫ﻗﻄ ﻊ )‪ (fc = 3 GHz‬ﺑﺪﻻﻟ ﺔ اﻟﻤﻜ ﻮﻧﺎت اﻟﻤﺘﻄ ﺒﻌﻪ )‪ (gi‬ﻟﻠﻔﻠﺘ ﺮ اﻟﻤﻌﻄ ﺎﻩ أﻋ ﻼﻩ ﺑﺎﺳ ﺘﺨﺪام اﻟﻤﻌﺎدﻟﺘ ﻴﻦ )‪ (7.24‬و‬
‫)‪ (7.25‬و آﺎﻧﺖ اﻟﻨﺘﺎﺋﺞ آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫]‪L5 [nH‬‬
‫‪3.042016‬‬

‫]‪C4 [pF‬‬
‫‪1.454902‬‬

‫]‪L3 [nH‬‬
‫‪5.238859‬‬

‫]‪C2 [pF‬‬
‫‪1.454902‬‬

‫]‪L1 [nH‬‬
‫‪3.042016‬‬

‫ﻓﻰ اﻟﺨﻄﻮﻩ اﻟﺜﺎﻧﻴﻪ ﺗﻢ اﺧﺘﻴﺎر اﻟﺸﺮﻳﺤﻪ اﻟﺸﺮﻳﻄﻴﻪ ﺑﺎﻟﻤﻮاﺻﻔﺎت اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫ﺛﺎﺑﺖ اﻟﻌﺰل )‪ ( εr =2.2‬و ﺳﻤﻚ اﻟﻌﺎزل )‪ (h = 1.575 mm‬و ﺳﻤﻚ اﻟﻤﻮﺻﻞ )‪. (t = 0.07 mm‬‬

‫‪314‬‬

‫ﺗ ﻢ اﺧﺘ ﻴﺎر ﻗ ﻴﻤﺔ اﻟﻤﻌﺎوﻗ ﺔ اﻟﻤﻤﻴ ﺰﻩ ﻟﻠﺨ ﻂ اﻟ ﺒﺪﻳﻞ ﻟﻠﻤﻜ ﺜﻒ )‪ (Zlow= 40 Ω‬و ﻗ ﻴﻤﺔ اﻟﻤﻌﺎوﻗ ﺔ اﻟﻤﻤﻴ ﺰﻩ ﻟﻠﺨ ﻂ اﻟ ﺒﺪﻳﻞ‬
‫ﻟﻠﻤﻠﻒ )‪.(Zhigh = 90 Ω‬‬
‫ﺗ ﻢ ﺣﺴ ﺎب اﻟﻄ ﻮل )‪ (L‬ﺑﺎﺳ ﺘﺨﺪام اﻟﻤﻌﺎدﻟﺘ ﻴﻦ )‪ (7.76‬و )‪ (7.77‬و اﻟﻌ ﺮض )‪ (W‬ﻟﻜ ﻞ ﺧ ﻂ ﺷ ﺮﻳﻄﻰ ﻋ ﻨﺪ ﺗ ﺮدد‬
‫اﻟﻘﻄﻊ )‪ (fc = 3 GHz‬آﺎﻟﺘﺎﻟﻰ ‪:‬‬

‫]‪[mm‬‬

‫‪L5‬‬

‫]‪[mm‬‬

‫‪7.63‬‬

‫]‪[mm‬‬

‫‪W5‬‬

‫‪1.77‬‬

‫‪L4‬‬

‫]‪[mm‬‬

‫‪12.66‬‬

‫]‪[mm‬‬

‫‪W4‬‬

‫‪L3‬‬

‫]‪[mm‬‬

‫‪13.15‬‬

‫]‪[mm‬‬

‫‪6.69‬‬

‫‪W3‬‬

‫‪1.77‬‬

‫‪L2‬‬

‫]‪[mm‬‬

‫‪12.66‬‬

‫]‪[mm‬‬

‫‪W2‬‬

‫‪L1‬‬

‫‪7.63‬‬

‫]‪[mm‬‬

‫‪6.69‬‬

‫‪W1‬‬

‫‪1.77‬‬

‫ﺣ ﻴﺚ )‪ (L1 , W1‬ه ﻰ أﺑﻌ ﺎد اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟ ﺒﺪﻳﻞ ﻟﻠﻤﻠ ﻒ رﻗ ﻢ )‪ (1‬و )‪ (L2 , W2‬ه ﻰ أﺑﻌ ﺎد اﻟﺨ ﻂ اﻟﺸﺮﻳﻄﻰ‬
‫اﻟﺒﺪﻳﻞ ﻟﻠﻤﻜﺜﻒ رﻗﻢ )‪ (2‬و هﻜﺬا و ﻳﺒﻴﻦ ﺷﻜﻞ )‪ (٥٥ – ٧‬ﻣﺨﻄﻂ اﻟﻔﻠﺘﺮ ﻣﻊ اﻳﻀﺎح اﻟﻤﻜﻮﻧﺎت اﻟﻌﻴﻨﻴﻪ اﻟﺒﺪﻳﻠﻪ‪.‬‬
‫ﺗ ﻢ اﺿ ﺎﻓﺔ ﺧﻄ ﻴﻦ ﺷ ﺮﻳﻄﻴﻴﻦ ﻟﻜ ﻞ ﻣﻨﻬﻤﺎ ﻣﻌﺎوﻗﻪ ﻣﻤﻴﺰﻩ )‪ (Zo = 50 Ω‬ﻋﻨﺪ ﻣﺪﺧﻠﻰ اﻟﻔﻠﺘﺮ و آﺎن ﻋﺮض آﻞ ﻣﻨﻬﻤﺎ‬
‫ﻳﺴﺎوى )‪ (Wo= 4.77 mm‬و ﺗﻢ اﺧﺘﻴﺎر اﻟﻄﻮل اﻟﻤﺒﺪﺋﻰ ﻟﻜﻞ ﻣﻨﻬﻤﺎ ﻳﺴﺎوى )‪.(Lo= 15 mm‬‬

‫ﺷﻜﻞ )‪ : (٥٥ – ٧‬ﻣﺨﻄﻂ اﻟﻔﻠﺘﺮ ﻣﻊ اﻳﻀﺎح اﻟﻤﻜﻮﻧﺎت اﻟﻌﻴﻨﻴﻪ اﻟﺒﺪﻳﻠﻪ ﻓﻰ ﻣﺜﺎل )‪(٧ – ٧‬‬

‫اﻟﺨﻄﻮﻩ اﻟﺜﺎﻟﺜﻪ هﻰ ﺗﺤﻠﻴﻞ اﻟﺪاﺋﺮﻩ ﺑﺎﺳﺘﺨﺪام أﺣﺪ ﺑﺮاﻣﺞ ﺗﺤﻠﻴﻞ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ ﺑﺎﻷﺑﻌﺎد اﻟﻤﺒﺪﺋﻴﻪ اﻟﻤﻌﻄﺎﻩ أﻋﻼﻩ ﻣﻊ‬
‫ادراج اﻟﻼاﺳ ﺘﻤﺮارﻳﺎت ﻋﻠ ﻰ ﺷ ﻜﻞ درﺟ ﺔ اﻟﺴﻠﻢ اﻟﻤﺘﻤﺎﺛﻠﻪ )‪ (symmetric step discontinuities‬ﻓﻰ اﻟﺘﺤﻠﻴﻞ و‬
‫ﻳﻮﺿ ﺢ ﺷ ﻜﻞ )‪ (٥٦ – ٧‬رﺳ ﻢ رﻣ ﺰى ﻟﻠﻔﻠﺘ ﺮ آﻤ ﺎ ﻳ ﺒﺪو ﻓ ﻰ ﻣﻌﻈ ﻢ ﺑ ﺮاﻣﺞ ﺗﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ‪ .‬و آﺎﻧ ﺖ ﻧﺘ ﻴﺠﺔ اﻟﺘﺤﻠ ﻴﻞ‬
‫ﺑﺎﻷﺑﻌﺎد اﻟﻤﺒﺪﺋﻴﻪ ﺟﻴﺪﻩ ﺑﺎﻟﻨﺴﺒﻪ ﻟﻘﻴﻢ )‪ (|S21|dB‬و ﻗﻴﻢ )‪ (|S11|dB‬آﻤﺎ ﻳﻮﺿﺢ ﺷﻜﻞ )‪.(٥٧ – ٧‬‬

‫‪315‬‬

‫ﺷﻜﻞ )‪ : (٥٦ – ٧‬رﺳﻢ رﻣﺰى ﻟﻠﻔﻠﺘﺮ ﻓﻰ ﻣﺜﺎل )‪(٧ – ٧‬‬

‫ﺷﻜﻞ )‪ : (٥٧ – ٧‬ﻧﺘﻴﺠﺔ اﻟﺘﺤﻠﻴﻞ ﺑﺎﻷﺑﻌﺎد اﻟﻤﺒﺪﺋﻴﻪ ﻟﻠﻔﻠﺘﺮ ﻓﻰ ﻣﺜﺎل )‪(٧ – ٧‬‬

‫ﺗ ﻢ ﻋﻤ ﻞ اﻟ ﺒﺤﺚ ﻋ ﻦ اﻟﺤ ﻞ اﻷﻣ ﺜﻞ )‪ (Optimization‬ﺑﺘﻐﻴﻴ ﺮ اﻷﺑﻌ ﺎد ﻟﺘﺤﺴ ﻴﻦ اﻷداء أى ﺗﺤﺴ ﻴﻦ ﻗ ﻴﻢ )‪ (|S21|dB‬و‬
‫)‪ (|S11|dB‬ﺑﺎﺳﺘﺨﺪام ﺑﺮﻧﺎﻣﺞ ﺗﺤﻠﻴﻞ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ و آﺎﻧﺖ اﻷﺑﻌﺎد اﻟﻨﻬﺎﺋﻴﻪ آﺎﻟﺘﺎﻟﻰ ‪:‬‬

‫‪L5‬‬

‫]‪[mm‬‬

‫]‪[mm‬‬

‫‪9.16‬‬

‫]‪[mm‬‬

‫‪W5‬‬

‫‪1.5‬‬

‫‪L4‬‬

‫]‪[mm‬‬

‫‪10‬‬

‫]‪[mm‬‬

‫‪W4‬‬

‫‪L3‬‬

‫]‪[mm‬‬

‫‪12.9‬‬

‫]‪[mm‬‬

‫‪8‬‬

‫‪W3‬‬

‫‪1.5‬‬

‫‪L2‬‬

‫]‪[mm‬‬

‫‪10‬‬

‫]‪[mm‬‬

‫‪W2‬‬

‫‪L1‬‬

‫‪9.16‬‬

‫]‪[mm‬‬

‫‪8‬‬

‫‪W1‬‬
‫‪1.5‬‬

‫و آﺎن ﻋﺮض اﻟﺨﻄﻴﻦ ﻋﻨﺪ اﻟﻤﺨﺮﺟﻴﻦ ﻳﺴﺎوى )‪ (Wo= 5 mm‬و اﻟﻄﻮل ﻳﺴﺎوى )‪.(Lo= 14.81 mm‬‬
‫و ﻳﻮﺿ ﺢ ﺷ ﻜﻞ )‪ (٥٨ – ٧‬ﻧ ﺘﺎﺋﺞ ﺗﺤﻠ ﻴﻞ اﻟﻔﻠﺘ ﺮ ﺑﺎﻷﺑﻌ ﺎد اﻟﻨﻬﺎﺋﻴﻪ‪ .‬و ﻳﻮﺿﺢ ﺷﻜﻞ )‪ (٥٩ – ٧‬ﻣﺨﻄﻂ اﻟﻔﻠﺘﺮ و رﺳﻢ‬
‫ﺛﻼﺛﻰ اﻷﺑﻌﺎد ﻟﻪ‪.‬‬

‫‪316‬‬

‫ﺷﻜﻞ )‪ : (٥٨ – ٧‬ﻧﺘﺎﺋﺞ ﺗﺤﻠﻴﻞ اﻟﻔﻠﺘﺮ ﺑﺎﻷﺑﻌﺎد اﻟﻨﻬﺎﺋﻴﻪ ﻓﻰ ﻣﺜﺎل )‪.(٧ – ٧‬‬

‫ﺷﻜﻞ )‪ : (٥٩ – ٧‬رﺳﻢ ﺛﻼﺛﻰ اﻷﺑﻌﺎد و ﻣﺨﻄﻂ اﻟﻔﻠﺘﺮ ﻓﻰ ﻣﺜﺎل )‪.(٧ – ٧‬‬

‫)ﻤﻘﻁﻊ ‪ (٤-٧‬ﻓﻠﺘﺭ ﻤﺭﻭﺭ ﺍﻟﺘﺭﺩﺩﺍﺕ ﺍﻟﻤﻨﺨﻔﻀﻪ ﺒﺎﺴﺘﺨﺩﺍﻡ ﺨﻁﻭﻁ ﺸﺭﻴﻁﻴﻪ ﺫﺍﺕ ﻨﻬﺎﻴﻪ‬
‫ﻤﻔﺘﻭﺤﻪ ﻤﺘﺼﻠﻪ ﻋﻠﻰ ﺍﻟﺘﻭﺍﺯﻯ ‪:‬‬

‫ﻓﻜ ﺮة ﺗﺼ ﻤﻴﻢ ه ﺬا اﻟ ﻨﻮع ﻣ ﻦ اﻟﻔﻠﺘ ﺮ ﺗﺄﺗ ﻰ ﻣ ﻦ اﺳ ﺘﺒﺪال ﻣﻜ ﻮﻧﺎت ﻓﻠﺘ ﺮ ﻣ ﺮور اﻟﺘ ﺮددات اﻟﻤﻨﺨﻔﻀ ﻪ ﻣ ﻦ ﻧ ﻮع ) ‪LC‬‬
‫‪ (ladder‬اﻟﻤﺒ ﻴﻦ ﻓﻰ اﻟﺸﻜﻠﻴﻦ )‪ (٩ – ٧‬و )‪ (١٠ – ٧‬ﺑﺨﻄﻮط ﺷﺮﻳﻄﻴﻪ دﻗﻴﻘﻪ ﻟﺬﻟﻚ ﻳﻄﻠﻖ ﻋﻠﻰ هﺬا اﻟﻨﻮع ﻣﻦ اﻟﻔﻠﺘﺮ‬
‫اﺳﻢ )‪.(L-C Ladder Lowpass Filter with Open-Circuited Stubs‬‬
‫ﺣ ﻴﺚ ﻳﺴ ﺘﺒﺪل آﻞ ﻣﻠﻒ ﻣﺘﺼﻞ ﻋﻠﻰ اﻟﺘﻮاﻟﻰ ﺑﺨﻂ ﺷﺮﻳﻄﻰ دﻗﻴﻖ ذو ﻣﻌﺎوﻗﻪ ﻣﻤﻴﺰﻩ ﻋﺎﻟﻴﻪ )‪ ، (Zhigh‬ﺑﻴﻨﻤﺎ ﻳﺴﺘﺒﺪل‬
‫آ ﻞ ﻣﻜ ﺜﻒ ﻣﺘﺼ ﻞ ﻋﻠ ﻰ اﻟ ﺘﻮازى ﺑﺨ ﻂ ﺷ ﺮﻳﻄﻰ دﻗ ﻴﻖ ذو ﻣﻌﺎوﻗ ﻪ ﻣﻤﻴ ﺰﻩ ﻣﻨﺨﻔﻀ ﻪ )‪ (Zlow‬ﻣﻨﺘﻬ ﻰ ﻧﻬﺎﻳ ﻪ ﻣﻔﺘﻮﺣﻪ‬
‫)‪ (open circuit shunt stub‬و ﻣﺘﺼﻞ ﻋﻠﻰ اﻟﺘﻮازى آﻤﺎ ﻳﻮﺿﺢ ﺷﻜﻞ )‪. (٦٠ – ٧‬‬

‫‪317‬‬

‫ﺷﻜﻞ )‪ : (٦٠ – ٧‬ﻓﻜﺮة ﺗﺼﻤﻴﻢ ﻓﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ ﺑﺎﺳﺘﺨﺪام ﺧﻄﻮط ﺷﺮﻳﻄﻴﻪ ذات ﻧﻬﺎﻳﻪ ﻣﻔﺘﻮﺣﻪ‬
‫ﻣﺘﺼﻠﻪ ﻋﻠﻰ اﻟﺘﻮازى‪.‬‬

‫ﺣﻴﺚ ﻳﺘﻢ اﺧﺘﻴﺎر اﻟﻤﻌﺎوﻗﺎت اﻟﻤﻤﻴﺰﻩ ﺣﺴﺐ اﻟﺸﺮط )‪ .(Zlow < Zo < Zhigh‬و ﻓﻰ ﺣﺎﻟﺔ )‪ (Zo = 50 Ω‬ﻳﺘﻢ اﺧﺘﻴﺎر‬
‫اﻟﻤﻌﺎوﻗ ﺔ اﻟﻤﻤﻴ ﺰﻩ ﻟﻠﺨ ﻂ اﻟ ﺒﺪﻳﻞ ﻟﻠﻤﻜ ﺜﻒ ﻟ ﺘﻜﻮن ﺑ ﻴﻦ )‪ (20 Ω < Zlow < 40 Ω‬ﻣ ﺜﻼ ‪ ،‬و ﻳ ﺘﻢ اﺧﺘ ﻴﺎر اﻟﻤﻌﺎوﻗ ﺔ‬
‫اﻟﻤﻤﻴﺰﻩ ﻟﻠﺨﻂ اﻟﺒﺪﻳﻞ ﻟﻠﻤﻠﻒ ﻟﺘﻜﻮن ﺑﻴﻦ )‪ (90 Ω < Zlow < 120 Ω‬ﻣﺜﻼ‪.‬‬
‫اذا اﻋﺘﺒ ﺮﻧﺎ أن ﻃ ﻮل اﻟﻤ ﻮﺟﻪ اﻟﻤ ﻮ ّ‬
‫ﺟﻪ ﻟﻠﺨ ﻂ اﻟ ﺒﺪﻳﻞ‬
‫ﺟﻪ ﻟﻠﺨ ﻂ اﻟ ﺒﺪﻳﻞ ﻟﻠﻤﻜ ﺜﻒ ه ﻮ )‪ (λg-low‬و ﻃ ﻮل اﻟﻤ ﻮﺟﻪ اﻟﻤ ﻮ ّ‬
‫ﻟﻠﻤﻠﻒ هﻮ )‪ ، (λg-high‬ﻳﻤﻜﻨﻨﺎ ﺣﺴﺎب ﻃﻮل اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺒﺪﻳﻞ ﻟﻠﻤﻜﺜﻒ ذو ﻗﻴﻤﻪ )‪ (C‬ﺗﻘﺮﻳﺒﺎ ﻣﻦ اﻟﻤﻌﺎدﻟﻪ ‪:‬‬
‫)‪(7.78‬‬

‫‪λ g −low‬‬
‫) ‪tan −1 (ωc C Z low‬‬
‫‪2π‬‬

‫= ‪Llow‬‬

‫و ﻳ ﺘﻢ ﻃ ﺮح ﻃ ﻮل ﻣﻘﺪارﻩ )‪ (∆l‬ﻣﻦ ﻗﻴﻤﺔ )‪ (Llow‬ﻟﻠﺘﻌﻮﻳﺾ ﻋﻦ )‪ (fringing effect‬اﻟﻨﺎﺗﺞ ﻋﻦ اﻟﻨﻬﺎﻳﻪ اﻟﻤﻔﺘﻮﺣﻪ‬
‫ﻟﻠﺨﻂ‪ .‬ﺣﻴﺚ )‪ (∆l‬ﻣﻌﻄﺎﻩ ﺑﺎﻟﻤﻌﺎدﻟﻪ )‪ (4.2‬ﻓﻰ ﻣﻘﻄﻊ )‪ (١-٢-٤‬ﺑﺎﻟﻔﺼﻞ اﻟﺮاﺑﻊ‪.‬‬
‫و ﻳﻤﻜﻨﻨﺎ ﺣﺴﺎب ﻃﻮل اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺒﺪﻳﻞ ﻟﻠﻤﻠﻒ ذو ﻗﻴﻤﻪ )‪ (L‬ﺗﻘﺮﻳﺒﺎ ﻣﻦ اﻟﻤﻌﺎدﻟﻪ ‪:‬‬
‫)‪(7.79‬‬

‫⎞‪⎛ω L‬‬
‫‪λ g −high‬‬
‫⎟ ‪sin −1 ⎜ c‬‬
‫⎟ ‪⎜Z‬‬
‫‪2π‬‬
‫⎠ ‪⎝ high‬‬

‫= ‪Lhigh‬‬

‫ﺣﻴﺚ )‪ (ωc = 2 π fc‬هﻮ ﺗﺮدد اﻟﻘﻄﻊ ﻟﻠﻔﻠﺘﺮ‪ .‬اﻟﻤﺮﺟﻊ )‪ (1‬ﻳﻌﻄﻰ اﻟﻤﻌﺎدﻻت اﻟﺪﻗﻴﻘﻪ ﻟﺤﺴﺎب )‪ (Llow‬و )‪.(Lhigh‬‬
‫ﻣ ﺜﺎل )‪ : (٨ – ٧‬ﻣﻄﻠ ﻮب ﺗﺼ ﻤﻴﻢ ﻓﻠﺘ ﺮ ﻣ ﺮور اﻟﺘ ﺮددات اﻟﻤﻨﺨﻔﻀ ﻪ ) ‪L-C Ladder Lowpass Filter with‬‬
‫‪ (Open-Circuited Stubs‬ﻣ ﻦ ﻧ ﻮع ﺗﺸ ﻴﺒﻰ ﺗﺸ ﻴﻒ )‪ (Chebyshev‬ﻋ ﻨﺪ ﺗ ﺮدد ﻗﻄ ﻊ )‪ (fc = 3 GHz‬و رﺗﺒﺔ‬
‫اﻟﻔﻠﺘ ﺮ )‪ (n = 5‬و ﻣﻘ ﺪار اﻟ ﺘﻤﻮﺟﺎت ﻓ ﻰ اﻟﺤﻴ ﺰ اﻟﻤﻔ ﻴﺪ ﻟﻠﻔﻠﺘ ﺮ ﺑﺎﻟﺪﻳﺴ ﻴﺒﻞ )‪ (0.1 dB‬ﻣ ﻊ اﻋﺘﺒﺎر اﻟﻤﻌﺎوﻗﻪ ﻋﻨﺪ ﻃﺮﻓﻰ‬
‫اﻟﻔﻠﺘﺮ ﺗﺴﺎوى )‪.(50 Ω‬‬

‫‪318‬‬

‫اﻟﺤﻞ ‪:‬‬
‫اﻟﻤﻜ ﻮﻧﺎت اﻟﻤﺘﻄﺒﻌﻪ )‪ (gi‬ﻟﻠﻔﻠﺘﺮ ﻣﻦ ﻧﻮع ﺗﺸﻴﺒﻰ ﺗﺸﻴﻒ ﺑﺎﻟﻨﺴﺒﻪ ﻟﺮﺗﺒﺔ اﻟﻔﻠﺘﺮ )‪ (n = 5‬ﻋﻨﺪﻣﺎ ﻳﻜﻮن ﻣﻘﺪار اﻟﺘﻤﻮﺟﺎت‬
‫ﻓﻰ اﻟﺤﻴﺰ اﻟﻤﻔﻴﺪ ﻟﻠﻔﻠﺘﺮ ﺑﺎﻟﺪﻳﺴﻴﺒﻞ )‪ (0.1 dB‬ﻣﻌﻄﺎﻩ ﻓﻰ اﻟﺠﺪول اﻟﺘﺎﻟﻰ ‪:‬‬
‫‪g5‬‬
‫‪1.146813‬‬

‫‪g4‬‬
‫‪1.371213‬‬

‫‪g3‬‬
‫‪1.975003‬‬

‫‪g2‬‬
‫‪1.371213‬‬

‫‪g1‬‬
‫‪1.146813‬‬

‫اﻟﺨﻄ ﻮﻩ اﻷوﻟ ﻰ ه ﻰ ﺣﺴ ﺎب ﻗﻴﻢ اﻟﻤﻜﻮﻧﺎت اﻟﻌﻴﻨﻴﻪ )اﻟﻤﻠﻔﺎت و اﻟﻤﻜﺜﻔﺎت( ﻟﻔﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ ﻋﻨﺪ ﺗﺮدد‬
‫ﻗﻄ ﻊ )‪ (fc = 3 GHz‬ﺑﺪﻻﻟ ﺔ اﻟﻤﻜ ﻮﻧﺎت اﻟﻤﺘﻄ ﺒﻌﻪ )‪ (gi‬ﻟﻠﻔﻠﺘ ﺮ اﻟﻤﻌﻄ ﺎﻩ أﻋ ﻼﻩ ﺑﺎﺳ ﺘﺨﺪام اﻟﻤﻌﺎدﻟﺘ ﻴﻦ )‪ (7.24‬و‬
‫)‪ (7.25‬و آﺎﻧﺖ اﻟﻨﺘﺎﺋﺞ آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫]‪L5 [nH‬‬
‫‪3.042016‬‬

‫]‪C4 [pF‬‬
‫‪1.454902‬‬

‫]‪L3 [nH‬‬
‫‪5.238859‬‬

‫]‪C2 [pF‬‬
‫‪1.454902‬‬

‫]‪L1 [nH‬‬
‫‪3.042016‬‬

‫ﻓﻰ اﻟﺨﻄﻮﻩ اﻟﺜﺎﻧﻴﻪ ﺗﻢ اﺧﺘﻴﺎر اﻟﺸﺮﻳﺤﻪ اﻟﺸﺮﻳﻄﻴﻪ ﺑﺎﻟﻤﻮاﺻﻔﺎت اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫ﺛﺎﺑﺖ اﻟﻌﺰل )‪ ( εr =2.2‬و ﺳﻤﻚ اﻟﻌﺎزل )‪ (h = 1.575 mm‬و ﺳﻤﻚ اﻟﻤﻮﺻﻞ )‪. (t = 0.07 mm‬‬
‫ﺗ ﻢ اﺧﺘ ﻴﺎر ﻗ ﻴﻤﺔ اﻟﻤﻌﺎوﻗ ﺔ اﻟﻤﻤﻴ ﺰﻩ ﻟﻠﺨ ﻂ اﻟ ﺒﺪﻳﻞ ﻟﻠﻤﻜ ﺜﻒ )‪ (Zlow= 40 Ω‬و ﻗ ﻴﻤﺔ اﻟﻤﻌﺎوﻗ ﺔ اﻟﻤﻤﻴ ﺰﻩ ﻟﻠﺨ ﻂ اﻟ ﺒﺪﻳﻞ‬
‫ﻟﻠﻤﻠﻒ )‪.(Zhigh = 90 Ω‬‬
‫ﻣﻠﺤﻮﻇﻪ ‪ :‬هﺬا ﻣﻄﺎﺑﻖ ﺗﻤﺎﻣﺎ ﻟﻼﺧﺘﻴﺎرات ﻓﻰ ﻣﺜﺎل )‪ (٧ - ٧‬اﻟﺴﺎﺑﻖ و ذﻟﻚ ﺑﻐﺮض اﻟﻤﻘﺎرﻧﻪ ﺑﻴﻦ ﻧﻮﻋﻰ اﻟﻔﻠﺘﺮ ﻓﻰ هﺬا‬
‫اﻟﻤﻘﻄﻊ و اﻟﻤﻘﻄﻊ اﻟﺴﺎﺑﻖ‪.‬‬
‫ﺗﻢ ﺣﺴﺎب اﻟﻄﻮل )‪ (L‬ﺑﺎﺳﺘﺨﺪام اﻟﻤﻌﺎدﻟﺘﻴﻦ )‪ (7.78‬و )‪ (7.79‬و اﻟﻌﺮض )‪ (W‬ﻟﻜﻞ ﺧﻂ ﺷﺮﻳﻄﻰ ﻋﻨﺪ ﺗﺮدد اﻟﻘﻄﻊ‬
‫)‪ (fc = 3 GHz‬آﺎﻟﺘﺎﻟﻰ ‪:‬‬

‫]‪[mm‬‬

‫‪L5‬‬

‫]‪[mm‬‬

‫‪7.63‬‬

‫]‪[mm‬‬

‫‪W5‬‬

‫‪1.77‬‬

‫‪L4‬‬

‫]‪[mm‬‬

‫‪9.6‬‬

‫]‪[mm‬‬

‫‪W4‬‬

‫‪L3‬‬

‫]‪[mm‬‬

‫‪13.15‬‬

‫]‪[mm‬‬

‫‪6.69‬‬

‫‪W3‬‬

‫‪L2‬‬

‫]‪[mm‬‬

‫‪9.6‬‬

‫]‪[mm‬‬

‫‪1.77‬‬

‫‪W2‬‬

‫‪6.69‬‬

‫‪L1‬‬
‫‪7.63‬‬

‫]‪[mm‬‬

‫‪W1‬‬

‫‪1.77‬‬

‫ﺣ ﻴﺚ )‪ (L1 , W1‬ه ﻰ أﺑﻌ ﺎد اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟ ﺒﺪﻳﻞ ﻟﻠﻤﻠ ﻒ رﻗ ﻢ )‪ (1‬و )‪ (L2 , W2‬ه ﻰ أﺑﻌ ﺎد اﻟﺨ ﻂ اﻟﺸﺮﻳﻄﻰ‬
‫اﻟﻤﺘﺼﻞ ﻋﻠﻰ اﻟﺘﻮازى و اﻟﻤﻨﺘﻬﻰ ﻧﻬﺎﻳﻪ ﻣﻔﺘﻮﺣﻪ اﻟﺒﺪﻳﻞ ﻟﻠﻤﻜﺜﻒ رﻗﻢ )‪ (2‬و هﻜﺬا‪.‬‬
‫ﺗ ﻢ ﻃ ﺮح )‪ (∆l = 0.775 mm‬ﻣ ﻦ ﻃ ﻮل اﻟﺨﻄ ﻴﻦ )‪ (L2 , L4‬ﻟﻠ ﺘﻌﻮﻳﺾ ﻋ ﻦ )‪ (fringing effect‬اﻟﻨﺎﺗﺞ ﻋﻦ‬
‫اﻟ ﻨﻬﺎﻳﻪ اﻟﻤﻔ ﺘﻮﺣﻪ ﻟﻠﺨﻄﻮط‪ .‬ﺣﻴﺚ )‪ (∆l‬ﻣﻌﻄﺎﻩ ﺑﺎﻟﻤﻌﺎدﻟﻪ )‪ (4.2‬ﻓﻰ ﻣﻘﻄﻊ )‪ (١-٢-٤‬ﺑﺎﻟﻔﺼﻞ اﻟﺮاﺑﻊ و ﻳﻤﻜﻦ ﺣﺴﺎﺑﻬﺎ‬
‫أﻳﻀﺎ ﺑﺒﺮﻧﺎﻣﺞ )‪ (١-٣‬و ﺑﺮﻧﺎﻣﺞ )‪ (٣-٣‬ﺑﺎﻟﻔﺼﻞ اﻟﺜﺎﻟﺚ ﻣﻦ هﺬا اﻟﻜﺘﺎب‪.‬‬
‫ﺗ ﻢ اﺿ ﺎﻓﺔ ﺧﻄ ﻴﻦ ﺷ ﺮﻳﻄﻴﻴﻦ ﻟﻜ ﻞ ﻣ ﻨﻬﻤﺎ ﻣﻌﺎوﻗ ﻪ ﻣﻤﻴﺰﻩ )‪ (Zo = 50 Ω‬ﻋﻨﺪ ﻣﺪﺧﻠﻰ اﻟﻔﻠﺘﺮ و آﺎن ﻋﺮض آﻞ ﻣﻨﻬﻢ‬
‫ﻳﺴﺎوى )‪ (Wo= 4.77 mm‬و ﺗﻢ اﺧﺘﻴﺎر اﻟﻄﻮل اﻟﻤﺒﺪﺋﻰ ﻟﻪ ﻳﺴﺎوى )‪.(Lo= 15 mm‬‬
‫اﻟﺨﻄﻮﻩ اﻟﺜﺎﻟﺜﻪ هﻰ ﺗﺤﻠﻴﻞ اﻟﺪاﺋﺮﻩ ﺑﺎﺳﺘﺨﺪام أﺣﺪ ﺑﺮاﻣﺞ ﺗﺤﻠﻴﻞ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ ﺑﺎﻷﺑﻌﺎد اﻟﻤﺒﺪﺋﻴﻪ اﻟﻤﻌﻄﺎﻩ أﻋﻼﻩ ﻣﻊ‬
‫ادراج اﻟﻼاﺳ ﺘﻤﺮارﻳﺎت ﻓﻰ اﻟﺘﺤﻠﻴﻞ و ﻳﻮﺿﺢ ﺷﻜﻞ )‪ (٦١ – ٧‬رﺳﻢ رﻣﺰى ﻟﻠﻔﻠﺘﺮ آﻤﺎ ﻳﺒﺪو ﻓﻰ ﻣﻌﻈﻢ ﺑﺮاﻣﺞ ﺗﺤﻠﻴﻞ‬
‫‪319‬‬

‫اﻟﺪواﺋ ﺮ ﻣ ﻊ ﺗ ﺮﻗﻴﻢ اﻟﺨﻄ ﻮط و اﻟﻤﺨﺎرج‪ .‬و آﺎﻧﺖ ﻧﺘﻴﺠﺔ اﻟﺘﺤﻠﻴﻞ ﺑﺎﻷﺑﻌﺎد اﻟﻤﺒﺪﺋﻴﻪ ﺟﻴﺪﻩ ﺟﺪا ﺑﺎﻟﻨﺴﺒﻪ ﻟﻘﻴﻢ )‪ (|S21|dB‬و‬
‫ﻗﻴﻢ )‪ (|S11|dB‬آﻤﺎ ﻳﻮﺿﺢ ﺷﻜﻞ )‪.(٦٢ – ٧‬‬

‫ﺷﻜﻞ )‪ : (٦١ – ٧‬رﺳﻢ رﻣﺰى ﻟﻠﻔﻠﺘﺮ ﻓﻰ ﻣﺜﺎل )‪(٨ – ٧‬‬

‫ﺷﻜﻞ )‪ : (٦٢ – ٧‬ﻧﺘﻴﺠﺔ اﻟﺘﺤﻠﻴﻞ ﺑﺎﻷﺑﻌﺎد اﻟﻤﺒﺪﺋﻴﻪ ﻟﻠﻔﻠﺘﺮ ﻓﻰ ﻣﺜﺎل )‪(٨ – ٧‬‬

‫ﺗ ﻢ ﻋﻤ ﻞ اﻟ ﺒﺤﺚ ﻋ ﻦ اﻟﺤ ﻞ اﻷﻣ ﺜﻞ )‪ (Optimization‬ﺑﺘﻐﻴﻴ ﺮ اﻷﺑﻌ ﺎد ﻟﺘﺤﺴ ﻴﻦ اﻷداء أى ﺗﺤﺴ ﻴﻦ ﻗ ﻴﻢ )‪ (|S21|dB‬و‬
‫)‪ (|S11|dB‬ﺑﺎﺳﺘﺨﺪام ﺑﺮﻧﺎﻣﺞ ﺗﺤﻠﻴﻞ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ و آﺎﻧﺖ اﻷﺑﻌﺎد اﻟﻨﻬﺎﺋﻴﻪ آﺎﻟﺘﺎﻟﻰ ‪:‬‬

‫]‪[mm‬‬

‫‪L5‬‬

‫]‪[mm‬‬

‫‪7.63‬‬

‫]‪[mm‬‬

‫‪W5‬‬
‫‪1.9‬‬

‫‪L4‬‬

‫]‪[mm‬‬

‫‪10.99‬‬

‫]‪[mm‬‬

‫‪W4‬‬

‫‪L3‬‬

‫]‪[mm‬‬

‫‪10.38‬‬

‫]‪[mm‬‬

‫‪4.9‬‬

‫‪W3‬‬
‫‪1.63‬‬

‫‪L2‬‬

‫]‪[mm‬‬

‫‪10.99‬‬

‫]‪[mm‬‬

‫‪W2‬‬

‫‪7.63‬‬

‫]‪[mm‬‬

‫‪4.9‬‬

‫و آﺎن ﻋﺮض اﻟﺨﻄﻴﻦ ﻋﻨﺪ اﻟﻤﺨﺮﺟﻴﻦ ﻳﺴﺎوى )‪ (Wo= 4.85 mm‬و اﻟﻄﻮل ﻳﺴﺎوى )‪.(Lo= 15.13 mm‬‬

‫‪320‬‬

‫‪L1‬‬

‫‪W1‬‬
‫‪1.9‬‬

‫و ﻳﻮﺿ ﺢ ﺷ ﻜﻞ )‪ (٦٣– ٧‬ﻧ ﺘﺎﺋﺞ ﺗﺤﻠ ﻴﻞ اﻟﻔﻠﺘ ﺮ ﺑﺎﻷﺑﻌ ﺎد اﻟﻨﻬﺎﺋﻴﻪ‪ .‬و ﻳﻮﺿﺢ ﺷﻜﻞ )‪ (٦٤ – ٧‬ﻣﺨﻄﻂ اﻟﻔﻠﺘﺮ و رﺳﻢ‬
‫ﺛﻼﺛﻰ اﻷﺑﻌﺎد ﻟﻪ‪.‬‬
‫ﻗﺎرن ﺑﻴﻦ اﻟﺪاﺋﺮﺗﻴﻦ ﻓﻰ ﻣﺜﺎل )‪ (٧ – ٧‬و ﻓﻰ ﻣﺜﺎل )‪ (٨ – ٧‬ﻣﻦ ﺣﻴﺚ اﻷﺑﻌﺎد اﻟﻨﻬﺎﺋﻴﻪ و اﻟﻨﺘﺎﺋﺞ‪.‬‬

‫ﺷﻜﻞ )‪ : (٦٣ – ٧‬ﻧﺘﺎﺋﺞ ﺗﺤﻠﻴﻞ اﻟﻔﻠﺘﺮ ﺑﺎﻷﺑﻌﺎد اﻟﻨﻬﺎﺋﻴﻪ ﻓﻰ ﻣﺜﺎل )‪.(٨ – ٧‬‬

‫ﺷﻜﻞ )‪ : (٦٤ – ٧‬رﺳﻢ ﺛﻼﺛﻰ اﻷﺑﻌﺎد و ﻣﺨﻄﻂ اﻟﻔﻠﺘﺮ ﻓﻰ ﻣﺜﺎل )‪.(٨ – ٧‬‬

‫‪321‬‬

‫)ﻤﻘﻁﻊ ‪ (٥-٧‬ﻓﻠﺘﺭ ﻤﺭﻭﺭ ﺍﻟﺘﺭﺩﺩﺍﺕ ﺍﻟﻤﻨﺨﻔﻀﻪ ﻤﻥ ﺍﻟﻨﻭﻉ ﺍﻟﺸﺒﻪ ﻋﻴﻨﻰ ‪:‬‬

‫ﻳﻤﻜ ﻦ ﺗﺼ ﻤﻴﻢ دواﺋﺮ ﻓﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ ﺑﺎﻟﻤﻜﻮﻧﺎت اﻟﻌﻴﻨﻴﻪ ذات ﺗﻘﺮﻳﺒﺎت ﻓﻠﺘﺮ ﻣﻌﻴﻨﻪ ﻣﺜﻞ ﺑﺘﺮوورث و‬
‫ﺗﺸﻴﺒﻰ ﺗﺸﻴﻒ و أداء اﻟﻘﻄﻊ اﻟﻨﺎﻗﺺ أو اﻟﻴﺒﺘﻴﻚ )‪ (Elliptic‬و ﻏﻴﺮهﺎ‪.‬‬
‫ﺑﺎﻟﻨﺴ ﺒﻪ ﻷﻧ ﻮاع اﻟﻔﻠﺘ ﺮ اﻟﻌﻴﻨ ﻴﻪ ﻣ ﺜﻞ ﺑﺘ ﺮوورث و ﺗﺸ ﻴﺒﻰ ﺗﺸ ﻴﻒ ﻳﻤﻜ ﻦ اﺳ ﺘﺨﺪام اﻟﻄﺮﻳﻘﺘﻴﻦ اﻟﻤﺸﺮوﺣﺘﻴﻦ أﻋﻼﻩ ﻓﻰ‬
‫اﻟﻤﻘﻄﻌﻴﻦ اﻟﺴﺎﺑﻘﻴﻦ ﻟﺘﺤﻮﻳﻞ اﻟﻤﻜﻮﻧﺎت اﻟﻌﻴﻨﻴﻪ اﻟﻰ ﺧﻄﻮط ﺷﺮﻳﻄﻴﻪ دﻗﻴﻘﻪ‪.‬‬
‫ﺑﺎﻟﻨﺴ ﺒﻪ ﻟﻔﻠﺘ ﺮ ﻣ ﺮور اﻟﺘ ﺮددات اﻟﻤﻨﺨﻔﻀ ﻪ ﺑﺎﻟﻤﻜ ﻮﻧﺎت اﻟﻌﻴﻨ ﻴﻪ ﻣ ﻦ ﻧ ﻮع اﻟﻘﻄ ﻊ اﻟ ﻨﺎﻗﺺ أو اﻟﻴﺒﺘ ﻴﻚ )‪ (Elliptic‬أو‬
‫)‪ (Cauer Filter‬ﻧﺴ ﺒﺔ ﻟﻤﺨﺘ ﺮﻋﻪ و اﻟ ﺬى ﻳﻌ ﺘﻤﺪ ﺗﺼﻤﻴﻤﻪ ﻋﻠﻰ ﺗﻜﺎﻣﻼت اﻟﻘﻄﻊ اﻟﻨﺎﻗﺺ )‪ (elliptic integrals‬و‬
‫اﻟﻤﺒ ﻴﻦ ﻣﺜﺎﻟ ﻴﻦ ﻟ ﻪ ﻓ ﻰ ﺷ ﻜﻞ )‪ (٦٥ – ٧‬و ﺷﻜﻞ )‪ ، (٦٦ – ٧‬ﻓﺎن اﻟﻄﺮﻳﻘﺘﺎن اﻟﻤﺸﺮوﺣﺘﺎن ﻓﻰ اﻟﻤﻘﻄﻌﻴﻦ اﻟﺴﺎﺑﻘﻴﻦ ﻻ‬
‫ﺗﺼﻠﺤﺎن ﻟﺘﺤﻮﻳﻞ ﻣﻜﻮﻧﺎﺗﻪ اﻟﻰ ﺧﻄﻮط ﺷﺮﻳﻄﻴﻪ دﻗﻴﻘﻪ‪.‬‬
‫ﻟﻜ ﻦ ه ﻨﺎك ﻃ ﺮﻳﻘﻪ ﻟ ﺘﺤﻮﻳﻞ ه ﺬا اﻟ ﻨﻮع ﻣ ﻦ اﻟﻔﻠﺘ ﺮ ﺗﺄﺗ ﻰ ﻣ ﻦ اﺳ ﺘﺒﺪال ﻣﻜ ﻮﻧﺎت اﻟﻔﻠﺘ ﺮ اﻟﻌﻴﻨ ﻴﻪ ﻣ ﻦ ﻣﻠﻔ ﺎت و ﻣﻜ ﺜﻔﺎت‬
‫ﺑﺨﻄ ﻮط ﺷﺮﻳﻄﻴﻪ دﻗﻴﻘﻪ ‪ ،‬و ﻳﻄﻠﻖ ﻋﻠﻰ هﺬا اﻟﻨﻮع ﻣﻦ اﻟﻔﻠﺘﺮ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ اﺳﻢ ﻓﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ‬
‫ﻣ ﻦ اﻟ ﻨﻮع اﻟﺸ ﺒﻪ ﻋﻴﻨ ﻰ ) ‪Semilumped Lowpass Filters with Finite-Frequency Attenuation‬‬
‫‪.( Poles‬‬
‫ﺣ ﻴﺚ ﻳﺴ ﺘﺒﺪل آ ﻞ ﻣﻠ ﻒ ﺑﺨ ﻂ ﺷ ﺮﻳﻄﻰ دﻗ ﻴﻖ ذو ﻣﻌﺎوﻗ ﻪ ﻣﻤﻴ ﺰﻩ ﻋﺎﻟﻴﻪ )‪ ، (Zhigh‬و ﻳﺴﺘﺒﺪل آﻞ ﻣﻜﺜﻒ ﻣﺘﺼﻞ ﻋﻠﻰ‬
‫اﻟ ﺘﻮازى ﺑﺨ ﻂ ﺷ ﺮﻳﻄﻰ دﻗ ﻴﻖ ﻣﺘﺼ ﻞ ﻋﻠ ﻰ اﻟﺘﻮاﻟ ﻰ ﻟﻪ ﻣﻌﺎوﻗﻪ ﻣﻤﻴﺰﻩ ﻣﻨﺨﻔﻀﻪ )‪ ، (Zlow‬ﺑﻴﻨﻤﺎ ﻳﺴﺘﺒﺪل آﻞ ﻣﻜﺜﻒ‬
‫ﻣﺘﺼ ﻞ ﻣ ﻦ ﻃ ﺮﻓﻪ ﺑﻤﻠ ﻒ و ﻣ ﻦ ﻃ ﺮﻓﻪ اﻵﺧ ﺮ ﺑ ﺎﻷرض ﺑﺨ ﻂ ﺷﺮﻳﻄﻰ دﻗﻴﻖ ذو ﻣﻌﺎوﻗﻪ ﻣﻤﻴﺰﻩ ﻣﻨﺨﻔﻀﻪ )‪ (Zlow‬و‬
‫ﻣﻨﺘﻬ ﻰ ﻧﻬﺎﻳ ﻪ ﻣﻔ ﺘﻮﺣﻪ )‪ (open circuit stub‬آﻤ ﺎ ﻳﻮﺿ ﺢ ﺷ ﻜﻞ )‪ (٦٧ – ٧‬اﻟﻤﺤ ﺘﻮى ﻋﻠﻰ ﻓﻠﺘﺮ ﺷﺮﻳﻄﻰ ﻣﻜﺎﻓﺊ‬
‫ﻟﻠﻔﻠﺘ ﺮ اﻟﻌﻴﻨ ﻰ اﻟﻤﺒ ﻴﻦ ﻓ ﻰ ﺷ ﻜﻞ )‪ (٦٥ – ٧‬و آﻤ ﺎ ﻳﻮﺿ ﺢ ﺷ ﻜﻞ )‪ (٦٨ – ٧‬اﻟﻤﺤ ﺘﻮى ﻋﻠ ﻰ ﻓﻠﺘ ﺮ ﺷ ﺮﻳﻄﻰ ﻣﻜﺎﻓ ﺊ‬
‫ﻟﻠﻔﻠﺘﺮ اﻟﻌﻴﻨﻰ اﻟﻤﺒﻴﻦ ﻓﻰ ﺷﻜﻞ )‪.(٦٦ – ٧‬‬
‫ﺣﻴﺚ ﻳﻮﺿﺢ آﻼ ﻣﻦ ﺷﻜﻞ )‪ (٦٧ – ٧‬و ﺷﻜﻞ )‪ (٦٨ – ٧‬اﻟﻌﻨﺼﺮ اﻟﻌﻴﻨﻰ اﻟﻤﻜﺎﻓﺊ ﻟﻜﻞ ﺧﻂ ﺷﺮﻳﻄﻰ دﻗﻴﻖ‪.‬‬

‫ﺷﻜﻞ )‪ : (٦٥ – ٧‬ﻓﻠﺘﺮ ﻣﺮور ﺗﺮددات ﻣﻨﺨﻔﻀﻪ ﻣﻦ ﻧﻮع اﻟﻘﻄﻊ اﻟﻨﺎﻗﺺ )‪ (Elliptic‬ذو رﺗﺒﻪ )‪(n=7‬‬

‫‪322‬‬

‫ﺷﻜﻞ )‪ : (٦٦ – ٧‬ﻓﻠﺘﺮ ﻣﺮور ﺗﺮددات ﻣﻨﺨﻔﻀﻪ ﻣﻦ ﻧﻮع اﻟﻘﻄﻊ اﻟﻨﺎﻗﺺ )‪ (Elliptic‬ذو رﺗﺒﻪ )‪(n=8‬‬

‫ﺷﻜﻞ )‪ : (٦٧ – ٧‬ﻓﻠﺘﺮ ﻣﺮور ﺗﺮددات ﻣﻨﺨﻔﻀﻪ ﺷﺮﻳﻄﻰ ﻣﻦ ﻧﻮع اﻟﻘﻄﻊ اﻟﻨﺎﻗﺺ ذو رﺗﺒﻪ )‪ (n=7‬ﻣﻜﺎﻓﺊ ﻟﻠﻔﻠﺘﺮ‬
‫اﻟﻌﻴﻨﻰ اﻟﻤﺒﻴﻦ ﻓﻰ ﺷﻜﻞ )‪(٦٥ – ٧‬‬

‫ﺷﻜﻞ )‪ : (٦٨ – ٧‬ﻓﻠﺘﺮ ﻣﺮور ﺗﺮددات ﻣﻨﺨﻔﻀﻪ ﺷﺮﻳﻄﻰ ﻣﻦ ﻧﻮع اﻟﻘﻄﻊ اﻟﻨﺎﻗﺺ ذو رﺗﺒﻪ )‪ (n=8‬ﻣﻜﺎﻓﺊ ﻟﻠﻔﻠﺘﺮ‬
‫اﻟﻌﻴﻨﻰ اﻟﻤﺒﻴﻦ ﻓﻰ ﺷﻜﻞ )‪(٦٦ – ٧‬‬

‫‪323‬‬

‫ﻳﻤﻜ ﻦ ﺗﻠﺨ ﻴﺺ ﺧﻄ ﻮات ﺗﺼ ﻤﻴﻢ اﻟﻔﻠﺘ ﺮ اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ ﻟﻤ ﺮور اﻟﺘ ﺮددات اﻟﻤﻨﺨﻔﻀ ﻪ ﻣ ﻦ اﻟ ﻨﻮع اﻟﺸ ﺒﻪ ﻋﻴﻨ ﻰ‬
‫)‪ ( Semilumped Lowpass Filters with Finite-Frequency Attenuation Poles‬آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫اﻟﺨﻄ ﻮﻩ اﻷوﻟ ﻰ ‪ :‬ه ﻰ ﺣﺴ ﺎب أو ﺗﺤﺪﻳ ﺪ اﻟﻤﻜ ﻮﻧﺎت اﻟﻤﺘﻄ ﺒﻌﻪ )‪ (gi‬ﺑﺎﻟﻨﺴ ﺒﻪ ﻟﻔﻠﺘ ﺮ ﻣ ﺮور اﻟﺘ ﺮددات اﻟﻤﻨﺨﻔﻀ ﻪ‬
‫ﺑﺎﻟﻤﻜﻮﻧﺎت اﻟﻌﻴﻨﻴﻪ ﻣﻦ ﻧﻮع اﻟﻘﻄﻊ اﻟﻨﺎﻗﺺ أو اﻟﻴﺒﺘﻴﻚ )‪ (Elliptic‬أو )‪.(Cauer Filter‬‬
‫و ﻳﻤﻜ ﻦ اﻟ ﺮﺟﻮع اﻟ ﻰ اﻟﻤ ﺮاﺟﻊ )‪ (1, 8 , 10‬ﻟﻤﻌ ﺮﻓﺔ اﻟﻤﻌﺎدﻻت و اﻟﺠﺪاول اﻟﺨﺎﺻﻪ ﺑﺎﻟﻤﻜﻮﻧﺎت اﻟﻤﺘﻄﺒﻌﻪ )‪ (gi‬ﻟﻬﺬا‬
‫اﻟﻨﻮع ﻣﻦ اﻟﻔﻠﺘﺮ‪.‬‬
‫اﻟﺨﻄ ﻮﻩ اﻟﺜﺎﻧ ﻴﻪ ‪ :‬هﻰ ﺣﺴﺎب ﻗﻴﻢ اﻟﻤﻜﻮﻧﺎت اﻟﻌﻴﻨﻴﻪ ﺑﺎﻟﻨﺴﺒﻪ ﻟﻔﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ ﻣﻦ ﻧﻮع اﻟﻘﻄﻊ اﻟﻨﺎﻗﺺ‬
‫ﺑﺎﺳﺘﺨﺪام اﻟﻤﻌﺎدﻟﺘﻴﻦ )‪ (7.24‬و )‪: (7.25‬‬

‫‪gi‬‬

‫‪Z oωc‬‬

‫= ‪Ci‬‬

‫‪gi Z o‬‬

‫‪,‬‬

‫‪ωc‬‬

‫= ‪Li‬‬

‫ﺣﻴﺚ اﻟﻤﻘﺎوﻣﻪ )أو اﻟﻤﻌﺎوﻗﺔ( ﻋﻨﺪ ﻃﺮف اﻟﻔﻠﺘﺮ ﺗﺴﺎوى )‪ (Zo‬و ﺗﺮدد اﻟﻘﻄﻊ )‪.(ωc = 2 π fc‬‬
‫اﻟﺨﻄ ﻮﻩ اﻟﺜﺎﻟ ﺜﻪ ‪ :‬ﻳ ﺘﻢ اﺧﺘ ﻴﺎر ﻣﻮاﺻ ﻔﺎت اﻟﺸ ﺮﻳﺤﻪ اﻟﺸ ﺮﻳﻄﻴﻪ و ﺣﺴ ﺎب ﻃ ﻮل و ﻋ ﺮض آ ﻞ ﺧ ﻂ ﺷ ﺮﻳﻄﻰ ﻣﻜﺎﻓ ﺊ‬
‫ﻟﻠﻤﻜﻮﻧﺎت اﻟﻌﻴﻨﻴﻪ ﺑﺎﻟﻨﺴﺒﻪ ﻟﻔﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ ﻣﻦ ﻧﻮع اﻟﻘﻄﻊ اﻟﻨﺎﻗﺺ ﻣﻦ اﻟﻤﻌﻠﻮﻣﺎت اﻟﺘﺎﻟﻴﻪ‪.‬‬
‫ﻳ ﺘﻢ اﺧﺘ ﻴﺎر اﻟﻤﻌﺎوﻗ ﺎت اﻟﻤﻤﻴ ﺰﻩ ﺣﺴ ﺐ اﻟﺸ ﺮط )‪ .(Zlow < Zo < Zhigh‬و ﻓ ﻰ ﺣﺎﻟ ﺔ )‪ (Zo = 50 Ω‬ﻳ ﺘﻢ اﺧﺘ ﻴﺎر‬
‫اﻟﻤﻌﺎوﻗ ﺔ اﻟﻤﻤﻴ ﺰﻩ ﻟﻠﺨ ﻂ اﻟ ﺒﺪﻳﻞ ﻟﻠﻤﻜ ﺜﻒ ﻟ ﺘﻜﻮن ﺑ ﻴﻦ )‪ (15 Ω < Zlow < 40 Ω‬ﻣ ﺜﻼ ‪ ،‬و ﻳ ﺘﻢ اﺧﺘ ﻴﺎر اﻟﻤﻌﺎوﻗ ﺔ‬
‫اﻟﻤﻤﻴﺰﻩ ﻟﻠﺨﻂ اﻟﺒﺪﻳﻞ ﻟﻠﻤﻠﻒ ﻟﺘﻜﻮن ﺑﻴﻦ )‪ (90 Ω < Zlow < 120 Ω‬ﻣﺜﻼ‪.‬‬
‫ﻓ ﺎذا اﻋﺘﺒ ﺮﻧﺎ أن ﻃ ﻮل اﻟﻤ ﻮﺟﻪ اﻟﻤﻮ ّ‬
‫ﺟﻪ‬
‫ﺟﻪ ﻟﻠﺨﻂ اﻟﺒﺪﻳﻞ ﻟﻠﻤﻜﺜﻒ هﻮ )‪ (λg-low‬ﻋﻨﺪ ﺗﺮدد اﻟﻘﻄﻊ و ﻃﻮل اﻟﻤﻮﺟﻪ اﻟﻤﻮ ّ‬
‫ﻟﻠﺨ ﻂ اﻟ ﺒﺪﻳﻞ ﻟﻠﻤﻠ ﻒ ه ﻮ )‪ (λg-high‬ﻋ ﻨﺪ ﺗ ﺮدد اﻟﻘﻄﻊ ‪ ،‬ﻳﻤﻜﻨﻨﺎ ﺣﺴﺎب ﻃﻮل اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺒﺪﻳﻞ ﻟﻠﻤﻜﺜﻒ ذو ﻗﻴﻤﻪ‬
‫)‪ (C‬ﺗﻘﺮﻳﺒﺎ ﻣﻦ اﻟﻤﻌﺎدﻟﻪ ‪:‬‬

‫‪λ g −low‬‬
‫) ‪sin −1 (ω c C Z low‬‬
‫‪2π‬‬

‫= ‪Llow‬‬

‫و ﻓﻰ ﺣﺎﻟﺔ اﻟﺨﻂ اﻟﻤﻨﺘﻬﻰ ﻧﻬﺎﻳﻪ ﻣﻔﺘﻮﺣﻪ ﻳﺘﻢ ﻃﺮح ﻃﻮل ﻣﻘﺪارﻩ )‪ (∆l‬ﻣﻦ ﻗﻴﻤﺔ )‪ (Llow‬ﻟﻠﺘﻌﻮﻳﺾ ﻋﻦ ) ‪fringing‬‬
‫‪ (effect‬اﻟ ﻨﺎﺗﺞ ﻋ ﻦ اﻟ ﻨﻬﺎﻳﻪ اﻟﻤﻔ ﺘﻮﺣﻪ ﻟﻠﺨ ﻂ‪ .‬ﺣ ﻴﺚ )‪ (∆l‬ﻣﻌﻄ ﺎﻩ ﺑﺎﻟﻤﻌﺎدﻟ ﻪ )‪ (4.2‬ﻓ ﻰ ﻣﻘﻄ ﻊ )‪ (١-٢-٤‬ﺑﺎﻟﻔﺼ ﻞ‬
‫اﻟﺮاﺑﻊ‪.‬‬
‫و ﻳﻤﻜﻨﻨﺎ ﺣﺴﺎب ﻃﻮل اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺒﺪﻳﻞ ﻟﻠﻤﻠﻒ ذو ﻗﻴﻤﻪ )‪ (L‬ﺗﻘﺮﻳﺒﺎ ﻣﻦ اﻟﻤﻌﺎدﻟﻪ ‪:‬‬

‫⎞ ‪λ g −high −1 ⎛ ω c L‬‬
‫⎟‬
‫⎜ ‪sin‬‬
‫⎟ ‪⎜Z‬‬
‫‪2π‬‬
‫‪high‬‬
‫⎝‬
‫⎠‬

‫= ‪Lhigh‬‬

‫اﻟﻤﺮﺟﻊ )‪ (1‬ﻳﻌﻄﻰ اﻟﻤﻌﺎدﻻت اﻟﺪﻗﻴﻘﻪ ﻟﺤﺴﺎب )‪ (Llow‬و )‪.(Lhigh‬‬
‫اﻟﺨﻄ ﻮﻩ اﻟ ﺮاﺑﻌﻪ ‪ :‬ه ﻰ ﺗﺤﻠﻴﻞ اﻟﺪاﺋﺮﻩ ﺑﺎﺳﺘﺨﺪام أﺣﺪ ﺑﺮاﻣﺞ ﺗﺤﻠﻴﻞ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ ﺑﺎﻷﺑﻌﺎد اﻟﻤﺒﺪﺋﻴﻪ اﻟﻤﺤﺴﻮﺑﻪ ﻓﻰ‬
‫اﻟﺨﻄ ﻮﻩ اﻟﺜﺎﻟ ﺜﻪ ﻣ ﻊ ادراج اﻟﻼاﺳ ﺘﻤﺮارﻳﺎت ﻓﻰ اﻟﺘﺤﻠﻴﻞ‪ .‬و ﻋﻤﻞ اﻟﺒﺤﺚ ﻋﻦ اﻟﺤﻞ اﻷﻣﺜﻞ )‪ (Optimization‬ﺑﺘﻐﻴﻴﺮ‬
‫اﻷﺑﻌﺎد ﻟﺘﺤﺴﻴﻦ اﻷداء اذا آﺎن ﻣﺨﺘﻠﻔﺎ ﻋﻦ اﻟﻘﻴﻢ اﻟﻤﻄﻠﻮﺑﻪ‪.‬‬
‫ﻳﺠ ﺐ اﺳ ﺘﺨﺪام ﻃ ﺮﻳﻘﻪ آﻬﺮوﻣﻐﻨﺎﻃﻴﺴ ﻴﻪ ﻟﺘﺤﻠ ﻴﻞ اﻟﺪاﺋ ﺮﻩ اذا آ ﺎن اﻟﺒ ﺮﻧﺎﻣﺞ اﻟﻤﺴ ﺘﺨﺪم ﻟﻠﺘﺤﻠﻴﻞ ﻻ ﻳﺤﺘﻮى ﻋﻠﻰ ﻧﻤﻮذج‬
‫ﻟﻼاﺳﺘﻤﺮارﻳﺎت ﻋﻠﻰ ﺷﻜﻞ درﺟﺔ اﻟﺴﻠﻢ ﺑﻴﻦ ﺧﻄﻴﻦ ﺷﺮﻳﻄﻴﻴﻦ ﻳﻮﺟﺪ ﻓﺮق آﺒﻴﺮ ﻓﻰ اﻟﻌﺮض ﺑﻴﻨﻬﻤﺎ‪.‬‬
‫‪324‬‬

‫اﻟﻤ ﺮﺟﻊ )‪ (1‬ﻳﻌﻄ ﻰ ﻣ ﺜﺎﻻ آﺎﻣﻼ ﻟﺘﺼﻤﻴﻢ اﻟﻔﻠﺘﺮ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ ﻟﻤﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ ﻣﻦ اﻟﻨﻮع اﻟﺸﺒﻪ ﻋﻴﻨﻰ‬
‫)‪ ( Semilumped Lowpass Filters with Finite-Frequency Attenuation Poles‬ﺑﺮﺗﺒﺔ )‪.(n=6‬‬

‫)ﻤﻘﻁﻊ ‪ (٦-٧‬ﻓﻠﺘﺭ ﻤﺭﻭﺭ ﺍﻟﺘﺭﺩﺩﺍﺕ ﺍﻟﻤﻨﺨﻔﻀﻪ ﻤﻥ ﻨﻭﻉ ‪: Hairpin LPF‬‬

‫اﻟﻤ ﺮﺟﻊ )‪ (14‬ﻳﺸ ﺮح ﺗﺼ ﻤﻴﻢ ﻓﻠﺘ ﺮ ﻣ ﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ ﻣﻦ ﻧﻮع )‪ (Hairpin LPF‬ﺑﺎﺳﺘﺨﺪام ﻋﻨﺼﺮ رﻧﻴﻦ‬
‫)دﺑ ﻮس اﻟﺸ ﻌﺮ ‪ (Hairpin‬ﻣ ﻦ ﻧ ﻮع اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤ ﺘﺪرﺟﻪ )‪(Stepped Impedance Hairpin Resonator‬‬
‫اﻟﻤﺒﻴﻦ ﻓﻰ ﺷﻜﻞ )‪.(٦٩ – ٧‬‬

‫ﻣﺨﻄﻂ‬

‫رﺳﻢ رﻣﺰى‬

‫ﺷﻜﻞ )‪ : (٦٩ – ٧‬ﻋﻨﺼﺮ رﻧﻴﻦ دﺑﻮس اﻟﺸﻌﺮ ﻣﻦ ﻧﻮع اﻟﻤﻌﺎوﻗﻪ اﻟﻤﺘﺪرﺟﻪ‬
‫)‪(Stepped Impedance Hairpin Resonator‬‬

‫و ﻓﻜ ﺮة ﺗﺼ ﻤﻴﻢ ﻋﻨﺼ ﺮ اﻟ ﺮﻧﻴﻦ ﺑﻬ ﺬا اﻟﺸ ﻜﻞ ﺗﺄﺗ ﻰ ﻣ ﻦ ﺗﺤ ﻮﻳﻞ اﻟﺸ ﻜﻞ اﻟﻤﺄﻟ ﻮف ﻟﻌﻨﺎﺻ ﺮ ﻓﻠﺘ ﺮ ﻣ ﺮور اﻟﺘ ﺮددات‬
‫اﻟﻤﻨﺨﻔﻀ ﻪ اﻟﻤ ﺘﻜﻮن ﻣ ﻦ ﺧ ﻂ ﺷ ﺮﻳﻄﻰ ﻋﻠ ﻰ اﻟﺘﻮاﻟﻰ ﻣﺘﺼﻞ ﺑﻴﻦ ﺧﻄﻴﻦ ﺷﺮﻳﻄﻴﻴﻦ ﻣﺘﺼﻠﻴﻦ ﻋﻠﻰ اﻟﺘﻮازى و ﻣﻨﺘﻬﻴﻴﻦ‬
‫ﺑﻨﻬﺎﻳﻪ ﻣﻔﺘﻮﺣﻪ ﺣﺴﺐ اﻟﻤﺮﺟﻊ )‪.(14‬‬
‫و وﻓﻘ ﺎ ﻟﻠﺮﺳ ﻢ اﻟﺮﻣ ﺰى ﻓ ﻰ ﺷ ﻜﻞ )‪ (٦٩ – ٧‬ﻳ ﺘﻜﻮن ﻋﻨﺼ ﺮ اﻟ ﺮﻧﻴﻦ ﻣ ﻦ ﺧﻄ ﻴﻦ ﺷ ﺮﻳﻄﻴﻴﻦ ﻣ ﺰدوﺟﻴﻦ ﻟﻬﻤ ﺎ ﻣﻌﺎوﻗﻪ‬
‫ﻣﻤﻴ ﺰﻩ ﻟﺘ ﺮﺗﻴﺐ اﻟﻤﺠ ﺎل اﻟﺰوﺟ ﻰ )‪ (Zoel‬و ﻣﻌﺎوﻗ ﻪ ﻣﻤﻴ ﺰﻩ ﻟﺘ ﺮﺗﻴﺐ اﻟﻤﺠ ﺎل اﻟﻔ ﺮدى )‪ (Zool‬ﻓ ﻰ اﻟﺠﺰء اﻷﻋﻠﻰ ‪ ،‬أﻣﺎ‬
‫اﻟﺠ ﺰء اﻷﺳ ﻔﻞ ﻣ ﻦ ﻋﻨﺼ ﺮ اﻟ ﺮﻧﻴﻦ ﻓﻴ ﺘﻜﻮن ﻣ ﻦ ﺧﻄ ﻴﻦ ﺷ ﺮﻳﻄﻴﻴﻦ ﻣ ﺰدوﺟﻴﻦ ﻟﻬﻤ ﺎ ﻣﻌﺎوﻗ ﻪ ﻣﻤﻴ ﺰﻩ ﻟﺘ ﺮﺗﻴﺐ اﻟﻤﺠ ﺎل‬

‫‪325‬‬

‫اﻟﺰوﺟ ﻰ )‪ (Zoes‬و ﻣﻌﺎوﻗ ﻪ ﻣﻤﻴ ﺰﻩ ﻟﺘ ﺮﺗﻴﺐ اﻟﻤﺠ ﺎل اﻟﻔ ﺮدى )‪ ، (Zoos‬و ﻣﺘﺼ ﻠﻴﻦ ﻣ ﻦ ﻃ ﺮﻓﻴﻬﻤﺎ ﺑﺎﻟﺠ ﺰء اﻷﻋﻠﻰ ﻣﻦ‬
‫ﻋﻨﺼﺮ اﻟﺮﻧﻴﻦ و ﻳﻨﺘﻬﻰ آﻞ ﻣﻦ اﻟﻄﺮﻓﻴﻦ اﻵﺧﺮﻳﻦ ﺑﻨﻬﺎﻳﻪ ﻣﻔﺘﻮﺣﻪ )‪.(open circuit‬‬
‫اذا اﻋﺘﺒﺮﻧﺎ ﻣﻘﻠﻮب اﻟﻤﻌﺎوﻗﺎت اﻟﻤﻤﻴﺰﻩ ﻟﻠﺨﻄﻴﻦ اﻟﺸﺮﻳﻄﻴﻴﻦ اﻟﻤﺰدوﺟﻴﻦ آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫)‪ (Yoel =1/ Zoel‬و )‪ (Yool =1/ Zool‬و )‪ (Yoes =1/ Zoes‬و )‪ (Yoos =1/ Zoos‬ﻓ ﺎن ﻣﻌﺎﻣ ﻞ اﻻرﺳ ﺎل‬
‫ﻟﻔﻠﺘﺮ ﻣﺘﻜﻮن ﻣﻦ ﻋﻨﺼﺮ رﻧﻴﻦ واﺣﺪ ﻳﺴﺎوى‬

‫(‬

‫)‬

‫‪jYo cot θ Yoel + Yoes − Yoos + Yool cot 2 θ‬‬
‫= ‪S 21‬‬
‫‪∆Y1 cot 2θ − Yoel Yoos − Yoes Yoos + jYo ∆Y2 cot θ‬‬
‫ﺣﻴﺚ‬

‫‪∆Y2 = Yoel + Yoes + Yoos − Yool cot 2θ‬‬

‫‪,‬‬

‫‪∆Y1 = Yo2 + Yoel Yool + Yoes Yool‬‬
‫‪o‬‬

‫ﺣ ﻴﺚ )‪ (Zo =1/ Yo‬ه ﻰ اﻟﻤﻌﺎوﻗ ﻪ ﻋ ﻨﺪ ﻃﺮﻓ ﻰ اﻟﻔﻠﺘ ﺮ‪ .‬و ﻳﻔﻀ ﻞ اﺧﺘ ﻴﺎر )‪ (θ = 90 ≡λgm/4‬ﺣ ﻴﺚ )‪(λgm‬‬
‫ﻣﻮﺟﻮدﻩ ﺑﺎﻟﻤﻌﺎدﻟﻪ )‪ (4.51‬ﻓﻰ اﻟﻔﺼﻞ اﻟﺮاﺑﻊ‪.‬‬
‫اﻟﻤ ﺮﺟﻊ )‪ (14‬ﻳﻌﻄ ﻰ ﺗﺤﻠ ﻴﻞ ﻟﻠﻔﻠﺘ ﺮ ﻓ ﻰ ﺣﺎﻟﺔ )‪ (Zoel = 79.7 Ω‬و )‪ (Zool = 43.78 Ω‬ﻟﺜﻼﺛﺔ ﺣﺎﻻت ‪ ،‬اﻟﺤﺎﻟﻪ‬
‫اﻷوﻟ ﻰ ﻋ ﻨﺪ )‪ (Zoes = 43.8 Ω‬و )‪ ، (Zoos = 28.1 Ω‬و اﻟﺤﺎﻟ ﻪ اﻟﺜﺎﻧ ﻴﻪ ﻋ ﻨﺪ )‪ (Zoes = 44.9 Ω‬و‬
‫)‪ ، (Zoos = 26 Ω‬و اﻟﺤﺎﻟ ﻪ اﻟﺜﺎﻟ ﺜﻪ ﻋ ﻨﺪ )‪ (Zoes = 46.2 Ω‬و )‪ . (Zoos = 22.7 Ω‬و ﻳﻤﻜﻦ اﺛﺒﺎت أن اﻟﺤﻴﺰ‬
‫اﻟﺘﺮددى ﻓﻰ اﻟﺤﺎﻟﻪ اﻟﺜﺎﻟﺜﻪ ﻳﻜﻮن أآﺒﺮ ﻣﻦ اﻟﺤﺎﻟﻪ اﻟﺜﺎﻧﻴﻪ و أن اﻟﺤﻴﺰ اﻟﺘﺮددى ﻓﻰ اﻟﺤﺎﻟﻪ اﻟﺜﺎﻧﻴﻪ أآﺒﺮ ﻣﻦ اﻟﺤﺎﻟﻪ اﻷوﻟﻰ‬
‫ﺑﺎﻟﺘﻌﻮﻳﺾ ﻓﻰ ﻣﻌﺎدﻟﺔ ﻣﻌﺎﻣﻞ اﻻرﺳﺎل ﻟﻠﻔﻠﺘﺮ‪.‬‬

‫ﺷﻜﻞ )‪ : (٧٠ – ٧‬ﻣﺨﻄﻂ ﻓﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ ﻣﻦ ﻧﻮع )‪ (Hairpin LPF‬ﺑﺮﺗﺒﺔ )‪(n=3‬‬

‫‪326‬‬

‫و ﺑﺎﺿ ﺎﻓﺔ ﺧﻄ ﻴﻦ ﺷ ﺮﻳﻄﻴﻴﻦ ﻟﻜ ﻞ ﻣﻨﻬﻤﺎ ﻣﻌﺎوﻗﻪ ﻣﻤﻴﺰﻩ )‪ (Zo = 50 Ω‬ﻋﻨﺪ ﻣﺪﺧﻠﻰ اﻟﻔﻠﺘﺮ ﻳﺼﺒﺢ ﻣﺨﻄﻂ اﻟﻔﻠﺘﺮ آﻤﺎ‬
‫ﻓ ﻰ ﺷ ﻜﻞ )‪ .(٧٠ – ٧‬و ﻓ ﻴﻤﺎ ﻳﻠﻰ ﻣﺜﺎل رﻗﻤﻰ ﻟﺘﺼﻤﻴﻢ ﻓﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ ﻣﻦ ﻧﻮع )‪(Hairpin LPF‬‬
‫ﻋﻨﺪ ﺗﺮدد ﻗﻄﻊ )‪ (fc = 3 GHz‬و رﺗﺒﺔ اﻟﻔﻠﺘﺮ )‪ (n = 3‬ﻣﻊ اﻋﺘﺒﺎر اﻟﻤﻌﺎوﻗﻪ ﻋﻨﺪ ﻃﺮﻓﻰ اﻟﻔﻠﺘﺮ ﺗﺴﺎوى )‪.(50 Ω‬‬
‫ﺗﻢ اﺧﺘﻴﺎر اﻟﺸﺮﻳﺤﻪ اﻟﺸﺮﻳﻄﻴﻪ ﺑﺎﻟﻤﻮاﺻﻔﺎت اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫ﺛﺎﺑﺖ اﻟﻌﺰل )‪ ( εr =2.2‬و ﺳﻤﻚ اﻟﻌﺎزل )‪ (h = 1.575 mm‬و ﺳﻤﻚ اﻟﻤﻮﺻﻞ )‪. (t = 0.07 mm‬‬
‫‪o‬‬

‫و اﺧﺘ ﻴﺎر ) ‪ (θ = 90‬و اﺧﺘ ﻴﺎر )‪ (Zoel = 79.7 Ω‬و )‪ (Zool = 43.78 Ω‬ﻟﻠﺨﻄﻴﻦ اﻟﺸﺮﻳﻄﻴﻴﻦ اﻟﻤﺰدوﺟﻴﻦ‬
‫ﻓ ﻰ اﻟﺠ ﺰء اﻷﻋﻠ ﻰ ﻣ ﻦ ﻋﻨﺼ ﺮ اﻟ ﺮﻧﻴﻦ و )‪ (Zoes = 46.2 Ω‬و )‪ (Zoos = 22.7 Ω‬ﻟﻠﺨﻄ ﻴﻦ اﻟﺸ ﺮﻳﻄﻴﻴﻦ‬
‫اﻟﻤﺰدوﺟﻴﻦ ﻓﻰ اﻟﺠﺰء اﻟﺴﻔﻠﻰ‪.‬‬
‫ﺑﺎﺳ ﺘﺨﺪام اﻟﻤﻌ ﺎدﻻت و اﻟﺒ ﺮاﻣﺞ اﻟﻤﻌﻄ ﺎﻩ ﻓﻰ ﻣﻘﻄﻊ )‪ (٤-٤‬ﻳﻤﻜﻦ ﺣﺴﺎب أﺑﻌﺎد آﻞ ﺧﻄﻴﻦ ﺷﺮﻳﻄﻴﻴﻦ ﻣﺰدوﺟﻴﻦ وهﻰ‬
‫اﻟﻄﻮل و اﻟﻌﺮض و اﻟﻤﺴﺎﻓﻪ اﻟﺒﻴﻨﻴﻪ )‪ (L , W , S‬ﺑﻨﺎء ﻋﻠﻰ اﻻﺧﺘﻴﺎرات اﻟﻤﺬآﻮرﻩ أﻋﻼﻩ‪.‬‬
‫ﺑﺤﺴﺎب أﺑﻌﺎد اﻟﺨﻄﻴﻦ اﻟﺸﺮﻳﻄﻴﻴﻦ اﻟﻤﺰدوﺟﻴﻦ ﻓﻰ اﻟﺠﺰء اﻷﻋﻠﻰ ﻣﻦ ﻋﻨﺼﺮ اﻟﺮﻧﻴﻦ ﻧﺠﺪ أن ‪:‬‬
‫اﻟﻄﻮل )‪ (LL = 22.76 mm‬و اﻟﻌﺮض )‪ (WL = 3.22 mm‬و اﻟﻤﺴﺎﻓﻪ اﻟﺒﻴﻨﻴﻪ )‪.(SL = 0.335 mm‬‬
‫أﻣﺎ أﺑﻌﺎد اﻟﺨﻄﻴﻦ اﻟﺸﺮﻳﻄﻴﻴﻦ اﻟﻤﺰدوﺟﻴﻦ ﻓﻰ اﻟﺠﺰء اﻟﺴﻔﻠﻰ ﻣﻦ ﻋﻨﺼﺮ اﻟﺮﻧﻴﻦ ﻓﺘﻜﻮن آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫اﻟﻄ ﻮل )‪ (LS = 12.43 mm‬و اﻟﻌ ﺮض )‪ (WS = 6.85 mm‬و اﻟﻤﺴ ﺎﻓﻪ اﻟﺒﻴﻨ ﻴﻪ )‪ (SS = 0.016 mm‬و ه ﻰ‬
‫ﻣﺴ ﺎﻓﻪ ﻳﺼ ﻌﺐ ﺗﺼ ﻨﻴﻌﻬﺎ ﺑﺎﻣﻜﺎﻧ ﻴﺎت ﻃ ﺒﺎﻋﺔ اﻟﺪواﺋ ﺮ اﻟﻌﺎدﻳ ﻪ و ﺑﺎﻟﺘﺎﻟ ﻰ ﻳﺼ ﻌﺐ ﺗﻨﻔ ﻴﺬ ه ﺬا اﻟﻔﻠﺘ ﺮ ﺑﺎﻟ ﺮﻏﻢ ﻣ ﻦ اﺧﺘﻴﺎر‬
‫ﺷﺮﻳﺤﻪ ذات ﺛﺎﺑﺖ ﻋﺰل ﺻﻐﻴﺮ و ﺳﻤﻚ ﻋﺎزل آﺒﻴﺮ‪.‬‬
‫ﺷﻜﻞ )‪ (٧١ – ٧‬ﻳﺒﻴﻦ ﻣﺨﻄﻂ ﻓﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ ﻣﻦ ﻧﻮع )‪ (Hairpin LPF‬ﺑﺮﺗﺒﺔ )‪.(n=5‬‬
‫اﻟﻤ ﺮﺟﻊ )‪ (14‬ﻳﻌﻄ ﻰ ﻣﺜﺎﻟ ﻴﻦ ﻟﺘﺼ ﻤﻴﻢ ﻓﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ ﻣﻦ ﻧﻮع )‪ (Hairpin LPF‬ﻣﻦ ﻧﻮع ﺗﺸﻴﺒﻰ‬
‫ﺗﺸﻴﻒ‪.‬‬

‫ﺷﻜﻞ )‪ : (٧١ – ٧‬ﻣﺨﻄﻂ ﻓﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ ﻣﻦ ﻧﻮع )‪ (Hairpin LPF‬ﺑﺮﺗﺒﺔ )‪(n=5‬‬

‫‪327‬‬

‫)ﻤﻘﻁﻊ ‪ (٧-٧‬ﻓﻠﺘﺭ ﻤﺭﻭﺭ ﺤﻴﺯ ﺘﺭﺩﺩﻯ ﻤﻌﻴﻥ ﻤﻥ ﻨﻭﻉ ‪: Coupled Lines BPF‬‬

‫ﻣ ﻦ أﺷ ﻬﺮ أﻧ ﻮاع ﻓﻠﺘ ﺮ ﻣ ﺮور اﻟﺤﻴ ﺰ اﻟﺘﺮددى اﻟﻤﻌﻴﻦ اﻟﺸﺮﻳﻄﻴﻪ هﻮ ﻓﻠﺘﺮ ﻣﺮور ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ ﻣﻦ ﻧﻮع اﻟﺨﻄﻮط‬
‫اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﻤ ﺰدوﺟﻪ )‪ (Microstrip Parallel Coupled Lines BPF or Edge Coupled BPF‬و ه ﻨﺎك‬
‫اﻟﻌﺪﻳﺪ ﻣﻦ ﻣﻌﺎدﻻت اﻟﺘﺼﻤﻴﻢ اﻟﻤﺨﺘﻠﻔﻪ ﻟﻬﺬا اﻟﻨﻮع ﻣﻦ اﻟﻔﻠﺘﺮ‪.‬‬
‫ﻳ ﺘﻜﻮن ه ﺬا اﻟﻔﻠﺘﺮ ﻣﻦ ﻋﺪد ﻣﻦ اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﻤﺰدوﺟﻪ اﻟﻤﺘﺼﻠﻪ ﺑﺒﻌﻀﻬﺎ آﻤﺎ ﻓﻰ ﺷﻜﻞ )‪ (٧٢ – ٧‬و ﻗﺪ ﺗﻨﺘﻬﻰ‬
‫اﻟﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﻤ ﺰدوﺟﻪ ﺑ ﻨﻬﺎﻳﻪ ﻣﻔ ﺘﻮﺣﻪ آﻤ ﺎ ﻓ ﻰ اﻟﺸ ﻜﻞ و ﻗ ﺪ ﺗﻨﺘﻬﻰ ﺑﻨﻬﺎﻳﻪ ﻣﻐﻠﻘﻪ ‪ ،‬و ﻳﻤﻜﻦ اﻟﺮﺟﻮع ﻟﻠﻤﺮﺟﻊ‬
‫)‪ (2‬ﻟﺪراﺳﺔ اﻟﻨﻮﻋﻴﻦ‪ .‬هﺬا اﻟﻔﻠﺘﺮ ﻳﻤﻜﻦ أن ﻳﺤﻘﻖ ﺣﻴﺰ ﺗﺮددى ﻧﺴﺒﻰ أﻗﻞ ﻣﻦ أو ﻳﺴﺎوى )‪.(0.15 or 15%‬‬

‫ﺷﻜﻞ )‪ : (٧٢ – ٧‬ﻓﻠﺘﺮ ﻣﺮور ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ ﻣﻦ ﻧﻮع اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﻤﺰدوﺟﻪ‬

‫ﺷﻜﻞ )‪ : (٧٣ – ٧‬رﺳﻢ رﻣﺰى ﻟﻔﻠﺘﺮ ﻣﺮور ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ ﻳﺘﻜﻮن ﻣﻦ ﻗﺎﻟﺒﺎت ﻣﻘﻠﻮب ﻣﻌﺎوﻗﻪ‬

‫ﺑﺎﺳ ﺘﺨﺪام اﻟﻤﻜ ﻮﻧﺎت اﻟﻤﺘﻄ ﺒﻌﻪ )‪ (gi‬اﻟﺨﺎﺻ ﻪ ﺑﻔﻠﺘ ﺮ ﻣ ﺮور اﻟﺘ ﺮددات اﻟﻤﻨﺨﻔﻀ ﻪ ﻷى ﻧﻮع ﻣﻦ ﺗﻘﺮﻳﺒﺎت اﻟﻔﻠﺘﺮ ) ﻣﺜﻞ‬
‫ﺑﺘﺮوورث و ﺗﺸﻴﺒﻰ ﺗﺸﻴﻒ و ﻏﻴﺮهﺎ( ﻳﻤﻜﻦ اﺳﺘﻨﺘﺎج ﻓﻠﺘﺮ ﻣﺮور ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ ﻳﺘﻜﻮن ﻣﻦ ﻗﺎﻟﺒﺎت ﻣﻘﻠﻮب ﻣﻌﺎوﻗﻪ‬
‫ﻣﺘﺼﻠﻪ ﻣﻦ ﻧﻬﺎﻳﺘﻬﺎ )‪ (cascaded J-inverters‬آﻤﺎ ﻓﻰ ﺷﻜﻞ )‪.(٧٣ – ٧‬‬
‫‪328‬‬

‫و ﺑ ﺘﺤﻮﻳﻞ آ ﻞ ﻗﺎﻟ ﺐ ﻣﻘﻠ ﻮب ﻣﻌﺎوﻗ ﻪ ﻓ ﻰ ﺷ ﻜﻞ )‪ (٧٣ – ٧‬اﻟ ﻰ ﺧﻄﻴﻦ ﺷﺮﻳﻄﻴﻴﻦ ﻣﺰدوﺟﻴﻦ ﻧﺤﺼﻞ ﻓﻰ اﻟﻨﻬﺎﻳﻪ ﻋﻠﻰ‬
‫ﻓﻠﺘ ﺮ ﻣ ﺮور ﺣﻴ ﺰ ﺗ ﺮددى ﻣﻌ ﻴﻦ ﻣﻦ ﻧﻮع اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﻤﺰدوﺟﻪ )‪(Microstrip Coupled Lines BPF‬‬
‫و هﺬﻩ اﻟﻔﻜﺮﻩ ﻣﻮﺿﺤﻪ ﻓﻰ ﺷﻜﻞ )‪. (٧٤ – ٧‬‬

‫ﺷﻜﻞ )‪ : (٧٤ – ٧‬ﻓﻜﺮة ﺗﺼﻤﻴﻢ ﻓﻠﺘﺮ ﻣﺮور ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ ﻣﻦ ﻧﻮع اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﻤﺰدوﺟﻪ‬

‫ﻟﺘﺼﻤﻴﻢ اﻟﻔﻠﺘﺮ ﻳﺘﻢ ﺣﺴﺎب ﻗﻴﻢ ﻗﺎﻟﺒﺎت ﻣﻘﻠﻮب اﻟﻤﻌﺎوﻗﻪ ﺑﺪﻻﻟﺔ اﻟﻤﻜﻮﻧﺎت اﻟﻤﺘﻄﺒﻌﻪ )‪ (gi‬ﺑﺎﺳﺘﺨﺪام اﻟﻤﻌﺎدﻻت اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫)‪(7.80‬‬

‫)‪(7.81‬‬

‫‪π BW‬‬
‫‪2 g o g1‬‬

‫‪1‬‬
‫‪g i g i +1‬‬

‫‪, i = 1,2, …, n−1‬‬

‫)‪(7.82‬‬

‫‪J 0,1 = Yo‬‬

‫‪BW π‬‬
‫‪2 g n g n+1‬‬

‫‪BW π Yo‬‬
‫‪2‬‬

‫= ‪J i , i+1‬‬

‫‪J n , n +1 = Yo‬‬

‫ﺣ ﻴﺚ )‪ (BW‬ه ﻮ اﻟﺤﻴﺰ اﻟﺘﺮددى اﻟﻨﺴﺒﻰ ﻟﻠﻔﻠﺘﺮ و )‪ (Zo =1/ Yo‬هﻰ اﻟﻤﻌﺎوﻗﻪ ﻋﻨﺪ ﻃﺮﻓﻰ اﻟﻔﻠﺘﺮ و )‪ (n‬هﻰ رﺗﺒﺔ‬
‫اﻟﻔﻠﺘﺮ‪ .‬و )‪ (go , gn+1‬هﻤﺎ اﻟﻤﻌﺎوﻗﺘﺎن اﻟﻤﺘﻄﺒﻌﺘﺎن )‪ (normalized impedances‬ﻋﻨﺪ ﻣﺪﺧﻠﻰ اﻟﻔﻠﺘﺮ‪.‬‬
‫و ﺑﺪﻻﻟ ﺔ ﻗ ﻴﻢ ﻗﺎﻟ ﺒﺎت ﻣﻘﻠ ﻮب اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﺤﺴ ﻮﺑﻪ أﻋ ﻼﻩ ﻳﻤﻜ ﻦ ﺣﺴ ﺎب اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻤﻴ ﺰﻩ ﻟﺘ ﺮﺗﻴﺐ اﻟﻤﺠﺎل اﻟﺰوﺟﻰ و‬
‫اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ ﻟﺘﺮﺗﻴﺐ اﻟﻤﺠﺎل اﻟﻔﺮدى ﻟﻜﻞ ﺧﻄﻴﻦ ﺷﺮﻳﻄﻴﻴﻦ ﻣﺰدوﺟﻴﻦ ﺑﺎﻟﻔﻠﺘﺮ ﻣﻦ اﻟﻤﻌﺎدﻟﺘﻴﻦ اﻟﺘﺎﻟﻴﺘﻴﻦ ‪:‬‬
‫)‪(7.83‬‬

‫‪, i =0, 1,2, …, n‬‬

‫‪2‬‬
‫‪⎛ J‬‬
‫⎞‬
‫‪J‬‬
‫⎛‬
‫⎞‬
‫‪i‬‬
‫‪i‬‬
‫‪+‬‬
‫‪+‬‬
‫‪,‬‬
‫‪i‬‬
‫‪1‬‬
‫‪,‬‬
‫‪i‬‬
‫‪1‬‬
‫⎟ ⎟⎟‬
‫⎜⎜ ‪+‬‬
‫‪Z oe i.i +1 = Z o ⎜1 +‬‬
‫⎜‬
‫‪Yo‬‬
‫⎠⎟ ⎠ ‪⎝ Yo‬‬
‫⎝‬

‫‪329‬‬

‫)‪(7.84‬‬

‫‪2‬‬
‫‪⎛ J‬‬
‫⎟⎞ ⎞ ‪⎛ J i , i +1‬‬
‫‪i , i +1‬‬
‫⎜‬
‫⎟⎟‬
‫‪Z oo i.i +1 = Z o 1 −‬‬
‫⎜⎜ ‪+‬‬
‫⎜‬
‫‪Yo‬‬
‫‪Y‬‬
‫⎠⎟ ⎠ ‪⎝ o‬‬
‫⎝‬

‫‪, i =0, 1,2, …, n‬‬

‫‪o‬‬

‫ﺣﻴﺚ ﻃﻮل آﻞ ﺧﻄﻴﻦ ﺷﺮﻳﻄﻴﻴﻦ ﻣﺰدوﺟﻴﻦ ﺑﺎﻟﻔﻠﺘﺮ ﻳﻜﺎﻓﺊ )‪.(π/2 ≡ 90 ≡ λgm/4‬‬
‫ﺣ ﻴﺚ )‪ (λgm‬ﻣﻮﺟ ﻮدﻩ ﺑﺎﻟﻤﻌﺎدﻟ ﻪ )‪ (4.51‬ﻓ ﻰ اﻟﻔﺼﻞ اﻟﺮاﺑﻊ‪ .‬و ﺑﻌﺾ اﻟﻤﺮاﺟﻊ ﺗﺴﺘﺨﺪم ﻣﺠﺎزا )‪ (λg‬آﺮﻣﺰ ﺑﺪﻳﻞ‬
‫ﻟـ )‪ (λgm‬ﻓﻰ اﻟﺘﻌﺒﻴﺮ ﻋﻦ هﺬﻩ اﻟﻘﻴﻤﻪ ﻟﻠﺨﻄﻴﻦ اﻟﺸﺮﻳﻄﻴﻴﻦ اﻟﻤﺰدوﺟﻴﻦ‪.‬‬
‫و ﻳﻤﻜﻦ ﺣﺴﺎب رﺗﺒﺔ اﻟﻔﻠﺘﺮ )‪ (n‬ﻣﻦ ﻧﻮع ﺗﺸﻴﺒﻰ ﺗﺸﻴﻒ ﻣﻦ اﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫)‪(7.85‬‬

‫()‬

‫)‬

‫(‬

‫‪cosh -1 L'a − 1 / L'r − 1‬‬
‫≥‪n‬‬
‫) ‪cosh -1 (c1 / c2‬‬

‫ﺣﻴﺚ‬

‫‪L'a = 10(La / 10 ) , L'r = 10(L /10 ) , c1 = sin (π BWA /4) ,‬‬
‫‪r‬‬

‫‪BWA = 2 ( f a − f o ) / f o‬‬

‫‪c2 = sin (π BW /4 ) ,‬‬

‫ﺣ ﻴﺚ )‪ (fo‬ه ﻮ ﺗ ﺮدد اﻟﻤﻨﺘﺼﻒ ﺑﺎﻟﻬﻴﺮﺗﺰ و )‪ (fa‬ﺑﺎﻟﻬﻴﺮﺗﺰ هﻮ ﺗﺮدد ﻳﻘﻊ ﻓﻰ اﻟﺤﻴﺰ اﻟﻤﻮﻗﻮف )‪ (stop band‬و )‪(La‬‬
‫هﻮ ﻣﻘﺪار اﻟﻔﻘﺪ ﺑﺎﻟﺪﻳﺴﻴﺒﻞ ﻋﻨﺪ اﻟﺘﺮدد )‪ ، (fa‬و ﻣﻘﺪار اﻟﺘﻤﻮﺟﺎت ﻓﻰ اﻟﺤﻴﺰ اﻟﻤﻔﻴﺪ ﻟﻠﻔﻠﺘﺮ ﺑﺎﻟﺪﻳﺴﻴﺒﻞ هﻮ )‪.(Lr‬‬
‫ﻋﻠﻤﺎ ﺑﺄن اﻟﻤﻌﺎدﻻت اﻟﻤﻌﻄﺎﻩ أﻋﻼﻩ ﻟﻴﺴﺖ اﻟﻤﻌﺎدﻻت اﻟﻮﺣﻴﺪﻩ ﻟﺘﺼﻤﻴﻢ هﺬا اﻟﻨﻮع ﻣﻦ اﻟﻔﻠﺘﺮ‪.‬‬
‫ﻋﻠ ﻰ ﺳ ﺒﻴﻞ اﻟﻤ ﺜﺎل اﻟﻤ ﺮﺟﻊ )‪ (6‬ﻳﺤ ﺘﻮى ﻋﻠ ﻰ ﻣﻌ ﺎدﻻت ﺗﺼ ﻤﻴﻢ ﻣﺨ ﺘﻠﻔﻪ ﻟ ﻨﻮع ﻓﻠﺘ ﺮ ) ‪Microstrip Parallel‬‬
‫‪ (Coupled Lines BPF‬و ﻃﺮﻳﻘﺔ اﺳﺘﻨﺘﺎج اﻟﻤﻌﺎدﻻت و ﻣﺜﺎل ﺗﺼﻤﻴﻢ آﺎﻣﻞ‪.‬‬
‫اﻟﻤ ﺮﺟﻊ )‪ (1‬ﻳﻌﻄ ﻰ ﻣ ﺜﺎل ﺗﺼ ﻤﻴﻢ ﻓﻠﺘ ﺮ )‪ (Microstrip Parallel Coupled Lines BPF‬ﻣ ﻦ ﻧ ﻮع ﺗﺸ ﻴﺒﻰ‬
‫ﺗﺸﻴﻒ )‪ (Chebyshev‬ﺑﺮﺗﺒﻪ )‪.(n=5‬‬
‫ﺑﺎﻟﻨﺴ ﺒﻪ ﻟ ﻨﻮع ﻓﻠﺘ ﺮ )‪ (Parallel Coupled Lines BPF‬اﻟ ﺬى ﺗﻜ ﻮن ﻓ ﻴﻪ اﻟﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﻤ ﺰدوﺟﻪ ﻣﻨﺘﻬﻴﻪ‬
‫ﻧﻬﺎﻳﻪ ﻣﻐﻠﻘﻪ )‪ (short circuit end‬ﻳﻤﻜﻦ اﻟﺮﺟﻮع ﻟﻠﻤﺮﺟﻊ )‪ (2‬ﻟﺪراﺳﺘﻪ‪.‬‬
‫ﻣ ﺜﺎل )‪ : (٩ – ٧‬ﻣﻄﻠ ﻮب ﺗﺼ ﻤﻴﻢ ﻓﻠﺘ ﺮ )‪ (Microstrip Parallel Coupled Lines BPF‬ﻣ ﻦ ﻧ ﻮع ﺗﺸ ﻴﺒﻰ‬
‫ﺗﺸ ﻴﻒ )‪ (Chebyshev‬ﻟﻤ ﺮور ﺣﻴ ﺰ ﺗ ﺮددى ﻣﻌ ﻴﻦ ﻟ ﻪ ﺗ ﺮدد ﻣﻨﺘﺼ ﻒ )‪ (fo = 3 GHz‬و اﻟﺤﻴ ﺰ اﻟﺘ ﺮددى اﻟﻨﺴﺒﻰ‬
‫ﻳﺴ ﺎوى )‪ (BW= 0.15 ≡ 0.45 GHz‬أى أن اﻟﺤﻴ ﺰ اﻟﻤﻔ ﻴﺪ ﻟﻠﻔﻠﺘﺮ ﻳﻘﻊ ﺑﻴﻦ ) ‪ 2.775GHz‬و ‪( 3.225GHz‬‬
‫و ﻣﻘ ﺪار اﻟ ﺘﻤﻮﺟﺎت ﻓ ﻰ اﻟﺤﻴ ﺰ اﻟﻤﻔ ﻴﺪ ﻟﻠﻔﻠﺘ ﺮ ﺑﺎﻟﺪﻳﺴ ﻴﺒﻞ )‪ ، (Lr= 0.5 dB‬ﻣ ﻊ اﻋﺘ ﺒﺎر اﻟﻤﻌﺎوﻗ ﻪ ﻋ ﻨﺪ ﻃﺮﻓﻰ اﻟﻔﻠﺘﺮ‬
‫ﺗﺴﺎوى )‪.(50 Ω‬‬
‫اﻟﺤﻞ ‪:‬‬
‫اﻟﺨﻄ ﻮﻩ اﻷوﻟ ﻰ ه ﻰ اﻳﺠ ﺎد ﻗﻴﻢ اﻟﻤﻜﻮﻧﺎت اﻟﻤﺘﻄﺒﻌﻪ )‪ (gi‬ﻟﻠﻔﻠﺘﺮ ﻣﻦ ﻧﻮع ﺗﺸﻴﺒﻰ ﺗﺸﻴﻒ ﻋﻨﺪﻣﺎ ﻳﻜﻮن ﻣﻘﺪار اﻟﺘﻤﻮﺟﺎت‬
‫ﻓﻰ اﻟﺤﻴﺰ اﻟﻤﻔﻴﺪ ﻟﻠﻔﻠﺘﺮ ﺑﺎﻟﺪﻳﺴﻴﺒﻞ )‪.(0.5 dB‬‬

‫‪330‬‬

‫ﺑﻔ ﺮض أن ﻣﻘﺪار اﻟﻔﻘﺪ ﺑﺎﻟﺪﻳﺴﻴﺒﻞ ﻋﻨﺪ اﻟﺘﺮدد )‪ (fa =3.7 GHz‬ﻳﺴﺎوى )‪ ، (La=18 dB‬ﻳﻤﻜﻦ ﺣﺴﺎب رﺗﺒﺔ اﻟﻔﻠﺘﺮ‬
‫ﺑﺎﺳ ﺘﺨﺪام اﻟﻤﻌﺎدﻟ ﻪ )‪ (7.85‬و ﺑﺎﺳ ﺘﺨﺪام ﻣﻮاﺻ ﻔﺎت اﻟﻔﻠﺘ ﺮ اﻟﻤﺬآ ﻮرﻩ أﻋ ﻼﻩ و آﺎﻧ ﺖ )‪ (n = 3‬و ﺑﺎﻟﺘﺎﻟ ﻰ ﺗﻜ ﻮن ﻗ ﻴﻢ‬
‫اﻟﻤﻜﻮﻧﺎت اﻟﻤﺘﻄﺒﻌﻪ )‪ (gi‬ﻟﻠﻔﻠﺘﺮ هﻰ ‪:‬‬
‫‪g2‬‬
‫‪1.096681‬‬

‫‪g3‬‬
‫‪1.59633‬‬

‫‪g1‬‬
‫‪1.59633‬‬

‫و آ ﻼ ﻣ ﻦ )‪ . (go = g4 = 1‬و ﺑﺎﺗ ﺒﺎع ﻓﻜ ﺮة ﺗﺼ ﻤﻴﻢ ﻓﻠﺘﺮ ﻣﺮور ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ ﻣﻦ ﻧﻮع اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ‬
‫اﻟﻤ ﺰدوﺟﻪ اﻟﻤﺒﻴ ﻨﻪ ﻓ ﻰ ﺷ ﻜﻞ )‪ (٧٤ – ٧‬ﺗﻜ ﻮن اﻟﺨﻄ ﻮﻩ اﻟﺜﺎﻧ ﻴﻪ ه ﻰ ﺣﺴ ﺎب ﻗ ﻴﻢ ﻗﺎﻟ ﺒﺎت ﻣﻘﻠ ﻮب اﻟﻤﻌﺎوﻗ ﻪ ﺑﺪﻻﻟ ﺔ‬
‫اﻟﻤﻜﻮﻧﺎت اﻟﻤﺘﻄﺒﻌﻪ ﺑﺎﺳﺘﺨﺪام اﻟﻤﻌﺎدﻻت ﻣﻦ )‪ (7.80‬اﻟﻰ )‪ (7.82‬و آﺎﻧﺖ ﻗﻴﻤﻬﺎ آﺎﻟﺘﺎﻟﻰ‪:‬‬
‫‪J3,4‬‬
‫‪0.384188‬‬

‫‪J1,2‬‬
‫‪0.178078‬‬

‫‪J2,3‬‬
‫‪0.178078‬‬

‫‪Jo,1‬‬
‫‪0.384188‬‬

‫و وﻓﻘ ﺎ ﻟﺸ ﻜﻞ )‪ (٧٤ – ٧‬ﻳﺠ ﺐ اﺳ ﺘﺒﺪال آ ﻞ ﻗﺎﻟ ﺐ ﻣﻘﻠ ﻮب ﻣﻌﺎوﻗ ﻪ ﻣﻦ اﻷرﺑﻌﻪ اﻟﻤﺤﺴﻮﺑﻴﻦ أﻋﻼﻩ ﺑﺨﻄﻴﻦ ﺷﺮﻳﻄﻴﻴﻦ‬
‫ﻣﺰدوﺟﻴﻦ‪.‬‬
‫ﻓ ﻰ اﻟﺨﻄ ﻮﻩ اﻟﺜﺎﻟ ﺜﻪ ﺗ ﻢ ﺣﺴ ﺎب ﻗ ﻴﻢ اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻤﻴ ﺰﻩ ﻟﺘ ﺮﺗﻴﺐ اﻟﻤﺠ ﺎل اﻟﺰوﺟ ﻰ و اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻤﻴﺰﻩ ﻟﺘﺮﺗﻴﺐ اﻟﻤﺠﺎل‬
‫اﻟﻔﺮدى ﻟﻜﻞ ﺧﻄﻴﻦ ﺷﺮﻳﻄﻴﻴﻦ ﻣﺰدوﺟﻴﻦ ﺑﺎﻟﻔﻠﺘﺮ ﻣﻦ اﻟﻤﻌﺎدﻟﺘﻴﻦ )‪ (7.83‬و )‪ (7.84‬و آﺎﻧﺖ ﻗﻴﻤﻬﺎ آﺎﻟﺘﺎﻟﻰ‪:‬‬
‫رﻗﻢ اﻟﺨﻄﻴﻦ‬

‫اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ ﻟﺘﺮﺗﻴﺐ اﻟﻤﺠﺎل اﻟﺰوﺟﻰ‬

‫اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ ﻟﺘﺮﺗﻴﺐ اﻟﻤﺠﺎل اﻟﻔﺮدى‬

‫‪Zoe 0,1 = 76.589441‬‬

‫‪Zoo 0,1 = 38.170618‬‬

‫‪1‬‬

‫‪Zoe 1,2 = 60.489469‬‬

‫‪Zoo 1,2 = 42.681698‬‬

‫‪2‬‬

‫‪Zoe 2,3 = 60.489471‬‬

‫‪Zoo 2,3 = 42.681697‬‬

‫‪3‬‬

‫‪Zoe 3,4 = 76.589446‬‬

‫‪Zoo 3,4 = 38.170618‬‬

‫‪4‬‬

‫ﻓﻰ اﻟﺨﻄﻮﻩ اﻟﺮاﺑﻌﻪ ﺗﻢ اﺧﺘﻴﺎر اﻟﺸﺮﻳﺤﻪ اﻟﺸﺮﻳﻄﻴﻪ ﺑﺎﻟﻤﻮاﺻﻔﺎت اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫ﺛﺎﺑﺖ اﻟﻌﺰل )‪ ( εr =2.2‬و ﺳﻤﻚ اﻟﻌﺎزل )‪ (h = 1.575 mm‬و ﺳﻤﻚ اﻟﻤﻮﺻﻞ )‪. (t = 0.07 mm‬‬
‫ﺑﺎﺳ ﺘﺨﺪام ﻗ ﻴﻢ اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻤﻴ ﺰﻩ ﻟﺘ ﺮﺗﻴﺐ اﻟﻤﺠ ﺎل اﻟﺰوﺟ ﻰ و اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ ﻟﺘﺮﺗﻴﺐ اﻟﻤﺠﺎل اﻟﻔﺮدى اﻟﻤﺤﺴﻮﺑﻪ ﻓﻰ‬
‫اﻟﺨﻄ ﻮﻩ اﻟﺜﺎﻟ ﺜﻪ ﺗ ﻢ ﺣﺴ ﺎب اﻟﻄ ﻮل )‪ (L‬و اﻟﻌ ﺮض )‪ (W‬و اﻟﻤﺴ ﺎﻓﻪ اﻟﺒﻴﻨ ﻴﻪ )‪ (S‬ﻟﻜ ﻞ ﺧﻄ ﻴﻦ ﺷ ﺮﻳﻄﻴﻴﻦ ﻣ ﺰدوﺟﻴﻦ‬
‫‪o‬‬

‫ﺑﺎﻟﻔﻠﺘ ﺮ‪ .‬ﻋﻠﻤ ﺎ ﺑ ﺄن ﻃ ﻮل آ ﻞ ﺧﻄ ﻴﻦ ﺷ ﺮﻳﻄﻴﻴﻦ ﻣﺰدوﺟﻴﻦ ﻳﻜﺎﻓﺊ )‪ .(90 ≡λgm/4‬ﺣﻴﺚ )‪ (λgm‬ﻣﻮﺟﻮدﻩ ﺑﺎﻟﻤﻌﺎدﻟﻪ‬
‫)‪ (4.51‬ﻓﻰ اﻟﻔﺼﻞ اﻟﺮاﺑﻊ‪ .‬و آﺎﻧﺖ اﻷﺑﻌﺎد اﻟﻤﺒﺪﺋﻴﻪ )ﻣﺤﺴﻮﺑﻪ ﻋﻨﺪ ﺗﺮدد اﻟﻤﻨﺘﺼﻒ( آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫اﻟﻄﻮل )‪(L‬‬

‫اﻟﻌﺮض )‪(W‬‬

‫اﻟﻤﺴﺎﻓﻪ اﻟﺒﻴﻨﻴﻪ )‪(S‬‬

‫رﻗﻢ اﻟﺨﻄﻴﻦ‬

‫‪21.1 mm‬‬

‫‪3.49 mm‬‬

‫‪0.17 mm‬‬

‫‪1‬‬

‫‪18.83 mm‬‬

‫‪4.5 mm‬‬

‫‪0.86 mm‬‬

‫‪2‬‬

‫‪18.83 mm‬‬

‫‪4.5 mm‬‬

‫‪0.86 mm‬‬

‫‪3‬‬

‫‪21.1 mm‬‬

‫‪3.49 mm‬‬

‫‪0.17 mm‬‬

‫‪4‬‬

‫‪331‬‬

‫ﺗ ﻢ اﺿﺎﻓﺔ ﺧﻄﻴﻦ ﺷﺮﻳﻄﻴﻴﻦ ﻟﻬﻤﺎ ﻣﻌﺎوﻗﺔ ﻣﻤﻴﺰﻩ ﺗﺴﺎوى )‪ (50 Ω‬و آﺎن ﻋﺮض آﻞ ﻣﻨﻬﻤﺎ )‪ (Wo = 4.8 mm‬و ﺗﻢ‬
‫اﺧﺘﻴﺎر ﻃﻮل آﻞ ﻣﻨﻬﻤﺎ ﻟﻴﺴﺎوى )‪.(Lo = 18 mm‬‬
‫اﻟﺨﻄ ﻮﻩ اﻟﺨﺎﻣﺴ ﻪ ه ﻰ ﺗﺤﻠﻴﻞ اﻟﺪاﺋﺮﻩ ﺑﺎﺳﺘﺨﺪام أﺣﺪ ﺑﺮاﻣﺞ ﺗﺤﻠﻴﻞ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ ﺑﺎﻷﺑﻌﺎد اﻟﻤﺒﺪﺋﻴﻪ اﻟﻤﻌﻄﺎﻩ أﻋﻼﻩ‬
‫ﻣ ﻊ ادراج اﻟﻼاﺳ ﺘﻤﺮارﻳﺎت ﻓ ﻰ اﻟﺘﺤﻠ ﻴﻞ و ﻳﻮﺿ ﺢ ﺷ ﻜﻞ )‪ (٧٥ – ٧‬رﺳ ﻢ رﻣ ﺰى ﻟﻠﻔﻠﺘﺮ آﻤﺎ ﻳﺒﺪو ﻓﻰ ﻣﻌﻈﻢ ﺑﺮاﻣﺞ‬
‫ﺗﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ‪ .‬و آﺎﻧ ﺖ ﻧﺘ ﻴﺠﺔ اﻟﺘﺤﻠ ﻴﻞ ﺑﺎﻷﺑﻌ ﺎد اﻟﻤﺒﺪﺋ ﻴﻪ ﺳ ﻴﺌﻪ ﻧﻈ ﺮا ﻻدراج اﻟﻼاﺳﺘﻤﺮارﻳﺎت ﻓﻰ اﻟﺘﺤﻠﻴﻞ و اﻟﺘﻰ ﻟﻢ‬
‫ﺗﺆﺧﺬ ﻓﻰ اﻻﻋﺘﺒﺎر ﻓﻰ ﻣﻌﺎدﻻت اﻟﺘﺼﻤﻴﻢ‪.‬‬
‫ﺑﻌ ﺾ ﺑ ﺮاﻣﺞ ﺗﺤﻠ ﻴﻞ دواﺋ ﺮ اﻟﻤﻴﻜ ﺮووﻳﻒ ﺗﺤ ﺘﻮى ﻋﻠ ﻰ ﻧﻤ ﺎذج ﻟﻠﺨﻄ ﻴﻦ اﻟﺸ ﺮﻳﻄﻴﻴﻦ اﻟﻤ ﺰدوﺟﻴﻦ اﻟﺘ ﻰ ﻟﻬ ﺎ ﻃ ﺮﻓﻴﻦ‬
‫ﻣﻨﺘﻬﻴ ﻴﻦ ﺑ ﻨﻬﺎﻳﻪ ﻣﻔ ﺘﻮﺣﻪ أو ﻧﻬﺎﻳ ﻪ ﻣﻐﻠﻘ ﻪ اﻟﻰ ﺁﺧﺮﻩ و ﻻ ﻳﺤﺘﺎج ﻣﺴﺘﺨﺪم اﻟﺒﺮﻧﺎﻣﺞ ﻻﺿﺎﻓﺔ ﻻاﺳﺘﻤﺮارﻳﺔ ﻧﻬﺎﻳﻪ ﻣﻔﺘﻮﺣﻪ‬
‫أو ﻣﻐﻠﻘﻪ ﻓﻰ ﻧﻬﺎﻳﺔ اﻟﺨﻂ اﻟﻤﺰدوج‪ .‬و ﻋﻠﻴﻪ أن ﻳﺨﺘﺎر ﻓﻘﻂ رﻣﺰ اﻟﻨﻤﻮذج اﻟﻤﻄﻠﻮب‪.‬‬
‫ﺗ ﻢ ﻋﻤ ﻞ اﻟ ﺒﺤﺚ ﻋ ﻦ اﻟﺤ ﻞ اﻷﻣ ﺜﻞ )‪ (Optimization‬ﺑﺘﻐﻴﻴ ﺮ اﻷﺑﻌ ﺎد ﻟﺘﺤﺴ ﻴﻦ اﻷداء أى ﺗﺤﺴ ﻴﻦ ﻗ ﻴﻢ )‪ (|S21|dB‬و‬
‫)‪ (|S11|dB‬ﺑﺎﺳﺘﺨﺪام ﺑﺮﻧﺎﻣﺞ ﺗﺤﻠﻴﻞ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ و آﺎﻧﺖ اﻷﺑﻌﺎد اﻟﻨﻬﺎﺋﻴﻪ ﺑﺎﻟﻤﻠﻠﻴﻤﺘﺮ)‪ (mm‬آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫اﻟﻌﺮض )‪(W‬‬

‫اﻟﻄﻮل )‪(L‬‬

‫اﻟﻤﺴﺎﻓﻪ اﻟﺒﻴﻨﻴﻪ )‪(S‬‬

‫رﻗﻢ اﻟﺨﻄﻴﻦ‬

‫‪17.71‬‬

‫‪1.09‬‬

‫‪0.96‬‬

‫‪1‬‬

‫‪17.48‬‬

‫‪4.99‬‬

‫‪0.25‬‬

‫‪2‬‬

‫‪17.48‬‬

‫‪4.99‬‬

‫‪0.25‬‬

‫‪3‬‬

‫‪17.71‬‬

‫‪1.09‬‬

‫‪0.96‬‬

‫‪4‬‬

‫و آﺎن ﻋﺮض اﻟﺨﻄﻴﻦ ﻋﻨﺪ اﻟﻤﺨﺮﺟﻴﻦ ﻳﺴﺎوى )‪ (Wo= 4.899 mm‬و اﻟﻄﻮل ﻳﺴﺎوى )‪.(Lo= 26 mm‬‬

‫ﺷﻜﻞ )‪ : (٧٥ – ٧‬رﺳﻢ رﻣﺰى ﻟﻠﻔﻠﺘﺮ ﻓﻰ ﻣﺜﺎل )‪(٩ – ٧‬‬

‫‪332‬‬

‫و ﻳﺒﻴﻦ ﺷﻜﻞ )‪ (٧٦ – ٧‬ﻧﺘﻴﺠﺔ اﻟﺘﺤﻠﻴﻞ ﺑﺎﻷﺑﻌﺎد اﻟﻨﻬﺎﺋﻴﻪ ﻟﻠﻔﻠﺘﺮ‪ .‬و ﻳﺒﻴﻦ ﺷﻜﻞ )‪ (٧٧ – ٧‬ﻣﺨﻄﻂ اﻟﻔﻠﺘﺮ‪.‬‬
‫ﻻﺣﻆ اﻟﺘﻤﺎﺛﻞ اﻟﻬﻨﺪﺳﻰ ﻟﻤﺨﻄﻂ اﻟﻔﻠﺘﺮ ﻧﺘﻴﺠﺔ ﺗﻄﺎﺑﻖ أﺑﻌﺎد اﻟﺨﻄﻴﻦ اﻟﺸﺮﻳﻄﻴﻴﻦ اﻟﻤﺰدوﺟﻴﻦ رﻗﻤﻰ )‪(1 , 4‬‬
‫و رﻗﻤﻰ )‪.(2 , 3‬‬

‫ﺷﻜﻞ )‪ : (٧٦ – ٧‬ﻧﺘﻴﺠﺔ اﻟﺘﺤﻠﻴﻞ ﺑﺎﻷﺑﻌﺎد اﻟﻨﻬﺎﺋﻴﻪ ﻟﻠﻔﻠﺘﺮ ﻓﻰ ﻣﺜﺎل )‪(٩ – ٧‬‬

‫ﺷﻜﻞ )‪ : (٧٧ – ٧‬ﻣﺨﻄﻂ اﻟﻔﻠﺘﺮ ﻓﻰ ﻣﺜﺎل )‪(٩ – ٧‬‬

‫ﺗﻤ ﺮﺑﻦ ‪ :‬أﻋﺪ اﻟﺤﺴﺎﺑﺎت اﻟﻤﺒﺪﺋﻴﻪ ﻓﻰ ﻣﺜﺎل )‪ (٩ – ٧‬ﺑﻨﻔﺲ اﻟﺸﺮﻳﺤﻪ اﻟﺸﺮﻳﻄﻴﻪ اﻟﻤﺨﺘﺎرﻩ ﻓﻰ اﻟﻤﺜﺎل و ﻟﻜﻦ ﻣﻊ ﺗﻐﻴﻴﺮ‬
‫ﺑﺴ ﻴﻂ ه ﻮ ﺟﻌ ﻞ ﻃ ﻮل آ ﻞ ﺧ ﻂ ﺷ ﺮﻳﻄﻰ ﻣ ﺰدوج ﻳﺴ ﺎوى ﻃ ﻮل ﺧ ﻂ ﺷﺮﻳﻄﻰ ﻟﻪ ﻣﻌﺎوﻗﺔ ﻣﻤﻴﺰﻩ ﺗﺴﺎوى )‪ (50 Ω‬و‬
‫‪o‬‬

‫ﻃ ﻮﻟﻪ ﻳﻜﺎﻓ ﺊ )‪ (90 ≡λg/4‬ﺑﻤﻌﻨ ﻰ اﺧﺘ ﻴﺎر )‪ (L1 = L2 = L3 = L4 = 18.15 mm‬آﺄﻃ ﻮال ﻣﺒﺪﺋ ﻴﻪ ‪ ،‬ﺛ ﻢ أآﻤ ﻞ‬
‫اﻟﺘﺤﻠﻴﻞ و ﻋﻤﻞ اﻟﺒﺤﺚ ﻋﻦ اﻟﺤﻞ اﻷﻣﺜﻞ ‪ ،‬و ﻗﺎرن ﺑﻴﻦ اﻟﻨﺘﺎﺋﺞ اﻟﺘﻰ ﺣﺼﻠﺖ ﻋﻠﻴﻬﺎ و ﺑﻴﻦ اﻟﻨﺘﺎﺋﺞ اﻟﻤﻌﻄﺎﻩ ﻓﻰ اﻟﻤﺜﺎل‪.‬‬

‫‪333‬‬

‫)ﻤﻘﻁﻊ ‪ (٨-٧‬ﻓﻠﺘﺭ ﻤﺭﻭﺭ ﺤﻴﺯ ﺘﺭﺩﺩﻯ ﻤﻌﻴﻥ ﻤﻥ ﻨﻭﻉ ‪: Stub Loaded Structure‬‬

‫ﻓﻠﺘ ﺮ ﻣ ﺮور ﺣﻴ ﺰ ﺗ ﺮددى ﻣﻌ ﻴﻦ ﺑﺎﺳ ﻨﺨﺪام ﺧﻄ ﻮط ﺷ ﺮﻳﻄﻴﻪ ﻣﺘﺼ ﻠﻪ ﻋﻠ ﻰ اﻟﺘﻮاﻟ ﻰ و ﺧﻄ ﻮط ﺷ ﺮﻳﻄﻴﻪ ﻣﺘﺼ ﻠﻪ ﻋﻠﻰ‬
‫اﻟ ﺘﻮازى ﻣﻨﺘﻬ ﻴﻪ ﻧﻬﺎﻳ ﻪ ﻣﻐﻠﻘ ﻪ )‪ (BPF with parallel short circuit shunt stubs‬اﻟﻤﻮﺿ ﺢ ﻓ ﻰ ﺷ ﻜﻞ‬
‫)‪ (٧٨ – ٧‬ﻳﻤﻜﻦ أن ﻳﺤﻘﻖ ﺣﻴﺰ ﺗﺮددى ﻧﺴﺒﻰ أآﺒﺮ ﻣﻦ )‪ (0.15 or 15%‬و ﻳﻤﺘﺎز ﺑﺄﺑﻌﺎد ﻳﺴﻬﻞ ﺗﺼﻨﻴﻌﻬﺎ‪.‬‬

‫ﺷﻜﻞ )‪ : (٧٨ – ٧‬ﻓﻠﺘﺮ ﻣﺮور ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ ﺑﺎﺳﻨﺨﺪام ﺧﻄﻮط ﺷﺮﻳﻄﻴﻪ ﻣﺘﺼﻠﻪ ﻋﻠﻰ اﻟﺘﻮاﻟﻰ و ﺧﻄﻮط‬
‫ﺷﺮﻳﻄﻴﻪ ﻣﺘﺼﻠﻪ ﻋﻠﻰ اﻟﺘﻮازى ﻣﻨﺘﻬﻴﻪ ﻧﻬﺎﻳﻪ ﻣﻐﻠﻘﻪ )‪(BPF with parallel short circuit shunt stubs‬‬

‫ﻳﻤﻜﻦ ﺗﺤﻮﻳﻞ ﻓﻠﺘﺮ ﻣﺮور ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ ﻳﺘﻜﻮن ﻣﻦ ﻗﺎﻟﺒﺎت ﻣﻘﻠﻮب ﻣﻌﺎوﻗﻪ )‪ (Ji,i+1‬ﻣﺘﺼﻠﻪ ﺑﺒﻌﻀﻬﺎ اﻟﻰ ﻓﻠﺘﺮ ﻣﻦ‬
‫ﻧ ﻮع )‪ (BPF with parallel short circuit shunt stubs‬اﻟﻤﻮﺿ ﺢ ﻓ ﻰ ﺷ ﻜﻞ )‪ (٧٨ – ٧‬ﻣﺒﺎﺷ ﺮة و ذﻟ ﻚ‬
‫ﺑﺤﺴ ﺎب ﻗ ﻴﻢ اﻟﻤﻌﺎوﻗ ﺎت اﻟﻤﻤﻴ ﺰﻩ )‪ (Zi = 1 / Yi‬ﻟﻠﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﻤﺘﺼﻠﻪ ﻋﻠﻰ اﻟﺘﻮاﻟﻰ و ﺣﺴﺎب ﻗﻴﻢ اﻟﻤﻌﺎوﻗﺎت‬
‫اﻟﻤﻤﻴ ﺰﻩ )‪ (Zi , i+1 = 1 / Y i , i+1‬ﻟﻠﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﻤﺘﺼ ﻠﻪ ﻋﻠ ﻰ اﻟ ﺘﻮازى و اﻟﻤﻨﺘﻬ ﻴﻪ ﻧﻬﺎﻳﻪ ﻣﻐﻠﻘﻪ ﺑﺪﻻﻟﺔ ﻗﻴﻢ‬
‫ﻗﺎﻟﺒﺎت ﻣﻘﻠﻮب اﻟﻤﻌﺎوﻗﻪ )‪ (Ji,i+1‬و اﻟﻤﻜﻮﻧﺎت اﻟﻤﺘﻄﺒﻌﻪ )‪ (gi‬اﻟﺨﺎﺻﻪ ﺑﻔﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ ﻷى ﻧﻮع ﻣﻦ‬
‫ﺗﻘﺮﻳﺒﺎت اﻟﻔﻠﺘﺮ ) ﻣﺜﻞ ﺑﺘﺮوورث و ﺗﺸﻴﺒﻰ ﺗﺸﻴﻒ و ﻏﻴﺮهﺎ( وﻓﻘﺎ ﻟﻠﻤﻌﺎدﻻت اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫⎡‬
‫⎤⎞ ‪⎛J‬‬
‫⎥ ⎟⎟ ‪Y1 = Yo ⎢ g o (1 − d ) g1 tan(θ1 ) + N1, 2 − ⎜⎜ 1, 2‬‬
‫⎦ ⎠ ‪⎝ Yo‬‬
‫⎣‬

‫)‪(7.86‬‬

‫)‪(7.87‬‬

‫‪for i = 2, 3, … , n – 1‬‬

‫⎤ ⎞ ‪⎞ ⎛ J i ,i +1‬‬
‫⎥ ⎟⎟‬
‫⎜⎜ ‪⎟⎟ −‬‬
‫‪Y‬‬
‫⎦⎠ ‪⎠ ⎝ o‬‬

‫‪334‬‬

‫⎡‬
‫‪⎛J‬‬
‫‪Yi = Yo ⎢ N i −1,i + N i ,i +1 − ⎜⎜ i −1,i‬‬
‫‪⎝ Yo‬‬
‫⎣‬

‫)‪(7.88‬‬

‫⎡‬
‫⎤⎞‬
‫‪⎛J‬‬
‫⎥⎟⎟ ‪Yn = Yo (g n g n+1 − d g o g1 ) tan(θ1 ) + Yo ⎢ N n−1,n − ⎜⎜ n−1,n‬‬
‫⎦⎠ ‪⎝ Yo‬‬
‫⎣‬

‫)‪(7.89‬‬

‫⎞ ‪⎛J‬‬
‫⎟⎟ ‪Yi ,i +1 = Yo ⎜⎜ i ,i +1‬‬
‫⎠ ‪⎝ Yo‬‬

‫‪for i = 1, 2, … , n – 1‬‬

‫ﺣﻴﺚ‬
‫‪Ca‬‬
‫‪g2‬‬

‫)‪(7.90‬‬
‫)‪(7.91‬‬

‫‪for k = 2, 3, … , n – 2‬‬

‫‪C a g n +1‬‬
‫‪g o g n−1‬‬

‫)‪(7.92‬‬
‫‪2‬‬

‫)‪(7.93‬‬
‫)‪(7.94‬‬

‫‪go Ca‬‬
‫‪g k g k +1‬‬

‫=‬

‫‪= go‬‬

‫‪= go‬‬

‫‪J 1, 2‬‬
‫‪Yo‬‬

‫‪J k ,k +1‬‬
‫‪Yo‬‬
‫‪J n−1,n‬‬
‫‪Yo‬‬

‫‪2‬‬

‫‪⎛J‬‬
‫⎤ ) ‪⎞ ⎡ g C tan(θ1‬‬
‫‪N k ,k +1 = ⎜⎜ k,k +1 ⎟⎟ + ⎢ o a‬‬
‫⎥‬
‫‪2‬‬
‫⎦‬
‫⎣ ⎠ ‪⎝ Yo‬‬

‫‪Ca = 2 g1 d‬‬

‫‪,‬‬

‫) ‪π (2 − BW‬‬
‫‪4‬‬

‫= ‪θ1‬‬

‫ﺣ ﻴﺚ )‪ (BW‬ه ﻮ اﻟﺤﻴﺰ اﻟﺘﺮددى اﻟﻨﺴﺒﻰ ﻟﻠﻔﻠﺘﺮ و )‪ (Zo =1/ Yo‬هﻰ اﻟﻤﻌﺎوﻗﻪ ﻋﻨﺪ ﻃﺮﻓﻰ اﻟﻔﻠﺘﺮ و )‪ (n‬هﻰ رﺗﺒﺔ‬
‫اﻟﻔﻠﺘ ﺮ‪ .‬و )‪ (go , gn+1‬هﻤ ﺎ اﻟﻤﻌﺎوﻗ ﺘﺎن اﻟﻤﺘﻄﺒﻌ ﺘﺎن )‪ (normalized impedances‬ﻋﻨﺪ ﻣﺪﺧﻠﻰ اﻟﻔﻠﺘﺮ‪ .‬و ﻳﻔﻀﻞ‬
‫اﺧﺘﻴﺎر )‪. (d=1‬‬
‫ﺟﻤ ﻴﻊ أﻃ ﻮال اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ ﺳﻮاء اﻟﻤﺘﺼﻠﻪ ﻋﻠﻰ اﻟﺘﻮاﻟﻰ أو اﻟﻤﺘﺼﻠﻪ ﻋﻠﻰ اﻟﺘﻮازى اﻟﻤﻨﺘﻬﻴﻪ ﻧﻬﺎﻳﻪ ﻣﻐﻠﻘﻪ ﻃﻮﻟﻬﺎ‬
‫‪o‬‬

‫ﻳﻜﺎﻓﺊ )‪ .(90 ≡λg/4‬و ﺗﺠﺮى ﺟﻤﻴﻊ اﻟﺤﺴﺎﺑﺎت ﻋﻨﺪ ﺗﺮدد اﻟﻤﻨﺘﺼﻒ ﻟﻠﻔﻠﺘﺮ‪.‬‬
‫اﻟﻤ ﺮﺟﻊ )‪ (9‬ﻳﻌﻄ ﻰ ﻣ ﺜﺎﻻ ﻟﺘﺼ ﻤﻴﻢ ﻓﻠﺘ ﺮ ﻣ ﻦ ﻧ ﻮع )‪ (BPF with parallel short circuit shunt stubs‬ﻣ ﻦ‬
‫ﻧﻮع ﺗﺸﻴﺒﻰ ﺗﺸﻴﻒ )‪ (Chebyshev‬ﺑﺤﻴﺰ ﺗﺮددى ﻧﺴﺒﻰ ﻳﺴﺎوى )‪.(70% ≡ 0.7‬‬
‫ﻣ ﺜﺎل )‪ : (١٠ – ٧‬ﻣﻄﻠ ﻮب ﺗﺼ ﻤﻴﻢ ﻓﻠﺘ ﺮ )‪ (BPF with parallel short circuit shunt stubs‬ﻣ ﺜﻞ اﻟﻤﻮﺿ ﺢ‬
‫ﻓ ﻰ ﺷ ﻜﻞ )‪ (٧٨ – ٧‬ﻣ ﻦ ﻧﻮع ﺗﺸﻴﺒﻰ ﺗﺸﻴﻒ )‪ (Chebyshev‬ﺑﺮﺗﺒﺔ ﻓﻠﺘﺮ )‪ (n = 5‬ﻟﻤﺮور ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ ﻟﻪ‬
‫ﺗ ﺮدد ﻣﻨﺘﺼ ﻒ )‪ (fo = 3 GHz‬و اﻟﺤﻴ ﺰ اﻟﺘ ﺮددى اﻟﻨﺴ ﺒﻰ ﻳﺴ ﺎوى )‪ (BW = 0.5 ≡ 1.5 GHz‬أى أن اﻟﺤﻴ ﺰ‬
‫اﻟﻤﻔ ﻴﺪ ﻟﻠﻔﻠﺘ ﺮ ﻳﻘ ﻊ ﺑ ﻴﻦ ) ‪ 2.25 GHz‬و ‪ ( 3.75 GHz‬و ﻣﻘ ﺪار اﻟ ﺘﻤﻮﺟﺎت ﻓ ﻰ اﻟﺤﻴ ﺰ اﻟﻤﻔ ﻴﺪ ﻟﻠﻔﻠﺘ ﺮ ﺑﺎﻟﺪﻳﺴ ﻴﺒﻞ‬
‫)‪ ، (0.1 dB‬ﻣﻊ اﻋﺘﺒﺎر اﻟﻤﻌﺎوﻗﻪ ﻋﻨﺪ ﻃﺮﻓﻰ اﻟﻔﻠﺘﺮ ﺗﺴﺎوى )‪.(50 Ω‬‬
‫اﻟﺤﻞ ‪:‬‬
‫اﻟﺨﻄﻮﻩ اﻷوﻟﻰ‬
‫اﻟﻤﻜ ﻮﻧﺎت اﻟﻤﺘﻄ ﺒﻌﻪ )‪ (gi‬ﻟﻠﻔﻠﺘ ﺮ ﻣﻦ ﻧﻮع ﺗﺸﻴﺒﻰ ﺗﺸﻴﻒ ﺑﺎﻟﻨﺴﺒﻪ ﻟﺮﺗﺒﺔ اﻟﻔﻠﺘﺮ )‪ (n = 5‬ﻋﻨﺪﻣﺎ ﻳﻜﻮن ﻣﻘﺪار اﻟﺘﻤﻮﺟﺎت‬
‫ﻓﻰ اﻟﺤﻴﺰ اﻟﻤﻔﻴﺪ ﻟﻠﻔﻠﺘﺮ ﺑﺎﻟﺪﻳﺴﻴﺒﻞ )‪ (0.1 dB‬ﻣﻌﻄﺎﻩ ﻓﻰ اﻟﺠﺪول اﻟﺘﺎﻟﻰ ‪:‬‬

‫‪335‬‬

‫‪g4‬‬
‫‪1.371213‬‬

‫‪g5‬‬
‫‪1.146813‬‬

‫‪g2‬‬
‫‪1.371213‬‬

‫‪g3‬‬
‫‪1.975003‬‬

‫‪g1‬‬
‫‪1.146813‬‬

‫و آﻼ ﻣﻦ )‪. (go = g6 = 1‬‬
‫ﻣﻠﺤ ﻮﻇﻪ ‪ :‬ﻳﻤﻜ ﻦ ﺣﺴ ﺎب رﺗ ﺒﺔ اﻟﻔﻠﺘﺮ ﺑﺎﺳﺘﺨﺪام اﻟﻤﻌﺎدﻟﻪ )‪ (7.85‬و ﺑﺎﺳﺘﺨﺪام ﻣﻮاﺻﻔﺎت اﻟﻔﻠﺘﺮ و ﺑﻔﺮض أن ﻣﻘﺪار‬
‫اﻟﻔﻘ ﺪ ﺑﺎﻟﺪﻳﺴ ﻴﺒﻞ ﻳﺴ ﺎوى )‪ (La dB‬ﻋ ﻨﺪ ﺗ ﺮدد ﻣﻌ ﻴﻦ )‪ (fa‬ﻳﻘ ﻊ ﻓ ﻰ اﻟﺤﻴ ﺰ اﻟﻤﻮﻗ ﻮف‪ .‬ﻟﻜ ﻦ ﻃﺎﻟﻤﺎ ﺗﻢ ﻓﺮض رﺗﺒﺔ ﻓﻠﺘﺮ‬
‫ﻣﻌﻴﻨﻪ ﻋﻠﻰ اﻟﻤﺼﻤﻢ ﻓﻠﻴﺲ ﻟﺪﻳﻪ اﺧﺘﻴﺎر‪.‬‬
‫اﻟﺨﻄ ﻮﻩ اﻟﺜﺎﻧ ﻴﻪ ‪ :‬ﺑﺎﻟ ﺘﻌﻮﻳﺾ ﻓ ﻰ اﻟﻤﻌ ﺎدﻻت ﻣ ﻦ )‪ (7.86‬اﻟ ﻰ )‪ (7.94‬ﺗ ﻢ ﺣﺴ ﺎب ﻗ ﻴﻢ اﻟﻤﻌﺎوﻗ ﺎت اﻟﻤﻤﻴ ﺰﻩ )‪(Zi‬‬
‫ﻟﻠﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﻤﺘﺼ ﻠﻪ ﻋﻠ ﻰ اﻟﺘﻮاﻟﻰ و ﺣﺴﺎب ﻗﻴﻢ اﻟﻤﻌﺎوﻗﺎت اﻟﻤﻤﻴﺰﻩ )‪ (Zi , i+1‬ﻟﻠﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﻤﺘﺼﻠﻪ‬
‫ﻋﻠﻰ اﻟﺘﻮازى و اﻟﻤﻨﺘﻬﻴﻪ ﻧﻬﺎﻳﻪ ﻣﻐﻠﻘﻪ و آﺎﻧﺖ ﻗﻴﻤﻬﺎ ﺑﺎﻷوم )‪ (Ω‬آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫‪Z1 , 2 = 38.659475‬‬

‫‪Z1 = 28.367935‬‬

‫‪Z2 , 3 = 35.873729‬‬

‫‪Z2 = 14.415389‬‬

‫‪Z3 , 4 = 35.873727‬‬

‫‪Z3 = 14.654487‬‬

‫‪Z4 , 5 = 38.659474‬‬

‫‪Z4 = 14.415389‬‬
‫‪Z5 = 28.367967‬‬

‫اﻟﺨﻄﻮﻩ اﻟﺜﺎﻟﺜﻪ ‪:‬‬
‫ﺗﻢ اﺧﺘﻴﺎر اﻟﺸﺮﻳﺤﻪ اﻟﺸﺮﻳﻄﻴﻪ ﺑﺎﻟﻤﻮاﺻﻔﺎت اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫ﺛﺎﺑﺖ اﻟﻌﺰل )‪ ( εr =2.2‬و ﺳﻤﻚ اﻟﻌﺎزل )‪ (h = 0.787 mm‬و ﺳﻤﻚ اﻟﻤﻮﺻﻞ )‪. (t = 0.07 mm‬‬
‫ﺗﻢ ﺣﺴﺎب ﻃﻮل و ﻋﺮض آﻞ اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ ﺑﺎﻟﻔﻠﺘﺮ و آﺎﻧﺖ اﻟﻨﺘﺎﺋﺞ ﺑﺎﻟﻤﻠﻠﻴﻤﺘﺮ )‪ (mm‬آﻤﺎ ﻳﻠﻰ ‪:‬‬
‫‪L1 , 2 = 17.992‬‬

‫‪W1 , 2 = 3.410‬‬

‫‪L1 = 17.767‬‬

‫‪W1 = 5.165‬‬

‫‪L2 , 3 = 17.935‬‬

‫‪W2 , 3 = 3.783‬‬

‫‪L2 = 17.385‬‬

‫‪W2 = 11.707‬‬

‫‪L3 , 4 = 17.935‬‬

‫‪W3 , 4 = 3.783‬‬

‫‪L3 = 17.393‬‬

‫‪W3 = 11.488‬‬

‫‪L4 , 5 = 17.992‬‬

‫‪W4 , 5 = 3.410‬‬

‫‪L4 = 17.385‬‬

‫‪W4 = 11.707‬‬

‫‪L5 = 17.767‬‬

‫‪W5 = 5.165‬‬

‫أﻧﻈﺮ اﻟﻰ ﺷﻜﻞ )‪ (٧٨ – ٧‬ﻟﻔﻬﻢ ﻣﺨﻄﻂ اﻟﻔﻠﺘﺮ و راﺟﻊ رﻣﻮز ﻃﻮل و ﻋﺮض آﻞ ﺧﻂ ﺷﺮﻳﻄﻰ دﻗﻴﻖ ﺑﺎﻟﺪاﺋﺮﻩ‪.‬‬
‫ﺗ ﻢ اﺿ ﺎﻓﺔ ﺧﻄ ﻴﻦ ﺷﺮﻳﻄﻴﻴﻦ ﻟﻬﻤﺎ ﻣﻌﺎوﻗﺔ ﻣﻤﻴﺰﻩ ﺗﺴﺎوى )‪ (50 Ω‬و آﺎن ﻋﺮض آﻞ ﻣﻨﻬﻤﺎ )‪ (Wo = 2.33 mm‬و‬
‫ﺗﻢ اﺧﺘﻴﺎر ﻃﻮل آﻞ ﻣﻨﻬﻤﺎ ﻳﺴﺎوى )‪.(Lo = 15 mm‬‬
‫اﻟﺨﻄ ﻮﻩ اﻟ ﺮاﺑﻌﻪ ‪ :‬هﻰ ﺗﺤﻠﻴﻞ اﻟﺪاﺋﺮﻩ ﺑﺎﺳﺘﺨﺪام أﺣﺪ ﺑﺮاﻣﺞ ﺗﺤﻠﻴﻞ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ ﺑﺎﻷﺑﻌﺎد اﻟﻤﺒﺪﺋﻴﻪ اﻟﻤﻌﻄﺎﻩ أﻋﻼﻩ‬
‫ﻣ ﻊ ادراج اﻟﻼاﺳ ﺘﻤﺮارﻳﺎت ﻓ ﻰ اﻟﺘﺤﻠ ﻴﻞ‪ .‬و آﺎﻧ ﺖ ﻧﺘ ﻴﺠﺔ اﻟﺘﺤﻠﻴﻞ ﺑﺎﻷﺑﻌﺎد اﻟﻤﺒﺪﺋﻴﻪ ﺟﻴﺪﻩ آﻤﺎ ﻓﻰ ﺷﻜﻞ )‪ (٧٩ – ٧‬و‬
‫ﻟﻜﻦ ﻳﻤﻜﻦ ﺗﺤﺴﻴﻨﻬﺎ ﺑﺎﺳﺘﺨﺪام )‪.(Optimization‬‬

‫‪336‬‬

‫ﺷﻜﻞ )‪ : (٧٩ – ٧‬ﻧﺘﻴﺠﺔ اﻟﺘﺤﻠﻴﻞ ﺑﺎﻷﺑﻌﺎد اﻟﻤﺒﺪﺋﻴﻪ ﻟﻠﻔﻠﺘﺮ ﻓﻰ ﻣﺜﺎل )‪(١٠ – ٧‬‬

‫ﺗ ﻢ ﻋﻤ ﻞ اﻟ ﺒﺤﺚ ﻋ ﻦ اﻟﺤ ﻞ اﻷﻣ ﺜﻞ )‪ (Optimization‬ﺑﺘﻐﻴﻴ ﺮ اﻷﺑﻌ ﺎد ﻟﺘﺤﺴ ﻴﻦ اﻷداء أى ﺗﺤﺴ ﻴﻦ ﻗ ﻴﻢ )‪ (|S21|dB‬و‬
‫)‪ (|S11|dB‬ﺑﺎﺳﺘﺨﺪام ﺑﺮﻧﺎﻣﺞ ﺗﺤﻠﻴﻞ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ و آﺎﻧﺖ اﻷﺑﻌﺎد اﻟﻨﻬﺎﺋﻴﻪ ﺑﺎﻟﻤﻠﻠﻴﻤﺘﺮ )‪ (mm‬آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫‪L1 , 2 = 15.46‬‬

‫‪W1 , 2 = 3.27‬‬

‫‪L1 = 18.06‬‬

‫‪W1 = 6.06‬‬

‫‪L2 , 3 = 15.598‬‬

‫‪W2 , 3 = 3.63‬‬

‫‪L2 = 18.09‬‬

‫‪W2 = 12.07‬‬

‫‪L3 , 4 = 15.598‬‬

‫‪W3 , 4 = 3.63‬‬

‫‪L3 = 18.08‬‬

‫‪W3 = 12.56‬‬

‫‪L4 , 5 = 15.46‬‬

‫‪W4 , 5 = 3.27‬‬

‫‪L4 = 18.09‬‬

‫‪W4 = 12.07‬‬

‫‪L5 = 18.06‬‬

‫‪W5 = 6.06‬‬

‫و آﺎن ﻋﺮض اﻟﺨﻄﻴﻦ ﻋﻨﺪ اﻟﻤﺨﺮﺟﻴﻦ ﻳﺴﺎوى )‪ (Wo= 2.3 mm‬و اﻟﻄﻮل ﻳﺴﺎوى )‪.(Lo= 16.22 mm‬‬
‫و ﻳﺒﻴﻦ ﺷﻜﻞ )‪ (٨٠ – ٧‬ﻧﺘﻴﺠﺔ اﻟﺘﺤﻠﻴﻞ ﺑﺎﻷﺑﻌﺎد اﻟﻨﻬﺎﺋﻴﻪ ﻟﻠﻔﻠﺘﺮ‪ .‬و ﻳﺒﻴﻦ ﺷﻜﻞ )‪ (٨١ – ٧‬ﻣﺨﻄﻂ اﻟﻔﻠﺘﺮ‪.‬‬
‫اﻟﺘﻮﺻ ﻴﻞ ﻟ ﻸرض ﻓ ﻰ ﻧﻬﺎﻳ ﺔ اﻟﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﻤﺘﺼ ﻠﻪ ﻋﻠ ﻰ اﻟ ﺘﻮازى ﻣﻤﻜ ﻦ أن ﻳﻜ ﻮن ﻋ ﻦ ﻃ ﺮﻳﻖ )‪(Via‬‬
‫ﻣﺴ ﺘﻄﻴﻠﺔ اﻟﻤﻘﻄ ﻊ أو ﻋ ﻦ ﻃ ﺮﻳﻖ )‪ (Strap‬و هﻮ ﺷﺮﻳﻂ ﻣﻌﺪﻧﻰ )ﻣﻮﺻﻞ( ﻳﺘﻢ ﻋﻤﻠﻪ ﺑﻨﻔﺲ ﻋﺮض اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ و‬
‫ﻳﺘﻢ ﻟﺤﺎم ﻃﺮﻓﻪ ﻋﻠﻰ اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ و ﻃﺮﻓﻪ اﻵﺧﺮ ﻳﺘﻢ ﻟﺤﺎﻣﻪ ﺑﻄﺒﻘﺔ اﻟﻤﻮﺻﻞ اﻷرﺿﻰ‪.‬‬
‫اﻟﻜﺜﻴ ﺮ ﻣ ﻦ ﺑ ﺮاﻣﺞ ﺗﺤﻠ ﻴﻞ دواﺋ ﺮ اﻟﻤﻴﻜ ﺮووﻳﻒ ﺗﺤ ﺘﻮى ﻋﻠ ﻰ ﻧﻤ ﺎذج ﻣﺨ ﺘﻠﻔﻪ ﻟﻠﻮﺻ ﻠﻪ ﻟ ﻸرض )‪ (Via‬و ﻟﻠﻮﺻ ﻠﻪ‬
‫ﻟﻸرض ﻣﻦ ﻧﻮع )‪.(Ribbon Wire Ground Strap‬‬

‫‪337‬‬

‫ﺷﻜﻞ )‪ : (٨٠ – ٧‬ﻧﺘﻴﺠﺔ اﻟﺘﺤﻠﻴﻞ ﺑﺎﻷﺑﻌﺎد اﻟﻨﻬﺎﺋﻴﻪ ﻟﻠﻔﻠﺘﺮ ﻓﻰ ﻣﺜﺎل )‪(١٠ – ٧‬‬

‫ﺷﻜﻞ )‪ : (٨١ – ٧‬ﻣﺨﻄﻂ اﻟﻔﻠﺘﺮ ﻓﻰ ﻣﺜﺎل )‪(١٠ – ٧‬‬

‫‪338‬‬

‫)ﻤﻘﻁﻊ ‪ (٩-٧‬ﻓﻠﺘﺭ ﻤﺭﻭﺭ ﺤﻴﺯ ﺘﺭﺩﺩﻯ ﻤﻌﻴﻥ ﻤﻥ ﻨﻭﻉ ﺍﻟﺨﻁﻭﻁ ﺍﻟﻤﻘﺭﻭﻨﻪ ﻤﻥ ﺍﻟﻨﻬﺎﻴﻪ ‪:‬‬

‫ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (٨٢ – ٧‬ﻣﺨﻄ ﻂ ﻋ ﺎم ﻟﻔﻠﺘ ﺮ ﻣ ﺮور ﺣﻴ ﺰ ﺗ ﺮددى ﻣﻌﻴﻦ ﻣﻦ ﻧﻮع اﻟﺨﻄﻮط اﻟﻤﻘﺮوﻧﻪ أو اﻟﻤﺰدوﺟﻪ ﻣﻦ‬
‫ﻧﻬﺎﻳﺘﻬﺎ )‪ (End Coupled Resonators BPF‬أو ﻋﻨﺎﺻﺮ اﻟﺮﻧﻴﻦ اﻟﻤﻘﺮوﻧﻪ ﻣﻦ ﻧﻬﺎﻳﺘﻬﺎ‪.‬‬
‫‪o‬‬

‫و ﻳ ﺘﻜﻮن اﻟﻔﻠﺘ ﺮ ﻣ ﻦ ﺧﻄ ﻮط ﺷ ﺮﻳﻄﻴﻪ ﻃ ﻮل آ ﻞ ﻣ ﻨﻬﺎ ﻳﻜﺎﻓ ﺊ ﺗﻘ ﺮﻳﺒﺎ )‪ (π ≡ 180 ≡ λg/2‬ﻣﺤﺴ ﻮﺑﺎ ﻋ ﻨﺪ ﺗ ﺮدد‬
‫اﻟﻤﻨﺘﺼ ﻒ و اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻤﻴ ﺰﻩ ﻟﺠﻤ ﻴﻊ اﻟﺨﻄ ﻮط ﺑﺎﻟﻔﻠﺘ ﺮ ﺗﺴ ﺎوى )‪ ، (Zo‬و ﺑ ﻴﻦ آ ﻞ ﺧﻄ ﻴﻦ ﺷ ﺮﻳﻄﻴﻴﻦ ﻳ ﻮﺟﺪ ﻻ‬
‫اﺳﺘﻤﺮارﻳﺔ ﻓﺠﻮﻩ أو )‪ .(gap discontinuity‬راﺟﻊ ﻣﻘﻄﻊ )‪ (٣-٢-٤‬ﻓﻰ اﻟﻔﺼﻞ اﻟﺮاﺑﻊ‪.‬‬

‫ﺷﻜﻞ )‪ : (٨٢ – ٧‬ﻣﺨﻄﻂ ﻓﻠﺘﺮ ﻣﺮور ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ ﻣﻦ ﻧﻮع اﻟﺨﻄﻮط اﻟﻤﻘﺮوﻧﻪ أو اﻟﻤﺰدوﺟﻪ ﻣﻦ ﻧﻬﺎﻳﺘﻬﺎ‬

‫و ﻳﻤﻜﻦ اﻟﺘﻌﺒﻴﺮ ﻋﻦ ﻻ اﺳﺘﻤﺮارﻳﺎت اﻟﻔﺠﻮﻩ اﻟﻤﻮﺟﻮدﻩ ﻓﻰ اﻟﻔﻠﺘﺮ ﺑﻘﺎﻟﺒﺎت ﻣﻘﻠﻮب ﻣﻌﺎوﻗﻪ )‪.(Ji,i+1‬‬
‫و ﻳ ﺘﻢ ﺣﺴ ﺎب ﻗﻴﻢ ﻗﺎﻟﺒﺎت ﻣﻘﻠﻮب اﻟﻤﻌﺎوﻗﻪ ﺑﺪﻻﻟﺔ اﻟﻤﻜﻮﻧﺎت اﻟﻤﺘﻄﺒﻌﻪ )‪ (gi‬اﻟﺨﺎﺻﻪ ﺑﻔﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ‬
‫ﻷى ﻧﻮع ﻣﻦ ﺗﻘﺮﻳﺒﺎت اﻟﻔﻠﺘﺮ ) ﻣﺜﻞ ﺑﺘﺮوورث و ﺗﺸﻴﺒﻰ ﺗﺸﻴﻒ و ﻏﻴﺮهﺎ( وﻓﻘﺎ ﻟﻠﻤﻌﺎدﻻت اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫)‪(7.95‬‬

‫)‪(7.96‬‬

‫‪π BW‬‬
‫‪2 g o g1‬‬

‫‪1‬‬
‫‪g i g i +1‬‬

‫‪, i = 1,2, …, n−1‬‬

‫)‪(7.97‬‬

‫‪J 0,1 = Yo‬‬

‫‪BW π‬‬
‫‪2 g n g n+1‬‬

‫‪BW π Yo‬‬
‫‪2‬‬

‫= ‪J i , i+1‬‬

‫‪J n , n +1 = Yo‬‬

‫ﺣ ﻴﺚ )‪ (BW‬ه ﻮ اﻟﺤﻴﺰ اﻟﺘﺮددى اﻟﻨﺴﺒﻰ ﻟﻠﻔﻠﺘﺮ و )‪ (Zo =1/ Yo‬هﻰ اﻟﻤﻌﺎوﻗﻪ ﻋﻨﺪ ﻃﺮﻓﻰ اﻟﻔﻠﺘﺮ و )‪ (n‬هﻰ رﺗﺒﺔ‬
‫اﻟﻔﻠﺘﺮ‪ .‬و )‪ (go , gn+1‬هﻤﺎ اﻟﻤﻌﺎوﻗﺘﺎن اﻟﻤﺘﻄﺒﻌﺘﺎن )‪ (normalized impedances‬ﻋﻨﺪ ﻣﺪﺧﻠﻰ اﻟﻔﻠﺘﺮ‪.‬‬
‫أﻣﺎ اﻟﻄﻮل اﻟﻜﻬﺮﺑﻰ ﻟﻜﻞ ﺧﻂ ﺷﺮﻳﻄﻰ دﻗﻴﻖ ﺑﺎﻟﻔﻠﺘﺮ ﻓﻴﺤﺴﺐ ﺑﻮﺣﺪة )‪ (radians‬ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫)‪(7.98‬‬

‫‪radians‬‬

‫)] ‪θ i = π − 0.5(tan −1 [2 Z o Bi-1,i ] + tan −1 [2 Z o Bi,i+1‬‬

‫‪339‬‬

‫ﺣ ﻴﺚ اﻟﺴ ﻤﺎﺣﻴﻪ )‪ (Bi,i+1‬ه ﻰ ﺳﻤﺎﺣﻴﺔ اﻟﻤﻜﺜﻒ اﻟﻤﺜﺎﻟﻰ ) ‪ ( C gi ,i +1‬اﻟﻤﺘﺼﻞ ﻋﻠﻰ اﻟﺘﻮاﻟﻰ اﻟﺒﺪﻳﻞ ﻟﻼ اﺳﺘﻤﺮارﻳﺔ اﻟﻔﺠﻮﻩ‬
‫و اﻟﺬى ﻧﻔﺘﺮﺿﻪ ﻟﺘﺴﻬﻴﻞ اﻟﺤﺴﺎﺑﺎت اﻟﻤﺒﺪﺋﻴﻪ ﻟﻠﻔﻠﺘﺮ‪ .‬و ﻳﻤﻜﻦ ﺣﺴﺎب اﻟﺴﻤﺎﺣﻴﻪ )‪ (Bi,i+1‬ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫‪Yo‬‬

‫)‪(7.99‬‬

‫‪2‬‬

‫‪J i,i +1‬‬

‫‪⎛J‬‬
‫⎞‬
‫⎟ ‪1 − ⎜ i,i+1‬‬
‫‪Y‬‬
‫⎠‪o‬‬
‫⎝‬

‫=‬

‫‪Bi,i +1‬‬
‫‪Yo‬‬

‫و ﻗﻴﻤﺔ اﻟﻤﻜﺜﻒ اﻟﻤﺜﺎﻟﻰ اﻟﻤﺘﺼﻞ ﻋﻠﻰ اﻟﺘﻮاﻟﻰ اﻟﺒﺪﻳﻞ ﻟﻼ اﺳﺘﻤﺮارﻳﺔ اﻟﻔﺠﻮﻩ ﻣﻌﻄﺎﻩ ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫‪Bi,i +1‬‬

‫)‪(7.100‬‬

‫‪ωo‬‬

‫= ‪C gi ,i +1‬‬

‫ﺣﻴﺚ )‪ (ωo = 2 π fo‬هﻮ ﺗﺮدد اﻟﻤﻨﺘﺼﻒ ﻟﻠﻔﻠﺘﺮ‪.‬‬
‫ﻳﻤﻜﻦ ﺣﺴﺎب اﻟﻄﻮل اﻟﻤﺒﺪﺋﻰ اﻟﻔﻌﻠﻰ )اﻟﻔﻴﺰﻳﻘﻰ( ﻟﻜﻞ ﺧﻂ ﺷﺮﻳﻄﻰ دﻗﻴﻖ ﺑﺎﻟﻔﻠﺘﺮ ﻣﻦ اﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫‪λg‬‬
‫‪θ i − ∆lie1 − ∆lie 2‬‬
‫‪2π‬‬

‫)‪(7.101‬‬

‫= ‪li‬‬

‫ﺣ ﻴﺚ ) ‪ ( ∆lie1‬و ) ‪ ( ∆lie 2‬هﻤ ﺎ ﻃﻮﻟ ﻰ اﻻﺳﺘﻄﺎﻟﻪ ﻟﻠﺨﻄﻴﻦ اﻟﺸﺮﻳﻄﻴﻴﻦ اﻟﻤﺤﺼﻮرﻩ ﺑﻴﻨﻬﻤﺎ اﻟﻔﺠﻮﻩ‪ .‬و ﻳﻤﻜﻦ ﺣﺴﺎﺑﻬﻤﺎ‬
‫ﺑﺪﻻﻟﺔ اﻟﻤﻜﺜﻔﻴﻦ ) ‪ ( C ip,i +1‬و ) ‪ ( C ip−1,i‬اﻟﻤﺘﺼﻠﻴﻦ ﻋﻠﻰ اﻟﺘﻮازى ﻓﻰ اﻟﺪاﺋﺮﻩ اﻟﻤﻜﺎﻓﺌﻪ ﻟﻠﻔﺠﻮﻩ ﻣﻦ اﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫‪λ g ωo C ip,i +1‬‬
‫‪2π Yo‬‬

‫)‪(7.102‬‬

‫= ‪∆lie 2‬‬

‫‪λ g ωo C ip−1,i‬‬
‫‪2π Yo‬‬

‫‪,‬‬

‫= ‪∆lie1‬‬

‫راﺟﻊ اﻟﺪاﺋﺮﻩ اﻟﻤﻜﺎﻓﺌﻪ ﻟﻠﻔﺠﻮﻩ ﻓﻰ ﻣﻘﻄﻊ )‪ (٣-٢-٤‬ﻓﻰ اﻟﻔﺼﻞ اﻟﺮاﺑﻊ‪.‬‬
‫ﺼﻔُﻮﻓﺔ ﻣﻘﻠﻮب اﻟﻤﻌﺎوﻗﻪ ﻟﻠﻔﺠﻮﻩ ]‪ [Y‬ﺗﺴﺎوى ‪:‬‬
‫ﺼﻔُﻮﻓﺔ اﻟﻤﺴﺎﻣﺤﻪ أو َﻣ ْ‬
‫اذا ﻓﺮﺿﻨﺎ أن َﻣ ْ‬
‫⎤ ‪Y12‬‬
‫⎦⎥ ‪Y22‬‬

‫⎢⎡ = ] ‪[Y‬‬

‫‪Y11‬‬

‫‪⎣Y21‬‬

‫ﺗﻜﻮن ﻗﻴﻤﺔ اﻟﻤﻜﺜﻔﻴﻦ اﻟﻤﺘﺼﻠﻴﻦ ﻋﻠﻰ اﻟﺘﻮازى ﻓﻰ اﻟﺪاﺋﺮﻩ اﻟﻤﻜﺎﻓﺌﻪ ﻟﻠﻔﺠﻮﻩ هﻰ ‪:‬‬
‫) ‪Im(Y11 + Y21‬‬

‫)‪(7.103‬‬

‫‪ωo‬‬

‫= ‪Cp‬‬

‫ﺑﻴﻨﻤﺎ ﺗﻜﻮن ﻗﻴﻤﺔ اﻟﻤﻜﺜﻒ اﻟﻤﺘﺼﻞ ﻋﻠﻰ اﻟﺘﻮاﻟﻰ هﻰ ‪:‬‬
‫) ‪− Im(Y21‬‬

‫)‪(7.104‬‬

‫‪ωo‬‬

‫= ‪Cg‬‬

‫و ﻳﻤﻜ ﻦ ﺗﻠﺨ ﻴﺺ ﺧﻄ ﻮات ﺗﺼ ﻤﻴﻢ ﻓﻠﺘ ﺮ ﻣ ﺮور ﺣﻴ ﺰ ﺗ ﺮددى ﻣﻌ ﻴﻦ ﻣ ﻦ ﻧ ﻮع اﻟﺨﻄ ﻮط اﻟﻤﻘ ﺮوﻧﻪ أو اﻟﻤ ﺰدوﺟﻪ ﻣﻦ‬
‫ﻧﻬﺎﻳﺘﻬﺎ )‪ (End Coupled Resonators BPF‬آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫اﻟﺨﻄ ﻮﻩ اﻷوﻟ ﻰ ‪ :‬ه ﻰ ﺣﺴ ﺎب أو ﺗﺤﺪﻳ ﺪ اﻟﻤﻜ ﻮﻧﺎت اﻟﻤﺘﻄ ﺒﻌﻪ )‪ (gi‬ﺑﺎﻟﻨﺴ ﺒﻪ ﻟﻔﻠﺘ ﺮ ﻣ ﺮور اﻟﺘ ﺮددات اﻟﻤﻨﺨﻔﻀ ﻪ‬
‫ﺑﺎﻟﻤﻜﻮﻧﺎت اﻟﻌﻴﻨﻴﻪ ﺣﺴﺐ ﻧﻮع ﺗﻘﺮﻳﺐ اﻟﻔﻠﺘﺮ اﻟﻤﻄﻠﻮب ) ﻣﺜﻞ ﺑﺘﺮوورث و ﺗﺸﻴﺒﻰ ﺗﺸﻴﻒ و ﻏﻴﺮهﺎ(‪.‬‬
‫اﻟﺨﻄﻮﻩ اﻟﺜﺎﻧﻴﻪ ‪ :‬ﺣﺴﺎب ﻗﻴﻢ ﻗﺎﻟﺒﺎت ﻣﻘﻠﻮب اﻟﻤﻌﺎوﻗﻪ )‪ (Ji,i+1‬ﺑﺎﺳﺘﺨﺪام اﻟﻤﻌﺎدﻻت ﻣﻦ )‪ (7.95‬اﻟﻰ )‪. (7.97‬‬

‫‪340‬‬

‫اﻟﺨﻄ ﻮﻩ اﻟﺜﺎﻟ ﺜﻪ ‪ :‬ﺣﺴ ﺎب ﻗ ﻴﻢ اﻟﺴ ﻤﺎﺣﻴﻪ )‪ (Bi,i+1‬ﺑﺎﺳ ﺘﺨﺪام اﻟﻤﻌﺎدﻟ ﻪ )‪ .(7.99‬و ﻣ ﻨﻬﺎ ﻧﺤﺴ ﺐ ﻗﻴﻢ اﻷﻃﻮال اﻟﻜﻬﺮﺑﻴﻪ‬
‫ﻟﻠﺨﻄ ﻮط اﻟﻠﺸ ﺮﻳﻄﻴﻪ اﻟﻤﻜ ﻮﻧﻪ ﻟﻠﻔﻠﺘ ﺮ ﻣﻦ اﻟﻤﻌﺎدﻟﻪ )‪ ، (7.98‬و ﻗﻴﻢ اﻟﻤﻜﺜﻔﺎت اﻟﻤﺜﺎﻟﻴﻪ اﻟﻤﺘﺼﻠﻪ ﻋﻠﻰ اﻟﺘﻮاﻟﻰ اﻟﺒﺪﻳﻠﻪ ﻟﻼ‬
‫اﺳﺘﻤﺮارﻳﺎت اﻟﻔﺠﻮﻩ ) ‪ ( C gi ,i +1‬ﻣﻦ اﻟﻤﻌﺎدﻟﻪ )‪. (7.100‬‬
‫اﻟﺨﻄ ﻮﻩ اﻟ ﺮاﺑﻌﻪ ‪ :‬ﺑﻌ ﺪ ذﻟ ﻚ ﻳ ﺘﻢ اﺧﺘﻴﺎر ﻣﻮاﺻﻔﺎت اﻟﺸﺮﻳﺤﻪ اﻟﺸﺮﻳﻄﻴﻪ و ﺣﺴﺎب ﻋﺮض اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ ﺑﺎﻟﻔﻠﺘﺮ‬
‫ﺣﻴﺚ اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ ﻟﺠﻤﻴﻊ اﻟﺨﻄﻮط ﺑﺎﻟﻔﻠﺘﺮ ﺗﺴﺎوى )‪. (Zo‬‬
‫اﻟﺨﻄ ﻮﻩ اﻟﺨﺎﻣﺴ ﻪ ‪ :‬ﺑﺎﺳ ﺘﺨﺪام ﺑ ﺮﻧﺎﻣﺞ ﻟﺘﺤﻠ ﻴﻞ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ ﻳﺘﻢ ﺣﺴﺎب ﻣﺼﻔﻮﻓﺔ ]‪ [Y‬و ﻣﺼﻔﻮﻓﺔ ]‪ [S‬ﻟﻜﻞ‬
‫ﻣﻜﺜﻒ ﻣﺜﺎﻟﻰ ) ‪ ( C gi ,i +1‬ﻣﺘﺼﻞ ﻋﻠﻰ اﻟﺘﻮاﻟﻰ و ﺑﺪﻳﻞ ﻟﻼ اﺳﺘﻤﺮارﻳﺔ اﻟﻔﺠﻮﻩ‪.‬‬
‫ﻳ ﺘﻢ ﻋﻤ ﻞ )‪ (S parameters fitting‬ﺑﺎﺳ ﺘﺨﺪام ﺑ ﺮﻧﺎﻣﺞ ﺗﺤﻠ ﻴﻞ دواﺋ ﺮ اﻟﻤﻴﻜﺮووﻳﻒ ﻟﺤﺴﺎب ﻃﻮل اﻟﻔﺠﻮﻩ )‪(Si,i+1‬‬
‫اﻟﻤﻜﺎﻓ ﺊ ﻟﻠﻤﻜ ﺜﻒ ) ‪ .( C gi ,i +1‬و ه ﻰ ﻋﻤﻠ ﻴﺔ ﺑﺤ ﺚ ﻋ ﻦ اﻟﺤ ﻞ اﻷﻣ ﺜﻞ ﻟﺠﻌﻞ ﻗﻴﻤﺔ ﻣﺼﻔﻮﻓﺔ ]‪ [S‬ﻟﻠﻔﺠﻮﻩ ﻣﺴﺎوﻳﻪ ﻟﻘﻴﻤﺔ‬
‫ﻣﺼﻔﻮﻓﺔ ]‪ [S‬ﻟﻠﻤﻜﺜﻒ ) ‪ ( C gi ,i +1‬اﻟﻤﺘﺼﻞ ﻋﻠﻰ اﻟﺘﻮاﻟﻰ‪.‬‬
‫و ﺑﺤﺴ ﺎب ﻃ ﻮل آ ﻞ ﻓﺠ ﻮﻩ )‪ (Si,i+1‬و ﻣﻌ ﺮﻓﺔ ﻣﺼ ﻔﻮﻓﺔ ]‪ [Y‬ﻟﻬ ﺎ ﻳﻤﻜ ﻦ ﺣﺴ ﺎب ﻗ ﻴﻢ ﻣﻜ ﺜﻔﺎت اﻟﺪاﺋ ﺮﻩ اﻟﻤﻜﺎﻓ ﺌﻪ ﻟﻬ ﺎ‬
‫ﺑﺎﺳ ﺘﺨﺪام اﻟﻤﻌﺎدﻟﺘ ﻴﻦ )‪ (7.103‬و )‪ . (7.104‬و ﻣ ﻦ ﺛ ﻢ ﻳ ﺘﻢ ﺣﺴ ﺎب اﻟﻄ ﻮل اﻟﻔﻌﻠ ﻰ ﻟﻜ ﻞ ﺧ ﻂ ﺷ ﺮﻳﻄﻰ ﺑﺎﻟﻔﻠﺘ ﺮ ﻣ ﻦ‬
‫اﻟﻤﻌﺎدﻟﻪ )‪ .(7.101‬و ﺗﺠﺮى ﺟﻤﻴﻊ اﻟﺤﺴﺎﺑﺎت اﻟﻤﺸﺮوﺣﻪ أﻋﻼﻩ ﻋﻨﺪ ﺗﺮدد اﻟﻤﻨﺘﺼﻒ‪.‬‬
‫اﻟﺨﻄﻮﻩ اﻟﺴﺎدﺳﻪ ‪ :‬هﻰ ﺗﺤﻠﻴﻞ اﻟﺪاﺋﺮﻩ ﺑﺎﺳﺘﺨﺪام أﺣﺪ ﺑﺮاﻣﺞ ﺗﺤﻠﻴﻞ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ ﺑﺎﻷﺑﻌﺎد اﻟﻤﺒﺪﺋﻴﻪ اﻟﻤﺤﺴﻮﺑﻪ ﻓﻰ‬
‫اﻟﺨﻄﻮات اﻟﺴﺎﺑﻘﻪ‪ .‬و ﻋﻤﻞ اﻟﺒﺤﺚ ﻋﻦ اﻟﺤﻞ اﻷﻣﺜﻞ )‪ (Optimization‬ﺑﺘﻐﻴﻴﺮ اﻷﺑﻌﺎد ﻟﺘﺤﺴﻴﻦ اﻷداء اذا آﺎن ﻣﺨﺘﻠﻔﺎ‬
‫ﻋﻦ اﻟﻘﻴﻢ اﻟﻤﻄﻠﻮﺑﻪ‪.‬‬
‫اﻟﻤ ﺮﺟﻊ )‪ (1‬ﻳﻌﻄ ﻰ ﻣ ﺜﺎل آﺎﻣﻞ ﻟﺘﺼﻤﻴﻢ ﻓﻠﺘﺮ ﻣﻦ ﻧﻮع )‪ (End Coupled Resonators BPF‬ﻣﻦ ﻧﻮع ﺗﺸﻴﺒﻰ‬
‫ﺗﺸﻴﻒ )‪ (Chebyshev‬ﺑﺮﺗﺒﺔ ﻓﻠﺘﺮ )‪.(n = 3‬‬

‫)ﻤﻘﻁﻊ ‪ (١٠ - ٧‬ﻓﻠﺘﺭ ﻤﺭﻭﺭ ﺤﻴﺯ ﺘﺭﺩﺩﻯ ﻤﻌﻴﻥ ﻤﻥ ﻨﻭﻉ ‪: Hairpin BPF‬‬

‫هﻨﺎك أﻧﻮاع و أﺷﻜﺎل ﻣﺨﺘﻠﻔﻪ ﻣﻦ ﻓﻠﺘﺮ ﻣﺮور ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ ﻣﻦ ﻧﻮع دﺑﻮس اﻟﺸﻌﺮ )‪. (Hairpin BPF‬‬
‫ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (٨٣ – ٧‬رﺳ ﻢ ﺛﻼﺛﻰ اﻷﺑﻌﺎد ﻟﻔﻠﺘﺮ ﻣﺮور ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ ﻣﻦ ﻧﻮع ﺧﻂ دﺑﻮس اﻟﺸﻌﺮ )‪Hairpin-‬‬
‫‪ (line BPF‬اﻟﻤﺸ ﺮوح ﻓ ﻰ ه ﺬا اﻟﻤﻘﻄ ﻊ ﺑ ﺮﺗﺒﺔ ﻓﻠﺘ ﺮ )‪ .(n=4‬و ﻧﻼﺣﻆ أﻧﻪ ﻳﺘﻜﻮن ﻣﻦ أرﺑﻌﺔ ﻋﻨﺎﺻﺮ رﻧﻴﻦ ﻣﻦ ﻧﻮع‬
‫دﺑﻮس اﻟﺸﻌﺮ )‪ (Hairpin resonator‬آﻞ ﻣﻨﻬﺎ ﻋﻠﻰ ﺷﻜﻞ ﺣﺮف )‪.(U‬‬
‫و ﻳﺒﻴﻦ ﺷﻜﻞ )‪ (٨٤ – ٧‬ﻣﺨﻄﻂ ﻋﺎم ﻟﻬﺬا اﻟﻨﻮع ﻣﻦ اﻟﻔﻠﺘﺮ ﺑﺮﺗﺒﺔ )‪.(n‬‬
‫ه ﺬا اﻟﻨﻮع ﻣﻦ اﻟﻔﻠﺘﺮ ﻳﻤﻜﻦ أن ﻳﺤﻘﻖ ﺣﻴﺰ ﺗﺮددى ﻧﺴﺒﻰ ﻳﻘـﻞ ﻋﻦ )‪ (0.04‬و هﺬا ﻣﻬﻢ ﺟﺪا ﻟﻠﻌﺪﻳﺪ ﻣﻦ اﻟﺘﻄﺒﻴﻘﺎت ‪ ،‬آﻤﺎ‬
‫ﻳﻤﻜﻦ أن ﻳﺤﻘﻖ ﺣﻴﺰ ﺗﺮددى ﻧﺴﺒﻰ ﻳﺘﻌﺪى )‪.(0.2‬‬
‫اﻟﻤﻌﻠ ﻮﻣﺎت و اﻟﻤﻨﺤﻨ ﻴﺎت و اﻟﻤﻌ ﺎدﻻت اﻟﻜﺎﻣﻠ ﻪ ﻟﺘﺼ ﻤﻴﻢ ه ﺬا اﻟ ﻨﻮع ﻣ ﻦ اﻟﻔﻠﺘ ﺮ ﺑﺘﻜﻨﻮﻟﻮﺟ ﻴﺎت اﻟﺪواﺋ ﺮ اﻟﺸ ﺮﻳﻄﻴﻪ‬
‫)‪ (stripline‬و اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ )‪ (microstrip line‬ﻣﻌﻄﺎﻩ ﻓﻰ اﻟﻤﺮﺟﻊ )‪.(15‬‬
‫‪341‬‬

‫ﻟﻜﻦ ﻃﺮﻳﻘﺔ اﻟﺘﺼﻤﻴﻢ اﻟﻤﺸﺮوﺣﻪ ﻓﻰ هﺬا اﻟﻤﻘﻄﻊ ﻣﻌﻄﺎﻩ ﻓﻰ اﻟﻤﺮﺟﻌﻴﻦ )‪.(1 , 6‬‬

‫ﺷﻜﻞ )‪ : (٨٣ – ٧‬رﺳﻢ ﺛﻼﺛﻰ اﻷﺑﻌﺎد ﻟﻔﻠﺘﺮ ﻣﺮور ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ ﻣﻦ ﻧﻮع )‪.(Hairpin-line BPF‬‬

‫ﺷﻜﻞ )‪ : (٨٤ – ٧‬ﻣﺨﻄﻂ ﻋﺎم ﻟﻔﻠﺘﺮ ﻣﺮور ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ ﻣﻦ ﻧﻮع )‪.(Hairpin-line BPF‬‬

‫و ﻳﻤﻜ ﻦ اﺳ ﺘﻨﺘﺎج أﺑﻌ ﺎد ﻓﻠﺘ ﺮ )‪ (Hairpin BPF‬ﺑﺎﺳ ﺘﺨﺪام ﻓﻠﺘ ﺮ ﻣ ﺮور ﺣﻴ ﺰ ﺗ ﺮددى ﻣﻌ ﻴﻦ ﻣ ﻦ ﻧ ﻮع اﻟﺨﻄ ﻮط‬
‫اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﻤ ﺰدوﺟﻪ )‪ (Parallel Coupled Lines BPF or Edge Coupled BPF‬اﻟﻤﺸ ﺮوح ﻓ ﻰ ﻣﻘﻄ ﻊ‬
‫)‪ (٧-٧‬و ذﻟ ﻚ ﺑﺜﻨ ﻰ آ ﻞ ﺧ ﻂ ﻓ ﻴﻪ ﻋﻠ ﻰ ﺷ ﻜﻞ ﺣ ﺮف )‪ (U‬و ﻳﺴ ﻤﻰ اﻟﻌﻨﺼ ﺮ اﻟﺠﺪﻳ ﺪ ﻋﻨﺼ ﺮ رﻧ ﻴﻦ ﻣ ﻦ ﻧﻮع دﺑﻮس‬
‫اﻟﺸ ﻌﺮ )‪ .(Hairpin resonator‬و ﻣ ﻦ ه ﺬا اﻟﻤ ﺒﺪأ ﺗﻜ ﻮن ﻣﻌ ﺎدﻻت ﺗﺼﻤﻴﻢ ﻓﻠﺘﺮ ﻣﺮور ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ ﻣﻦ ﻧﻮع‬
‫اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﻤﺰدوﺟﻪ اﻟﻤﺸﺮوح ﻓﻰ ﻣﻘﻄﻊ )‪ (٧-٧‬هﻰ ﻧﻔﺴﻬﺎ ﻣﻌﺎدﻻت ﺗﺼﻤﻴﻢ ﻓﻠﺘﺮ )‪.(Hairpin BPF‬‬
‫ﻟﻜ ﻦ ﺗﺼ ﻤﻴﻢ ﻓﻠﺘ ﺮ )‪ (Hairpin BPF‬ﺑﺎﻻﻋ ﺘﻤﺎد ﻋﻠ ﻰ ﻣ ﺒﺪأ )‪ (filter design by coupling‬أى اﻟﻔﻠﺘ ﺮ اﻟ ﺬى‬
‫ﻳ ﺘﻜﻮن ﻣ ﻦ ﻋﻨﺎﺻ ﺮ رﻧ ﻴﻦ ﻳ ﻮﺟﺪ ﺑﻴ ﻨﻬﺎ ) ﻗ ﺮن أو ازدواج ‪ ( coupling‬ه ﻮ اﻟ ﺬى ﺳﻨﺴ ﺘﺨﺪﻣﻪ ﻓ ﻰ ﺷ ﺮح ﻃ ﺮﻳﻘﺔ‬
‫اﻟﺘﺼﻤﻴﻢ‪.‬‬

‫‪342‬‬

‫و ﻓﻘﺎ ﻟﺸﻜﻞ )‪ (٨٤ – ٧‬ﻳﺘﻢ اﺧﺘﻴﺎر اﻷﺑﻌﺎد آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫ﻳ ﺘﻢ اﺧﺘ ﻴﺎر ﻋ ﺮض ﺟﻤ ﻴﻊ اﻟﺨﻄ ﻮط اﻟﺸﺮﻳﻄﻴﻪ ﺑﺎﻟﻔﻠﺘﺮ )‪ (Wr=Wo‬ﻟﻴﻜﺎﻓﺊ ﺧﻂ ﻣﻌﺎوﻗﺘﻪ اﻟﻤﻤﻴﺰﻩ )‪ (Zo‬أو ﻗﻴﻤﻪ ﻗﺮﻳﺒﻪ‬
‫ﻣ ﻨﻬﺎ أﻣ ﺎ اﻟﻤﺴ ﺎﻓﻪ اﻟﺒﻴﻨ ﻴﻪ ﺑ ﻴﻦ آ ﻞ ﻋﻨﺼ ﺮى رﻧ ﻴﻦ )‪ (S‬و ﻣﺴ ﺎﻓﺔ اﻟﺘﻮﻟ ﻴﻒ )‪ (tap distance t‬ﻓﻴ ﺘﻢ ﺣﺴ ﺎﺑﻬﻤﺎ وﻓﻘﺎ‬
‫ﻟﻤﻮاﺻﻔﺎت اﻟﻔﻠﺘﺮ‪.‬‬
‫ﻣﺴ ﺎﻓﺘﻰ اﻟﺘﻮﻟ ﻴﻒ )‪ (t‬ﻋ ﻨﺪ ﻣ ﺪﺧﻞ و ﻣﺨ ﺮج اﻟﻔﻠﺘ ﺮ ﻣﺘﺴ ﺎوﻳﺘﺎن أﻣ ﺎ اﻟﻤﺴ ﺎﻓﻪ اﻟﺒﻴﻨﻴﻪ ﺑﻴﻦ آﻞ ﻋﻨﺼﺮى رﻧﻴﻦ )‪ (S‬ﻓﻬﻰ‬
‫ﻟﻴﺴﺖ آﺬﻟﻚ‪.‬‬
‫ﻳﺘﻢ اﺧﺘﻴﺎر اﻟﻤﺴﺎﻓﻪ ﺑﻴﻦ ذراﻋﻰ ﻋﻨﺼﺮ اﻟﺮﻧﻴﻦ ﻟﺘﻜﻮن ﺗﻘﺮﻳﺒﺎ ﺿﻌﻒ ﻋﺮض اﻟﺬراع اﻟﻮاﺣﺪ )‪.(X = 2 Wr‬‬
‫‪o‬‬

‫ﻃﻮل ﻋﻨﺼﺮ اﻟﺮﻧﻴﻦ ﻳﻜﺎﻓﺊ ﺗﻘﺮﻳﺒﺎ )‪. (2 L ≡ π ≡ 180 ≡ λg/2‬‬
‫ﻳ ﺘﻢ اﺿ ﺎﻓﺔ ﺧ ﻂ ﺷ ﺮﻳﻄﻰ دﻗ ﻴﻖ ﻣﻌﺎوﻗ ﺘﻪ اﻟﻤﻤﻴ ﺰﻩ )‪ (Zo‬ﻋ ﻨﺪ آ ﻞ ﻣ ﻦ اﻟﻤﺪﺧﻠ ﻴﻦ‪ .‬ﺗ ﺘﻢ ﺟﻤ ﻴﻊ اﻟﺤﺴ ﺎﺑﺎت ﻋ ﻨﺪ ﺗ ﺮدد‬
‫اﻟﻤﻨﺘﺼﻒ ﻟﻠﻔﻠﺘﺮ‪ .‬اﻟﻤﺮﺟﻌﻴﻦ )‪ (1 , 6‬ﻳﻌﻄﻴﺎن ﻣﺜﺎﻟﻴﻦ آﺎﻣﻠﻴﻦ ﻟﻠﺘﺼﻤﻴﻢ‪.‬‬
‫و ﻳﻤﻜﻦ ﺗﻠﺨﻴﺺ ﺧﻄﻮات ﺗﺼﻤﻴﻢ ﻓﻠﺘﺮ ﻣﺮور ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ ﻣﻦ ﻧﻮع )‪ (Hairpin-line BPF‬آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫اﻟﺨﻄ ﻮﻩ اﻷوﻟ ﻰ ‪ :‬ه ﻰ ﺣﺴ ﺎب أو ﺗﺤﺪﻳ ﺪ اﻟﻤﻜ ﻮﻧﺎت اﻟﻤﺘﻄ ﺒﻌﻪ )‪ (gi‬ﺑﺎﻟﻨﺴ ﺒﻪ ﻟﻔﻠﺘ ﺮ ﻣ ﺮور اﻟﺘ ﺮددات اﻟﻤﻨﺨﻔﻀ ﻪ‬
‫ﺑﺎﻟﻤﻜ ﻮﻧﺎت اﻟﻌﻴﻨ ﻴﻪ ﺣﺴ ﺐ رﺗ ﺒﺔ اﻟﻔﻠﺘ ﺮ )‪ (n‬و ﻧ ﻮع ﺗﻘ ﺮﻳﺐ اﻟﻔﻠﺘ ﺮ اﻟﻤﻄﻠ ﻮب ) ﻣ ﺜﻞ ﺑﺘ ﺮوورث و ﺗﺸ ﻴﺒﻰ ﺗﺸ ﻴﻒ و‬
‫ﻏﻴﺮهﺎ(‪.‬‬
‫اﻟﺨﻄ ﻮﻩ اﻟﺜﺎﻧ ﻴﻪ ‪ :‬ﺑﺎﻋﺘ ﺒﺎر أن اﻟﻔﻠﺘ ﺮ ﻳ ﺘﻜﻮن ﻣ ﻦ ﻋﻨﺎﺻ ﺮ رﻧ ﻴﻦ ﻳ ﻮﺟﺪ ﺑﻴ ﻨﻬﺎ ) ﻗ ﺮن أو ازدواج ‪ (coupling‬ﻳﻨﺒﻐ ﻰ‬
‫ﻣﻌ ﺮﻓﺔ ﻗ ﻴﻢ ﻣﻌ ﺎﻣﻼت اﻻزدواج )أو اﻟﻘ ﺮن( ﺑ ﻴﻦ آ ﻞ ﻋﻨﺼ ﺮى رﻧ ﻴﻦ )‪ .(ki,i+1‬ﺑﺎﻻﺿ ﺎﻓﻪ اﻟ ﻰ ﻗﻴﻢ ﻣﻌﺎﻣﻼت )‪ (q‬أو‬
‫ﻣﻌﺎﻣﻼت اﻟﺠﻮدﻩ )‪ (quality factors‬ﻟﻌﻨﺼﺮى اﻟﺮﻧﻴﻦ ﻋﻨﺪ ﻣﺪﺧﻠﻰ اﻟﻔﻠﺘﺮ‪.‬‬
‫ﻳﺘﻢ ﺣﺴﺎب ﻗﻴﻤﺔ ﻣﻌﺎﻣﻞ )‪ (qe1‬ﻋﻨﺪ ﻣﺪﺧﻞ اﻟﻔﻠﺘﺮ و ﻗﻴﻤﺔ ﻣﻌﺎﻣﻞ )‪ (qen‬ﻋﻨﺪ ﻣﺨﺮج اﻟﻔﻠﺘﺮ ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫)‪(7. 105‬‬

‫‪g n g n +1‬‬
‫‪BW‬‬

‫= ‪qe n‬‬

‫‪,‬‬

‫‪g o g1‬‬
‫‪BW‬‬

‫= ‪qe 1‬‬

‫و ﻳﺘﻢ ﺣﺴﺎب ﻗﻴﻢ ﻣﻌﺎﻣﻼت اﻻزدواج )أو اﻟﻘﺮن( ﺑﻴﻦ آﻞ ﻋﻨﺼﺮى رﻧﻴﻦ )‪ (ki,i+1‬ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫)‪(7. 106‬‬

‫‪, i = 1,2, …, n−1‬‬

‫‪BW‬‬
‫‪g i g i +1‬‬

‫= ‪k i , i+1‬‬

‫ﺣ ﻴﺚ )‪ (BW‬ه ﻮ اﻟﺤﻴ ﺰ اﻟﺘ ﺮددى اﻟﻨﺴ ﺒﻰ ﻟﻠﻔﻠﺘ ﺮ و )‪ (go , gn+1‬هﻤ ﺎ اﻟﻤﻌﺎوﻗ ﺘﺎن اﻟﻤﺘﻄﺒﻌ ﺘﺎن ) ‪normalized‬‬
‫‪ (impedances‬ﻋﻨﺪ ﻣﺪﺧﻠﻰ اﻟﻔﻠﺘﺮ‪.‬‬
‫اﻟﺨﻄ ﻮﻩ اﻟﺜﺎﻟ ﺜﻪ ‪ :‬ﻳ ﺘﻢ اﺧﺘ ﻴﺎر ﻣﻮاﺻﻔﺎت اﻟﺸﺮﻳﺤﻪ اﻟﺸﺮﻳﻄﻴﻪ و ﺣﺴﺎب ﻋﺮض اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ ﺑﺎﻟﻔﻠﺘﺮ )‪ (Wr‬ﺑﻨﺎء‬
‫ﻋﻠﻰ اﺧﺘﻴﺎر )‪ (Zr‬و هﻰ اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ ﻟﺠﻤﻴﻊ اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ ﺑﺎﻟﻔﻠﺘﺮ‪.‬‬
‫ﻓ ﻰ ﻣﺜﺎل ﻟﻠﺘﺼﻤﻴﻢ ﻓﻰ اﻟﻤﺮﺟﻊ )‪ (6‬ﺗﻢ اﺧﺘﻴﺎر )‪ (Zr = 50 Ω = Zo‬ﺑﻴﻨﻤﺎ ﻓﻰ ﻣﺜﺎل ﺗﺼﻤﻴﻢ ﺁﺧﺮ ﻓﻰ اﻟﻤﺮﺟﻊ )‪ (1‬ﺗﻢ‬
‫اﺧﺘ ﻴﺎر )‪ (Zr = 68.3 Ω‬و ﺗ ﻢ اﺧﺘ ﻴﺎر اﻟﻤﺴ ﺎﻓﻪ ﺑ ﻴﻦ ذراﻋ ﻰ ﻋﻨﺼ ﺮ اﻟﺮﻧﻴﻦ ﻟﺘﻜﻮن ﺿﻌﻒ ﻋﺮض اﻟﺬراع اﻟﻮاﺣﺪ‬
‫أى ﺿﻌﻒ ﻋﺮض أى ﺧﻂ ﺷﺮﻳﻄﻰ ﺑﺎﻟﻔﻠﺘﺮ )‪.(X = 2 Wr‬‬
‫‪o‬‬

‫ﻳﺘﻢ ﺣﺴﺎب اﻟﻄﻮل اﻟﻤﺒﺪﺋﻰ ﻟﻌﻨﺼﺮ اﻟﺮﻧﻴﻦ ﻳﻜﺎﻓﺊ )‪.(2 L ≡ π ≡ 180 ≡ λg/2‬‬
‫اذا ﻓ ﻰ ه ﺬﻩ اﻟﺨﻄ ﻮﻩ ﺗ ﻢ ﺣﺴﺎب اﻷﺑﻌﺎد اﻟﻤﺒﺪﺋﻴﻪ ﻟﻌﻨﺼﺮ اﻟﺮﻧﻴﻦ آﺎﻣﻠﺔ )‪ (2 L , X , Wr‬ﻋﻨﺪ ﺗﺮدد اﻟﻤﻨﺘﺼﻒ ﻟﻠﻔﻠﺘﺮ‪.‬‬
‫ﻳﺘﻢ ﺣﺴﺎب ﻋﺮض اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ ذو اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ )‪ (Zo‬ﻋﻨﺪ آﻞ ﻣﺪﺧﻞ و ﻳﺴﺎوى )‪.(Wo‬‬

‫‪343‬‬

‫اﻟﺨﻄ ﻮﻩ اﻟ ﺮاﺑﻌﻪ ‪ :‬ﻳﺘﺒﻘ ﻰ ﺣﺴ ﺎب اﻟﻤﺴ ﺎﻓﺎت اﻟﺒﻴﻨ ﻴﻪ ﺑ ﻴﻦ ﻋﻨﺎﺻ ﺮ اﻟ ﺮﻧﻴﻦ و ﻣﺴ ﺎﻓﺔ اﻟﺘﻮﻟ ﻴﻒ )‪(tap distance t‬‬
‫ﻻﺳﺘﻜﻤﺎل ﺣﺴﺎﺑﺎت اﻷﺑﻌﺎد اﻟﻤﺒﺪﺋﻴﻪ ﻟﻠﻔﻠﺘﺮ‪.‬‬
‫ﻳ ﺘﻢ اﺳﺘﺨﺪام ﻣﻨﺤﻨﻴﺎت ﺗﻐﻴﺮ اﻟﻤﺴﺎﻓﺎت اﻟﺒﻴﻨﻴﻪ ﺑﻴﻦ ﻋﻨﺼﺮى اﻟﺮﻧﻴﻦ ﻣﻊ ﻣﻌﺎﻣﻼت اﻻزدواج ﺑﻴﻦ آﻞ ﻋﻨﺼﺮى رﻧﻴﻦ‬
‫ﻟﺘﺤﺪﻳﺪ ﻗﻴﻤﺔ آﻞ ﻣﺴﺎﻓﻪ ﺑﻴﻨﻴﻪ )‪ (Si,i+1‬ﻣﻜﺎﻓﺌﻪ ﻟﻤﻌﺎﻣﻞ اﻻزدواج )‪ (ki,i+1‬اﻟﻤﺤﺴﻮب ﻣﻦ اﻟﻤﻌﺎدﻟﻪ )‪.(7. 106‬‬
‫و ﻳ ﺘﻢ اﺳ ﺘﺨﺪام ﻣﻨﺤﻨ ﻴﺎت ﺗﻐﻴ ﺮ ﻣﻌ ﺎﻣﻼت اﻟﺠ ﻮدﻩ اﻟﺨﺎرﺟ ﻴﻪ )‪ (external quality factor‬ﻣ ﻊ ﻣﺴ ﺎﻓﺔ اﻟﺘﻮﻟ ﻴﻒ‬
‫ﻟﺘﺤﺪﻳﺪ ﻗﻴﻤﺔ ﻣﺴﺎﻓﺔ اﻟﺘﻮﻟﻴﻒ )‪ (t‬اﻟﻤﻜﺎﻓﺌﻪ ﻟﻤﻌﺎﻣﻞ اﻟﺠﻮدﻩ )‪ (qe‬اﻟﻤﺤﺴﻮب ﻣﻦ اﻟﻤﻌﺎدﻟﻪ )‪.(7. 105‬‬
‫ﻋﻠﻤﺎ ﺑﺄن هﺬﻩ اﻟﻤﻨﺤﻨﻴﺎت ﺗﻜﻮن ﻣﺮﺳﻮﻣﻪ وﻓﻘﺎ ﻟﻤﻮاﺻﻔﺎت ﺷﺮﻳﺤﻪ ﺷﺮﻳﻄﻴﻪ ﻣﻌﻴﻨﻪ آﻤﺎ هﻮ ﻣﻌﻄﻰ ﻓﻰ اﻟﻤﺮﺟﻌﻴﻦ ) ‪1 ,‬‬
‫‪ (6‬و ﻏﻴﺮهﻤﺎ ‪.‬‬
‫أﻣ ﺎ ﻓ ﻰ ﺣﺎﻟ ﺔ ﺗﻌ ﺬر اﻳﺠ ﺎد ﻣﻨﺤﻨ ﻴﺎت ﻟﺤﺴ ﺎب ه ﺬﻩ اﻟﻘﻴﻢ ﻟﻠﺸﺮﻳﺤﻪ اﻟﻤﺴﺘﺨﺪﻣﻪ ﻓﻰ اﻟﻔﻠﺘﺮ ﻓﻴﻤﻜﻦ اﺳﺘﺨﺪام ﻣﻌﻈﻢ ﺑﺮاﻣﺞ‬
‫ﺗﺤﻠ ﻴﻞ دواﺋ ﺮ اﻟﻤﻴﻜ ﺮووﻳﻒ و ﺑ ﺮاﻣﺞ اﻟﺘﺤﻠ ﻴﻞ اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴ ﻰ ﻓ ﻰ رﺳ ﻢ ﻣﻨﺤﻨ ﻴﺎت ﺗﻐﻴ ﺮ اﻟﻤﺴ ﺎﻓﻪ اﻟﺒﻴﻨ ﻴﻪ )‪ (S‬ﻣ ﻊ‬
‫ﻣﻌﺎﻣﻞ اﻻزدواج )‪ (k‬و ﻣﻨﺤﻨﻴﺎت ﺗﻐﻴﺮ ﻣﺴﺎﻓﺔ اﻟﺘﻮﻟﻴﻒ )‪ (t‬ﻣﻊ ﻣﻌﺎﻣﻞ اﻟﺠﻮدﻩ )‪ .(q‬و هﻰ ﻋﻤﻠﻴﻪ ﻣﻄﻮﻟﻪ‪.‬‬
‫اﻟﻤ ﺮﺟﻊ )‪ (16‬ﻳﺸ ﺮح ﻃ ﺮﻳﻘﺔ ﺗﺤﺪﻳ ﺪ اﻟﻤﺴ ﺎﻓﻪ اﻟﺒﻴﻨ ﻴﻪ )‪ (s‬ﻟﻌﻨﺼﺮ رﻧﻴﻦ ﻳﺘﻜﻮن ﻣﻦ ﺧﻄﻴﻦ ﻣﺰدوﺟﻴﻦ ﺑﺪﻻﻟﺔ )‪ ، (k‬و‬
‫آﺬﻟﻚ ﻳﺸﺮح ﻃﺮﻳﻘﺔ ﺗﺤﺪﻳﺪ اﻟﻤﺴﺎﻓﻪ )‪ (t‬ﻟﻌﻨﺼﺮ اﻟﺮﻧﻴﻦ ﺑﺪﻻﻟﺔ )‪ (q‬ﺑﺎﺳﺘﺨﺪام أﺣﺪ ﺑﺮاﻣﺞ ﺗﺤﻠﻴﻞ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ‪.‬‬
‫و ﻳﻤﻜ ﻦ اﺳ ﺘﺨﺪام ﻧﻔ ﺲ اﻟﻄ ﺮﻳﻘﻪ اﻟﻤﺸ ﺮوﺣﻪ ﻓ ﻰ اﻟﻤ ﺮﺟﻊ )‪ (16‬ﻟ ﺘﺤﺪﻳﺪ اﻟﻤﺴ ﺎﻓﻪ اﻟﺒﻴﻨ ﻴﻪ )‪ (S‬ﺑﻴﻦ ﻋﻨﺼﺮى رﻧﻴﻦ ﻣﻦ‬
‫ﻧ ﻮع )‪ (Hairpin‬ﺑﺪﻻﻟ ﺔ )‪ (k‬ﺑﺎﺳﺘﺨﺪام اﻟﺪاﺋﺮﻩ اﻟﻤﺒﻴﻨﻪ ﻓﻰ اﻟﺠﺰء اﻷﻳﺴﺮ ﻣﻦ ﺷﻜﻞ )‪ ، (٨٥ – ٧‬و ﺗﺤﺪﻳﺪ اﻟﻤﺴﺎﻓﻪ‬
‫)‪ (t‬ﻟﻌﻨﺼﺮ اﻟﺮﻧﻴﻦ ﺑﺪﻻﻟﺔ )‪ (q‬ﻟﻔﻠﺘﺮ )‪ (Hairpin‬ﺑﺎﺳﺘﺨﺪام اﻟﺪاﺋﺮﻩ اﻟﻤﺒﻴﻨﻪ ﻓﻰ اﻟﺠﺰء اﻷﻳﻤﻦ ﻣﻦ ﺷﻜﻞ )‪.(٨٥ – ٧‬‬

‫ﺷﻜﻞ )‪ : (٨٥ – ٧‬داﺋﺮﺗﻰ ﺗﺤﺪﻳﺪ ﻣﺴﺎﻓﺔ اﻟﺘﻮﻟﻴﻒ )‪ (t‬و اﻟﻤﺴﺎﻓﻪ اﻟﺒﻴﻨﻴﻪ ﺑﻴﻦ ﻋﻨﺼﺮى اﻟﺮﻧﻴﻦ )‪.(S‬‬

‫آﻤﺎ ﻳﻤﻜﻦ ﺣﺴﺎب اﻟﻤﺴﺎﻓﻪ )‪ (t‬ﻣﺒﺎﺷﺮة ﺑﺪﻻﻟﺔ ﻗﻴﻤﺔ )‪ (qe‬اﻟﻤﺤﺴﻮﺑﻪ ﻣﻦ اﻟﻤﻌﺎدﻟﻪ )‪ (7. 105‬ﺑﺪﻻﻟﺔ اﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫)‪(7. 107‬‬

‫⎞ ) ‪⎛ π (Z o / Z r‬‬
‫⎟‬
‫⎜⎜ ‪sin -1‬‬
‫⎟‬
‫‪2‬‬
‫‪q‬‬
‫‪π‬‬
‫‪e‬‬
‫⎝‬
‫⎠‬

‫‪2L‬‬

‫‪344‬‬

‫=‪t‬‬

‫اﻟﺨﻄ ﻮﻩ اﻟﺨﺎﻣﺴ ﻪ ‪ :‬ه ﻰ ﺗﺤﻠ ﻴﻞ اﻟﺪاﺋ ﺮﻩ ﺑﺎﺳ ﺘﺨﺪام أﺣ ﺪ ﺑﺮاﻣﺞ ﺗﺤﻠﻴﻞ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ ﺑﺎﻷﺑﻌﺎد اﻟﻤﺒﺪﺋﻴﻪ اﻟﻤﺤﺴﻮﺑﻪ‬
‫ﻓ ﻰ اﻟﺨﻄ ﻮات اﻟﺴ ﺎﺑﻘﻪ‪ .‬و ﻋﻤ ﻞ اﻟ ﺒﺤﺚ ﻋ ﻦ اﻟﺤ ﻞ اﻷﻣ ﺜﻞ )‪ (Optimization‬ﺑﺘﻐﻴﻴﺮ اﻷﺑﻌﺎد ﻟﺘﺤﺴﻴﻦ اﻷداء اذا آﺎن‬
‫ﻣﺨﺘﻠﻔﺎ ﻋﻦ اﻟﻘﻴﻢ اﻟﻤﻄﻠﻮﺑﻪ‪.‬‬
‫ﻣﻌﻈ ﻢ ﺑ ﺮاﻣﺞ ﺗﺤﻠ ﻴﻞ دواﺋ ﺮ اﻟﻤﻴﻜ ﺮووﻳﻒ اﻟﺤﺪﻳ ﺜﻪ ﺗﺤ ﺘﻮى ﻋﻠﻰ ﻧﻤﺎذج أو دواﺋﺮ ﻣﻜﺎﻓﺌﻪ ﻟﻠﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﻤﺘﻌﺪدﻩ‬
‫اﻟﻤﻘ ﺮوﻧﻪ أو اﻟﻤ ﺰدوﺟﻪ )‪ (multiple coupled lines‬و اﻟﺘ ﻰ ﻳﻤﻜﻦ ادراﺟﻬﺎ ﻓﻰ اﻟﺮﺳﻢ اﻟﺮﻣﺰى ﻟﻠﻔﻠﺘﺮ ﻣﻊ ادراج‬
‫ﺑﺎﻗ ﻰ اﻟﺨﻄ ﻮط و اﻟﻼاﺳ ﺘﻤﺮارﻳﺎت ﻋ ﻨﺪ ﺗﺤﻠﻴﻞ اﻟﻔﻠﺘﺮ ﺑﻄﺮق ﺗﺤﻠﻴﻞ اﻟﺪواﺋﺮ اﻟﻤﻌﺘﻤﺪﻩ ﻋﻠﻰ اﻟﻨﻤﺎذج أو اﻟﺪواﺋﺮ اﻟﻤﻜﺎﻓﺌﻪ‬
‫ﻟﻠﻤﻜ ﻮﻧﺎت و ﻳﻤﻜ ﻦ اﻟ ﺮﺟﻮع اﻟ ﻰ اﻟﻤ ﺮﺟﻊ )‪ (17‬اﻟ ﺬى ﻳﻌﻄ ﻰ ﻣ ﺜﺎﻻ ﻋﻠ ﻰ ذﻟ ﻚ‪ .‬أو ﻳﻤﻜ ﻦ اﺳ ﺘﺨﺪام ﻃ ﺮﻳﻘﺔ ﺗﺤﻠ ﻴﻞ‬
‫آﻬﺮوﻣﻐﻨﺎﻃﻴﺴﻴﻪ ﻟﺘﺤﻠﻴﻞ اﻟﻔﻠﺘﺮ‪.‬‬
‫ﻣ ﺜﺎل )‪ : (١١ – ٧‬ﻣﻄﻠ ﻮب ﺗﺼ ﻤﻴﻢ ﻓﻠﺘ ﺮ ﻣ ﺮور ﺣﻴ ﺰ ﺗ ﺮددى ﻣﻌ ﻴﻦ )‪ (Hairpin BPF‬ﻣ ﻦ ﻧ ﻮع ﺗﺸ ﻴﺒﻰ ﺗﺸ ﻴﻒ‬
‫)‪ (Chebyshev‬ﺑ ﺮﺗﺒﺔ ﻓﻠﺘ ﺮ )‪ (n = 5‬ﻟﻤ ﺮور ﺣﻴ ﺰ ﺗ ﺮددى ﻣﻌ ﻴﻦ ﻟ ﻪ ﺗ ﺮدد ﻣﻨﺘﺼ ﻒ )‪ (fo = 4 GHz‬و اﻟﺤﻴ ﺰ‬
‫اﻟﺘ ﺮددى اﻟﻨﺴ ﺒﻰ ﻳﺴ ﺎوى )‪ (BW = 0.04 ≡ 160 MHz‬أى أن اﻟﺤﻴ ﺰ اﻟﻤﻔ ﻴﺪ ﻟﻠﻔﻠﺘ ﺮ ﻳﻘ ﻊ ﺑ ﻴﻦ ) ‪ 3.92 GHz‬و‬
‫‪ ( 4.08 GHz‬و ﻣﻘ ﺪار اﻟ ﺘﻤﻮﺟﺎت ﻓ ﻰ اﻟﺤﻴ ﺰ اﻟﻤﻔ ﻴﺪ ﻟﻠﻔﻠﺘ ﺮ ﺑﺎﻟﺪﻳﺴ ﻴﺒﻞ )‪ ، (0.1 dB‬ﻣ ﻊ اﻋﺘ ﺒﺎر اﻟﻤﻌﺎوﻗ ﻪ ﻋ ﻨﺪ‬
‫ﻃﺮﻓﻰ اﻟﻔﻠﺘﺮ ﺗﺴﺎوى )‪.(50 Ω‬‬
‫اﻟﺤﻞ ‪:‬‬
‫اﻟﺨﻄﻮﻩ اﻷوﻟﻰ‪:‬‬
‫اﻟﻤﻜ ﻮﻧﺎت اﻟﻤﺘﻄ ﺒﻌﻪ )‪ (gi‬ﻟﻠﻔﻠﺘ ﺮ ﻣﻦ ﻧﻮع ﺗﺸﻴﺒﻰ ﺗﺸﻴﻒ ﺑﺎﻟﻨﺴﺒﻪ ﻟﺮﺗﺒﺔ اﻟﻔﻠﺘﺮ )‪ (n = 5‬ﻋﻨﺪﻣﺎ ﻳﻜﻮن ﻣﻘﺪار اﻟﺘﻤﻮﺟﺎت‬
‫ﻓﻰ اﻟﺤﻴﺰ اﻟﻤﻔﻴﺪ ﻟﻠﻔﻠﺘﺮ ﺑﺎﻟﺪﻳﺴﻴﺒﻞ )‪ (0.1 dB‬ﻣﻌﻄﺎﻩ ﻓﻰ اﻟﺠﺪول اﻟﺘﺎﻟﻰ‬
‫‪g5‬‬
‫‪1.146813‬‬

‫‪g3‬‬
‫‪1.975003‬‬

‫‪g4‬‬
‫‪1.371213‬‬

‫‪g2‬‬
‫‪1.371213‬‬

‫‪g1‬‬
‫‪1.146813‬‬

‫و آﻼ ﻣﻦ )‪. (go = g6 = 1‬‬
‫اﻟﺨﻄﻮﻩ اﻟﺜﺎﻧﻴﻪ ‪:‬‬
‫ﺗﻢ ﺣﺴﺎب ﻗﻴﻢ ﻣﻌﺎﻣﻼت )‪ (q‬ﻟﻌﻨﺼﺮى اﻟﺮﻧﻴﻦ ﻋﻨﺪ ﻣﺪﺧﻠﻰ اﻟﻔﻠﺘﺮ ﺑﺎﺳﺘﺨﺪام اﻟﻤﻌﺎدﻟﻪ )‪ (7. 105‬آﺎﻟﺘﺎﻟﻰ‪:‬‬

‫‪qe1 = qen = 28.675‬‬
‫ﺗﻢ ﺣﺴﺎب ﻗﻴﻢ ﻣﻌﺎﻣﻼت اﻻزدواج )أو اﻟﻘﺮن( ﺑﻴﻦ آﻞ ﻋﻨﺼﺮى رﻧﻴﻦ ﺑﺎﺳﺘﺨﺪام اﻟﻤﻌﺎدﻟﻪ )‪ (7. 106‬آﺎﻟﺘﺎﻟﻰ‪:‬‬

‫‪k23 = k34 = 0.024308‬‬

‫‪,‬‬

‫‪k12 = k45 = 0.031898‬‬

‫اﻟﺨﻄﻮﻩ اﻟﺜﺎﻟﺜﻪ ‪:‬‬
‫ﺗﻢ اﺧﺘﻴﺎر اﻟﺸﺮﻳﺤﻪ اﻟﺸﺮﻳﻄﻴﻪ ﺑﺎﻟﻤﻮاﺻﻔﺎت اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫ﺛﺎﺑﺖ اﻟﻌﺰل )‪ ( εr =2.2‬و ﺳﻤﻚ اﻟﻌﺎزل )‪ (h = 0.254 mm‬و ﺳﻤﻚ اﻟﻤﻮﺻﻞ )‪. (t = 0.05 mm‬‬
‫ﺗﻢ اﺧﺘﻴﺎر )‪ (Zr = 50 Ω = Zo‬و هﻰ اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ ﻟﺠﻤﻴﻊ اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ ﺑﺎﻟﻔﻠﺘﺮ‪.‬‬
‫ﺗﻢ ﺣﺴﺎب ﻋﺮض اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ ﺑﺎﻟﻔﻠﺘﺮ )‪.(Wr = Wo = 0.734 mm‬‬
‫ﺗ ﻢ اﺧﺘ ﻴﺎر اﻟﻤﺴ ﺎﻓﻪ ﺑ ﻴﻦ ذراﻋ ﻰ ﻋﻨﺼ ﺮ اﻟ ﺮﻧﻴﻦ ﻟ ﺘﻜﻮن ﺿ ﻌﻒ ﻋ ﺮض اﻟ ﺬراع اﻟﻮاﺣﺪ أى ﺿﻌﻒ ﻋﺮض أى ﺧﻂ‬
‫ﺷﺮﻳﻄﻰ ﺑﺎﻟﻔﻠﺘﺮ )‪.(X = 2 Wr = 1.468 mm‬‬
‫‪345‬‬

‫و ﺗﻢ ﺣﺴﺎب اﻟﻄﻮل اﻟﻤﺒﺪﺋﻰ ﻟﻌﻨﺼﺮ اﻟﺮﻧﻴﻦ )‪.(2 L = 27.53 mm‬‬
‫اﻟﺨﻄﻮﻩ اﻟﺮاﺑﻌﻪ ‪ :‬ﺗﻢ ﺣﺴﺎب ﻣﺴﺎﻓﺔ اﻟﺘﻮﻟﻴﻒ )‪ (tap distance t‬ﺑﺎﺳﺘﺨﺪام اﻟﻤﻌﺎدﻟﻪ )‪ (7. 107‬آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫‪t = 2.07 mm‬‬
‫ﺗ ﻢ اﺳ ﺘﺨﺪام ﻣﻨﺤﻨ ﻰ ﺗﻐﻴ ﺮ اﻟﻤﺴ ﺎﻓﺎت اﻟﺒﻴﻨ ﻴﻪ ﺑ ﻴﻦ ﻋﻨﺼ ﺮى اﻟﺮﻧﻴﻦ ﻣﻊ ﻣﻌﺎﻣﻼت اﻻزدواج ﺑﻴﻦ آﻞ ﻋﻨﺼﺮى رﻧﻴﻦ‬
‫اﻟﻤﻌﻄ ﻰ ﻓ ﻰ اﻟﻤ ﺮﺟﻊ )‪ (6‬ﻟ ﺘﺤﺪﻳﺪ ﻗ ﻴﻤﺔ آ ﻞ ﻣﺴ ﺎﻓﻪ ﺑﻴﻨ ﻴﻪ )‪ (Si,i+1‬ﻣﻜﺎﻓ ﺌﻪ ﻟﻤﻌﺎﻣ ﻞ اﻻزدواج )‪ (ki,i+1‬اﻟﻤﺤﺴﻮب ﻣﻦ‬
‫اﻟﻤﻌﺎدﻟﻪ )‪ (7. 106‬ﻓﻰ اﻟﺨﻄﻮﻩ اﻟﺜﺎﻧﻴﻪ و آﺎﻧﺖ اﻟﻨﺘﺎﺋﺞ آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫اﻟﻤﺴ ﺎﻓﻪ اﻟﺒﻴﻨ ﻴﻪ ﺑ ﻴﻦ ﻋﻨﺼ ﺮى اﻟ ﺮﻧﻴﻦ اﻷول و اﻟﺜﺎﻧ ﻰ )‪ (S12‬ﺗﺴ ﺎوى اﻟﻤﺴ ﺎﻓﻪ اﻟﺒﻴﻨ ﻴﻪ ﺑ ﻴﻦ ﻋﻨﺼﺮى اﻟﺮﻧﻴﻦ اﻟﺮاﺑﻊ و‬
‫اﻟﺨ ﺎﻣﺲ )‪ . (S45‬و اﻟﻤﺴ ﺎﻓﻪ اﻟﺒﻴﻨ ﻴﻪ ﺑ ﻴﻦ ﻋﻨﺼ ﺮى اﻟ ﺮﻧﻴﻦ اﻟﺜﺎﻧ ﻰ و اﻟ ﺜﺎﻟﺚ )‪ (S23‬ﺗﺴ ﺎوى اﻟﻤﺴ ﺎﻓﻪ اﻟﺒﻴﻨ ﻴﻪ ﺑ ﻴﻦ‬
‫ﻋﻨﺼﺮى اﻟﺮﻧﻴﻦ اﻟﺜﺎﻟﺚ و اﻟﺮاﺑﻊ )‪(S34‬‬
‫‪S12 = S45 = 0.4826 mm‬‬
‫‪S23 = S34 = 0.6096 mm‬‬
‫ﺗ ﻢ اﺿ ﺎﻓﺔ ﺧﻄ ﻴﻦ ﺷ ﺮﻳﻄﻴﻴﻦ ﻋ ﺮض آ ﻞ ﻣ ﻨﻬﻢ ﻳﺴ ﺎوى )‪ (Wo = 0.734 mm‬و ﺗﻢ اﺧﺘﻴﺎر ﻃﻮل آﻞ ﻣﻨﻬﻢ ﻳﺴﺎوى‬
‫)‪ (Lo = 10 mm‬ﻋﻨﺪ ﻣﺪﺧﻠﻰ اﻟﻔﻠﺘﺮ‪.‬‬
‫اﻟﺨﻄﻮﻩ اﻟﺨﺎﻣﺴﻪ ‪ :‬ﺗﻢ ﺗﺤﻠﻴﻞ اﻟﺪاﺋﺮﻩ ﺑﺎﺳﺘﺨﺪام أﺣﺪ ﺑﺮاﻣﺞ ﺗﺤﻠﻴﻞ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ ﺑﺎﻷﺑﻌﺎد اﻟﻤﺒﺪﺋﻴﻪ اﻟﻤﻌﻄﺎﻩ أﻋﻼﻩ‬
‫ﻣ ﻊ ادراج اﻟﻼاﺳﺘﻤﺮارﻳﺎت ﻓﻰ اﻟﺘﺤﻠﻴﻞ‪ .‬و آﺎﻧﺖ ﻧﺘﻴﺠﺔ اﻟﺘﺤﻠﻴﻞ ﺑﺎﻷﺑﻌﺎد اﻟﻤﺒﺪﺋﻴﻪ ﺳﻴﺌﻪ و ﺗﻔﺴﻴﺮ ذﻟﻚ هﻮ أﻧﻨﺎ أﺧﺬﻧﺎ ﻓﻰ‬
‫اﻻﻋﺘ ﺒﺎر اﻟﻘ ﺮن )‪ (coupling‬ﺑ ﻴﻦ ﺟﻤ ﻴﻊ اﻟﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﺮأﺳ ﻴﻪ ﺑﺎﻟﻔﻠﺘ ﺮ و ذﻟ ﻚ ﺑ ﺎدراج ﻧﻤ ﺎذج اﻟﺨﻄ ﻮط‬
‫اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﻤ ﺘﻌﺪدﻩ اﻟﻤﻘ ﺮوﻧﻪ أو اﻟﻤ ﺰدوﺟﻪ )‪ (multiple coupled lines‬ﻓ ﻰ اﻟﺘﺤﻠ ﻴﻞ ﺑﻴ ﻨﻤﺎ ﻣﻌ ﺎدﻻت اﻟﺘﺼ ﻤﻴﻢ‬
‫ﺗﺄﺧﺬ ﻓﻰ اﻻﻋﺘﺒﺎر اﻟﻘﺮن )‪ (coupling‬ﺑﻴﻦ ﻋﻨﺎﺻﺮ اﻟﺮﻧﻴﻦ ﻓﻘﻂ‪.‬‬
‫ﺗ ﻢ ﻋﻤ ﻞ اﻟ ﺒﺤﺚ ﻋ ﻦ اﻟﺤ ﻞ اﻷﻣ ﺜﻞ )‪ (Optimization‬ﺑﺘﻐﻴﻴ ﺮ اﻷﺑﻌ ﺎد ﻟﺘﺤﺴ ﻴﻦ اﻷداء أى ﺗﺤﺴ ﻴﻦ ﻗ ﻴﻢ )‪ (|S21|dB‬و‬
‫)‪ (|S11|dB‬ﺑﺎﺳﺘﺨﺪام ﺑﺮﻧﺎﻣﺞ ﺗﺤﻠﻴﻞ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ و آﺎﻧﺖ اﻷﺑﻌﺎد اﻟﻨﻬﺎﺋﻴﻪ ﺑﺎﻟﻤﻠﻠﻴﻤﺘﺮ)‪ (mm‬آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫‪Lo =9.662‬‬

‫‪Wo =0.713‬‬

‫‪2 L = 22.904‬‬

‫‪L=11.452‬‬
‫‪Wr =0.825‬‬

‫‪S45 =0.380‬‬

‫‪S12 =0.381‬‬

‫‪S34 =0.533‬‬

‫‪S23 =0.541‬‬

‫أﻣﺎ اﻟﻤﺴﺎﻓﺎت ﺑﻴﻦ ذراﻋﻰ ﻋﻨﺎﺻﺮ اﻟﺮﻧﻴﻦ ﻓﺘﻢ ﺗﻐﻴﻴﺮهﺎ ﺑﻮاﺳﻄﺔ )‪ (Optimization‬ﻟﺘﺼﺒﺢ ﻗﻴﻤﻬﺎ ﺑﺎﻟﻤﻠﻠﻴﻤﺘﺮ آﺎﻟﺘﺎﻟﻰ‪:‬‬
‫‪X2=2.131‬‬

‫‪X1=1.963‬‬

‫‪X4=2.143‬‬

‫‪X3=2.082‬‬
‫‪X5=1.978‬‬

‫ﺣ ﻴﺚ )‪ (X1‬ه ﻰ اﻟﻤﺴ ﺎﻓﻪ ﺑ ﻴﻦ ذراﻋ ﻰ ﻋﻨﺼ ﺮ اﻟ ﺮﻧﻴﻦ اﻷول و )‪ (X2‬ه ﻰ اﻟﻤﺴ ﺎﻓﻪ ﺑ ﻴﻦ ذراﻋ ﻰ ﻋﻨﺼ ﺮ اﻟﺮﻧﻴﻦ‬
‫اﻟﺜﺎﻧﻰ و هﻜﺬا‪.‬‬
‫‪346‬‬

‫ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (٨٦ – ٧‬ﻧﺘ ﻴﺠﺔ اﻟﺘﺤﻠ ﻴﻞ ﺑﺎﻷﺑﻌ ﺎد اﻟﻨﻬﺎﺋ ﻴﻪ ﻟﻠﻔﻠﺘ ﺮ‪ .‬و ﻳﺒﻴﻦ ﺷﻜﻞ )‪ (٨٧ – ٧‬ﻣﺨﻄﻂ اﻟﻔﻠﺘﺮ ﻣﻊ اﻳﻀﺎح‬
‫رﻣﻮز اﻟﻤﺴﺎﻓﺎت ﺑﻴﻦ أذرع ﻋﻨﺎﺻﺮ اﻟﺮﻧﻴﻦ‪.‬‬

‫ﺷﻜﻞ )‪ : (٨٦ – ٧‬ﻧﺘﻴﺠﺔ اﻟﺘﺤﻠﻴﻞ ﺑﺎﻷﺑﻌﺎد اﻟﻨﻬﺎﺋﻴﻪ ﻟﻠﻔﻠﺘﺮ ﻓﻰ ﻣﺜﺎل )‪(١١ – ٧‬‬

‫ﺷﻜﻞ )‪ : (٨٧ – ٧‬ﻣﺨﻄﻂ اﻟﻔﻠﺘﺮ ﻓﻰ ﻣﺜﺎل )‪(١١ – ٧‬‬

‫ﺗﻤ ﺮﻳﻦ ‪ :‬أﻋ ﺪ ﺣﺴ ﺎﺑﺎت ﻣ ﺜﺎل )‪ (١١ – ٧‬اﻟﻤﺒﺪﺋ ﻴﻪ و اﻓﺘ ﺮض ﻋ ﺪم ﺗﻮﻓﺮ ﻣﻨﺤﻨﻰ ﺗﻐﻴﺮ اﻟﻤﺴﺎﻓﺎت اﻟﺒﻴﻨﻴﻪ ﺑﻴﻦ ﻋﻨﺼﺮى‬
‫اﻟ ﺮﻧﻴﻦ ﻣ ﻊ ﻣﻌ ﺎﻣﻼت اﻻزدواج ﺑ ﻴﻦ آ ﻞ ﻋﻨﺼ ﺮى رﻧ ﻴﻦ ﻟﻠﺸ ﺮﻳﺤﻪ اﻟﻤﺴ ﺘﺨﺪﻣﻪ و اﺳ ﺘﺨﺪم اﻣﻜﺎﻧ ﻴﺔ )اﻟﺘﻮﻟ ﻴﻒ‬
‫‪ (Tuning‬ﻓ ﻰ أﺣ ﺪ ﺑ ﺮاﻣﺞ ﺗﺤﻠ ﻴﻞ دواﺋ ﺮ اﻟﻤﻴﻜ ﺮووﻳﻒ ﻟ ﺘﺤﺪﻳﺪ ﻣﺴ ﺎﻓﺎت ﺑﻴﻨﻴﻪ ﻣﺒﺪﺋﻴﻪ ﺑﻴﻦ ﻋﻨﺎﺻﺮ اﻟﺮﻧﻴﻦ ﺗﺤﻘﻖ أداء‬

‫‪347‬‬

‫ﻗ ﺮﻳﺐ ﻣ ﻦ اﻟﻤﻄﻠ ﻮب ‪ ،‬ﺛ ﻢ اﺳ ﺘﺨﺪم اﻟ ﺒﺤﺚ ﻋ ﻦ اﻟﺤ ﻞ اﻷﻣ ﺜﻞ )‪ (Optimization‬ﻟﺘﺤﺴ ﻴﻦ أداء اﻟﻔﻠﺘ ﺮ و ﻗ ﺎرن ﺑ ﻴﻦ‬
‫اﻟﻨﺘﺎﺋﺞ اﻟﺘﻰ ﺣﺼﻠﺖ ﻋﻠﻴﻬﺎ و اﻟﻨﺘﺎﺋﺞ اﻟﻤﻌﻄﺎﻩ أﻋﻼﻩ‪.‬‬
‫هﻨﺎك أﻧﻮاع أﺧﺮى ﻋﺪﻳﺪﻩ ﻟﻔﻠﺘﺮ ﻣﺮور ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ ﻣﻦ ﻧﻮع )‪.(Hairpin BPF‬‬
‫ﻋﻠ ﻰ ﺳ ﺒﻴﻞ اﻟﻤ ﺜﺎل اﻟﻤ ﺮﺟﻊ )‪ (18‬ﻳﺸ ﺮح ﺗﺼ ﻤﻴﻢ ﻓﻠﺘ ﺮ ﻣ ﺮور ﺣﻴ ﺰ ﺗ ﺮددى ﻣﻌ ﻴﻦ )‪ (Hairpin BPF‬ﺑﺎﺳ ﺘﺨﺪام‬
‫ﻋﻨﺎﺻ ﺮ رﻧ ﻴﻦ )دﺑ ﻮس اﻟﺸ ﻌﺮ ‪ (Hairpin‬ﻣ ﻦ ﻧ ﻮع اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤ ﺘﺪرﺟﻪ ) ‪Stepped Impedance Hairpin‬‬
‫‪ (Resonator‬ﻣ ﺜﻞ اﻟﻤﺒ ﻴﻦ ﻓ ﻰ ﺷ ﻜﻞ )‪ .(٦٩ – ٧‬و آﻤ ﺜﺎل ﺛﺎﻧ ﻰ ﻧ ﻮع ﻓﻠﺘ ﺮ ﻣ ﺮور ﺣﻴ ﺰ ﺗ ﺮددى ﻣﻌ ﻴﻦ ﺑﺎﺳ ﺘﺨﺪام‬
‫ﻋﻨﺎﺻ ﺮ رﻧ ﻴﻦ دﺑ ﻮس اﻟﺸ ﻌﺮ اﻟﻤﺜﻨ ﻰ )‪ .(Folded Hairpin Resonator‬و آﻤ ﺜﺎل ﺛﺎﻟ ﺚ ﻧ ﻮع ﻓﻠﺘ ﺮ ﻣ ﺮور ﺣﻴ ﺰ‬
‫ﺗ ﺮددى ﻣﻌ ﻴﻦ ﺑﺎﺳ ﺘﺨﺪام ﻋﻨﺎﺻ ﺮ رﻧ ﻴﻦ دﺑ ﻮس اﻟﺸ ﻌﺮ اﻟﻤﻘ ﺮوﻧﻪ ﺑﺎﻟ ﺘﻘﺎﻃﻊ ) ‪Cross Coupled Microstrip‬‬
‫‪ (Hairpin Resonator Filters‬و ﻳﻤﻜﻦ اﻟﺮﺟﻮع ﻟﻠﻤﺮﺟﻊ )‪ (19‬ﻟﻤﻌﺮﻓﺔ ﻃﺮﻳﻘﺔ ﺗﺼﻤﻴﻢ هﺬا اﻟﻨﻮع‪.‬‬

‫)ﻤﻘﻁﻊ ‪ (١١ - ٧‬ﻓﻠﺘﺭ ﻤﺭﻭﺭ ﺤﻴﺯ ﺘﺭﺩﺩﻯ ﻤﻌﻴﻥ ﻤﻥ ﻨﻭﻉ ‪: Interdigital BPF‬‬

‫ه ﻨﺎك أﻧ ﻮاع ﻣﺨ ﺘﻠﻔﻪ ﻣ ﻦ ﻓﻠﺘ ﺮ ﻣ ﺮور ﺣﻴ ﺰ ﺗ ﺮددى ﻣﻌ ﻴﻦ ﻣ ﻦ ﻧ ﻮع )‪ (Interdigital BPF‬ﻓﻬ ﻨﺎك ﻧﻮع ﻳﺘﻜﻮن ﻣﻦ‬
‫ﻣﺠﻤ ﻮﻋﻪ ﻣ ﻦ اﻟﺨﻄ ﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﻤﺘﻌﺪدﻩ اﻟﻤﻘﺮوﻧﻪ أو اﻟﻤﺰدوﺟﻪ اﻟﻤﺘﻤﺎﺛﻠﻪ ) ‪symmetric multiple coupled‬‬
‫‪ (lines‬و ه ﻨﺎك ﻧ ﻮع ﺁﺧ ﺮ ﻳ ﺘﻜﻮن ﻣ ﻦ ﻣﺠﻤ ﻮﻋﻪ ﻣ ﻦ اﻟﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﻤ ﺘﻌﺪدﻩ اﻟﻤﻘ ﺮوﻧﻪ أو اﻟﻤ ﺰدوﺟﻪ اﻟﻐﻴ ﺮ‬
‫ﻣ ﺘﻤﺎﺛﻠﻪ )‪ (asymmetric multiple coupled lines‬و ﻳﻤﻜ ﻦ اﻟ ﺮﺟﻮع ﻟﻠﻤ ﺮﺟﻊ )‪ (1‬ﻟﻤﻌ ﺮﻓﺔ ﻃ ﺮق و ﻣﻌﺎدﻻت‬
‫ﺗﺼ ﻤﻴﻢ اﻟﻨﻮﻋ ﻴﻦ ﺑﺎﻻﺿ ﺎﻓﻪ اﻟ ﻰ ﻣﺜﺎﻟ ﻴﻦ ﻟﻠﺘﺼ ﻤﻴﻢ ‪ .‬و ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (٨٨ – ٧‬ﻣﺨﻄ ﻂ ﻋ ﺎم ﻟﻔﻠﺘ ﺮ ﻣ ﺮور ﺣﻴﺰ ﺗﺮددى‬
‫ﻣﻌ ﻴﻦ ﻣ ﻦ ﻧ ﻮع )‪ (Interdigital BPF‬ﺑ ﺮﺗﺒﺔ ﻓﻠﺘ ﺮ )‪ .(n‬و ﻳ ﺘﻜﻮن ﻣ ﻦ ﻋ ﺪد )‪ (n‬ﻣ ﻦ اﻟﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﺪﻗ ﻴﻘﻪ‬
‫اﻟﻤﻘ ﺮوﻧﻪ أو اﻟﻤ ﺰدوﺟﻪ آ ﻞ ﻣ ﻨﻬﺎ ﻣﻮﺻ ﻞ ﻣ ﻦ ﻧﻬﺎﻳ ﺘﻪ ﺑ ﺎﻷرض ﺑﺘ ﺮﺗﻴﺐ ﺗﺒﺎدﻟ ﻰ آﻤ ﺎ ه ﻮ ﻣﻮﺿ ﺢ ﻓ ﻰ اﻟﺸ ﻜﻞ‪ .‬ه ﺬا‬
‫ﺑﺎﻻﺿﺎﻓﻪ اﻟﻰ ﺧﻂ ﺷﺮﻳﻄﻰ دﻗﻴﻖ ﻋﻨﺪ آﻞ ﻣﺪﺧﻞ‪.‬‬
‫ﻓ ﻰ ﻧ ﻮع )‪ (Interdigital BPF‬اﻟﻤ ﺘﻜﻮن ﻣ ﻦ ﻣﺠﻤ ﻮﻋﻪ ﻣ ﻦ اﻟﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﻤ ﺘﻌﺪدﻩ اﻟﻤﻘ ﺮوﻧﻪ أو اﻟﻤ ﺰدوﺟﻪ‬
‫اﻟﻐﻴﺮ ﻣﺘﻤﺎﺛﻠﻪ )‪ (asymmetric multiple coupled lines‬ﻳﻜﻮن ﻋﺮض اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ ﻏﻴﺮ ﻣﺘﺴﺎوى‪.‬‬
‫ﺑﻴ ﻨﻤﺎ ﻓ ﻰ ﻧ ﻮع اﻟﻔﻠﺘ ﺮ اﻟﻤ ﺘﻜﻮن ﻣ ﻦ ﻣﺠﻤ ﻮﻋﻪ ﻣ ﻦ اﻟﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﻤ ﺘﻌﺪدﻩ اﻟﻤﻘ ﺮوﻧﻪ أو اﻟﻤ ﺰدوﺟﻪ اﻟﻤ ﺘﻤﺎﺛﻠﻪ‬
‫)‪ (symmetric multiple coupled lines‬ﻳﻜ ﻮن ﻋ ﺮض اﻟﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ ﻣﺘﺴ ﺎوى ) = ‪W1 = W2 = ...‬‬
‫‪ (Wn‬أى أن )‪ .(Z1 = Z2 = ... = Zn‬و هﺬا هﻮ اﻟﻨﻮع اﻟﺬى ﺳﻴﺘﻢ ﺷﺮح ﺗﺼﻤﻴﻤﻪ ﻓﻴﻤﺎ ﻳﻠﻰ ﻓﻰ هﺬا اﻟﻤﻘﻄﻊ‪.‬‬
‫اﻟﺤﻴ ﺰ اﻟﺘ ﺮددى اﻟﻨﺴ ﺒﻰ )‪ (BW‬ﻟﻠﻔﻠﺘ ﺮ اﻟﻤ ﺘﻜﻮن ﻣ ﻦ ﻣﺠﻤ ﻮﻋﻪ ﻣ ﻦ اﻟﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﻤ ﺘﻌﺪدﻩ اﻟﻤﻘ ﺮوﻧﻪ أو‬
‫اﻟﻤﺰدوﺟﻪ اﻟﻤﺘﻤﺎﺛﻠﻪ ﻳﻤﻜﻦ أن ﻳﺘﻌﺪى )‪.(0.6‬‬
‫‪o‬‬

‫ﻃ ﻮل ﺟﻤ ﻴﻊ اﻟﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﻤﻘ ﺮوﻧﻪ ﻣﺘﺴ ﺎوى )‪ (l1 = l 2 = ... = l n‬ﺗﻘ ﺮﻳﺒﺎ و ﻳﻜﺎﻓ ﺊ ) ‪ (π/2 ≡ 90‬ﻋ ﻨﺪ‬
‫ﺗﺮدد اﻟﻤﻨﺘﺼﻒ ﻟﻠﻔﻠﺘﺮ‪.‬‬

‫‪348‬‬

‫ﻣﻌﺎوﻗ ﺔ اﻟﺨﻄ ﻴﻦ اﻟﺸ ﺮﻳﻄﻴﻴﻦ ﻋ ﻨﺪ ﻣﺪﺧﻠ ﻰ اﻟﻔﻠﺘ ﺮ ﺗﺴ ﺎوى )‪ (Zt = 1 / Yt‬و ﻳﻤﻜ ﻦ اﺧﺘ ﻴﺎرهﺎ ﻟﺘﺴ ﺎوى اﻟﻤﻌﺎوﻗ ﺔ ﻋ ﻨﺪ‬
‫ﻣﺪﺧﻠﻰ اﻟﻔﻠﺘﺮ )‪.(Zo‬‬
‫اﻟﻤﺴ ﺎﻓﻪ اﻟﺒﻴﻨ ﻴﻪ ﺑ ﻴﻦ اﻟﺨﻄ ﻴﻦ اﻟﻤﻘ ﺮوﻧﻴﻦ اﻷول و اﻟﺜﺎﻧ ﻰ ﺗﺴ ﺎوى )‪ ، (S12‬و اﻟﻤﺴ ﺎﻓﻪ اﻟﺒﻴﻨ ﻴﻪ ﺑﻴﻦ اﻟﺨﻄﻴﻦ اﻟﻤﻘﺮوﻧﻴﻦ‬
‫اﻟﺜﺎﻧﻰ و اﻟﺜﺎﻟﺚ ﺗﺴﺎوى )‪ (S23‬و هﻜﺬا‪.‬‬
‫ﻣﺴ ﺎﻓﺔ أو وﺿ ﻊ اﻟﺘﻮﻟ ﻴﻒ و ه ﻰ اﻟﻤﺴ ﺎﻓﻪ )‪ (θt = tapping position‬اﻟﻤﺒﻴ ﻨﻪ ﻓ ﻰ ﺷ ﻜﻞ )‪ (٨٨ – ٧‬ﺑ ﻴﻦ اﻟ ﻨﻬﺎﻳﻪ‬
‫اﻟﻤﻮﺻﻠﻪ ﺑﺎﻷرض و اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ ﻋﻨﺪ ﻣﺪﺧﻞ اﻟﻔﻠﺘﺮ ﻳﺘﻢ ﺣﺴﺎﺑﻬﺎ ﺣﺴﺐ ﻣﻮاﺻﻔﺎت اﻟﻔﻠﺘﺮ اﻟﻤﻄﻠﻮﺑﻪ‪.‬‬
‫ﺟﻤﻴﻊ اﻟﺤﺴﺎﺑﺎت ﺗﺘﻢ ﻋﻨﺪ ﺗﺮدد اﻟﻤﻨﺘﺼﻒ ﻟﻠﻔﻠﺘﺮ‪.‬‬

‫ﺷﻜﻞ )‪ : (٨٨ – ٧‬ﻣﺨﻄﻂ ﻋﺎم ﻟﻔﻠﺘﺮ ﻣﺮور ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ ﻣﻦ ﻧﻮع )‪.(Interdigital BPF‬‬

‫ﻳﻤﻜ ﻦ ﺣﺴ ﺎب اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻤﻴ ﺰﻩ ﻟﺘ ﺮﺗﻴﺐ اﻟﻤﺠ ﺎل اﻟﺰوﺟ ﻰ و اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻤﻴ ﺰﻩ ﻟﺘ ﺮﺗﻴﺐ اﻟﻤﺠ ﺎل اﻟﻔﺮدى ﻟﻜﻞ ﺧﻄﻴﻦ‬
‫ﺷﺮﻳﻄﻴﻴﻦ ﻣﺰدوﺟﻴﻦ ﺑﺎﻟﻔﻠﺘﺮ ﻋﻠﻰ ﺣﺪﻩ ﻣﻦ اﻟﻤﻌﺎدﻻت اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫)‪(7. 108‬‬

‫)‪(7. 109‬‬

‫‪1‬‬
‫‪Y1 + Y1,2‬‬

‫‪i=2,3,…,n–2‬‬

‫‪,‬‬

‫= ‪Zoo 1,2‬‬

‫‪,‬‬

‫‪1‬‬
‫‪Y1 − Y1,2‬‬
‫‪1‬‬

‫= ‪Z oe 1,2‬‬

‫‪2Y1 − (1 / Z oe i−1,i ) − Yi ,i +1 − Y i−1,i‬‬

‫‪349‬‬

‫= ‪Z oe i,i+1‬‬

‫‪i=2,3,…,n–2‬‬

‫)‪(7. 110‬‬

‫‪1‬‬
‫‪Y1 + Yn −1,n‬‬

‫)‪(7. 111‬‬

‫‪1‬‬
‫) ‪2Yi ,i +1 + (1 / Z oe i,i+1‬‬

‫‪,‬‬

‫= ‪Z oo n −1,n‬‬

‫‪1‬‬
‫‪Y1 − Yn −1,n‬‬

‫‪,‬‬

‫= ‪Z oo i,i+1‬‬

‫= ‪Z oe n −1,n‬‬

‫ﺣﻴﺚ ﻳﺘﻢ ﺣﺴﺎب اﻟﻤﻌﺎوﻗﺎت ﻓﻰ اﻟﻤﻌﺎدﻻت ﻣﻦ )‪ (7. 108‬اﻟﻰ )‪ (7. 111‬ﻣﻦ اﻟﻤﻌﺎدﻻت اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫)‪(7. 112‬‬

‫‪i = 1, 2 , … , n – 1‬‬

‫‪,‬‬

‫)‪(7. 113‬‬

‫‪i = 1, 2 , … , n – 1‬‬

‫‪,‬‬

‫‪Y1‬‬
‫) ‪tan (θ‬‬

‫)‪(7. 114‬‬

‫)‪(7. 115‬‬

‫)‪(7. 116‬‬

‫=‪Y‬‬

‫‪Y1 − Y n −1,n‬‬
‫‪vp‬‬

‫⎞ ‪BW‬‬
‫‪⎜1 −‬‬
‫)‪⎟ (radians‬‬
‫⎝‪2‬‬
‫⎠ ‪2‬‬

‫‪,‬‬

‫= ‪Cn‬‬

‫= ‪C1‬‬

‫‪Y1 − Y i−1,i − Y i,i+1‬‬
‫‪vp‬‬

‫‪Y i,i+1‬‬
‫‪vp‬‬

‫‪,‬‬

‫=‪θ‬‬

‫= ‪Ci‬‬

‫= ‪Ci,i+1‬‬

‫‪Y12, 2‬‬
‫‪Yt = Y1 −‬‬
‫‪Y1‬‬

‫)‪(7. 118‬‬

‫)‪(7. 120‬‬

‫‪Y1 − Y1,2‬‬
‫‪vp‬‬

‫‪,‬‬

‫‪,‬‬

‫‪i=1,2,…,n–1‬‬

‫)‪(7. 119‬‬

‫‪Y‬‬
‫‪g i gi+1‬‬

‫= ‪J i ,i+1‬‬

‫⎛‪π‬‬

‫‪i=2,3,…,n–1‬‬

‫)‪(7. 117‬‬

‫) ‪Yi ,i+1 = J i ,i+1 sin (θ‬‬

‫⎞‬
‫⎟‬
‫⎟‬
‫⎠‬

‫‪⎛ Y sin 2θ‬‬
‫⎜ ‪sin‬‬
‫‪⎜ Yo go g1‬‬
‫⎝‬
‫= ‪θt‬‬
‫)‪1 − (BW / 2‬‬
‫‪-1‬‬

‫‪cosθt sin 3θt‬‬
‫= ‪Ct‬‬
‫⎞ ‪⎛ 1 cos2θt sin 2θt‬‬
‫⎟⎟‬
‫‪ωoYt ⎜⎜ 2 +‬‬
‫‪2‬‬
‫‪Y‬‬
‫‪Y‬‬
‫‪t‬‬
‫‪⎝ o‬‬
‫⎠‬

‫ﺣ ﻴﺚ )‪ (vp phase velocity‬هﻰ ﺳﺮﻋﺔ اﻟﻄﻮر ﻟﻠﻤﻮﺟﻪ اﻟﻤﻨﺘﺸﺮﻩ ﻓﻰ ﺧﻂ اﻻرﺳﺎل اﻟﻤﺤﺴﻮﺑﻪ ﺑﺎﻟﻤﻌﺎدﻟﻪ )‪ (3.2‬و‬
‫ﻣﻮﺟ ﻮدﻩ ﺑﺎﻟﻤﻌﺎدﻟ ﻪ)‪ (3.42‬ﺑﺎﻟﻔﺼ ﻞ اﻟ ﺜﺎﻟﺚ‪ .‬و )‪ (θt‬هﻰ ﻣﺴﺎﻓﺔ أو وﺿﻊ اﻟﺘﻮﻟﻴﻒ ﺑﻮﺣﺪة )‪ (radians‬و )‪ (BW‬هﻮ‬
‫اﻟﺤﻴﺰ اﻟﺘﺮددى اﻟﻨﺴﺒﻰ ﻟﻠﻔﻠﺘﺮ و )‪ (Zo =1/ Yo‬هﻰ اﻟﻤﻌﺎوﻗﻪ ﻋﻨﺪ ﻃﺮﻓﻰ اﻟﻔﻠﺘﺮ و )‪ (n‬هﻰ رﺗﺒﺔ اﻟﻔﻠﺘﺮ و )‪ (gi‬هﻰ‬

‫‪350‬‬

‫ﻗ ﻴﻢ اﻟﻤﻌﺎوﻗ ﺎت اﻟﻤﺘﻄ ﺒﻌﻪ ﻟﻠﻔﻠﺘ ﺮ وﻓﻘ ﺎ ﻟ ﻨﻮع ﺗﻘ ﺮﻳﺐ اﻟﻔﻠﺘ ﺮ اﻟ ﺬى ﻳﺨ ﺘﺎرﻩ اﻟﻤﺼ ﻤﻢ أﻣ ﺎ )‪ (go , gn+1‬هﻤ ﺎ اﻟﻤﻌﺎوﻗ ﺘﺎن‬
‫اﻟﻤﺘﻄﺒﻌﺘﺎن )‪ (normalized impedances‬ﻋﻨﺪ ﻣﺪﺧﻠﻰ اﻟﻔﻠﺘﺮ‪.‬‬
‫و ﺣﻴﺚ )‪ (Ci self-capacitances per unit length‬ﻗﻴﻤﺔ اﻟﻤﻜﺜﻒ ﻟﻜﻞ وﺣﺪة ﻃﻮل ﻟﻠﺨﻂ اﻟﺸﺮﻳﻄﻰ رﻗﻢ )‪.(i‬‬
‫و )‪ (Ci,i+1 the mutual capacitances per unit length between adjacent line elements‬ه ﻰ‬
‫ﻗﻴﻤﺔ اﻟﻤﻜﺜﻒ اﻟﺒﻴﻨﻰ ﺑﻴﻦ آﻞ ﺧﻄﻴﻦ ﻣﻘﺮوﻧﻴﻦ‪.‬‬
‫و )‪ (Ct‬ه ﻰ ﻗ ﻴﻤﺔ اﻟﻤﻜ ﺜﻒ اﻟ ﺬى ﻟ ﻮ ﺗ ﻢ ﺗﻮﺻﻴﻠﻪ ﻋﻨﺪ آﻞ ﻣﺪﺧﻞ ﻟﻠﻔﻠﺘﺮ ﻳﺘﻢ اﻟﺘﻌﻮﻳﺾ ﻋﻦ اﻻﻧﺤﺮاف ﻓﻰ ﺗﺮدد اﻟﺮﻧﻴﻦ‬
‫ﻧﺘ ﻴﺠﻪ ﻟﻤﺴ ﺎﻓﺔ اﻟﺘﻮﻟ ﻴﻒ ) ‪the capacitance to be loaded to the input and output resonators in‬‬
‫‪order to compensate for resonant frequency shift due to the effect of the tapped input‬‬
‫‪.(and output‬‬
‫ﺑﻔ ﺮض أن )‪ (Zt = Zo = 1 / Yt‬ﻳﻤﻜ ﻦ ﺣﺴ ﺎب )‪ (Y1 = 1 / Z1‬ﻣ ﻦ اﻟﻤﻌ ﺎدﻻت ﻣ ﻦ )‪ (7. 112‬اﻟﻰ )‪ (7. 118‬و‬
‫ﺑﺪﻻﻟ ﺔ )‪ (Zt‬ﻳ ﺘﻢ ﺣﺴ ﺎب )‪ (Wt‬و ه ﻮ ﻋ ﺮض اﻟﺨﻄ ﻴﻦ اﻟﺸ ﺮﻳﻄﻴﻴﻦ ﻋ ﻨﺪ ﻣﺪﺧﻠ ﻰ اﻟﻔﻠﺘ ﺮ ‪ ،‬و ﺑﺪﻻﻟ ﺔ )‪ (Z1‬ﻳ ﺘﻢ ﺣﺴ ﺎب‬
‫)‪ (W1‬و هﻮ ﻋﺮض آﻞ ﺧﻂ ﻣﻦ اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﻤﺘﻌﺪدﻩ اﻟﻤﻘﺮوﻧﻪ أو اﻟﻤﺰدوﺟﻪ ﺑﺎﻟﻔﻠﺘﺮ ﺣﻴﺚ ) = ‪W1 = W2‬‬
‫‪ .(... = Wn‬و ﻳﺘﻢ ﺣﺴﺎب )‪ (θt‬ﻣﺴﺎﻓﺔ اﻟﺘﻮﻟﻴﻒ ﻣﻦ اﻟﻤﻌﺎدﻟﻪ )‪. (7. 119‬‬
‫ﻃ ﻮل اﻟﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﻤﻘ ﺮوﻧﻪ )‪ (l2 = l 3 = ... = l n-1‬ﻳ ﺘﻢ ﺣﺴ ﺎﺑﻪ ﻋ ﻨﺪ ﺗ ﺮدد اﻟﻤﻨﺘﺼ ﻒ ﻟﻠﻔﻠﺘ ﺮ ﻣ ﻦ اﻟﻤﻌﺎدﻟ ﻪ‬
‫اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫‪i= 2,3,…,n–1‬‬

‫)‪(7. 121‬‬

‫‪,‬‬

‫‪li = (λ gi / 4) − ∆li‬‬

‫ﺣ ﻴﺚ )‪ (∆l‬ه ﻰ ﻗ ﻴﻤﺔ اﻻﺳ ﺘﻄﺎﻟﻪ اﻟ ﻨﺎﺗﺠﻪ ﻋ ﻦ )‪ (fringing effect‬اﻟﻤﻌﻄ ﺎﻩ ﺑﺎﻟﻤﻌﺎدﻟ ﻪ )‪ (4.2‬ﻓ ﻰ ﻣﻘﻄ ﻊ )‪(١-٢-٤‬‬
‫ﺑﺎﻟﻔﺼ ﻞ اﻟ ﺮاﺑﻊ و ﻳﻤﻜ ﻦ ﺣﺴ ﺎﺑﻬﺎ أﻳﻀ ﺎ ﺑﺒ ﺮﻧﺎﻣﺞ )‪ (١-٣‬و ﺑ ﺮﻧﺎﻣﺞ )‪ (٣-٣‬ﺑﺎﻟﻔﺼ ﻞ اﻟﺜﺎﻟﺚ ﻣﻦ هﺬا اﻟﻜﺘﺎب‪ .‬و )‪(λg‬‬
‫ﺟﻪ ﻟﻠﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ‪.‬‬
‫هﻮ ﻃﻮل اﻟﻤﻮﺟﻪ اﻟﻤﻮ ّ‬
‫ﺑﻴﻨﻤﺎ ﻃﻮل آﻞ ﻣﻦ اﻟﺨﻄﻴﻦ اﻟﺸﺮﻳﻄﻴﻴﻦ اﻟﻤﻘﺮوﻧﻴﻦ اﻷول و اﻷﺧﻴﺮ ﻣﻦ اﻟﻔﻠﺘﺮ ﻳﺘﻢ ﺣﺴﺎﺑﻪ ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫‪l1 = ln = (λ g / 4) − ∆l + ∆lC‬‬

‫)‪(7. 122‬‬
‫ﺣﻴﺚ‬

‫) ‪∆lC = (λ g / 2π ) tan-1(2 π fo Ct / Y1‬‬

‫)‪(7. 123‬‬

‫أﻣﺎ ﻃﻮل ﻣﺴﺎﻓﺔ اﻟﺘﻮﻟﻴﻒ ﻓﻴﻤﻜﻦ ﺣﺴﺎﺑﻪ ﻣﻦ اﻟﻤﻌﺎدﻟﻪ ‪:‬‬

‫‪λg‬‬
‫‪θt‬‬
‫‪2π‬‬

‫)‪(7. 124‬‬

‫= ‪lt‬‬

‫ﺑﺪﻻﻟ ﺔ ﻗ ﻴﻢ اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻤﻴ ﺰﻩ ﻟﺘ ﺮﺗﻴﺐ اﻟﻤﺠ ﺎل اﻟﺰوﺟ ﻰ و اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻤﻴ ﺰﻩ ﻟﺘ ﺮﺗﻴﺐ اﻟﻤﺠ ﺎل اﻟﻔ ﺮدى ﻟﻜ ﻞ ﺧﻄ ﻴﻦ‬
‫ﺷ ﺮﻳﻄﻴﻴﻦ ﻣ ﺰدوﺟﻴﻦ ﺑﺎﻟﻔﻠﺘ ﺮ اﻟﻤﺤﺴ ﻮﺑﻴﻦ ﺑﺎﻟﻤﻌ ﺎدﻻت ﻣ ﻦ )‪ (7. 108‬اﻟ ﻰ )‪ (7. 111‬ﻳﻤﻜ ﻦ ﺣﺴ ﺎب ﻗ ﻴﻢ ﻣﻌ ﺎﻣﻼت‬
‫اﻻزدواج )‪ (ki,i+1‬ﺑﻴﻦ آﻞ ﺧﻄﻴﻦ ﺷﺮﻳﻄﻴﻴﻦ ﻣﻦ اﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫‪351‬‬

‫)‪(7. 125‬‬

‫‪Z oe i,i +1 − Z oo i,i +1‬‬
‫‪Z oe i,i +1 + Z oo i,i +1‬‬

‫= ‪ki ,i +1‬‬

‫ﻟ ﺘﺤﺪﻳﺪ ﻗ ﻴﻤﺔ آ ﻞ ﻣﺴ ﺎﻓﻪ ﺑﻴﻨ ﻴﻪ )‪ (Si,i+1‬ﻣﻜﺎﻓ ﺌﻪ ﻟﻤﻌﺎﻣ ﻞ اﻻزدواج )‪ (ki,i+1‬اﻟﻤﺤﺴ ﻮب ﻣ ﻦ اﻟﻤﻌﺎدﻟ ﻪ )‪ (7. 125‬ﻳ ﺘﻢ‬
‫اﺳ ﺘﺨﺪام ﻣﻨﺤﻨ ﻴﺎت ﺗﻐﻴ ﺮ اﻟﻤﺴ ﺎﻓﺎت اﻟﺒﻴﻨ ﻴﻪ ﺑ ﻴﻦ آ ﻞ ﺧﻄ ﻴﻦ ﺷ ﺮﻳﻄﻴﻴﻦ ﻣ ﻊ ﻣﻌ ﺎﻣﻼت اﻻزدواج ﺑ ﻴﻦ آ ﻞ ﺧﻄ ﻴﻦ‬
‫ﺷﺮﻳﻄﻴﻴﻦ ﻣﺜﻞ اﻟﻤﻌﻄﺎﻩ ﻓﻰ اﻟﻤﺮﺟﻊ )‪.(4‬‬
‫ه ﻨﺎك ﻃ ﺮﻳﻘﻪ أﺧ ﺮى ﻟﺘﺼ ﻤﻴﻢ ﻓﻠﺘ ﺮ )‪ (Interdigital BPF‬اﻋ ﺘﻤﺪ ﻋﻠ ﻴﻬﺎ اﻟﻤ ﺮﺟﻊ )‪ (4‬ﺑ ﻨﺎء ﻋﻠ ﻰ ﻣ ﺒﺪأ ) ‪filter‬‬
‫‪ (design by coupling‬أى اﻟﻔﻠﺘﺮ اﻟﺬى ﻳﺘﻜﻮن ﻣﻦ ﻋﻨﺎﺻﺮ رﻧﻴﻦ ﻳﻮﺟﺪ ﺑﻴﻨﻬﺎ ) ﻗﺮن أو ازدواج ‪ ( coupling‬و‬
‫ﻋﻨﺼ ﺮ اﻟ ﺮﻧﻴﻦ ه ﻨﺎ ه ﻮ اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﻤﻨﺘﻬ ﻰ ﻣ ﻦ ﻃ ﺮﻓﻪ ﺑﻨﻬﺎﻳﻪ ﻣﻮﺻﻠﻪ ﺑﺎﻷرض )ﻣﻐﻠﻘﻪ( و ﻣﻦ اﻟﻄﺮف اﻵﺧﺮ‬
‫ﻣﻨﺘﻬﻰ ﻧﻬﺎﻳﻪ ﻣﻔﺘﻮﺣﻪ ‪ ،‬و ﻳﻤﻜﻦ ﺗﻠﺨﻴﺺ ﻃﺮﻳﻘﺔ اﻟﺘﺼﻤﻴﻢ آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫اﻟﺨﻄ ﻮﻩ اﻷوﻟ ﻰ ‪ :‬ه ﻰ ﺣﺴ ﺎب أو ﺗﺤﺪﻳ ﺪ اﻟﻤﻜ ﻮﻧﺎت اﻟﻤﺘﻄ ﺒﻌﻪ )‪ (gi‬ﺑﺎﻟﻨﺴ ﺒﻪ ﻟﻔﻠﺘ ﺮ ﻣ ﺮور اﻟﺘ ﺮددات اﻟﻤﻨﺨﻔﻀ ﻪ‬
‫ﺑﺎﻟﻤﻜ ﻮﻧﺎت اﻟﻌﻴﻨ ﻴﻪ ﺣﺴ ﺐ رﺗ ﺒﺔ اﻟﻔﻠﺘ ﺮ )‪ (n‬و ﻧ ﻮع ﺗﻘ ﺮﻳﺐ اﻟﻔﻠﺘ ﺮ اﻟﻤﻄﻠ ﻮب ) ﻣ ﺜﻞ ﺑﺘ ﺮوورث و ﺗﺸ ﻴﺒﻰ ﺗﺸ ﻴﻒ و‬
‫ﻏﻴﺮهﺎ(‪.‬‬
‫اﻟﺨﻄ ﻮﻩ اﻟﺜﺎﻧ ﻴﻪ ‪ :‬ﺑﺎﻋﺘ ﺒﺎر أن اﻟﻔﻠﺘ ﺮ ﻳ ﺘﻜﻮن ﻣ ﻦ ﻋﻨﺎﺻ ﺮ رﻧ ﻴﻦ ﻳ ﻮﺟﺪ ﺑﻴ ﻨﻬﺎ ) ﻗ ﺮن أو ازدواج ‪ (coupling‬ﻳﺠ ﺐ‬
‫ﺣﺴ ﺎب ﻗ ﻴﻢ ﻣﻌ ﺎﻣﻼت اﻻزدواج )أو اﻟﻘ ﺮن( ﺑ ﻴﻦ آ ﻞ ﻋﻨﺼ ﺮى رﻧ ﻴﻦ )‪ .(ki,i+1‬ﺑﺎﻻﺿ ﺎﻓﻪ اﻟ ﻰ ﻗﻴﻢ ﻣﻌﺎﻣﻼت )‪ (q‬أو‬
‫ﻣﻌﺎﻣﻼت اﻟﺠﻮدﻩ )‪ (quality factors‬ﻟﻌﻨﺼﺮى اﻟﺮﻧﻴﻦ ﻋﻨﺪ ﻣﺪﺧﻠﻰ اﻟﻔﻠﺘﺮ‪.‬‬
‫ﻳﺘﻢ ﺣﺴﺎب ﻗﻴﻤﺔ ﻣﻌﺎﻣﻞ )‪ (qe1‬ﻋﻨﺪ ﻣﺪﺧﻞ اﻟﻔﻠﺘﺮ و ﻗﻴﻤﺔ ﻣﻌﺎﻣﻞ )‪ (qen‬ﻋﻨﺪ ﻣﺨﺮج اﻟﻔﻠﺘﺮ ﺑﺎﻟﻤﻌﺎدﻟﻪ )‪ .(7. 105‬و ﻳﺘﻢ‬
‫ﺣﺴﺎب ﻗﻴﻢ ﻣﻌﺎﻣﻼت اﻻزدواج )أو اﻟﻘﺮن( ﺑﻴﻦ آﻞ ﻋﻨﺼﺮى رﻧﻴﻦ )‪ (ki,i+1‬ﺑﺎﻟﻤﻌﺎدﻟﻪ )‪. (7. 106‬‬
‫اﻟﺨﻄ ﻮﻩ اﻟﺜﺎﻟ ﺜﻪ ‪ :‬ﻳ ﺘﻢ اﺧﺘ ﻴﺎر ﻣﻮاﺻ ﻔﺎت اﻟﺸ ﺮﻳﺤﻪ اﻟﺸ ﺮﻳﻄﻴﻪ ‪ ،‬ﺛ ﻢ ﻳ ﺘﻢ اﺧﺘ ﻴﺎر ﻋ ﺮض اﻟﺨﻄ ﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﻤﻘﺮوﻧﻪ‬
‫ﺑﺎﻟﻔﻠﺘﺮ )‪ (W1‬وﻓﻘﺎ ﻟﻤﻨﺤﻨﻴﺎت اﻟﺘﺼﻤﻴﻢ اﻟﻤﺘﻮﻓﺮﻩ ﻟﻠﺸﺮﻳﺤﻪ اﻟﺸﺮﻳﻄﻴﻪ ﻣﺜﻞ اﻟﻤﻌﻄﺎﻩ ﻓﻰ اﻟﻤﺮﺟﻊ )‪.(4‬‬
‫آ ﻞ ﻣﻨﺤﻨ ﻰ ﺗﺼ ﻤﻴﻢ ﻳﻜ ﻮن ﻣﺮﺳﻮم ﻟﻨﺴﺒﻪ ﻣﻌﻴﻨﻪ )‪ (W/h‬ﺣﻴﺚ )‪ (W‬هﻮ ﻋﺮض اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﻤﻘﺮون و )‪ (h‬هﻮ‬
‫ﺳ ﻤﻚ ﻃ ﺒﻘﺔ اﻟﻌ ﺎزل ﻟﻠﺸ ﺮﻳﺤﻪ ‪ ،‬و اﻟﻤﺤ ﻮر اﻷﻓﻘ ﻰ ﻳﻤ ﺜﻞ ﻗ ﻴﻢ )‪ (S/h‬ﺣ ﻴﺚ )‪ (S‬ه ﻰ اﻟﻤﺴ ﺎﻓﻪ اﻟﺒﻴﻨ ﻴﻪ ﺑ ﻴﻦ اﻟﺨﻄ ﻴﻦ‬
‫اﻟﻤﻘﺮوﻧﻴﻦ )ﻋﻨﺼﺮى اﻟﺮﻧﻴﻦ( ﺑﻴﻨﻤﺎ اﻟﻤﺤﻮر اﻟﺮأﺳﻰ ﻳﻤﺜﻞ ﻗﻴﻢ ﻣﻌﺎﻣﻞ اﻻزدواج )‪ (k‬ﺑﻴﻦ اﻟﺨﻄﻴﻦ اﻟﺸﺮﻳﻄﻴﻴﻦ‪.‬‬
‫ﻳﻤﻜ ﻦ رﺳ ﻢ ه ﺬﻩ اﻟﻤﻨﺤﻨ ﻴﺎت ﺑﺎﺳ ﺘﺨﺪام ﺑ ﺮﻧﺎﻣﺞ ﻟﺘﺤﻠ ﻴﻞ دواﺋ ﺮ اﻟﻤﻴﻜﺮووﻳﻒ أو ﺑﺮﻧﺎﻣﺞ ﻟﻠﺘﺤﻠﻴﻞ اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴﻰ اذا‬
‫ﺗﻌﺬر اﻳﺠﺎد ﻣﻨﺤﻨﻴﺎت اﻟﺘﺼﻤﻴﻢ ﻟﻠﺸﺮﻳﺤﻪ اﻟﺘﻰ ﺗﻢ اﺧﺘﻴﺎرهﺎ‪.‬‬
‫اﻟﻤ ﺮﺟﻊ )‪ (16‬ﻳﺸ ﺮح ﻃ ﺮﻳﻘﺔ ﺗﺤﺪﻳ ﺪ اﻟﻤﺴ ﺎﻓﻪ اﻟﺒﻴﻨ ﻴﻪ )‪ (S‬ﻟﻌﻨﺼﺮ رﻧﻴﻦ ﻳﺘﻜﻮن ﻣﻦ ﺧﻄﻴﻦ ﺷﺮﻳﻄﻴﻴﻦ ﻣﻘﺮوﻧﻴﻦ ﺑﺪﻻﻟﺔ‬
‫ﻣﻌﺎﻣ ﻞ اﻻزدواج )‪ ، (k‬و آ ﺬﻟﻚ ﻳﺸ ﺮح ﻃ ﺮﻳﻘﺔ ﺗﺤﺪﻳ ﺪ اﻟﻤﺴ ﺎﻓﻪ )‪ (θt‬أو )‪ (lt‬ﻟﻌﻨﺼ ﺮ اﻟﺮﻧﻴﻦ ﺑﺪﻻﻟﺔ ﻣﻌﺎﻣﻞ اﻟﺠﻮدﻩ‬
‫)‪ (q‬ﺑﺎﺳ ﺘﺨﺪام أﺣ ﺪ ﺑ ﺮاﻣﺞ ﺗﺤﻠ ﻴﻞ دواﺋ ﺮ اﻟﻤﻴﻜ ﺮووﻳﻒ‪ .‬ﺑﻴ ﻨﻤﺎ ﻳﺸﺮح اﻟﻤﺮﺟﻊ )‪ (4‬ﻃﺮﻳﻘﺔ ﻋﻤﻞ ذﻟﻚ ﺑﺎﺳﺘﺨﺪام أﺟﻬﺰة‬
‫اﻟﻘﻴﺎس‪.‬‬
‫ﻳﺘﻢ ﺗﺤﺪﻳﺪ ﻗﻴﻤﺔ آﻞ ﻣﺴﺎﻓﻪ ﺑﻴﻨﻴﻪ )‪ (Si,i+1‬ﻣﻜﺎﻓﺌﻪ ﻟﻤﻌﺎﻣﻞ اﻻزدواج )‪ (ki,i+1‬ﺑﻮاﺳﻄﺔ اﻟﻤﻨﺤﻨﻴﺎت‪.‬‬
‫ﻳ ﺘﻢ ﺣﺴ ﺎب ﻃ ﻮل ﺟﻤ ﻴﻊ اﻟﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﻤﻘ ﺮوﻧﻪ ﺑﺎﻟﻔﻠﺘﺮ )‪ (L‬ﺑﺎﺳﺘﺨﺪام اﻟﻤﻌﺎدﻟﻪ )‪ (7. 121‬ﺑﻤﺎ ﻓﻴﻬﺎ اﻟﺨﻄﻴﻦ‬
‫اﻟﻤﻘﺮوﻧﻴﻦ ﻋﻨﺪ ﻣﺪﺧﻠﻰ اﻟﻔﻠﺘﺮ أرﻗﺎم )‪.(1 , n‬‬
‫ﻳ ﺘﻢ اﺳ ﺘﺨﺪام ﻣﻨﺤﻨ ﻴﺎت اﻟﺘﺼ ﻤﻴﻢ ﻟ ﺘﺤﺪﻳﺪ ﻣﺴ ﺎﻓﺔ اﻟﺘﻮﻟ ﻴﻒ ﻋ ﻨﺪ ﻣﺪﺧﻠ ﻰ اﻟﻔﻠﺘ ﺮ )‪ ، (lt or l‬و ه ﺬﻩ اﻟﻤﻨﺤﻨ ﻴﺎت آﻤﺎ هﻮ‬
‫ﻣﻌﻄﻰ ﻓﻰ اﻟﻤﺮﺟﻊ )‪ (4‬ﻳﻤﺜﻞ اﻟﻤﺤﻮر اﻷﻓﻘﻰ ﻓﻴﻬﺎ اﻟﻨﺴﺒﻪ )‪ (l /L‬ﺑﻴﻨﻤﺎ ﻳﻤﺜﻞ اﻟﻤﺤﻮر اﻟﺮأﺳﻰ ﻗﻴﻢ ﻣﻌﺎﻣﻞ اﻟﺠﻮدﻩ )‪.(q‬‬

‫‪352‬‬

‫ﻳﺘﻢ ﺣﺴﺎب ﻋﺮض اﻟﺨﻄﻴﻦ اﻟﺸﺮﻳﻄﻴﻴﻦ اﻟﻤﺘﺼﻠﻴﻦ ﺑﻤﺪﺧﻠﻰ اﻟﻔﻠﺘﺮ )‪ (Wo‬اﻟﻤﻜﺎﻓﺊ ﻟﻠﻤﻌﺎوﻗﻪ )‪.(Zo‬‬
‫اﻟﺨﻄ ﻮﻩ اﻟﺮاﺑﻌﻪ ‪ :‬هﻰ ﺗﺤﻠﻴﻞ اﻟﺪاﺋﺮﻩ ﺑﺎﺳﺘﺨﺪام أﺣﺪ ﺑﺮاﻣﺞ ﺗﺤﻠﻴﻞ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ ﺑﺎﻷﺑﻌﺎد اﻟﻤﺒﺪﺋﻴﻪ اﻟﻤﺤﺴﻮﺑﻪ ﻓﻰ‬
‫اﻟﺨﻄﻮات اﻟﺴﺎﺑﻘﻪ‪ .‬و ﻋﻤﻞ اﻟﺒﺤﺚ ﻋﻦ اﻟﺤﻞ اﻷﻣﺜﻞ )‪ (Optimization‬ﺑﺘﻐﻴﻴﺮ اﻷﺑﻌﺎد ﻟﺘﺤﺴﻴﻦ اﻷداء اذا آﺎن ﻣﺨﺘﻠﻔﺎ‬
‫ﻋ ﻦ اﻟﻘ ﻴﻢ اﻟﻤﻄﻠ ﻮﺑﻪ‪ .‬و آﻤ ﺎ ذآ ﺮت ﻓﻰ اﻟﻤﻘﻄﻊ اﻟﺴﺎﺑﻖ ﻓﺎن ﻣﻌﻈﻢ ﺑﺮاﻣﺞ ﺗﺤﻠﻴﻞ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ اﻟﺤﺪﻳﺜﻪ ﺗﺤﺘﻮى‬
‫ﻋﻠ ﻰ ﻧﻤ ﺎذج أو دواﺋﺮ ﻣﻜﺎﻓﺌﻪ ﻟﻠﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﻤﺘﻌﺪدﻩ اﻟﻤﻘﺮوﻧﻪ أو اﻟﻤﺰدوﺟﻪ )‪ (multiple coupled lines‬و‬
‫اﻟﺘ ﻰ ﻳﻤﻜ ﻦ ادراﺟﻬ ﺎ ﻓﻰ اﻟﺮﺳﻢ اﻟﺮﻣﺰى ﻟﻠﻔﻠﺘﺮ ﻣﻊ ادراج ﺑﺎﻗﻰ اﻟﺨﻄﻮط و اﻟﻼاﺳﺘﻤﺮارﻳﺎت ﻋﻨﺪ ﺗﺤﻠﻴﻞ اﻟﻔﻠﺘﺮ ﺑﻄﺮق‬
‫ﺗﺤﻠ ﻴﻞ اﻟﺪواﺋ ﺮ اﻟﻤﻌ ﺘﻤﺪﻩ ﻋﻠ ﻰ اﻟ ﻨﻤﺎذج أو اﻟﺪواﺋ ﺮ اﻟﻤﻜﺎﻓ ﺌﻪ ﻟﻠﻤﻜ ﻮﻧﺎت و ﻳﻤﻜﻦ اﺳﺘﺨﺪام ﻧﻔﺲ اﻟﻄﺮﻳﻘﻪ اﻟﻤﺸﺮوﺣﻪ ﻓﻰ‬
‫اﻟﻤ ﺮﺟﻊ )‪ (20‬اﻟ ﺬى ﻳﻌﻄ ﻰ ﻣ ﺜﺎﻻ ﻋﻠ ﻰ ﺗﺤﻠ ﻴﻞ )‪ (Combline Filter‬ﻣﻊ ﺗﻐﻴﻴﺮ ﻣﺎ ﻳﻠﺰم‪ .‬أو ﻳﻤﻜﻦ اﺳﺘﺨﺪام ﻃﺮﻳﻘﺔ‬
‫ﺗﺤﻠﻴﻞ آﻬﺮوﻣﻐﻨﺎﻃﻴﺴﻴﻪ ﻟﺘﺤﻠﻴﻞ اﻟﻔﻠﺘﺮ‪.‬‬
‫ﻳﻌﻄ ﻰ اﻟﻤ ﺮﺟﻌﺎن )‪ (1 , 4‬ﻣﺜﺎﻟ ﻴﻦ ﻟﺘﺼ ﻤﻴﻢ ﻓﻠﺘ ﺮ )‪ (Interdigital BPF‬اﻟﻤ ﺘﻜﻮن ﻣ ﻦ ﻣﺠﻤ ﻮﻋﻪ ﻣ ﻦ اﻟﺨﻄ ﻮط‬
‫اﻟﺸﺮﻳﻄﻴﻪ اﻟﻤﺘﻌﺪدﻩ اﻟﻤﻘﺮوﻧﻪ أو اﻟﻤﺰدوﺟﻪ اﻟﻤﺘﻤﺎﺛﻠﻪ )‪.(symmetric multiple coupled lines‬‬
‫ه ﻨﺎك أﻧ ﻮاع أﺧ ﺮى ﻣ ﻦ دواﺋ ﺮ اﻟﻔﻠﺘ ﺮ اﻟﺘ ﻰ ﺗ ﺘﻜﻮن ﻣ ﻦ ﻣﺠﻤ ﻮﻋﻪ ﻣ ﻦ اﻟﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﻤ ﺘﻌﺪدﻩ اﻟﻤﻘ ﺮوﻧﻪ أو‬
‫اﻟﻤﺰدوﺟﻪ ﻣﺜﻞ ﻧﻮع )‪ (Combline Filter‬و ﻧﻮع )‪ (Pseudocombline Filter‬و ﻳﻤﻜﻦ اﻟﺮﺟﻮع اﻟﻰ اﻟﻤﺮاﺟﻊ‬
‫)‪ (1 , 21‬ﻟﺪراﺳﺘﻬﺎ‪.‬‬

‫)ﻤﻘﻁﻊ ‪ (١٢ - ٧‬ﻓﻠﺘﺭ ﻤﺭﻭﺭ ﺍﻟﺘﺭﺩﺩﺍﺕ ﺍﻟﻤﺭﺘﻔﻌﻪ ﺒﺎﺴﺘﺨﺩﺍﻡ ﺍﺴﺘﺒﺩﺍل ﺍﻟﻤﻜﻭﻨﺎﺕ ﺍﻟﻌﻴﻨﻴﻪ‪:‬‬

‫ﺗ ﻢ ﺷ ﺮح ﺗﺼ ﻤﻴﻢ ﻓﻠﺘ ﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﺮﺗﻔﻌﻪ )‪ (High Pass Filter HPF‬ﺑﺎﺳﺘﺨﺪام ﻣﻜﻮﻧﺎت ﻋﻴﻨﻴﻪ ﻣﺜﺎﻟﻴﻪ ﻓﻰ‬
‫ﻣﻘﻄﻊ )‪ ، (١-٧‬و ﺗﻢ اﻋﻄﺎء ﻣﺜﺎل )‪ (٣-٧‬ﻟﻠﺘﺼﻤﻴﻢ ﺑﺮﺗﺒﺔ ﻓﻠﺘﺮ )‪ ، (n = 5‬و اﻋﻄﺎء رﺳﻢ رﻣﺰى ﻟﻬﺬا اﻟﻔﻠﺘﺮ ﻓﻰ ﺷﻜﻞ‬
‫)‪.(١٩ – ٧‬‬
‫ﻳﻤﻜ ﻦ ﺗﺼ ﻤﻴﻢ ﻓﻠﺘ ﺮ ﻣ ﺮور اﻟﺘ ﺮددات اﻟﻤ ﺮﺗﻔﻌﻪ اﻟﺸ ﺮﻳﻄﻰ ﻣﻦ ﻧﻮع )‪ (Quasilumped Element HPF‬ﺑﺎﺳﺘﺒﺪال‬
‫اﻟﻤﻜ ﻮﻧﺎت اﻟﻌﻴﻨ ﻴﻪ اﻟﻤﺜﺎﻟ ﻴﻪ ﺑﺄﺧ ﺮى ﺷ ﺮﻳﻄﻴﻪ ﻋ ﻦ ﻃ ﺮﻳﻖ اﺳ ﺘﺒﺪال آ ﻞ ﻣﻜ ﺜﻒ ﻋﻴﻨ ﻰ ﺑﻤﻜ ﺜﻒ ﺷ ﺮﻳﻄﻰ ﻣ ﻦ ﻧ ﻮع‬
‫)‪ (interdigital capacitor‬ﺑﻴﻨﻤﺎ ﻳﺴﺘﺒﺪل آﻞ ﻣﻠﻒ ﺑﺨﻂ ﺷﺮﻳﻄﻰ ﻣﻨﺘﻬﻰ ﻧﻬﺎﻳﻪ ﻣﻮﺻﻠﻪ ﺑﺎﻷرض آﻤﺎ ﻳﻮﺿﺢ ﺷﻜﻞ‬
‫)‪ .(٨٩ – ٧‬ﻧﻤﺎذج و ﻣﻌﺎدﻻت اﻟﻤﻜﻮﻧﺎت اﻟﻌﻴﻨﻴﻪ اﻟﺸﺮﻳﻄﻴﻪ ﻳﻤﻜﻦ دراﺳﺘﻬﺎ ﻣﻦ اﻟﻤﺮﺟﻊ )‪.(22‬‬
‫ه ﻨﺎك ﻣﻌ ﺎدﻻت آﺜﻴ ﺮﻩ ﻟﺤﺴ ﺎب أﺑﻌ ﺎد اﻟﻤﻜ ﺜﻒ ﻣ ﻦ ﻧ ﻮع )‪ (interdigital capacitor‬ﻣ ﺜﻞ اﻟﻤﻌﺎدﻟ ﻪ )‪ (4.46‬ﻓ ﻰ‬
‫اﻟﻔﺼﻞ اﻟﺮاﺑﻊ‪.‬‬
‫ﻟﻜ ﻦ ه ﻨﺎك ﻣﻌﺎدﻟ ﻪ أﺧ ﺮى دﻗ ﻴﻘﻪ ﻟﺤﺴ ﺎب أﺑﻌ ﺎد ه ﺬا اﻟ ﻨﻮع ﻣ ﻦ اﻟﻤﻜﺜﻒ اﻟﻤﺒﻴﻦ ﻓﻰ ﺷﻜﻞ )‪ (٩٠ – ٧‬ﻓﻰ ﺣﺎﻟﺔ اﺧﺘﻴﺎر‬
‫ﻋ ﺮض اﻻﺻ ﺒﻊ )‪ (W‬ﻣﺴ ﺎوﻳﺎ ﻟﻠﻤﺴ ﺎﻓﻪ ﺑ ﻴﻦ آ ﻞ اﺻ ﺒﻌﻴﻦ )‪ (S‬و ﺑﻔ ﺮض أن ﺳﻤﻚ ﻃﺒﻘﺔ اﻟﻌﺎزل ﻟﻠﺸﺮﻳﺤﻪ )‪ (h‬أآﺒﺮ‬
‫ﺑﻜﺜﻴﺮ ﻣﻦ ﻋﺮض اﻻﺻﺒﻊ )‪ ، (W‬ﺗﻌﻄﻰ ﻗﻴﻤﺔ اﻟﻤﻜﺜﻒ ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫) (‬

‫]‪C [in pF] = 3.937 10-5 L (ε r + 1) [0.11(n − 3) + 0.252‬‬

‫‪353‬‬

‫ﺣﻴﺚ اﻟﻄﻮل ﺑﺎﻟﻤﻴﻜﺮوﻣﺘﺮ )‪ (L in µm‬و )‪ (n‬هﻮ ﻋﺪد اﻷﺻﺎﺑﻊ و )‪ (εr‬هﻮ ﺛﺎﺑﺖ اﻟﻌﺰل ﻟﻠﺸﺮﻳﺤﻪ‪.‬‬
‫أى أن ﻃﻮل اﻟﻤﻜﺜﻒ اﻟﺸﺮﻳﻄﻰ ﻣﻦ ﻧﻮع )‪ (interdigital capacitor‬ﻳﻤﻜﻦ ﺣﺴﺎﺑﻪ آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫)‪(7. 126‬‬

‫]‪C [in pF‬‬
‫]‪3.937 10 (ε r + 1) [0.11(n − 3) + 0.252‬‬

‫) (‬
‫‪-5‬‬

‫= ]‪L [in µm‬‬

‫ﺷﻜﻞ )‪ : (٨٩ – ٧‬ﻓﻜﺮة اﺳﺘﺒﺪال اﻟﻤﻜﻮﻧﺎت اﻟﻌﻴﻨﻴﻪ ﺑﺄﺧﺮى ﺷﺮﻳﻄﻴﻪ‪.‬‬

‫ﺷﻜﻞ )‪ : (٩٠ – ٧‬ﻣﺨﻄﻂ ﻣﻜﺜﻒ ﻣﻦ ﻧﻮع )‪(interdigital capacitor‬‬

‫‪354‬‬

‫اذا آﺎﻧ ﺖ اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻤﻴ ﺰﻩ ﻟﻠﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟ ﺒﺪﻳﻞ ﻟﻠﻤﻠ ﻒ ﺗﺴ ﺎوى )‪ (ZL‬و ﻃ ﻮﻟﻪ اﻟﻜﻬﺮﺑ ﻰ ﻳﺴ ﺎوى )‪ (θ‬ﻓ ﺎن ﻗ ﻴﻤﺔ‬
‫اﻟﻤﻠﻒ )‪ (coil value L‬ﻋﻨﺪ ﺗﺮدد اﻟﻘﻄﻊ ﻟﻠﻔﻠﺘﺮ )‪ (fc‬ﺗﺴﺎوى ‪:‬‬
‫⎞‬
‫⎟‪l‬‬
‫⎟‬
‫⎠‬

‫‪⎛ 2π‬‬
‫⎜‪tan‬‬
‫‪⎜λ‬‬
‫‪2 π fc‬‬
‫‪⎝ gL‬‬
‫‪ZL‬‬

‫= ‪tan θ‬‬

‫‪ZL‬‬

‫‪2 π fc‬‬

‫= ‪coil value L‬‬

‫أى أﻧﻪ ﻋﻨﺪ اﺧﺘﻴﺎر اﻟﻄﻮل اﻟﻜﻬﺮﺑﻰ )‪ (θ‬ﻳﻤﻜﻦ ﺣﺴﺎب اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ ﻟﻠﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺒﺪﻳﻞ ﻟﻠﻤﻠﻒ آﺎﻟﺘﺎﻟﻰ‪:‬‬

‫‪2 π fc L‬‬
‫‪tan θ‬‬

‫)‪(7.127‬‬

‫= ‪ZL‬‬

‫ﺷ ﻜﻞ )‪ (٩١ – ٧‬ﻳﺒ ﻴﻦ ﻣ ﺜﺎل ﻟﻤﺨﻄ ﻂ ﻓﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﺮﺗﻔﻌﻪ )‪ (HPF‬اﻟﺸﺮﻳﻄﻰ ﺑﺮﺗﺒﺔ )‪ (n=5‬ﺑﻌﺪ اﺳﺘﺒﺪال‬
‫اﻟﻤﻜ ﻮﻧﺎت اﻟﻌﻴﻨ ﻴﻪ اﻟﻤﺜﺎﻟ ﻴﻪ ﻟﻠﻔﻠﺘ ﺮ ﺑﻤﻜ ﻮﻧﺎت ﺷ ﺮﻳﻄﻴﻪ‪ .‬ﻗﺎرن ﺑﻴﻦ هﺬا اﻟﺸﻜﻞ و ﺑﻴﻦ اﻟﺮﺳﻢ اﻟﺮﻣﺰى ﻟﻠﻔﻠﺘﺮ اﻟﻤﻜﻮن ﻣﻦ‬
‫ﻣﻜﻮﻧﺎت ﻋﻴﻨﻴﻪ ﻣﺜﺎﻟﻴﻪ ﻓﻰ ﺷﻜﻞ )‪.(١٩ – ٧‬‬

‫ﺷﻜﻞ )‪ : (٩١ – ٧‬ﻣﺨﻄﻂ ﻓﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﺮﺗﻔﻌﻪ )‪ (HPF‬اﻟﺸﺮﻳﻄﻰ ﺑﺮﺗﺒﺔ )‪(n=5‬‬

‫و ﻳﻔﻀ ﻞ اﺳ ﺘﺨﺪام ه ﺬﻩ اﻟﻄ ﺮﻳﻘﻪ ﻓ ﻰ اﻟﺘ ﺮددات اﻟﻤﻨﺨﻔﻀﻪ ﻣﻦ ﺣﻴﺰ اﻟﻤﻴﻜﺮووﻳﻒ ﺑﺎﻟﻨﺴﺒﻪ ﻟﻠﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ ‪،‬‬
‫ﻟﻜ ﻦ ﻓ ﻰ ﺗﻜﻨﻮﻟﻮﺟ ﻴﺎت أﺧ ﺮى ﻣ ﺜﻞ )‪ (MMIC‬ﻳ ﺘﻢ اﺳ ﺘﺨﺪام ﻓﻜ ﺮة اﺳ ﺘﺒﺪال اﻟﻤﻜ ﻮﻧﺎت اﻟﻌﻴﻨﻴﻪ ﺑﺄﺧﺮى ﺷﺮﻳﻄﻴﻪ ﺣﺘﻰ‬
‫ﻧﻬﺎﻳﺔ ﺣﻴﺰ اﻟﻤﻴﻜﺮووﻳﻒ و ﻓﻰ ﺣﻴﺰ اﻟﺘﺮددات اﻟﻤﻠﻠﻴﻤﺘﺮﻳﻪ‪.‬‬
‫ﻳﻤﻜ ﻦ ﺗﺼ ﻤﻴﻢ ﻓﻠﺘ ﺮ ﻣ ﺮور اﻟﺘ ﺮددات اﻟﻤ ﺮﺗﻔﻌﻪ ﺑﺎﺳ ﺘﺒﺪال اﻟﻤﻜﻮﻧﺎت اﻟﻌﻴﻨﻴﻪ اﻟﻤﺜﺎﻟﻴﻪ ﺑﺄﺧﺮى ‪ ،‬ﻋﻦ ﻃﺮﻳﻖ اﺳﺘﺒﺪال آﻞ‬
‫ﻣﻜ ﺜﻒ ﻣﺜﺎﻟ ﻰ ﺑﻤﻜ ﺜﻒ ﻋﻴﻨ ﻰ ﻣ ﻦ ﻧ ﻮع )‪ (chip capacitor‬آﻤ ﺎ ﻓ ﻰ ﺷﻜﻞ )‪ (٩٢ – ٧‬ﺑﻴﻨﻤﺎ ﻳﺴﺘﺒﺪل آﻞ ﻣﻠﻒ ﺑﺨﻂ‬
‫ﺷ ﺮﻳﻄﻰ ﻣﻨﺘﻬ ﻰ ﻧﻬﺎﻳ ﻪ ﻣﻮﺻ ﻠﻪ ﺑ ﺎﻷرض وﻓﻘ ﺎ ﻟﻠﻤﻌﺎدﻟﻪ )‪ ، (7. 127‬و ﻳﻤﻜﻦ اﺳﺘﺨﺪام هﺬﻩ اﻟﻄﺮﻳﻘﻪ ﻟﺘﻨﻔﻴﺬ اﻟﻔﻠﺘﺮ ﻋﻨﺪ‬
‫ﺗ ﺮددات أﻋﻠ ﻰ ﻣﻦ دواﺋﺮ اﻟﻔﻠﺘﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ اﻟﺘﻰ ﻳﺴﺘﺨﺪم ﻓﻴﻬﺎ اﻟﻤﻜﺜﻒ ﻣﻦ ﻧﻮع )‪(interdigital capacitor‬‬
‫آﺒﺪﻳﻞ ﻟﻠﻤﻜﺜﻒ اﻟﻌﻴﻨﻰ اﻟﻤﺜﺎﻟﻰ‪.‬‬

‫‪355‬‬

‫ﺷﻜﻞ )‪ : (٩٢ – ٧‬ﻓﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﺮﺗﻔﻌﻪ ﺑﺮﺗﺒﺔ )‪ (n=7‬ﺑﺎﺳﺘﺨﺪام ﻣﻜﺜﻔﺎت ﻋﻴﻨﻴﻪ و ﺧﻄﻮط ﺷﺮﻳﻄﻴﻪ‪.‬‬

‫)ﻤﻘﻁﻊ ‪ (١٣ - ٧‬ﻓﻠﺘﺭ ﻤﺭﻭﺭ ﺍﻟﺘﺭﺩﺩﺍﺕ ﺍﻟﻤﺭﺘﻔﻌﻪ ﺒﺎﺴﺘﺨﺩﺍﻡ ﺍﻟﺨﻁﻭﻁ ﺍﻟﺸﺭﻴﻁﻴﻪ‪:‬‬

‫ﻳﺒ ﻴﻦ ﺷﻜﻞ )‪ (٩٣ – ٧‬ﻣﺨﻄﻂ ﻋﺎم ﻟﻔﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﺮﺗﻔﻌﻪ ﺑﺎﺳﺘﺨﺪام اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ ﺑﺮﺗﺒﺔ ﻓﻠﺘﺮ‬
‫)‪ (n‬و اﻟ ﺬى ﻳ ﺘﻜﻮن ﻣ ﻦ ﺧﻄ ﻮط ﺷ ﺮﻳﻄﻴﻪ ﻣﺘﺼ ﻠﻪ ﻋﻠ ﻰ اﻟ ﺘﻮازى و ﻣﻨﺘﻬ ﻴﻪ ﻧﻬﺎﻳ ﻪ ﻣﻮﺻ ﻠﻪ ﺑ ﺎﻷرض )ﻣﻐﻠﻘ ﻪ( و ﻟﻬﺎ‬
‫ﻣﻌﺎوﻗ ﻪ ﻣﻤﻴ ﺰﻩ )‪ (Zi = 1/Yi‬و اﻟﻄ ﻮل اﻟﻜﻬﺮﺑ ﻰ ﻟﻜ ﻞ ﻣ ﻨﻬﺎ ﻳﺴ ﺎوى )‪ (θc‬و ﺧﻄ ﻮط ﺷ ﺮﻳﻄﻴﻪ أﺧ ﺮى ﻣﺘﺼ ﻠﻪ ﻋﻠ ﻰ‬
‫اﻟﺘﻮاﻟﻰ و ﻟﻬﺎ ﻣﻌﺎوﻗﻪ ﻣﻤﻴﺰﻩ )‪ (Zi,i+1 = 1/Y i,i+1‬و اﻟﻄﻮل اﻟﻜﻬﺮﺑﻰ ﻟﻜﻞ ﻣﻨﻬﺎ ﻳﺴﺎوى )‪.(2θc‬‬
‫ﺣﻴﺚ )‪.(i = 1 , 2 , ... , n‬‬

‫ﺷﻜﻞ )‪ : (٩٣ – ٧‬ﻣﺨﻄﻂ ﻋﺎم ﻟﻔﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﺮﺗﻔﻌﻪ ﺑﺎﺳﺘﺨﺪام اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ‪.‬‬

‫‪356‬‬

‫ﻳﻤﻜ ﻦ ﺗﺼ ﻤﻴﻢ ﻓﻠﺘ ﺮ ﻣ ﺮور اﻟﺘ ﺮددات اﻟﻤ ﺮﺗﻔﻌﻪ ﺑﺎﺳﺘﺨﺪام اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ ﻣﻦ هﺬا اﻟﻨﻮع ﺑﺤﻴﺰ ﻣﺮور ﻳﺒﺪأ‬
‫ﻣﻦ ﺗﺮدد اﻟﻘﻄﻊ )‪ (fc‬ﺣﺘﻰ ﺗﺮدد ﻳﺴﺎوى ‪:‬‬

‫‪⎛ 180o‬‬
‫⎞‬
‫‪⎛ π‬‬
‫⎞‬
‫‪f = ⎜⎜ o − 1⎟⎟ f c = ⎜⎜ rad − 1⎟⎟ f c‬‬
‫‪⎝ θc‬‬
‫⎠‬
‫‪⎝ θc‬‬
‫⎠‬

‫)‪(7.128‬‬

‫و ﻳﻌﻄﻰ اﻟﻤﺮﺟﻊ )‪ (1‬ﻣﻌﺎدﻻت و ﻣﻨﺤﻨﻰ اﻷداء ﺑﺪﻻﻟﺔ ﻗﻴﻢ )‪ (θc‬و ﻣﺜﺎل ﺗﺼﻤﻴﻢ ﻟﻬﺬا اﻟﻨﻮع ﻣﻦ اﻟﻔﻠﺘﺮ‪.‬‬
‫ﻳﺒ ﻴﻦ ﺟ ﺪول )‪ (٨ – ٧‬ﻗ ﻴﻢ اﻟﻤﻌﺎوﻗ ﺎت اﻟﻤﻤﻴ ﺰﻩ ﻟﻠﺨﻄ ﻮط اﻟﺸﺮﻳﻄﻴﻪ ﻟﻠﻔﻠﺘﺮ ﻣﻦ ﻧﻮع ﺗﺸﻴﺒﻰ ﺗﺸﻴﻒ ﻋﻨﺪﻣﺎ ﻳﻜﻮن ﻣﻘﺪار‬
‫اﻟ ﺘﻤﻮﺟﺎت ﻓ ﻰ اﻟﺤﻴ ﺰ اﻟﻤﻔ ﻴﺪ ﻟﻠﻔﻠﺘ ﺮ ﺑﺎﻟﺪﻳﺴ ﻴﺒﻞ )‪ (0.1 dB‬ﺑﺪﻻﻟ ﺔ ﻗ ﻴﻢ )‪ (θc‬ﻣﻌﻴ ﻨﻪ ﺑﺎﻋﺘ ﺒﺎر أن اﻟﻤﻌﺎوﻗﻪ ﻋﻨﺪ ﻃﺮﻓﻰ‬
‫اﻟﻔﻠﺘﺮ ﺗﺴﺎوى )‪.(Zo = 50 Ω‬‬

‫‪Z1,2‬‬
‫‪= Zn-1,n‬‬

‫‪Z1‬‬
‫‪= Zn‬‬

‫‪θc‬‬

‫‪n‬‬

‫‪44.05985‬‬

‫‪323.9181‬‬

‫‪2‬‬

‫‪44.80407‬‬

‫‪226.5519‬‬

‫‪25°‬‬
‫‪30°‬‬

‫‪275.088‬‬

‫‪45.88545‬‬
‫‪44.61298‬‬

‫‪162.5752‬‬
‫‪253.936‬‬

‫‪35°‬‬

‫‪162.7286‬‬

‫‪45.77916‬‬

‫‪174.703‬‬

‫‪45.30586‬‬

‫‪103.5325‬‬
‫‪210.686‬‬

‫‪47.44823‬‬
‫‪44.99924‬‬

‫‪124.6758‬‬
‫‪222.8065‬‬

‫‪46.95365‬‬

‫‪126.7652‬‬

‫‪46.36413‬‬

‫‪154.7988‬‬

‫‪168.5829‬‬

‫‪49.24362‬‬
‫‪45.73854‬‬

‫‪82.60776‬‬
‫‪184.4338‬‬

‫‪48.2523‬‬
‫‪45.2325‬‬

‫‪111.9319‬‬
‫‪207.7447‬‬

‫‪103.554‬‬

‫‪47.576‬‬

‫‪113.6751‬‬

‫‪46.67706‬‬

‫‪145.9769‬‬

‫‪46.1672‬‬

‫‪69.03789‬‬
‫‪151.373‬‬

‫‪50.05807‬‬
‫‪45.98758‬‬

‫‪75.65556‬‬
‫‪171.9809‬‬

‫‪48.64286‬‬
‫‪45.37246‬‬

‫‪106.6212‬‬
‫‪199.6965‬‬

‫‪48.17234‬‬

‫‪95.02993‬‬

‫‪47.89501‬‬

‫‪107.7981‬‬

‫‪46.85157‬‬

‫‪141.4587‬‬

‫‪50.82282‬‬

‫‪64.47786‬‬

‫‪50.44085‬‬

‫‪72.63958‬‬

‫‪48.85007‬‬

‫‪103.9587‬‬

‫‪Z3,4‬‬

‫‪Z3‬‬
‫‪= Zn-2‬‬

‫‪Z2,3‬‬
‫‪= Zn-2,n-1‬‬

‫‪Z2‬‬
‫‪= Zn-1‬‬

‫‪25°‬‬
‫‪30°‬‬

‫‪3‬‬

‫‪35°‬‬
‫‪25°‬‬
‫‪30°‬‬

‫‪4‬‬

‫‪35°‬‬
‫‪25°‬‬
‫‪30°‬‬

‫‪5‬‬

‫‪35°‬‬
‫‪25°‬‬
‫‪30°‬‬

‫‪6‬‬

‫‪35°‬‬

‫ﺟﺪول )‪ : (٨ – ٧‬ﻗﻴﻢ اﻟﻤﻌﺎوﻗﺎت اﻟﻤﻤﻴﺰﻩ ﻟﻠﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ ﺑﺪﻻﻟﺔ )‪ (θc‬ﻟﻔﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﺮﺗﻔﻌﻪ ﻣﻦ ﻧﻮع‬
‫ﺗﺸﻴﺒﻰ ﺗﺸﻴﻒ )‪ (Chebyshev‬ﻋﻨﺪﻣﺎ ﻳﻜﻮن ﻣﻘﺪار اﻟﺘﻤﻮﺟﺎت ﻓﻰ اﻟﺤﻴﺰ اﻟﻤﻔﻴﺪ ﻟﻠﻔﻠﺘﺮ )‪.(0.1 dB‬‬

‫و ﺑﺪﻻﻟ ﺔ اﻟﻘ ﻴﻢ اﻟﻤﻌﻄ ﺎﻩ ﻓ ﻰ ﺟ ﺪول )‪ (٨ – ٧‬ﻳﻤﻜ ﻦ اﺳ ﺘﺨﺪام ﻃ ﺮق )‪(interpolation and extrapolation‬‬
‫اﻟﺮﻳﺎﺿ ﻴﻪ ﻟﺤﺴ ﺎب ﻗ ﻴﻢ اﻟﻤﻌﺎوﻗ ﺎت اﻟﻤﻤﻴ ﺰﻩ ﻟﻠﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ ﺑﺎﻟﻔﻠﺘ ﺮ ﻋ ﻨﺪ ﻗ ﻴﻢ أﺧﺮى ﻟﻠﻄﻮل اﻟﻜﻬﺮﺑﻰ )‪ (θc‬ﻏﻴﺮ‬
‫ﻣﻮﺟﻮدﻩ ﺑﺎﻟﺠﺪول‪.‬‬

‫‪357‬‬

‫ﻣ ﺜﺎل )‪ : (١٢ – ٧‬ﻣﻄﻠ ﻮب ﺗﺼ ﻤﻴﻢ ﻓﻠﺘ ﺮ ﻣ ﺮور اﻟﺘ ﺮددات اﻟﻤ ﺮﺗﻔﻌﻪ ﺑﺎﺳ ﺘﺨﺪام اﻟﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﺪﻗ ﻴﻘﻪ ﻣﻦ ﻧﻮع‬
‫ﺗﺸ ﻴﺒﻰ ﺗﺸ ﻴﻒ )‪ (Chebyshev‬ﻋ ﻨﺪ ﺗ ﺮدد ﻗﻄﻊ )‪ (fc = 1.5 GHz‬و رﺗﺒﺔ اﻟﻔﻠﺘﺮ )‪ (n = 3‬و ﻣﻘﺪار اﻟﺘﻤﻮﺟﺎت ﻓﻰ‬
‫اﻟﺤﻴﺰ اﻟﻤﻔﻴﺪ ﻟﻠﻔﻠﺘﺮ ﺑﺎﻟﺪﻳﺴﻴﺒﻞ )‪ (0.1 dB‬ﻣﻊ اﻋﺘﺒﺎر اﻟﻤﻘﺎوﻣﻪ )أو اﻟﻤﻌﺎوﻗﻪ( ﻋﻨﺪ ﻃﺮﻓﻰ اﻟﻔﻠﺘﺮ ﺗﺴﺎوى )‪.(50 Ω‬‬
‫اﻟﺤﻞ ‪:‬‬
‫‪o‬‬

‫اﻟﺨﻄ ﻮﻩ اﻷوﻟﻰ ‪ :‬ﺗﻢ اﺧﺘﻴﺎر ) ‪ (θc = 35‬و ﺑﺎﻟﺘﻌﻮﻳﺾ ﻓﻰ اﻟﻤﻌﺎدﻟﻪ )‪ (7.128‬ﻧﺠﺪ أن ﺣﻴﺰ اﻟﻤﺮور ﻟﻠﻔﻠﺘﺮ ﻳﺒﺪأ ﻣﻦ‬
‫ﺗﺮدد اﻟﻘﻄﻊ )‪ (fc = 1.5 GHz‬ﺣﺘﻰ ﺗﺮدد )‪.(f = 6.2143 GHz‬‬
‫⎞ ‪⎛ 180‬‬
‫⎜ = ‪6.2143‬‬
‫‪− 1⎟ 1.5‬‬
‫⎠‬
‫‪⎝ 35‬‬
‫ﺗﻢ ﺗﺤﺪﻳﺪ اﻟﻤﻌﺎوﻗﺎت اﻟﻤﻤﻴﺰﻩ ﻟﻠﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ ﺑﺎﻟﻔﻠﺘﺮ ﻣﻦ اﻟﻤﻌﻄﺎﻩ ﻓﻰ ﺟﺪول )‪ (٨ – ٧‬ﻋﻨﺪ رﺗﺒﺔ اﻟﻔﻠﺘﺮ )‪(n = 3‬‬
‫‪o‬‬

‫و ) ‪ (θc = 35‬و أﺻﺒﺤﺖ ﺑﻴﺎﻧﺎت اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ ﺑﺎﻟﻔﻠﺘﺮ آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫‪ - ١‬ﺧ ﻂ ﺷ ﺮﻳﻄﻰ ﻣﺘﺼ ﻞ ﻋﻠﻰ اﻟﺘﻮازى و ﻣﻨﺘﻬﻰ ﻧﻬﺎﻳﻪ ﻣﻐﻠﻘﻪ و ﻟﻪ ﻣﻌﺎوﻗﻪ ﻣﻤﻴﺰﻩ )‪ (Z1 = 124.6758 Ω‬و ﻃﻮﻟﻪ‬
‫‪o‬‬

‫اﻟﻜﻬﺮﺑﻰ ) ‪.(θc = 35‬‬
‫‪ - ٢‬ﺧﻂ ﺷﺮﻳﻄﻰ ﻣﺘﺼﻞ ﻋﻠﻰ اﻟﺘﻮاﻟﻰ و ﻟﻪ ﻣﻌﺎوﻗﻪ ﻣﻤﻴﺰﻩ )‪ (Z1,2 = 47.44823 Ω‬و ﻃﻮﻟﻪ اﻟﻜﻬﺮﺑﻰ‬
‫‪o‬‬

‫) ‪.(2θc = 70‬‬
‫‪ - ٣‬ﺧ ﻂ ﺷ ﺮﻳﻄﻰ ﻣﺘﺼ ﻞ ﻋﻠﻰ اﻟﺘﻮازى و ﻣﻨﺘﻬﻰ ﻧﻬﺎﻳﻪ ﻣﻐﻠﻘﻪ و ﻟﻪ ﻣﻌﺎوﻗﻪ ﻣﻤﻴﺰﻩ )‪ (Z2 = 103.5325 Ω‬و ﻃﻮﻟﻪ‬
‫‪o‬‬

‫اﻟﻜﻬﺮﺑﻰ ) ‪.(θc = 35‬‬
‫‪ - ٤‬ﺧﻂ ﺷﺮﻳﻄﻰ ﻣﺘﺼﻞ ﻋﻠﻰ اﻟﺘﻮاﻟﻰ و ﻟﻪ ﻣﻌﺎوﻗﻪ ﻣﻤﻴﺰﻩ )‪ (Z2,3 = 47.44823 Ω‬و ﻃﻮﻟﻪ اﻟﻜﻬﺮﺑﻰ‬
‫‪o‬‬

‫) ‪.(2θc = 70‬‬
‫‪ - ٥‬ﺧ ﻂ ﺷ ﺮﻳﻄﻰ ﻣﺘﺼ ﻞ ﻋﻠﻰ اﻟﺘﻮازى و ﻣﻨﺘﻬﻰ ﻧﻬﺎﻳﻪ ﻣﻐﻠﻘﻪ و ﻟﻪ ﻣﻌﺎوﻗﻪ ﻣﻤﻴﺰﻩ )‪ (Z3 = 124.6758 Ω‬و ﻃﻮﻟﻪ‬
‫‪o‬‬

‫اﻟﻜﻬﺮﺑﻰ ) ‪.(θc = 35‬‬
‫أﻧﻈﺮ اﻟﻰ ﺷﻜﻞ )‪ (٩٣ – ٧‬ﻟﻤﻌﺮﻓﺔ آﻴﻒ ﺳﻴﻜﻮن ﻣﻜﺎن هﺬﻩ اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ ﺑﻤﺨﻄﻂ اﻟﻔﻠﺘﺮ‪.‬‬
‫اﻟﺨﻄﻮﻩ اﻟﺜﺎﻧﻴﻪ ‪:‬‬

‫ﺗﻢ اﺧﺘﻴﺎر اﻟﺸﺮﻳﺤﻪ اﻟﺸﺮﻳﻄﻴﻪ ﺑﺎﻟﻤﻮاﺻﻔﺎت اﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫ﺛﺎﺑﺖ اﻟﻌﺰل )‪ ( εr =2.2‬و ﺳﻤﻚ اﻟﻌﺎزل )‪ (h = 1.575 mm‬و ﺳﻤﻚ اﻟﻤﻮﺻﻞ )‪. (t = 0.05 mm‬‬
‫ﺗﻢ ﺣﺴﺎب ﻃﻮل )‪ (L‬و ﻋﺮض )‪ (W‬آﻞ ﺧﻂ ﺷﺮﻳﻄﻰ ﻋﻨﺪ ﺗﺮدد اﻟﻘﻄﻊ )‪ (fc = 1.5 GHz‬آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫]‪L3 [mm‬‬
‫‪14.853‬‬

‫]‪L2,3 [mm‬‬
‫‪28.266‬‬

‫]‪L2 [mm‬‬
‫‪14.71‬‬

‫]‪L1,2 [mm‬‬
‫‪28.266‬‬

‫]‪L1 [mm‬‬
‫‪14.853‬‬

‫]‪W3 [mm‬‬
‫‪0.752‬‬

‫‪W2,3‬‬
‫‪5.18‬‬

‫]‪W2 [mm‬‬
‫‪1.23‬‬

‫‪W1,2‬‬
‫‪5.18‬‬

‫]‪W1 [mm‬‬
‫‪0.752‬‬

‫]‪[mm‬‬

‫]‪[mm‬‬

‫ﺗ ﻢ اﺿ ﺎﻓﺔ ﺧﻄ ﻴﻦ ﺷ ﺮﻳﻄﻴﻴﻦ ﻟﻜ ﻞ ﻣﻨﻬﻤﺎ ﻣﻌﺎوﻗﻪ ﻣﻤﻴﺰﻩ )‪ (Zo = 50 Ω‬ﻋﻨﺪ ﻣﺪﺧﻠﻰ اﻟﻔﻠﺘﺮ و آﺎن ﻋﺮض آﻞ ﻣﻨﻬﻤﺎ‬
‫ﻳﺴﺎوى )‪ (Wo= 4.78 mm‬و ﺗﻢ اﺧﺘﻴﺎر اﻟﻄﻮل اﻟﻤﺒﺪﺋﻰ ﻟﻜﻞ ﻣﻨﻬﻤﺎ ﻳﺴﺎوى )‪.(Lo= 20 mm‬‬

‫‪358‬‬

‫اﻟﺨﻄ ﻮﻩ اﻟﺜﺎﻟ ﺜﻪ ‪ :‬ﺗ ﻢ ﺗﺤﻠ ﻴﻞ اﻟﺪاﺋ ﺮﻩ ﺑﺎﺳ ﺘﺨﺪام أﺣ ﺪ ﺑﺮاﻣﺞ ﺗﺤﻠﻴﻞ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ ﺑﺎﻷﺑﻌﺎد اﻟﻤﺒﺪﺋﻴﻪ اﻟﻤﻌﻄﺎﻩ أﻋﻼﻩ‬
‫ﻣﻊ ادراج اﻟﻼاﺳﺘﻤﺮارﻳﺎت ﻓﻰ اﻟﺘﺤﻠﻴﻞ‪ .‬و آﺎﻧﺖ ﻧﺘﻴﺠﺔ اﻟﺘﺤﻠﻴﻞ ﺑﺎﻷﺑﻌﺎد اﻟﻤﺒﺪﺋﻴﻪ آﻤﺎ ﻳﺒﻴﻦ ﺷﻜﻞ )‪.(٩٤ – ٧‬‬

‫ﺷﻜﻞ )‪ : (٩٤ – ٧‬ﻧﺘﻴﺠﺔ اﻟﺘﺤﻠﻴﻞ ﺑﺎﻷﺑﻌﺎد اﻟﻤﺒﺪﺋﻴﻪ ﻟﻠﻔﻠﺘﺮ ﻓﻰ ﻣﺜﺎل )‪(١٢ – ٧‬‬

‫ﺗ ﻢ ﻋﻤ ﻞ اﻟ ﺒﺤﺚ ﻋ ﻦ اﻟﺤ ﻞ اﻷﻣ ﺜﻞ )‪ (Optimization‬ﺑﺘﻐﻴﻴ ﺮ اﻷﺑﻌ ﺎد ﻟﺘﺤﺴ ﻴﻦ اﻷداء أى ﺗﺤﺴ ﻴﻦ ﻗ ﻴﻢ )‪ (|S21|dB‬و‬
‫)‪ (|S11|dB‬ﺑﺎﺳﺘﺨﺪام ﺑﺮﻧﺎﻣﺞ ﺗﺤﻠﻴﻞ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ و آﺎﻧﺖ اﻷﺑﻌﺎد اﻟﻨﻬﺎﺋﻴﻪ ﺑﺎﻟﻤﻠﻠﻴﻤﺘﺮ آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫]‪L3 [mm‬‬
‫‪14.04‬‬

‫]‪L2,3 [mm‬‬
‫‪24.96‬‬

‫]‪L2 [mm‬‬
‫‪13.77‬‬

‫]‪L1,2 [mm‬‬
‫‪24.86‬‬

‫]‪L1 [mm‬‬
‫‪14.01‬‬

‫]‪W3 [mm‬‬
‫‪2.21‬‬

‫‪W2,3‬‬
‫‪4.94‬‬

‫]‪W2 [mm‬‬
‫‪3.29‬‬

‫‪W1,2‬‬
‫‪4.99‬‬

‫]‪W1 [mm‬‬
‫‪2.25‬‬

‫]‪[mm‬‬

‫]‪[mm‬‬

‫و آ ﺎن ﻋ ﺮض آ ﻞ ﻣ ﻦ اﻟﺨﻄ ﻴﻦ اﻟﺸ ﺮﻳﻄﻴﻴﻦ ﻋ ﻨﺪ ﻣﺪﺧﻠ ﻰ اﻟﻔﻠﺘ ﺮ ﻳﺴ ﺎوى )‪ (Wo= 4.8 mm‬و اﻟﻄ ﻮل ﻳﺴ ﺎوى‬
‫)‪.(Lo= 25 mm‬‬
‫و ﻳﺒﻴﻦ ﺷﻜﻞ )‪ (٩٥ – ٧‬ﻣﺨﻄﻂ اﻟﻔﻠﺘﺮ و ﻳﺒﻴﻦ ﺷﻜﻞ )‪ (٩٦ – ٧‬ﻧﺘﻴﺠﺔ اﻟﺘﺤﻠﻴﻞ ﺑﺎﻷﺑﻌﺎد اﻟﻨﻬﺎﺋﻴﻪ ﻟﻠﻔﻠﺘﺮ‪.‬‬

‫ﺷﻜﻞ )‪ : (٩٥ – ٧‬ﻣﺨﻄﻂ اﻟﻔﻠﺘﺮ ﻓﻰ ﻣﺜﺎل )‪(١٢ – ٧‬‬

‫‪359‬‬

‫ﺷﻜﻞ )‪ : (٩٦ – ٧‬ﻧﺘﻴﺠﺔ اﻟﺘﺤﻠﻴﻞ ﺑﺎﻷﺑﻌﺎد اﻟﻨﻬﺎﺋﻴﻪ ﻟﻠﻔﻠﺘﺮ ﻓﻰ ﻣﺜﺎل )‪(١٢ – ٧‬‬

‫)ﻤﻘﻁﻊ ‪ (١٤ - ٧‬ﻓﻠﺘﺭ ﺍﻴﻘﺎﻑ ﺤﻴﺯ ﺘﺭﺩﺩﻯ ﻤﻌﻴﻥ ﻤﻥ ﻨﻭﻉ ﺍﻟﺤﻠﻘﻪ ‪:‬‬

‫اﻟﻤ ﺮﺟﻊ )‪ (23‬ﻳﺸ ﺮح اﻟﻌﺪﻳ ﺪ ﻣ ﻦ أﻧﻮاع اﻟﻔﻼﺗﺮ ﻣﻦ ﻧﻮع اﻟﺤﻠﻘﻪ و ﻣﻦ ﺿﻤﻨﻬﺎ ﻓﻠﺘﺮ اﻳﻘﺎف ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ ﻣﻦ ﻧﻮع‬
‫اﻟﺤﻠﻘﻪ )‪ (Ring Bandstop Filter‬اﻟﻤﻮﺿﺢ ﻓﻰ ﺷﻜﻞ )‪.(٩٧ – ٧‬‬

‫ﺷﻜﻞ )‪ : (٩٧ – ٧‬ﻓﻠﺘﺮ اﻳﻘﺎف ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ ﻣﻦ ﻧﻮع اﻟﺤﻠﻘﻪ‪.‬‬

‫‪360‬‬

‫اﻟﻤﻌﺎوﻗﺔ اﻟﻤﻤﻴﺰﻩ ﻟﺠﻤﻴﻊ اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ ﺑﺎﻟﻔﻠﺘﺮ ﺗﺴﺎوى )‪.(Zo = 50 Ω‬‬
‫ﻳﻤﻜ ﻦ ﺗﻨﻔ ﻴﺬ اﻟﺤﻠﻘ ﻪ ﻓ ﻰ ﺷ ﻜﻞ ﻣﻀ ﻠﻊ أو ﻣﺴ ﺘﺪﻳﺮ و ﻃ ﻮل ﻣﺤ ﻴﻂ اﻟﺤﻠﻘ ﻪ ﻳﺴ ﺎوى )‪ (n λg‬أى أﺣ ﺪ ﻣﻀ ﺎﻋﻔﺎت ﻃ ﻮل‬
‫ﺟﻪ ﻟﻠﺨﻂ اﻟﺸﺮﻳﻄﻰ ﻟﻠﺤﻠﻘﻪ )‪.(n= 1 , 2 , ...‬‬
‫اﻟﻤﻮﺟﻪ اﻟﻤﻮ ّ‬
‫‪o‬‬

‫اﻟﻤﺴ ﺎﻓﻪ ﺑ ﻴﻦ اﻟﺨﻄ ﻴﻦ اﻟﺸ ﺮﻳﻄﻴﻴﻦ ﻋ ﻨﺪ ﻣﺪﺧﻠ ﻰ اﻟﻔﻠﺘ ﺮ ﺗﻜﺎﻓﺊ )‪ (π/2 ≡ 90 ≡ λg/4‬أو أﺣﺪ ﻣﻀﺎﻋﻔﺎﺗﻬﺎ اﻟﻔﺮدﻳﻪ‪ .‬و‬
‫ﻳﺘﻢ ﺣﺴﺎب ﺟﻤﻴﻊ اﻷﺑﻌﺎد ﻋﻨﺪ ﺗﺮدد اﻟﻤﻨﺘﺼﻒ ﻟﻠﻔﻠﺘﺮ‪.‬‬
‫ه ﺬا اﻟﻔﻠﺘ ﺮ ﺑﺎﻷﺑﻌ ﺎد اﻟﻤﺒﺪﺋ ﻴﻪ اﻟﻤﺬآ ﻮرﻩ أﻋ ﻼﻩ ﻳﺤﻘ ﻖ ﺣﻴ ﺰ ﺗ ﺮددى ﻧﺴ ﺒﻰ ﺿ ﻴﻖ ‪ ،‬و ﻟﻜ ﻦ ﻳﻤﻜ ﻦ ﺗﺤﻘ ﻴﻖ ﺣﻴﺰ ﺗﺮددى‬
‫ﻧﺴ ﺒﻰ ﻳﺼ ﻞ اﻟ ﻰ )‪ (0.6‬ﺑﻌﻤ ﻞ اﻟ ﺒﺤﺚ ﻋ ﻦ اﻟﺤ ﻞ اﻷﻣ ﺜﻞ )‪ (Optimization‬ﺑﺘﻐﻴﻴﺮ اﻷﺑﻌﺎد اﻟﻤﺒﺪﺋﻴﻪ ﻟﻠﺤﺼﻮل ﻋﻠﻰ‬
‫اﻷداء اﻟﻤﻄﻠﻮب‪.‬‬
‫اﻟﻤﺮﺟﻊ )‪ (23‬ﻳﺸﺮح ﻧﻈﺮﻳﺔ ﺗﺼﻤﻴﻢ و ﺗﺤﻠﻴﻞ هﺬا اﻟﻔﻠﺘﺮ و ﻳﻌﻄﻰ داﺋﺮﻩ ﻣﻜﺎﻓﺌﻪ ﻟﻪ‪.‬‬
‫ﻣ ﺜﺎل )‪ : (١٣ – ٧‬ﻣﻄﻠ ﻮب ﺗﺼﻤﻴﻢ ﻓﻠﺘﺮ اﻳﻘﺎف ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ ﻣﻦ ﻧﻮع اﻟﺤﻠﻘﻪ )‪ (Ring BSF‬ﻣﺜﻞ اﻟﻤﻮﺿﺢ ﻓﻰ‬
‫ﺷ ﻜﻞ )‪ (٩٧ – ٧‬ﻋ ﻨﺪ ﺗ ﺮدد ﻣﻨﺘﺼ ﻒ )‪ (fo = 2 GHz‬ﺑﺤﻴ ﺰ ﺗ ﺮددى ﻧﺴﺒﻰ )‪ (0.6‬أى أن ﺣﻴﺰ اﻻﻳﻘﺎف اﻟﺬى ﻳﻜﻮن‬
‫ﻓ ﻴﻪ )‪ (|S21|dB ≤ − 3 dB‬ﻳ ﺒﺪأ ﻣ ﻦ )‪ (1.4 GHz‬و ﻳﻨﺘﻬ ﻰ ﻋ ﻨﺪ )‪ (2.6 GHz‬ﻣ ﻊ اﻋﺘ ﺒﺎر اﻟﻤﻌﺎوﻗ ﻪ ﻋ ﻨﺪ ﻃﺮﻓﻰ‬
‫اﻟﻔﻠﺘﺮ ﺗﺴﺎوى )‪.(50 Ω‬‬
‫اﻟﺤﻞ ‪:‬‬
‫ﺗﻢ اﺧﺘﻴﺎر اﻟﺸﺮﻳﺤﻪ اﻟﺸﺮﻳﻄﻴﻪ ﺑﺎﻟﻤﻮاﺻﻔﺎت اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫ﺛﺎﺑﺖ اﻟﻌﺰل )‪ ( εr =2.2‬و ﺳﻤﻚ اﻟﻌﺎزل )‪ (h = 1.575 mm‬و ﺳﻤﻚ اﻟﻤﻮﺻﻞ )‪. (t = 0.05 mm‬‬
‫ﺗﻢ اﺧﺘﻴﺎر ﻃﻮل ﻣﺤﻴﻂ اﻟﺤﻠﻘﻪ ﻟﻴﻜﺎﻓﺊ )‪.(λg‬‬
‫ﺗ ﻢ ﺣﺴ ﺎب ﻋﺮض ﺟﻤﻴﻊ اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ ﺑﺎﻟﻔﻠﺘﺮ )‪ (4.79 mm‬و ﻃﻮل اﻟﺤﻠﻘﻪ ﻳﺴﺎوى )‪ (109.22 mm‬و ﻃﻮل‬
‫‪o‬‬

‫اﻟﻤﺴ ﺎﻓﻪ ﺑ ﻴﻦ اﻟﺨﻄ ﻴﻦ اﻟﺸ ﺮﻳﻄﻴﻴﻦ ﻋ ﻨﺪ ﻣﺪﺧﻠ ﻰ اﻟﻔﻠﺘ ﺮ اﻟﺘ ﻰ ﺗﻜﺎﻓ ﺊ )‪ (90 ≡ λg/4‬ﻳﺴ ﺎوى )‪ (27.31 mm‬و ه ﻮ‬
‫ﻳﺴﺎوى ﻃﻮل ﺿﻠﻊ اﻟﺤﻠﻘﻪ‪.‬‬
‫ﺗ ﻢ ﺗﺤﻠ ﻴﻞ اﻟﺪاﺋ ﺮﻩ ﺑﺎﺳ ﺘﺨﺪام أﺣ ﺪ ﺑ ﺮاﻣﺞ ﺗﺤﻠ ﻴﻞ دواﺋ ﺮ اﻟﻤﻴﻜ ﺮووﻳﻒ ﺑﺎﻷﺑﻌ ﺎد اﻟﻤﺒﺪﺋ ﻴﻪ اﻟﻤﻌﻄ ﺎﻩ أﻋ ﻼﻩ ﻣ ﻊ ادراج‬
‫اﻟﻼاﺳﺘﻤﺮارﻳﺎت ﻓﻰ اﻟﺘﺤﻠﻴﻞ‪.‬‬
‫ﺗ ﻢ ﻋﻤﻞ اﻟﺒﺤﺚ ﻋﻦ اﻟﺤﻞ اﻷﻣﺜﻞ )‪ (Optimization‬ﺑﺎﺳﺘﺨﺪام ﺑﺮﻧﺎﻣﺞ ﺗﺤﻠﻴﻞ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ ﺑﺘﻐﻴﻴﺮ اﻷﺑﻌﺎد ﻣﻊ‬
‫اﻟﺴﻤﺎح ﺑﺄن ﻳﻜﻮن ﻋﺮض اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﻤﻜﻮن ﻟﻠﺤﻠﻘﻪ ﻣﺨﺘﻠﻒ ﻋﻦ ﻋﺮض اﻟﺨﻄﻴﻦ اﻟﺸﺮﻳﻄﻴﻴﻦ ﻋﻨﺪ ﻣﺪﺧﻠﻰ اﻟﻔﻠﺘﺮ‬
‫ﻟﺘﺤﻘﻴﻖ )‪ (|S21|dB ≤ − 3 dB‬ﻣﻦ )‪ (1.4 GHz‬اﻟﻰ )‪ (2.6 GHz‬و آﺎﻧﺖ اﻷﺑﻌﺎد اﻟﻨﻬﺎﺋﻴﻪ آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫ﻋ ﺮض اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﻤﻜ ﻮن ﻟﻠﺤﻠﻘ ﻪ ﻳﺴ ﺎوى )‪ (1 mm‬و ﻃ ﻮل اﻟﺤﻠﻘ ﻪ ﻳﺴ ﺎوى )‪ (116.23 mm‬أى أن ﻃ ﻮل‬
‫ﺿﻠﻊ اﻟﺤﻠﻘﻪ ﻳﺴﺎوى )‪.(29.01 mm‬‬
‫ﻋﺮض اﻟﺨﻄﻴﻦ اﻟﺸﺮﻳﻄﻴﻴﻦ ﻋﻨﺪ ﻣﺪﺧﻠﻰ اﻟﻔﻠﺘﺮ )‪ (Wo = 4.899 mm‬و ﻃﻮل آﻞ ﻣﻨﻬﻤﺎ ﻳﺴﺎوى )‪. (28.52 mm‬‬
‫و ﻳﻮﺿﺢ ﺷﻜﻞ )‪ (٩٨ – ٧‬ﻧﺘﻴﺠﺔ اﻟﺘﺤﻠﻴﻞ ﺑﺎﻷﺑﻌﺎد اﻟﻨﻬﺎﺋﻴﻪ ﻟﻠﻔﻠﺘﺮ‪.‬‬

‫‪361‬‬

‫ﺷﻜﻞ )‪ : (٩٨ – ٧‬ﻧﺘﻴﺠﺔ اﻟﺘﺤﻠﻴﻞ ﺑﺎﻷﺑﻌﺎد اﻟﻨﻬﺎﺋﻴﻪ ﻟﻠﻔﻠﺘﺮ ﻓﻰ ﻣﺜﺎل )‪(١٣ – ٧‬‬

‫)ﻤﻘﻁﻊ ‪ (١٥ - ٧‬ﻓﻠﺘﺭ ﺍﻴﻘﺎﻑ ﺤﻴﺯ ﺘﺭﺩﺩﻯ ﻤﻌﻴﻥ ﺒﺎﺴﺘﺨﺩﺍﻡ ﻋﻨﺎﺼﺭ ﺍﻟﺭﻨﻴﻥ ﺍﻟﻤﻘﺭﻭﻨﻪ ‪:‬‬

‫ه ﻨﺎك أﺷ ﻜﺎل ﻋﺪﻳ ﺪﻩ ﻟﻔﻠﺘ ﺮ اﻳﻘ ﺎف ﺣﻴ ﺰ ﺗ ﺮددى ﻣﻌ ﻴﻦ ﺑﺎﺳ ﺘﺨﺪام ﻋﻨﺎﺻ ﺮ اﻟ ﺮﻧﻴﻦ اﻟﻤﻘ ﺮوﻧﻪ ‪ ،‬ﺣ ﻴﺚ ﻳﻤﻜ ﻦ اﺳ ﺘﺨﺪام‬
‫ﻋﻨﺎﺻ ﺮ رﻧ ﻴﻦ ﺑﺄﺷ ﻜﺎل ﻣﺨ ﺘﻠﻔﻪ ﻗﺪ ﺗﻜﻮن ﻋﻠﻰ ﺷﻜﻞ ﺣﺮف )‪ (U‬أو ﻋﻠﻰ ﺷﻜﻞ ﺣﻠﻘﻪ )‪ (Ring Resonator‬أو ﻋﻠﻰ‬
‫ﺷﻜﻞ ﺣﺮف )‪ (L‬و ﻏﻴﺮهﺎ‪.‬‬

‫ﺷﻜﻞ )‪ : (٩٩ – ٧‬ﺷﻜﻠﻴﻦ ﻣﺨﺘﻠﻔﻴﻦ ﻟﻔﻠﺘﺮ اﻳﻘﺎف ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ ﺑﺎﺳﺘﺨﺪام ﻋﻨﺎﺻﺮ اﻟﺮﻧﻴﻦ اﻟﻤﻘﺮوﻧﻪ‬

‫‪362‬‬

‫ﺷﻜﻞ )‪ : (١٠٠ – ٧‬ﻓﻠﺘﺮ اﻳﻘﺎف ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ ﺑﺎﺳﺘﺨﺪام ﻋﻨﺎﺻﺮ اﻟﺮﻧﻴﻦ اﻟﻤﻘﺮوﻧﻪ ﻋﻠﻰ ﺷﻜﻞ ﺣﺮف )‪(L‬‬

‫ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (١٠٠ – ٧‬ﻓﻠﺘ ﺮ اﻳﻘ ﺎف ﺣﻴ ﺰ ﺗ ﺮددى ﻣﻌ ﻴﻦ ﺑ ﺮﺗﺒﺔ )‪ (n‬ﺑﺎﺳ ﺘﺨﺪام ﻋﻨﺎﺻ ﺮ اﻟﺮﻧﻴﻦ اﻟﻤﻘﺮوﻧﻪ ﻋﻠﻰ ﺷﻜﻞ‬
‫ﺣ ﺮف )‪ .(L‬و ﻳﻌﻄ ﻰ اﻟﻤ ﺮﺟﻊ )‪ (1‬ﺷ ﺮح ﻧﻈ ﺮﻳﺔ و ﺗﺼ ﻤﻴﻢ ه ﺬا اﻟ ﻨﻮع ﻣ ﻦ اﻟﻔﻠﺘ ﺮ ﻣ ﻊ ﻣﻌ ﺎدﻻت اﻟﺘﺼ ﻤﻴﻢ و ﻣ ﺜﺎل‬
‫ﻟﺘﺼﻤﻴﻢ ﻓﻠﺘﺮ ﺑﺮﺗﺒﺔ )‪.(n = 5‬‬
‫‪o‬‬

‫ﺟﻤﻴﻊ اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ ﺑﻌﻨﺎﺻﺮ اﻟﺮﻧﻴﻦ اﻟﻤﻘﺮوﻧﻪ ﻋﻠﻰ ﺷﻜﻞ ﺣﺮف )‪ (L‬ﻃﻮﻟﻬﺎ ﻳﻜﺎﻓﺊ )‪.(90 ≡ λg/4‬‬
‫هﺬا اﻟﻨﻮع ﻣﻦ اﻟﻔﻠﺘﺮ ﻳﺘﻤﻴﺰ ﺑﺤﻴﺰ ﺗﺮددى ﻧﺴﺒﻰ ﺿﻴﻖ‪.‬‬
‫و ﻳﻤﻜ ﻦ ﺗﻠﺨ ﻴﺺ ﻃﺮﻳﻘﺔ ﺗﺼﻤﻴﻢ ﻓﻠﺘﺮ اﻳﻘﺎف ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ ﺑﺎﺳﺘﺨﺪام ﻋﻨﺎﺻﺮ اﻟﺮﻧﻴﻦ اﻟﻤﻘﺮوﻧﻪ ﻋﻠﻰ ﺷﻜﻞ ﺣﺮف‬
‫)‪ (L‬آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫اﻟﺨﻄ ﻮﻩ اﻷوﻟ ﻰ ‪ :‬ه ﻰ ﺣﺴ ﺎب أو ﺗﺤﺪﻳ ﺪ ﻗ ﻴﻢ اﻟﻤﻜ ﻮﻧﺎت اﻟﻤﺘﻄ ﺒﻌﻪ )‪ (gi‬ﺑﺎﻟﻨﺴ ﺒﻪ ﻟﻔﻠﺘ ﺮ ﻣ ﺮور اﻟﺘ ﺮددات اﻟﻤﻨﺨﻔﻀ ﻪ‬
‫ﺑﺎﻟﻤﻜ ﻮﻧﺎت اﻟﻌﻴﻨ ﻴﻪ ﺣﺴ ﺐ رﺗ ﺒﺔ اﻟﻔﻠﺘ ﺮ )‪ (n‬و ﻧ ﻮع ﺗﻘ ﺮﻳﺐ اﻟﻔﻠﺘ ﺮ اﻟﻤﻄﻠ ﻮب ) ﻣ ﺜﻞ ﺑﺘ ﺮوورث و ﺗﺸ ﻴﺒﻰ ﺗﺸ ﻴﻒ و‬
‫ﻏﻴﺮهﺎ(‪ .‬و ﻳﺘﻢ ﺣﺴﺎب ﻣﺘﻐﻴﺮات اﻟﺘﺼﻤﻴﻢ ﺑﺎﻟﻤﻌﺎدﻟﺘﻴﻦ اﻟﺘﺎﻟﻴﺘﻴﻦ ‪:‬‬
‫‪2‬‬

‫⎞‬
‫‪1‬‬
‫= ⎟⎟‬
‫‪g o g n +1‬‬
‫⎠‬

‫)‪(7.129‬‬

‫‪2‬‬

‫)‪(7.130‬‬

‫⎞‬
‫‪go‬‬
‫⎟⎟‬
‫‪⎠ g i BW‬‬

‫‪⎛ ZU‬‬
‫⎜⎜‬
‫‪⎝ Zo‬‬

‫‪⎛Z‬‬
‫‪xi = Zo ⎜⎜ U‬‬
‫‪⎝ Zo‬‬

‫ﺣ ﻴﺚ )‪ (ZU‬ه ﻰ ﻗﻴﻤﺔ ﻗﺎﻟﺐ اﻟﻤﻌﺎوﻗﻪ اﻟﺬى ﻳﻤﺜﻠﻪ ﻋﻨﺼﺮ اﻟﺮﻧﻴﻦ ﻋﻠﻰ ﺷﻜﻞ ﺣﺮف )‪ (L‬و ﺣﻴﺚ ﻣﻴﻞ اﻟﺠﺰء اﻟﺘﺨﻴﻠﻰ‬
‫ﻣ ﻦ اﻟﻤﻌﺎوﻗ ﻪ ه ﻮ )‪ (reactance slope x‬و )‪ (BW‬ه ﻮ اﻟﺤﻴﺰ اﻟﺘﺮددى اﻟﻨﺴﺒﻰ ﻟﻠﻔﻠﺘﺮ و )‪ (Zo‬هﻰ اﻟﻤﻌﺎوﻗﻪ‬
‫ﻋﻨﺪ ﻃﺮﻓﻰ اﻟﻔﻠﺘﺮ و )‪ (go , gn+1‬هﻤﺎ اﻟﻤﻌﺎوﻗﺘﺎن اﻟﻤﺘﻄﺒﻌﺘﺎن )‪ (normalized impedances‬ﻋﻨﺪ ﻣﺪﺧﻠﻰ اﻟﻔﻠﺘﺮ‪.‬‬
‫ﻋﻨﺪﻣﺎ ﺗﻜﻮن )‪ (go = gn+1‬ﺗﺼﺒﺢ )‪.(Zo=ZU‬‬
‫اﻟﺨﻄﻮﻩ اﻟﺜﺎﻧﻴﻪ ‪ :‬ﻳﺘﻢ اﺧﺘﻴﺎر ﻣﻮاﺻﻔﺎت اﻟﺸﺮﻳﺤﻪ اﻟﺸﺮﻳﻄﻴﻪ‪.‬‬
‫اﻟﺨﻄ ﻮﻩ اﻟﺜﺎﻟ ﺜﻪ ‪ :‬ﻳ ﺘﻢ اﺧﺘ ﻴﺎر اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻤﻴ ﺰﻩ ﻟﻠﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ اﻷﻓﻘ ﻰ اﻟ ﺬى ﻳﺼ ﻞ ﺑ ﻴﻦ ﻣﺨﺮﺟ ﻰ اﻟﻔﻠﺘ ﺮ و‬
‫ﺣﺴﺎب ﻋﺮﺿﻪ و ﻗﺪ اﺧﺘﺎر اﻟﻤﺮﺟﻊ )‪ (1‬هﺬﻩ اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ ﺗﺴﺎوى )‪ (50 Ω‬ﻓﻰ ﻣﺜﺎل ﻟﻠﺘﺼﻤﻴﻢ‪.‬‬
‫‪363‬‬

‫اﻟﺨﻄ ﻮﻩ اﻟ ﺮاﺑﻌﻪ ‪ :‬ﻳ ﺘﻢ اﺧﺘ ﻴﺎر ﻋ ﺮض اﻟﺨﻄ ﻴﻦ اﻟﺸ ﺮﻳﻄﻴﻴﻦ اﻟﻤﻜﻮﻧ ﻴﻦ ﻟﻜﻞ ﻋﻨﺼﺮ رﻧﻴﻦ ﻋﻠﻰ ﺷﻜﻞ ﺣﺮف )‪ (L‬و ﻗﺪ‬
‫اﺧﺘﺎر اﻟﻤﺮﺟﻊ )‪ (1‬اﻟﻌﺮض اﻟﻤﻜﺎﻓﺊ ﻟﻤﻌﺎوﻗﻪ ﻣﻤﻴﺰﻩ ﺗﺴﺎوى )‪ (50 Ω‬ﻟﻜﻞ ﻋﻨﺎﺻﺮ اﻟﺮﻧﻴﻦ ﻓﻰ ﻣﺜﺎل اﻟﺘﺼﻤﻴﻢ‪.‬‬
‫ﻳﺘﻢ ﺣﺴﺎب ﻃﻮل اﻟﺨﻄﻴﻦ اﻟﻤﻜﻮﻧﻴﻦ ﻟﻌﻨﺼﺮ اﻟﺮﻧﻴﻦ ﻋﻠﻰ ﺷﻜﻞ ﺣﺮف )‪ (L‬ﺣﻴﺚ آﻼ ﻣﻨﻬﻤﺎ ﻟﻪ ﻃﻮل ﻳﻜﺎﻓﺊ ) ≡ ‪π/2‬‬
‫‪o‬‬

‫‪ .(90 ≡ λg/4‬و ﺟﻤﻴﻊ اﻟﺤﺴﺎﺑﺎت ﺗﺘﻢ ﻋﻨﺪ ﺗﺮدد اﻟﻤﻨﺘﺼﻒ ﻟﻠﻔﻠﺘﺮ‪.‬‬
‫اﻟﺨﻄ ﻮﻩ اﻟﺨﺎﻣﺴ ﻪ ‪ :‬ﻟﺤﺴ ﺎب اﻟﻤﺴ ﺎﻓﺎت اﻟﺒﻴﻨ ﻴﻪ ﺑ ﻴﻦ آ ﻞ ﻋﻨﺼ ﺮ رﻧ ﻴﻦ ﻋﻠﻰ ﺷﻜﻞ ﺣﺮف )‪ (L‬و ﺑﻴﻦ اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ‬
‫اﻟﺪﻗﻴﻖ اﻷﻓﻘﻰ اﻟﺬى ﻳﺼﻞ ﺑﻴﻦ ﻣﺨﺮﺟﻰ اﻟﻔﻠﺘﺮ ﻳﺘﻢ ذﻟﻚ ﻋﻠﻰ ﻣﺮﺣﻠﺘﻴﻦ ‪:‬‬
‫أوﻻ ﻳ ﺘﻢ رﺳ ﻢ ﻣﻨﺤﻨ ﻰ ﺗﻐﻴ ﺮ اﻟﻤﺴ ﺎﻓﻪ اﻟﺒﻴﻨﻴﻪ )‪ (S‬ﺑﻴﻦ آﻞ ﻋﻨﺼﺮ رﻧﻴﻦ ﻋﻠﻰ ﺷﻜﻞ ﺣﺮف )‪ (L‬و ﺑﻴﻦ اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ‬
‫اﻟﺪﻗﻴﻖ اﻷﻓﻘﻰ اﻟﺬى ﻳﺼﻞ ﺑﻴﻦ ﻣﺨﺮﺟﻰ اﻟﻔﻠﺘﺮ ﻣﻊ اﻟﻨﺴﺒﻪ )‪ (x / Zo‬اﻟﻤﻌﻄﺎﻩ ﺑﺎﻟﻤﻌﺎدﻟﻪ اﻟﺘﺎﻟﻴﻪ ‪:‬‬

‫⎞ ‪⎛ x‬‬
‫‪fo‬‬
‫= ⎟⎟ ⎜⎜‬
‫‪⎝ Z o ⎠ 2 ∆BW3dB‬‬

‫)‪(7.131‬‬

‫ﺣﻴﺚ )‪ (∆BW3dB‬هﻮ اﻟﺤﻴﺰ اﻟﺘﺮددى اﻟﺬى ﻳﻜﻮن ﻓﻴﻪ )‪.(|S21|dB ≤ − 3 dB‬‬
‫و ﻳ ﺘﻢ رﺳ ﻢ ه ﺬا اﻟﻤﻨﺤﻨ ﻰ ﻟﻠﺪاﺋ ﺮﻩ اﻟﻤﺒﻴﻨﻪ ﻓﻰ ﺷﻜﻞ )‪ (١٠١ – ٧‬ﺑﺎﺳﺘﺨﺪام أﺣﺪ ﺑﺮاﻣﺞ ﺗﺤﻠﻴﻞ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ أو‬
‫أﺣ ﺪ ﺑ ﺮاﻣﺞ اﻟﺘﺤﻠ ﻴﻞ اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴ ﻰ‪ .‬ﺣ ﻴﺚ ﺟﻤ ﻴﻊ أﺑﻌ ﺎد اﻟﺪاﺋ ﺮﻩ ﺗ ﻢ ﺣﺴ ﺎﺑﻬﺎ ﻓﻰ اﻟﺨﻄﻮات اﻟﺴﺎﺑﻘﻪ ﻣﺎ ﻋﺪا اﻟﻤﺴﺎﻓﻪ‬
‫اﻟﺒﻴﻨﻴﻪ )‪.(S‬‬
‫ﺛﺎﻧ ﻴﺎ ﺑﺎﺳ ﺘﺨﺪام ه ﺬا اﻟﻤﻨﺤﻨ ﻰ ﻳ ﺘﻢ ﺗﺤﺪﻳ ﺪ اﻟﻤﺴ ﺎﻓﻪ اﻟﺒﻴﻨ ﻴﻪ ﻟﻜ ﻞ ﻋﻨﺼ ﺮ رﻧﻴﻦ )‪ (Si‬وﻓﻘﺎ ﻟﻘﻴﻢ )‪ (xi / Zo‬اﻟﻤﺤﺴﻮﺑﻪ ﻣﻦ‬
‫اﻟﻤﻌﺎدﻟﻪ )‪.(7.130‬‬
‫اﻟﺨﻄﻮﻩ اﻟﺴﺎدﺳﻪ ‪ :‬ﻳﺘﻢ ﺗﺤﻠﻴﻞ اﻟﺪاﺋﺮﻩ ﺑﺎﺳﺘﺨﺪام أﺣﺪ ﺑﺮاﻣﺞ ﺗﺤﻠﻴﻞ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ ﺑﺎﻷﺑﻌﺎد اﻟﻤﺒﺪﺋﻴﻪ اﻟﻤﺤﺴﻮﺑﻪ ﻓﻰ‬
‫اﻟﺨﻄﻮات اﻟﺴﺎﺑﻘﻪ‪ .‬و ﻋﻤﻞ اﻟﺒﺤﺚ ﻋﻦ اﻟﺤﻞ اﻷﻣﺜﻞ )‪ (Optimization‬ﺑﺘﻐﻴﻴﺮ اﻷﺑﻌﺎد ﻟﺘﺤﺴﻴﻦ اﻷداء اذا آﺎن ﻣﺨﺘﻠﻔﺎ‬
‫ﻋﻦ اﻟﻘﻴﻢ اﻟﻤﻄﻠﻮﺑﻪ‪.‬‬

‫ﺷﻜﻞ )‪ : (١٠١ – ٧‬اﻟﺪاﺋﺮﻩ اﻟﻤﺴﺘﺨﺪﻣﻪ ﻟﺤﺴﺎب اﻟﻤﺴﺎﻓﺎت اﻟﺒﻴﻨﻴﻪ ﻟﻜﻞ ﻋﻨﺼﺮ رﻧﻴﻦ ﻋﻠﻰ ﺷﻜﻞ ﺣﺮف )‪(L‬‬

‫‪364‬‬

‫)ﻤﻘﻁﻊ ‪ (١٦ - ٧‬ﻓﻠﺘﺭ ﺍﻴﻘﺎﻑ ﺤﻴﺯ ﺘﺭﺩﺩﻯ ﻤﻌﻴﻥ ﺒﺎﺴﺘﺨﺩﺍﻡ ‪:Open Circuit Stubs‬‬

‫أﺑﺴ ﻂ ﺷ ﻜﻞ ﻟﻔﻠﺘ ﺮ اﻳﻘ ﺎف ﺣﻴ ﺰ ﺗ ﺮددى ﻣﻌ ﻴﻦ ﺑﺎﺳ ﺘﺨﺪام اﻟﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﻤﺘﺼﻠﻪ ﻋﻠﻰ اﻟﺘﻮازى و اﻟﻤﻨﺘﻬﻴﻪ ﻧﻬﺎﻳﻪ‬
‫ﻣﻔ ﺘﻮﺣﻪ ه ﻮ اﺳﺘﺨﺪام ﺧﻂ ﺷﺮﻳﻄﻰ واﺣﺪ ﻓﻘﻂ ﻣﺘﺼﻞ ﻋﻠﻰ اﻟﺘﻮازى و ﻣﻨﺘﻬﻰ ﻧﻬﺎﻳﻪ ﻣﻔﺘﻮﺣﻪ )‪(open circuit stub‬‬
‫ﻟﻪ ﻣﻌﺎوﻗﻪ ﻣﻤﻴﺰﻩ ﺗﺴﺎوى )‪ (50 Ω‬و ﻃﻮﻟﻪ ﻳﻜﺎﻓﺊ )‪ (90o‬آﻤﺎ ﻓﻰ ﺷﻜﻞ )‪. (١٠٢ – ٧‬‬
‫ﺣ ﻴﺚ اﻟﻤﻌﺎوﻗ ﻪ اﻟﻜﺒﻴ ﺮﻩ ﻋﻨﺪ اﻟﻨﻬﺎﻳﻪ اﻟﻤﻔﺘﻮﺣﻪ ﻋﻨﺪ اﻟﻨﻘﻄﻪ )‪ (A‬ﺗﺘﺤﻮل ﺑﻌﺪ ﻃﻮل ﻳﻜﺎﻓﺊ )‪ (90o‬اﻟﻰ ﻣﻌﺎوﻗﻪ ﻗﺮﻳﺒﻪ ﻣﻦ‬
‫اﻟﺼﻔﺮ أو ﺗﻮﺻﻴﻞ اﻓﺘﺮاﺿﻰ ﺑﺎﻷرض ﻋﻨﺪ اﻟﻨﻘﻄﻪ )‪ (B‬ﻳﻌﻜﺲ أو ﻳﻮﻗﻒ اﻟﻤﻮﺟﻪ اﻟﺪاﺧﻠﻪ ﻟﻠﻔﻠﺘﺮ ﻋﻨﺪ ﺗﺮدد اﻟﻤﻨﺘﺼﻒ‪.‬‬
‫ﻟﻜﻦ هﺬا اﻟﻔﻠﺘﺮ ﻳﺤﻘﻖ ﺣﻴﺰ ﺗﺮددى ﻧﺴﺒﻰ ﺿﻴﻖ‪.‬‬

‫ﺷﻜﻞ )‪ : (١٠٢ – ٧‬ﻓﻠﺘﺮ اﻳﻘﺎف ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ ﺑﺎﺳﺘﺨﺪام ﺧﻂ ﺷﺮﻳﻄﻰ واﺣﺪ ﻓﻘﻂ ﻣﺘﺼﻞ ﻋﻠﻰ اﻟﺘﻮازى و‬
‫ﻣﻨﺘﻬﻰ ﻧﻬﺎﻳﻪ ﻣﻔﺘﻮﺣﻪ‬

‫و ﻟﻠﺤﺼ ﻮل ﻋﻠ ﻰ ﺣﻴ ﺰ ﺗ ﺮددى ﻧﺴ ﺒﻰ أوﺳ ﻊ أو ﻟﻠ ﺘﺤﻜﻢ ﻓ ﻰ اﻟﺤﻴ ﺰ اﻟﺘ ﺮددى اﻟﻨﺴﺒﻰ ﻳﺠﺐ اﺳﺘﺨﺪام ﻋﺪد ﻣﻦ اﻟﺨﻄﻮط‬
‫اﻟﺸﺮﻳﻄﻴﻪ اﻟﻤﺘﺼﻠﻪ ﻋﻠﻰ اﻟﺘﻮازى و اﻟﻤﻨﺘﻬﻴﻪ ﻧﻬﺎﻳﻪ ﻣﻔﺘﻮﺣﻪ ﻓﻰ اﻟﻔﻠﺘﺮ آﻤﺎ ﻳﻮﺿﺢ ﺷﻜﻞ )‪.(١٠٣ – ٧‬‬
‫ﻃ ﻮل ﺟﻤﻴﻊ اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﻤﺘﺼﻠﻪ ﻋﻠﻰ اﻟﺘﻮاﻟﻰ و اﻟﻤﺘﺼﻠﻪ ﻋﻠﻰ اﻟﺘﻮازى اﻟﻤﻨﺘﻬﻴﻪ ﻧﻬﺎﻳﻪ ﻣﻔﺘﻮﺣﻪ ﺑﺎﻟﻔﻠﺘﺮ ﻳﻜﺎﻓﺊ‬
‫‪o‬‬

‫)‪ .(π/2 ≡ 90 ≡ λg/4‬و ﻳ ﺘﻢ ﻃ ﺮح اﻻﺳ ﺘﻄﺎﻟﻪ )‪ (∆l‬ﻣ ﻦ ﻃ ﻮل اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﻤﻨﺘﻬﻰ ﻧﻬﺎﻳﻪ ﻣﻔﺘﻮﺣﻪ و هﻰ ﻗﻴﻤﺔ‬
‫اﻻﺳ ﺘﻄﺎﻟﻪ اﻟ ﻨﺎﺗﺠﻪ ﻋ ﻦ )‪ (fringing effect‬اﻟﻤﻌﻄ ﺎﻩ ﺑﺎﻟﻤﻌﺎدﻟﻪ )‪ (4.2‬ﻓﻰ ﻣﻘﻄﻊ )‪ (١-٢-٤‬ﺑﺎﻟﻔﺼﻞ اﻟﺮاﺑﻊ و ﻳﻤﻜﻦ‬
‫ﺣﺴﺎﺑﻬﺎ ﺑﺒﺮﻧﺎﻣﺞ )‪ (١-٣‬و ﺑﺮﻧﺎﻣﺞ )‪ (٣-٣‬ﺑﺎﻟﻔﺼﻞ اﻟﺜﺎﻟﺚ‪.‬‬
‫ﻳﺸ ﺮح اﻟﻤ ﺮﺟﻊ )‪ (1‬ﻃ ﺮﻳﻘﺔ اﺳ ﺘﻨﺘﺎج أﺑﻌﺎد اﻟﻔﻠﺘﺮ اﻟﻤﺘﻜﻮن ﻣﻦ ﺧﻄﻮط ﺷﺮﻳﻄﻴﻪ ﻣﺘﺼﻠﻪ ﻋﻠﻰ اﻟﺘﻮازى و ﻣﻨﺘﻬﻴﻪ ﻧﻬﺎﻳﻪ‬
‫ﻣﻔ ﺘﻮﺣﻪ ﺑﺎﺳ ﺘﺨﺪام ﺗﺤ ﻮﻳﻼت رﻳﺘﺸ ﺎرد )‪ (Richard's Transformations‬و ﻣﻜﺎﻓ ﺌﺎت آ ﻮرودا ) ‪Kuroda's‬‬
‫‪ (Identities‬اﻟﻤﺸﺮوﺣﻪ ﻓﻰ ﻣﻘﻄﻊ )‪.(٢-٧‬‬
‫و ﻳﻌﻄ ﻰ اﻟﻤ ﺮﺟﻊ )‪ (1‬ﻣﺜﺎﻟ ﻴﻦ ﻟﻠﺘﺼ ﻤﻴﻢ و آ ﺬﻟﻚ ﻳﺸ ﺮح اﺳ ﺘﻨﺘﺎج ﻗ ﻴﻢ ﻣﺜﺎﻟ ﻴﻪ ﻟﻠﻤﻌﺎوﻗ ﺎت اﻟﻤﻤﻴ ﺰﻩ ﻟﻠﺨﻄ ﻮط اﻟﺸﺮﻳﻄﻴﻪ‬
‫ﺑﺎﻟﻔﻠﺘﺮ و ﻳﻌﻄﻰ ﺟﺪاول ﻟﺤﺴﺎﺑﻬﺎ‪.‬‬
‫‪365‬‬

‫ﺷﻜﻞ )‪ : (١٠٣ – ٧‬ﻓﻠﺘﺮ اﻳﻘﺎف ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ ﺑﺎﺳﺘﺨﺪام ‪ Open Circuit Stubs‬ﺑﺮﺗﺒﺔ )‪(n‬‬

‫اﻟﺠ ﺪاول ﻣ ﻦ )‪ (٩ – ٧‬اﻟ ﻰ )‪ (١٢ – ٧‬ﺗﻌﻄﻰ ﻗﻴﻢ اﻟﻤﻌﺎوﻗﺎت اﻟﻤﻤﻴﺰﻩ ﻟﻠﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ ﻟﻔﻠﺘﺮ اﻳﻘﺎف ﺣﻴﺰ ﺗﺮددى‬
‫ﻣﻌ ﻴﻦ ﺑﺎﺳ ﺘﺨﺪام )‪ (Open Circuit Stubs‬اﻟﻤﺒ ﻴﻦ ﻓﻰ ﺷﻜﻞ )‪ (١٠٣ – ٧‬ﻣﻦ ﻧﻮع ﺗﺸﻴﺒﻰ ﺗﺸﻴﻒ ﺑﻤﻘﺪار ﺗﻤﻮﺟﺎت‬
‫ﻳﺴﺎوى )‪ (0.1005‬وﻓﻘﺎ ﻟﻘﻴﻢ ﻣﺨﺘﻠﻔﻪ ﻟﻠﺤﻴﺰ اﻟﺘﺮددى اﻟﻨﺴﺒﻰ )‪.(BW‬‬

‫‪Z1,2‬‬

‫‪Z1=Z2‬‬

‫‪BW‬‬

‫‪53.2595‬‬
‫‪55.9021‬‬
‫‪58.9227‬‬
‫‪62.4173‬‬
‫‪66.5132‬‬
‫‪71.3857‬‬
‫‪77.2798‬‬
‫‪84.5494‬‬
‫‪93.7277‬‬
‫‪105.655‬‬
‫‪121.723‬‬
‫‪144.446‬‬

‫‪213.511‬‬
‫‪164.549‬‬
‫‪131.52‬‬
‫‪107.596‬‬
‫‪89.3575‬‬
‫‪74.9064‬‬
‫‪63.0963‬‬
‫‪53.196‬‬
‫‪44.7143‬‬
‫‪37.3051‬‬
‫‪30.7174‬‬
‫‪24.7611‬‬

‫‪0.4‬‬
‫‪0.5‬‬
‫‪0.6‬‬
‫‪0.7‬‬
‫‪0.8‬‬
‫‪0.9‬‬
‫‪1‬‬
‫‪1.1‬‬
‫‪1.2‬‬
‫‪1.3‬‬
‫‪1.4‬‬
‫‪1.5‬‬

‫ﺟﺪول )‪ : (٩ – ٧‬ﻗﻴﻢ اﻟﻤﻌﺎوﻗﺎت اﻟﻤﻤﻴﺰﻩ ﻟﻠﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﻤﺜﺎﻟﻴﻪ ﻟﻔﻠﺘﺮ اﻳﻘﺎف ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ ﺑﺎﺳﺘﺨﺪام‬
‫)‪ (Open Circuit Stubs‬ﺑﺮﺗﺒﺔ )‪(n = 2‬‬

‫‪366‬‬

‫‪Z1,2=Z2,3‬‬

‫‪Z2‬‬

‫‪Z1=Z3‬‬

‫‪BW‬‬

‫‪53.7779‬‬
‫‪59.55501‬‬
‫‪63.64157‬‬
‫‪68.36298‬‬
‫‪73.88034‬‬
‫‪80.41171‬‬
‫‪88.26437‬‬
‫‪97.88184‬‬
‫‪101.2002‬‬
‫‪115.1278‬‬
‫‪133.8724‬‬
‫‪159.9386‬‬

‫‪131.3681‬‬
‫‪78.99893‬‬
‫‪62.89783‬‬
‫‪51.28836‬‬
‫‪42.48016‬‬
‫‪35.53458‬‬
‫‪29.88447‬‬
‫‪25.16774‬‬
‫‪24.20089‬‬
‫‪20.04225‬‬
‫‪16.38614‬‬
‫‪13.16267‬‬

‫‪217.2402‬‬
‫‪132.4363‬‬
‫‪106.6212‬‬
‫‪87.87964‬‬
‫‪73.54455‬‬
‫‪62.12955‬‬
‫‪52.73928‬‬
‫‪44.80247‬‬
‫‪43.39713‬‬
‫‪36.24449‬‬
‫‪29.85502‬‬
‫‪24.14771‬‬

‫‪0.4‬‬
‫‪0.5‬‬
‫‪0.6‬‬
‫‪0.7‬‬
‫‪0.8‬‬
‫‪0.9‬‬
‫‪1‬‬
‫‪1.1‬‬
‫‪1.2‬‬
‫‪1.3‬‬
‫‪1.4‬‬
‫‪1.5‬‬

‫ﺟﺪول )‪ : (١٠ – ٧‬ﻗﻴﻢ اﻟﻤﻌﺎوﻗﺎت اﻟﻤﻤﻴﺰﻩ ﻟﻠﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﻤﺜﺎﻟﻴﻪ ﻟﻔﻠﺘﺮ اﻳﻘﺎف ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ ﺑﺎﺳﺘﺨﺪام‬
‫)‪ (Open Circuit Stubs‬ﺑﺮﺗﺒﺔ )‪(n = 3‬‬

‫‪Z2,3‬‬

‫‪Z1,2=Z3,4‬‬

‫‪Z2=Z3‬‬

‫‪Z1=Z4‬‬

‫‪BW‬‬

‫‪58.71508‬‬
‫‪63.21672‬‬
‫‪68.35737‬‬
‫‪74.27986‬‬
‫‪81.17278‬‬
‫‪86.27979‬‬
‫‪99.00402‬‬
‫‪106.8536‬‬
‫‪125.5304‬‬
‫‪138.997‬‬
‫‪169.3423‬‬
‫‪204.1816‬‬

‫‪56.97876‬‬
‫‪60.84798‬‬
‫‪65.25456‬‬
‫‪70.3225‬‬
‫‪76.22184‬‬
‫‪80.61266‬‬
‫‪91.5181‬‬
‫‪98.28783‬‬
‫‪114.4112‬‬
‫‪126.0907‬‬
‫‪152.5274‬‬
‫‪183.0094‬‬

‫‪89.84565‬‬
‫‪69.33082‬‬
‫‪55.52224‬‬
‫‪45.53651‬‬
‫‪37.93195‬‬
‫‪34.09362‬‬
‫‪26.97526‬‬
‫‪24.19292‬‬
‫‪19.26745‬‬
‫‪17.00038‬‬
‫‪13.33828‬‬
‫‪10.78884‬‬

‫‪158.9471‬‬
‫‪123.8666‬‬
‫‪100.1181‬‬
‫‪82.82808‬‬
‫‪69.55651‬‬
‫‪62.94375‬‬
‫‪50.17964‬‬
‫‪45.29396‬‬
‫‪36.26842‬‬
‫‪32.19036‬‬
‫‪25.34083‬‬
‫‪20.57215‬‬

‫‪0.4‬‬
‫‪0.5‬‬
‫‪0.6‬‬
‫‪0.7‬‬
‫‪0.8‬‬
‫‪0.9‬‬
‫‪1‬‬
‫‪1.1‬‬
‫‪1.2‬‬
‫‪1.3‬‬
‫‪1.4‬‬
‫‪1.5‬‬

‫ﺟﺪول )‪ : (١١ – ٧‬ﻗﻴﻢ اﻟﻤﻌﺎوﻗﺎت اﻟﻤﻤﻴﺰﻩ ﻟﻠﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﻤﺜﺎﻟﻴﻪ ﻟﻔﻠﺘﺮ اﻳﻘﺎف ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ ﺑﺎﺳﺘﺨﺪام‬
‫)‪ (Open Circuit Stubs‬ﺑﺮﺗﺒﺔ )‪(n = 4‬‬

‫‪367‬‬

‫‪Z2,3=Z3,4‬‬

‫‪Z1,2=Z4,5‬‬

‫‪Z3‬‬

‫‪Z2=Z4‬‬

‫‪Z1=Z5‬‬

‫‪BW‬‬

‫‪59.65306‬‬
‫‪64.42386‬‬
‫‪69.95747‬‬
‫‪76.1232‬‬
‫‪83.75209‬‬
‫‪91.78522‬‬
‫‪101.4219‬‬
‫‪114.5134‬‬
‫‪130.5313‬‬
‫‪148.584‬‬
‫‪174.9475‬‬
‫‪211.0239‬‬

‫‪57.42638‬‬
‫‪61.41525‬‬
‫‪66.04584‬‬
‫‪71.20377‬‬
‫‪77.61806‬‬
‫‪84.31845‬‬
‫‪92.43511‬‬
‫‪103.4383‬‬
‫‪116.8115‬‬
‫‪133.0885‬‬
‫‪155.0291‬‬
‫‪186.0742‬‬

‫‪80.24781‬‬
‫‪62.2479‬‬
‫‪50.14492‬‬
‫‪41.2657‬‬
‫‪34.17028‬‬
‫‪29.16064‬‬
‫‪24.94798‬‬
‫‪20.99923‬‬
‫‪17.86997‬‬
‫‪14.84578‬‬
‫‪12.42875‬‬
‫‪10.07831‬‬

‫‪85.80303‬‬
‫‪66.40724‬‬
‫‪53.35211‬‬
‫‪43.77709‬‬
‫‪36.17631‬‬
‫‪30.8326‬‬
‫‪26.32133‬‬
‫‪22.07944‬‬
‫‪18.75152‬‬
‫‪15.6312‬‬
‫‪13.00481‬‬
‫‪10.52893‬‬

‫‪154.0595‬‬
‫‪120.3601‬‬
‫‪97.30466‬‬
‫‪80.41429‬‬
‫‪67.00257‬‬
‫‪57.4244‬‬
‫‪49.42323‬‬
‫‪41.56‬‬
‫‪35.67428‬‬
‫‪29.74969‬‬
‫‪24.91405‬‬
‫‪20.23677‬‬

‫‪0.4‬‬
‫‪0.5‬‬
‫‪0.6‬‬
‫‪0.7‬‬
‫‪0.8‬‬
‫‪0.9‬‬
‫‪1‬‬
‫‪1.1‬‬
‫‪1.2‬‬
‫‪1.3‬‬
‫‪1.4‬‬
‫‪1.5‬‬

‫ﺟﺪول )‪ : (١٢ – ٧‬ﻗﻴﻢ اﻟﻤﻌﺎوﻗﺎت اﻟﻤﻤﻴﺰﻩ ﻟﻠﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﻤﺜﺎﻟﻴﻪ ﻟﻔﻠﺘﺮ اﻳﻘﺎف ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ ﺑﺎﺳﺘﺨﺪام‬
‫)‪ (Open Circuit Stubs‬ﺑﺮﺗﺒﺔ )‪(n = 5‬‬

‫ﻣ ﺜﺎل )‪ : (١٤ – ٧‬ﻣﻄﻠ ﻮب ﺗﺼﻤﻴﻢ ﻓﻠﺘﺮ اﻳﻘﺎف ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ ﺑﺎﺳﺘﺨﺪام )‪ (Open Circuit Stubs‬ﻣﺜﻞ اﻟﻤﺒﻴﻦ‬
‫ﻓ ﻰ ﺷ ﻜﻞ )‪ (١٠٣ – ٧‬ﻋ ﻨﺪ ﺗ ﺮدد ﻣﻨﺘﺼ ﻒ )‪ (fo = 3 GHz‬ﺑﺤﻴﺰ ﺗﺮددى ﻧﺴﺒﻰ )‪ (0.8‬أى أن ﺣﻴﺰ اﻻﻳﻘﺎف اﻟﺬى‬
‫ﻳﻜ ﻮن ﻓ ﻴﻪ )‪ (|S21|dB ≤ − 3 dB‬ﻳ ﺒﺪأ ﻣ ﻦ )‪ (1.8 GHz‬و ﻳﻨﺘﻬ ﻰ ﻋ ﻨﺪ )‪ (4.2 GHz‬ﻣ ﻊ اﻋﺘ ﺒﺎر اﻟﻤﻌﺎوﻗﻪ ﻋﻨﺪ‬
‫ﻃﺮﻓﻰ اﻟﻔﻠﺘﺮ ﺗﺴﺎوى )‪.(50 Ω‬‬
‫اﻟﺤﻞ ‪:‬‬
‫ﺗﻢ اﺧﺘﻴﺎر اﻟﺸﺮﻳﺤﻪ اﻟﺸﺮﻳﻄﻴﻪ ﺑﺎﻟﻤﻮاﺻﻔﺎت اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫ﺛﺎﺑﺖ اﻟﻌﺰل )‪ ( εr =2.2‬و ﺳﻤﻚ اﻟﻌﺎزل )‪ (h = 1.575 mm‬و ﺳﻤﻚ اﻟﻤﻮﺻﻞ )‪. (t = 0.05 mm‬‬
‫ﻣ ﻦ ﺟ ﺪول )‪ (١٠ – ٧‬ﺗ ﻢ ﺗﺤﺪﻳ ﺪ ﻗ ﻴﻢ اﻟﻤﻌﺎوﻗ ﺎت اﻟﻤﻤﻴ ﺰﻩ ﻟﻠﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﻤﺜﺎﻟ ﻴﻪ ﻟﻠﻔﻠﺘ ﺮ وﻓﻘ ﺎ ﻟﻠﺤﻴ ﺰ اﻟﺘ ﺮددى‬
‫اﻟﻨﺴﺒﻰ اﻟﻤﻄﻠﻮب‪.‬‬
‫‪Z1,2=Z2,3‬‬

‫‪Z2‬‬

‫‪Z1=Z3‬‬

‫‪BW‬‬

‫‪73.88034‬‬

‫‪42.48016‬‬

‫‪73.54455‬‬

‫‪0.8‬‬

‫ﺗﻢ ﺣﺴﺎب اﻷﺑﻌﺎد اﻟﻤﺒﺪﺋﻴﻪ ﻟﻠﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ ﺑﺎﻟﻔﻠﺘﺮ ﻋﻨﺪ ﺗﺮدد اﻟﻤﻨﺘﺼﻒ )‪ (fo = 3 GHz‬و آﺎﻧﺖ آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫]‪L3 [mm‬‬
‫‪18.54‬‬

‫]‪L2,3 [mm‬‬
‫‪18.55‬‬

‫]‪L2 [mm‬‬
‫‪18.03‬‬

‫]‪L1,2 [mm‬‬
‫‪18.55‬‬

‫]‪L1 [mm‬‬
‫‪18.54‬‬

‫]‪W3 [mm‬‬
‫‪2.52‬‬

‫‪W2,3‬‬
‫‪2.5‬‬

‫]‪W2 [mm‬‬
‫‪6.09‬‬

‫‪W1,2‬‬
‫‪2.5‬‬

‫]‪W1 [mm‬‬
‫‪2.52‬‬

‫ﺗ ﻢ ﻃ ﺮح اﻻﺳ ﺘﻄﺎﻟﻪ )‪mm‬‬

‫]‪[mm‬‬

‫]‪[mm‬‬

‫‪ (∆l1 = ∆l3 = 0.6856‬اﻟ ﻨﺎﺗﺠﻪ ﻋ ﻦ )‪ (fringing effect‬ﻣ ﻦ ﻃ ﻮل اﻟﺨﻄ ﻴﻦ‬

‫اﻟﺸ ﺮﻳﻄﻴﻴﻦ )‪ (L1‬و )‪ (L3‬و ﺗ ﻢ ﻃ ﺮح اﻻﺳ ﺘﻄﺎﻟﻪ )‪ (∆l2 = 0.7687 mm‬اﻟ ﻨﺎﺗﺠﻪ ﻋ ﻦ )‪ (fringing effect‬ﻣ ﻦ‬
‫ﻃﻮل اﻟﺨﻂ )‪.(L2‬‬
‫‪368‬‬

‫ﺗ ﻢ اﺿ ﺎﻓﺔ ﺧﻄ ﻴﻦ ﺷ ﺮﻳﻄﻴﻴﻦ ﻟﻜ ﻞ ﻣﻨﻬﻤﺎ ﻣﻌﺎوﻗﻪ ﻣﻤﻴﺰﻩ )‪ (Zo = 50 Ω‬ﻋﻨﺪ ﻣﺪﺧﻠﻰ اﻟﻔﻠﺘﺮ و آﺎن ﻋﺮض آﻞ ﻣﻨﻬﻤﺎ‬
‫ﻳﺴﺎوى )‪ (Wo= 4.79 mm‬و ﺗﻢ اﺧﺘﻴﺎر اﻟﻄﻮل اﻟﻤﺒﺪﺋﻰ ﻟﻜﻞ ﻣﻨﻬﻤﺎ ﻳﺴﺎوى )‪.(Lo= 18 mm‬‬
‫ﺗ ﻢ ﺗﺤﻠ ﻴﻞ اﻟﺪاﺋ ﺮﻩ ﺑﺎﺳ ﺘﺨﺪام أﺣ ﺪ ﺑ ﺮاﻣﺞ ﺗﺤﻠ ﻴﻞ دواﺋ ﺮ اﻟﻤﻴﻜ ﺮووﻳﻒ ﺑﺎﻷﺑﻌ ﺎد اﻟﻤﺒﺪﺋ ﻴﻪ اﻟﻤﻌﻄ ﺎﻩ أﻋ ﻼﻩ ﻣ ﻊ ادراج‬
‫اﻟﻼاﺳﺘﻤﺮارﻳﺎت ﻓﻰ اﻟﺘﺤﻠﻴﻞ‪.‬‬
‫ﺗ ﻢ ﻋﻤ ﻞ اﻟ ﺒﺤﺚ ﻋ ﻦ اﻟﺤ ﻞ اﻷﻣ ﺜﻞ )‪ (Optimization‬ﺑﺘﻐﻴﻴ ﺮ اﻷﺑﻌ ﺎد ﻟﺘﺤﺴ ﻴﻦ اﻷداء أى ﺗﺤﺴ ﻴﻦ ﻗ ﻴﻢ )‪ (|S21|dB‬و‬
‫)‪ (|S11|dB‬ﺑﺎﺳﺘﺨﺪام ﺑﺮﻧﺎﻣﺞ ﺗﺤﻠﻴﻞ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ و آﺎﻧﺖ اﻷﺑﻌﺎد اﻟﻨﻬﺎﺋﻴﻪ آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫]‪L3 [mm‬‬
‫‪17.01‬‬

‫]‪L2,3 [mm‬‬
‫‪16.27‬‬

‫]‪L2 [mm‬‬
‫‪17.45‬‬

‫]‪L1,2 [mm‬‬
‫‪16.35‬‬

‫]‪L1 [mm‬‬
‫‪17.01‬‬

‫‪W3‬‬
‫‪3.3‬‬

‫‪W2,3‬‬
‫‪1.6‬‬

‫]‪W2 [mm‬‬
‫‪7.56‬‬

‫‪W1,2‬‬
‫‪1.71‬‬

‫‪W1‬‬
‫‪3.3‬‬

‫]‪[mm‬‬

‫]‪[mm‬‬

‫]‪[mm‬‬

‫]‪[mm‬‬

‫و آ ﺎن ﻋ ﺮض آ ﻞ ﻣ ﻦ اﻟﺨﻄ ﻴﻦ اﻟﺸ ﺮﻳﻄﻴﻴﻦ ﻋ ﻨﺪ ﻣﺪﺧﻠ ﻰ اﻟﻔﻠﺘ ﺮ ﻳﺴ ﺎوى )‪ (Wo= 4.9 mm‬و اﻟﻄ ﻮل ﻳﺴ ﺎوى‬
‫)‪.(Lo= 23.68 mm‬‬
‫و ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (١٠٤ – ٧‬ﻣﺨﻄ ﻂ اﻟﻔﻠﺘ ﺮ و رﺳ ﻢ ﺛﻼﺛ ﻰ اﻷﺑﻌ ﺎد ﻟ ﻪ و ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (١٠٥ – ٧‬ﻧﺘ ﻴﺠﺔ اﻟﺘﺤﻠ ﻴﻞ‬
‫ﺑﺎﻷﺑﻌﺎد اﻟﻨﻬﺎﺋﻴﻪ ﻟﻠﻔﻠﺘﺮ‪.‬‬

‫ﺷﻜﻞ )‪ : (١٠٤ – ٧‬ﻣﺨﻄﻂ اﻟﻔﻠﺘﺮ ﻓﻰ ﻣﺜﺎل )‪ (١٤ – ٧‬و رﺳﻢ ﺛﻼﺛﻰ اﻷﺑﻌﺎد ﻟﻪ‬

‫‪369‬‬

‫ﺷﻜﻞ )‪ : (١٠٥ – ٧‬ﻧﺘﻴﺠﺔ اﻟﺘﺤﻠﻴﻞ ﺑﺎﻷﺑﻌﺎد اﻟﻨﻬﺎﺋﻴﻪ ﻟﻠﻔﻠﺘﺮ ﻓﻰ ﻣﺜﺎل )‪.(١٤ – ٧‬‬

‫ﻻ ﻳﻮﺟﺪ ﻧﻈﺎم ﻟﻠﺘﺮدد اﻟﻌﺎﻟﻰ و اﻟﻤﻴﻜﺮووﻳﻒ ﻳﺨﻠﻮ ﻣﻦ داﺋﺮة أو دواﺋﺮ ﻓﻠﺘﺮ‪.‬‬
‫ﻓ ﻰ ﺟﻤ ﻴﻊ أﻧ ﻮاع دواﺋ ﺮ اﻟﻔﻠﺘ ﺮ اﻟﺸ ﺮﻳﻄﻴﻪ ﻻﺑ ﺪ ﻣ ﻦ ﻋﻤ ﻞ اﻟ ﺒﺤﺚ ﻋ ﻦ اﻟﺤ ﻞ اﻷﻣ ﺜﻞ )‪ (optimization‬ﻟﻀﻤﺎن ﻋﺪم‬
‫وﺟ ﻮد أى ﺣﻴ ﺰ ﻣ ﺮور ﻏﻴﺮ ﻣﺮﻏﻮب ﻓﻴﻪ )‪ (unwanted pass band‬داﺧﻞ اﻟﺤﻴﺰ اﻟﻤﻮﻗﻮف ﻟﻠﻔﻠﺘﺮ )‪(stop band‬‬
‫اﻟﺬى ﻳﺘﻄﻠﺒﻪ اﻟﻨﻈﺎم اﻟﺬى ﺳﻴﻮﺿﻊ ﺑﻪ اﻟﻔﻠﺘﺮ‪.‬‬
‫ﻓ ﻴﻤﺎ ﻋ ﺪا ﻓﻠﺘﺮ اﻳﻘﺎف ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ اﻟﺸﺮﻳﻄﻰ )‪ (microstrip BSF‬ﺣﻴﺚ ﻳﺠﺐ ﻋﻤﻞ اﻟﻌﻜﺲ ‪ ،‬ﺑﻤﻌﻨﻰ أﻧﻪ ﻻﺑﺪ‬
‫ﻣ ﻦ ﻋﻤ ﻞ اﻟ ﺒﺤﺚ ﻋ ﻦ اﻟﺤ ﻞ اﻷﻣ ﺜﻞ )‪ (optimization‬ﻟﻀ ﻤﺎن ﻋ ﺪم وﺟ ﻮد أى ﺣﻴ ﺰ اﻳﻘ ﺎف ﻏﻴ ﺮ ﻣ ﺮﻏﻮب ﻓ ﻴﻪ‬
‫)‪ (unwanted stop band‬داﺧ ﻞ ﺣﻴ ﺰ اﻟﻤ ﺮور ﻟﻠﻔﻠﺘ ﺮ )‪ (pass band‬اﻟ ﺬى ﻳﺘﻄﻠ ﺒﻪ اﻟﻨﻈﺎم اﻟﺬى ﺳﻴﻮﺿﻊ ﺑﻪ ﻓﻠﺘﺮ‬
‫اﻳﻘﺎف ﺣﻴﺰ ﺗﺮددى ﻣﻌﻴﻦ اﻟﺸﺮﻳﻄﻰ‪.‬‬

‫‪370‬‬

‫)ﻤﻘﻁﻊ ‪ (١٧ -٧‬ﻤﻔﺭﻗﺎﺕ ﺍﻟﺘﺭﺩﺩ )‪:(Multiplexers‬‬

‫ﻳﻮﺿ ﺢ ﺷ ﻜﻞ )‪ (١٠٦ – ٧‬رﺳ ﻢ رﻣ ﺰى ﻷﺣ ﺪ ﻣﻔ ﺮﻗﺎت اﻻﺗﺠ ﺎﻩ وﻓﻘ ﺎ ﻟﻠﺘ ﺮدد أو دواﺋ ﺮ ﺗﺤﺪﻳ ﺪ اﺗﺠ ﺎﻩ اﻻﺷﺎرﻩ ﺣﺴﺐ‬
‫اﻟﺘ ﺮدد أو ﻣﻔ ﺮﻗﺎت اﻟﺘ ﺮدد )‪ (Multiplexers‬ﻟ ﻪ ﻣ ﺪﺧﻞ و ﻋ ﺪد )‪ (n‬ﻣ ﻦ اﻟﻤﺨ ﺎرج ‪ ،‬و ﻳ ﺘﻜﻮن ﻣ ﻦ ﻣﻘﺴﻢ ﻗﺪرﻩ ذو‬
‫ﻣﺪﺧﻞ و ﻋﺪد )‪ (n‬ﻣﻦ اﻟﻤﺨﺎرج و ﻳﺘﺼﻞ ﺑﻜﻞ ﻣﺨﺮج ﻣﻨﻬﺎ ﻓﻠﺘﺮ‪.‬‬
‫و ﺗﺨ ﺘﻠﻒ أﻧ ﻮاع اﻟﻔﻠﺘ ﺮ اﻟﻤﺴ ﺘﺨﺪﻣﻪ ﻓﻘ ﺪ ﻳﺴ ﺘﺨﺪم ﻓﻠﺘ ﺮ ﻣ ﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ )‪ (LPF‬أو ﻓﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات‬
‫اﻟﻤ ﺮﺗﻔﻌﻪ )‪ (HPF‬أو ﻓﻠﺘ ﺮ ﻣ ﺮور ﺣﻴ ﺰ ﺗ ﺮددى ﻣﻌ ﻴﻦ )‪ (BPF‬أو ﻓﻠﺘ ﺮ اﻳﻘ ﺎف ﺗ ﺮدد أو ﺣﻴ ﺰ ﺗ ﺮددى ﻣﻌﻴﻦ )‪(BSF‬‬
‫ﻟﺘﻨﻔﻴﺬ أى ﻓﻠﺘﺮ ﻣﻮﺟﻮد ﺑﺪاﺋﺮة ﻣﻔﺮق اﻟﺘﺮدد )‪.(Multiplexer‬‬
‫اﻟﻐ ﺮض ﻣ ﻦ اﺳ ﺘﺨﺪام ﻣﻔ ﺮﻗﺎت اﻻﺗﺠ ﺎﻩ وﻓﻘ ﺎ ﻟﻠﺘ ﺮدد أو ﻣﻔ ﺮﻗﺎت اﻟﺘ ﺮدد ه ﻮ ﺗﻘﺴ ﻴﻢ اﻟﻤ ﻮﺟﻪ أو اﻻﺷ ﺎرﻩ ذات اﻟﺤﻴ ﺰ‬
‫اﻟﺘﺮددى اﻷوﺳﻊ )‪ (broadband signal‬اﻟﺪاﺧﻠﻪ اﻟﻰ اﻟﺪاﺋﺮﻩ اﻟﻰ ﻋﺪد ﻣﻦ اﻻﺷﺎرات )أو اﻟﻘﻨﻮات( آﻞ ﻣﻨﻬﺎ ﻟﻪ ﺣﻴﺰ‬
‫ﺗﺮددى أﻗﻞ أو أﺿﻴﻖ‪.‬‬
‫و ﻳﻤﻜ ﻦ اﺳ ﺘﺨﺪام ﻣﻔ ﺮﻗﺎت اﻟﺘ ﺮدد )‪ (Multiplexers‬اﺳ ﺘﺨﺪاﻣﺎ ﻋﻜﺴ ﻴﺎ ﺑﻤﻌﻨ ﻰ ادﺧ ﺎل ﻋ ﺪد ﻣ ﻦ اﻻﺷ ﺎرات )أو‬
‫اﻟﻘ ﻨﻮات( ذات ﺣﻴ ﺰ ﺗ ﺮددى أﺿ ﻴﻖ و دﻣﺠﻬ ﺎ ﻣﻌ ﺎ ﻟﺘﺨ ﺮج ﻓ ﻰ ﺻ ﻮرة اﺷ ﺎرﻩ ذات ﺣﻴﺰ ﺗﺮددى أوﺳﻊ و ﻳﻄﻠﻖ ﻋﻠﻰ‬
‫اﻟﺪاﺋﺮﻩ ﻓﻰ هﺬﻩ اﻟﺤﺎﻟﻪ اﺳﻢ )‪.(channelizer or combiner‬‬
‫اذا آ ﺎن ﻋ ﺪد ﻣﺨ ﺎرج ﻣﻔ ﺮق اﻟﺘﺮدد )‪ (Multiplexer‬هﻮ اﺛﻨﻴﻦ )‪ (n=2‬ﺗﺴﻤﻰ اﻟﺪاﺋﺮﻩ )‪ (diplexer‬و اذا آﺎن ﻋﺪد‬
‫اﻟﻤﺨ ﺎرج ﺛﻼﺛ ﻪ )‪ (n=3‬ﺗﺴ ﻤﻰ اﻟﺪاﺋ ﺮﻩ )‪ (triplexer‬و اذا آ ﺎن ﻋ ﺪد اﻟﻤﺨ ﺎرج أرﺑﻌ ﻪ )‪ (n=4‬ﺗﺴ ﻤﻰ اﻟﺪاﺋ ﺮﻩ‬
‫)‪ (quadruplexer‬و اذا آ ﺎن ﻋ ﺪد اﻟﻤﺨ ﺎرج ﺧﻤﺴ ﻪ )‪ (n=5‬ﺗﺴﻤﻰ اﻟﺪاﺋﺮﻩ )‪ (quintaplexer‬و هﻜﺬا ‪ ،‬و ان آﺎن‬
‫اﻟﻤﺼﻄﻠﺢ اﻷآﺜﺮ اﺳﺘﺨﺪاﻣﺎ ﻓﻰ ﺣﺎﻻت اﻟﻤﺨﺎرج اﻟﻤﺘﻌﺪدﻩ هﻮ )‪ (Multiplexer‬ﻣﻊ اﻋﻄﺎء ﻋﺪد اﻟﻤﺨﺎرج‪.‬‬
‫ﻳﺴﺘﺨﺪم اﺧﺘﺼﺎر ﻻﺳﻢ داﺋﺮة ﻣﻔﺮق اﻟﺘﺮدد )‪ (Multiplexer‬ﻓﻰ ﺑﻌﺾ اﻟﻤﺮاﺟﻊ ﻣﻦ ﺛﻼﺛﺔ ﺣﺮوف هﻮ )‪.(MUX‬‬
‫ﻓ ﻰ اﻟﻔﺼ ﻞ اﻟﺴ ﺎدس ﻣ ﻦ ه ﺬا اﻟﻜ ﺘﺎب ﺷ ﺮﺣﺖ آﻴﻔﻴﺔ ﺗﺼﻤﻴﻢ ﻣﻘﺴﻢ اﻟﻘﺪرﻩ ذو ﻣﺪﺧﻞ و ﻋﺪد )‪ (n‬ﻣﻦ اﻟﻤﺨﺎرج أﻳﺎ آﺎن‬
‫ﻋ ﺪد اﻟﻤﺨ ﺎرج و ﻓ ﻰ ه ﺬا اﻟﻔﺼ ﻞ ﺷ ﺮﺣﺖ ﺗﺼ ﻤﻴﻢ أﻧ ﻮاع ﻣﺨﺘﻠﻔﻪ ﻣﻦ دواﺋﺮ اﻟﻔﻠﺘﺮ ‪ ،‬و ﺑﻨﺎء ﻋﻠﻰ اﻟﻤﻌﻠﻮﻣﺎت اﻟﻤﻌﻄﺎﻩ‬
‫ﻓﻰ اﻟﻔﺼﻠﻴﻦ ﻳﻤﻜﻦ ﺗﺼﻤﻴﻢ اﻟﻜﺜﻴﺮ ﻣﻦ دواﺋﺮ ﻣﻔﺮﻗﺎت اﻟﺘﺮدد )‪ (Multiplexers‬أﻳﺎ آﺎن ﻋﺪد اﻟﻤﺨﺎرج‪.‬‬
‫ﻳﻌﻘ ﺪ اﻟﻤ ﺮﺟﻊ )‪ (24‬ﻣﻘﺎرﻧ ﻪ ﺑ ﻴﻦ ﺑﻌﺾ اﻷﻧﻮاع اﻟﻤﺨﺘﻠﻔﻪ ﻟﺪواﺋﺮ ﻣﻔﺮق اﻟﺘﺮدد )‪ (Multiplexer‬و ﻳﺸﺮح ﺗﺼﻤﻴﻤﻬﺎ‬
‫و ﻳﻌﻄﻰ أﻣﺜﻠﻪ ﻋﻠﻰ ﺗﻨﻔﻴﺬهﺎ ﺑﺘﻜﻨﻮﻟﻮﺟﻴﺎت ﻣﺨﺘﻠﻔﻪ وهﻰ آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫‪ - ١‬ﻣﻔﺮق اﻟﺘﺮدد اﻟﻤﺘﻌﺪد أو اﻟﻤﺘﻨﻮع أو اﻟﻤﻀﺎﻋﻒ )‪.(Manifold Multiplexer‬‬
‫‪ - ٢‬ﻣﻔ ﺮق اﻟﺘ ﺮدد ﻣ ﻦ ﻧ ﻮع )‪ (Circulator Coupled Multiplexer‬اﻟ ﺬى ﻳ ﺘﻜﻮن ﻣﻘﺴﻢ اﻟﻘﺪرﻩ ﺑﻪ ﻣﻦ ﻋﺪد ﻣﻦ‬
‫دواﺋﺮ اﻟﻤﻮﺟﻬﺎت ذات اﻟﺘﺮﺗﻴﺐ اﻟﺪاﺋﺮى أو اﻟﻤﺘﺘﺎﻟﻰ )‪.(Circulators‬‬
‫‪ - ٣‬ﻣﻔﺮق اﻟﺘﺮدد ﻣﻦ ﻧﻮع )‪ (Hybrid Coupled Multiplexer‬اﻟﺬى ﻳﺘﻜﻮن ﻣﻘﺴﻢ اﻟﻘﺪرﻩ ﺑﻪ ﻣﻦ ﻋﺪد ﻣﻦ دواﺋﺮ‬
‫اﻟﻤﺰدوﺟﺎت اﻟﻤﺨﺘﻠﻄﻪ )‪ (Hybrid Couplers‬اﻟﻤﺘﺼﻠﻪ ﺑﻤﺪاﺧﻞ و ﻣﺨﺎرج دواﺋﺮ اﻟﻔﻠﺘﺮ‪.‬‬
‫‪ - ٤‬ﻣﻔ ﺮق اﻟﺘ ﺮدد ﻣ ﻦ ﻧ ﻮع )‪ (Directional Filter Multiplexer‬اﻟ ﺬى ﻳ ﺘﻢ ﺗﻘﺴﻴﻢ اﻻﺷﺎرﻩ ﺑﻪ ﺑﺎﺳﺘﺨﺪام دواﺋﺮ‬
‫اﻟﻔﻠﺘﺮ اﻟﻤﻮﺟﻬﻪ )‪ (Directional Filters‬ذات اﻷرﺑﻌﺔ ﻣﺨﺎرج‪.‬‬

‫‪371‬‬

‫ﺷﻜﻞ )‪ : (١٠٦ – ٧‬رﺳﻢ رﻣﺰى ﻋﺎم ﻟﻤﻔﺮق اﻻﺗﺠﺎﻩ وﻓﻘﺎ ﻟﻠﺘﺮدد أو ﻣﻔﺮق اﻟﺘﺮدد )‪(Multiplexer‬‬

‫ﻳ ﺘﺤﺪد ﺗﺼ ﻤﻴﻢ و ﺗﻜﻨﻮﻟﻮﺟ ﻴﺎ )أو ﺗﻜﻨﻮﻟﻮﺟ ﻴﺎت( ﺗﻨﻔ ﻴﺬ دواﺋ ﺮ ﻣﻔ ﺮﻗﺎت اﻟﺘ ﺮدد )‪ (Multiplexers‬و ﻓﻘ ﺎ ﻟﻠﺘﻄﺒ ﻴﻖ‬
‫اﻟﻤﺴ ﺘﺨﺪﻣﻪ ﻓ ﻴﻪ و هﻨﺎك ﻣﻮاﺻﻔﺎت ﻗﺪ ﻳﺘﻄﻠﺒﻬﺎ اﻟﻨﻈﺎم ﻣﺜﻞ ﺗﺤﻤﻞ ﻗﺪرﻩ ﻣﻌﻴﻨﻪ أو اﻟﺤﺠﻢ أو اﻟﻮزن هﺬا ﻏﻴﺮ ﻣﻮاﺻﻔﺎت‬
‫اﻟﺤﻴ ﺰ اﻟﺘ ﺮددى ﻟﻜ ﻞ ﻓﻠﺘ ﺮ و اﻣﻜﺎﻧ ﻴﺔ ﺗﻮﻟ ﻴﻒ اﻟﻔﻠﺘ ﺮ )‪ (Tuning‬و اﻣﻜﺎﻧ ﻴﺔ اﺳ ﺘﺨﺪام ﻣﻔﺎﺗ ﻴﺢ )‪ (Switches‬ﻣﺘﺼ ﻠﻪ‬
‫ﺑﻤﺨ ﺎرج دواﺋ ﺮ اﻟﻔﻠﺘﺮ و ﻏﻴﺮهﺎ ‪ ،‬و ﻳﺬآﺮ اﻟﻤﺮﺟﻊ )‪ (24‬ﺑﻌﺾ ﺗﻄﺒﻴﻘﺎت ﻣﻔﺮﻗﺎت اﻟﺘﺮدد )‪ (Multiplexers‬و هﻰ‬
‫اﻷﻗﻤﺎر اﻟﺼﻨﺎﻋﻴﻪ و أﻧﻈﻤﺔ اﻻﺗﺼﺎﻻت اﻟﻼﺳﻠﻜﻴﻪ و أﻧﻈﻤﺔ اﻟﺤﺮب اﻻﻟﻜﺘﺮوﻧﻴﻪ و ﻳﻌﻄﻰ أﻣﺜﻠﻪ ﻟﻬﺎ‪.‬‬
‫ﻳﻤﻜﻦ أن ﻳﺘﻢ ﺗﻨﻔﻴﺬ داﺋﺮة ﻣﻔﺮق اﻟﺘﺮدد )‪ (Multiplexer‬ﺑﻌﺪة ﺗﻜﻨﻮﻟﻮﺟﻴﺎت أو ﺑﺘﻜﻨﻮﻟﻮﺟﻴﺎ واﺣﺪﻩ‪.‬‬
‫اﻟﻘ ﻨﻮات ﻋ ﻨﺪ اﻟﻤﺨ ﺎرج ﻗ ﺪ ﺗﺸ ﺘﺮك ﻓ ﻰ ﺟ ﺰء ﻣ ﻦ اﻟﺤﻴ ﺰ اﻟﺘ ﺮددى و ﺗﺴ ﻤﻰ )‪ ، (overlapping channels‬أو ﻗ ﺪ‬
‫ﺗﻜ ﻮن ﻣﺘﻼﺻ ﻘﻪ ﺑﺤ ﻴﺚ ﺗ ﺮدد اﻟﻘﻄ ﻊ اﻷﻋﻠ ﻰ ﻟﻘ ﻨﺎﻩ ﻣﻌﻴ ﻨﻪ ﻳﺴ ﺎوى ﺗ ﺮدد اﻟﻘﻄ ﻊ اﻷدﻧ ﻰ ﻟﻠﻘ ﻨﺎﻩ اﻟﺘﺎﻟ ﻴﻪ و ﺗﺴ ﻤﻰ‬
‫)‪ ، (contiguous channels‬أو ﻗ ﺪ ﻻ ﺗﺸ ﺘﺮك اﻟﻘ ﻨﺎﻩ ﻣ ﻊ اﻟﺘ ﻰ ﺗﻠ ﻴﻬﺎ ﻓ ﻰ أى ﺟ ﺰء ﻣ ﻦ اﻟﺤﻴ ﺰ اﻟﺘ ﺮددى و ﺗﺴ ﻤﻰ‬
‫اﻟﻘﻨﻮات )‪.(non-contiguous channels‬‬
‫ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (١٠٧ – ٧‬رﺳ ﻢ رﻣ ﺰى ﻟﻤﻔﺮق اﻟﺘﺮدد ﻣﻦ ﻧﻮع )‪ (Hybrid Coupled Multiplexer‬ذو ﻣﺪﺧﻞ و‬
‫ﻣﺨﺮﺟﻴﻦ )‪ ، (diplexer‬ﻳﺘﻜﻮن ﻣﻦ أرﺑﻌﺔ دواﺋﺮ ﻣﺰدوﺟﺎت ﻣﺨﺘﻠﻄﻪ )‪ (Hybrid Couplers‬اﻟﻤﺮﻣﻮز ﻟﻬﺎ ﺑﺤﺮف‬
‫)‪ (H‬و أرﺑﻌﺔ دواﺋﺮ ﻓﻠﺘﺮ ﻣﺘﺼﻠﻪ ﺑﺤﻴﺚ ﻳﻜﻮن ﻟﻜﻞ ﻗﻨﺎﻩ داﺋﺮﺗﻰ ﻓﻠﺘﺮ ﻣﺘﻤﺎﺛﻠﺘﻴﻦ‪.‬‬
‫ه ﺬا اﻟ ﻨﻮع ﻣ ﻦ ﻣﻔ ﺮﻗﺎت اﻟﺘﺮدد ﻳﺴﻬﻞ ﺗﻨﻔﻴﺬﻩ ﺑﺘﻜﻨﻮﻟﻮﺟﻴﺎ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ و ﻳﻤﺘﺎز ﺑﺎﻟﻌﺰل اﻟﺠﻴﺪ ﺑﻴﻦ اﻟﻘﻨﻮات‬
‫و ﺳ ﻬﻮﻟﺔ اﺿ ﺎﻓﺔ دواﺋﺮ ﻟﻘﻨﻮات أﺧﺮى ﺑﺎﺿﺎﻓﺔ ﻣﺰدوﺟﻴﻦ ﻣﺨﺘﻠﻄﻴﻦ و داﺋﺮﺗﻰ ﻓﻠﺘﺮ ﻟﻜﻞ ﻗﻨﺎﻩ ‪ ،‬و هﺬﻩ اﻟﻤﻴﺰﻩ ﻣﻄﻠﻮﺑﻪ‬
‫ﻓﻰ ﺑﻌﺾ اﻟﺘﻄﺒﻴﻘﺎت‪.‬‬
‫ﻟﻜﻦ ﻳﻌﻴﺐ هﺬا اﻟﻨﻮع ﻣﻦ ﻣﻔﺮﻗﺎت اﻟﺘﺮدد آﺒﺮ ﻣﺴﺎﺣﺘﻪ و اﻟﺤﺎﺟﻪ اﻟﻰ دواﺋﺮ ﻓﻠﺘﺮ ﻣﺘﻄﺎﺑﻘﻪ ﻻ ﻳﻮﺟﺪ ﺑﻴﻨﻬﺎ اﺧﺘﻼف آﺒﻴﺮ‬
‫ﻓﻰ ﺗﻐﻴﻴﺮ زاوﻳﺔ اﻟﻄﻮر ﻟﻼﺷﺎرﻩ )‪ (phase deviation‬ﻓﻰ اﻟﺤﻴﺰ اﻟﺘﺮددى اﻟﻤﻔﻴﺪ‪.‬‬
‫ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (١٠٨ – ٧‬رﺳ ﻢ رﻣ ﺰى ﻟﻤﻔ ﺮق ﺗ ﺮدد ذو ﻣ ﺪﺧﻞ و ﻣﺨ ﺮﺟﻴﻦ )‪ (diplexer‬ﻳﻤﻜ ﻦ ﺗﻨﻔ ﻴﺬﻩ ﺑﺘﻜﻨﻮﻟﻮﺟ ﻴﺎ‬
‫اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ ﻓﻰ ﻣﺴﺎﺣﻪ أﺻﻐﺮ ﻣﻦ اﻟﺪاﺋﺮﻩ اﻟﻤﺒﻴﻨﻪ ﻓﻰ ﺷﻜﻞ )‪.(١٠٧ – ٧‬‬

‫‪372‬‬

‫ﺑﺸ ﻜﻞ ﻋ ﺎم ﻳﺠ ﺐ أن ﻳﻀ ﻤﻦ ﻣﻘﺴ ﻢ اﻟﻘ ﺪرﻩ اﻟﻤﺴ ﺘﺨﺪم ﺑﺪاﺋ ﺮة ﻣﻔ ﺮق اﻟﺘ ﺮدد )‪ (Multiplexer‬اﺣ ﺪاث ﻋﺰل ﺟﻴﺪ ﺑﻴﻦ‬
‫اﻟﻤﺨﺎرج ‪ ،‬و هﺬا اﻟﻌﺰل ﻳﻜﻮن ﻣﻔﺮوﺿﺎ وﻓﻘﺎ ﻟﻤﺘﻄﻠﺒﺎت اﻟﻨﻈﺎم اﻟﺬى ﺳﺘﻮﺿﻊ ﺑﻪ اﻟﺪاﺋﺮﻩ‪.‬‬
‫ﻳﺠ ﺐ أن ﻳﻜ ﻮن ﻣﻌﺎﻣ ﻞ اﻻﻧﻌﻜ ﺎس ﻋ ﻨﺪ اﻟﻤ ﺪﺧﻞ ﻣﻨﺨﻔﻀﺎ ﺑﺤﻴﺚ ﻳﺴﻤﺢ ﺑﻤﺮور اﻟﺘﺮددات )اﻟﻘﻨﻮات( اﻟﻤﻄﻠﻮﺑﻪ و ﻳﺠﺐ‬
‫أن ﺗﻜﻮن ﻣﻌﺎﻣﻼت اﻻﻧﻌﻜﺎس ﻣﻨﺨﻔﻀﻪ ﻋﻨﺪ آﻞ ﻣﺨﺮج ﻓﻰ اﻟﺤﻴﺰ اﻟﺘﺮددى اﻟﻤﻔﻴﺪ ﻟﻪ‪.‬‬

‫ﺷﻜﻞ )‪ : (١٠٧ – ٧‬رﺳﻢ رﻣﺰى ﻟﻤﻔﺮق اﻟﺘﺮدد ﻣﻦ ﻧﻮع )‪(Hybrid Coupled Multiplexer‬‬

‫ﺷﻜﻞ )‪ : (١٠٨ – ٧‬رﺳﻢ رﻣﺰى ﻟﻤﻔﺮق ﺗﺮدد ذو ﻣﺪﺧﻞ و ﻣﺨﺮﺟﻴﻦ )‪(diplexer‬‬

‫‪373‬‬

‫ﻣ ﺜﺎل )‪ : (١٥ – ٧‬ﻣﻄﻠ ﻮب ﺗﺼ ﻤﻴﻢ داﺋ ﺮة ﻣﻔ ﺮق ﺗ ﺮدد ﺷ ﺮﻳﻄﻴﻪ )‪ (Microstrip Multiplexer‬ذات ﻣ ﺪﺧﻞ و‬
‫ﻣﺨ ﺮﺟﻴﻦ أو )‪ ، (diplexer‬ﺗﺴ ﻤﺢ ﺑﻤ ﺮور ﺣﻴ ﺰﻳﻦ أو ﻗﻨﺎﺗ ﻴﻦ )اﻷوﻟ ﻰ ﻣ ﻦ ‪ 2.3 GHz‬اﻟ ﻰ ‪ (2.4 GHz‬و‬
‫)اﻟﺜﺎﻧﻴﻪ ﻣﻦ ‪ 2.5 GHz‬اﻟﻰ ‪ (2.6 GHz‬ﻣﻊ اﻋﺘﺒﺎر اﻟﻤﻌﺎوﻗﻪ ﻋﻨﺪ اﻟﻤﺨﺎرج ﺗﺴﺎوى )‪.(50 Ω‬‬
‫اﻟﺤ ﻞ‪ :‬ﺗ ﻢ اﺧﺘ ﻴﺎر اﻟﺪاﺋ ﺮﻩ اﻟﻤﻮﺿ ﺤﻪ ﻓ ﻰ ﺷ ﻜﻞ )‪ (١٠٨ – ٧‬ﻟﻠﺘﺼ ﻤﻴﻢ ‪ ،‬و ﺗ ﻢ اﺧﺘ ﻴﺎر اﻟﺸ ﺮﻳﺤﻪ اﻟﺸ ﺮﻳﻄﻴﻪ ﻟﻠﺜﻼﺛﺔ‬
‫دواﺋﺮ اﻟﻤﻜﻮﻧﻪ ﻟﻤﻔﺮق اﻟﺘﺮدد ﺑﺎﻟﻤﻮاﺻﻔﺎت اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫ﺛﺎﺑﺖ اﻟﻌﺰل )‪ ( εr =2.2‬و ﺳﻤﻚ اﻟﻌﺎزل )‪ (h = 1.575 mm‬و ﺳﻤﻚ اﻟﻤﻮﺻﻞ )‪.(t = 0.07 mm‬‬
‫ﺗ ﻢ اﺧﺘ ﻴﺎر ﻣﻘﺴ ﻢ اﻟﻘ ﺪرﻩ ﻟ ﻴﻜﻮن ﻣ ﻦ ﻧﻮع ﺟﻴﺰل )‪ (Gysel‬اﻟﻤﺸﺮوح ﻓﻰ ﻣﻘﻄﻊ )‪ (٣-٦‬ﻣﻦ اﻟﻔﺼﻞ اﻟﺴﺎدس و اﻟﻤﺒﻴﻦ‬
‫ﻓ ﻰ ﺷ ﻜﻞ )‪ (٥٥ - ٦‬و ﺗ ﻢ ﺗﺼ ﻤﻴﻤﻪ ﺑ ﻨﻔﺲ اﻟﻄﺮﻳﻘﻪ اﻟﻤﺸﺮوﺣﻪ ﻓﻰ ﻣﺜﺎل )‪ (٦ - ٦‬ﻣﻊ اﺧﺘﻼف اﻟﺸﺮﻳﺤﻪ اﻟﺸﺮﻳﻄﻴﻪ و‬
‫اﻟﻤﻘﺎوﻣﺘﻴﻦ و اﺧﺘﻼف ﺗﺮدد اﻟﻤﻨﺘﺼﻒ اﻟﺬى اﺧﺘﻴﺮ ﻋﻨﺪ )‪.(2.5 GHz‬‬
‫ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (١٠٩ – ٧‬ﻣﻌ ﺎﻣﻼت اﻻرﺳ ﺎل ﻟﻤﻘﺴ ﻢ اﻟﻘ ﺪرﻩ ﻣ ﻦ ﻧ ﻮع ﺟﻴ ﺰل و ﻳﺒ ﻴﻦ ﺷﻜﻞ )‪ (١١٠ – ٧‬ﻣﻌﺎﻣﻼت‬
‫اﻻﻧﻌﻜﺎس ﻋﻨﺪ اﻟﻤﺨﺎرج و ﻳﺒﻴﻦ ﺷﻜﻞ )‪ (١١١ – ٧‬ﻗﻴﻤﺔ )‪ (|S32|dB‬أو اﻟﻌﺰل ﺑﻴﻦ اﻟﻤﺨﺮﺟﻴﻦ‪.‬‬

‫ﺷﻜﻞ )‪ : (١٠٩ – ٧‬ﻗﻴﻢ )‪ (|S31|dB , |S21|dB‬ﻟﻤﻘﺴﻢ اﻟﻘﺪرﻩ ﻣﻦ ﻧﻮع ﺟﻴﺰل ﻓﻰ ﻣﺜﺎل )‪(١٥ – ٧‬‬

‫‪374‬‬

‫ﺷﻜﻞ )‪ : (١١٠ – ٧‬ﻗﻴﻢ )‪ (|S11|dB , |S22|dB , |S33|dB‬ﻟﻤﻘﺴﻢ اﻟﻘﺪرﻩ ﻣﻦ ﻧﻮع ﺟﻴﺰل ﻓﻰ ﻣﺜﺎل )‪(١٥ – ٧‬‬

‫ﺷﻜﻞ )‪ : (١١١ – ٧‬ﻗﻴﻤﺔ اﻟﻌﺰل ﺑﻴﻦ اﻟﻤﺨﺮﺟﻴﻦ ﻟﻤﻘﺴﻢ اﻟﻘﺪرﻩ ﻣﻦ ﻧﻮع ﺟﻴﺰل ﻓﻰ ﻣﺜﺎل )‪(١٥ – ٧‬‬

‫ﺗ ﻢ اﺧﺘ ﻴﺎر اﻟﻔﻠﺘ ﺮ اﻷول و اﻟﺜﺎﻧ ﻰ ﻟ ﻴﻜﻮﻧﺎ ﻣ ﻦ ﻧ ﻮع )‪ (Microstrip Parallel Coupled Lines BPF‬اﻟﻤﺸ ﺮوح‬
‫ﻓﻰ ﻣﻘﻄﻊ )‪ (٧-٧‬و ﺧﻄﻮات ﺗﺼﻤﻴﻢ هﺬا اﻟﻨﻮع ﻣﻦ اﻟﻔﻠﺘﺮ ﻣﻮﺿﺤﻪ ﻓﻰ ﻣﺜﺎل )‪.(٩ – ٧‬‬
‫ﺗﻢ اﺧﺘﻴﺎر ﻣﻮاﺻﻔﺎت اﻟﻔﻠﺘﺮ اﻷول آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫ﻧ ﻮع اﻟﻔﻠﺘ ﺮ ﺗﺸ ﻴﺒﻰ ﺗﺸ ﻴﻒ )‪ (Chebyshev‬و اﻟﺤﻴ ﺰ اﻟﻤﻔ ﻴﺪ ﻟ ﻪ ﻳﻘ ﻊ ﺑ ﻴﻦ ) ‪ 2.3 GHz‬و ‪ ( 2.4 GHz‬و ﻣﻘ ﺪار‬
‫اﻟﺘﻤﻮﺟﺎت ﻓﻰ اﻟﺤﻴﺰ اﻟﻤﻔﻴﺪ ﻟﻠﻔﻠﺘﺮ )‪ (0.5 dB‬و رﺗﺒﺔ اﻟﻔﻠﺘﺮ )‪ .(n=6‬و ﻳﺒﻴﻦ ﺷﻜﻞ )‪ (١١٢ – ٧‬أداء اﻟﻔﻠﺘﺮ اﻷول‪.‬‬

‫‪375‬‬

‫ﺷﻜﻞ )‪ : (١١٢ – ٧‬أداء اﻟﻔﻠﺘﺮ اﻷول ﻓﻰ ﻣﺜﺎل )‪(١٥ – ٧‬‬

‫ﺗﻢ اﺧﺘﻴﺎرﻣﻮاﺻﻔﺎت اﻟﻔﻠﺘﺮ اﻟﺜﺎﻧﻰ آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫ﻧ ﻮع اﻟﻔﻠﺘ ﺮ ﺗﺸ ﻴﺒﻰ ﺗﺸ ﻴﻒ )‪ (Chebyshev‬و اﻟﺤﻴ ﺰ اﻟﻤﻔ ﻴﺪ ﻟ ﻪ ﻳﻘ ﻊ ﺑ ﻴﻦ ) ‪ 2.5 GHz‬و ‪ ( 2.6 GHz‬و ﻣﻘ ﺪار‬
‫اﻟﺘﻤﻮﺟﺎت ﻓﻰ اﻟﺤﻴﺰ اﻟﻤﻔﻴﺪ ﻟﻠﻔﻠﺘﺮ )‪ (0.5 dB‬و رﺗﺒﺔ اﻟﻔﻠﺘﺮ )‪ .(n=6‬و ﻳﺒﻴﻦ ﺷﻜﻞ )‪ (١١٣ – ٧‬أداء اﻟﻔﻠﺘﺮ اﻟﺜﺎﻧﻰ‪.‬‬

‫ﺷﻜﻞ )‪ : (١١٣ – ٧‬أداء اﻟﻔﻠﺘﺮ اﻟﺜﺎﻧﻰ ﻓﻰ ﻣﺜﺎل )‪(١٥ – ٧‬‬

‫‪376‬‬

‫ﺗ ﻢ ادراج اﻟ ﺜﻼﺛﺔ دواﺋ ﺮ ﻣﺘﺼ ﻠﻪ ﻣﻌ ﺎ ﻓ ﻰ ﺑ ﺮﻧﺎﻣﺞ ﺗﺤﻠ ﻴﻞ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ آﻤﺎ ﻓﻰ ﺷﻜﻞ )‪ (١١٤ – ٧‬و ﺗﻢ ﻋﻤﻞ‬
‫اﻟ ﺒﺤﺚ ﻋ ﻦ اﻟﺤ ﻞ اﻷﻣ ﺜﻞ ﺑﺘﻐﻴﻴ ﺮ أﺑﻌ ﺎد اﻟﺜﻼﺛﺔ دواﺋﺮ ﻟﺘﺤﺴﻴﻦ اﻷداء‪ .‬و ﻳﺒﻴﻦ اﻟﺸﻜﻠﻴﻦ )‪ (١١٥ – ٧‬و )‪(١١٦ – ٧‬‬
‫أداء اﻟﺪاﺋﺮﻩ‪.‬‬

‫ﺷﻜﻞ )‪ : (١١٤ – ٧‬ﻣﺨﻄﻂ داﺋﺮة ﻣﻔﺮق اﻟﺘﺮدد )‪ (diplexer‬ﻓﻰ ﻣﺜﺎل )‪(١٥ – ٧‬‬

‫ﺷﻜﻞ )‪ : (١١٥ – ٧‬أداء داﺋﺮة ﻣﻔﺮق اﻟﺘﺮدد )‪ (diplexer‬ﻓﻰ ﻣﺜﺎل )‪(١٥ – ٧‬‬

‫‪377‬‬

‫ﺷﻜﻞ )‪ : (١١٦ – ٧‬اﻟﻌﺰل ﺑﻴﻦ اﻟﻤﺨﺮﺟﻴﻦ ﺑﺪاﺋﺮة ﻣﻔﺮق اﻟﺘﺮدد )‪ (diplexer‬ﻓﻰ ﻣﺜﺎل )‪(١٥ – ٧‬‬

‫ه ﻨﺎك دواﺋ ﺮ ﻣﻔ ﺮﻗﺎت ﺗ ﺮدد )‪ (Multiplexers‬ﺗﺒﺎع ﺗﺠﺎرﻳﺎ ﺗﺴﻤﺢ ﺑﻤﺮور ﻗﻨﻮات ﻣﻌﻴﻨﻪ ﺛﺎﺑﺘﻪ و هﻨﺎك أﻧﻮاع أﺧﺮى‬
‫ﺗﺤ ﺘﻮى ﻋﻠ ﻰ دواﺋ ﺮ ﻓﻠﺘ ﺮ ﺑﻬ ﺎ اﻣﻜﺎﻧ ﻴﺔ اﻟﺘﻮﻟ ﻴﻒ )‪ (Tuning‬و ه ﻨﺎك أﻧ ﻮاع أﺧ ﺮى ﺗﺴﻤﺢ ﺑﺎﻏﻼق و ﻓﺘﺢ اﻟﻘﻨﻮات ﺑﻬﺎ‬
‫ﻋ ﻦ ﻃ ﺮﻳﻖ ﻣﻔﺎﺗ ﻴﺢ اﻟﻜﺘ ﺮوﻧﻴﻪ )‪ (electronic switches‬ﻳ ﺘﻢ اﻟﺘﺤﻜﻢ ﺑﻬﺎ ﺑﻮاﺳﻄﺔ )ﻓﻮﻟﺖ ﻣﺴﺘﻤﺮ ‪ (dc voltage‬و‬
‫ه ﻨﺎك أﻧ ﻮاع أﺧﺮى ﻣﻦ ﻣﻔﺮﻗﺎت اﻟﺘﺮدد ﺗﺴﻤﺢ ﺑﺎﻟﺘﻮﻟﻴﻒ ﻣﻊ و ﺟﻮد اﻟﻤﻔﺎﺗﻴﺢ و هﻨﺎك أﻧﻮاع ﺗﻘﺴﻢ اﻟﻘﻨﻮات اﻟﻰ ﺣﺰم أو‬
‫ﺗﺠﻤﻴﻌﺎت )‪ (banks‬ﻳﺘﻢ اﻻﺧﺘﻴﺎر ﺑﻴﻨﻬﺎ ﺑﻮاﺳﻄﺔ ﻣﻔﺎﺗﻴﺢ اﻟﻰ ﺁﺧﺮ اﻷﻧﻮاع اﻟﻤﻨﺘﺠﻪ ﺗﺠﺎرﻳﺎ‪.‬‬
‫ﻋ ﺪد اﻟﻘ ﻨﻮات ﻗ ﺪ ﻳﻜ ﻮن ﺻ ﻐﻴﺮا و ﻗ ﺪ ﻳﺼ ﻞ اﻟ ﻰ ﻋ ﺪد آﺒﻴ ﺮ ‪ ،‬ﻋﻠ ﻰ ﺳ ﺒﻴﻞ اﻟﻤ ﺜﺎل ﺗ ﻮﺟﺪ دواﺋ ﺮ ﻣﻔ ﺮﻗﺎت ﺗ ﺮدد‬
‫)‪ (Multiplexers‬ﺗﺒﺎع ﺗﺠﺎرﻳﺎ ﺑﺄﻋﺪاد ﻗﻨﻮات )‪ (2,3,4,16,40,...etc.‬و ﻏﻴﺮ ذﻟﻚ‪.‬‬
‫و دواﺋ ﺮ ﻣﻔ ﺮﻗﺎت اﻟﺘ ﺮدد اﻟﻤ ﺒﺎﻋﻪ ﺗﺠﺎرﻳ ﺎ ﻳ ﻮﺟﺪ ﻣ ﻨﻬﺎ ﻣ ﺎ ﻳﻌﻤ ﻞ ﻓﻰ ﺟﺰء ﻣﻦ ﺣﻴﺰ اﻟﻤﻴﻜﺮووﻳﻒ و ﻳﻮﺟﺪ أﻳﻀﺎ دواﺋﺮ‬
‫ﺗﻐﻄ ﻰ ﺣﻴ ﺰ اﻟﻤﻴﻜ ﺮووﻳﻒ و ﺟ ﺰء ﻣ ﻦ ﺣﻴ ﺰ اﻟﻤ ﻮﺟﺎت اﻟﻤﻠﻠﻴﻤﺘ ﺮﻳﻪ‪ .‬و ه ﻨﺎك ﺷ ﺮآﺎت ﻋﺪﻳ ﺪﻩ ﻻﻧ ﺘﺎج دواﺋﺮ ﻣﻔﺮﻗﺎت‬
‫اﻟﺘﺮدد ﻣﺜﻞ ) ‪Agilent , K & L microwave , Teledyne KW Microwave , Keithley , National‬‬
‫‪ (Instruments‬و ﻏﻴﺮهﺎ‪ .‬أﻧﻈﺮ ﻣﺮاﺟﻊ اﻻﻧﺘﺮﻧﺖ )‪.(i1 to i5‬‬

‫‪378‬‬

‫ﻤﺭﺍﺠﻊ ﺍﻟﻔﺼل ﺍﻟﺴﺎﺒﻊ‬
‫اﻟﺴﻨﻪ‬

‫ﻣﻜﺎن اﻟﻨﺸﺮ‬/‫دار اﻟﻨﺸﺮ‬

‫اﻟﻨﺎﺷﺮﻳﻦ‬/‫اﻟﻤﺆﻟﻔﻴﻦ‬

2001

John Wiley & Sons

1980

Artech House

Jia-Sheng Hong
M. J. Lancaster
G. Matthaei,
L. Young,
E.M.T. Jones

2006

CRC Press

Wai-Kai Chen

2003

John Wiley & Sons

2005

John Wiley & Sons

Inder Bahl
Prakash Bhartia
David M. Pozar

2005

Artech House

2005

John Wiley & Sons

1989

Heinemann Newnes Stefan
Niewiadomski

1990

Artech House

Stanislaw
Rosloniec

2002

Newnes

Steve Winder

2004

John Wiley & Sons

Joseph F. White

1992

Artech House

Max W. Medley

2002

Faculty of
Engineering - Cairo
University

Hesham I. M.
AL Anwar

2008

IEEE – APMC

Sha Luo,
Lei Zhu,
Sheng Sun

1979

Artech House

J.A.G. Malherbe

2008

IEEE - ICSPCS

Cornelis Jan
Kikkert

Noyan Kinayman
M. I. Aksun
I. A. Glover,
S. R. Pennock
P. R. Shepherd

379

‫اﺳﻢ اﻟﻜﺘﺎب أو اﻟﻮﺛﻴﻘﻪ‬
Microstrip Filters for
RF/Microwave Application
Microwave Filters,
Impedance Matching
Networks, and Coupling
Structures
Passive, Active and Digital
Filters
Microwave Solid State
nd
Circuit Design (2 edition)
Microwave Engineering
rd
(3 edition)
Modern Microwave Circuits
Microwave Devices,
Circuits and Subsystems for
Communications
Engineering
Filter Handbook a Practical
Design Guide
Algorithms for ComputerAided Design of Linear
Microwave Circuits
Analog and Digital Filter
Design (2nd edition)
High Frequency Techniques
- An Introduction to RF and
Microwave Engineering
Microwave and RF Circuits
Analysis, Synthesis and
Design
Computer Aided Design of
Microwave Planar Diode
Detectors (Ph.D. thesis)
Compact ChebyshevFunction Low-Pass Filters
with Stepped-Impedance
Hairpin Unit
Microwave Transmission
Line Filters
A Design Technique for
Microstrip Filters

1
2

3
4
5
6
7

8
9
10
11
12
13
14

15
16

‫ﺘﺎﺒﻊ ﻤﺭﺍﺠﻊ ﺍﻟﻔﺼل ﺍﻟﺴﺎﺒﻊ‬
‫اﻟﺴﻨﻪ‬

2004
2001

‫ﻣﻜﺎن اﻟﻨﺸﺮ‬/‫دار اﻟﻨﺸﺮ‬

High Frequency
Electronics
- March 2004
Springer

‫اﻟﻨﺎﺷﺮﻳﻦ‬/‫اﻟﻤﺆﻟﻔﻴﻦ‬

‫اﺳﻢ اﻟﻜﺘﺎب أو اﻟﻮﺛﻴﻘﻪ‬

M. A. Imparato,
R. C. Groulx,
R. Matarazzo

Design of a Microstrip
Bandpass Filter Using
Advanced Numerical Models

M. Makimoto
S. Yamashita

Microwave Resonators and
Filters for Wireless
Communication-Theory,
Design and Applications
Jia-Sheng Hong Cross-Coupled Microstrip
Hairpin-Resonator Filters
M. J. Lancaster

1998

IEEE-MTT
Vol. 46, No. 1,
JAN. 1998

2004
2007

RF Design
JAN. 2004
Artech House

2003

Artech House

2004

John Wiley & Sons

Kai Chang,
Lung-Hwa Hsieh.

2005

John Wiley & Sons

Kai Chang

A. Bhargava
R. K. Mongia
I. J. Bahl
P. Bhartia
J. Hong
Inder Bahl

17

18

19

Combline filter design
simplified
RF and Microwave Coupled
Line Circuits, (2nd edition )

20

Lumped Elements for RF
and Microwave Circuits
Microwave ring circuits and
related structures (2nd
edition)
Encyclopedia of RF and
Microwave Engineering

22

21

23
24

‫ﻤﺭﺍﺠﻊ ﺍﻻﻨﺘﺭﻨﺕ‬
(Agilent) ‫ﻣﻮﻗﻊ ﺷﺮآﺔ‬

i1

(Teledyne KW Microwave) ‫ﻣﻮﻗﻊ ﺷﺮآﺔ‬

i2

(Keithley) ‫ﻣﻮﻗﻊ ﺷﺮآﺔ‬

i3

(K & L microwave) ‫ﻣﻮﻗﻊ ﺷﺮآﺔ‬

i4

(National Instruments) ‫ﻣﻮﻗﻊ ﺷﺮآﺔ‬

i5

http://www.agilent.com
http://www.teledyne.com
http://www.keithley.com
www.klmicrowave.com
www.ni.com
www.ni.com/switches

380

‫‪Chapter 8 : Fabrication, Test and Measurement‬‬
‫اﻟﻔﺼﻞ اﻟﺜﺎﻣﻦ ‪ :‬اﻟﺘﺼﻨﻴﻊ و اﻻﺧﺘﺒﺎر و اﻟﻘﻴﺎس‬

‫)ﻤﻘﻁﻊ ‪ (١-٨‬ﺍﻟﺘﺼﻤﻴﻡ ﻭ ﺍﻟﺘﺼﻨﻴﻊ ﺒﻭﺍﺴﻁﺔ ﺍﻟﺤﺎﺴﺏ‬

‫‪:CAD/CAM‬‬

‫ﺗﺼ ﻤﻴﻢ دواﺋ ﺮ اﻟﻤﻴﻜ ﺮووﻳﻒ اﻟﺤﺪﻳ ﺜﻪ ﻋﻤ ﻮﻣﺎ ﻳ ﺮﺗﺒﻂ ﺑﺎﻟﺘﺼ ﻨﻴﻊ و اﻻﺧﺘ ﺒﺎر و اﻟﻘ ﻴﺎس ‪ ،‬و ﺣﺪﻳ ﺜﺎ ﺗ ﺮﺗﺒﻂ ﺟﻤ ﻴﻊ ه ﺬﻩ‬
‫اﻟﻤ ﺮاﺣﻞ ﺑﺎﻟﻬﻨﺪﺳ ﻪ ﺑﻤﺴ ﺎﻋﺪة اﻟﺤﺎﺳ ﺐ )‪ (Computer Aided Engineering CAE‬ﺣ ﻴﺚ ﻋﻤﻠ ﻴﺔ اﻟﺘﺼﻤﻴﻢ اﻟﺘﻰ‬
‫ﺗﺘﻢ ﺑﻮاﺳﻄﺔ اﻟﺤﺎﺳﺐ )‪ (CAD‬ﻳﻤﻜﻦ أن ﺗﺘﻢ ﺑﻨﻔﺲ اﻟﺒﺮﻧﺎﻣﺞ اﻟﺬى ﻳﺘﺤﻜﻢ ﻓﻰ ﻣﺎآﻴﻨﺔ اﻟﺘﺼﻨﻴﻊ ﻟﺘﺼﺒﺢ ﻋﻤﻠﻴﺔ ﺗﺼﻤﻴﻢ و‬
‫ﺗﺼﻨﻴﻊ ﺑﻮاﺳﻄﺔ اﻟﺤﺎﺳﺐ )‪.(CAD/CAM‬‬
‫آﻤﺎ أن هﻨﺎك ﺑﺮاﻣﺞ ﺑﻬﺎ اﻣﻜﺎﻧﻴﺔ ﻗﺮاءة اﻟﻨﺘﺎﺋﺞ اﻟﻤﻘﺎﺳﻪ و اﻟﺘﺤﻜﻢ ﻓﻰ أﺟﻬﺰة اﻟﻘﻴﺎس أى ﻋﻤﻞ ) ‪Computer Aided‬‬
‫‪.(Measurement‬‬
‫و ه ﻨﺎك ﺑ ﺮاﻣﺞ ﻋﺎﻣ ﻪ ﻟﺘﺤﻠ ﻴﻞ دواﺋ ﺮ اﻟﻤﻴﻜ ﺮووﻳﻒ ﻳﻤﻜ ﻨﻬﺎ اﻟﻘ ﻴﺎم ﺑﺠﻤ ﻴﻊ ه ﺬﻩ اﻟﻌﻤﻠ ﻴﺎت ﻣﻌ ﺎ ﻣﺜﻞ ﺑﺮاﻣﺞ ) ‪Agilent‬‬
‫‪ (ADS , Agilent Genesys‬و ﻏﻴﺮهﺎ‪ .‬راﺟﻊ اﻟﻔﺼﻞ اﻟﺨﺎﻣﺲ ﻣﻦ هﺬا اﻟﻜﺘﺎب و ﻣﺮﺟﻊ اﻻﻧﺘﺮﻧﺖ )‪.(i1‬‬

‫ﺷﻜﻞ )‪ : (١ – ٨‬ﻣﺨﻄﻂ ﻋﻤﻠﻴﺎت اﻟﺘﺼﻤﻴﻢ و اﻟﺘﺼﻨﻴﻊ و اﻻﺧﺘﺒﺎر‬

‫‪381‬‬

‫ﻋﻤﻠ ﻴﺎت اﻟﺘﺼ ﻤﻴﻢ و اﻟﺘﺼ ﻨﻴﻊ و اﻻﺧﺘ ﺒﺎر ﺗﺘﻢ ﺑﺎﻟﺘﺴﻠﺴﻞ اﻟﻤﺒﻴﻦ ﻓﻰ ﺷﻜﻞ )‪ .(١ – ٨‬ﻓﺒﻌﺪ ﺗﺤﺪﻳﺪ اﻟﻤﻮاﺻﻔﺎت اﻟﻤﻄﻠﻮﺑﻪ‬
‫ﻟﻠﺪاﺋ ﺮﻩ )‪ (Circuit Specifications‬ﻳ ﺘﻢ ﻋﻤ ﻞ اﻟﺘﺼ ﻤﻴﻢ اﻷوﻟ ﻰ أو اﻟﻤﺒﺪﺋ ﻰ )‪ (Preliminary Design‬ﺛ ﻢ ﻳﻠ ﻴﻪ‬
‫ﺗﺤﻠﻴﻞ اﻟﺪاﺋﺮﻩ و ﻋﻤﻞ اﻟﺒﺤﺚ ﻋﻦ اﻟﺤﻞ اﻷﻣﺜﻞ )‪.(Analysis and Optimization‬‬
‫ﺑﻌ ﺪ ذﻟ ﻚ ﻳ ﺘﻢ ﺣﺴ ﺎب )ﻧﺴ ﺒﺔ‪/‬اﺣ ﺘﻤﺎل( اﻟ ﻨﺠﺎح ﻟﻠﺪاﺋ ﺮﻩ ﺑﻮاﺳ ﻄﺔ )‪ (Yield Analysis‬ﺑ ﺎدراج اﻟﺴ ﻤﺎﺣﻴﻪ ﻓ ﻰ ﺗﺼﻨﻴﻊ‬
‫اﻟﻤﻜ ﻮﻧﺎت و اﻟﺴ ﻤﺎﺣﻴﻪ ﻓ ﻰ ﺗﺼ ﻨﻴﻊ اﻟﺨﻄ ﻮط اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﺪﻗ ﻴﻘﻪ ﻓ ﻰ اﻟﺘﺤﻠ ﻴﻞ و ﻳﻜ ﻮن ذﻟ ﻚ وﻓﻘ ﺎ ﻻﻣﻜﺎﻧ ﻴﺎت اﻟﺘﺼﻨﻴﻊ‬
‫اﻟﻤﺘﻮﻓﺮﻩ و ﻓﻰ ﺣﺎﻟﺔ ﺗﺤﻘﻴﻖ ﻧﺴﺒﺔ اﻟﻨﺠﺎح اﻟﻤﻄﻠﻮﺑﻪ ﻳﺘﻢ ﻋﻤﻞ ﻣﺨﻄﻂ اﻟﺪاﺋﺮﻩ‪.‬‬
‫ﻟﻜ ﻦ ﻓ ﻰ ﺣﺎﻟ ﺔ ﻋ ﺪم ﺗﺤﻘ ﻴﻖ ﻧﺴ ﺒﺔ اﻟﻨﺠﺎح اﻟﻤﻄﻠﻮﺑﻪ ﻳﺘﻢ ﻋﻤﻞ )‪ (Yield Optimization‬أو اﻟﺒﺤﺚ ﻋﻦ اﻟﺤﻞ اﻷﻣﺜﻞ‬
‫ﻟﺘﺤﺴ ﻴﻦ ﻧﺴ ﺒﺔ اﻟ ﻨﺠﺎح‪ .‬ﻓ ﺎذا ﻟ ﻢ ﻳ ﺘﻢ اﻟﺤﺼﻮل ﻋﻠﻰ ﻧﺴﺒﺔ اﻟﻨﺠﺎح اﻟﻤﻄﻠﻮﺑﻪ ﻳﺘﻢ اﻋﺎدة ﻋﻤﻞ اﻟﺘﺼﻤﻴﻢ اﻷوﻟﻰ أو اﻟﻤﺒﺪﺋﻰ‬
‫)‪ (Preliminary Design‬و ﻧﺘ ﺒﻊ ﻧﻔ ﺲ اﻟﺨﻄﻮات اﻟﺴﺎﺑﻘﻪ‪ .‬أﻣﺎ ﻓﻰ ﺣﺎﻟﺔ ﺗﺤﻘﻴﻖ ﻧﺴﺒﺔ اﻟﻨﺠﺎح اﻟﻤﻄﻠﻮﺑﻪ ﻓﻴﺘﻢ ﻋﻤﻞ‬
‫ﻣﺨﻄﻂ اﻟﺪاﺋﺮﻩ )‪ (Layout Production‬ﺛﻢ ﺗﺼﻨﻴﻊ اﻟﺪاﺋﺮﻩ )‪.(Fabrication‬‬
‫ﺑﻌ ﺪ ذﻟ ﻚ ﻧﻘ ﻮم ﺑﻌﻤ ﻞ اﻻﺧﺘ ﺒﺎر أو اﻟﻘ ﻴﺎس )‪ (Test & Measurement‬ﻓ ﺎذا ﻟ ﻢ ﻧﺤﺼ ﻞ ﻋﻠ ﻰ اﻟﻨﺘ ﻴﺠﻪ اﻟﻤﻄﻠﻮﺑﻪ ﻳﺘﻢ‬
‫ﻋﻤ ﻞ ﺗﻮﻟﻴﻒ )‪ (Tuning‬ﺑﻤﻌﻨﻰ اﻟﺘﻐﻴﻴﺮ ﻓﻰ ﻣﺨﻄﻂ اﻟﺪاﺋﺮﻩ ﺳﻮاء ﺑﺸﺮاﺋﺢ ﻣﺘﺤﺮآﻪ )‪ (moving stripes‬أو ﺑﺎﻟﻘﺺ‬
‫ﺑﺎﻟﻠﻴﺰر )‪ (Laser Trimming‬أو آﻠﻴﻬﻤﺎ ﺑﻐﺮض اﻟﺤﺼﻮل ﻋﻠﻰ اﻟﻘﻴﺎس اﻟﻤﻄﻠﻮب ﻟﻠﺪاﺋﺮﻩ‪.‬‬
‫ﻣﻌﻈ ﻢ ﺑ ﺮاﻣﺞ ﺗﺤﻠ ﻴﻞ دواﺋ ﺮ اﻟﻤﻴﻜ ﺮووﻳﻒ اﻟﺤﺪﻳ ﺜﻪ ﺑﻬ ﺎ اﻣﻜﺎﻧﻴﺔ ﻋﻤﻞ )‪ (Yield analysis and optimization‬و‬
‫ﻻﻋﻄ ﺎء ﻣ ﺜﺎل ﻋﻠ ﻰ ه ﺬﻩ اﻟﻌﻤﻠ ﻴﺎت ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (٢ – ٨‬و ﺷ ﻜﻞ )‪ (٣ – ٨‬ﻧﺘﻴﺠﺔ ﺗﺤﻠﻴﻞ )‪ (Yield Analysis‬ﻟﻔﻠﺘﺮ‬
‫ﻣ ﺮور ﺗ ﺮددات ﻣﻨﺨﻔﻀ ﻪ )‪ (LPF‬ﺑ ﺎدراج اﻟﺴ ﻤﺎﺣﻴﻪ ﻓ ﻰ اﻟﺘﺼ ﻨﻴﻊ‪ .‬و ﻧﻼﺣ ﻆ أن ﺗ ﺮدد اﻟﻘﻄ ﻊ ﻟﻠﻔﻠﺘ ﺮ ﻗﺪ ﻳﺨﺘﻠﻒ ﺑﻌﺪ‬
‫اﻟﺘﺼﻨﻴﻊ ﺑﻘﻴﻢ آﺒﻴﺮﻩ و أﻧﻪ ﻏﻴﺮ ﻣﺤﺪد و ﺑﺎﻟﺘﺎﻟﻰ ﻓﺎن هﺬا اﻟﺘﺼﻤﻴﻢ ﻻ ﻳﺼﻠﺢ ﻟﺘﻨﻔﻴﺬ اﻟﺪاﺋﺮﻩ‪.‬‬

‫ﺷﻜﻞ )‪ : (٢ – ٨‬اﻟﻘﻴﻢ اﻟﻤﺤﺘﻤﻠﻪ ﻟـ )‪ (|S21|dB‬ﻟﻔﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات اﻟﻤﻨﺨﻔﻀﻪ ﺑﻌﺪ ﻋﻤﻞ )‪(Yield analysis‬‬

‫‪382‬‬

‫ﺷﻜﻞ )‪ : (٣ – ٨‬اﻟﻘﻴﻢ اﻟﻤﺤﺘﻤﻠﻪ ﻟـ )‪ (|S21|dB‬ﺑﺎﻟﻠﻮن اﻷﺳﻮد و )‪ (|S11|dB‬ﺑﺎﻟﻠﻮن اﻟﺮﻣﺎدى ﻟﻔﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات‬
‫اﻟﻤﻨﺨﻔﻀﻪ ﺑﻌﺪ ﻋﻤﻞ )‪(Yield analysis‬‬

‫ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (٤ – ٨‬ﻧﺘ ﻴﺠﺔ ﺗﺤﻠ ﻴﻞ )‪ (Yield Analysis‬ﺑ ﺎدراج اﻟﺴ ﻤﺎﺣﻴﻪ ﻓ ﻰ اﻟﺘﺼ ﻨﻴﻊ ﻟ ﻨﻔﺲ اﻟﻔﻠﺘ ﺮ ﺑﻌ ﺪ ﻋﻤ ﻞ‬
‫)‪ (Yield Optimization‬أى ﺑﻌ ﺪ ﺗﺤﺴ ﻴﻦ ﻧﺴ ﺒﺔ اﻟ ﻨﺠﺎح و ﻧﻼﺣ ﻆ أن ﻧ ﺘﺎﺋﺞ ﺗﺤﻠ ﻴﻞ اﻟﻌﻴ ﻨﺎت ﻣﻨﻄ ﺒﻘﻪ و أن ﺗ ﺮدد‬
‫اﻟﻘﻄﻊ أﺻﺒﺢ ﻣﺤﺪدا و ﺑﺎﻟﺘﺎﻟﻰ ﻓﺎن هﺬا اﻟﺘﺼﻤﻴﻢ أﺻﺒﺢ ﻳﺼﻠﺢ ﻟﺘﻨﻔﻴﺬ اﻟﺪاﺋﺮﻩ‪.‬‬

‫ﺷﻜﻞ )‪ : (٤ – ٨‬اﻟﻘﻴﻢ اﻟﻤﺤﺘﻤﻠﻪ ﻟـ )‪ (|S21|dB‬ﺑﺎﻟﻠﻮن اﻷﺳﻮد و )‪ (|S11|dB‬ﺑﺎﻟﻠﻮن اﻟﺮﻣﺎدى ﻟﻔﻠﺘﺮ ﻣﺮور اﻟﺘﺮددات‬
‫اﻟﻤﻨﺨﻔﻀﻪ ﺑﻌﺪ ﻋﻤﻞ )‪ (Yield optimization‬و اﻟﻮﺻﻮل اﻟﻰ اﻷﺑﻌﺎد اﻟﻨﻬﺎﺋﻴﻪ اﻟﻤﻄﻠﻮﺑﻪ ﻟﻠﺘﺼﻨﻴﻊ‬

‫ﻟﻌﻤ ﻞ )‪ (Yield analysis and optimization‬ﻧﺤ ﺘﺎج ﻟﻤﻌ ﺮﻓﺔ اﻟﺴ ﻤﺎﺣﻴﻪ ﻓ ﻰ ﺗﺼ ﻨﻴﻊ اﻟﻤﻜﻮﻧﺎت و اﻟﺴﻤﺎﺣﻴﻪ ﻓﻰ‬
‫ﺗﺼﻨﻴﻊ اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ و ﻳﺴﻬﻞ ذﻟﻚ ﻓﻰ ﺣﺎﻟﺔ اﻟﺘﺼﻨﻴﻊ ﺑﻤﺎآﻴﻨﺎت ﻣﻦ ﻧﻮع )‪.(CNC‬‬

‫‪383‬‬

‫أﻣ ﺎ ﻓ ﻰ ﺣﺎﻟ ﺔ اﺳ ﺘﺨﺪام ﻃ ﺮﻳﻘﺔ ﻃ ﺒﺎﻋﺔ اﻟﺪواﺋ ﺮ اﻟﻌﺎدﻳ ﻪ ﻓﻐﺎﻟ ﺒﺎ ﻻ ﻧﺴ ﺘﻄﻴﻊ ﻣﻌ ﺮﻓﺔ اﻟﺴ ﻤﺎﺣﻴﻪ ﻓ ﻰ ﺗﺼ ﻨﻴﻊ اﻟﺨﻄ ﻮط‬
‫اﻟﺸ ﺮﻳﻄﻴﻪ و ﺑﺎﻟﺘﺎﻟ ﻰ ﻻ ﻧﺴ ﺘﻄﻴﻊ ﻋﻤ ﻞ )‪ (Yield analysis and optimization‬ﺑﺎﻻﺿ ﺎﻓﻪ اﻟ ﻰ اﺣﺘﻤﺎﻟ ﻴﺔ وﺟ ﻮد‬
‫ﻋ ﻴﻮب ﺻ ﻨﺎﻋﻪ ﺗﺠﻌ ﻞ ﺗﻮﻗ ﻊ اﻷداء ﻏﻴ ﺮ ﻣﻤﻜ ﻦ‪ .‬و ﻣ ﻦ ﻣ ﺎ ﺗﻘ ﺪم ﻳﺘﻀ ﺢ أن ﺗﺼ ﻤﻴﻢ اﻟﺪاﺋﺮﻩ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ ﻣﺮﺗﺒﻂ‬
‫ﺑﻄﺮﻳﻘﺔ اﻟﺘﺼﻨﻴﻊ و دﻗﺘﻬﺎ ‪.‬‬

‫)ﻤﻘﻁﻊ ‪ (٢-٨‬ﺘﺼﻨﻴﻊ ﺍﻟﺩﺍﺌﺭﻩ ﺍﻟﻤﻁﺒﻭﻋﻪ ‪:PCB Fabrication‬‬

‫اﻟﻤﺮاﺟﻊ )‪ (3,4,5,6‬ﺗﺸﺮح اﻟﻌﺪﻳﺪ ﻣﻦ ﻃﺮق ﻃﺒﺎﻋﺔ اﻟﺪواﺋﺮ اﻟﻌﺎدﻳﻪ اﻟﺘﻰ ﺗﺼﻠﺢ ﻟﺘﺼﻨﻴﻊ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ‪.‬‬
‫و ﻳﻤﻜﻦ ﺗﻮﺿﻴﺢ اﻟﻄﺮﻳﻘﻪ اﻟﻤﺬآﻮرﻩ ﻓﻰ اﻟﻤﺮﺟﻊ )‪ (3‬آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫– ﻳ ﺘﻢ ﻋﻤ ﻞ اﻟﻘ ﻨﺎع )‪ (Mask‬اﻟﺨ ﺎص ﺑﺎﻟﺪاﺋ ﺮﻩ و ذﻟ ﻚ ﺑﻄ ﺒﺎﻋﺔ ﻣﺨﻄ ﻂ اﻟﺪاﺋ ﺮﻩ )‪ (Layout‬ﻋﻠ ﻰ ورﻗ ﻪ ﺑﻼﺳﺘﻴﻜﻴﻪ‬
‫ﺷﻔﺎﻓﻪ )‪ (Transparency Film‬ﺑﺎﺳﺘﺨﺪام ﺟﻬﺎز )رﺳﺎم ‪ (Plotter‬أو ﻃﺎﺑﻌﺔ ﻟﻴﺰر )‪.(Laser Printer‬‬
‫) ﻣﻠﺤ ﻮﻇﻪ ‪ :‬ﻳ ﺘﻢ اﺧﺘ ﻴﺎر ﺟﻬ ﺎز اﻟﺮﺳ ﺎم ‪ Plotter‬ﺣﺴ ﺐ دﻗ ﺔ اﻟﺘﺼ ﻨﻴﻊ اﻟﻤﻄﻠ ﻮﺑﻪ ﻟﻠﺨﻄ ﻮط واﻟﻤﺴ ﺎﻓﺎت ﺑﻴ ﻨﻬﺎ ‪،‬‬
‫ﻓﺎﻟﺠﻬ ﺎز اﻟ ﺬى ﻳ ﻨﻔﺬ أﻗ ﻞ ﻋ ﺮض ﻟﻠﺨﻄ ﻮط )‪ (minimum track width‬ﻣﻌ ﻴﻦ )‪ (120 µm‬ﻣ ﺜﻼ ﻳﻤﻜ ﻦ اﺳﺘﺨﺪاﻣﻪ‬
‫ﻟﺘﻨﻔ ﻴﺬ أﻗ ﻞ ﻋ ﺮض ﻟﺨ ﻂ ﺷ ﺮﻳﻄﻰ دﻗ ﻴﻖ ﺑﺎﻟﺪاﺋ ﺮﻩ ﻳﺴ ﺎوى )‪ (120 µm‬أﻳﻀ ﺎ ‪ ،‬و ﺑﺎﻟﻤ ﺜﻞ ﺟﻬﺎز اﻟﺮﺳﺎم اﻟﺬى ﻳﻨﻔﺬ أﻗﻞ‬
‫ﻣﺴ ﺎﻓﻪ ﺑ ﻴﻦ اﻟﺨﻄ ﻮط )‪ (minimum space between tracks‬ﺑﻘ ﻴﻤﻪ ﻣﻌﻴ ﻨﻪ )‪ (90 µm‬ﻣ ﺜﻼ ﻳﻤﻜ ﻦ اﺳ ﺘﺨﺪاﻣﻪ‬
‫ﻟﺘﻨﻔﻴﺬ أﻗﻞ ﻣﺴﺎﻓﻪ ﺑﻴﻦ ﺧﻄﻴﻦ ﺷﺮﻳﻄﻴﻴﻦ ﺗﺴﺎوى )‪ (90 µm‬أﻳﻀﺎ ﺑﺎﻟﺪاﺋﺮﻩ اﻟﻤﺮاد ﺗﺼﻨﻴﻌﻬﺎ(‬
‫– ﻋ ﻨﺪ ﻣﻌﺎﻣﻠ ﺔ اﻟﺸ ﺮﻳﺤﻪ )‪ (Handling‬ﻳﻔﻀ ﻞ أن ﻳﻜ ﻮن ذﻟ ﻚ ﺑﺎﺳ ﺘﺨﺪام ﻗﻔ ﺎزات ﻣ ﻦ اﻟ ﻨﺎﻳﻠﻮن ) ‪knit nylon‬‬
‫‪ (gloves‬أو ﻏﻴﺮهﺎ ﻣﻦ اﻟﻤﻮاد اﻟﻐﻴﺮ ﻣﺎﺻﻪ )‪. (non-absorbent material‬‬
‫– ﻳﺘﻢ ﻗﻄﻊ ﺟﺰء ﻣﻦ اﻟﺸﺮﻳﺤﻪ اﻟﺸﺮﻳﻄﻴﻪ ﺣﺴﺐ ﻃﻮل و ﻋﺮض ﻣﺨﻄﻂ اﻟﺪاﺋﺮﻩ اﻟﻤﺮاد ﺗﺼﻨﻴﻌﻬﺎ‪.‬‬
‫– اﻟﺸ ﺮﻳﺤﻪ اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﻤﻨ ﺘﺠﻪ ﺗﺠﺎرﻳ ﺎ ﺗﻜ ﻮن ﻣﻐﻄ ﺎﻩ ﻣ ﻦ اﻟﺠﻬﺘ ﻴﻦ ﺑﻄﺒﻘﺘ ﻰ ﻣﻮﺻ ﻞ و ﻓﻮق آﻞ ﻃﺒﻘﺔ ﻣﻮﺻﻞ ورﻗﻪ‬
‫ﺑﻼﺳ ﺘﻴﻜﻴﻪ ﺷ ﻔﺎﻓﻪ ﻋﺎزﻟ ﻪ ﻣﻠﺼ ﻘﻪ ﺑﻄ ﺒﻘﺔ اﻟﻤﻮﺻ ﻞ‪ .‬ﻟ ﺬﻟﻚ ﻳ ﺘﻢ ازاﻟ ﺔ اﻟ ﻮرﻗﻪ اﻟﺒﻼﺳ ﺘﻴﻜﻴﻪ ﻟﻠﺠﻬﻪ اﻟﻤﺮاد ﻃﺒﺎﻋﺔ اﻟﺪاﺋﺮﻩ‬
‫ﻋﻠ ﻴﻬﺎ ﻓﻘ ﻂ و ﻳ ﺘﻢ ﺗ ﺮك اﻟ ﻮرﻗﻪ اﻟﺒﻼﺳ ﺘﻴﻜﻴﻪ اﻟﻤﻠﺼ ﻘﻪ ﺑﺎﻟﺠﻬ ﻪ اﻷﺧ ﺮى )اﻟﺘﻰ ﺳﺘﻤﺜﻞ ﻃﺒﻘﺔ اﻟﻤﻮﺻﻞ اﻷرﺿﻰ ﻟﻠﺪاﺋﺮﻩ‬
‫اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ(‪.‬‬
‫– ﻳ ﺘﻢ ﺗﻨﻈ ﻴﻒ اﻟﺸ ﺮﻳﺤﻪ اﻟﺸ ﺮﻳﻄﻴﻪ ﺑﻮاﺳ ﻄﺔ ﻗﻄﻌ ﺔ ﻗﻤ ﺎش ﻧﺎﻋﻤ ﺔ ﻣﺒﻠﻠﻪ ﺑﻤﺬﻳﺐ ﻋﻀﻮي أو أﺳﻴﺘﻮن أو ﺑﻨﺰﻳﻦ‪ .‬ﺛﻢ ﻳﺘﻢ‬
‫اﻟﺘﺠﻔﻴﻒ ﺑﻮاﺳﻄﺔ ﻣﺠﻔﻒ )‪ (PCB Dryer‬أو ﺗﺮآﻬﺎ ﻟﺘﺠﻒ‪.‬‬
‫– ﻳ ﺘﻢ ﺗﻐﻄ ﻴﺔ ﺳ ﻄﺢ اﻟﻤﻮﺻ ﻞ اﻟﻤ ﺮاد ﻃ ﺒﺎﻋﺔ اﻟﺪاﺋ ﺮﻩ ﻋﻠ ﻴﻪ ﺑﻤ ﺎدﻩ ﻣ ﻦ ﻧ ﻮع )‪ (photo resist material‬أو ﻣ ﺎدﻩ‬
‫ﻣﻘﺎوﻣﻪ ﻟﻠﻀﻮء و ذﻟﻚ ﺑﺎﺳﺘﺨﺪام )رﺷﺎش ‪ (spray‬اﻟﺨﺎص ﺑﺬﻟﻚ‪.‬‬
‫– ﻟ ﻨﻘﻞ ﻣﺨﻄ ﻂ اﻟﺪاﺋ ﺮﻩ اﻟ ﻰ اﻟﺴ ﻄﺢ اﻟﻤﻐﻄ ﻰ ﺑﺎﻟﻤ ﺎدﻩ اﻟﻤﻘﺎوﻣ ﻪ ﻟﻠﻀ ﻮء ﻳ ﺘﻢ ﺗﺜﺒ ﻴﺖ اﻟﻘ ﻨﺎع )‪ (Mask‬اﻟﻤﺮﺳ ﻮم ﻋﻠ ﻴﻪ‬
‫ﻣﺨﻄﻂ اﻟﺪاﺋﺮﻩ ﺑﺎﻟﺠﻬﻪ اﻟﻤﺮاد اﻟﻄﺒﺎﻋﻪ ﻋﻠﻴﻬﺎ ﺛﻢ ﻳﺘﻢ ﺗﻌﺮﻳﺾ هﺬﻩ اﻟﺠﻬﻪ ﻟﻤﺼﺪر أﺷﻌﻪ ﻓﻮق ﺑﻨﻔﺴﺠﻴﻪ ) ‪Ultraviolet‬‬
‫‪ (Source or UV source‬ﻓﻰ ﺻﻨﺪوق ﻣﻌﺘﻢ ﻣﺨﺼﺺ ﻟﺬﻟﻚ ﻟﻤﺪﻩ ﺗﺘﻌﺪى دﻗﻴﻘﺘﺎن‪.‬‬

‫‪384‬‬

‫ﻓ ﻰ ﺣﺎﻟ ﺔ ﺗﻌ ﺬر اﻳﺠﺎد ﻣﺼﺪر أﺷﻌﻪ ﻓﻮق ﺑﻨﻔﺴﺠﻴﻪ ﻳﺘﻢ اﺳﺘﺨﺪام ﻟﻤﺒﺎت اﻟﻨﻴﻮن اﻟﻌﺎدﻳﻪ ﺑﺤﻴﺚ ﻳﺘﻢ ﺗﻌﺮﻳﺾ اﻟﺠﻬﻪ اﻟﻤﺮاد‬
‫اﻟﻄﺒﺎﻋﻪ ﻋﻠﻴﻬﺎ ﻟﻀﻮء اﻟﻨﻴﻮن ﻓﻰ ﺻﻨﺪوق ﻣﻌﺘﻢ ﻟﻤﺪﻩ ﺗﺘﻌﺪى رﺑﻊ ﺳﺎﻋﻪ‪.‬‬

‫ﺷﻜﻞ )‪ : (٥ – ٨‬ﺗﻌﺮﻳﺾ اﻟﺪاﺋﺮﻩ ﻟﻤﺼﺪر أﺷﻌﻪ ﻓﻮق ﺑﻨﻔﺴﺠﻴﻪ‪.‬‬

‫– ﻳ ﺘﻢ ﺗﻨﻈ ﻴﻒ اﻟﺴ ﻄﺢ اﻟﻤ ﺮاد اﻟﻄ ﺒﺎﻋﻪ ﻋﻠﻴﻪ ﺑﻮاﺳﻄﺔ اﻟﻤﺎء اﻟﻤﺨﻠﻮط ﺑﻤﺎدة )‪ (Sodium Hydroxide NaOH‬و‬
‫ذﻟ ﻚ ﻟﻤ ﺪة ﻋﺸ ﺮة دﻗﺎﺋ ﻖ و ﺗﺴ ﻤﻰ ه ﺬﻩ اﻟﻌﻤﻠ ﻴﻪ )‪ (etching in developer solution‬ﻟﻀ ﻤﺎن ازاﻟ ﺔ ﺑﺎﻗﻰ اﻟﻤﺎدﻩ‬
‫اﻟﻤﻘﺎوﻣﻪ ﻟﻠﻀﻮء ﻓﻰ اﻻﺟﺰاء اﻟﻐﻴﺮ ﻣﺮاد اﻟﻄﺒﺎﻋﻪ ﻋﻠﻴﻬﺎ و ذﻟﻚ ﻟﻀﻤﺎن ﻧﺠﺎح ﻋﻤﻠﻴﺔ اﻟﻄﺒﺎﻋﻪ‪.‬‬
‫و ﺑﻌﺪ ذﻟﻚ ﻳﺘﻢ ازاﻟﺔ هﺬا اﻟﻤﺤﻠﻮل ﻣﻦ ﻋﻠﻰ ﺳﻄﺢ اﻟﻤﻮﺻﻞ ﺑﺎﺳﺘﺨﺪام اﻟﺮش )‪.(spray wash‬‬

‫ﺷﻜﻞ )‪ : (٦ – ٨‬ﻋﻤﻠﻴﺔ ﺗﻨﻈﻴﻒ اﻟﺴﻄﺢ اﻟﻤﺮاد اﻟﻄﺒﺎﻋﻪ ﻋﻠﻴﻪ ﺑﻮاﺳﻄﺔ اﻟﻤﺎء اﻟﻤﺨﻠﻮط ﺑﻤﺎدة ) ‪Sodium‬‬
‫‪ (Hydroxide NaOH‬ﻟﻤﺪة ﻋﺸﺮة دﻗﺎﺋﻖ و ﺗﺴﻤﻰ هﺬﻩ اﻟﻌﻤﻠﻴﻪ )‪.(etching in developer solution‬‬

‫‪385‬‬

‫ﺑﻌ ﺪ ﻋﻤﻠ ﻴﺔ اﻟﺘﻨﻈ ﻴﻒ ﺗﻜ ﻮن اﻟﻄﺒﻘﻪ اﻟﺒﺎﻗﻴﻪ ﻋﻠﻰ ﺳﻄﺢ اﻟﻤﻮﺻﻞ ﻣﻦ اﻟﻤﺎدﻩ اﻟﻤﻘﺎوﻣﻪ ﻟﻠﻀﻮء ﻋﻠﻰ ﺷﻜﻞ ﻣﺨﻄﻂ اﻟﺪاﺋﺮﻩ‬
‫ﻓﻘﻂ‪.‬‬
‫– ﺑﻌ ﺪ ذﻟ ﻚ ﺗ ﺘﻢ ﻋﻤﻠ ﻴﺔ )‪ (Etching‬ﺣ ﻴﺚ ﻳ ﺘﻢ وﺿ ﻊ اﻟﺸ ﺮﻳﺤﻪ ﻓ ﻰ ﻣﺤﻠ ﻮل )‪ (Ferric Chloride‬أو آﻠ ﻮرﻳﺪ‬
‫اﻟﻔﻴ ﺮراﻳﺖ ﻻزاﻟ ﺔ اﻟﻤﻮﺻ ﻞ ﻓ ﻰ آ ﻞ اﻟﺴ ﻄﺢ اﻟﻤ ﺮاد اﻟﻄ ﺒﺎﻋﻪ ﻋﻠ ﻴﻪ ﻣ ﺎ ﻋﺪا اﻟﻄﺒﻘﻪ اﻟﺒﺎﻗﻴﻪ ﻣﻦ اﻟﻤﺎدﻩ اﻟﻤﻘﺎوﻣﻪ ﻟﻠﻀﻮء‬
‫ﻋﻠﻰ ﺷﻜﻞ ﻣﺨﻄﻂ اﻟﺪاﺋﺮﻩ‪ .‬ﻟﻴﺒﻘﻰ ﻣﺨﻄﻂ اﻟﺪاﺋﺮﻩ ﻓﻘﻂ‪ .‬و ﺗﺘﻢ هﺬﻩ اﻟﻌﻤﻠﻴﻪ ﻓﻰ ﻣﺪﻩ ﺗﺘﺮاوح ﺑﻴﻦ ﺛﻠﺚ و ﻧﺼﻒ ﺳﺎﻋﻪ‪.‬‬

‫ﺷﻜﻞ )‪ : (٧ – ٨‬ﻋﻤﻠﻴﺔ )‪ (Etching‬ﺑﻮﺿﻊ اﻟﺸﺮﻳﺤﻪ ﻓﻰ ﻣﺤﻠﻮل )‪(Ferric Chloride‬‬

‫– ﺑﻌ ﺪ ذﻟﻚ ﻳﺘﻢ ﻏﺴﻞ اﻟﺴﻄﺢ ﺑﺎﻟﻤﺎء و ﻣﺮاﺟﻌﺔ أﺑﻌﺎد اﻟﺪاﺋﺮﻩ اﻟﻤﻄﺒﻮﻋﻪ و ازاﻟﺔ اﻟﻮرﻗﻪ اﻟﺒﻼﺳﺘﻴﻜﻴﻪ ﻟﻠﺠﻬﻪ اﻟﺘﻰ ﻟﻢ ﻳﺘﻢ‬
‫اﻟﻄﺒﺎﻋﻪ ﻋﻠﻴﻬﺎ و اﻟﺘﻰ ﺗﻤﺜﻞ ﻃﺒﻘﺔ اﻟﻤﻮﺻﻞ اﻷرﺿﻰ ﻟﻠﺪاﺋﺮﻩ‪.‬‬
‫– ﺛ ﻢ ﻳ ﺘﻢ ﻋﻤ ﻞ اﻟﺘﺜﻘ ﻴﺐ أو ﻋﻤ ﻞ اﻟﻮﺻ ﻼت ﺑ ﺎﻷرض )‪ (Vias‬و ﻟﺤ ﺎم اﻟﻤﻜ ﻮﻧﺎت و ﻟﺤ ﺎم أو ﺗﻮﺻ ﻴﻞ اﻟﻤﻮﺻ ﻼت‬
‫اﻟﻤﺤﻮرﻳﻪ‪.‬‬

‫ﺷﻜﻞ )‪ : (٨ – ٨‬ﻟﺤﺎم ﻣﻮﺻﻞ ﻣﺤﻮرى )‪(coaxial connector‬‬

‫‪386‬‬

‫ه ﻨﺎك ﺷ ﺮآﺎت ﻣﺘﺨﺼﺼ ﻪ ﻓ ﻰ اﻧ ﺘﺎج أدوات و ﺗﺠﻬﻴ ﺰات ﻃ ﺒﺎﻋﺔ اﻟﺪواﺋ ﺮ ﺳ ﻮاء ﻋﻠ ﻰ اﻟﻤﺴ ﺘﻮى اﻟﻤﻌﻤﻠﻰ أو ﺧﻄﻮط‬
‫اﻻﻧ ﺘﺎج و اﻻﻧ ﺘﺎج اﻟﻜﺜ ﻴﻒ ﻣ ﺜﻞ ) ‪Bungard Elektronik , 911EDA Inc , Advance Reproductions‬‬
‫‪ (Corporation , Taiwan Union Technology Corp.‬و ﻏﻴ ﺮهﺎ ‪ ،‬راﺟ ﻊ ﻣ ﺮاﺟﻊ اﻻﻧﺘﺮﻧﺖ ﻣﻦ )‪ (i2‬اﻟﻰ‬
‫)‪.(i6‬‬
‫ه ﻨﺎك اﻟﻌﺪﻳ ﺪ ﻣ ﻦ ﻋ ﻴﻮب اﻟﺼ ﻨﺎﻋﻪ اﻟﺘ ﻰ ﺗ ﺆدى اﻟ ﻰ ﻓﺸ ﻞ ﺗﺼ ﻨﻴﻊ اﻟﺪواﺋ ﺮ اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﺪﻗ ﻴﻘﻪ ﺑﻄ ﺮق ﻃ ﺒﺎﻋﺔ اﻟﺪواﺋ ﺮ‬
‫اﻟﻌﺎدﻳ ﻪ ‪ ،‬ﻣ ﻨﻬﺎ ﻋ ﺪم اﻧ ﺘﻈﺎم ﻋ ﺮض اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ و اﻟﺘ ﻨﺎﻗﺺ اﻟﻤﻔﺎﺟ ﺊ ﻓﻰ ﻋﺮض اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ )‪ (notch‬و‬
‫اﻟ ﺰﻳﺎدﻩ اﻟﻤﻔﺎﺟ ﺌﻪ )وﺟ ﻮد زاﺋ ﺪﻩ( ﻓ ﻰ ﻋ ﺮض اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ أو اﻟﺘﺂآﻞ ﻓﻰ ﺟﺰء‪/‬أﺟﺰاء ﻣﻦ ﻃﺒﻘﺔ اﻟﻤﻮﺻﻞ ﺑﺎﻟﺨﻂ‬
‫اﻟﺸﺮﻳﻄﻰ و ﻳﺒﻴﻦ ﺷﻜﻞ )‪ (٩ – ٨‬هﺬﻩ اﻟﻌﻴﻮب‪.‬‬
‫ﻳﻤﻜﻦ اﻟﺘﻘﻠﻴﻞ ﻣﻦ هﺬﻩ اﻟﻌﻴﻮب ﺑﺎﻟﺘﻨﻔﻴﺬ اﻟﺠﻴﺪ ﻟﺨﻄﻮات اﻟﺘﺼﻨﻴﻊ‪.‬‬

‫ﺷﻜﻞ )‪ : (٩ – ٨‬ﺑﻌﺾ أﺷﻜﺎل ﻋﻴﻮب اﻟﺘﺼﻨﻴﻊ ﻓﻰ اﻟﺨﻄﻮط اﻟﻤﻨﻔﺬﻩ ﺑﻄﺮﻳﻘﺔ ﻃﺒﺎﻋﺔ اﻟﺪواﺋﺮ‪.‬‬

‫اﻟﻄ ﺮﻳﻘﻪ اﻷﻓﻀ ﻞ ﻟﺘﺼ ﻨﻴﻊ اﻟﺪواﺋ ﺮ اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﺪﻗ ﻴﻘﻪ ه ﻰ اﻟﺘﺼ ﻨﻴﻊ ﺑﻮاﺳ ﻄﺔ اﻟﺤﺎﺳ ﺐ ) ‪Computer Aided‬‬
‫‪ (Manufacturing CAM‬أى ﺑﺎﺳ ﺘﺨﺪام اﻟﻤﺎآﻴ ﻨﺎت اﻟﺘ ﻰ ﻳ ﺘﻢ اﻟ ﺘﺤﻜﻢ ﺑﻬ ﺎ رﻗﻤ ﻴﺎ ﻋ ﻦ ﻃ ﺮﻳﻖ اﻟﺤﺎﺳ ﺐ ﻣ ﻦ ﻧ ﻮع‬
‫)‪ (Computer Numerically Controlled CNC‬ﻟﺘﺼ ﻨﻴﻊ اﻟﺪاﺋﺮﻩ ﻣﺒﺎﺷﺮة ﻋﻦ ﻃﺮﻳﻖ ﺗﻤﺮﻳﺮ اﻟﻤﻠﻒ اﻟﻤﺤﺘﻮى‬
‫ﻋﻠ ﻰ اﻟﻤﺨﻄ ﻂ )‪ (Layout‬اﻟﻨﻬﺎﺋ ﻰ ﻟﻠﺪاﺋﺮﻩ ﻣﻦ اﻟﺤﺎﺳﺐ ﻟﻠﻤﺎآﻴﻨﻪ ﻋﻦ ﻃﺮﻳﻖ آﺎرت اﺿﺎﻓﻰ )‪(extension card‬‬
‫ﻣ ﻦ ﻧ ﻮع )‪ (GPIB or HPIB‬ﻣ ﺜﻼ )أو أى ﻧ ﻮع ﺁﺧ ﺮ( ﻳ ﺘﻢ ﺗ ﺮآﻴﺒﻪ ﻓ ﻰ اﻟﺤﺎﺳ ﺐ و ﺗﻮﺻ ﻴﻠﻪ ﻋ ﻦ ﻃﺮﻳﻖ آﺎﺑﻞ ﻣﻦ‬
‫ﻧﻔﺲ اﻟﻨﻮع اﻟﻰ اﻟﻤﺎآﻴﻨﻪ‪ .‬اﻟﻤﺮاﺟﻊ )‪ (4 , 5‬ﺗﺸﺮح ﺗﺼﻨﻴﻊ اﻟﺪواﺋﺮ ﺑﺎﺳﺘﺨﺪام ﻣﺎآﻴﻨﺎت )‪.(CNC‬‬
‫و هﻨﺎك ﻧﻮﻋﺎن ﻣﻦ ﻣﺎآﻴﻨﺎت )‪ (CNC‬اﻟﺘﻰ ﺗﻘﻮم ﺑﻬﺬا اﻟﻌﻤﻞ‪.‬‬
‫اﻟﻨﻮع اﻷول ﻣﺎآﻴﻨﺎت ذات أداﻩ أو ﻗﺎﻃﻊ ﻣﻴﻜﺎﻧﻴﻜﻰ اﻟﺘﻰ ﺗﻌﻤﻞ آﻔﺮﻳﺰﻩ و ﻣﺜﻘﺎب ) ‪CNC milling and drilling‬‬
‫‪ ، (machine or CNC Router‬أﻣ ﺎ اﻟ ﻨﻮع اﻟﺜﺎﻧ ﻰ ﻓﻬ ﻰ ﻣﺎآﻴ ﻨﺎت ذات أداﻩ أو ﻗﺎﻃ ﻊ ﻟﻴ ﺰر ) ‪Laser CNC‬‬
‫‪ (Machine‬و آﻼ اﻟﻨﻮﻋﻴﻦ ﻳﻘﻮم ﺑﺘﺼﻨﻴﻊ اﻟﺪاﺋﺮﻩ ﻣﺒﺎﺷﺮة و ﻋﻤﻞ ﻓﺘﺤﺎت اﻟﺘﻮﺻﻴﻞ ﺑﺎﻷرض )‪.(Vias‬‬

‫‪387‬‬

‫ﺷﻜﻞ )‪ : (١٠ – ٨‬ﺑﻌﺾ ﻣﺎآﻴﻨﺎت )‪ (CNC‬اﻟﻤﺴﺘﺨﺪﻣﻪ ﻓﻰ ﺻﻨﺎﻋﺔ اﻟﺪواﺋﺮ‬
‫و أﻣﺜﻠﻪ ﻋﻠﻰ أدوات اﻟﻘﻄﻊ اﻟﻤﻴﻜﺎﻧﻴﻜﻴﻪ‪.‬‬

‫ﺷﻜﻞ )‪ : (١١ – ٨‬رﺳﻢ ﻳﻮﺿﺢ ﺗﺜﺒﻴﺖ اﻟﺸﺮﻳﺤﻪ و ﺗﻌﻴﻴﻦ اﺣﺪاﺛﻰ اﻟﺼﻔﺮ ﻟﺒﺪأ اﻟﻌﻤﻞ ﺑﻤﺎآﻴﻨﺔ )‪(CNC‬‬

‫‪388‬‬

‫ﺗﻌ ﺘﻤﺪ ﻋﻤﻠ ﻴﺔ اﻟﺘﺼ ﻨﻴﻊ ﻋﻠ ﻰ اﻧ ﺘﺎج ﻣﺨﻄ ﻂ اﻟﺪاﺋﺮﻩ ﻓﻰ ﺷﻜﻞ ﻣﻠﻒ ﻳﺼﻠﺢ ﻟﻌﻤﻞ ﻣﺎآﻴﻨﺔ )‪ (CNC‬ﻟﻪ ﻓﻮرﻣﺎت ﻣﻌﻴﻨﻪ‬
‫ﻣ ﺜﻞ )‪ (DXF, GDSII, Gerber, PAD,...etc.‬و ﻏﻴ ﺮهﺎ و اﻟ ﺬى ﺗﻨ ﺘﺠﻪ ﻣﻌﻈ ﻢ اﻟﺒ ﺮاﻣﺞ اﻟﺤﺪﻳ ﺜﻪ ﻟﺘﺤﻠ ﻴﻞ‬
‫اﻟﺪواﺋﺮ‪.‬‬
‫ه ﻨﺎك ﺑ ﺮاﻣﺞ ﻋﺎﻣ ﻪ ﻟﺘﺤﻠ ﻴﻞ دواﺋ ﺮ اﻟﻤﻴﻜ ﺮووﻳﻒ ﻳﻤﻜ ﻨﻬﺎ اﻟﻘ ﻴﺎم ﺑﻌﻤﻠ ﻴﺔ اﻟﺘﺼ ﻨﻴﻊ ﻣﺒﺎﺷ ﺮة ﺑﻮاﺳﻄﺔ اﻟﺤﺎﺳﺐ ﺑﺎﺳﺘﺨﺪام‬
‫ﻣﺎآﻴﻨﺎت )‪ (CNC‬ﻣﺜﻞ ﺑﺮاﻣﺞ )‪ (ADS , Genesys‬و ﻏﻴﺮهﺎ‪.‬‬
‫و ه ﻨﺎك ﺑ ﺮاﻣﺞ ﺗﻮﻓ ﺮهﺎ اﻟﺸﺮآﻪ اﻟﻤﻨﺘﺠﻪ ﻟﻤﺎآﻴﻨﺔ )‪ (CNC‬ﻣﺘﻮاﻓﻘﻪ ﻟﻠﺘﺤﻜﻢ ﻓﻰ اﻟﻤﺎآﻴﻨﻪ و ﺗﻤﺮﻳﺮ ﻣﻠﻒ ﻣﺨﻄﻂ اﻟﺪاﺋﺮﻩ‬
‫و اﺗﻤ ﺎم ﻋﻤﻠ ﻴﺔ اﻟﺘﺼ ﻨﻴﻊ ﻣ ﺜﻞ ﺑ ﺮﻧﺎﻣﺞ )‪ (LPKF CircuitCAM‬اﻟ ﺬى ﻳﻌﻤ ﻞ ﻣ ﻊ ﻣﺎآﻴ ﻨﺎت ﺷ ﺮآﺔ )‪ ، (LPKF‬و‬
‫ﺑ ﺮﻧﺎﻣﺞ )‪ (InstantCAM‬اﻟ ﺬى ﻳﻌﻤ ﻞ ﻣ ﻊ اﻟﻌﺪﻳ ﺪ ﻣ ﻦ اﻟﻤﺎآﻴ ﻨﺎت ﻣ ﺜﻞ ﻣﺎآﻴ ﻨﺎت ﺷ ﺮآﺔ )‪ ، (Bungard‬و ﺑ ﺮﻧﺎﻣﺞ‬
‫)‪ (ISOPRO‬اﻟﺬى ﻳﻌﻤﻞ ﻣﻊ ﻣﺎآﻴﻨﺎت ﺷﺮآﺔ )‪.(T-Tech‬‬
‫ﻗ ﺒﻞ ﺑ ﺪأ اﻟﻌﻤ ﻞ ﻳ ﺘﻢ ﺗﺜﺒ ﻴﺖ اﻟﺸ ﺮﻳﺤﻪ اﻟﺸ ﺮﻳﻄﻴﻪ ﻓ ﻰ اﻟﻤﻜ ﺎن اﻟﻤﺨﺼ ﺺ ﻟﻬ ﺎ و ﺿ ﺒﻂ اﺣﺪاﺛ ﻰ اﻟﺼ ﻔﺮ ) ‪x-y zero‬‬
‫‪ (position‬اﻟﺬى ﺳﺘﺒﺪأ ﻣﻨﻪ أداة اﻟﻘﻄﻊ اﻟﻌﻤﻞ و ﺿﺒﻂ ﺧﻴﺎرات )‪ (options‬ﺑﺮﻧﺎﻣﺞ اﻟﺘﺤﻜﻢ ﻓﻰ اﻟﻤﺎآﻴﻨﻪ‪.‬‬
‫ﻳﻤﻜﻦ ﻋﻦ ﻃﺮﻳﻖ ﺑﺮﻧﺎﻣﺞ اﻟﺘﺤﻜﻢ اﺧﺘﻴﺎر أدوات اﻟﻘﻄﻊ و ﺳﺮﻋﺔ دوران اﻷداﻩ و ﺗﺤﺪﻳﺪ اﻻﺣﺪاﺛﻴﺎت‪.‬‬
‫اﺧﺘ ﻴﺎر و ﺗ ﺒﺪﻳﻞ أداة اﻟﻘﻄﻊ ﺑﺎﻟﻨﺴﺒﻪ ﻟﻠﻤﺎآﻴﻨﺎت ذات اﻟﻘﺎﻃﻊ اﻟﻤﻴﻜﺎﻧﻴﻜﻰ اﻣﺎ أن ﻳﺘﻢ ﻳﺪوﻳﺎ أو ﺑﻄﺮﻳﻘﻪ ﺁﻟﻴﻪ أﺛﻨﺎء اﻟﻌﻤﻞ ﻓﻰ‬
‫ﺑﻌﺾ اﻟﻤﺎآﻴﻨﺎت اﻟﺘﻰ ﺗﺴﻤﺢ ﺑﻬﺬﻩ اﻻﻣﻜﺎﻧﻴﻪ‪.‬‬
‫ﺗﻨﻈ ﻴﻒ اﻟ ﺰواﺋﺪ )اﻟ ﺮاﻳﺶ( ﻳ ﺘﻢ ﺑﺎﺳ ﺘﺨﺪام ﻃ ﺎرد ه ﻮاء )ﻣ ﻨﻔﺎخ( أﻣ ﺎ اﻟﺘﺒ ﺮﻳﺪ ﻓﻬ ﻮ ﺧ ﻴﺎر )‪ (option‬ﻣ ﻦ اﻟﺨ ﻴﺎرات‬
‫اﻟﻤﻮﺟﻮدﻩ ﻓﻰ ﺑﻌﺾ اﻟﻤﺎآﻴﻨﺎت و ﻳﺘﻢ ﺑﻮاﺳﻄﺔ ﺳﺎﺋﻞ ﻣﺒﺮد أو ﺗﺒﺮﻳﺪ ﺑﺎﻟﻬﻮاء‪.‬‬
‫ﺑﻌﺾ اﻟﻤﺎآﻴﻨﺎت ﺗﺴﻤﺢ ﺑﺎﺳﺘﺒﺪال اﻟﻘﺎﻃﻊ اﻟﻤﻴﻜﺎﻧﻴﻜﻰ ﺑﺄداﻩ ﺗﻘﻮم ﺑﻮﺿﻊ ﻣﻌﺠﻮن اﻟﻠﺤﺎم )‪ (solder paste‬ﻓﻰ أﻣﺎآﻨﻪ‪.‬‬
‫و ه ﻨﺎك أﻧ ﻮاع ﻣ ﻦ اﻟﻤﺎآﻴ ﻨﺎت ﺑﻬ ﺎ ﺧ ﻴﺎر ﺗ ﺮآﻴﺐ آﺎﻣﻴﺮا ﻟﻠﻘﻴﺎس )‪ (Measurement Camera‬ﻻﺧﺘﺒﺎر دﻗﺔ اﻷﺑﻌﺎد‬
‫ﺑﻌﺪ اﻟﺘﺼﻨﻴﻊ‪.‬‬
‫ﻟﻤﻸ ﻓﺘﺤﺎت اﻟﺘﻮﺻﻴﻞ ﺑﺎﻷرض )‪ (Vias‬ﺑﻤﺎدة ﻣﻮﺻﻠﻪ ﻳﺘﻢ اﺳﺘﺨﺪام ﺗﺠﻬﻴﺰات ﻳﺪوﻳﻪ ﻣﺜﻞ ) ‪LPKF EasyContac‬‬
‫‪.( and LPKF ProConduct‬‬
‫ﻳﻤﻜ ﻦ ﻟﻤﺎآﻴ ﻨﺎت )‪ (CNC‬ذات ﻗﺎﻃ ﻊ اﻟﻠﻴ ﺰر اﻟﻘ ﻴﺎم ﺑﻌﻤﻠ ﻴﺔ )‪ (Laser Trimming‬أو اﻟﻘ ﺺ ﺑﺎﻟﻠﻴ ﺰر أﺛ ﻨﺎء اﻟﻘ ﻴﺎس‬
‫ﺑﺎﺳ ﺘﺨﺪام أﺟﻬ ﺰة اﻟﻘ ﻴﺎس اﻟﻤﺨ ﺘﻠﻔﻪ و ﻣ ﻨﻬﺎ )‪ (Network Analyzer‬ﻟﻀ ﺒﻂ اﻷداء‪ .‬آﻤ ﺎ ﻳﻤﻜ ﻦ اﻟﻘﻴﺎم ﺑﻌﻤﻠﻴﺔ اﻟﻘﺺ‬
‫ﺑﺎﻟﻔﺮﻳ ﺰﻩ ﻟﻀ ﺒﻂ اﻷداء أﺛ ﻨﺎء اﻟﻘ ﻴﺎس ﺑﺎﺳ ﺘﺨﺪام ﻣﺎآﻴ ﻨﺎت )‪ (CNC‬ذات ﻗﺎﻃ ﻊ ﻣﻴﻜﺎﻧﻴﻜ ﻰ و ﻳﺸ ﺮح اﻟﻤ ﺮﺟﻊ )‪ (7‬ه ﺬا‬
‫اﻟﻤﻮﺿﻮع‪.‬‬
‫ﻋ ﻨﺪ اﻟﻌﻤ ﻞ ﺑﻤﺎآﻴ ﻨﺔ ذات ﻗﺎﻃ ﻊ ﻟﻴ ﺰر ﻳ ﺘﻢ اﺗﺨ ﺎذ اﺣﺘ ﻴﺎﻃﺎت ﻟﻌ ﺪم ﺗﻌ ﺮض اﻟﻌ ﻴﻦ ﻟﻠﺸ ﻌﺎع ﻣ ﺜﻞ وﺟ ﻮد اﻟﻤﺎآﻴ ﻨﻪ داﺧﻞ‬
‫ﻏﻼف زﺟﺎﺟﻰ ﻣﻠﻮن ﻳﺴﻤﺢ ﺑﺎﻟﺮؤﻳﻪ‪.‬‬
‫ﺗ ﻮﺟﺪ ﺑﻌ ﺾ اﻟﻤﺎآﻴ ﻨﺎت ذات اﻟﻘﺎﻃ ﻊ ﻣﻴﻜﺎﻧﻴﻜ ﻰ اﻟﺘ ﻰ ﻳﻤﻜ ﻨﻬﺎ ﺗﺼ ﻨﻴﻊ دواﺋ ﺮ اﻟﻤﻴﻜ ﺮووﻳﻒ ﻟﺠﻤ ﻴﻊ أﻧ ﻮاع اﻟﺸ ﺮاﺋﺢ‬
‫اﻟﺸﺮﻳﻄﻴﻪ‪.‬‬
‫ﻟﻜ ﻦ اﻟﻤﺎآﻴ ﻨﺎت ذات ﻗﺎﻃ ﻊ اﻟﻠﻴ ﺰر ﺗﻌﺘﺒﺮ اﻷﻓﻀﻞ ﻟﺘﺼﻨﻴﻊ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ ﻟﻤﺨﺘﻠﻒ أﻧﻮاع اﻟﺸﺮاﺋﺢ اﻟﺸﺮﻳﻄﻴﻪ ﺑﻤﺎ‬
‫ﻓﻴﻬﺎ اﻟﺸﺮاﺋﺢ اﻟﺴﻴﺮاﻣﻴﻜﻴﻪ و اﻟﺴﻴﺮاﻣﻴﻜﻴﻪ اﻟﻤﺨﻠﻮﻃﻪ‪.‬‬
‫دﻗ ﺔ اﻟﺘﺼ ﻨﻴﻊ ﻓ ﻰ ﺑﻌ ﺾ اﻟﻤﺎآﻴ ﻨﺎت ذات اﻟﻘﺎﻃ ﻊ اﻟﻤﻴﻜﺎﻧﻴﻜﻰ ﺗﺘﺮاوح ﻣﺎ ﺑﻴﻦ )‪ (200 µm to 100 µm‬ﺑﺎﻟﻨﺴﺒﻪ ﻷﻗﻞ‬
‫ﻋﺮض ﺧﻂ ﻣﻮﺻﻞ أو ﺧﻂ ﺷﺮﻳﻄﻰ ﻳﻤﻜﻦ ﺗﻨﻔﻴﺬﻩ‪.‬‬

‫‪389‬‬

‫ﺑﻴ ﻨﻤﺎ دﻗ ﺔ اﻟﺘﺼ ﻨﻴﻊ ﻓ ﻰ ﺑﻌ ﺾ اﻟﻤﺎآﻴ ﻨﺎت ذات ﻗﺎﻃ ﻊ اﻟﻠﻴ ﺰر ﻳﻤﻜ ﻦ أن ﺗﺼ ﻞ اﻟ ﻰ )‪ (50 µm‬ﺑﺎﻟﻨﺴ ﺒﻪ ﻟﻌ ﺮض اﻟﺨ ﻂ‬
‫اﻟﺸﺮﻳﻄﻰ ‪ ،‬و )‪ (25 µm‬ﺑﺎﻟﻨﺴﺒﻪ ﻟﻠﻤﺴﺎﻓﻪ ﺑﻴﻦ ﺧﻄﻴﻦ ﺷﺮﻳﻄﻴﻴﻦ‪.‬‬
‫و ﻟﺘﻮﺿ ﻴﺢ اﻟﻔ ﺎرق ﺑ ﻴﻦ إﻣﻜﺎﻧ ﻴﺎت اﻟﺘﺼ ﻨﻴﻊ ﻟﻤﺎآﻴ ﻨﺎت )‪ (CNC‬ﻳﺒ ﻴﻦ ﺟﺪول )‪ (١ – ٨‬ﻣﺜﺎﻻ ﻟﻤﻘﺎرﻧﻪ ﺑﻴﻦ ﻣﻮاﺻﻔﺎت‬
‫ﻣﺎآﻴﻨﺘﻴﻦ أﺣﺪاهﻤﺎ ذات ﻗﺎﻃﻊ ﻣﻴﻜﺎﻧﻴﻜﻰ و اﻟﺜﺎﻧﻴﻪ ذات ﻗﺎﻃﻊ ﻟﻴﺰر‪.‬‬
‫و ﺳ ﻮاء ﺑﺎﻟﻨﺴ ﺒﻪ ﻟﻤﻮاﺻ ﻔﺎت اﻟﺘﺼ ﻨﻴﻊ ﻣﺜﻞ اﻟﻤﻌﻄﺎﻩ ﻓﻰ اﻟﺠﺪول أو ﺑﺎﻟﻨﺴﺒﻪ ﻟﻼﻣﻜﺎﻧﻴﺎت اﻟﺨﺎﺻﻪ ﺑﺄآﺒﺮ ﻣﺴﺎﺣﻪ ﻟﻠﺪاﺋﺮﻩ‬
‫و أﻧ ﻮاع ﻣ ﻮاد اﻟﺸ ﺮاﺋﺢ اﻟﻤﻨﺎﺳ ﺒﻪ ﻟﻠﻌﻤ ﻞ و ﻣﻘﺎﺳ ﺎت ﻓ ﺘﺤﺎت اﻟﺘﻮﺻﻴﻞ ﺑﺎﻷرض )‪ (Vias‬و ﺳﺮﻋﺔ دوران أداة اﻟﻘﻄﻊ‬
‫اﻟﻤﻴﻜﺎﻧﻴﻜ ﻴﻪ و ﻣﻮاﺻ ﻔﺎت ﻣﺼ ﺪر اﻟﻠﻴ ﺰر و اﻟﻘ ﺪرﻩ اﻟﻜﻬ ﺮﺑﻴﻪ اﻟﻤﻄﻠ ﻮﺑﻪ ﻟﻠﺘﺸ ﻐﻴﻞ و اﻟ ﻮزن اﻟﻰ ﺁﺧﺮﻩ ‪ ،‬ﻳﻤﻜﻦ اﻟﺮﺟﻮع‬
‫ﻟﻤﻮاﻗ ﻊ اﻻﻧﺘ ﺮﻧﺖ ﻟﻠﺸ ﺮآﺎت اﻟﻤﻨ ﺘﺠﻪ و ﺻ ﻔﺤﺎت اﻟﺒﻴﺎﻧﺎت و اﻟﻜﺘﺎﻟﻮﺟﺎت )‪ (datasheets and catalogs‬اﻟﺨﺎﺻﻪ‬
‫ﺑﺎﻟﻤﺎآﻴﻨﺎت ﻟﻤﻌﺮﻓﺔ هﺬﻩ اﻟﻤﻮاﺻﻔﺎت ﻟﻜﻞ ﻃﺮاز ﻣﺎآﻴﻨﻪ )‪ (model‬ﻣﻌﻴﻦ‪.‬‬

‫ﻣﺎآﻴﻨﻪ ذات ﻗﺎﻃﻊ ﻣﻴﻜﺎﻧﻴﻜﻰ‬

‫ﻣﺎآﻴﻨﻪ ذات ﻗﺎﻃﻊ ﻟﻴﺰر‬

‫اﻟﻤﻮاﺻﻔﺎت‬

‫‪0.1 mm = 100 µm‬‬

‫‪0.05 mm = 50 µm‬‬

‫أﻗﻞ ﻋﺮض ﻟﺨﻂ اﻟﻤﻮﺻﻞ )أو اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ(‬

‫‪0.1 mm = 100 µm‬‬

‫‪0.025 mm = 25 µm‬‬

‫‪0.0075 mm = 7.5 µm‬‬

‫‪0.002 mm = 2 µm‬‬

‫اﻟﺴﻤﺎﺣﻴﻪ ‪resolution‬‬

‫‪±0.005 mm = ±5 µm‬‬

‫‪±0.002 mm = ±2 µm‬‬

‫دﻗﺔ اﻋﺎدة اﻟﺘﺼﻨﻴﻊ ‪repeatability‬‬

‫‪minimum track width‬‬
‫أﻗﻞ ﻣﺴﺎﻓﻪ ﺑﻴﻦ ﺧﻄﻰ ﻣﻮﺻﻞ )أو ﺧﻄﻴﻦ ﺷﺮﻳﻄﻴﻴﻦ(‬
‫‪minimum space between tracks‬‬

‫ﺟﺪول )‪ : (١ – ٨‬ﻣﺜﺎل ﻟﻤﻘﺎرﻧﻪ ﺑﻴﻦ ﻣﻮاﺻﻔﺎت ﻣﺎآﻴﻨﺘﻴﻦ أﺣﺪاهﻤﺎ ذات ﻗﺎﻃﻊ ﻣﻴﻜﺎﻧﻴﻜﻰ و اﻟﺜﺎﻧﻴﻪ ذات ﻗﺎﻃﻊ ﻟﻴﺰر‬

‫ه ﻨﺎك اﻟﻌﺪﻳ ﺪ ﻣ ﻦ اﻟﺸﺮآﺎت اﻷﻣﺮﻳﻜﻴﻪ و اﻷوروﺑﻴﻪ اﻟﻤﻨﺘﺠﻪ ﻟﻤﺎآﻴﻨﺎت )‪ (CNC‬ﻣﺜﻞ ) ‪Bungard Elektronik ,‬‬
‫‪ (LPKF , MULTICAM , T-Tech‬و ﻏﻴﺮهﺎ‪ .‬أﻧﻈﺮ ﻣﺮاﺟﻊ اﻻﻧﺘﺮﻧﺖ )‪.(i2,i7,i8,i9‬‬
‫و ه ﻨﺎك اﻟﻌﺪﻳ ﺪ ﻣ ﻦ اﻟﺸ ﺮآﺎت اﻟﺼ ﻴﻨﻴﻪ اﻟﻤﻨ ﺘﺠﻪ ﻟﻤﺎآﻴ ﻨﺎت )‪ (CNC‬ﻣ ﺜﻞ ) ‪Jinan XYZ-TECH CNC‬‬
‫‪Equipment Co., Ltd. , Perfect Laser (Wuhan) Co., Ltd. , uhan Gland Machinery‬‬
‫‪ (Co., Ltd.‬و ﻏﻴ ﺮهﺎ و اﻟﺘ ﻰ ﺗﺘﻤﻴ ﺰ ﺑﺄﺳ ﻌﺎر أﻗ ﻞ ﻣﻦ اﻟﺸﺮآﺎت اﻷﻣﺮﻳﻜﻴﻪ و اﻷوروﺑﻴﻪ‪ .‬أﻧﻈﺮ ﻣﺮاﺟﻊ اﻻﻧﺘﺮﻧﺖ‬
‫)‪.(i10,i11,i12,i13‬‬
‫ﺑﻌ ﺾ اﻟﺸ ﺮآﺎت اﻟﻤﻨ ﺘﺠﻪ ﻟﻤﺎآﻴ ﻨﺎت )‪ (CNC‬ﺗﻮﻓ ﺮ دورات ﺗﺪرﻳﺒ ﻴﻪ و‪/‬أو ﺗﻨ ﺘﺞ ﻣﺤﺎﺿﺮات ﻓﻴﺪﻳﻮ ﻟﺸﺮح اﻻﺳﺘﺨﺪام‬
‫ﻳﻤﻜﻦ ﺷﺮاؤهﺎ أو ﻃﻠﺒﻬﺎ آﺨﻴﺎر )‪ (option‬ﻣﻊ اﻟﻤﺎآﻴﻨﻪ‪.‬‬
‫ﻳﻤﻜ ﻦ اﻟ ﺮﺟﻮع ﻟﻤ ﺮﺟﻊ اﻻﻧﺘ ﺮﻧﺖ )‪ (i2‬ﻟﺘﺤﻤ ﻴﻞ و ﻣﺸ ﺎهﺪة ﻣﻠﻔ ﺎت ﻓ ﻴﺪﻳﻮ ﺧﺎﺻﻪ ﺑﺒﻌﺾ ﺗﺠﻬﻴﺰات ﻃﺒﺎﻋﺔ اﻟﺪواﺋﺮ و‬
‫ﻣﺎآﻴﻨﺎت )‪ (CNC‬ﻣﻊ ﺷﺮح اﺳﺘﺨﺪاﻣﻬﺎ ﻣﻦ اﻧﺘﺎج ﺷﺮآﺔ )‪.(Bungard Elektronik‬‬

‫‪390‬‬

‫)ﻤﻘﻁﻊ ‪ (٣-٨‬ﺍﻟﻤﻭﺼﻼﺕ ﺍﻟﻤﺤﻭﺭﻴﻪ ‪: Coaxial Connectors‬‬

‫ﻟﻨﻘﻞ اﻻﺷﺎرﻩ اﻟﻤﺎرﻩ ﻓﻰ اﻟﺪاﺋﺮﻩ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ اﻟﻰ ﺗﻜﻨﻮﻟﻮﺟﻴﺎ أﺧﺮى ﻣﺜﻞ ﻣﺮﺷﺪ اﻟﻤﻮﺟﻪ أو اﻟﻜﺎﺑﻼت اﻟﻤﺤﻮرﻳﻪ و‬
‫ﻏﻴ ﺮهﺎ ﻳ ﺘﻢ اﺳ ﺘﺨﺪام ﻣﺤ ﻮل أو ﻧﺎﻗ ﻞ )‪ (transition‬أو )ﻣﻄﻠ ﻖ ‪ (launcher‬ﻣ ﻦ ﺗﻜﻨﻮﻟﻮﺟ ﻴﺎ اﻟﺪاﺋ ﺮﻩ اﻟﺸ ﺮﻳﻄﻴﻪ‬
‫اﻟﺪﻗﻴﻘﻪ اﻟﻰ اﻟﺘﻜﻨﻮﻟﻮﺟﻴﺎ اﻷﺧﺮى‪.‬‬
‫ﺑﺘﻮﺻ ﻴﻞ ﻣﺤ ﻮل أو ﻧﺎﻗ ﻞ )‪ (transition‬ﻋ ﻨﺪ آ ﻞ ﻣﺨ ﺮج ﻣ ﻦ ﻣﺨ ﺎرج اﻟﺪاﺋ ﺮﻩ اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﺪﻗ ﻴﻘﻪ ﻳﺼ ﺒﺢ ﻣ ﻦ اﻟﺴﻬﻞ‬
‫اﻟﺘﻌﺎﻣﻞ ﻣﻊ اﻟﺪاﺋﺮﻩ و ﻗﻴﺎس أداؤهﺎ و ﺗﻮﺻﻴﻠﻬﺎ ﺑﺪواﺋﺮ أﺧﺮى‪.‬‬
‫و ﻗ ﺪ ﺳ ﺒﻖ ﻋ ﺮض ﺻ ﻮر ﺗﻮﺿ ﺢ ﺗﻮﺻ ﻴﻞ اﻟﻤﺤ ﻮل ﻣ ﻦ ﺗﻜﻨﻮﻟﻮﺟ ﻴﺎ اﻟﻜ ﺎﺑﻼت اﻟﻤﺤ ﻮرﻳﻪ اﻟ ﻰ ﺗﻜﻨﻮﻟﻮﺟ ﻴﺎ اﻟﺪواﺋ ﺮ‬
‫اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﺪﻗ ﻴﻘﻪ )‪ (Coaxial to Microstrip Transition‬ﻋ ﻨﺪ ﻣﺨﺮﺟ ﻰ داﺋ ﺮﻩ ﺷﺮﻳﻄﻴﻪ ﻓﻰ ﺷﻜﻞ )‪(١٤ - ١‬‬
‫و ﺷﻜﻞ )‪ (١٥ - ١‬ﻓﻰ اﻟﻔﺼﻞ اﻷول‪.‬‬
‫ﻳﺸ ﺮح اﻟﻤ ﺮﺟﻊ )‪ (8‬اﺳﺘﺨﺪام اﻟﻨﺎﻗﻼت أو اﻟﻤﺤﻮﻻت )‪ (transitions‬ﻣﺜﻞ اﻟﻤﺤﻮل ﻣﻦ ﺗﻜﻨﻮﻟﻮﺟﻴﺎ ﻣﺮﺷﺪ اﻟﻤﻮﺟﻪ اﻟﻰ‬
‫ﺗﻜﻨﻮﻟﻮﺟ ﻴﺎ اﻟﺪواﺋ ﺮ اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﺪﻗ ﻴﻘﻪ )‪ (Waveguide to Microstrip Transition‬و اﻟﻤﺤ ﻮل ﻣ ﻦ ﺗﻜﻨﻮﻟﻮﺟ ﻴﺎ‬
‫اﻟﻜ ﺎﺑﻼت اﻟﻤﺤ ﻮرﻳﻪ اﻟ ﻰ ﺗﻜﻨﻮﻟﻮﺟ ﻴﺎ اﻟﺪواﺋ ﺮ اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ )‪ (Coaxial to Microstrip Transition‬و هﻮ‬
‫اﻷآﺜﺮ اﺳﺘﺨﺪاﻣﺎ‪.‬‬
‫ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (١٢ – ٨‬أﺣ ﺪ أﻧ ﻮاع اﻟﻤﺤ ﻮﻻت ﻣ ﻦ ﺗﻜﻨﻮﻟﻮﺟ ﻴﺎ اﻟﻜ ﺎﺑﻼت اﻟﻤﺤ ﻮرﻳﻪ اﻟﻰ ﺗﻜﻨﻮﻟﻮﺟﻴﺎ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ‬
‫اﻟﺪﻗﻴﻘﻪ و هﻮ ﻣﻮﺻﻞ ﻣﺤﻮرى ﻣﻦ ﻧﻮع )‪.(4-Flange SMA female connector‬‬
‫ه ﺬا اﻟﻤﻮﺻ ﻞ اﻟﻤﺤ ﻮرى ﻟ ﻪ أرﺑ ﻊ ﻓ ﺘﺤﺎت )‪ (4 Flanges‬ﺗﺴﻤﺢ ﺑﺎﺳﺘﺨﺪام ﻣﺴﺎﻣﻴﺮ ﻟﻠﺘﺜﺒﻴﺖ و هﻮ ﻣﻦ ﻧﻮع )‪(SMA‬‬
‫اﻟﻘﻴﺎﺳﻰ و ﻧﻮع اﻟﻮﺻﻠﻪ )ﻣﺆﻧﺚ ‪ (female‬أو )‪.(Jack‬‬
‫و ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (١٣ – ٨‬ﻣﺜﺎﻟ ﻴﻦ ﻟﺘﻮﺻ ﻴﻞ ﻣﻮﺻ ﻞ ﻣﺤ ﻮرى ﻣﻦ ﻧﻮع )‪(4-Flange SMA female connector‬‬
‫ﺑﻤﺨﺮج داﺋﺮﻩ ﺷﺮﻳﻄﻴﻪ ﻷﻏﺮاض اﻟﻘﻴﺎس أو اﻟﺘﻮﺻﻴﻞ ﺑﺪاﺋﺮﻩ أﺧﺮى‪.‬‬

‫ﺷﻜﻞ )‪ : (١٢ – ٨‬ﻣﻮﺻﻞ ﻣﺤﻮرى ﻣﻦ ﻧﻮع )‪(4-Flange SMA female connector‬‬

‫‪391‬‬

‫ﺷﻜﻞ )‪ : (١٣ – ٨‬ﺗﻮﺻﻴﻞ ﻣﻮﺻﻞ ﻣﺤﻮرى ﻣﻦ ﻧﻮع )‪(4-Flange SMA female connector‬‬
‫ﺑﻤﺨﺮج داﺋﺮﻩ ﺷﺮﻳﻄﻴﻪ‪.‬‬

‫ﺷﻜﻞ )‪ : (١٤ – ٨‬ﻣﻘﻄﻊ ﻳﻮﺿﺢ آﻴﻔﻴﺔ ﺗﻮﺻﻴﻞ ﻣﻮﺻﻞ ﻣﺤﻮرى ﻣﻦ ﻧﻮع‬
‫)‪ (4-Flange SMA female connector‬ﺑﻤﺨﺮج داﺋﺮﻩ ﺷﺮﻳﻄﻴﻪ دﻗﻴﻘﻪ‪.‬‬

‫ﺷ ﻜﻞ )‪ (١٤ – ٨‬ﺑ ﻪ ﻣﻘﻄ ﻊ ﻳﻮﺿ ﺢ آﻴﻔ ﻴﺔ ﺗﻮﺻ ﻴﻞ ﻣﻮﺻ ﻞ ﻣﺤ ﻮرى ﻣ ﻦ ﻧ ﻮع ) ‪4-Flange SMA female‬‬
‫‪ (connector‬ﺑﻤﺨﺮج داﺋﺮﻩ ﺷﺮﻳﻄﻴﻪ دﻗﻴﻘﻪ‪.‬‬
‫ﻟﺘﻮﺻ ﻴﻞ ه ﺬا اﻟﻤﻮﺻ ﻞ اﻟﻤﺤ ﻮرى ﺑﻤﺨ ﺮج داﺋ ﺮﻩ ﺷ ﺮﻳﻄﻴﻪ دﻗ ﻴﻘﻪ ﻳ ﺘﻢ ﺗﺜﺒﻴ ﺘﻪ ﻓ ﻰ اﻟﻘﺎﻋ ﺪﻩ اﻟﻤﻌﺪﻧ ﻴﻪ اﻟﺘﻰ ﺗﻮﺿﻊ ﺗﺤﺖ‬
‫اﻟﺪاﺋﺮﻩ اﻟﺸﺮﻳﻄﻴﻪ ﺑﻤﺴﻤﺎرﻳﻦ ﻣﻦ ﺧﻼل اﻟﻔﺘﺤﺘﻴﻦ اﻟﺴﻔﻠﻴﺘﻴﻦ ﻟﻠﻤﻮﺻﻞ اﻟﻤﺤﻮرى‪.‬‬

‫‪392‬‬

‫ه ﺬﻩ اﻟﻘﺎﻋ ﺪﻩ اﻟﻤﻌﺪﻧ ﻴﻪ ﻣﻼﻣﺴ ﻪ ﻟﻄﺒﻘﺔ اﻟﻤﻮﺻﻞ اﻷرﺿﻰ ﻟﻠﺪاﺋﺮﻩ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ و ﺑﺎﻟﺘﺎﻟﻰ ﻳﻜﻮن اﻟﻄﺮف اﻟﺨﺎرﺟﻰ‬
‫ﻟﻠﻤﻮﺻﻞ اﻟﻤﺤﻮرى )‪ (outer conductor‬ﻗﺪ ﺗﻢ ﺗﻮﺻﻴﻠﻪ ﺑﺎﻷرض‪.‬‬
‫أﻣ ﺎ اﻟﻄ ﺮف اﻟﺪاﺧﻠ ﻰ ﻟﻠﻤﻮﺻﻞ اﻟﻤﺤﻮرى )‪ (inner conductor‬ﻓﻴﺘﻢ وﺿﻌﻪ ﻣﻼﻣﺴﺎ ﻟﻠﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﻤﻮﺟﻮد ﻋﻨﺪ‬
‫ﻣﺨ ﺮج اﻟﺪاﺋ ﺮﻩ )ﻋ ﻨﺪ ﺧ ﻂ اﻟﻤﻨﺘﺼ ﻒ اﻟ ﺬى ﻳﻘﺴ ﻢ ﻋ ﺮض اﻟﺨ ﻂ اﻟﺸ ﺮﻳﻄﻰ اﻟﻰ ﻧﺼﻔﻴﻦ( و ﻳﺘﻢ ﻟﺤﺎم اﻟﻄﺮف اﻟﺪاﺧﻠﻰ‬
‫ﻟﻠﻤﻮﺻﻞ اﻟﻤﺤﻮرى ﺑﺎﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ آﻤﺎ ﻳﻮﺿﺢ ﺷﻜﻞ )‪ (١٣ – ٨‬و ﺷﻜﻞ )‪.(١٤ – ٨‬‬
‫ه ﻨﺎك ﻋ ﺪد آﺒﻴ ﺮ ﻣ ﻦ اﻷﻧ ﻮاع اﻟﻘﻴﺎﺳ ﻴﻪ و ﻏﻴ ﺮ اﻟﻘﻴﺎﺳ ﻴﻪ ﻟﻠﻤﻮﺻ ﻼت اﻟﻤﺤ ﻮرﻳﻪ و هﻨﺎك اﻟﻌﺪﻳﺪ ﻣﻦ اﻷﺷﻜﺎل اﻟﻬﻨﺪﺳﻴﻪ‬
‫ﻟﻠﻤﻮﺻ ﻼت اﻟﻤﺤ ﻮرﻳﻪ اﻟﺘ ﻰ ﺗﺴ ﺘﺨﺪم آ ﻨﺎﻗﻞ أو ﻣﺤ ﻮل ﻣ ﻦ ﺗﻜﻨﻮﻟﻮﺟ ﻴﺎ اﻟﻜ ﺎﺑﻼت اﻟﻤﺤ ﻮرﻳﻪ اﻟ ﻰ ﺗﻜﻨﻮﻟﻮﺟ ﻴﺎ اﻟﺪواﺋ ﺮ‬
‫اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ ‪ ،‬و ﺗﺨﺘﻠﻒ ﻃﺮﻳﻘﺔ اﻟﺘﺜﺒﻴﺖ ﺑﺎﺧﺘﻼف اﻟﺸﻜﻞ اﻟﻬﻨﺪﺳﻰ ﻟﻠﻤﻮﺻﻞ اﻟﻤﺤﻮرى‪.‬‬
‫ﻟﻜ ﻦ ﻣﻬﻤ ﺎ اﺧ ﺘﻠﻒ ﺷ ﻜﻞ اﻟﻤﻮﺻ ﻞ اﻟﻤﺤ ﻮرى ﻓ ﺎن ﻃ ﺮﻳﻘﺔ اﻟﺘﺜﺒ ﻴﺖ ﻓ ﻰ اﻟﺪاﺋ ﺮﻩ اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﺪﻗ ﻴﻘﻪ ﻳﺠﺐ أن ﺗﺘﻢ ﺑﺤﻴﺚ‬
‫ﻳﻜ ﻮن اﻟﻄ ﺮف اﻟﺨﺎرﺟ ﻰ ﻟﻠﻤﻮﺻ ﻞ اﻟﻤﺤ ﻮرى )‪ (outer conductor‬ﻣﻮﺻ ﻼ ﺑ ﺎﻷرض )أو ﺑﻄ ﺒﻘﺔ اﻟﻤﻮﺻ ﻞ‬
‫اﻷرﺿ ﻰ ﻟﻠﺪاﺋ ﺮﻩ اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﺪﻗ ﻴﻘﻪ( و ﻳﻜﻮن اﻟﻄﺮف اﻟﺪاﺧﻠﻰ ﻟﻠﻤﻮﺻﻞ اﻟﻤﺤﻮرى )‪ (inner conductor‬ﻣﻮﺻﻼ‬
‫ﺑﺎﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ ﻋﻨﺪ ﻣﺨﺮج اﻟﺪاﺋﺮﻩ‪.‬‬
‫و ﻳﻌﻄﻰ ﺷﻜﻞ )‪ (١٥ – ٨‬أﻣﺜﻠﻪ ﻟﺒﻌﺾ اﻷﺷﻜﺎل اﻟﻬﻨﺪﺳﻴﻪ ﻟﻠﻤﻮﺻﻼت اﻟﻤﺤﻮرﻳﻪ اﻟﺘﻰ ﺗﺴﺘﺨﺪم آﻨﺎﻗﻞ )‪(transition‬‬
‫أو ﻣﻄﻠﻖ )‪ (launcher‬ﻣﻦ ﺗﻜﻨﻮﻟﻮﺟﻴﺎ اﻟﻜﺎﺑﻼت اﻟﻤﺤﻮرﻳﻪ اﻟﻰ ﺗﻜﻨﻮﻟﻮﺟﻴﺎ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ‪.‬‬

‫ﺷﻜﻞ )‪ : (١٥ – ٨‬أﻣﺜﻠﻪ ﻟﻠﻤﻮﺻﻼت اﻟﻤﺤﻮرﻳﻪ اﻟﺘﻰ ﺗﺴﺘﺨﺪم آﻨﺎﻗﻞ ﻣﻦ ﺗﻜﻨﻮﻟﻮﺟﻴﺎ اﻟﻜﺎﺑﻼت اﻟﻤﺤﻮرﻳﻪ‬
‫اﻟﻰ ﺗﻜﻨﻮﻟﻮﺟﻴﺎ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ‪.‬‬

‫‪393‬‬

‫ﻳﻌﻄ ﻰ ﺟ ﺪول )‪ (٢ – ٨‬أﺳ ﻤﺎء ﺑﻌ ﺾ أﻧ ﻮاع اﻟﻤﻮﺻ ﻼت اﻟﻤﺤ ﻮرﻳﻪ اﻟﻘﻴﺎﺳﻴﻪ و ﻏﻴﺮ اﻟﻘﻴﺎﺳﻴﻪ )أو اﻟﺨﺎﺻﻪ( اﻟﻤﻨﺘﺠﻪ‬
‫ﺗﺠﺎرﻳﺎ‪.‬‬
‫اﻟﻤﻮﺻﻼت اﻟﻤﺤﻮرﻳﻪ ﻏﻴﺮ اﻟﻘﻴﺎﺳﻴﻪ )أو اﻟﺨﺎﺻﻪ(‬

‫اﻟﻤﻮﺻﻼت اﻟﻤﺤﻮرﻳﻪ اﻟﻘﻴﺎﺳﻴﻪ‬

‫‪Special Coaxial Connectors‬‬

‫‪Standard Coaxial Connectors‬‬

‫‪SMA, SMB, SMC, SLB, SSMB, SSMC, AFI, QMA, FAKRA, AMC, QDS,‬‬
‫‪SSLB, SSMA, 7 mm (APC –7) , 7/16, Mini QDS, G874, MTNC, QN, MMBX,‬‬
‫‪BMA, TK, SC, HN, N-Type, , SMPM, MMS, MMT, SMCC, SBX, SBY.‬‬
‫‪TNC, ATNC, 3.5 mm (APC –3.5), SMP,‬‬
‫‪SSMP, 2.9 mm, 2.4 mm, 1.85 mm, BNC,‬‬
‫‪MCX, MMCX.‬‬
‫‪K-Type (2.92 mm), V-Type (1.85 mm),‬‬
‫‪W1 Connector (1 mm).‬‬
‫ﺟﺪول )‪ : (٢ – ٨‬ﺑﻌﺾ أﻧﻮاع اﻟﻤﻮﺻﻼت اﻟﻤﺤﻮرﻳﻪ اﻟﻘﻴﺎﺳﻴﻪ و ﻏﻴﺮ اﻟﻘﻴﺎﺳﻴﻪ‬

‫اﻟﻤﻮﺻ ﻼت اﻟﻤﺤ ﻮرﻳﻪ )‪ (coaxial connectors‬اﻟﻤﺒﺎﻋﻪ ﺗﺠﺎرﻳﺎ ﺗﻜﻮن اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ ﻟﻬﺎ ﻏﺎﻟﺒﺎ )‪(Zo = 50 Ω‬‬
‫ﻟﻜ ﻦ ﺗ ﻮﺟﺪ ﻣﻮﺻ ﻼت ﻣﺤ ﻮرﻳﻪ ﻟﻬ ﺎ ﻣﻌﺎوﻗ ﻪ ﻣﻤﻴﺰﻩ )‪ (Zo = 75 Ω‬و ﻳﺠﺐ اﻻﻧﺘﺒﺎﻩ ﻟﻘﻴﻤﺔ اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ ﻟﻠﻤﻮﺻﻞ‬
‫اﻟﻤﺤﻮرى ﻋﻨﺪ اﺳﺘﺨﺪاﻣﻪ‪.‬‬
‫ﻓﻴﻤﺎ ﻳﻠﻰ ﺷﺮح ﺑﻌﺾ ﻣﻮاﺻﻔﺎت اﻟﻤﻮﺻﻼت اﻟﻤﺤﻮرﻳﻪ اﻟﻤﺒﺎﻋﻪ ﺗﺠﺎرﻳﺎ‪:‬‬
‫– اﻟﻤﻮﺻ ﻞ اﻟﻤﺤ ﻮرى اﻟﻘﻴﺎﺳﻰ ﻣﻦ ﻧﻮع )‪ (SMA‬و هﻮ اﺧﺘﺼﺎر )‪ (Sub-Miniature-A‬و هﻮ اﻷآﺜﺮ اﺳﺘﺨﺪاﻣﺎ‬
‫آﻤﺤ ﻮل ﺑ ﻴﻦ اﻟﻤﻮﺻ ﻼت اﻟﻤﺤ ﻮرﻳﻪ و اﻟﺪواﺋ ﺮ اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ و هﻮ ﻣﻨﺎﺳﺐ ﻟﻠﻜﺜﻴﺮ ﻣﻦ ﺗﻄﺒﻴﻘﺎت اﻟﻤﻴﻜﺮووﻳﻒ و‬
‫ه ﻨﺎك ﻣﻮﺻ ﻼت ﻣﺤ ﻮرﻳﻪ ﻣ ﻦ ه ﺬا اﻟ ﻨﻮع ﺗﻌﻤ ﻞ ﺣﺘﻰ )‪ (18 GHz‬ﻟﻜﻦ هﻨﺎك ﻣﻮﺻﻼت ﻣﺤﻮرﻳﻪ ﺧﺎﺻﻪ أو دﻗﻴﻘﻪ‬
‫ﻣ ﻦ ه ﺬا اﻟ ﻨﻮع )‪ (precision connectors‬ﺗﻌﻤ ﻞ ﺣﺘ ﻰ ﺗ ﺮدد )‪ .(26.5 GHz‬و ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (١٦ – ٨‬ه ﺬا‬
‫اﻟﻤﻮﺻﻞ اﻟﻤﺤﻮرى‪.‬‬
‫– اﻟﻤﻮﺻ ﻞ اﻟﻤﺤ ﻮرى اﻟﻘﻴﺎﺳ ﻰ ﻣ ﻦ ﻧ ﻮع )‪ (N-Type‬و ه ﻮ ﻳﻌﻤ ﻞ ﺣﺘ ﻰ ﺗ ﺮدد )‪ (11 GHz‬ﻟﻜ ﻦ ه ﻨﺎك ﻣﻮﺻﻼت‬
‫ﻣﺤ ﻮرﻳﻪ ﺧﺎﺻ ﻪ أو دﻗﻴﻘﻪ ﻣﻦ هﺬا اﻟﻨﻮع )‪ (precision connectors‬ﺗﻌﻤﻞ ﺣﺘﻰ ﺗﺮدد )‪ .(18 GHz‬و ﻳﺒﻴﻦ ﺷﻜﻞ‬
‫)‪ (١٧ – ٨‬هﺬا اﻟﻤﻮﺻﻞ اﻟﻤﺤﻮرى‪.‬‬
‫– اﻟﻤﻮﺻ ﻞ اﻟﻤﺤ ﻮرى اﻟﻘﻴﺎﺳ ﻰ ﻣ ﻦ ﻧ ﻮع )‪ (TNC‬و ه ﻮ اﺧﺘﺼ ﺎر )‪ (Threaded-Navy-Connector‬و ه ﻮ‬
‫ﻳﻌﻤﻞ ﺣﺘﻰ ﺗﺮدد )‪ (12 GHz‬ﻟﻜﻦ هﻨﺎك ﻣﻮﺻﻼت ﻣﺤﻮرﻳﻪ ﻣﻦ هﺬا اﻟﻨﻮع ﺗﻌﻤﻞ ﺣﺘﻰ ﺗﺮدد )‪.(18 GHz‬‬
‫و ﻳﺴ ﺘﺨﺪم ﻓ ﻰ اﻟﺘﻄﺒ ﻴﻘﺎت اﻟﻌﺴ ﻜﺮﻳﻪ و ﺗﻄﺒ ﻴﻘﺎت اﻟﻄﻴ ﺮان و اﻟﻔﻀ ﺎء ﻧﻈﺮا ﻟﺘﺼﻤﻴﻤﻪ اﻟﺬى ﻳﺤﻘﻖ أداء ﺟﻴﺪ ﻓﻰ وﺟﻮد‬
‫اﻻهﺘﺰازات )‪ .(Vibrations‬و ﻳﺒﻴﻦ ﺷﻜﻞ )‪ (١٨ – ٨‬هﺬا اﻟﻤﻮﺻﻞ اﻟﻤﺤﻮرى‪.‬‬

‫‪394‬‬

Jack (Female)

Plug (Male)
(SMA) ‫ اﻟﻤﻮﺻﻞ اﻟﻤﺤﻮرى ﻣﻦ ﻧﻮع‬: (١٦ – ٨) ‫ﺷﻜﻞ‬

Jack (Female)

Plug (Male)
(N-Type) ‫ اﻟﻤﻮﺻﻞ اﻟﻤﺤﻮرى ﻣﻦ ﻧﻮع‬: (١٧ – ٨) ‫ﺷﻜﻞ‬

Plug (Male)

Jack (Female)
(TNC) ‫ اﻟﻤﻮﺻﻞ اﻟﻤﺤﻮرى ﻣﻦ ﻧﻮع‬: (١٨ – ٨) ‫ﺷﻜﻞ‬

395

‫– اﻟﻤﻮﺻ ﻞ اﻟﻤﺤ ﻮرى اﻟﻘﻴﺎﺳ ﻰ ﻣ ﻦ ﻧ ﻮع )‪ (APC–7‬أو )‪ (Amphenol Precision Connector 7 mm‬و‬
‫ﻳﺘﻤﻴ ﺰ ﺑﺄﻧ ﻪ ﻧﻮع واﺣﺪ ﺑﺪون ﻣﺬآﺮ أو ﻣﺆﻧﺚ )‪ (sexless - no male or female distinction‬و هﻮ ﻳﻌﻤﻞ ﺣﺘﻰ‬
‫ﺗﺮدد )‪ (18 GHz‬و ﻳﺴﺘﺨﺪم ﻓﻰ اﻟﻌﺪﻳﺪ ﻣﻦ اﻟﺘﻄﺒﻴﻘﺎت و ﻓﻰ أﺟﻬﺰة اﻟﻘﻴﺎس‪.‬‬
‫– اﻟﻤﻮﺻ ﻞ اﻟﻤﺤﻮرى اﻟﻘﻴﺎﺳﻰ ﻣﻦ ﻧﻮع )‪ (APC–3.5‬أو )‪(Amphenol Precision Connector 3.5 mm‬‬
‫و هﻮ ﻳﻌﻤﻞ ﺣﺘﻰ ﺗﺮدد )‪ (34 GHz‬و ﻳﺴﺘﺨﺪم ﻓﻰ اﻟﻌﺪﻳﺪ ﻣﻦ اﻟﺘﻄﺒﻴﻘﺎت و ﺧﺎﺻﺔ ﻓﻰ أﺟﻬﺰة اﻟﻘﻴﺎس‪.‬‬
‫– اﻟﻤﻮﺻ ﻞ اﻟﻤﺤ ﻮرى اﻟﻘﻴﺎﺳﻰ ﻣﻦ ﻧﻮع )‪ (BNC‬و هﻮ اﺧﺘﺼﺎر )‪ (Bayonet-Navy-Connector‬و هﻮ ﻳﻌﻤﻞ‬
‫ﺣﺘﻰ ﺗﺮدد )‪ (4 GHz‬و هﻮ ﻳﺴﺘﺨﺪم آﺜﻴﺮا ﻣﻊ ﺗﺠﻬﻴﺰات اﻟﻤﻌﺎﻣﻞ و أﺟﻬﺰة اﻟﻘﻴﺎس‪.‬‬
‫– اﻟﻤﻮﺻ ﻞ اﻟﻤﺤ ﻮرى اﻟﻘﻴﺎﺳ ﻰ ﻣ ﻦ ﻧﻮع )‪ (SMB‬و هﻮ اﺧﺘﺼﺎر )‪ (Sub-Miniature-B‬و هﻮ ﻳﺤﻘﻖ أداء ﺟﻴﺪ‬
‫ﻣ ﻊ اﻟﺘﻄﺒ ﻴﻘﺎت ذات اﻻهﺘ ﺰازات اﻟﻤﺘﻮﺳ ﻄﻪ )‪ (moderate vibrations‬و ه ﻮ ﻳﻌﻤ ﻞ ﺣﺘ ﻰ ﺗ ﺮدد )‪ (4 GHz‬و‬
‫ﻳﺴ ﺘﺨﺪم آﺜﻴ ﺮا ﻣ ﻊ ﺗﻄﺒ ﻴﻘﺎت اﻟﺪواﺋ ﺮ اﻟ ﺮﻗﻤﻴﻪ ذات اﻟﺴﺮﻋﻪ اﻟﻌﺎﻟﻴﻪ ) ‪inter- or intra-board connections of‬‬
‫‪.(RF or digital signals‬‬
‫– اﻟﻤﻮﺻ ﻞ اﻟﻤﺤ ﻮرى اﻟﻘﻴﺎﺳ ﻰ ﻣ ﻦ ﻧ ﻮع )‪ (SMC‬و ه ﻮ اﺧﺘﺼ ﺎر )‪ (Sub-Miniature-C‬و ه ﻮ ﻳﺘﻤﻴ ﺰ ﺑﺼ ﻐﺮ‬
‫اﻟﺤﺠ ﻢ و ﻳﺤﻘ ﻖ أداء ﺟ ﻴﺪ ﻣ ﻊ اﻟﺘﻄﺒ ﻴﻘﺎت ذات اﻻهﺘﺰازات )‪ (vibrations‬و هﻨﺎك ﻣﻮﺻﻼت ﻣﻦ هﺬا اﻟﻨﻮع ﺗﻌﻤﻞ‬
‫ﺣﺘﻰ ﺗﺮدد )‪ (10 GHz‬و هﻮ ﻣﻨﺎﺳﺐ ﻟﻼﺳﺘﺨﺪام ﻣﻊ ﺗﻄﺒﻴﻘﺎت اﻻﺗﺼﺎﻻت ﻣﺜﻞ ) ‪microwave telephony and‬‬
‫‪.(other nonmilitary telecommunication‬‬
‫أى ﻣﻮﺻ ﻞ ﻣﺤ ﻮرى ﻣﻨ ﺘﺞ ﺗﺠﺎرﻳﺎ ﻳﻌﻤﻞ ﺣﺘﻰ ﺗﺮدد أﻋﻠﻰ ﻣﻦ اﻟﺬى ﻳﻌﻤﻞ ﻋﻨﺪﻩ اﻟﻤﻮﺻﻞ اﻟﻤﺤﻮرى اﻟﻘﻴﺎﺳﻰ ﻣﻦ ﻧﻔﺲ‬
‫اﻟﻨﻮع ﻳﻌﺘﺒﺮ ﻏﻴﺮ ﻗﻴﺎﺳﻰ أو ﺧﺎص )‪.(Special Connector‬‬
‫ﻳ ﺘﻢ اﺳ ﺘﺨﺪام )وﺻ ﻴﻞ أو ‪ (adapter‬ﻟﻠﺘﻮﺻ ﻴﻞ ﺑ ﻴﻦ ﻧﻮﻋ ﻴﻦ ﻣﺨﺘﻠﻔ ﻴﻦ ﻣ ﻦ اﻟﻤﻮﺻ ﻼت اﻟﻤﺤ ﻮرﻳﻪ )أو ﺑ ﻴﻦ ﻣﻮﺻﻠﻴﻦ‬
‫ﻣﺤﻮرﻳﻴﻦ ﻣﻦ ﻧﻔﺲ اﻟﻨﻮع و ﻟﻜﻦ آﻠﻴﻬﻤﺎ ﻣﺬآﺮ أو آﻠﻴﻬﻤﺎ ﻣﺆﻧﺚ(‪.‬‬

‫)‪SMA (Female) to N (Male‬‬

‫)‪TNC (Female) to SMA (Male‬‬

‫)‪SMA (Female) to TNC (Male‬‬

‫ﺷﻜﻞ )‪ : (١٩ – ٨‬أﻣﺜﻠﻪ ﻟﺒﻌﺾ أﻧﻮاع اﻟﻮﺻﻴﻞ )‪(adapter‬‬

‫ه ﻨﺎك ﻣﺠﻤ ﻮﻋﺎت ﻣ ﻦ اﻟﻤﻮﺻ ﻼت اﻟﻤﺤ ﻮرﻳﻪ ﻳﻄﻠ ﻖ ﻋﻠ ﻴﻬﺎ أﻧﻬ ﺎ ﻣ ﺘﻮاﻓﻘﻪ آﻬﺮﺑﻴﺎ و ﻣﻴﻜﺎﻧﻴﻜﻴﺎ ) ‪electrically and‬‬
‫‪ (mechanically compatible‬ﺑﻤﻌﻨ ﻰ أﻧﻬ ﺎ ﺗﺤﻘ ﻖ ﻧﻔ ﺲ اﻟﻤﻌﺎوﻗ ﻪ اﻟﻤﻤﻴ ﺰﻩ ﻋ ﻨﺪ اﻟ ﺘﻘﺎﺋﻬﺎ و ﻳﻤﻜ ﻦ ﺗ ﺮآﻴﺒﻬﺎ ﻣﻌ ﺎ‬
‫ﻣﻴﻜﺎﻧﻴﻜﻴﺎ‪.‬‬

‫‪396‬‬

‫و ﻣﻦ اﻣﺜﻠﺔ ﻣﺠﻤﻮﻋﺎت اﻟﻤﻮﺻﻼت اﻟﻤﺤﻮرﻳﻪ اﻟﻤﺘﻮاﻓﻘﻪ آﻬﺮﺑﻴﺎ و ﻣﻴﻜﺎﻧﻴﻜﻴﺎ اﻟﻤﺠﻤﻮﻋﻪ ) ‪SMA , 3.5 mm , K ,‬‬
‫‪ ، (2.92 mm‬و اﻟﻤﺠﻤﻮﻋﻪ )‪ ، (V , 2.4 mm , 2.0 mm , 1.85 mm‬و اﻟﻤﺠﻤﻮﻋﻪ )‪.(W1 , 1 mm‬‬
‫ﻣﻌﻨ ﻰ ذﻟ ﻚ أﻧ ﻪ ﻳﻤﻜ ﻦ ﺗ ﺮآﻴﺐ ﻣﻮﺻ ﻠﻴﻦ ﻣﺤﻮرﻳ ﻴﻦ ﻣ ﻦ ﻧ ﻮع )‪ (SMA‬و ﻣ ﻦ ﻧﻮع )‪ (3.5 mm‬ﻣﺜﻼ ﻣﻌﺎ دون ﺗﺄﺛﻴﺮ‬
‫ﻋﻠﻰ اﻷداء أو ﻧﺘﺎﺋﺞ اﻟﻘﻴﺎس ‪ ،‬آﻤﺎ ﻳﻤﻜﻦ ﺗﺮآﻴﺐ ﻣﻮﺻﻠﻴﻦ ﻣﺤﻮرﻳﻴﻦ ﻣﻦ ﻧﻮع )‪ (2.4 mm‬و ﻣﻦ ﻧﻮع )‪(1.85 mm‬‬
‫ﻣﺜﻼ ﻣﻌﺎ دون ﺗﺄﺛﻴﺮ ﻋﻠﻰ اﻷداء أو ﻧﺘﺎﺋﺞ اﻟﻘﻴﺎس و هﻜﺬا‪ .‬دون اﻟﺤﺎﺟﻪ ﻻﺳﺘﺨﺪام )وﺻﻴﻞ أو ‪.(adapter‬‬
‫اﻟﻤ ﻮاد اﻟﻤﺴ ﺘﺨﺪﻣﻪ ﻓ ﻰ ﺻ ﻨﺎﻋﺔ اﻷﺟ ﺰاء اﻟﻤﻌﺪﻧ ﻴﻪ ﻟﻠﻤﻮﺻ ﻼت اﻟﻤﺤ ﻮرﻳﻪ آﺜﻴ ﺮﻩ ﻣ ﻨﻬﺎ اﻟ ﺬهﺐ و اﻟ ﻨﺤﺎس و اﻟ ﺰﻧﻚ و‬
‫اﻟﻨ ﻴﻜﻞ و اﻟ ﻨﺤﺎس اﻷﺻ ﻔﺮ و اﻟﺼ ﻠﺐ اﻟ ﺬى ﻻ ﻳﺼ ﺪأ ) ‪Silver, Copper, Gold, Brass, Zinc, Nickel,‬‬
‫‪.(Stainless Steel‬‬
‫ﻗ ﺪ ﻳﻔﺼ ﻞ اﻟﻬ ﻮاء ﺑ ﻴﻦ اﻟﻤﻮﺻ ﻞ اﻟﺪاﺧﻠ ﻰ و اﻟﺨﺎرﺟ ﻰ ﻟﻠﻤﻮﺻ ﻞ اﻟﻤﺤ ﻮرى ) ‪inner and outer conductor of‬‬
‫‪ .(coaxial connector‬أو ﻗﺪ ﺗﺴﺘﺨﺪم ﻣﺎدﻩ ﻋﺎزﻟﻪ ﺑﻴﻨﻬﻤﺎ ﻣﺜﻞ ) ‪.(Teflon, Tefzel, polypropylene‬‬
‫هﻨﺎك ﻣﻮاﺻﻔﺎت ﻓﻨﻴﻪ ﻟﻠﻤﻮﺻﻼت اﻟﻤﺤﻮرﻳﻪ اﻟﻤﺒﺎﻋﻪ ﺗﺠﺎرﻳﺎ ﻣﺜﻞ ‪:‬‬
‫– )‪ (Corona‬ه ﻮ ﻗ ﻴﻤﺔ ﺟﻬ ﺪ )أو ﻓ ﻮﻟﺖ( ﻻ ﻳﺤ ﺪث ﻋ ﻨﺪﻩ اﻧﻬ ﻴﺎر ﺑ ﻴﻦ اﻟﻤﻮﺻ ﻞ اﻟﺪاﺧﻠ ﻰ و اﻟﺨﺎرﺟ ﻰ ﻟﻠﻤﻮﺻ ﻞ‬
‫اﻟﻤﺤﻮرى أو ) ‪minimum voltage requirement at which the breakdown of air gaps between‬‬
‫‪.(conductors will not occur‬‬
‫– )‪ (DWV‬ه ﻮ اﻗ ﻞ ﺟﻬ ﺪ )أو ﻓ ﻮﻟﺖ( ﻳﺤ ﺪث ﻋ ﻨﺪﻩ اﻧﻬ ﻴﺎر ﻟﻠﻌ ﺎزل اﻟﻤﻮﺟ ﻮد ﺑ ﻴﻦ اﻟﻤﻮﺻ ﻞ اﻟﺪاﺧﻠ ﻰ و اﻟﺨﺎرﺟ ﻰ‬
‫ﻟﻠﻤﻮﺻﻞ اﻟﻤﺤﻮرى )‪.(Dielectric Withstanding Voltage‬‬
‫– اﻟﺤﻴﺰ اﻟﺘﺮددى و اﻟﻤﻌﺎوﻗﻪ اﻟﻤﻤﻴﺰﻩ ﻟﻠﻤﻮﺻﻞ اﻟﻤﺤﻮرى‪.‬‬
‫‪ −‬ﻣﻘﺪار اﻟﻔﻘﺪ ﻓﻰ اﻻدﺧﺎل )‪ (Insertion Loss IL‬ﻟﻠﻤﻮﺻﻞ اﻟﻤﺤﻮرى‪) .‬راﺟﻊ ﺗﻌﺮﻳﻔﻪ ﻓﻰ اﻟﻔﺼﻞ اﻟﺴﺎﺑﻊ(‪.‬‬
‫– )‪ (VSWR‬ﻧﺴﺒﺔ اﻟﻤﻮﺟﻪ اﻟﻤﻮﻗﻮﻓﻪ ﻟﻠﻤﻮﺻﻞ اﻟﻤﺤﻮرى‪.‬‬
‫– )‪ (Working Voltage‬ه ﻮ أآﺒ ﺮ ﺟﻬ ﺪ )أو ﻓ ﻮﻟﺖ( ﻳﻌﻤ ﻞ ﻋ ﻨﺪﻩ اﻟﻤﻮﺻ ﻞ اﻟﻤﺤ ﻮرى ) ‪maximum safe‬‬
‫‪operating voltage of the connector over its rated frequency range and atmospheric‬‬
‫‪.(conditions‬‬
‫– )‪ (RF Leakage‬ﻣﻘ ﺪار ﺗﺴ ﺮب اﻻﺷ ﺎرﻩ ﺑﺎﻻﺷ ﻌﺎع ﻣ ﻦ اﻟﻤﻮﺻ ﻞ اﻟﻤﺤ ﻮرى ﻋ ﻨﺪ ﺗ ﺮدد أو ﺣﻴ ﺰ ﺗ ﺮددى ﻣﻌ ﻴﻦ‬
‫)‪.(the amount of signal which radiates from the connector with respect to frequency‬‬
‫اﻟﺸ ﺮآﺎت اﻟﻤﻨ ﺘﺠﻪ ﻟﻠﻤﻮﺻ ﻼت اﻟﻤﺤ ﻮرﻳﻪ ﺗﺼ ﺪر ﺻ ﻔﺤﺎت ﺑﻴﺎﻧﺎت و آﺘﺎﻟﻮﺟﺎت )‪(datasheets and catalogs‬‬
‫ﺗﺤ ﺘﻮى ﻋﻠ ﻰ اﻟﺮﺳ ﻮﻣﺎت اﻟﻬﻨﺪﺳ ﻴﻪ و اﻟﻤﻘﺎﺳ ﺎت و اﻟﻤﻮاﺻ ﻔﺎت اﻟﻔﻨ ﻴﻪ ﻟﻠﻤﻮﺻ ﻼت اﻟﻤﺤﻮرﻳﻪ و اﻷﺟﺰاء اﻟﻤﻨﻔﺼﻠﻪ و‬
‫ﻃﺮﻳﻘﺔ ﺗﺮآﻴﺒﻬﺎ اﻟﻰ ﺁﺧﺮﻩ‪.‬‬
‫ه ﻨﺎك اﻟﻌﺪﻳ ﺪ ﻣ ﻦ اﻟﺸ ﺮآﺎت اﻟﻤﻨﺘﺠﻪ ﻟﻠﻤﻮﺻﻼت اﻟﻤﺤﻮرﻳﻪ ﻣﺜﻞ ) ‪Aeroflex/Weinsche , Amphenol RF ,‬‬
‫‪ .(Anritsu , Applied Engineering Products‬راﺟﻊ ﻣﺮاﺟﻊ اﻻﻧﺘﺮﻧﺖ ﻣﻦ )‪ (i14‬اﻟﻰ )‪.(i18‬‬
‫و ه ﻨﺎك ﺷ ﺮآﺎت ﺻ ﻴﻨﻴﻪ ﻣﻨ ﺘﺠﻪ ﻟﻠﻤﻮﺻ ﻼت اﻟﻤﺤ ﻮرﻳﻪ ﻣ ﺜﻞ ) ‪Jiangsu Dongya Electronic Co., Ltd.‬‬
‫‪,Danyang Hengtong Electronic Co., Ltd. , Changzhou Wujin Senyu Electronics Co.,‬‬
‫‪ .(Ltd. ,Nanjing Moyi Import & Export Co., Ltd.‬و ﺷ ﺮآﺔ )‪ (Aliner‬ﺑ ﺘﺎﻳﻮان‪ .‬راﺟ ﻊ ﻣ ﺮاﺟﻊ‬
‫اﻻﻧﺘﺮﻧﺖ ﻣﻦ )‪ (i19‬اﻟﻰ )‪.(i24‬‬

‫‪397‬‬

‫ﺑﻌ ﺾ اﻟﺸ ﺮآﺎت اﻟﻤﻨ ﺘﺠﻪ ﻟﻤﺴ ﺎﻋﺪات و أﺟﻬ ﺰة اﻟﻘ ﻴﺎس ﻣ ﺜﻞ ﺷ ﺮآﺘﻰ )‪ (Maury , Agilent‬ﺗﻨ ﺘﺞ أداة أو ﺟﻬ ﺎز‬
‫)‪ (connector gauge‬اﻟ ﺬى ﻳﺴ ﺘﺨﺪم ﻟﻀ ﻤﺎن اﻟ ﺘﺄآﺪ ﻣ ﻦ اﻷﺑﻌ ﺎد اﻟﻤﻴﻜﺎﻧﻴﻜ ﻴﻪ ﺑ ﻴﻦ اﻟﻤﻮﺻ ﻞ اﻟﺪاﺧﻠ ﻰ و اﻟﺨﺎرﺟ ﻰ‬
‫ﻟﻠﻤﻮﺻ ﻞ اﻟﻤﺤ ﻮرى )‪ (inner and outer conductor of coaxial connector‬و أﺑﻌ ﺎد و ﻣﻮاﺻ ﻔﺎت ﻣ ﺜﻞ‬
‫)‪ (pin depth, setback and dielectric protrusion‬ﻟﻠ ﺘﺄآﺪ ﻣ ﻦ أﻧﻬ ﺎ ﺳ ﻠﻴﻤﻪ أو داﺧ ﻞ اﻟﺴ ﻤﺎﺣﻴﻪ اﻟﻤﻄﻠﻮﺑﻪ و‬
‫ﺑﺎﻟﺘﺎﻟ ﻰ ﺗﺤﻘ ﻖ اﻟﻤﻮاﺻ ﻔﺎت اﻟﻤﻄﻠ ﻮﺑﻪ ﻣ ﺜﻞ ﻧﺴ ﺒﺔ اﻟﻤ ﻮﺟﻪ اﻟﻤﻮﻗ ﻮﻓﻪ ﻟﻠﻤﻮﺻ ﻞ اﻟﻤﺤ ﻮرى و ﻏﻴ ﺮهﺎ و ﺗﺤﻘ ﻖ رﺑﻄ ﺎ‬
‫ﻣﻴﻜﺎﻧﻴﻜﻴﺎ دون ﻣﺸﺎآﻞ أو ﺗﺄﺛﻴﺮ ﻋﻠﻰ ﺳﻼﻣﺔ اﻟﻤﻮﺻﻞ اﻟﻤﺤﻮرى )‪.(to prevent connector damage‬‬
‫و ﻳﻔﻀ ﻞ اﺳ ﺘﺨﺪام أداة أو ﺟﻬ ﺎز )‪ (connector gauge‬اﻟﻤﻨﺎﺳ ﺒﻪ ﻟ ﻨﻮع اﻟﻤﻮﺻ ﻞ اﻟﻤﺤ ﻮرى ﻗ ﺒﻞ اﻟﻘ ﻴﺎس‬
‫ﺧﺼﻮﺻﺎ ﻓﻰ اﻟﺪواﺋﺮ و اﻟﻨﻈﻢ ذات اﻟﺘﻄﺒﻴﻘﺎت اﻟﺤﺮﺟﻪ‪ .‬راﺟﻊ ﻣﺮﺟﻌﻰ اﻻﻧﺘﺮﻧﺖ )‪.(i1 , i25‬‬

‫)ﻤﻘﻁﻊ ‪ (٤-٨‬ﻤﻌﺎﻤﻠﺔ ﺍﻟﻤﻜﻭﻨﺎﺕ ﻭ ﺍﻟﻠﺤﺎﻡ ‪:‬‬

‫اﻟﺸ ﺮآﺎت اﻟﻤﻨ ﺘﺠﻪ ﻟﻤﻜ ﻮﻧﺎت اﻟﻤﻴﻜ ﺮووﻳﻒ ﺗﺼﺪر ﻣﻄﺒﻮﻋﺎت و ﺻﻔﺤﺎت ﺑﻴﺎﻧﺎت )‪ (datasheets‬ﺗﻮﺿﺢ ﻣﻮاﺻﻔﺎت‬
‫اﻟﻤﻜ ﻮن و ﺗﺬآ ﺮ درﺟ ﺔ اﻟﺤ ﺮارﻩ اﻟﻤﻨﺎﺳ ﺒﻪ ﻟﻠﺤ ﺎم اﻟﻤﻜ ﻮن )أو أﻗﺼ ﻰ درﺟ ﺔ ﺣ ﺮارﻩ ﻟﻠﺤﺎم اﻟﻤﻜﻮن( و ﺗﺬآﺮ أﻳﻀﺎ اذا‬
‫آ ﺎن ه ﺬا اﻟﻤﻜ ﻮن ﺣﺴ ﺎس أو ﻳﺘﻌ ﺮض ﻟﻠﻌﻄ ﺐ ﺑﻔﻌ ﻞ اﻟﺸ ﺤﻨﺎت اﻻﺳ ﺘﺎﺗﻴﻜﻴﻪ ) ‪susceptible to damage by‬‬
‫‪.(electrostatic discharge ESD‬‬
‫آ ﻞ ﻃ ﺮق اﻟﻠﺤ ﺎم اﻟﻤﻌﺮوﻓﻪ ﻟﻤﻜﻮﻧﺎت ﺗﻜﻨﻮﻟﻮﺟﻴﺎ اﻟﻮﺿﻊ اﻟﺴﻄﺤﻰ )‪ (Surface Mounting Technology‬ﻳﻤﻜﻦ‬
‫اﺳﺘﺨﺪاﻣﻬﺎ ﻓﻰ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ ﻟﻜﻦ ﺑﺸﺮط ﺳﻼﻣﺔ اﻟﻤﻜﻮﻧﺎت و اﻟﺸﺮﻳﺤﻪ اﻟﺸﺮﻳﻄﻴﻪ‪.‬‬
‫ه ﻨﺎك ﻣﻜ ﻮﻧﺎت ﻳﻤﻜ ﻦ ﻟﺤﺎﻣﻬ ﺎ ﺑﺎﻟﻘﺼ ﺪﻳﺮ ﺑﺎﺳ ﺘﺨﺪام آﺎوﻳ ﺔ ﻟﺤ ﺎم )ﻣ ﻊ ﺿﺒﻂ درﺟﺔ اﻟﺤﺮارﻩ( ﻣﺜﻞ ﺑﻌﺾ اﻟﻤﻘﺎوﻣﺎت و‬
‫اﻟﻤﻜﺜﻔﺎت و اﻟﻤﻠﻔﺎت و اﻟﻤﻮﺻﻼت اﻟﻤﺤﻮرﻳﻪ و ﻏﻴﺮهﺎ‪.‬‬
‫آﻤ ﺎ ﻓ ﻰ ﺷ ﻜﻞ )‪ (٨ – ٨‬اﻟ ﺬى ﻳﻌ ﺮض ﻟﺤ ﺎم ﻣﻮﺻ ﻞ ﻣﺤ ﻮرى )‪ (coaxial connector‬ﺑﺎﻟﻘﺼﺪﻳﺮ ﺑﺎﺳﺘﺨﺪام آﺎوﻳﺔ‬
‫ﻟﺤﺎم‪.‬‬
‫و ﻳﺴ ﺘﺨﺪم ﻟﻬ ﺬا اﻟﻐ ﺮض آﺎوﻳ ﺔ ﻟﺤ ﺎم ﻣ ﺰودﻩ ﺑﺎﻣﻜﺎﻧﻴﺔ ﺗﺤﻜﻢ‪ /‬ﺿﺒﻂ درﺟﺔ اﻟﺤﺮارﻩ و ذﻟﻚ ﻟﻠﺤﻔﺎظ ﻋﻠﻰ اﻟﻤﻜﻮن اﻟﺬى‬
‫ﻳ ﺘﻢ ﻟﺤﺎﻣ ﻪ و ﻋﻠ ﻰ اﻟﺸ ﺮﻳﺤﻪ اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﺘ ﻰ ﻗ ﺪ ﻻ ﺗﺘﺤﻤﻞ درﺟﺎت ﺣﺮارﻩ ﻣﻌﻴﻨﻪ ) و ﻳﻤﻜﻦ ﻣﻌﺮﻓﺔ ذﻟﻚ ﻣﻦ ﺻﻔﺤﺎت‬
‫اﻟﺒﻴﺎﻧﺎت ﻟﻠﺸﺮﻳﺤﻪ آﻤﺎ ﺷﺮﺣﺖ ﻣﻦ ﻗﺒﻞ ﻓﻰ اﻟﻔﺼﻞ اﻷول(‪.‬‬
‫و ه ﻨﺎك ﻣﻜ ﻮﻧﺎت ﻣ ﺜﻞ ﺑﻌ ﺾ ﻣﻘﺎوﻣﺎت اﻟﻘﺪرﻩ اﻟﻌﺎﻟﻴﻪ و ﺑﻌﺾ ﺗﺮاﻧﺰﺳﺘﻮرات اﻟﻘﺪرﻩ اﻟﻌﺎﻟﻴﻪ اﻟﺘﻰ ﻳﺘﻢ ﺗﺜﺒﻴﺘﻬﺎ ﺑﻤﺴﺎﻣﻴﺮ‬
‫ﻟﻠﺘﺜﺒ ﻴﺖ و ﻟﺤ ﺎم ﻃ ﺮﻓﻬﺎ )أو أﻃ ﺮاﻓﻬﺎ( ﺑﺎﻟﺪاﺋ ﺮﻩ اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﺪﻗ ﻴﻘﻪ ‪ ،‬و ﻗ ﺪ ﺳ ﺒﻖ ﺷ ﺮح ه ﺬا اﻟﻤﻮﺿ ﻮع ﻓ ﻰ اﻟﻔﺼ ﻞ‬
‫اﻟﺴ ﺎدس و ﺗ ﻢ ﻋ ﺮض ﺑﻌ ﺾ أﺷ ﻜﺎل ﻣﻘﺎوﻣ ﺎت اﻟﻘ ﺪرﻩ اﻟﻌﺎﻟ ﻴﻪ أو ﻧﻬﺎﻳ ﺎت اﻟﻘ ﺪرﻩ اﻟﻌﺎﻟ ﻴﻪ ﻓ ﻰ ﺷ ﻜﻞ )‪ (٥٧ - ٦‬و ﺗ ﻢ‬
‫ﺗﻮﺿﻴﺢ ﻃﺮﻳﻘﺔ ﺗﺜﺒﻴﺖ ﻣﻘﺎوﻣﻪ ﻟﻠﻘﺪرﻩ اﻟﻌﺎﻟﻴﻪ أو ﻧﻬﺎﻳﻪ ﻟﻠﻘﺪرﻩ اﻟﻌﺎﻟﻴﻪ ﺑﺪاﺋﺮﻩ ﺷﺮﻳﻄﻴﻪ ﻓﻰ ﺷﻜﻞ )‪.(٥٨ - ٦‬‬
‫ﻟﻜ ﻦ ه ﻨﺎك ﻋ ﺪد آﺒﻴ ﺮ ﻣ ﻦ ﻣﻜ ﻮﻧﺎت اﻟﻤﻴﻜ ﺮووﻳﻒ ﻣ ﺜﻞ اﻟﺪﻳ ﻮدات و اﻟﺘﺮاﻧﺰﻳﺴ ﺘﻮرات و ﻏﻴ ﺮهﺎ و آ ﺬﻟﻚ اﻟﺪواﺋ ﺮ‬
‫اﻟﻤ ﺘﻜﺎﻣﻠﻪ ﻣ ﻦ ﺑﻌ ﺾ اﻟﺘﻜﻨﻮﻟﻮﺟ ﻴﺎت اﻷﺧﺮى ﻣﺜﻞ )‪ (MMIC‬اﻟﺘﻰ ﻳﺘﻢ ﻟﺤﺎﻣﻬﺎ ﻋﻠﻰ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ و اﻟﺘﻰ‬

‫‪398‬‬

‫ﻻ ﺗ ﺘﺤﻤﻞ درﺟ ﺎت اﻟﺤﺮارﻩ اﻟﻌﺎﻟﻴﻪ ﻟﺬﻟﻚ ﻳﺘﻢ ﻟﺤﺎﻣﻬﺎ ﺑﺎﺳﺘﺨﺪام )‪ (Adhesives‬أو ﻣﻮاد ﻻﺻﻘﻪ ﺑﻮاﺳﻄﺔ أداﻩ أو ﺣﺎﻗﻦ‬
‫آﻤﺎ ﻓﻰ ﺷﻜﻞ )‪.(٢٠ – ٨‬‬

‫ﺷﻜﻞ )‪ : (٢٠ – ٨‬ﻣﺜﺎل ﻷﺣﺪ ﻃﺮق اﻟﻠﺤﺎم ﺑﻤﺎدﻩ ﻻﺻﻘﻪ )‪ (Adhesive‬ﺑﺎﺳﺘﺨﺪام ﺣﺎﻗﻦ‬

‫اﻟﻜﺜﻴ ﺮ ﻣ ﻦ اﻟﻤﻜ ﻮﻧﺎت اﻟﺘ ﻰ ﻳﺘﻢ ﻟﺤﺎﻣﻬﺎ ﻋﻠﻰ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ ﻗﺪ ﻳﺤﺘﺮق ﺑﻔﻌﻞ اﻟﺸﺤﻨﺎت اﻻﺳﺘﺎﺗﻴﻜﻴﻪ ﻟﺬﻟﻚ ﻳﺘﻢ‬
‫أﺧ ﺬ اﺣﺘ ﻴﺎﻃﺎت اﻟﺘﻮﺻ ﻴﻞ ﺑ ﺎﻷرض ﻟﻠﻤ ﺘﻌﺎﻣﻞ ﻣ ﻊ اﻟﻤﻜ ﻮن و ﻟﻠﺴ ﻄﺢ اﻟ ﺬى ﻳ ﺘﻢ ﻋﻠ ﻴﻪ اﻟ ﺘﻌﺎﻣﻞ و اﻟﻠﺤﺎم ﺑﺎﻻﺿﺎﻓﻪ اﻟﻰ‬
‫أرﺿﻴﺔ اﻟﻐﺮﻓﻪ ﻗﺒﻞ ﺑﺪأ اﻟﻌﻤﻞ ﻟﻀﻤﺎن ﺗﻔﺮﻳﻎ أى ﺷﺤﻨﺎت اﺳﺘﺎﺗﻴﻜﻴﻪ اﻟﻰ اﻷرض‪.‬‬
‫و ﻳﻤﻜﻦ ﺗﻠﺨﻴﺺ ﺑﻌﺾ اﺣﺘﻴﺎﻃﺎت اﻟﺘﻮﺻﻴﻞ ﺑﺎﻷرض )‪ (0 Volt‬ﻓﻰ ﺟﺪول )‪.(٣ – ٨‬‬
‫‪1‬‬

‫‪ESD protective wrist strap‬‬

‫‪2‬‬

‫‪Antistatic finger cots‬‬

‫‪3‬‬

‫‪Antistatic bag‬‬

‫‪4‬‬

‫‪Antistatic tweezers‬‬

‫‪5‬‬

‫‪Antistatic table mat‬‬

‫‪6‬‬

‫‪Antistatic floor tiles‬‬

‫‪7‬‬

‫‪Antistatic footwear and‬‬
‫‪antistatic heel-strap‬‬
‫‪Static Control Test Station‬‬

‫‪8‬‬

‫ﺳﻮار ﻳﻮﺿﻊ ﻋﻠﻰ اﻟﻤﻌﺼﻢ ﻣﺘﺼﻞ ﺑﺎﻷرض )‪(0 Volt‬‬
‫ﺟﻬﺪ ﺻﻔﺮ‬
‫أﻏﻠﻔﻪ ﻣﻀﺎدﻩ ﻟﻠﺸﺤﻨﺎت اﻻﺳﺘﺎﺗﻴﻜﻴﻪ ﺗﺤﻴﻂ أﺻﺎﺑﻊ اﻟﻤﺘﻌﺎﻣﻞ‬
‫ﻣﻊ اﻟﻤﻜﻮن‬
‫ﺣﻘﻴﺒﻪ ﻣﻀﺎدﻩ ﻟﻠﺸﺤﻨﺎت اﻻﺳﺘﺎﺗﻴﻜﻴﻪ ﺗﻮﺿﻊ ﻋﻠﻴﻬﺎ‬
‫اﻟﻤﻜﻮﻧﺎت و اﻟﺪاﺋﺮﻩ‬
‫أداﻩ أو ﻣﻠﻘﺎط ﺻﻐﻴﺮ ﻣﻀﺎد ﻟﻠﺸﺤﻨﺎت اﻻﺳﺘﺎﺗﻴﻜﻴﻪ‬
‫ﻟﻼﻣﺴﺎك ﺑﺎﻟﻤﻜﻮن‬
‫ﻣﻔﺮش ﻣﻀﺎد ﻟﻠﺸﺤﻨﺎت اﻻﺳﺘﺎﺗﻴﻜﻴﻪ ﺗﻐﻄﻰ ﺑﻪ اﻟﻤﻨﻀﺪﻩ‬
‫اﻟﺘﻰ ﻳﻮﺿﻊ ﻋﻠﻴﻬﺎ اﻟﻤﻜﻮﻧﺎت و اﻟﺪاﺋﺮﻩ‬
‫ﻏﻄﺎء ﻣﻄﺎﻃﻰ ﻳﻔﺮش ﻋﻠﻰ اﻷرﺿﻴﻪ ﻣﻀﺎد ﻟﻠﺸﺤﻨﺎت‬
‫اﻻﺳﺘﺎﺗﻴﻜﻴﻪ‬
‫ﺣﺬاء و ﺳﻮار أو ﺷﺮﻳﻂ ﻟﻠﺤﺬاء ﻣﻀﺎدﻳﻦ ﻟﻠﺸﺤﻨﺎت‬
‫اﻻﺳﺘﺎﺗﻴﻜﻴﻪ‬
‫ﺟﻬﺎز ﻟﻠﺘﻮﺻﻴﻞ ﺑﺎﻷرض )‪ (0 Volt‬ﺑﻪ ﻣﺒﻴﻨﺎت ﻟﻀﻤﺎن‬
‫اﻟﺘﻮﺻﻴﻞ ﺑﺎﻷرض ﻟﺴﻮار اﻟﻤﻌﺼﻢ و ﺷﺮﻳﻂ اﻟﺤﺬاء‬

‫ﺟﺪول )‪ : (٣ – ٨‬ﺑﻌﺾ اﺣﺘﻴﺎﻃﺎت اﻟﺘﻮﺻﻴﻞ ﺑﺎﻷرض ﻟﺤﻤﺎﻳﺔ اﻟﻤﻜﻮﻧﺎت ﻣﻦ اﻟﺸﺤﻨﺎت اﻻﺳﺘﺎﺗﻴﻜﻴﻪ‬

‫‪399‬‬

‫ﺷﻜﻞ )‪ : (٢١ – ٨‬اﻟﻌﻼﻣﺘﻴﻦ اﻟﺘﺤﺬﻳﺮﻳﺘﻴﻦ ﻣﻦ اﻻﺣﺘﺮاق ﺑﻔﻌﻞ اﻟﺸﺤﻨﺎت اﻻﺳﺘﺎﺗﻴﻜﻴﻪ‬

‫ﺗﺴ ﺘﺨﺪم اﺣ ﺪى اﻟﻌﻼﻣﺘ ﻴﻦ اﻟﺘﺤﺬﻳ ﺮﻳﺘﻴﻦ اﻟﻤﺒﻴﻨﺘ ﻴﻦ ﻓ ﻰ ﺷ ﻜﻞ )‪ (٢١ – ٨‬ﻋﻠﻰ اﻟﻌﺒﻮات و اﻷآﻴﺎس اﻟﺨﺎﺻﻪ ﺑﺎﻟﻤﻜﻮﻧﺎت‬
‫اﻟﺘ ﻰ ﺗﺤﺘ ﺮق ﺑﻔﻌ ﻞ اﻟﺸ ﺤﻨﺎت اﻻﺳ ﺘﺎﺗﻴﻜﻴﻪ و ﻋﻠ ﻰ اﻷﻏﻠﻔ ﻪ اﻟﻤﻌﺪﻧ ﻴﻪ ﻟ ﺒﻌﺾ دواﺋ ﺮ اﻟﻤﻴﻜ ﺮووﻳﻒ اﻟﻤﺤ ﺘﻮﻳﻪ ﻋﻠ ﻰ هﺬﻩ‬
‫اﻟﻤﻜﻮﻧﺎت ‪ ،‬و ﻳﻮﺟﺪ ﺑﺠﻮار اﻟﻌﻼﻣﻪ اﻟﻤﺴﺘﺨﺪﻣﻪ ﺗﺤﺬﻳﺮ آﺎﻟﺘﺎﻟﻰ ‪:‬‬
‫‪CAUTION‬‬
‫‪Contains parts and‬‬
‫‪assemblies susceptible to damage by‬‬
‫)‪Electrostatic Discharge (ESD‬‬
‫اﻟﻌﺪﻳ ﺪ ﻣ ﻦ اﻟﻤﻜ ﻮﻧﺎت اﻟﺘ ﻰ ﻳ ﺘﻢ ﻟﺤﺎﻣﻬ ﺎ ﻋﻠ ﻰ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ ﻳﻜﻮن ﺻﻐﻴﺮ اﻷﺑﻌﺎد ‪ ،‬و ﻳﺼﻌﺐ اﻟﺘﻌﺎﻣﻞ ﻣﻊ‬
‫اﻟﻤﻜ ﻮن ﺑﺄﺻ ﺎﺑﻊ اﻟ ﻴﺪ و ﻟ ﺬﻟﻚ ﺗﺴ ﺘﺨﺪم أدوات ﻣ ﺜﻞ اﻟﻤﻠﻘ ﺎط أو اﻟﻤﺎﺳ ﻚ و ﻳ ﺘﻢ اﻟ ﺘﻌﺎﻣﻞ ﻣ ﻊ اﻟﻤﻜ ﻮن و ﻟﺤﺎﻣ ﻪ ﺗﺤ ﺖ‬
‫اﻟﻤﻴﻜﺮوﺳﻜﻮب أو ﻋﺪﺳﻪ ﻣﻜﺒﺮﻩ ذات ﻣﻌﺎﻣﻞ ﺗﻜﺒﻴﺮ ﻣﻨﺎﺳﺐ‪.‬‬
‫و آﻤ ﺜﺎل ﻋﻠ ﻰ ذﻟ ﻚ ﻗ ﺪ ﻧﺠ ﺪ اﻟﺪﻳ ﻮد اﻟﻤﺴ ﺘﺨﺪم ﻓﻰ دواﺋﺮ اﻟﻤﺎزﺟﺎت و اﻟﻜﺎﺷﻔﺎت اﻟﺸﺮﻳﻄﻴﻪ ) ‪microstrip mixers‬‬
‫‪ (and detectors‬و ﻏﻴ ﺮهﺎ أﺑﻌ ﺎدﻩ )‪ (350µm X 720µm‬أو )‪ (270µm X 760µm‬ﻣ ﺜﻼ و ﺑﺎﻟﺘﺎﻟ ﻰ ﻻ ﻳﻤﻜ ﻦ‬
‫اﻟﺘﻌﺎﻣﻞ ﻣﻌﻪ ﺑﺄﺻﺎﺑﻊ اﻟﻴﺪ و ﺑﺎﻟﻌﻴﻦ اﻟﻤﺠﺮدﻩ‪.‬‬
‫ﻟﻠﺤ ﺎم أى ﻣﻜ ﻮن ﺻ ﻐﻴﺮ اﻷﺑﻌ ﺎد ﺑﺎﺳ ﺘﺨﺪام ﻣ ﺎدﻩ ﻻﺻ ﻘﻪ ﻣﻮﺻ ﻠﻪ )‪ (Conductive Adhesive‬ﻳﻤﻜ ﻦ اﺳ ﺘﺨﺪام‬
‫اﻟﺨﻄﻮات اﻟﺘﺎﻟﻴﻪ ‪:‬‬
‫– ﻗﻢ ﺑﺘﺠﻬﻴﺰ‪/‬ﺗﻨﻈﻴﻒ اﻣﺎآﻦ اﻟﻠﺤﺎم ﺑﺎﻟﺪاﺋﺮﻩ اﻟﺸﺮﻳﻄﻴﻪ ﺑﻮاﺳﻄﺔ ﻣﺬﻳﺐ ﻻزاﻟﺔ أى ﻣﻠﻮث ﻳﺆﺛﺮ ﻋﻠﻰ اﻟﻤﺮآﺐ اﻟﻜﻴﻤﻴﺎﺋﻰ‬
‫ﻟﻠﻤ ﺎدﻩ اﻟﻼﺻ ﻘﻪ أو ﻋﻠ ﻰ اﺗﻤ ﺎم اﻟﻠﺤ ﺎم أو ﻋﻠ ﻰ اﻟﺘﻮﺻ ﻴﻞ ) ‪to remove any contamination from the‬‬
‫‪microstrip lines, which may affect the chemical, physical or electrical performance of‬‬
‫‪.(the circuit‬‬
‫و ﻳ ﺘﻢ ذﻟ ﻚ ﺑﻮاﺳﻄﺔ ﻣﺬﻳﺐ ﺳﺎﺋﻞ ﻣﺜﻞ اﻟﻤﺴﺘﺨﺪم ﻟﺘﻨﻈﻴﻒ اﻟﺪواﺋﺮ اﻟﻤﻄﺒﻮﻋﻪ ) ‪aqueous based, solvent based‬‬
‫‪.(or a mixture of both‬‬
‫– ﺿ ﻊ آ ﻼ ﻣ ﻦ اﻟﺪاﺋ ﺮﻩ اﻟﺸ ﺮﻳﻄﻴﻪ و اﻟﻌﻠ ﺒﻪ )أو اﻟﻌ ﺒﻮﻩ( اﻟﻤﺤ ﺘﻮﻳﻪ ﻋﻠ ﻰ اﻟﻤﻜ ﻮن ﻓ ﻰ ﻣﺠ ﺎل رؤﻳ ﺘﻚ )أو أﻗ ﺮب ﻣ ﺎ‬
‫ﻳﻤﻜﻦ( ﺗﺤﺖ اﻟﻤﻴﻜﺮوﺳﻜﻮب أو اﻟﻌﺪﺳﻪ اﻟﻤﻜﺒﺮﻩ‪.‬‬
‫– ﺑﻌﺪ ذﻟﻚ اﺳﺘﺨﺪم اﻷداﻩ أو اﻟﺤﺎﻗﻦ ﻟﻮﺿﻊ اﻟﻤﺎدﻩ اﻟﻼﺻﻘﻪ )ﺑﻜﻤﻴﻪ ﻣﻨﺎﺳﺒﻪ دون اﻓﺮاط( ﻋﻠﻰ اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ ﻓﻰ‬
‫اﻷﻣﺎآﻦ اﻟﺘﻰ ﺳﻴﺘﻢ وﺿﻊ أﻃﺮاف اﻟﻤﻜﻮن ﻋﻠﻴﻬﺎ آﻤﺎ ﻓﻰ ﺷﻜﻞ )‪.(٢٢ – ٨‬‬
‫‪400‬‬

‫ﺷﻜﻞ )‪ : (٢٢ – ٨‬وﺿﻊ ﻣﺎدﻩ ﻻﺻﻘﻪ ﻣﻮﺻﻠﻪ )‪ (Conductive Adhesive‬ﺑﻜﻤﻴﻪ ﻣﻨﺎﺳﺒﻪ‬
‫ﻓﻰ ﻣﻜﺎﻧﻰ ﻃﺮﻓﻰ اﻟﻤﻜﻮن اﻟﻤﺮاد ﻟﺤﺎﻣﻪ‬

‫ﺷﻜﻞ )‪ : (٢٣ – ٨‬ﻳﻮﺿﻊ اﻟﻤﻜﻮن ﻓﻰ ﻣﻜﺎﻧﻪ ﺑﺎﺳﺘﺨﺪام ﻣﻠﻘﺎط ﻣﻀﺎد ﻟﻠﺸﺤﻨﺎت اﻻﺳﺘﺎﺗﻴﻜﻴﻪ‬

‫– اﺳ ﺘﺨﺪم أداﻩ ﻣﻨﺎﺳ ﺒﻪ أو ﻣﻠﻘﺎط ﻣﻀﺎد ﻟﻠﺸﺤﻨﺎت اﻻﺳﺘﺎﺗﻴﻜﻴﻪ ﻟﻼﻣﺴﺎك ﺑﺎﻟﻤﻜﻮن و ﻗﻢ ﺑﻮﺿﻌﻪ ﺑﺎﻻﺳﺘﻘﺎﻣﻪ أو اﻟﺘﻮﺟﻴﻪ‬
‫اﻟﺼﺤﻴﺢ اﻟﻤﻄﻠﻮب‪ .‬و اﺿﻐﻂ ﻋﻠﻰ اﻟﻤﻜﻮن ﺑﺮﻓﻖ ﻟﻠﺘﺄآﺪ ﻣﻦ ﺛﺒﻮﺗﻪ ﻓﻰ ﻣﻜﺎﻧﻪ‪.‬‬
‫– ﻗ ﻢ ﺑﺎﻟﻤ ﺮاﺟﻌﻪ ﻋﻠ ﻰ أى ﺑﻮاﻗ ﻰ ﻟﻠﻤ ﺎدﻩ اﻟﻼﺻﻘﻪ و ﻗﻢ ﺑﺎزاﻟﺔ أى زﻳﺎدات ﺗﺴﻘﻂ ﻋﻠﻰ ﻃﺒﻘﺔ اﻟﻌﺎزل ﻟﻠﺸﺮﻳﺤﻪ ‪ ،‬و ﻻ‬
‫داﻋﻰ ﻻزاﻟﺔ ﺑﻮاﻗﻰ اﻟﻤﺎدﻩ اﻟﻼﺻﻘﻪ ﻋﻠﻰ اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ‪.‬‬
‫– اﻧﺘﻈ ﺮ ﻣ ﺪﻩ آﺎﻓ ﻴﻪ ﺣﺘ ﻰ ﺗﺠ ﻒ اﻟﻤﺎدﻩ اﻟﻼﺻﻘﻪ )أو ﺣﺘﻰ ﻳﺜﺒﺖ اﻟﻤﻜﻮن ﻓﻰ ﻣﻜﺎﻧﻪ( ﻗﺒﻞ أى ﺗﺤﺮﻳﻚ ﻟﻠﺪاﺋﺮﻩ أو ﻋﻤﻞ‬
‫ﻟﺤﺎم ﺁﺧﺮ‪.‬‬
‫‪401‬‬

‫ﺷﻜﻞ )‪ : (٢٤ – ٨‬اﻟﻤﻜﻮن ﺑﻌﺪ اﻟﻠﺤﺎم‬

‫ﺑﻌ ﺾ اﻟﻤ ﺮآﺒﺎت اﻟﻤﺴ ﺘﺨﺪﻣﻪ ﻓ ﻰ اﻟﺘﻨﻈ ﻴﻒ و اﻟﺘﺠﻬﻴ ﺰ ﻟﻠﺤ ﺎم اﻟﻤﻜ ﻮﻧﺎت ه ﻰ ) ‪Perchloroethylene C2Cl4 ,‬‬
‫‪.(Trichloroethylene C2HCl3 , Methylene chloride CH2Cl2 , Trichlorotrifluoroethane‬‬
‫ﺑﻌ ﺾ أﺳ ﻤﺎء اﻟﻤ ﺮآﺒﺎت اﻟﻤﻨ ﺘﺠﻪ ﺗﺠﺎرﻳ ﺎ اﻟﻤﺴ ﺘﺨﺪﻣﻪ ﻓ ﻰ ﺗﻨﻈ ﻴﻒ اﻟﺪواﺋ ﺮ اﻟﻤﻄ ﺒﻮﻋﻪ ﻋﻤ ﻮﻣﺎ ﻣﻘ ﺮوﻧﻪ ﺑﺎﺳ ﻢ اﻟﺸ ﺮآﻪ‬
‫اﻟﻤﻨﺘﺠﻪ هﻰ آﺎﻟﺘﺎﻟﻰ‪:‬‬
‫‪Axarel® 32/Petroferm , Hydrex®AC/Petroferm , Hydrex®A-plus/ Petroferm ,‬‬
‫‪Vigon® SC/Zestron , Atron®SP 200/Zestron , Aquanox®A A4512/Kyzen ,‬‬
‫‪Ionox®FCR/Kyzen.‬‬
‫هﻨﺎك أﻧﻮاع آﺜﻴﺮﻩ ﻣﻦ اﻟﻤﻮاد اﻟﻼﺻﻘﻪ )‪ (Adhesives‬ﻓﻤﻨﻬﺎ اﻟﻤﻮﺻﻞ )‪ (conductive‬و ﻣﻨﻬﺎ ﻏﻴﺮ اﻟﻤﻮﺻﻞ‪.‬‬
‫أﻣ ﺎ اﻟ ﻨﻮع اﻟﻤﻮﺻ ﻞ ﻣ ﻦ اﻟﻤ ﻮاد اﻟﻼﺻ ﻘﻪ ﻓﻐﺎﻟ ﺒﺎ ﻳﻜ ﻮن ﻓ ﻰ ﺻ ﻮرة ﻣﻌﺠ ﻮن )‪ (paste‬ﻣﺨ ﺘﻠﻂ ﺑﺤﺒﻴ ﺒﺎت ﻣ ﻦ اﻟﻔﻀ ﻪ‬
‫)‪ (conductive adhesives are silver-filled epoxies‬و ه ﻮ اﻷﻓﻀﻞ ﻓﻰ اﻻﺳﺘﺨﺪام أوﻻ ﻟﻤﻌﺎﻣﻞ اﻟﺘﻮﺻﻴﻞ‬
‫اﻟﻜﻬﺮﺑ ﻰ اﻟﺠ ﻴﺪ ﻟﻠﻔﻀ ﻪ و ﺛﺎﻧ ﻴﺎ ﻷن ه ﺬا اﻟﻤﺨﻠ ﻮط ﻳﻮﻓ ﺮ ﺗﻮﺻ ﻴﻞ ﺣ ﺮارى ﺟ ﻴﺪ ) ‪high level of thermal‬‬
‫‪ (conductivity‬ﻟﻴﺴ ﻤﺢ ﻟﻠﻤﻜ ﻮﻧﺎت ﺑﺘﻔ ﺮﻳﻎ اﻟﺤ ﺮارﻩ ) ‪allow components to dissipate heat and‬‬
‫‪ .(operate in their normal temperature range‬و ﻗﺪ ﻳﺴﺘﺨﺪم أى ﻣﻌﺪن ﺟﻴﺪ اﻟﺘﻮﺻﻴﻞ آﺎﻟﺬهﺐ و اﻟﻨﺤﺎس‬
‫ﻟﻬﺬا اﻟﻨﻮع ﺑﺪﻻ ﻣﻦ اﻟﻔﻀﻪ‪.‬‬
‫اﻟﻤ ﻮاد اﻟﻼﺻ ﻘﻪ اﻟﻤﻮﺻ ﻠﻪ )‪ (conductive adhesives‬ﻧ ﻮﻋﺎن اﻷول ﻧ ﻮع )‪ (isotropic‬أى أن ﻣﻮاﺻ ﻔﺎت‬
‫اﻟﺘﻮﺻﻴﻞ اﻟﻜﻬﺮﺑﻰ ﻟﻪ ﻣﺘﺴﺎوﻳﻪ ﻓﻰ ﺟﻤﻴﻊ اﻻﺗﺠﺎهﺎت و هﻮ اﻟﻨﻮع اﻷﻓﻀﻞ ﻟﻼﺳﺘﺨﺪام‪.‬‬
‫أﻣ ﺎ اﻟ ﻨﻮع اﻟﺜﺎﻧ ﻰ ﻓﻬ ﻮ ﻧ ﻮع )‪ (anisotropic conductive adhesives ACA‬أى أن ﻣﻮاﺻ ﻔﺎت اﻟﺘﻮﺻ ﻴﻞ‬
‫اﻟﻜﻬﺮﺑﻰ ﻟﻪ ﻏﻴﺮ ﻣﺘﺴﺎوﻳﻪ ﻓﻰ ﺟﻤﻴﻊ اﻻﺗﺠﺎهﺎت‪.‬‬
‫ه ﻨﺎك أﻳﻀ ﺎ ﻣ ﻮاد ﻻﺻ ﻘﻪ ﻏﻴﺮ ﻣﻮﺻﻠﻪ )‪ (nonconductive or electrically insulative adhesives‬و هﻰ‬
‫ﻣﻮاد ﻣﺨﻠﻮﻃﻪ ﺑـ )‪ (silica or alumina‬ﻣﺜﻼ و ﺗﺴﺘﺨﺪم ﻟﻠﺤﺎم أﺟﺰاء ﻣﻄﻠﻮب اﻟﻌﺰل ﺑﻴﻨﻬﺎ‪.‬‬

‫‪402‬‬

‫ﻳﻌﻄ ﻰ ﺟ ﺪول )‪ (٤ – ٨‬ﺑﻌ ﺾ أﺳ ﻤﺎء اﻟﻤ ﻮاد اﻟﻼﺻ ﻘﻪ اﻟﻤﻮﺻ ﻠﻪ اﻟﻤﻨ ﺘﺠﻪ ﺗﺠﺎرﻳ ﺎ اﻟﻤﺴ ﺘﺨﺪﻣﻪ ﻓ ﻰ اﻟﻠﺤ ﺎم ﻣ ﻊ أﺳ ﻤﺎء‬
‫اﻟﺸﺮآﺎت اﻟﻤﻨﺘﺠﻪ و ﻣﻮﻗﻌﻬﺎ ﻋﻠﻰ اﻻﻧﺘﺮﻧﺖ‪.‬‬
‫اﺳﻢ اﻟﻤﻨﺘﺞ‬

‫ﻣﻮﻗﻊ اﻻﻧﺘﺮﻧﺖ‬

‫اﺳﻢ اﻟﺸﺮآﻪ‬
‫‪Tapco Circuit Supply‬‬

‫‪http://www.circuitsupply.com‬‬

‫‪E-SOLDER 3012,‬‬
‫‪3017, 3021, 3025,‬‬
‫‪3026, 3056, 3069,‬‬
‫‪3083‬‬
‫‪POLYSOLDER‬‬
‫‪Conductive‬‬
‫‪Adhesives LT, LS,‬‬
‫‪SE 3001‬‬
‫‪Dynaloy 325, 326,‬‬
‫‪536, 836, 1931‬‬
‫‪1-8000-EPOXIES‬‬
‫‪40-3900,40-3905,‬‬
‫‪40-3910, 40-3916,‬‬
‫‪40-3920‬‬
‫‪Loctite 3441, 3446‬‬

‫‪Cookson Electronics‬‬

‫‪http://www.cooksonsemi.com‬‬

‫‪Dynaloy LLC‬‬

‫‪http://www.dynaloy.com/‬‬

‫‪Epoxies, Etc.‬‬

‫‪http://www.epoxies.com‬‬

‫‪Henkel‬‬

‫‪http://www.loctite.co.uk‬‬

‫‪Nanopoxy 60 ,‬‬

‫‪Transene Company Inc.‬‬

‫‪Semiconductor‬‬
‫‪Products‬‬

‫‪http://www.transene.com/‬‬

‫‪Silver Epoxy Paste ,‬‬
‫‪Gold-Epoxy Paste,‬‬
‫‪GE-10, GE-20, GE-30‬‬
‫‪and GE-40‬‬

‫ﺟﺪول )‪ : (٤ – ٨‬ﺑﻌﺾ اﻟﻤﻮاد اﻟﻼﺻﻘﻪ اﻟﻤﻮﺻﻠﻪ اﻟﻤﻨﺘﺠﻪ ﺗﺠﺎرﻳﺎ اﻟﻤﺴﺘﺨﺪﻣﻪ ﻓﻰ اﻟﻠﺤﺎم‬
‫)‪(commercial conductive adhesives‬‬

‫اﻟﻤ ﺮﺟﻊ )‪ (11‬ﻳﺤ ﺘﻮى ﻋﻠ ﻰ ﻣﻌﻠ ﻮﻣﺎت واﻓ ﻴﻪ ﻋ ﻦ أﻧ ﻮاع اﻟﻤ ﻮاد اﻟﻼﺻ ﻘﻪ اﻟﻤﺴ ﺘﺨﺪﻣﻪ ﻓ ﻰ ﻟﺤ ﺎم اﻟﻤﻜ ﻮﻧﺎت ﻟﻤﺨ ﺘﻠﻒ‬
‫اﻟﺘﻄﺒ ﻴﻘﺎت و ﺗ ﺮآﻴﺒﺎﺗﻬﺎ اﻟﻜﻴﻤﻴﺎﺋ ﻴﻪ و اﻟﻤ ﻮاد اﻟﻤﺴ ﺘﺨﺪﻣﻪ ﻻزاﻟ ﺘﻬﺎ و اﻟﻤ ﻮاد اﻟﻤﺴ ﺘﺨﺪﻣﻪ ﻟﻠﺘﻨﻈﻴﻒ ﻗﺒﻞ اﻟﻠﺤﺎم و ﻳﺤﺘﻮى‬
‫ﻋﻠﻰ ﺟﺪاول ﺑﻬﺎ أﺳﻤﺎء اﻟﻤﻮاد اﻟﻤﻨﺘﺠﻪ ﺗﺠﺎرﻳﺎ و ﻣﻮاﺻﻔﺎﺗﻬﺎ و اﺳﻤﺎء اﻟﺸﺮآﺎت اﻟﻤﻨﺘﺠﻪ‪.‬‬
‫ه ﻨﺎك اﻟﻌﺪﻳ ﺪ ﻣ ﻦ اﻟﺸ ﺮآﺎت اﻟﺼ ﻴﻨﻴﻪ اﻟﻤﻨ ﺘﺠﻪ ﻟﻠﻤ ﻮاد اﻟﻼﺻ ﻘﻪ اﻟﻤﺴ ﺘﺨﺪﻣﻪ ﻓ ﻰ ﻟﺤﺎم اﻟﻤﻜﻮﻧﺎت ﻣﺜﻞ ) ‪Technology‬‬
‫‪Bridge Corp., Guangzhou Miradur Specialty Chemicals PTE Ltd., Hunan LEED Thick Film‬‬

‫‪ .(Paste Co., Ltd.‬راﺟﻊ ﻣﺮاﺟﻊ اﻻﻧﺘﺮﻧﺖ ﻣﻦ )‪ (i26‬اﻟﻰ )‪.(i29‬‬
‫ه ﻨﺎك أﺷ ﻜﺎل هﻨﺪﺳﻴﻪ ﻋﺪﻳﺪﻩ و ﻣﻮاد ﻣﺨﺘﻠﻔﻪ ﻟﺘﻐﻠﻴﻒ )‪ (packaging‬أو ﺻﻨﺎﻋﺔ ﻋﺒﻮات ﻣﻜﻮﻧﺎت اﻟﻤﻜﺮووﻳﻒ اﻟﻌﻴﻨﻴﻪ‬
‫و اﻟﺪواﺋ ﺮ اﻟﻤ ﺘﻜﺎﻣﻠﻪ اﻟﻤﺼ ﻨﻮﻋﻪ ﻣ ﻦ ﺗﻜﻨﻮﻟﻮﺟﻴﺎت أﺧﺮى ﻣﺜﻞ )‪ (MMIC‬و اﻟﺘﻰ ﻳﺘﻢ ﻟﺤﺎﻣﻬﺎ ﻋﻠﻰ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ‬
‫اﻟﺪﻗﻴﻘﻪ‪ .‬ﺣﻴﺚ ﺗﺘﻢ ﺻﻨﺎﻋﺔ ﻋﺒﻮة اﻟﻤﻜﻮن أو اﻟﺪاﺋﺮﻩ اﻟﻤﺘﻜﺎﻣﻠﻪ ﻣﻦ ﻣﻮاد ﺑﻼﺳﺘﻴﻜﻴﻪ أو ﺳﻴﺮاﻣﻴﻜﻴﻪ و ﻏﻴﺮهﺎ‪.‬‬

‫‪403‬‬

‫و ﻣ ﻦ ﺿ ﻤﻦ اﻟﻤ ﻮاد اﻟﻤﺴ ﺘﺨﺪﻣﻪ ﻓ ﻰ ﺻ ﻨﺎﻋﺔ ﻋ ﺒﻮات اﻟﻤﻜﻮﻧﺎت ﻣﺎدة اﻟﺒﺮﻳﻠﻠﻴﺎ أو أآﺴﻴﺪ اﻟﺒﺮﻳﻠﻠﻴﻮم ) ‪Beryllia or‬‬
‫‪ (BeO‬و ه ﻰ ﻣﺎدﻩ ﺳﺎﻣﻪ ‪ ،‬و هﻨﺎك ﻋﺪد ﻣﻦ اﻟﺘﺮاﻧﺰﺳﺘﻮرات اﻟﻤﺴﺘﺨﺪﻣﻪ ﻓﻰ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ ﻟﻬﺎ ﻋﺒﻮﻩ ﻣﻦ‬
‫ﻧﻮع )‪ ، (Hermetic, Metal/Beryllia Package‬و ﻏﺎﻟﺒﺎ ﻣﺎ ﻳﻮﺿﻊ ﺗﺤﺬﻳﺮ ﻓﻰ ﺻﻔﺤﺔ اﻟﺒﻴﺎﻧﺎت ﻟﻠﻤﻜﻮن و ﻋﻠﻰ‬
‫اﻟﻌﻠ ﺒﻪ أو اﻟﻜ ﻴﺲ اﻟﻤﻐﻠﻒ ﻟﻠﻌﺒﻮﻩ ﻳﺤﺬر ﻣﻦ ﺑﻠﻊ أو اﺳﺘﻨﺸﺎق اﻟﻐﺒﺎر اﻟﻨﺎﺗﺞ ﻋﻦ هﺬﻩ اﻟﻤﺎدﻩ‪) .‬راﺟﻊ ﺷﺮح هﺬا اﻟﻤﻮﺿﻮع‬
‫ﻓﻰ اﻟﻔﺼﻞ اﻷول(‪.‬‬

‫)ﻤﻘﻁﻊ ‪ (٥-٨‬ﺍﻟﺘﻐﻠﻴﻑ ﻭ ﺍﻟﺘﺠﻤﻴﻊ‬

‫‪:Packaging and Assembly‬‬

‫اﻟﺘﻐﻠ ﻴﻒ اﻟ ﻨﺎﺟﺢ ﻟﺪواﺋﺮ و ﻧﻈﻢ اﻟﻤﻴﻜﺮووﻳﻒ ﻳﺤﺘﺎج اﻟﻰ دراﺳﻪ ﻣﻄﻮﻟﻪ ‪ .‬ﻓﺘﻐﻠﻴﻒ داﺋﺮة ﻣﻴﻜﺮووﻳﻒ أو داﺋﺮﻩ ﺷﺮﻳﻄﻴﻪ‬
‫دﻗﻴﻘﻪ ﻣﺮﺗﺒﻂ ﺑﺎﻟﻨﻈﺎم اﻟﺬى ﺳﺘﻮﺿﻊ ﺑﻪ اﻟﺪاﺋﺮﻩ‪.‬‬
‫ﻏﻴ ﺮ اﻻﻋﺘﺒﺎرات و اﻟﻤﻮاﺻﻔﺎت اﻟﻜﻬﺮﺑﻴﻪ هﻨﺎك ﻣﻮاﺻﻔﺎت ﻣﻴﻜﺎﻧﻴﻜﻴﻪ ﻟﻠﻐﻼف و اﻟﻤﻮاد اﻟﻤﺴﺘﺨﺪﻣﻪ و ﻃﺮق اﻟﺘﻮﺻﻴﻞ‬
‫و اﻟﻠﺤ ﺎم و ﺗﺤﻤ ﻞ اﻻهﺘ ﺰازات و اﻟﻀ ﻐﻂ اﻟﻤﻴﻜﺎﻧﻴﻜ ﻰ )‪ (vibrations and mechanical stress‬و ه ﻨﺎك ﻃ ﺮق‬
‫ﻻﺧﺘﺒﺎر ذﻟﻚ‪.‬‬
‫و ه ﻨﺎك ﻣﻮاﺻ ﻔﺎت ﺣ ﺮارﻳﻪ ﻳ ﺘﻢ دراﺳ ﺘﻬﺎ ﺑﺎﻟﺘﺤﻠ ﻴﻞ اﻟﺤ ﺮارى )‪ (thermal analysis‬ﻟﻠﺪاﺋ ﺮﻩ و ﻟﻠ ﻨﻈﺎم )أو ﺟ ﺰء‬
‫اﻟﻨﻈﺎم( اﻟﻤﻮﺟﻮدﻩ ﺑﻪ اﻟﺪاﺋﺮﻩ ﺑﺎﻻﺿﺎﻓﻪ اﻟﻰ اﻻﺧﺘﺒﺎرات اﻟﺨﺎﺻﻪ ﺑﻬﺬا اﻟﻤﻮﺿﻮع‪.‬‬
‫ﻓ ﻰ ﻣﻘﻄ ﻊ )‪ (٤-٣‬ﻣ ﻦ اﻟﻔﺼ ﻞ اﻟ ﺜﺎﻟﺚ ﺗ ﻢ ﺷ ﺮح و اﻋﻄ ﺎء ﻣﻌ ﺎدﻻت ﺗﺄﺛﻴ ﺮ اﻟﻐ ﻼف اﻟﻤﻌﺪﻧ ﻰ )أو اﻟﻌﻠﺒﻪ اﻟﻤﻮﺟﻮدﻩ ﺑﻬﺎ‬
‫اﻟﺪاﺋﺮﻩ اﻟﺸﺮﻳﻄﻴﻪ( ﻓﻰ ﺧﺼﺎﺋﺺ اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ‪.‬‬
‫ه ﺬا اﻟﻐ ﻼف )أو اﻟﻌﻠ ﺒﻪ( اﻟﻤﻮﺿ ﺢ ﻓﻰ ﺷﻜﻞ )‪ (٩ - ٣‬و ﺷﻜﻞ )‪ (١٠ - ٣‬ﻳﺆﺛﺮ ﻋﻠﻰ أداء اﻟﺪاﺋﺮﻩ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ‪ .‬و‬
‫ﺗ ﻢ ﺷ ﺮح آﻴﻔ ﻴﺔ ﺣﺴ ﺎب ه ﺬا اﻟﺘﺄﺛﻴﺮ ﻓﻰ ﻣﻘﻄﻊ )‪ (٤-٣‬ﺑﺎﺳﺘﺨﺪام اﻟﺒﺮاﻣﺞ اﻟﻌﺎﻣﻪ ﻟﺘﺤﻠﻴﻞ دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ و ﺑﺮاﻣﺞ‬
‫اﻟﺘﺤﻠﻴﻞ اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴﻰ‪.‬‬
‫ه ﻨﺎك اﻟﻌﺪﻳ ﺪ ﻣ ﻦ اﻟﻤ ﻮاد ﻣ ﺜﻞ اﻷﻟﻮﻣﻨ ﻴﻮم و اﻟ ﻨﺤﺎس و ﻏﻴ ﺮهﻤﺎ ﺗﺴ ﺘﺨﺪم ﻟﺘﺼﻨﻴﻊ اﻟﻐﻼف )أو اﻟﻌﻠﺒﻪ( اﻟﺘﻰ ﺗﻮﺿﻊ ﺑﻬﺎ‬
‫اﻟﺪاﺋﺮﻩ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ‪.‬‬
‫ﺷ ﺮﺣﺖ ﻓ ﻰ اﻟﻤﻘﻄ ﻊ اﻟﺴ ﺎﺑﻖ أن ه ﻨﺎك اﻟﻌﺪﻳ ﺪ ﻣ ﻦ اﻷﺷ ﻜﺎل اﻟﻬﻨﺪﺳ ﻴﻪ ﻟﻠﻤﻮﺻ ﻼت اﻟﻤﺤ ﻮرﻳﻪ اﻟﺘ ﻰ ﺗﺴ ﺘﺨﺪم آ ﻨﺎﻗﻞ أو‬
‫ﻣﺤﻮل ﻣﻦ ﺗﻜﻨﻮﻟﻮﺟﻴﺎ اﻟﻜﺎﺑﻼت اﻟﻤﺤﻮرﻳﻪ اﻟﻰ ﺗﻜﻨﻮﻟﻮﺟﻴﺎ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ‪.‬‬
‫ﺗﺨﺘﻠﻒ ﻃﺮﻳﻘﺔ ﺗﺜﺒﻴﺖ اﻟﻤﻮﺻﻞ اﻟﻤﺤﻮرى ﺑﺎﻟﻐﻼف )أو اﻟﻌﻠﺒﻪ( ﺑﺎﺧﺘﻼف اﻟﺸﻜﻞ اﻟﻬﻨﺪﺳﻰ ﻟﻠﻤﻮﺻﻞ اﻟﻤﺤﻮرى‪.‬‬
‫ه ﻨﺎك أﻣ ﺜﻠﻪ ﻋﺪﻳ ﺪﻩ ﻟﻠﻤﻮﺻ ﻼت اﻟﻤﺤ ﻮرﻳﻪ اﻟﺘ ﻰ ﺗﺼ ﻠﺢ ﻟﻠﺘﺜﺒ ﻴﺖ ﻓ ﻰ اﻟﻐ ﻼف )أو اﻟﻌﻠﺒﻪ( ﻣﺜﻞ اﻟﻤﻮﺻﻼت اﻟﻤﺤﻮرﻳﻪ‬
‫ذات اﻟﺮأس أو )‪.(Bulkhead‬‬
‫ﺷ ﻜﻞ )‪ (٢٥ – ٨‬ﻳﻮﺿ ﺢ ﺷ ﻜﻞ ﻣﻮﺻ ﻞ ﻣﺤ ﻮرى ﻣ ﻦ ﻧ ﻮع )‪ .(SMA Bulkhead 4-Flange Connector‬و‬
‫ﻳﻤﻜﻨ ﻨﺎ أن ﻧﻤﻴ ﺰ اﺳ ﺘﻄﺎﻟﻪ ﻟﻠﻌ ﺎزل اﻟﻤﻮﺟ ﻮد ﺑ ﻴﻦ اﻟﻤﻮﺻ ﻞ اﻟﺪاﺧﻠ ﻰ و اﻟﻤﻮﺻ ﻞ اﻟﺨﺎرﺟ ﻰ ﻟﻠﻤﻮﺻ ﻞ اﻟﻤﺤ ﻮرى ﺑﻌ ﺪ‬
‫اﻟﺤﺎﺋﻂ اﻟﻤﻌﺪﻧﻰ ذو اﻷرﺑﻌﺔ ﻓﺘﺤﺎت‪.‬‬

‫‪404‬‬

‫ه ﺬﻩ اﻻﺳ ﺘﻄﺎﻟﻪ ﻳ ﺘﻢ ﻋﻤ ﻞ ﺛﻘ ﺐ ﻣﺴ ﺘﺪﻳﺮ ﺑ ﻨﻔﺲ ﻣﻘﺎﺳﻬﺎ ﻓﻰ ﺣﺎﺋﻂ اﻟﻌﻠﺒﻪ اﻟﻤﻌﺪﻧﻴﻪ اﻟﻤﺴﺘﺨﺪﻣﻪ ﻟﺘﻐﻠﻴﻒ اﻟﺪاﺋﺮﻩ اﻟﺸﺮﻳﻄﻴﻪ‬
‫اﻟﺪﻗﻴﻘﻪ‪ .‬و ﻳﺘﻢ ﻋﻤﻞ أرﺑﻌﺔ ﺛﻘﻮب ﺑﻨﻔﺲ اﻟﺤﺎﺋﻂ ﻟﺘﺮآﻴﺐ ﻣﺴﺎﻣﻴﺮ اﻟﺘﺜﺒﻴﺖ‪ .‬ﺷﻜﻞ )‪ (٢٦ – ٨‬ﻳﻮﺿﺢ ﻃﺮﻳﻘﺔ اﻟﺘﺜﺒﻴﺖ‪.‬‬
‫ﻋ ﺎدة ﻳ ﺘﻢ ﺗﺜﺒ ﻴﺖ اﻟﺪاﺋ ﺮﻩ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ ﺑﻤﺴﺎﻣﻴﺮ رأﺳﻴﻪ ﻓﻰ ﻗﺎع اﻟﻌﻠﺒﻪ اﻟﻤﻌﺪﻧﻴﻪ‪ .‬و ﺗﻜﻮن اﻟﻤﺴﺎﻣﻴﺮ ﺑﻌﻴﺪﻩ ﺑﻤﺴﺎﻓﺎت‬
‫آﺎﻓﻴﻪ ﻋﻦ اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ ﻟﺘﺠﻨﺐ اﻟﻘﺮن )‪.(coupling‬‬

‫ﺷﻜﻞ )‪ : (٢٥ – ٨‬ﻣﻮﺻﻞ ﻣﺤﻮرى ﻣﻦ ﻧﻮع )‪(SMA Bulkhead 4-Flange Connector‬‬

‫ﻣﻘﻄﻊ ﻓﻰ اﻟﻌﻠﺒﻪ أو اﻟﻐﻼف ﺑﺪون اﻟﺤﻮاﺋﻂ اﻟﺠﺎﻧﺒﻴﻪ‬

‫ﻣﻨﻈﺮ ﺟﺎﻧﺒﻰ ﻟﻠﻌﻠﺒﻪ أو اﻟﻐﻼف‬

‫ﺷﻜﻞ )‪ : (٢٦ – ٨‬ﺗﺮآﻴﺐ ﻣﻮﺻﻞ ﻣﺤﻮرى ﻣﻦ ﻧﻮع )‪ (SMA Bulkhead 4-Flange Connector‬ﺑﺎﻟﻌﻠﺒﻪ و‬
‫ﺗﻮﺻﻴﻠﻪ ﺑﺎﻟﺪاﺋﺮﻩ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ‪.‬‬

‫‪405‬‬

‫ﻳ ﺘﻢ ﻟﺤ ﺎم اﻟﻤﻮﺻ ﻞ اﻟﺪاﺧﻠ ﻰ ﻟﻠﻤﻮﺻ ﻞ اﻟﻤﺤ ﻮرى )‪ (inner conductor of the coaxial connector‬ﺑ ﺎﻟﺨﻂ‬
‫اﻟﺸ ﺮﻳﻄﻰ اﻟﺪﻗ ﻴﻖ ﻋ ﻨﺪ ﻣﺨ ﺮج اﻟﺪاﺋ ﺮﻩ اﻟﺸﺮﻳﻄﻴﻪ آﻤﺎ هﻮ ﻣﻮﺿﺢ ﻓﻰ اﻟﺠﺰء اﻷﻳﻤﻦ ﻣﻦ ﺷﻜﻞ )‪ (٢٦ – ٨‬و ﻓﻰ ﺷﻜﻞ‬
‫)‪.(٢٧ – ٨‬‬

‫ﺷﻜﻞ )‪ : (٢٧ – ٨‬ﻣﻘﻄﻊ ﻓﻰ اﻟﻌﻠﺒﻪ أو اﻟﻐﻼف ﻟﺸﺮح ﻃﺮﻳﻘﺔ ﺗﺮآﻴﺐ ﻣﻮﺻﻞ ﻣﺤﻮرى ﻣﻦ ﻧﻮع ) ‪SMA‬‬
‫‪ (Bulkhead 4-Flange Connector‬ﺑﺎﻟﻌﻠﺒﻪ و ﺗﻮﺻﻴﻠﻪ ﺑﺎﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ‪.‬‬

‫ﺷﻜﻞ )‪ : (٢٨ – ٨‬اﻟﻌﻠﺒﻪ أو اﻟﻐﻼف ﺑﻌﺪ ﺗﺜﺒﻴﺖ اﻟﻤﻮﺻﻼت اﻟﻤﺤﻮرﻳﻪ و ﺗﺮآﻴﺐ اﻟﺴﻘﻒ‬

‫‪406‬‬

‫ﻳ ﺘﻢ ﺗﺜﺒ ﻴﺖ ﻏﻄ ﺎء اﻟﻌﻠ ﺒﻪ أو اﻟﻐ ﻼف ﺑﻤﺴ ﺎﻣﻴﺮ )ﺗ ﺪﺧﻞ ﻓ ﻰ ﻓ ﺘﺤﺎت رأﺳ ﻴﻪ ﺑﺤ ﺎﺋﻂ اﻟﻌﻠ ﺒﻪ( آﻤ ﺎ ﻓ ﻰ ﺷ ﻜﻞ )‪(٢٨ – ٨‬‬
‫ﺑﻄ ﺮﻳﻘﻪ ﻻ ﺗﺴ ﻤﺢ ﺑﺘﺴ ﺮب اﻻﺷ ﻌﺎع اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴ ﻰ ﻟﻠﺨ ﺎرج و ﺗﻤ ﻨﻊ ﺗﺄﺛ ﺮ اﻟﺪاﺋﺮﻩ ﺑﺎﻻﺷﻌﺎع اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴﻰ أو‬
‫اﻟﺘﺪاﺧﻞ‪.‬‬
‫ﻳﺒ ﻴﻦ ﺷ ﻜﻞ )‪ (٢٩ – ٨‬أﻣ ﺜﻠﻪ ﻟ ﺒﻌﺾ اﻟﻤﻮﺻ ﻼت اﻟﻤﺤ ﻮرﻳﻪ اﻟﺘ ﻰ ﻟﻬ ﺎ رأس )‪ (bulkhead‬اﻟﺘ ﻰ ﺗﺼ ﻠﺢ ﻟﻠﺘﺜﺒﻴﺖ ﻓﻰ‬
‫اﻷﻏﻠﻔﻪ اﻟﻤﻌﺪﻧﻴﻪ ﻟﻠﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ‪ .‬ﻋﻠﻤﺎ ﺑﺄن هﻨﺎك أﺷﻜﺎل أﺧﺮى ﻋﺪﻳﺪﻩ ﺗﺼﻠﺢ ﻟﻬﺬا اﻟﻐﺮض‪.‬‬

‫ﺷﻜﻞ )‪ : (٢٩ – ٨‬أﻣﺜﻠﻪ ﻟﺒﻌﺾ اﻟﻤﻮﺻﻼت اﻟﻤﺤﻮرﻳﻪ اﻟﺘﻰ ﻟﻬﺎ رأس )‪ (bulkhead‬اﻟﺘﻰ‬
‫ﺗﺼﻠﺢ ﻟﻠﺘﺜﺒﻴﺖ ﻓﻰ اﻷﻏﻠﻔﻪ اﻟﻤﻌﺪﻧﻴﻪ ﻟﻠﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ‬

‫ﺷﻜﻞ )‪ : (٣٠ – ٨‬ﺑﻌﺾ دواﺋﺮ اﻟﻘﺪرﻩ اﻟﻌﺎﻟﻴﻪ اﻟﺘﻰ ﺗﻌﻤﻞ ﻓﻰ ﺣﻴﺰ اﻟﻤﻴﻜﺮووﻳﻒ‬

‫‪407‬‬

‫ﻓﻰ دواﺋﺮ اﻟﻘﺪرﻩ اﻟﻌﺎﻟﻴﻪ ﻳﻜﻮن اﻟﻐﻼف ﺑﻪ ﻣﺒﺮد ﺣﺮارى )‪ (heat sink‬أو ﻣﺮﺗﺒﻂ ﺑﻪ ﻣﺒﺮد ﺣﺮارى ﻣﺼﻨﻮع ﻣﻦ ﻣﺎدﻩ‬
‫ذات ﻣﻌﺎﻣﻞ ﺗﻮﺻﻴﻞ ﺣﺮارى ﺟﻴﺪ ﻣﺜﻞ اﻷﻟﻮﻣﻨﻴﻮم‪.‬‬
‫و ﻳﻮﺿﺢ ﺷﻜﻞ )‪ (٣٠ – ٨‬أﺷﻜﺎل ﺑﻌﺾ دواﺋﺮ اﻟﻘﺪرﻩ اﻟﻌﺎﻟﻴﻪ اﻟﺘﻰ ﺗﻌﻤﻞ ﻓﻰ ﺣﻴﺰ اﻟﻤﻴﻜﺮووﻳﻒ‪.‬‬
‫ﻳ ﺘﻢ ﻋﻤ ﻞ ﺗﺤﻠ ﻴﻞ ﺣ ﺮارى )‪ (thermal analysis‬ﻟﺪاﺋ ﺮة اﻟﻘ ﺪرﻩ اﻟﻌﺎﻟ ﻴﻪ اﻟﻤﻐﻠﻔ ﻪ و اﻟﻤﻮﺻ ﻠﻪ ﺑﺎﻟﻤﺒ ﺮد اﻟﺤ ﺮارى‬
‫ﻟﻤﻌ ﺮﻓﺔ درﺟ ﺔ اﻟﺤ ﺮارﻩ ﻓ ﻰ أﺟ ﺰاء اﻟﺪاﺋﺮﻩ و ﺗﻐﻴﺮهﺎ ﻣﻊ اﻟﻮﻗﺖ و ﺑﺎﻟﺘﺎﻟﻰ ﻣﻌﺮﻓﺔ ﻧﺠﺎح أو ﻓﺸﻞ اﻟﺪاﺋﺮﻩ ﺳﻮاء وﺣﺪهﺎ‬
‫أو داﺧﻞ اﻟﻨﻈﺎم‪.‬‬

‫ﺷﻜﻞ )‪ : (٣١ – ٨‬ﻣﺜﺎل ﺗﺤﻠﻴﻞ ﺣﺮارى ﻟﺪاﺋﺮة ﻗﺪرﻩ ﻋﺎﻟﻴﻪ ﻣﻐﻠﻔﻪ و ﻣﻮﺻﻠﻪ ﺑﻤﺒﺮد ﺣﺮارى‬

‫اﻟﺸﺮآﻪ ‪ /‬اﻟﻤﺆﺳﺴﻪ‬
‫‪CST GmbH‬‬

‫ﻣﻮﻗﻊ اﻻﻧﺘﺮﻧﺖ‬

‫اﻟﺒﺮﻧﺎﻣﺞ‬
‫‪CST Microwave‬‬

‫‪http://www.cst.com‬‬

‫‪Studio‬‬
‫‪Agilent‬‬

‫‪Agilent HFSS‬‬

‫‪http://www.agilent.com/find/eesof‬‬

‫‪ANSYS, Inc.‬‬

‫‪ANSYS‬‬

‫‪http://www.ansys.com‬‬

‫‪Ansoft, Corp.‬‬

‫‪Ansoft HFSS‬‬

‫‪http://www.ansoft.com‬‬

‫‪The Japan Research‬‬

‫‪http://www.jri.co.jp/english/index.html JMAG-Works‬‬

‫‪Institute‬‬
‫‪Zeland Software,‬‬

‫‪FIDELITY‬‬

‫‪http://www.zeland.com‬‬

‫‪Inc.‬‬
‫‪Remcom, Inc.‬‬

‫‪XFdtd‬‬

‫‪http://www.remcom.com‬‬

‫ﺟﺪول )‪ : (٥ – ٨‬أﻣﺜﻠﻪ ﻟﺒﻌﺾ اﻟﺒﺮاﻣﺞ اﻟﺘﻰ ﻳﻤﻜﻦ اﺳﺘﺨﺪاﻣﻬﺎ ﻓﻰ اﻟﺘﺤﻠﻴﻞ اﻟﺤﺮارى ﻟﺪواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ‬

‫‪408‬‬

‫اﻟﻌﺪﻳ ﺪ ﻣ ﻦ اﻟﺒ ﺮاﻣﺞ اﻟﻤﺴ ﺘﺨﺪﻣﻪ ﻓ ﻰ اﻟﺘﺤﻠ ﻴﻞ اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴﻰ ﻳﻤﻜﻦ اﺳﺘﺨﺪاﻣﻬﺎ أﻳﻀﺎ ﻓﻰ اﻟﺘﺤﻠﻴﻞ اﻟﺤﺮارى ﻟﺪواﺋﺮ‬
‫اﻟﻤﻴﻜ ﺮووﻳﻒ‪ .‬و ﻳﻌﻄ ﻰ ﺟ ﺪول )‪ (٥ – ٨‬أﻣ ﺜﻠﻪ ﻟ ﺒﻌﺾ ه ﺬﻩ اﻟﺒ ﺮاﻣﺞ ﻣ ﻊ اﺳ ﻢ اﻟﺸﺮآﻪ أو اﻟﻤﺆﺳﺴﻪ اﻟﻤﻨﺘﺠﻪ و ﻣﻮﻗﻊ‬
‫اﻻﻧﺘﺮﻧﺖ‪.‬‬
‫ﻣﻮﺿ ﻮع ﺗﻐﻠ ﻴﻒ دواﺋ ﺮ و ﻧﻈ ﻢ اﻟﻤﻴﻜ ﺮووﻳﻒ ﻋﻤ ﻮﻣﺎ ﻣ ﺮﺗﺒﻂ ﺑﻌﻠ ﻢ أو ﺑﺘﺨﺼ ﺺ اﻟ ﺘﻮاﻓﻖ اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴ ﻰ‬
‫)‪ (Electromagnetic Compatibility EMC‬و دراﺳ ﺔ ﺗﺴ ﺮب اﻻﺷﺎرﻩ ﻣﻦ اﻟﺪاﺋﺮﻩ و ﺗﻌﺮض اﻟﺪاﺋﺮﻩ ﻻﺷﻌﺎع‬
‫آﻬﺮوﻣﻐﻨﺎﻃﻴﺴﻰ ﺧﺎرﺟﻰ‪.‬‬
‫ه ﻨﺎك ﺷ ﺮآﺎت ﻣﺘﺨﺼﺼ ﻪ ﻓ ﻰ ﺗﻐﻠ ﻴﻒ دواﺋ ﺮ و ﻣﻜ ﻮﻧﺎت اﻟﺘ ﺮدد اﻟﻌﺎﻟ ﻰ و اﻟﻤﻴﻜ ﺮووﻳﻒ ﻣ ﺜﻞ‬

‫) ‪Microwave‬‬

‫‪ .(Packaging Technology Inc. , Q Microwave , AdTech Ceramics‬راﺟ ﻊ ﻣ ﺮاﺟﻊ اﻻﻧﺘ ﺮﻧﺖ‬
‫)‪.(i30, i31, i32‬‬
‫اﻟﻤ ﺮﺟﻊ )‪ (13‬ﻳﻌﻄ ﻰ أﺳ ﻤﺎء و رﻣ ﻮز اﻟﻤﻮاﺻ ﻔﺎت اﻟﻘﻴﺎﺳ ﻴﻪ ﻟﺘﻐﻠ ﻴﻒ اﻟﻤﻨ ﺘﺠﺎت اﻟﻜﻬ ﺮﺑﻴﻪ و اﻟﻌﺎﻣﻠ ﻪ ﻓ ﻰ اﻟﺘ ﺮددات‬
‫اﻟﻌﺎﻟ ﻴﻪ و اﻟﻤﻴﻜ ﺮووﻳﻒ و ﺗﻔﺎﺻ ﻴﻠﻬﺎ ﺑﻤ ﺎ ﻓ ﻴﻬﺎ اﻟﺪوﻟﻴﻪ ﻣﺜﻞ ﺳﻠﺴﻠﺔ )‪ (IEC 61000-X , CISPR XX‬و اﻷوروﺑﻴﻪ‬
‫ﻣ ﺜﻞ ﺳﻠﺴ ﻠﺔ )‪ ، (EN 300 XXX , EN50 XXX , EN55 XXX , EN6X XXX‬و ﻳﻌﻄ ﻰ ﻣﻌﻠ ﻮﻣﺎت ﻋ ﻦ‬
‫اﻟﻤﻮاﺻ ﻔﺎت اﻟﻘﻴﺎﺳ ﻴﻪ ﻟﺘﻐﻠ ﻴﻒ ﻣﻨ ﺘﺠﺎت اﻟﺘ ﺮدد اﻟﻌﺎﻟ ﻰ اﻟﺘﺠﺎرﻳﻪ و اﻟﻌﺴﻜﺮﻳﻪ و اﻟﺨﺎﺻﻪ ﺑﺎﻟﻄﻴﺮان و وﺳﺎﺋﻞ اﻟﻨﻘﻞ ‪ ،‬و‬
‫ﻳﻌﻄ ﻰ ﻣﻌﻠ ﻮﻣﺎت ﻋ ﻦ ﻃ ﺮق و ﻣﻮاﺻﻔﺎت اﻻﺧﺘﺒﺎر ﺳﻮاء اﺷﻌﺎع اﻟﺮادﻳﻮ اﻟﻤﻨﺒﻌﺚ ﻣﻦ اﻟﻤﻨﺘﺞ )‪ (RF Emission‬أو‬
‫ﻟﺤﻤﺎﻳﺔ اﻟﻤﻨﺘﺞ ﻣﻨﻪ )‪.(RF immunity‬‬
‫ﻳ ﺘﻢ رﺑ ﻂ‪/‬ﺗﻮﺻ ﻴﻞ اﻟﺪواﺋ ﺮ اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﺪﻗ ﻴﻘﻪ ﺑ ﺒﻌﺾ داﺧﻞ اﻟﻨﻈﺎم ﺑﻌﺪة ﻃﺮق‪ .‬ﻓﻴﻤﻜﻦ أن ﻳﻜﻮن اﻟﺘﻮﺻﻴﻞ ﺑﻜﺎﺑﻼت‬
‫ﻣﺤ ﻮرﻳﻪ )ﻣ ﺮﻧﻪ أو ﺻ ﻠﺒﻪ( أو ﻳﻜ ﻮن اﻟﺘﻮﺻ ﻴﻞ ﺑﻤﻜ ﺜﻔﺎت ﻋﻴﻨ ﻴﻪ )ﻳﺘﻢ ﻟﺤﺎم آﻞ ﻃﺮف ﻟﻠﻤﻜﺜﻒ ﺑﻤﺨﺮج داﺋﺮﻩ ﺷﺮﻳﻄﻴﻪ‬
‫دﻗ ﻴﻘﻪ( و ذﻟ ﻚ ﻓ ﻰ ﺣﺎﻟ ﺔ وﺟ ﻮد ﻋﺪد ﻣﻦ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ اﻟﻤﺼﻨﻌﻪ ﻋﻠﻰ ﺷﺮاﺋﺢ ﻣﻨﻔﺼﻠﻪ و ﻣﻮﺿﻮﻋﻪ داﺧﻞ‬
‫ﻏﻼف ﻣﻌﺪﻧﻰ واﺣﺪ‪.‬‬
‫و ﻳﻤﻜ ﻦ أن ﻳﻜ ﻮن اﻟ ﻨﻈﺎم أو ﺟ ﺰء اﻟ ﻨﻈﺎم آﻠ ﻪ ﻣﺼ ﻨﻮع ﻋﻠﻰ ﺷﺮﻳﺤﻪ ﺷﺮﻳﻄﻴﻪ واﺣﺪﻩ و ﻣﻮﺟﻮد داﺧﻞ ﻏﻼف ﻣﻌﺪﻧﻰ‬
‫واﺣﺪ‪.‬‬
‫ﺑﻌ ﺪ اﻟﺘﺼ ﻨﻴﻊ و اﻟﺘﻐﻠ ﻴﻒ ﻳ ﺘﻢ ﻗ ﻴﺎس ﻣﻘ ﺪار اﻟﺘﺴ ﺮب )‪ (RF Leakage‬ﻣ ﻦ اﻟﻐ ﻼف اﻟﻤﻌﺪﻧ ﻰ ﻟﻠﺪاﺋ ﺮﻩ أو اﻟ ﻨﻈﺎم‬
‫ﺑﺎﺳﺘﺨﺪام أﺟﻬﺰة ﻗﻴﺎس ﺷﺪة اﻟﻤﺠﺎل ﻣﺜﻞ ) ‪RF Field Strength Meter , RF Field Strength Analyzer‬‬
‫‪ . (, RF Signal Strength Analyzer , RF Field Strength Power Meter‬و ﻳﻌﻄ ﻰ ﺟ ﺪول )‪(٦ – ٨‬‬
‫أﺳ ﻤﺎء و ﻣﻮاﻗ ﻊ اﻻﻧﺘ ﺮﻧﺖ ﻟ ﺒﻌﺾ اﻟﺸ ﺮآﺎت اﻟﻤﻨ ﺘﺠﻪ ﻟﻬ ﺬﻩ اﻷﺟﻬ ﺰﻩ‪ .‬و ﻏﺎﻟ ﺒﺎ ﺗ ﺘﻢ ه ﺬﻩ اﻟﻘﻴﺎﺳﺎت داﺧﻞ ﻏﺮف ﺧﺎﺻﻪ‬
‫ﻣﺜﻞ )‪ (anechoic chamber‬ﻣﺒﻄﻨﻪ ﺑﺎﻟﻜﺎﻣﻞ ﻣﻦ اﻟﺪاﺧﻞ ﺑﻤﻮاد ﻣﺎﺻﻪ ﻟﻼﺷﻌﺎع اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴﻰ‪.‬‬
‫اﻟ ﻨﻈﺎم أو ﺟ ﺰء اﻟ ﻨﻈﺎم ﺗﻜ ﻮن ﻟ ﻪ ﻣﻮاﺻ ﻔﺎت ﻣ ﺜﻞ اﻟﻤﺴ ﺎﺣﻪ و اﻟﺤﺠ ﻢ و اﻟ ﻮزن و ه ﻨﺎك أﻧﻈﻤ ﻪ ﻳﻜ ﻮن ﻓﻴﻬﺎ اﻋﺘﺒﺎرات‬
‫ﺧﺎﺻ ﻪ أو اﺿ ﺎﻓﻴﻪ ﻣ ﺜﻞ اﻟﺸ ﻜﻞ اﻟﻬﻨﺪﺳ ﻰ و ﺗﺤﻤ ﻞ اﻻهﺘ ﺰازات و اﻟﻀﻐﻂ اﻟﻤﻴﻜﺎﻧﻴﻜﻰ و ﻣﺮآﺰ اﻟﺜﻘﻞ اﻟﻤﻴﻜﺎﻧﻴﻜﻰ ﻣﺜﻞ‬
‫أﻧﻈﻤﺔ اﻟﻄﻴﺮان و اﻟﻔﻀﺎء و ﺑﻌﺾ أﻧﻈﻤﺔ اﻟﺪﻓﺎع‪.‬‬
‫اﻟﻤ ﺮﺟﻊ )‪ (14‬ﻳﺤ ﺘﻮى ﻋﻠ ﻰ ﻣﻌﻠ ﻮﻣﺎت واﻓ ﻴﻪ ﻋ ﻦ ﺗ ﺮآﻴﺐ أو ﺗﺠﻤ ﻴﻊ و ﺗﻐﻠ ﻴﻒ و اﺧﺘ ﺒﺎر أﻧﻈﻤ ﺔ اﻟﺘ ﺮدد اﻟﻌﺎﻟ ﻰ ‪ ،‬و‬
‫ﻳﻌﻄ ﻰ اﻟﻤ ﺮﺟﻊ ﻣﻌﻠ ﻮﻣﺎت ﻋ ﻦ اﻟﺘﺄﻣ ﻴﻦ واﻟﻌ ﺰل و آ ﺘﺎﺑﺔ وﺛﺎﺋ ﻖ ﺗﺼ ﻤﻴﻢ و ﺗﺸ ﻐﻴﻞ و ﺻﻴﺎﻧﺔ أﻧﻈﻤﺔ اﻟﺘﺮدد اﻟﻌﺎﻟﻰ ‪ ،‬و‬
‫ﻣﻌﻠﻮﻣﺎت ﻋﻦ اﻟﻤﻮاﺻﻔﺎت اﻟﻘﻴﺎﺳﻴﻪ اﻟﺨﺎﺻﻪ ﺑﺎﻟﺘﻮاﻓﻖ اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴﻰ ﻟﻠﻨﻈﻢ و أﺟﺰاؤهﺎ‪.‬‬

‫‪409‬‬

‫و ﺑ ﺮﻏﻢ أن ﻣﻌﻠﻮﻣﺎت اﻟﻤﺮﺟﻊ )‪ (14‬ﻋﺎﻣﻪ و ﺗﺼﻠﺢ ﻟﻤﻌﻈﻢ ﻧﻈﻢ اﻟﺘﺮدد اﻟﻌﺎﻟﻰ‪ .‬ﻟﻜﻦ اﻧﺘﺎج ﻧﻈﺎم ﻣﺤﺪد ﻳﺤﺘﺎج ﻟﺘﺮآﻴﺰ‬
‫اﻟﺪراﺳ ﻪ ﻋﻠ ﻴﻪ و ﻋﻠ ﻰ ﻣﺼ ﺎدر اﻟﻤﻌﻠ ﻮﻣﺎت اﻟﺨﺎﺻ ﻪ ﺑﻪ و ﻋﻠﻰ ﻣﻜﻮﻧﺎﺗﻪ و ﻃﺮق ﺗﺼﻤﻴﻤﻬﺎ و ﺗﺼﻨﻴﻌﻬﺎ و اﺧﺘﺒﺎرهﺎ و‬
‫ﻃﺮق ﺗﺠﻤﻴﻊ اﻟﻨﻈﺎم و اﺧﺘﺒﺎرﻩ‪.‬‬
‫ﻣﻮﻗﻊ اﻻﻧﺘﺮﻧﺖ‬

‫اﺳﻢ اﻟﺸﺮآﻪ‬
‫‪AlphaLab Electromagnetic Instruments‬‬

‫‪http://www.trifield.com‬‬

‫‪North Country Radio‬‬

‫‪http://www.northcountryradio.com‬‬

‫‪CORNET Microsystems Inc.‬‬

‫‪http://www.cornetmicro.com‬‬

‫‪Precision Test Systems‬‬

‫‪http://www.ptsyst.com‬‬

‫‪B&K Precision Corporation‬‬

‫‪http://www.bkprecision.com‬‬

‫ﺟﺪول )‪ : (٦ – ٨‬ﺑﻌﺾ اﻟﺸﺮآﺎت اﻟﻤﻨﺘﺠﻪ ﻷﺟﻬﺰة ﻗﻴﺎس ﺷﺪة اﻟﻤﺠﺎل ﻓﻰ اﻟﻬﻮاء‬

‫)ﻤﻘﻁﻊ ‪ (٦-٨‬ﺍﻻﺨﺘﺒﺎﺭ ﻭ ﺍﻟﻘﻴﺎﺱ ‪:Test and Measurement‬‬

‫اﻟﺘﺴﻠﺴ ﻞ اﻟﻘﻴﺎﺳ ﻰ أو اﻟﺘﺒﻌ ﻰ ﻟﻤﻌﺎﻣ ﻞ اﻟﻘ ﻴﺎس ﻓﻰ ﺣﻴﺰ اﻟﻤﻴﻜﺮووﻳﻒ ﻳﻤﻜﻦ ﺗﻘﺴﻴﻤﻪ ﻣﻦ اﻟﻤﺴﺘﻮى اﻷﻋﻠﻰ اﻟﻰ اﻟﻤﺴﺘﻮى‬
‫اﻷدﻧﻰ آﺎﻟﺘﺎﻟﻰ ‪ ،‬اﻟﻤﺮﺟﻊ )‪: (15‬‬
‫– اﻟﻤﺴ ﺘﻮى اﻟﻘﻴﺎﺳ ﻰ اﻟﺪوﻟ ﻰ )‪ (International Reference Standards‬و ه ﻮ ﻣﻮﺟ ﻮد ﻓ ﻰ ﻋ ﺪد ﻣ ﻦ ﻣﻌﺎهﺪ أو‬
‫ﻣﺆﺳﺴﺎت اﻟﺘﻮﺣﻴﺪ اﻟﻘﻴﺎﺳﻰ ﻓﻰ اﻟﻌﺎﻟﻢ اﻟﺘﻰ ﺗﻌﻤﻞ ﻓﻰ أﺑﺤﺎث و ﻣﺠﺎﻻت اﻟﻘﻴﺎس و اﻟﻤﻌﺎﻳﺮﻩ‪.‬‬
‫– اﻟﻤﺴ ﺘﻮى اﻟﻘﻴﺎﺳ ﻰ اﻻﻣﺎﻣ ﻰ )‪ (Primary Standard‬ﻟﻠﺪوﻟ ﻪ و ﻳﻜ ﻮن ﻣﻮﺟ ﻮد ﻓ ﻰ ﻣﺆﺳﺴ ﻪ أو ﻣﻌﻬ ﺪ ﻟﻠﺘﻮﺣ ﻴﺪ‬
‫اﻟﻘﻴﺎﺳ ﻰ ﻳﺤ ﺪد اﻟﻤﻮاﺻ ﻔﺎت اﻟﻘﻴﺎﺳ ﻴﻪ ﻟﻠﻘﻴﺎﺳ ﺎت و اﻟﻤﻌﺎﻳ ﺮﻩ داﺧ ﻞ اﻟﺪوﻟ ﻪ ﻣ ﺜﻞ ﻣﻌﻬ ﺪ )‪ (NIST‬ﻓ ﻰ اﻟ ﻮﻻﻳﺎت اﻟﻤﺘﺤﺪﻩ‬
‫اﻷﻣ ﺮﻳﻜﻴﻪ و ﻣﻌﻬ ﺪ )‪ (LCIE‬ﻓ ﻰ ﻓﺮﻧﺴ ﺎ ‪ ،‬و ﻳ ﺘﻢ ﻓ ﻴﻪ ﻗ ﻴﺎس اﻟﻤﻮاﺻ ﻔﺎت ﺑﺄﻋﻠ ﻰ دﻗ ﻪ ﻓ ﻰ ه ﺬﻩ اﻟﺪوﻟﻪ ﻻﺣﺘﻮاﺋﻪ ﻋﻠﻰ‬
‫أﺟﻬﺰة اﻟﻤﻌﺎﻳﺮﻩ و اﻟﻘﻴﺎس اﻻﻣﺎﻣﻴﻪ‪.‬‬
‫– اﻟﻤﺴ ﺘﻮى اﻟﻨﻘﻠ ﻰ أو اﻻﻧﺘﻘﺎﻟﻰ )‪ (Transfer Standard‬و ﻳﻜﻮن ﻓﻰ ﺷﺮآﺎت أو ﻣﺆﺳﺴﺎت أو ﻣﻌﺎﻣﻞ ﺗﺤﺘﻮى ﻋﻠﻰ‬
‫أﺟﻬ ﺰة ﻗ ﻴﺎس و ﻣﻌﺎﻳ ﺮﻩ أﻗ ﻞ دﻗ ﻪ ﻣ ﻦ اﻷﺟﻬﺰﻩ اﻻﻣﺎﻣﻴﻪ )‪ (Primary Standard‬و ﻳﺘﻢ ﻣﻌﺎﻳﺮة هﺬا اﻟﻤﺴﺘﻮى دورﻳﺎ‬
‫ﺑﺎﺳﺘﺨﺪام اﻷﺟﻬﺰﻩ اﻻﻣﺎﻣﻴﻪ و ﺗﺴﺘﺨﺪم اﻷﺟﻬﺰﻩ ﻓﻰ هﺬا اﻟﻤﺴﺘﻮى ﻟﻤﻌﺎﻳﺮة أﺟﻬﺰة اﻟﻤﺴﺘﻮﻳﺎت اﻷدﻧﻰ‪.‬‬
‫– اﻟﻤﺴ ﺘﻮى اﻟﻌﺎﻣ ﻞ )‪ (Working Standard‬و ﻳ ﺘﻢ ﻣﻘﺎرﻧ ﺔ ه ﺬﻩ اﻷﺟﻬ ﺰﻩ ﻣ ﻊ أﺟﻬﺰة اﻟﻤﺴﺘﻮى اﻟﻨﻘﻠﻰ أو اﻻﻧﺘﻘﺎﻟﻰ‬
‫داﺧﻞ ﻣﻌﻤﻞ اﻣﺎﻣﻰ أو ﻣﻌﺘﻤﺪ‪.‬‬

‫‪410‬‬

‫– اﻟﻤﺴ ﺘﻮى اﻟ ﺜﺎﻧﻮى )‪ (Shop Level and Secondary Standards‬و ه ﻮ ﻣﺴ ﺘﻮى أﺟﻬ ﺰة اﻟﻤﻌﺎﻣ ﻞ اﻟﺘﻰ ﺗﻘﻮم‬
‫ﺑﺎﻟﻘﻴﺎﺳﺎت و ﻣﻌﺎﻳﺮة اﻟﻤﺴﺘﻮى اﻷدﻧﻰ‪.‬‬
‫– ﻣﺴ ﺘﻮى أﺟﻬ ﺰة اﻟﻘﻴﺎﺳ ﺎت )‪ (Gauges/Instruments‬و ه ﻮ اﻟﻤﺴ ﺘﺨﺪم ﻟﻘ ﻴﺎس اﻟﻤﻜ ﻮﻧﺎت و اﻟﺪواﺋ ﺮ و اﻟﻨﻈﻢ ﻓﻰ‬
‫اﻟﻤﻌﺎﻣ ﻞ و ﻣﻮاﻗ ﻊ اﻟﻌﻤ ﻞ اﻟ ﻰ ﺁﺧ ﺮﻩ و ﻳ ﺘﻢ ﻣﻌﺎﻳ ﺮة أﺟﻬ ﺰة ه ﺬا اﻟﻤﺴ ﺘﻮى ﺑﺎﺳ ﺘﺨﺪام أﺣ ﺪ اﻟﻤﺴ ﺘﻮﻳﻴﻦ اﻷﻋﻠ ﻰ ﻣ ﻨﻪ‬
‫)‪.(working standards or secondary standards‬‬
‫و ﻗ ﺪ ﺗ ﻢ وﺿ ﻊ ه ﺬا اﻟﺘﺴﻠﺴ ﻞ ﻟﻌﻤ ﻞ ﻗﺎﻋ ﺪﻩ ﻟﻀ ﻤﺎن دﻗ ﺔ اﻟﻘﻴﺎﺳ ﺎت ‪ ،‬و آﻠﻤ ﺎ ارﺗﻔﻌ ﺖ ﻗ ﻴﻤﺔ اﻟﺘﻄﺒ ﻴﻖ و زادت اﻟﺪﻗ ﻪ‬
‫اﻟﻤﻄﻠ ﻮﺑﻪ آﻠﻤﺎ ارﺗﻔﻊ ﺛﻤﻦ اﻷﺟﻬﺰﻩ و ﺛﻤﻦ ﺧﺪﻣﺎت اﻟﻘﻴﺎس و اﻟﻤﻌﺎﻳﺮﻩ‪ .‬و ﻳﻤﻜﻦ اﻟﺮﺟﻮع ﻟﻠﻤﺮﺟﻌﻴﻦ )‪ (15,16‬ﻟﺪراﺳﺔ‬
‫ﺗﻔﺎﺻﻴﻞ أآﺜﺮ ﻟﻠﺘﻘﺴﻴﻤﺎت و اﻟﻤﻮاﺻﻔﺎت اﻟﺨﺎﺻﻪ ﺑﺄﺟﻬﺰة و ﻣﻌﺎﻣﻞ اﻟﻘﻴﺎس اﻟﺨﺎﺻﻪ ﺑﺎﻟﻤﻴﻜﺮووﻳﻒ‪.‬‬
‫اﻟﺠﻬﺎز اﻟﻤﺴﺘﺨﺪم‬
‫ﺟﻬ ﺎز اﻟﻤﺤﻠ ﻞ اﻟﺸ ﺒﻜﻰ )‬

‫اﻟﺒﺎراﻣﺘﺮات أو اﻟﻘﻴﻤﻪ اﻟﻤﻘﺎﺳﻪ‬

‫‪Network‬‬

‫‪Vector‬‬

‫ﺑﺎراﻣﺘﺮات اس )‪(S parameters‬‬

‫‪(Analyzer VNA‬‬
‫ﺟﻬﺎز اﻟﻤﺤﻠﻞ اﻟﺸﺒﻜﻰ ﻟﻼﺷﺎرﻩ اﻟﻜﺒﻴﺮﻩ ) ‪Large Signal‬‬
‫‪(Network Analyzer‬‬

‫ﺑﺎراﻣﺘﺮات اس اﻻﺷﺎرﻩ اﻟﻜﺒﻴﺮﻩ‬
‫)‪(Large Signal S Parameters‬‬

‫ﺟﻬ ﺎز اﻟﻤﺤﻠ ﻞ اﻟﺸ ﺒﻜﻰ ﻣ ﻦ ﻧ ﻮع ) ‪Scalar Network‬‬
‫‪(Analyzer‬‬

‫ﻣﻘﺪار ﺑﺎراﻣﺘﺮات اس‬
‫)‪(S parameters magnitude‬‬

‫ﺟﻬ ﺎز اﻟﻤﺤﻠ ﻞ اﻟﺸ ﺒﻜﻰ اﻟﻐﻴ ﺮ ﺧﻄ ﻰ ) ‪Nonlinear‬‬

‫ﺑﺎراﻣﺘﺮات اآﺲ )‪(X parameters‬‬

‫‪(Vector Network Analyzer NVNA‬‬
‫اﻟﻄﻴﻒ أو اﻟﻘﺪرﻩ ﻣﻊ اﻟﺘﺮدد‬

‫ﺟﻬﺎز ﻣﺤﻠﻞ اﻟﻄﻴﻒ )‪(Spectrum Analyzer‬‬

‫)‪(power vs. frequency‬‬
‫اﻟﻘﺪرﻩ )‪(power‬‬

‫ﻋﺪاد اﻟﻘﺪرﻩ )‪(Power Meter‬‬
‫ﺟﻬ ﺎز ﻣﺤﻠ ﻞ ﻣﻌﺎﻣ ﻞ اﻟﺸﻮﺷ ﺮﻩ ) ‪Noise Figure‬‬
‫‪(Analyzer‬‬

‫ﻣﻌﺎﻣﻞ اﻟﺸﻮﺷﺮﻩ ﻣﻊ اﻟﺘﺮدد‬
‫)‪(Noise Figure vs Frequency‬‬

‫ﺟﻬﺎز ﻋﺪاد ﻣﻌﺎﻣﻞ اﻟﺸﻮﺷﺮﻩ‬

‫ﻣﻌﺎﻣﻞ اﻟﺸﻮﺷﺮﻩ‬

‫)‪(Noise Figure Meter‬‬

‫)‪(Noise Figure‬‬
‫اﻟﺘﺮدد‬

‫ﻋﺪاد اﻟﺘﺮدد )‪(Frequency Counter‬‬

‫ﺟﺪول )‪ : (٧ – ٨‬أﻣﺜﻠﻪ ﻟﺒﻌﺾ اﻟﺒﺎراﻣﺘﺮات أو اﻟﻘﻴﻢ اﻟﺘﻰ ﺗﻘﺎس ﻓﻰ ﺣﻴﺰ اﻟﻤﻴﻜﺮووﻳﻒ‬
‫و أﺳﻤﺎء اﻷﺟﻬﺰة اﻟﻤﺴﺘﺨﺪﻣﻪ ﻟﻘﻴﺎﺳﻬﺎ‪.‬‬

‫‪411‬‬

‫ﻗﻴﺎﺳ ﺎت اﻟﺪواﺋ ﺮ و اﻟﻨﻈﻢ ﻓﻰ ﺣﻴﺰ اﻟﻤﻴﻜﺮووﻳﻒ ﻳﻤﻜﻦ ﺗﻘﺴﻴﻤﻬﺎ اﻟﻰ ﻓﺮﻋﻴﻦ رﺋﻴﺴﻴﻴﻦ ‪ ،‬اﻟﻔﺮع اﻷول هﻮ ) ‪signal‬‬
‫‪ (measurement‬أو ﻗ ﻴﺎس اﻻﺷ ﺎرﻩ ﻣ ﺜﻞ ﻗ ﻴﺎس اﻟﻘ ﺪرﻩ )‪ (power‬و اﻟﺸﻮﺷ ﺮﻩ )‪ (noise‬اﻟ ﻰ ﺁﺧ ﺮﻩ ‪ ،‬و ﻳﻜ ﻮن‬
‫اﻟﻘ ﻴﺎس اﻣ ﺎ ﻣ ﻊ اﻟﻮﻗﺖ )‪ (time domain‬أو ﻣﻊ اﻟﺘﺮدد )‪ (frequency domain‬أو ﻣﻊ اﻟﺘﻌﺪﻳﻞ ) ‪modulation‬‬
‫‪.(domain yields the time dependence of frequency‬‬
‫أﻣ ﺎ اﻟﻔ ﺮع اﻟﺜﺎﻧ ﻰ ﻟﻘﻴﺎﺳﺎت اﻟﺪواﺋﺮ و اﻟﻨﻈﻢ ﻓﻰ ﺣﻴﺰ اﻟﻤﻴﻜﺮووﻳﻒ و هﻮ )‪ (network measurements‬أى ﻗﻴﺎس‬
‫ﺑﺎراﻣﺘ ﺮات ﻣﻜﻮن أو ﺷﺒﻜﺔ ﻣﻜﻮﻧﺎت أو داﺋﺮﻩ أو دواﺋﺮ ﻣﺘﺼﻠﻪ ﻣﻌﺎ ﻣﺜﻞ ﻗﻴﺎس ﺑﺎراﻣﺘﺮات اس )‪ (S parameters‬و‬
‫ﺑﺎراﻣﺘ ﺮات اآ ﺲ )‪ (X parameters‬و ﻣﻌﺎﻣ ﻞ اﻟﺘﻜﺒﻴ ﺮ )‪ (gain‬و ﻣﻌﺎﻣ ﻞ اﻟﺘﻮه ﻴﻦ )‪ (attenuation‬و ﻣﻌﺎﻣ ﻞ‬
‫اﻻﻧﻌﻜﺎس و اﻟﻤﻌﺎوﻗﻪ و ﻧﺴﺒﺔ اﻟﻤﻮﺟﻪ اﻟﻤﻮﻗﻮﻓﻪ )‪ (VSWR‬اﻟﻰ ﺁﺧﺮﻩ‪.‬‬
‫هﻨﺎك ﻗﻴﺎﺳﺎت ﺧﻄﻴﻪ و ﻏﻴﺮ ﺧﻄﻴﻪ ﻟﻠﺪواﺋﺮ و اﻟﻨﻈﻢ ﻓﻰ ﺣﻴﺰ اﻟﻤﻴﻜﺮووﻳﻒ‪.‬‬
‫ﺑﺎﻟﻨﺴ ﺒﻪ ﻟﻠﻘﻴﺎﺳ ﺎت اﻟﻐﻴ ﺮ ﺧﻄ ﻴﻪ ﻣ ﺜﻞ ) ‪Harmonic Distortion, Gain Compression, Intermodulation‬‬

‫‪ (Distortion, Phase Distortion, Adjacent Channel Interference, Error Vector Magnitude‬ﻳﻤﻜ ﻦ‬
‫اﻟﺮﺟﻮع ﻟﻠﻤﺮﺟﻌﻴﻦ )‪ (12,16‬ﻟﻤﻌﺮﻓﺔ ﻧﻈﺮﻳﺎت و ﻃﺮق اﻟﻘﻴﺎس‪.‬‬
‫ﻳﻌﻄ ﻰ ﺟ ﺪول )‪ (٧ – ٨‬ﺑﻌ ﺾ اﻟﺒﺎراﻣﺘﺮات أو اﻟﻘﻴﻢ اﻟﺘﻰ ﺗﻘﺎس ﻓﻰ ﺣﻴﺰ اﻟﻤﻴﻜﺮووﻳﻒ و أﺳﻤﺎء اﻷﺟﻬﺰة اﻟﻤﺴﺘﺨﺪﻣﻪ‬
‫ﻟﻘﻴﺎﺳﻬﺎ‪.‬‬
‫ﺑﻌ ﺾ اﻟﺸ ﺮآﺎت اﻟﻤﻨ ﺘﺠﻪ ﻷﺟﻬ ﺰة اﻟﻘ ﻴﺎس ﺗﻘ ﻮم ﺑﺎﻧ ﺘﺎج أﻧﻈﻤ ﻪ ﻣ ﺘﻜﺎﻣﻠﻪ ﻟﻌﻤﻞ ﻗﻴﺎﺳﺎت ﻣﺮآﺒﻪ أو ﻗﻴﺎﺳﺎت ﻟﻨﻈﺎم ﻣﻌﻴﻦ‬
‫ﻣ ﺜﻞ ﺷ ﺮآﺔ )‪ (Agilent‬اﻟﺘ ﻰ ﺗﻨ ﺘﺞ أﻧﻈﻤ ﺔ اﺧﺘ ﺒﺎر )‪ (Test Systems‬ﻣ ﺮآﺒﻪ ﻣ ﻦ ﻋ ﺪة أﺟﻬ ﺰﻩ ﺗﻮﺻ ﻞ ﻣﻌ ﺎ ﻟﻌﻤ ﻞ‬
‫ﻗﻴﺎﺳ ﺎت ﻣﺜﻞ ﺣﻠﻮل اﺧﺘﺒﺎر أﺟﻬﺰة اﻻﺳﺘﻘﺒﺎل و اﻻرﺳﺎل ﻋﻠﻰ ﻣﺘﻦ اﻷﻗﻤﺎر اﻟﺼﻨﺎﻋﻴﻪ ) ‪Satellite Payload Test‬‬
‫‪ (Solutions‬و ﻣﺜﻞ ﻧﻈﺎم ﻗﻴﺎس ﺷﻮﺷﺮة اﻟﻄﻮر )‪ (Phase Noise Test System‬و ﻏﻴﺮهﺎ‪.‬‬
‫ﻓﻰ اﻟﻔﺼﻞ اﻟﺨﺎﻣﺲ ذآﺮت أن هﻨﺎك ﺑﺮاﻣﺞ ﻋﺎﻣﻪ ﻟﺘﺤﻠﻴﻞ دواﺋﺮ و ﻧﻈﻢ اﻟﻤﻴﻜﺮووﻳﻒ ﻣﺜﻞ ) ‪AWR Suite, ADS,‬‬
‫‪ (Genesys‬و ﻏﻴﺮهﺎ ﺑﻬﺎ اﻣﻜﺎﻧﻴﺔ ﻗﺮاءة اﻟﺒﻴﺎﻧﺎت ﻣﻦ اﻟﻌﺪﻳﺪ ﻣﻦ أﺟﻬﺰة اﻟﻘﻴﺎس‪.‬‬
‫ﺑﻌ ﺾ اﻷﺟﻬ ﺰﻩ ﻣ ﺜﻞ ﺟﻬ ﺎز اﻟﻤﺤﻠ ﻞ اﻟﺸﺒﻜﻰ )‪ (Vector Network Analyzer VNA‬ﺗﺤﺘﺎج اﻟﻰ اﺟﺮاء ﻣﻌﺎﻳﺮﻩ‬
‫ﻟﻬﺎ )‪ (calibration‬ﻗﺒﻞ اﺳﺘﺨﺪاﻣﻬﺎ ﻓﻰ اﻟﻘﻴﺎس‪.‬‬
‫ﻣﺴ ﺎﻋﺪات اﻟﻘ ﻴﺎس )‪ (accessories‬اﻟﻤﺴ ﺘﺨﺪﻣﻪ ﻓ ﻰ ﻋﻤﻠ ﻴﺔ اﻟﻤﻌﺎﻳ ﺮﻩ ﺗﻜ ﻮن ﻣﻮﺟ ﻮدﻩ ﻓ ﻰ ﺻ ﻨﺪوق أو ﺷ ﻨﻄﻪ ﺗﺴ ﻤﻰ‬
‫)‪ ، (calibration kit‬و آ ﻞ ﺷ ﻨﻄﻪ ﺗﻜ ﻮن ﻣﺨﺼﺼ ﻪ ﻟ ﻨﻮع ﻣﻌ ﻴﻦ ﻣﻦ اﻟﻤﻮﺻﻼت اﻟﻤﺤﻮرﻳﻪ )و هﻨﺎك ﺷﻨﻂ ﻣﻌﺎﻳﺮﻩ‬
‫ﻟﻤﻘﺎﺳﻠﺖ ﻣﺨﺘﻠﻔﻪ ﻣﻦ ﺗﻜﻨﻮﻟﻮﺟﻴﺎ ﻣﺮﺷﺪ اﻟﻤﻮﺟﻪ ‪.(Waveguide‬‬
‫هﻨﺎك ﻧﻮﻋﺎن رﺋﻴﺴﻴﺎن ﻟﻤﻌﺎﻳﺮة ﺟﻬﺎز اﻟﻤﺤﻠﻞ اﻟﺸﺒﻜﻰ و هﻤﺎ اﻟﻤﻌﺎﻳﺮﻩ اﻟﻤﻴﻜﺎﻧﻴﻜﻴﻪ )و هﻰ ﺗﻨﻘﺴﻢ اﻟﻰ أﻧﻮاع ﺣﺴﺐ ﻧﻮع‬
‫اﻟﻘﻴﺎس أو اﻟﺒﺎراﻣﺘﺮات اﻟﻤﻘﺎﺳﻪ( و اﻟﻤﻌﺎﻳﺮﻩ اﻟﻜﻬﺮﺑﻴﻪ‪.‬‬
‫اﻟﻤﻌﺎﻳﺮﻩ اﻟﻜﻬﺮﺑﻴﻪ أﻗﻞ ﺧﻄﺄ و أﺳﻬﻞ ﻓﻰ اﻻﺟﺮاءات ﻣﻦ اﻟﻤﻌﺎﻳﺮﻩ اﻟﻤﻴﻜﺎﻧﻴﻜﻴﻪ‪.‬‬
‫ﺑﺸﻜﻞ ﻋﺎم ﺗﺒﺪأ اﻟﻤﻌﺎﻳﺮﻩ أوﻻ ﺑﺎﺧﺘﻴﺎرات ﻣﺜﻞ ﺗﺤﺪﻳﺪ اﻟﺤﻴﺰ اﻟﺘﺮددى ﻟﻠﻘﻴﺎس و ﻋﺪد ﻧﻘﺎط اﻟﻘﻴﺎس‪.‬‬
‫ﻓ ﻰ اﻟﻤﻌﺎﻳ ﺮﻩ اﻟﻤﻴﻜﺎﻧﻴﻜ ﻴﻪ ﻣ ﺜﻼ ﻳ ﺘﻢ ﺗﺮآﻴﺐ ﻣﻮﺻﻼت ﻣﺤﻮرﻳﻪ ﻣﻨﺘﻬﻴﻪ ﻧﻬﺎﻳﻪ ﻣﻔﺘﻮﺣﻪ )‪ (coaxial open circuit‬و‬
‫ﻣﻨﺘﻬ ﻴﻪ ﻧﻬﺎﻳ ﻪ ﻣﻐﻠﻘ ﻪ )‪ (coaxial short circuit‬و ﺣﻤ ﻞ ﻣ ﺘﻮاﻓﻖ )‪ (coaxial matched load‬أو ﺣﻤﻞ ﻣﺘﺤﺮك‬
‫)‪ (sliding load‬ﻓ ﻰ آﺎﺑﻠ ﻴﻦ اﻟﻘ ﻴﺎس ﺑﺎﻟﻤﺤﻠ ﻞ اﻟﺸ ﺒﻜﻰ و ﻓﻘ ﺎ ﻟﺨﻄ ﻮات ﻣﺤ ﺪدﻩ ﺑﺎﻟﺒ ﺮﻧﺎﻣﺞ اﻟﺨ ﺎص ﺑﺸﻨﻄﺔ اﻟﻤﻌﺎﻳﺮﻩ‬
‫)‪ .(calibration kit‬ﺑﺎﻻﺿﺎﻓﻪ اﻟﻰ ﺗﻮﺻﻴﻞ آﺎﺑﻠﻴﻦ اﻟﻘﻴﺎس ﺑﺎﻟﻤﺤﻠﻞ اﻟﺸﺒﻜﻰ ﺑﺒﻌﻀﻬﻤﺎ ﻣﺒﺎﺷﺮة أو ﻣﻦ ﺧﻼل )وﺻﻴﻞ‬
‫‪ (Thru‬آﺨﻄ ﻮﻩ ﻣ ﻦ ﺧﻄ ﻮات اﻟﻤﻌﺎﻳ ﺮﻩ اﻟﻤﻴﻜﺎﻧﻴﻜ ﻴﻪ‪ ) .‬ﻣﻠﺤ ﻮﻇﻪ ‪ :‬آ ﻞ ه ﺬﻩ اﻟﻤﻜ ﻮﻧﺎت أو ﻣﺴ ﺎﻋﺪات اﻟﻘ ﻴﺎس ﺗﻜ ﻮن‬
‫‪412‬‬

‫ﻣﻮﺟ ﻮدﻩ داﺧ ﻞ ﺷﻨﻄﺔ اﻟﻤﻌﺎﻳﺮﻩ ﺑﺎﻻﺿﺎﻓﻪ اﻟﻰ ﻗﺮص ﺣﺎﺳﺐ ﻳﺤﺘﻮى ﻋﻠﻰ اﻟﺒﺮﻧﺎﻣﺞ و ﻗﺪ ﺗﺤﺘﻮى ﺷﻨﻄﺔ اﻟﻤﻌﺎﻳﺮﻩ ﻋﻠﻰ‬
‫ﺟﻬ ﺎز )‪ (connector gauge‬اﻟ ﺬى ﻳﺴ ﺘﺨﺪم ﻟﻀ ﻤﺎن اﻟ ﺘﺄآﺪ ﻣ ﻦ اﻷﺑﻌ ﺎد اﻟﻤﻴﻜﺎﻧﻴﻜ ﻴﻪ ﺑ ﻴﻦ اﻟﻤﻮﺻ ﻞ اﻟﺪاﺧﻠ ﻰ و‬
‫اﻟﺨﺎرﺟﻰ ﻟﻠﻤﻮﺻﻞ اﻟﻤﺤﻮرى ﻟﻠﺘﺄآﺪ ﻣﻦ أﻧﻬﺎ ﺳﻠﻴﻤﻪ أو داﺧﻞ اﻟﺴﻤﺎﺣﻴﻪ اﻟﻤﻄﻠﻮﺑﻪ(‪.‬‬
‫ﻓ ﻰ اﻟﻤﻌﺎﻳ ﺮﻩ اﻟﻜﻬ ﺮﺑﻴﻪ ﺗﺴ ﺘﺨﺪم ﺷ ﻨﻄﺔ ﻣﻌﺎﻳ ﺮﻩ ﻣ ﻦ ﻧ ﻮع )‪ (ECal calibration kit‬اﻟﺘ ﻰ ﺗﺤ ﺘﻮى ﻋﻠ ﻰ داﺋﺮﻩ ذات‬
‫ﻣﺨ ﺎرج ﻋ ﺒﺎرﻩ ﻋ ﻦ ﻣﻮﺻ ﻼت ﻣﺤ ﻮرﻳﻪ ﻳ ﺘﻢ ﺗﻮﺻ ﻴﻠﻬﺎ ﺑﻜﺎﺑﻠﻴﻦ اﻟﻘﻴﺎس ﺑﺎﻟﻤﺤﻠﻞ اﻟﺸﺒﻜﻰ ﺗﺒﺎﻋﺎ و ﻓﻘﺎ ﻟﺨﻄﻮات ﻣﺤﺪدﻩ‬
‫ﺑﺎﻟﺒﺮﻧﺎﻣﺞ اﻟﺨﺎص ﺑﺸﻨﻄﺔ اﻟﻤﻌﺎﻳﺮﻩ ﻣﻦ ﻧﻮع )‪.(ECal calibration kit‬‬
‫و ﺑﻌ ﺪ ﻧﻬﺎﻳ ﺔ اﺟ ﺮاءات اﻟﻤﻌﺎﻳ ﺮﻩ ﺳ ﻮاء اﻟﻤﻴﻜﺎﻧﻴﻜ ﻴﻪ أو اﻟﻜﻬ ﺮﺑﻴﻪ ﻳﻌﻄ ﻰ اﻟﺠﻬ ﺎز ﺑﻴﺎن )‪ (indication‬أو ﻋﻼﻣﻪ ﻋﻠﻰ‬
‫ﺷﺎﺷﺔ اﻟﻘﻴﺎس ﻣﺜﻼ ﺗﺸﻴﺮ اﻟﻰ أن اﻟﺠﻬﺎز ﻗﺪ ﺗﻤﺖ ﻣﻌﺎﻳﺮﺗﻪ‪.‬‬
‫آ ﻞ ﺷ ﻨﻄﺔ ﻣﻌﺎﻳ ﺮﻩ ﻣﻌﻴ ﻨﻪ ﺗﻜ ﻮن ﺧﺎﺻ ﻪ ﺑ ﻨﻮع ﻣﻮﺻ ﻞ ﻣﺤ ﻮرى )‪ (coaxial connector‬واﺣ ﺪ ﻓﻘ ﻂ )أو ﺧﺎﺻ ﻪ‬
‫ﺑﻤﻘ ﺎس واﺣ ﺪ ﻓﻘ ﻂ ﻟﺘﻜﻨﻮﻟﻮﺟ ﻴﺎ ﻣﺮﺷ ﺪ اﻟﻤ ﻮﺟﻪ ‪ (Waveguide‬و ﺗﺴ ﺘﺨﺪم ﻣ ﻊ ﺟﻬ ﺎز ﻣﺤﻠﻞ ﺷﺒﻜﻰ ﻣﻌﻴﻦ و ﻳﻜﻮن ﻟﻬﺎ‬
‫رﻗﻢ ﺗﺠﺎرى أو رﻣﺰ ﺗﺠﺎرى‪.‬‬
‫اﻟﻤﺮﺟﻊ )‪ (17‬ﻳﻌﻄﻰ ﻣﻘﺎرﻧﻪ ﺑﻴﻦ ﻃﺮق اﻟﻤﻌﺎﻳﺮﻩ اﻟﻤﻴﻜﺎﻧﻴﻜﻴﻪ و اﻟﻤﻌﺎﻳﺮﻩ اﻟﻜﻬﺮﺑﻴﻪ ﻟﺠﻬﺎز اﻟﻤﺤﻠﻞ اﻟﺸﺒﻜﻰ‪.‬‬
‫ﺷ ﻨﻄﺔ اﻟ ﺘﺤﻘﻖ )‪ (verification kit‬ﺗﺴ ﺘﺨﺪم ﻣﻜ ﻮﻧﺎﺗﻬﺎ ﻣ ﻊ ﺟﻬ ﺎز اﻟﻤﺤﻠ ﻞ اﻟﺸ ﺒﻜﻰ ﺑﻐ ﺮض اﻟ ﺘﺤﻘﻖ ﻣﻦ أن اﻟﺠﻬﺎز‬
‫ﻳﻌﻤ ﻞ ﺑﻄ ﺮﻳﻘﻪ ﺻ ﺤﻴﺤﻪ أو ﺑﺎﻟﻤﻮاﺻ ﻔﺎت اﻟﻤﻄﻠ ﻮﺑﻪ ) ‪to verify that the network analyzer system is‬‬
‫‪ (operating properly‬ﻋ ﻦ ﻃ ﺮﻳﻖ ﻗ ﻴﺎس ﺑﺎراﻣﺘ ﺮات ﻣﻜ ﻮﻧﺎت ﺷ ﻨﻄﺔ اﻟ ﺘﺤﻘﻖ اﻟﻤﻌ ﺮوف أداﺋﻬ ﺎ ﻣﺴ ﺒﻘﺎ و ﺗﻤ ﺖ‬
‫ﻣﻌﺎﻳﺮﺗﻬﺎ ﻣﺴﺒﻘﺎ ﺑﻮاﺳﻄﺔ ﻣﺴﺘﻮى ﻣﻌﻤﻞ ﻗﻴﺎﺳﻰ اﻣﺎﻣﻰ )‪.(Primary Standard Laboratory‬‬
‫ﻣﻜ ﻮﻧﺎت ﺷ ﻨﻄﺔ اﻟ ﺘﺤﻘﻖ ﻗ ﺪ ﺗﻜ ﻮن ﻣﻮه ﻨﺎت ﺑﻘ ﻴﻢ ﻣﺨ ﺘﻠﻔﻪ و ﻣ ﻮهﻦ ﻋ ﺪم ﺗﻮاﻓ ﻖ ) ‪attenuators and mismatch‬‬
‫‪ (attenuator‬ﺑﺎﻻﺿﺎﻓﻪ اﻟﻰ ﻗﺮص ﺣﺎﺳﺐ‪.‬‬
‫ﻳﺘﻢ ﺗﻨﻔﻴﺬ ﻋﻤﻠﻴﺔ اﻟﺘﺤﻘﻖ ﺑﻌﺪ اﺟﺮاء ﻣﻌﺎﻳﺮة ﺟﻬﺎز اﻟﻤﺤﻠﻞ اﻟﺸﺒﻜﻰ أوﻻ‪.‬‬
‫ه ﻨﺎك ﺷ ﻨﻄﺔ ﺗﺤﻘ ﻖ ﻣﻌﻴ ﻨﻪ ﻟﻜ ﻞ ﻧ ﻮع ﻣﻮﺻ ﻞ ﻣﺤ ﻮرى )و ﻟﻜ ﻞ ﻣﻘ ﺎس ﻟﺘﻜﻨﻮﻟﻮﺟ ﻴﺎ ﻣﺮﺷﺪ اﻟﻤﻮﺟﻪ ‪ (Waveguide‬و‬
‫ﺗﺴﺘﺨﺪم ﻣﻊ ﺟﻬﺎز ﻣﺤﻠﻞ ﺷﺒﻜﻰ ﻣﻌﻴﻦ و ﻳﻜﻮن ﻟﻬﺎ رﻗﻢ ﺗﺠﺎرى أو رﻣﺰ ﺗﺠﺎرى‪.‬‬
‫ﻳﺘﻌﻴﻦ ﻋﻠﻰ ﻣﺴﺘﺨﺪم ﺟﻬﺎز اﻟﻤﺤﻠﻞ اﻟﺸﺒﻜﻰ اﺟﺮاء ﻋﻤﻠﻴﺔ اﻟﻤﻌﺎﻳﺮﻩ ﻗﺒﻞ اﺟﺮاء اﻟﻘﻴﺎس وهﺬا اﻟﻤﻮﺿﻮع ﻟﻴﺲ اﺧﺘﻴﺎرﻳﺎ‪.‬‬
‫أﻣ ﺎ اﺟ ﺮاء ﻋﻤﻠﻴﺘ ﻰ اﻟﻤﻌﺎﻳ ﺮﻩ و اﻟ ﺘﺤﻘﻖ ﻗ ﺒﻞ اﻟﻘﻴﺎس ﻓﻬﺬا ﻟﻀﻤﺎن دﻗﺔ اﻟﻘﻴﺎس و أن اﻟﺠﻬﺎز ﻳﻌﻤﻞ ﺑﻄﺮﻳﻘﻪ ﺻﺤﻴﺤﻪ و‬
‫ﺑﺎﻟﻤﻮاﺻﻔﺎت اﻟﻤﻄﻠﻮﺑﻪ ‪ ،‬و ﻟﻴﺲ ﻣﻦ اﻟﻀﺮورى اﺟﺮاء اﻟﻌﻤﻠﻴﺘﻴﻦ ﻋﻨﺪ آﻞ ﻗﻴﺎس‪.‬‬
‫ﺑﻌ ﺾ اﻟﺸ ﺮآﺎت اﻟﻤﻨ ﺘﺠﻪ ﻷﺟﻬ ﺰة اﻟﻘﻴﺎس ﻣﺜﻞ ﺷﺮآﺔ )‪ (Agilent‬ﺗﻨﺘﺞ ﺷﺮﻳﻂ ﻓﻴﺪﻳﻮ أو ﻗﺮص ﻣﺪﻣﺞ )‪ (CD‬آﺨﻴﺎر‬
‫ﻣ ﻊ ﺟﻬ ﺎز اﻟﻤﺤﻠ ﻞ اﻟﺸ ﺒﻜﻰ ﻳﺸ ﺮح ﻃ ﺮق اﻟﻤﻌﺎﻳ ﺮﻩ اﻟﻤﺨ ﺘﻠﻔﻪ و اﻟﻘﻴﺎس آﻤﺎ ﻳﺸﺮح اﻟﺼﻴﺎﻧﻪ و اﻟﺘﺮآﻴﺐ أو اﻟﺘﻮﺻﻴﻞ و‬
‫ﻃﺮﻳﻘﺔ ﺗﻨﻈﻴﻒ اﻟﺠﻬﺎز و اﻟﻤﻮﺻﻼت اﻟﻤﺤﻮرﻳﻪ اﻟﻰ ﺁﺧﺮﻩ‪.‬‬
‫ه ﻨﺎك اﻟﻌﺪﻳﺪ ﻣﻦ ﻣﺴﺎﻋﺪات اﻟﻘﻴﺎس )‪ (Test and Measurement Accessories‬اﻟﻤﻮﺟﻮدﻩ ﺑﻤﻌﺎﻣﻞ ﻗﻴﺎس دواﺋﺮ‬
‫اﻟﻤﻴﻜ ﺮووﻳﻒ و اﻟﻤﺴ ﺘﺨﺪﻣﻪ ﻓ ﻰ ﻗﻴﺎﺳ ﺎت اﻟﺪواﺋ ﺮ اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﺪﻗ ﻴﻘﻪ‪ .‬ﺟ ﺪول )‪ (٨ – ٨‬ﻳﺤ ﺘﻮى ﻋﻠ ﻰ أﻣ ﺜﻠﻪ ﻟﻬ ﺬﻩ‬
‫اﻟﻤﺴﺎﻋﺪات‪.‬‬

‫‪413‬‬

‫ﻣﻘﻴﺪات أو ﻣﺤﺪدات اﻟﻘﺪرﻩ‬

‫اﻟﻤﻮﺻﻼت اﻟﻤﺤﻮرﻳﻪ و أﻧﻮاع ﻣﻦ اﻟﻮﺻﻴﻞ‬
‫‪Adapters and Connectors‬‬
‫اﻟﻤﻜﺒﺮات‬

‫‪Amplifiers‬‬

‫اﻟﻤﻮهﻨﺎت‬

‫‪Attenuators‬‬

‫‪Power Limiters‬‬
‫ﻣﻘﺴﻤﺎت اﻟﻘﺪرﻩ‬
‫‪Power Dividers and Splitters‬‬

‫ﻣﻮهﻦ و ﻣﻔﺘﺎح‬

‫اﻟﻤﻔﺎﺗﻴﺢ )دواﺋﺮ ﻣﻴﻜﺮووﻳﻒ(‬

‫‪Switches‬‬

‫اﻷﺣﻤﺎل‬
‫‪Attenuator/Switch Driver‬‬

‫ﻣﻮﻗﻒ اﻟﺘﻴﺎر اﻟﻤﺴﺘﻤﺮ‬

‫‪DC Block‬‬

‫اﻟﻜﺎﺷﻔﺎت‬

‫‪Detectors‬‬

‫)‪Terminations (Loads‬‬
‫وﺻﻴﻞ ﻟﻌﻤﻞ ﺗﻮاﻓﻖ ﻓﻰ اﻟﻤﻌﺎوﻗﻪ‬
‫‪Impedance Matching Adapters‬‬

‫اﻟﻘﺎرﻧﺎت اﻟﻤﻮﺟﻬﻪ‬

‫‪Mixers‬‬

‫اﻟﻤﺎزﺟﺎت‬

‫‪Power Sensors‬‬

‫ﺣﺴﺎﺳﺎت اﻟﻘﺪرﻩ‬

‫‪Directional Couplers and Bridges‬‬
‫ﻋﺪاد اﻟﺘﺮدد‬

‫‪Frequency Meter‬‬

‫ﻣﺠﺲ ﻗﻴﺎس ﻟﻠﺘﺮدد اﻟﻌﺎﻟﻰ‬
‫‪High Frequency Probe‬‬

‫ﺟﺪول )‪ : (٨ – ٨‬ﺑﻌﺾ ﻣﺴﺎﻋﺪات اﻟﻘﻴﺎس )‪(Test and Measurement Accessories‬‬
‫اﻟﻤﻮﺟﻮدﻩ ﺑﻤﻌﻤﻞ ﻗﻴﺎس دواﺋﺮ اﻟﻤﻴﻜﺮووﻳﻒ‬

‫ه ﻨﺎك ﺷ ﺮآﺎت ﻣ ﺜﻞ )‪ (Anritsu , GigaLane‬و ﻏﻴ ﺮهﻤﺎ ﺗﻨ ﺘﺞ ﻣﺜﺒ ﺘﺎت ﻗ ﻴﺎس ﻋﺎﻣ ﻪ ) ‪UTF universal test‬‬
‫‪ (fixture‬و ه ﻰ ﻣﺴ ﺎﻋﺪات ﻗ ﻴﺎس ﺗﺴ ﺘﺨﺪم ﻟﺘﺜﺒ ﻴﺖ أو وﺿ ﻊ اﻟﻤﻜ ﻮﻧﺎت و اﻟﺪواﺋ ﺮ ﺑﻬ ﺎ ﻟﻘ ﻴﺎس أداﺋﻬ ﺎ ‪ ،‬و هﻰ ﺗﺼﻠﺢ‬
‫ﻟﺘﻜﻨﻮﻟﻮﺟ ﻴﺎت ﻣﺨ ﺘﻠﻔﻪ ﻣ ﺜﻞ اﻟﺪواﺋ ﺮ اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﺪﻗ ﻴﻘﻪ و دواﺋ ﺮ ﺗﻜﻨﻮﻟﻮﺟ ﻴﺎ ﻣﻮﺟﻪ اﻟﻤﻮﺟﻪ اﻟﺴﻄﺤﻰ )‪ .(CPW‬راﺟﻊ‬
‫ﻣﺮﺟﻌﻰ اﻻﻧﺘﺮﻧﺖ )‪.(i33, i34‬‬
‫ه ﻨﺎك ﺷ ﺮآﺎت ﻣ ﺜﻞ )‪ (Maury, Focus‬و ﻏﻴ ﺮهﻤﺎ ﺗﻨ ﺘﺞ ﺣﻤ ﻞ ﻣﺘﻐﻴ ﺮ ﻳ ﺘﻢ اﻟ ﺘﺤﻜﻢ ﻓ ﻴﻪ ﺑﻄ ﺮﻳﻘﻪ اﻟﻜﺘ ﺮوﻧﻴﻪ ﺑﻮاﺳﻄﺔ‬
‫ﺑ ﺮﻧﺎﻣﺞ ﺣﺎﺳ ﺐ ﻟﻌﻤ ﻞ ﻗﻴﺎﺳ ﺎت ﻣ ﻦ ﻧ ﻮع )‪ (Load Pull and Source Pull Measurements‬ﻟﻤﻜ ﻮﻧﺎت اﻟﻘﺪرﻩ‬
‫اﻟﻌﺎﻟﻴﻪ و دواﺋﺮ ﻣﻜﺒﺮات اﻟﻘﺪرﻩ اﻟﻌﺎﻟﻴﻪ‪ .‬راﺟﻊ ﻣﺮﺟﻌﻰ اﻻﻧﺘﺮﻧﺖ )‪(i25, i38‬‬
‫ه ﻨﺎك أﺟﻬ ﺰة أوﺳﻴﻠﻮﺳ ﻜﻮب )‪ (Oscilloscope‬ﻣﻨ ﺘﺠﻪ ﺗﺠﺎرﻳ ﺎ أﺻ ﺒﺤﺖ ﺗﻌﻤ ﻞ ﺣﺘﻰ ﺣﻴﺰ اﻟﻤﻴﻜﺮووﻳﻒ ﻣﺜﻞ أﺟﻬﺰة‬
‫)‪ (DSO81304A , DSO81204A , DSO81004A‬ﻣﻦ اﻧﺘﺎج ﺷﺮآﺔ )‪.(Agilent‬‬
‫ﺗﻮﻟ ﻴﻒ اﻟﺪواﺋ ﺮ أﺛﻨﺎء اﻟﻌﻤﻞ و‪/‬أو اﻟﻘﻴﺎس ﻣﻮﺟﻮد ﻓﻰ ﺗﻜﻨﻮﻟﻮﺟﻴﺎت أﺧﺮى ﻣﺜﻞ دواﺋﺮ ﻣﺮﺷﺪ اﻟﻤﻮﺟﻪ ) ‪Waveguide‬‬
‫‪ (Circuits‬ﺣﻴﺚ ﻳﺘﻢ اﻟﺘﻮﻟﻴﻒ ﺑﺎﺳﺘﺨﺪام ﻣﺴﺎﻣﻴﺮ أو أﻋﻤﺪﻩ )‪ (posts‬ﻣﺘﺤﺮآﻪ‪.‬‬

‫‪414‬‬

‫اﻟﺘﻮﻟ ﻴﻒ ﻓ ﻰ اﻟﺪواﺋ ﺮ اﻟﺘ ﻰ ﺗﻌﻤ ﻞ ﻓ ﻰ ﺣﻴ ﺰ ﻣ ﻨﺨﻔﺾ ﻣ ﻦ اﻟﺘ ﺮددات اﻟﻌﺎﻟ ﻴﻪ ﺑﺎﺳ ﺘﺨﺪام ﻣﻜ ﺜﻔﺎت ﻣﻦ ﻧﻮع )‪(trimmer‬‬
‫ﻣﻤﻜﻦ وﻟﻜﻨﻪ ﻻ ﻳﺼﻠﺢ آﻠﻤﺎ ارﺗﻔﻊ اﻟﺘﺮدد ﻓﻰ ﺣﻴﺰ اﻟﻤﻴﻜﺮووﻳﻒ‪.‬‬

‫ﺷﻜﻞ )‪ : (٣٢ – ٨‬ﻓﻜﺮﻩ ﻗﺪﻳﻤﻪ ﻟﺘﻮﻟﻴﻒ داﺋﺮﻩ ﺷﺮﻳﻄﻴﻪ دﻗﻴﻘﻪ‬

‫ه ﺪف اﻟﺘﻮﻟ ﻴﻒ أﺛ ﻨﺎء ﻗ ﻴﺎس اﻟﺪاﺋ ﺮﻩ ﺑﺎﻟﻨﺴﺒﻪ ﻟﻠﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ هﻮ اﻟﻮﺻﻮل اﻟﻰ اﻟﻤﺨﻄﻂ اﻟﻨﻬﺎﺋﻰ ﻟﻠﺪاﺋﺮﻩ اﻟﺬى‬
‫ﻳﺤﻘ ﻖ اﻷداء اﻟﻤﻄﻠ ﻮب ‪ ،‬ﺑﻤﻌﻨ ﻰ ﺗﺤﺪﻳ ﺪ اﻻﺳ ﺘﻄﺎﻟﻪ أو اﻟ ﺰﻳﺎدﻩ ﻓ ﻰ أﺑﻌ ﺎد ﺧ ﻂ ﺷ ﺮﻳﻄﻰ )أو أآﺜ ﺮ( اﻟﺘ ﻰ ﺗﺤﻘ ﻖ اﻷداء‬
‫اﻟﻤﻄﻠ ﻮب أو اﺿ ﺎﻓﺔ ﺧﻂ ﺷﺮﻳﻄﻰ ﻓﻰ ﻣﻜﺎن ﻣﻌﻴﻦ ﻟﺘﺤﻘﻴﻖ اﻷداء اﻟﻤﻄﻠﻮب ‪ ،‬ﺛﻢ ﻳﻌﺎد ﺗﺼﻨﻴﻊ اﻟﺪاﺋﺮﻩ ﺑﺎﻷﺑﻌﺎد اﻟﺠﺪﻳﺪﻩ‬
‫)أو اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﺠﺪﻳﺪﻩ( و ﻗﻴﺎس اﻷداء‪.‬‬
‫اﻟﺘﻮﻟ ﻴﻒ ﺣ ﻞ ﻋﻤﻠ ﻰ ﻻﻧﺠﺎح ﻋﻤﻞ اﻟﺪاﺋﺮﻩ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ ﻓﻰ ﺣﺎﻟﺔ ﻓﺸﻞ اﻟﻘﻴﺎس ﺧﺎﺻﺔ ﻣﻊ وﺟﻮد اﻣﻜﺎﻧﻴﺎت ﺿﻌﻴﻔﻪ‬
‫ﻟﻠﺘﺼﻨﻴﻊ‪.‬‬
‫ه ﻨﺎك ﻓﻜ ﺮﻩ ﻗﺪﻳﻤ ﻪ ﻟﺘﻮﻟ ﻴﻒ اﻟﺪواﺋ ﺮ اﻟﺸ ﺮﻳﻄﻴﻪ اﻟﺪﻗ ﻴﻘﻪ آﺎﻧ ﺖ ﺗﺴﺘﺨﺪم ﻓﻰ اﻟﺴﺘﻴﻨﺎت و اﻟﺴﺒﻌﻴﻨﺎت ﻧﺘﻴﺠﺔ ﻧﻘﺺ اﻟﻨﻤﺎذج‬
‫اﻟﺪﻗ ﻴﻘﻪ و ﻧﺪرة و ﺟﻮد ﺑﺮاﻣﺞ اﻟﺘﺤﻠﻴﻞ اﻟﺘﻰ ﻳﻌﺘﻤﺪ ﻋﻠﻴﻬﺎ ‪ ،‬ﺣﻴﺚ ﻻ ﻳﺘﻢ ﻃﺒﺎﻋﺔ اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ ذو اﻟﻨﻬﺎﻳﻪ اﻟﻤﻔﺘﻮﺣﻪ و‬
‫ﻳ ﺘﻢ اﻻﺳﺘﻌﺎﺿ ﻪ ﻋ ﻨﻪ ﺑﺸ ﺮﻳﺤﻪ ﻣﻌﺪﻧ ﻴﻪ ﻳﺘﻢ ﺗﺤﺮﻳﻜﻬﺎ أﺛﻨﺎء اﻟﻘﻴﺎس آﻤﺎ ﻓﻰ ﺷﻜﻞ )‪ ، (٣٢ – ٨‬و ﻣﺎ أن ﻳﺘﻢ ﺗﺤﺪﻳﺪ ﻣﻜﺎن‬
‫اﻟﺸ ﺮﻳﺤﻪ اﻟﻤﻌﺪﻧ ﻴﻪ اﻟ ﺬى ﻳﺤﻘ ﻖ اﻷداء اﻟﻤﻄﻠﻮب ‪ ،‬ﻳﻘﻮم اﻟﻤﺼﻤﻢ ﺑﺎﻋﺎدة ﺗﺼﻨﻴﻊ اﻟﺪاﺋﺮﻩ ﻣﻊ ﻃﺒﺎﻋﺔ ﺧﻂ ﺷﺮﻳﻄﻰ دﻗﻴﻖ‬
‫ﻓﻰ ﻧﻔﺲ ﻣﻜﺎن اﻟﺸﺮﻳﺤﻪ اﻟﻤﻌﺪﻧﻴﻪ ﺛﻢ ﻳﻘﻴﺲ اﻷداء‪.‬‬
‫و هﺬﻩ اﻟﻄﺮﻳﻘﻪ آﺎﻧﺖ ﺗﺴﺘﺨﺪم ﻓﻰ اﻟﺪواﺋﺮ ﺻﻌﺒﺔ اﻟﻨﻤﺬﺟﻪ أو اﻟﺘﺤﻠﻴﻞ ﻣﺜﻞ اﻟﻤﺬﺑﺬﺑﺎت )‪ (oscillators‬و ﻏﻴﺮهﺎ‪.‬‬
‫و ﻗ ﺪ ﺗ ﻢ ﺗﻄﻮﻳ ﺮ هﺬﻩ اﻟﻔﻜﺮﻩ ﺑﻌﺪ ذﻟﻚ ‪ ،‬ﺣﻴﺚ ﻳﻘﻮم اﻟﻤﺼﻤﻢ ﺑﻄﺒﺎﻋﺔ ﻋﺪد ﻣﻦ اﻟﻤﺴﺘﻄﻴﻼت أو اﻟﻤﺮﺑﻌﺎت ﺑﺠﺎﻧﺐ اﻟﺨﻂ‬
‫اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ أو ﻋﻨﺪ ﻧﻬﺎﻳﺔ ﺧﻂ ﺷﺮﻳﻄﻰ دﻗﻴﻖ ذو ﻧﻬﺎﻳﻪ ﻣﻔﺘﻮﺣﻪ آﻤﺎ ﻓﻰ ﺷﻜﻞ )‪.(٣٣ – ٨‬‬
‫و ﻳﻘﻮم اﻟﻤﺼﻤﻢ أﺛﻨﺎء اﻟﻘﻴﺎس ﺑﺘﺤﺮﻳﻚ ﺷﺮﻳﺤﻪ ﻣﻌﺪﻧﻴﻪ آﻤﺎ ﻓﻰ ﺷﻜﻞ )‪ (٣٤ – ٨‬ﻟﻌﻤﻞ اﺳﺘﻄﺎﻟﻪ ﻟﻠﺨﻂ اﻟﺸﺮﻳﻄﻰ اﻟﺪﻗﻴﻖ‬
‫اﻟﻤﻨﺘﻬ ﻰ ﻧﻬﺎﻳ ﻪ ﻣﻔ ﺘﻮﺣﻪ أو آﻤ ﺎ ﻓ ﻰ ﺷ ﻜﻞ )‪ (٣٥ – ٨‬ﻟﻌﻤ ﻞ ﺧ ﻂ ﺷ ﺮﻳﻄﻰ دﻗ ﻴﻖ ﻣﻨﺘﻬﻰ ﻧﻬﺎﻳﻪ ﻣﻔﺘﻮﺣﻪ و ﻣﺘﺼﻞ ﻋﻠﻰ‬
‫اﻟ ﺘﻮازى ‪ ،‬و ﻳﺴﺘﻤﺮ اﻟﺘﺤﺮﻳﻚ ﺣﺘﻰ ﻳﺘﻢ ﺗﺤﺪﻳﺪ ﻣﻜﺎن اﻟﺸﺮﻳﺤﻪ اﻟﻤﻌﺪﻧﻴﻪ اﻟﺬى ﻳﺤﻘﻖ اﻷداء اﻟﻤﻄﻠﻮب ‪ ،‬و ﻳﻘﻮم اﻟﻤﺼﻤﻢ‬
‫ﺑﺎﻋﺎدة ﺗﺼﻨﻴﻊ اﻟﺪاﺋﺮﻩ ﻣﻊ ﻃﺒﺎﻋﺔ ﺧﻂ ﺷﺮﻳﻄﻰ دﻗﻴﻖ ﻓﻰ ﻧﻔﺲ ﻣﻜﺎن اﻟﺸﺮﻳﺤﻪ اﻟﻤﻌﺪﻧﻴﻪ ﺛﻢ ﻳﻘﻴﺲ اﻷداء‪.‬‬

‫‪415‬‬

‫ه ﻨﺎك ﺣ ﻞ ﺁﺧ ﺮ ﻟﺘﻮﻟﻴﻒ أو ﺗﻐﻴﻴﺮ أﺑﻌﺎد اﻟﺨﻂ أو اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ اﻟﻤﻨﺘﻬﻴﻪ ﻧﻬﺎﻳﻪ ﻣﻔﺘﻮﺣﻪ أﺛﻨﺎء ﻗﻴﺎس اﻟﺪاﺋﺮﻩ‬
‫و ه ﻮ ﻋﻤ ﻞ ﻗ ﺺ ﺑﺎﻟﻠﻴ ﺰر أو ﻗ ﺺ ﻣﻴﻜﺎﻧﻴﻜﻰ ﺑﻤﻌﻨﻰ ﺗﻘﺼﻴﺮ ﻃﻮل اﻟﺨﻂ أو اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ اﻟﻤﻨﺘﻬﻴﻪ ﻧﻬﺎﻳﻪ‬
‫ﻣﻔﺘﻮﺣﻪ و ﻣﺮاﻗﺒﺔ اﻷداء اﻟﻤﻘﺎس اﻟﻰ أن ﻧﺤﺼﻞ ﻓﻰ اﻟﻨﻬﺎﻳﻪ ﻋﻠﻰ اﻟﻤﺨﻄﻂ اﻟﺬى ﻳﺤﻘﻖ اﻷداء اﻟﻤﻄﻠﻮب‪.‬‬
‫ﻳﻤﻜ ﻦ ﻟﻤﺎآﻴ ﻨﺎت )‪ (CNC‬ذات ﻗﺎﻃ ﻊ اﻟﻠﻴ ﺰر اﻟﻘ ﻴﺎم ﺑﻌﻤﻠ ﻴﺔ )‪ (Laser Trimming‬أو اﻟﻘ ﺺ ﺑﺎﻟﻠﻴ ﺰر أﺛ ﻨﺎء اﻟﻘ ﻴﺎس‬
‫ﺑﺎﺳ ﺘﺨﺪام أﺟﻬ ﺰة اﻟﻘ ﻴﺎس اﻟﻤﺨ ﺘﻠﻔﻪ و ﻣ ﻨﻬﺎ )‪ (Network Analyzer‬ﻟﻀ ﺒﻂ اﻷداء‪ .‬آﻤ ﺎ ﻳﻤﻜ ﻦ اﻟﻘﻴﺎم ﺑﻌﻤﻠﻴﺔ اﻟﻘﺺ‬
‫ﺑﺎﻟﻔﺮﻳ ﺰﻩ أو اﻟﻘ ﺺ اﻟﻤﻴﻜﺎﻧﻴﻜﻰ ﻟﻀﺒﻂ اﻷداء أﺛﻨﺎء اﻟﻘﻴﺎس ﺑﺎﺳﺘﺨﺪام ﻣﺎآﻴﻨﺎت )‪ (CNC‬ذات ﻗﺎﻃﻊ ﻣﻴﻜﺎﻧﻴﻜﻰ و ﻳﺸﺮح‬
‫اﻟﻤﺮﺟﻊ )‪ (7‬هﺬا اﻟﻤﻮﺿﻮع و ﺗﻄﺒﻴﻘﻪ ﻋﻠﻰ دواﺋﺮ ﻓﻠﺘﺮ ﻟﺒﻌﺾ اﻟﺘﻄﺒﻴﻘﺎت اﻟﻌﺴﻜﺮﻳﻪ‪.‬‬
‫اﻟﺘﺤﻠ ﻴﻞ ﻣ ﻦ ﻧ ﻮع )‪ (Yield and Sensitivity Analysis‬ﻳﺤ ﺪد ﻣﻘﺪار أو ﻧﺴﺒﺔ ﺗﺄﺛﻴﺮ اﻟﺨﻄﻮط اﻟﺸﺮﻳﻄﻴﻪ ﻋﻠﻰ‬
‫أداء اﻟﺪاﺋﺮﻩ ‪ ،‬و ﺑﺎﻟﺘﺎﻟﻰ ﻳﻤﻜﻦ ﺗﺮآﻴﺰ ﻋﻤﻠﻴﺔ اﻟﺘﻮﻟﻴﻒ ﻋﻠﻰ اﻟﺨﻄﻮط اﻷآﺜﺮ ﺗﺄﺛﻴﺮا ﻓﻰ أداء اﻟﺪاﺋﺮﻩ‪.‬‬
‫ﺑ ﺮﻏﻢ وﺟ ﻮد اﻟﺒ ﺮاﻣﺞ ذات اﻟﺪﻗ ﻪ اﻟﻌﺎﻟ ﻴﻪ ﻟﺘﺤﻠ ﻴﻞ دواﺋ ﺮ اﻟﺘ ﺮدد اﻟﻌﺎﻟ ﻰ و اﻟﻤﻴﻜ ﺮووﻳﻒ اﻟﺘ ﻰ ﺗﻌ ﺘﻤﺪ ﻋﻠﻰ ﻧﻤﺎذج دﻗﻴﻘﻪ‬
‫ﻟﻠﻤﻜ ﻮﻧﺎت )ﺳﻮاء اﻟﻤﺒﻨﻴﻪ ﻋﻠﻰ اﻟﺘﺤﻠﻴﻞ اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴﻰ أو اﻟﻤﻨﺘﺠﻪ ﺑﺎﻟﺸﺒﻜﺎت اﻟﻤﺨﻴﻪ اﻟﺼﻨﺎﻋﻴﻪ ‪(ANN Models‬‬
‫و وﺟ ﻮد ﺑ ﺮاﻣﺞ اﻟﺘﺤﻠ ﻴﻞ اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴ ﻰ ‪ ،‬إﻻ أن اﻟﺘﻮﻟ ﻴﻒ اﻟﻨﻬﺎﺋ ﻰ و اﻟﻘ ﺺ ﺑﺎﻟﻠﻴ ﺰر و اﻟﻘ ﺺ اﻟﻤﻴﻜﺎﻧﻴﻜ ﻰ ﺗﺒﻘ ﻰ‬
‫ﺧﻴﺎرات ﻧﻬﺎﺋﻴﻪ و ﻋﻤﻠﻴﻪ ﻟﻠﻤﺼﻤﻢ ﻻﻧﺠﺎح ﻋﻤﻞ اﻟﺪاﺋﺮﻩ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ ﻓﻰ ﺣﺎﻟﺔ ﻓﺸﻞ اﻟﻘﻴﺎس‪.‬‬

‫ﺷﻜﻞ )‪ : (٣٣ – ٨‬ﺑﻌﺾ اﻷﻣﺜﻠﻪ ﻋﻠﻰ اﻟﻘﻄﻊ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺘﻰ ﻳﺘﻢ ﻃﺒﺎﻋﺘﻬﺎ ﺑﺠﻮار‪/‬أو ﻋﻨﺪ ﻧﻬﺎﻳﺔ اﻟﺨﻂ اﻟﺸﺮﻳﻄﻰ‬
‫اﻟﺪﻗﻴﻖ ﻻﺳﺘﺨﺪاﻣﻬﺎ ﻓﻰ ﻋﻤﻠﻴﺔ اﻟﺘﻮﻟﻴﻒ اﻟﻨﻬﺎﺋﻰ‬

‫‪416‬‬

‫ﺷﻜﻞ )‪ : (٣٤ – ٨‬آﻴﻔﻴﺔ اﻟﺘﻮﻟﻴﻒ ﻋﻨﺪ ﻧﻬﺎﻳﺔ ﺧﻂ ﺷﺮﻳﻄﻰ دﻗﻴﻖ ﻣﻨﺘﻬﻰ ﻧﻬﺎﻳﻪ ﻣﻔﺘﻮﺣﻪ أﺛﻨﺎء ﻗﻴﺎس اﻟﺪاﺋﺮﻩ ﻟﻠﻮﺻﻮل‬
‫اﻟﻰ اﻟﻤﺨﻄﻂ اﻟﻨﻬﺎﺋﻰ اﻟﺬى ﻳﺤﻘﻖ اﻷداء اﻟﻤﻄﻠﻮب‬

‫ﺷﻜﻞ )‪ : (٣٥ – ٨‬آﻴﻔﻴﺔ اﻟﺘﻮﻟﻴﻒ ﺑﺎﺿﺎﻓﺔ ﺧﻂ ﺷﺮﻳﻄﻰ دﻗﻴﻖ ﻣﻨﺘﻬﻰ ﻧﻬﺎﻳﻪ ﻣﻔﺘﻮﺣﻪ و ﻣﺘﺼﻞ ﻋﻠﻰ اﻟﺘﻮازى أﺛﻨﺎء‬
‫ﻗﻴﺎس اﻟﺪاﺋﺮﻩ ﺑﻐﺮض اﻟﻮﺻﻮل اﻟﻰ اﻟﻤﺨﻄﻂ اﻟﻨﻬﺎﺋﻰ اﻟﺬى ﻳﺤﻘﻖ اﻷداء اﻟﻤﻄﻠﻮب‬

‫ه ﻨﺎك اﻟﻌﺪﻳ ﺪ ﻣ ﻦ اﻟﺸ ﺮآﺎت اﻟﻤﻨ ﺘﺠﻪ ﻷﺟﻬ ﺰة اﻟﻘ ﻴﺎس ﻣ ﺜﻞ ) ‪Agilent, Anritsu, Rohde & Schwarz,‬‬
‫‪ .(keithley, Tegam, Maury, FOCUS Microwaves Inc, Tektronix‬راﺟ ﻊ ﻣﺮاﺟﻊ اﻻﻧﺘﺮﻧﺖ ) ‪i1,‬‬
‫‪.(i34, i35, i36, i37, i25, i38, i39‬‬

‫‪417‬‬

‫و ه ﻨﺎك اﻟﻌﺪﻳ ﺪ ﻣ ﻦ اﻟﺸ ﺮآﺎت اﻟﺼ ﻴﻨﻴﻪ اﻟﻤﻨ ﺘﺠﻪ ﻷﺟﻬ ﺰة اﻟﻘ ﻴﺎس ﻣ ﺜﻞ ) & ‪Quzhou Senio Electronics‬‬
‫‪Machinery Co., Ltd., Shanghai Total Industrial Co., Ltd., Shenzhen Atten Electronics‬‬
‫‪ .(Co., Ltd.‬راﺟﻊ ﻣﺮاﺟﻊ اﻻﻧﺘﺮﻧﺖ )‪.(i20, i40, i41, i42‬‬
‫ﻣﻌﺎﻣ ﻞ آﻠﻴﺎت اﻟﻬﻨﺪﺳﻪ ﻓﻰ ﻣﺨﺘﻠﻒ أﻧﺤﺎء اﻟﻌﺎﻟﻢ ) ﻟﻴﺲ ﻓﻘﻂ ﻓﻰ اﻟﻮﻻﻳﺎت اﻟﻤﺘﺤﺪﻩ اﻷﻣﺮﻳﻜﻴﻪ و آﻨﺪا ودول أوروﺑﻴﻪ ﺑﻞ‬
‫ﻓ ﻰ دول آﺜﻴ ﺮﻩ ﻣ ﺜﻞ اﺳ ﺘﺮاﻟﻴﺎ واﻟ ﻴﺎﺑﺎن و آ ﻮرﻳﺎ و ﺗﺎﻳ ﻮان و اﻟﻬ ﻨﺪ و اﻟﺒ ﺮازﻳﻞ و ﺟ ﻨﻮب أﻓ ﺮﻳﻘﻴﺎ وﻏﻴ ﺮهﺎ( ﻳﺤ ﺘﻮى‬
‫ﻣﻌﻈﻤﻬ ﺎ ﻋﻠ ﻰ ﻋ ﺪة أﺟﻬ ﺰة ﻣﺤﻠ ﻞ ﺷ ﺒﻜﻰ )‪ (Network Analyzers‬و أﺟﻬ ﺰة ﻣﺤﻠ ﻞ اﻟﻄ ﻴﻒ ) ‪Spectrum‬‬
‫‪ (Analyzers‬و ﻋ ﺪادات ﺗﺮدد )‪ (Frequency Counters‬و ﻋﺪادات ﻗﺪرﻩ )‪ (Power Meters‬و أﺟﻬﺰة ﻣﺤﻠﻞ‬
‫ﻣﻌﺎوﻗ ﻪ )‪ (Impedance Analyzers‬و ﻣﺬﺑ ﺬﺑﺎت و ﻣ ﻮﻟﺪات اﺷﺎرﻩ ﻣﻦ ﻧﻮع )‪ (Frequency Synthesizers‬و‬
‫ﻣﻜ ﻮﻧﺎت و ﻣﺴ ﺎﻋﺪات ﻗ ﻴﺎس اﻟ ﻰ ﺁﺧ ﺮﻩ‪ .‬ﺑﺎﻻﺿ ﺎﻓﻪ اﻟ ﻰ اﻣﻜﺎﻧ ﻴﺎت ﺗﺼ ﻨﻴﻊ اﻟﺪواﺋ ﺮ ﺳ ﻮاء ﺑﺎﻟﻄ ﺒﺎﻋﻪ أو ﺑﻤﺎآﻴ ﻨﺎت‬
‫)‪ (CNC‬أو ﺑﺘﻜﻨﻮﻟﻮﺟ ﻴﺎت ﻣ ﺜﻞ )‪ .(Thick Film and Thin Film Technologies‬و ﻳ ﻮﺟﺪ ﺑﻬ ﺬﻩ اﻟﻤﻌﺎﻣ ﻞ‬
‫أآﺜ ﺮ ﻣ ﻦ ﺑ ﺮﻧﺎﻣﺞ ﻟﺘﺤﻠ ﻴﻞ دواﺋﺮ و ﻧﻈﻢ اﻟﺘﺮدد اﻟﻌﺎﻟﻰ و اﻟﻤﻴﻜﺮووﻳﻒ و ﺑﺮاﻣﺞ ﻟﻠﺘﺤﻠﻴﻞ اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴﻰ و اﻟﻨﻤﺬﺟﻪ‬
‫و ﺗﺼ ﻤﻴﻢ اﻟﺪواﺋ ﺮ اﻟ ﻰ ﺁﺧ ﺮﻩ‪) .‬ﻟ ﻴﺲ ﻣ ﻦ اﻟﻀﺮورى ﺷﺮاء آﻞ اﻟﺘﺠﻬﻴﺰات ﻣﺮﺗﻔﻌﺔ اﻟﺜﻤﻦ دﻓﻌﻪ واﺣﺪﻩ ﻟﺘﺄﺳﻴﺲ ﻣﻌﻤﻞ‬
‫اﻟﻤﻴﻜ ﺮووﻳﻒ اﻟﺠﺎﻣﻌ ﻰ‪ .‬و ﻳﻤﻜﻦ ﻓﻰ اﻟﺒﺪاﻳﻪ ﺷﺮاء اﻻﺣﺘﻴﺎﺟﺎت اﻷﺳﺎﺳﻴﻪ ﻣﻊ وﺿﻊ ﻗﺎﺋﻤﻪ ﺑﺎﻟﺘﺠﻬﻴﺰات اﻟﻜﺎﻣﻠﻪ ﻟﻠﻤﻌﻤﻞ‬
‫و ﻳﺘﻢ ﺷﺮاء ﺑﺎﻗﻰ اﻟﺘﺠﻬﻴﺰات وﻓﻘﺎ ﻟﻠﻤﺸﺎرﻳﻊ اﻟﺘﻌﻠﻴﻤﻴﻪ و اﻟﺒﺤﺜﻴﻪ(‪.‬‬
‫و ﻳﻼﺣ ﻆ أن ه ﺬﻩ اﻷﺟﻬ ﺰﻩ و اﻟﺒ ﺮاﻣﺞ ﻳ ﺘﻢ ﺗﺪرﻳﺲ ﻧﻈﺮﻳﺎﺗﻬﺎ و اﺳﺘﺨﺪاﻣﻬﺎ ﻋﻤﻠﻴﺎ ﻓﻰ ﻣﺎدﻩ أو أآﺜﺮ ﺿﻤﻦ ﻣﺴﺘﻮى ﻗﺒﻞ‬
‫اﻟﺘﺨ ﺮج )‪ (undergraduate‬و اﻟﺪراﺳ ﺎت اﻟﻌﻠ ﻴﺎ ‪ ،‬و ﺑﻌ ﺾ ﻣﺸ ﺎرﻳﻊ اﻟﺘﺨ ﺮج ﺗﻜ ﻮن ﺗﺼ ﻤﻴﻢ و ﺗﺼ ﻨﻴﻊ دواﺋ ﺮ أو‬
‫أﺟ ﺰاء ﻧﻈ ﻢ أو ﻧﻈﻢ ﻟﺘﻄﺒﻴﻖ ﻣﺪﻧﻰ أو ﻋﺴﻜﺮى أو ﻓﻰ ﻣﺠﺎل اﻟﻔﻀﺎء اﻟﻰ ﺁﺧﺮﻩ ‪ ،‬و ﻳﻤﻜﻦ أن ﻳﻜﻮن ﻣﺸﺮوع اﻟﺘﺨﺮج‬
‫ﻓ ﻰ آﻠ ﻴﺔ هﻨﺪﺳ ﻪ هﻮ ﺗﺼﻤﻴﻢ و ﺗﺼﻨﻴﻊ ﻗﻤﺮ ﺻﻨﺎﻋﻰ ﻣﻦ اﻟﻨﻮع اﻟﻤﺘﻨﺎهﻰ اﻟﺼﻐﺮ )‪ (microsatellite‬ﻳﺘﻢ اﺧﺘﺒﺎرﻩ و‬
‫اﻃﻼﻗﻪ و ﻗﺪ ﺗﻢ ﺗﻄﺒﻴﻖ ذﻟﻚ ﻋﻠﻰ ﻧﻄﺎق واﺳﻊ ﻓﻰ اﻟﻌﺪﻳﺪ ﻣﻦ اﻟﺠﺎﻣﻌﺎت ﻣﻨﺬ اﻟﺘﺴﻌﻴﻨﺎت وﻓﻘﺎ ﻟﻠﻤﺮﺟﻊ )‪.(18‬‬
‫راﺟﻊ ﻣﺮاﺟﻊ اﻻﻧﺘﺮﻧﺖ )‪.(i43, i44, i45‬‬
‫و ﺑﺎﻟﺘﺎﻟ ﻰ ﻳﻤﻜ ﻦ اﻻﻋ ﺘﻤﺎد ﻋﻠﻰ ﺧﺮﻳﺠﻰ آﻠﻴﺎت اﻟﻬﻨﺪﺳﻪ ﻓﻰ هﺬﻩ اﻟﺪول ﻟﻠﻌﻤﻞ ﻓﻰ ﻣﺆﺳﺴﺎت اﻟﺒﺤﺚ اﻟﻌﻠﻤﻰ و ﺷﺮآﺎت‬
‫و ﻣﺼﺎﻧﻊ اﻧﺘﺎج دواﺋﺮ و ﻧﻈﻢ اﻟﻤﻴﻜﺮووﻳﻒ ﻓﻰ ﻣﺨﺘﻠﻒ اﻟﺘﻄﺒﻴﻘﺎت‪.‬‬
‫و ه ﺬا ه ﻮ اﻷﺳ ﺎس ﻻﻗﺎﻣ ﺔ ﺑﺤﺚ ﻋﻠﻤﻰ و ﺻﻨﺎﻋﺎت ﻣﺘﻘﺪﻣﻪ ﻓﻰ ﻣﺠﺎل هﻨﺪﺳﺔ اﻟﻤﻴﻜﺮووﻳﻒ ﻣﻊ ﺗﻮﻓﻴﺮاﻟﺘﻤﻮﻳﻞ اﻟﻤﺎﻟﻰ‬
‫و اﻧﺸﺎء أو ﻧﻘﻞ اﻟﺘﻜﻨﻮﻟﻮﺟﻴﺎت اﻟﻼزﻣﻪ ﻟﺬﻟﻚ‪.‬‬

‫‪418‬‬

‫ﻣﺮاﺟﻊ اﻟﻔﺼﻞ اﻟﺜﺎﻣﻦ‬
‫اﻟﺴﻨﻪ‬

‫ﻣﻜﺎن اﻟﻨﺸﺮ‬/‫دار اﻟﻨﺸﺮ‬

‫اﻟﻨﺎﺷﺮﻳﻦ‬/‫اﻟﻤﺆﻟﻔﻴﻦ‬

1993

Artech House

M. D. Meehan,
John Purviance.

2003

Artech House

2007

2008

Master Thesis Faculty of Electrical
Engineering Universiti Teknologi
Malaysia
McGraw Hill

Harri Eskelinen
Pekka Eskelinen
A. K. B. M. Isa

2005

McGraw Hill

Clyde F. Coombs,
Jr.
R. S. Khandpur

2002

Newnes

Jon Varteresian

2001

MICROWAVES &
RF - JUNE 2001

2001

John Wiley & Sons

1996

Prentice Hall

J. E. Reinhardt,
A. V. Fogle,
D. E. Dunstone
T. C. Edwards ,
M. B. Steer
Samuel Y. Liao

2004

Artech House

Pekka Eskelinen

2005

William
Andrew, J. J. Licari,
Publishing Inc.
D. W. Swanson

2001

CRC Press

Mike Golio

2007

Newnes

Tim Williams

2000

Newnes

2002

Newnes

Tim Williams
Keith Armstrong
Joseph J. Carr

2008

CRC Press

Mike Golio

2003

Agilent Technologies

1999

PERGAMON
- Elsevier Science

Fei-Bin Hsiao

419

‫اﺳﻢ اﻟﻜﺘﺎب أو اﻟﻮﺛﻴﻘﻪ‬
Yield and Reliability in
Microwave Circuit and
System Design
Microwave Component
Mechanics
Electromagnetic Band Gap
(EBG) for Microstrip
Antenna Design

1

Printed Circuits Handbook
(6th edition)
Printed Circuit Boards
Design, Fabrication,
Assembly and Testing
Fabricating Printed Circuit
Boards
Automated Process Cuts
Filter Tuning Time From
Hours To Minutes
Foundations of Interconnect
and Microstrip Design
Microwave Devices and
Circuits (3rd edition)
Introduction to RF
Equipment and System
Design
Adhesives Technology for
Electronic Applications
Materials, Processes,
Reliability
The RF and Microwave
Handbook
EMC for Product Designers,
(4th edition)
EMC for Systems and
Installations
Practical Radio Frequency
Test and Measurement.
A Technician's Handbook
RF and Microwave Circuits,
Measurements, and
Modeling, (2nd edition)
Agilent Electronic vs.
Mechanical Calibration Kits:
Calibration Methods and
Accuracy
Microsatellites as Research
Tools, Volume 10

4

2
3

5
6
7
8
9
10
11

12
13
14
15
16
17

18

‫ﻤﺭﺍﺠﻊ ﺍﻻﻨﺘﺭﻨﺕ‬
. ‫( اﻟﻤﻨﺘﺠﻪ ﻟﺒﺮاﻣﺞ اﻟﺘﺤﻠﻴﻞ و اﻟﺘﺼﻤﻴﻢ و أﺟﻬﺰة اﻟﻘﻴﺎس و ﻏﻴﺮهﺎ‬Agilent) ‫ﻣﻮﻗﻊ ﺷﺮآﺔ‬
http://www.agilent.com
(CNC) ‫( اﻟﻤﻨﺘﺠﻪ ﻷدوات و ﺗﺠﻬﻴﺰات ﻃﺒﺎﻋﺔ اﻟﺪواﺋﺮ و ﻣﺎآﻴﻨﺎت‬Bungard Elektronik) ‫ﻣﻮﻗﻊ ﺷﺮآﻪ‬

i1
i2

http://www.bungard.de/component/option,com_frontpage/Itemid,1/lang,english/
(CNC) ‫ﺻﻔﺤﺔ ﺗﺤﻤﻴﻞ ﻣﻠﻔﺎت اﻟﻔﻴﺪﻳﻮ اﻟﺨﺎﺻﻪ ﺑﺘﺠﻬﻴﺰات ﻃﺒﺎﻋﺔ اﻟﺪواﺋﺮ و ﻣﺎآﻴﻨﺎت‬
http://www.bungard.de/content/view/13/41/lang,english/
‫( اﻟﻤﻨﺘﺠﻪ ﻷدوات و ﺗﺠﻬﻴﺰات ﻃﺒﺎﻋﺔ اﻟﺪواﺋﺮ‬911EDA Inc.) ‫ﻣﻮﻗﻊ ﺷﺮآﻪ‬

i3

http://www.911pcb.com/
‫( اﻟﻤﻨﺘﺠﻪ ﻷدوات و ﺗﺠﻬﻴﺰات ﻃﺒﺎﻋﺔ اﻟﺪواﺋﺮ‬Taiwan Union Technology Corp.) ‫ﻣﻮﻗﻊ ﺷﺮآﻪ‬
http://www.tuc.com.tw/

i4

‫( اﻟﻤﻨﺘﺠﻪ ﻷدوات و ﺗﺠﻬﻴﺰات‬Advance Reproductions Corporation Corp.) ‫ﻣﻮﻗﻊ ﺷﺮآﻪ‬

i5

‫ﻃﺒﺎﻋﺔ اﻟﺪواﺋﺮ‬
http://www.advancerepro.com/
‫ﻣﻮﻗﻊ ﻟﻌﻨﺎوﻳﻦ اﻟﺸﺮآﺎت اﻟﻤﻨﺘﺠﻪ ﻷدوات و ﺗﺠﻬﻴﺰات ﻃﺒﺎﻋﺔ اﻟﺪواﺋﺮ و ﻣﻌﻠﻮﻣﺎت أﺧﺮى ﻓﻰ ﻧﻔﺲ اﻟﻤﺠﺎل‬

i6

http://pcbvendor.com/vendors.asp
(CNC) ‫( اﻟﻤﻨﺘﺠﻪ ﻟﻤﺎآﻴﻨﺎت‬T-Tech) ‫ﻣﻮﻗﻊ ﺷﺮآﻪ‬

i7

(CNC) ‫( اﻟﻤﻨﺘﺠﻪ ﻟﻤﺎآﻴﻨﺎت‬LPKF) ‫ﻣﻮﻗﻊ ﺷﺮآﻪ‬

i8

(CNC) ‫( اﻟﻤﻨﺘﺠﻪ ﻟﻤﺎآﻴﻨﺎت‬MULTICAM) ‫ﻣﻮﻗﻊ ﺷﺮآﻪ‬

i9

http://www.t-tech.com
http://www.lpkf.com/index.htm
http://www.multicam.com

(CNC) ‫ ﻣﻮﻗﻊ ﻟﻠﺸﺮآﺎت اﻟﺼﻴﻨﻴﻪ اﻟﻤﻨﺘﺠﻪ ﻟﻤﺎآﻴﻨﺎت‬i10
http://www.made-in-china.com/products-search/hot-china-products/CNC_Router.html
(CNC) ‫( اﻟﺼﻴﻨﻴﻪ اﻟﻤﻨﺘﺠﻪ ﻟﻤﺎآﻴﻨﺎت‬Jinan XYZ-TECH CNC Equipment Co., Ltd.) ‫ ﻣﻮﻗﻊ ﺷﺮآﻪ‬i11

http://xyz-tech.en.made-in-china.com
(CNC) ‫ اﻟﺼﻴﻨﻴﻪ اﻟﻤﻨﺘﺠﻪ ﻟﻤﺎآﻴﻨﺎت‬Perfect Laser (Wuhan) Co., Ltd. ‫ ﻣﻮﻗﻊ ﺷﺮآﻪ‬i12
http://www.made-in-china.com/showroom/perfectlaserco
(CNC) ‫( اﻟﺼﻴﻨﻴﻪ اﻟﻤﻨﺘﺠﻪ ﻟﻤﺎآﻴﻨﺎت‬Wuhan Gland Machinery Co., Ltd.) ‫ ﻣﻮﻗﻊ ﺷﺮآﻪ‬i13
http://www.made-in-china.com/showroom/wuhangland
‫( اﻟﻤﻨﺘﺠﻪ ﻟﻠﻤﻮﺻﻼت اﻟﻤﺤﻮرﻳﻪ‬Aeroflex/Weinschel) ‫ ﻣﻮﻗﻊ ﺷﺮآﺔ‬i14
http://www.aeroflex-weinschel.com
http://www.aeroflex.com/ams/weinschel/micro-weinschel-prods.cfm

420

‫ﺘﺎﺒﻊ ﻤﺭﺍﺠﻊ ﺍﻻﻨﺘﺭﻨﺕ‬
‫( اﻟﻤﻨﺘﺠﻪ ﻟﻠﻤﻮﺻﻼت اﻟﻤﺤﻮرﻳﻪ‬Amphenol RF) ‫ ﻣﻮﻗﻊ ﺷﺮآﺔ‬i15
http://www.amphenolrf.com
‫( اﻟﻤﻨﺘﺠﻪ ﻟﻠﻤﻮﺻﻼت اﻟﻤﺤﻮرﻳﻪ و ﻣﺴﺎﻋﺪات و أﺟﻬﺰة اﻟﻘﻴﺎس‬Anritsu) ‫ ﻣﻮﻗﻊ ﺷﺮآﺔ‬i16
http://www.anritsu.com/
‫( اﻟﻤﻨﺘﺠﻪ ﻟﻠﻤﻮﺻﻼت اﻟﻤﺤﻮرﻳﻪ‬Applied Engineering Products) ‫ ﻣﻮﻗﻊ ﺷﺮآﺔ‬i17
http://www.aep.us/
‫ ﻣﻮﻗﻊ ﻋﻨﺎوﻳﻦ ﻟﻠﺸﺮآﺎت اﻟﻤﻨﺘﺠﻪ ﻟﻠﻤﻮﺻﻼت اﻟﻤﺤﻮرﻳﻪ‬i18
http://www.theelectricalresource.com/category/rf-connectors.html
‫( اﻟﺘﺎﻳﻮاﻧﻴﻪ اﻟﻤﻨﺘﺠﻪ ﻟﻠﻤﻮﺻﻼت اﻟﻤﺤﻮرﻳﻪ‬Aliner) ‫ ﻣﻮﻗﻊ ﺷﺮآﺔ‬i19
http://www.aliner.com.tw/home.htm
‫ ﻣﻮﻗﻊ ﻟﻠﺒﺤﺚ ﻋﻦ ﻋﻨﺎوﻳﻦ ﻟﻠﺸﺮآﺎت اﻟﺼﻴﻨﻴﻪ اﻟﻤﻨﺘﺠﻪ ﻟﻠﻤﻮﺻﻼت اﻟﻤﺤﻮرﻳﻪ و ﻏﻴﺮهﺎ ﻣﻦ اﻟﻤﻨﺘﺠﺎت‬i20
http://www.alibaba.com/
‫( اﻟﺼﻴﻨﻴﻪ اﻟﻤﻨﺘﺠﻪ ﻟﻠﻤﻮﺻﻼت اﻟﻤﺤﻮرﻳﻪ‬Jiangsu Dongya Electronic Co., Ltd.) ‫ ﻣﻮﻗﻊ ﺷﺮآﺔ‬i21

http://dy-china.en.alibaba.com/
‫( اﻟﺼﻴﻨﻴﻪ اﻟﻤﻨﺘﺠﻪ ﻟﻠﻤﻮﺻﻼت اﻟﻤﺤﻮرﻳﻪ‬Danyang Hengtong Electronic Co., Ltd.) ‫ ﻣﻮﻗﻊ ﺷﺮآﺔ‬i22

http://dyhengtong.en.alibaba.com/
‫( اﻟﺼﻴﻨﻴﻪ اﻟﻤﻨﺘﺠﻪ ﻟﻠﻤﻮﺻﻼت اﻟﻤﺤﻮرﻳﻪ‬Changzhou Wujin Senyu Electronics Co., Ltd.) ‫ ﻣﻮﻗﻊ ﺷﺮآﺔ‬i23

http://sen-yu.en.alibaba.com/
‫( اﻟﺼﻴﻨﻴﻪ اﻟﻤﻨﺘﺠﻪ ﻟﻠﻤﻮﺻﻼت اﻟﻤﺤﻮرﻳﻪ‬Nanjing Moyi Import & Export Co., Ltd.) ‫ ﻣﻮﻗﻊ ﺷﺮآﺔ‬i24

http://njmoyi.en.alibaba.com/
‫( اﻟﻤﻨﺘﺠﻪ ﻟﻤﺴﺎﻋﺪات و أﺟﻬﺰة اﻟﻘﻴﺎس‬Maury) ‫ ﻣﻮﻗﻊ ﺷﺮآﺔ‬i25
http://www.maurymw.com/index.htm
‫ ﺻﻔﺤﺔ ﻟﻠﺒﺤﺚ ﻋﻦ اﻟﺸﺮآﺎت اﻟﺼﻴﻨﻴﻪ اﻟﻤﻨﺘﺠﻪ ﻟﻤﻮاد اﻟﻠﺤﺎم اﻟﻤﻮﺻﻠﻪ اﻟﻼﺻﻘﻪ‬i26
http://www.alibaba.com/trade/search?SearchText=
Adhesive+Conductive&Country=CN&CatId=0&IndexArea=product_en&ssk=y

‫( اﻟﺼﻴﻨﻴﻪ اﻟﻤﻨﺘﺠﻪ ﻟﻤﻮاد اﻟﻠﺤﺎم اﻟﻤﻮﺻﻠﻪ اﻟﻼﺻﻘﻪ و ﻏﻴﺮهﺎ‬Technology Bridge Corp.) ‫ ﻣﻮﻗﻊ ﺷﺮآﺔ‬i27
http://tbcl001.ebigchina.com
http://www.tbcl.com.twhttp://www.tbcl.com.tw
‫( اﻟﺼﻴﻨﻴﻪ اﻟﻤﻨﺘﺠﻪ ﻟﻤﻮاد‬Guangzhou Miradur Specialty Chemicals PTE Ltd.) ‫ ﻣﻮﻗﻊ ﺷﺮآﺔ‬i28
‫اﻟﻠﺤﺎم اﻟﻤﻮﺻﻠﻪ اﻟﻼﺻﻘﻪ و ﻏﻴﺮهﺎ‬
http://miradur.en.alibaba.com

421

‫ﺘﺎﺒﻊ ﻤﺭﺍﺠﻊ ﺍﻻﻨﺘﺭﻨﺕ‬
‫( اﻟﺼﻴﻨﻴﻪ اﻟﻤﻨﺘﺠﻪ ﻟﻤﻮاد اﻟﻠﺤﺎم‬Hunan LEED Thick Film Paste Co., Ltd.) ‫ ﻣﻮﻗﻊ ﺷﺮآﺔ‬i29
‫اﻟﻤﻮﺻﻠﻪ اﻟﻼﺻﻘﻪ و ﻏﻴﺮهﺎ‬
http://leed.en.alibaba.com
‫( اﻟﻤﻨﺘﺠﻪ ﻷﻏﻠﻔﺔ اﻟﺪواﺋﺮ و اﻟﻤﻜﻮﻧﺎت و‬Microwave Packaging Technology Inc.) ‫ ﻣﻮﻗﻊ ﺷﺮآﺔ‬i30
‫ﻏﻴﺮهﺎ‬
http://www.mptcorp.com/index.htm

‫( اﻟﻤﻨﺘﺠﻪ ﻷﻏﻠﻔﺔ اﻟﺪواﺋﺮ و اﻟﻤﻜﻮﻧﺎت و ﻏﻴﺮهﺎ‬Q Microwave) ‫ ﻣﻮﻗﻊ ﺷﺮآﺔ‬i31
http://www.twinkie.net/body_packaging.html

‫( اﻟﻤﻨﺘﺠﻪ ﻷﻏﻠﻔﺔ اﻟﺪواﺋﺮ و اﻟﻤﻜﻮﻧﺎت و ﻏﻴﺮهﺎ‬AdTech Ceramics) ‫ ﻣﻮﻗﻊ ﺷﺮآﺔ‬i32
http://www.adtechceramics.com
‫( اﻟﻤﻨﺘﺠﻪ ﻟﻤﺴﺎﻋﺪات اﻟﻘﻴﺎس و ﻏﻴﺮهﺎ‬GigaLane) ‫ ﻣﻮﻗﻊ ﺷﺮآﺔ‬i33
http://www.gigalane.com
‫( اﻟﻤﻨﺘﺠﻪ ﻷﺟﻬﺰة اﻟﻘﻴﺎس و ﻣﺴﺎﻋﺪات اﻟﻘﻴﺎس‬Anritsu) ‫ ﻣﻮﻗﻊ ﺷﺮآﺔ‬i34
http://www.anritsu.com
‫( اﻟﻤﻨﺘﺠﻪ ﻷﺟﻬﺰة اﻟﻘﻴﺎس و ﻣﺴﺎﻋﺪات اﻟﻘﻴﺎس‬Rohde & Schwarz) ‫ﻣﻮﻗﻊ ﺷﺮآﺔ‬
http://www2.rohde-schwarz.com
‫( اﻟﻤﻨﺘﺠﻪ ﻷﺟﻬﺰة اﻟﻘﻴﺎس و ﻣﺴﺎﻋﺪات اﻟﻘﻴﺎس‬keithley) ‫ﻣﻮﻗﻊ ﺷﺮآﺔ‬
http://www.keithley.com
‫( اﻟﻤﻨﺘﺠﻪ ﻷﺟﻬﺰة اﻟﻘﻴﺎس و ﻣﺴﺎﻋﺪات اﻟﻘﻴﺎس‬Tegam) ‫ﻣﻮﻗﻊ ﺷﺮآﺔ‬
http://www.tegam.com
‫( اﻟﻤﻨﺘﺠﻪ ﻷﺟﻬﺰة اﻟﻘﻴﺎس و ﻣﺴﺎﻋﺪات اﻟﻘﻴﺎس‬FOCUS Microwaves Inc) ‫ﻣﻮﻗﻊ ﺷﺮآﺔ‬
http://www.focus-microwaves.com
‫( اﻟﻤﻨﺘﺠﻪ ﻷﺟﻬﺰة اﻟﻘﻴﺎس‬Tektronix) ‫ﻣﻮﻗﻊ ﺷﺮآﺔ‬
http://www.tek.com
‫( اﻟﺼﻴﻨﻴﻪ اﻟﻤﻨﺘﺠﻪ ﻷﺟﻬﺰة‬Quzhou Senio Electronics & Machinery Co., Ltd.) ‫ﻣﻮﻗﻊ ﺷﺮآﺔ‬
‫اﻟﻘﻴﺎس‬
http://qzsenio.en.made-in-china.com
‫( اﻟﺼﻴﻨﻴﻪ اﻟﻤﻨﺘﺠﻪ ﻷﺟﻬﺰة اﻟﻘﻴﺎس‬Shanghai Total Industrial Co., Ltd.) ‫ﻣﻮﻗﻊ ﺷﺮآﺔ‬
http://www.made-in-china.com/showroom/xiushunjie
‫( اﻟﺼﻴﻨﻴﻪ اﻟﻤﻨﺘﺠﻪ ﻷﺟﻬﺰة اﻟﻘﻴﺎس‬Shenzhen Atten Electronics Co., Ltd.) ‫ﻣﻮﻗﻊ ﺷﺮآﺔ‬
http://www.made-in-china.com/showroom/attenelectronics
‫ﻣﻌﻠﻮﻣﺎت ﻋﻦ اﻟﻤﺸﺎرﻳﻊ اﻟﺘﻌﻠﻴﻤﻴﻪ ﻓﻰ ﻣﺠﺎل اﻷﻗﻤﺎر اﻟﺼﻨﺎﻋﻴﻪ ﻣﺘﻨﺎهﻴﺔ اﻟﺼﻐﺮ‬

i35
i36
i37
i38
i39
i40
i41
i42
i43

http://www3.interscience.wiley.com/journal/119169077/abstract?CRETRY=1&SRETRY=0

‫ ﻣﻌﻠﻮﻣﺎت ﻋﻦ اﻟﻤﺸﺎرﻳﻊ اﻟﺘﻌﻠﻴﻤﻴﻪ ﻓﻰ ﻣﺠﺎل اﻷﻗﻤﺎر اﻟﺼﻨﺎﻋﻴﻪ ﻣﺘﻨﺎهﻴﺔ اﻟﺼﻐﺮ‬i44
http://astronautics.usc.edu/student-projects/microsatellite-project.htm
‫ ﻣﻌﻠﻮﻣﺎت ﻋﻦ اﻟﻤﺸﺎرﻳﻊ اﻟﺘﻌﻠﻴﻤﻴﻪ ﻓﻰ ﻣﺠﺎل اﻷﻗﻤﺎر اﻟﺼﻨﺎﻋﻴﻪ ﻣﺘﻨﺎهﻴﺔ اﻟﺼﻐﺮ‬i45
http://www.faqs.org/abstracts/Business-general/University-research-anddevelopment-of-a-microsatellite-The-influence-of-firms-technologicalcapabil.html

422

‫اﻟﺨﺎﺗﻤﻪ‬
‫ﻓﻰ هﺬا اﻟﻜﺘﺎب ﺗﻢ ﺗﻘﺪﻳﻢ اﻟﻤﻌﻠﻮﻣﺎت اﻟﻼزﻣﻪ ﻟﺘﺼﻤﻴﻢ و ﺗﺼﻨﻴﻊ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ ﻓﻰ أﺑﺴﻂ‬
‫ﺻﻮرﻩ ﻣﻤﻜﻨﻪ ﺗﺘﻴﺢ ﻟﻠﻄﺎﻟﺐ و اﻟﻤﻬﻨﺪس و اﻟﺒﺎﺣﺚ اﻟﺒﺪء ﻣﺒﺎﺷﺮة ﻓﻰ هﺬا اﻟﻌﻤﻞ ‪ ،‬و اﻋﺘﻤﺪ اﻟﻜﺘﺎب ﻋﻠﻰ‬
‫اﻟﻠﻐﻪ اﻟﺒﺴﻴﻄﻪ و اﻟﺘﻜﺮار و اﻷﻣﺜﻠﻪ اﻟﻤﺒﺴﻄﻪ و اﻟﻤﺘﺼﺎﻋﺪﻩ ﻓﻰ درﺟﺔ اﻟﺼﻌﻮﺑﻪ ﻟﺘﺤﻘﻴﻖ هﺬا اﻟﻐﺮض‪.‬‬
‫و ﻗﺪ اﺑﺘﻌﺪ اﻟﻜﺘﺎب ﻋﻦ اﻟﺸﺮح اﻟﻤﻄﻮل و ﻋﻦ اﻟﺪﺧﻮل ﻓﻰ اﻟﻨﻈﺮﻳﺎت اﻟﻤﻌﻘﺪﻩ و ﻋﻦ ادراج اﻟﻤﻌﺎدﻻت و‬
‫اﻻﺛﺒﺎﺗﺎت اﻟﻤﻄﻮﻟﻪ و اﻟﻨﻈﺮﻳﺎت اﻟﻜﻬﺮوﻣﻐﻨﺎﻃﻴﺴﻴﻪ و ﻏﻴﺮهﺎ اﻟﺘﻰ ﻻ ﺗﺨﺪم اﻟﺒﺪء اﻟﻤﺒﺎﺷﺮ ﻓﻰ ﻋﻤﻠﻴﺎت‬
‫اﻟﺘﺼﻤﻴﻢ و اﻟﺘﺼﻨﻴﻊ ﻟﻠﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ ‪ ،‬ﻣﻊ ادراج أﺳﻤﺎء اﻟﻤﺮاﺟﻊ اﻟﻼزﻣﻪ ﻟﺪراﺳﺔ اﻟﻤﻮاﺿﻴﻊ‬
‫اﻟﺘﻰ ﺗﻢ اﺧﺘﺼﺎرهﺎ و اﻟﺘﻰ ﺗﻬﻢ ﻃﺎﻟﺐ اﻟﺪراﺳﺎت اﻟﻌﻠﻴﺎ و اﻟﺒﺎﺣﺚ‪.‬‬
‫ﺑﺎﻟﻨﺴﺒﻪ ﻟﻄﻠﺒﺔ آﻠﻴﺎت اﻟﻬﻨﺪﺳﻪ ﻳﻔﻀﻞ ﻋﻨﺪ دراﺳﺔ هﺬا اﻟﻜﺘﺎب ﻓﻰ ﻣﺎدﻩ دراﺳﻴﻪ أن ﻳﻜﻮن اﻻﻣﺘﺤﺎن ﺑﻄﺮﻳﻘﺔ‬
‫اﻟﻜﺘﺎب اﻟﻤﻔﺘﻮح و ﻓﻰ ﺻﻮرة ﻃﻠﺐ ﺗﺼﻤﻴﻢ ﻋﺪد ﻣﻦ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ ﺑﺪﻻ ﻣﻦ أن ﻳﻜﻮن اﺧﺘﺒﺎر‬
‫ﻟﻘﺪرة اﻟﻄﺎﻟﺐ ﻋﻠﻰ ﺣﻔﻆ اﻟﻤﻌﻠﻮﻣﺎت أو اﻟﻤﻌﺎدﻻت اﻟﺘﻰ ﺑﺎﻟﻜﺘﺎب و ﺳﺮدهﺎ ‪ ،‬و اﻟﻜﺘﺎب ﻳﺼﻠﺢ أﻳﻀﺎ ﻟﺪﻋﻢ‬
‫ﻣﺸﺎرﻳﻊ اﻟﺘﺨﺮج ﺑﻜﻠﻴﺎت اﻟﻬﻨﺪﺳﻪ‪.‬‬
‫ﺗﺼﻤﻴﻢ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ هﻮ ﺗﺨﺼﺺ ﻓﻰ ﺣﺪ ذاﺗﻪ أو ﺟﺰء ﻣﻦ ﺗﺨﺼﺺ ﺗﺼﻤﻴﻢ دواﺋﺮ اﻟﺘﺮدد‬
‫اﻟﻌﺎﻟﻰ و اﻟﻤﻴﻜﺮووﻳﻒ و ﻻ ﻳﻤﻜﻦ اﻻﻋﺘﻤﺎد ﻋﻠﻰ ﻣﺮﺟﻊ واﺣﺪ ﻓﻰ ﺗﺨﺼﺺ ﻣﺎ ﻣﻬﻤﺎ آﺎن هﺬا‬
‫اﻟﺘﺨﺼﺺ‪ .‬اﻧﻪ ﻋﻤﻞ ﻳﺨﺪم ﺗﺼﻨﻴﻊ أﺟﻬﺰة و أﻧﻈﻤﺔ ﻋﺪﻳﺪﻩ ﻓﻰ ﻣﺠﺎﻻت ﻣﺪﻧﻴﻪ و ﻋﺴﻜﺮﻳﻪ و ﻣﺠﺎل‬
‫اﻟﻔﻀﺎء اﻟﻰ ﺁﺧﺮﻩ و هﻮ ﺗﺨﺼﺺ ﻋﺎﻟﻰ اﻟﺼﻌﻮﺑﻪ ﻳﺴﺘﺪﻋﻰ ﺗﻮﻓﻴﺮ أآﺒﺮ آﻢ ﻣﻦ اﻟﻤﺮاﺟﻊ ﺳﻮاء آﺎﻧﺖ‬
‫آﺘﺐ أو أﺑﺤﺎث و دورﻳﺎت ﻋﻠﻤﻴﻪ و آﺘﺎﻟﻮﺟﺎت أو ﺻﻔﺤﺎت ﺑﻴﺎﻧﺎت ﻟﺸﺮآﺎت و ﻣﻠﺤﻮﻇﺎت أو ﻣﻌﻠﻮﻣﺎت‬
‫ﺗﻘﻨﻴﻪ و ﺗﻄﺒﻴﻘﻴﻪ اﻟﻰ ﻏﻴﺮ ذﻟﻚ ﻣﻦ أﻧﻮاع اﻟﻤﺮاﺟﻊ‪ .‬ﺑﺎﻻﺿﺎﻓﻪ اﻟﻰ ﺗﻮﻓﻴﺮ ﺑﺮاﻣﺞ اﻟﺤﺎﺳﺐ و أﺟﻬﺰة اﻟﻘﻴﺎس‬
‫و اﻻﺧﺘﺒﺎر اﻟﻼزﻣﻪ ﻟﻠﻌﻤﻞ‪ .‬و هﺬا آﻠﻪ ﻳﺘﻄﻠﺐ اﻟﺘﻤﻮﻳﻞ اﻟﻤﺴﺘﻤﺮ وﻓﻘﺎ ﻟﻠﻐﺮض أو اﻟﻤﻨﺘﺠﺎت اﻟﻤﻄﻠﻮب‬
‫ﺗﺤﻘﻴﻘﻬﺎ‪.‬‬
‫هﺬا اﻟﻜﺘﺎب هﻮ اﻷول ﻣﻦ آﺘﺐ ﺳﻠﺴﻠﺔ ﺗﺒﺴﻴﻂ اﻟﺘﻜﻨﻮﻟﻮﺟﻴﺎ اﻟﻌﺎﻟﻴﻪ و اﻟﻐﺮض ﻣﻨﻬﺎ ﺗﻮﻓﻴﺮ اﻟﻤﻌﻠﻮﻣﺎت‬
‫اﻟﻼزﻣﻪ ﻟﺘﺼﻤﻴﻢ و ﺗﺼﻨﻴﻊ دواﺋﺮ و أﻧﻈﻤﺔ اﻟﺘﺮدد اﻟﻌﺎﻟﻰ و اﻟﻤﻴﻜﺮووﻳﻒ ﻓﻰ ﺻﻮرﻩ ﻣﺒﺴﻄﻪ ﻟﻤﺴﺘﺨﺪﻣﻰ‬
‫اﻟﻠﻐﻪ اﻟﻌﺮﺑﻴﻪ ‪ ،‬و أﺗﻤﻨﻰ أن ﻳﺰداد اﻻهﺘﻤﺎم ﺑﻬﺬا اﻟﻤﺠﺎل ﻻﺣﺪاث ﺗﻘﺪم ﻓﻴﻪ و ﻟﻮ ﻋﻠﻰ ﻣﺴﺘﻮى اﻟﺘﻌﻠﻴﻢ و‬
‫اﻟﺒﺤﺚ اﻟﻌﻠﻤﻰ ﻣﺒﺪﺋﻴﺎ ﻓﻰ آﻞ اﻟﺪول اﻟﻌﺮﺑﻴﻪ ﻓﻤﻦ اﻟﻤﺆﺳﻒ أن ﻳﺼﻨﻊ ﻏﻴﺮﻧﺎ أﺟﻬﺰة و أﻧﻈﻤﺔ اﻻﺗﺼﺎﻻت‬
‫و ﺷﺒﻜﺎت اﻟﺤﺎﺳﺐ اﻟﻼﺳﻠﻜﻴﻪ و اﻷﺟﻬﺰﻩ اﻟﻄﺒﻴﻪ و اﻻﻗﻤﺎر اﻟﺼﻨﺎﻋﻴﻪ و أﻧﻈﻤﺔ اﻟﺪﻓﺎع و ﻏﻴﺮهﺎ ﻣﻦ‬
‫اﻟﺼﻨﺎﻋﺎت اﻟﻤﺘﻘﺪﻣﻪ ‪ ،‬و ﻧﺤﻦ ﻧﺘﺮك ﻟﻬﻢ هﺬﻩ اﻟﻤﺠﺎﻻت و ﻧﺸﺘﻐﻞ ﺑﺎﻟﺼﻨﺎﻋﺎت اﻻﺳﺘﻬﻼآﻴﻪ ﻣﻨﺨﻔﻀﺔ‬
‫اﻟﻤﺴﺘﻮى‪.‬‬
‫هﺬا اﻟﻜﺘﺎب ﻳﻔﻴﺪ اﻟﻤﺆﺳﺴﺎت و اﻟﻤﺼﺎﻧﻊ اﻟﺘﻰ ﺗﻘﻮم ﺑﻨﻘﻞ أو ﺑﺎﻧﺸﺎء ﺗﻜﻨﻮﻟﻮﺟﻴﺎ اﻟﺪواﺋﺮ اﻟﺸﺮﻳﻄﻴﻪ اﻟﺪﻗﻴﻘﻪ‬
‫و اﻟﺪواﺋﺮ و اﻟﻨﻈﻢ اﻟﻌﺎﻣﻠﻪ ﻓﻰ ﺗﺮددات اﻟﺮادﻳﻮ و اﻟﻤﻴﻜﺮووﻳﻒ و ﻳﻔﻀﻞ دراﺳﺔ هﺬﻩ اﻟﻤﻌﻠﻮﻣﺎت ﺑﻮاﺳﻄﺔ‬
‫ﻣﻬﻨﺪﺳﻴﻦ ﻣﺘﺨﺼﺼﻴﻦ ﺣﺴﺐ اﻟﻬﺪف أو اﻟﻤﻨﺘﺞ اﻟﺬى ﺗﺮﻏﺐ اﻟﻤﺆﺳﺴﻪ أو اﻟﻤﺼﻨﻊ ﻓﻰ اﻧﺘﺎﺟﻪ‪.‬‬

‫‪423‬‬

Sponsor Documents

Or use your account on DocShare.tips

Hide

Forgot your password?

Or register your new account on DocShare.tips

Hide

Lost your password? Please enter your email address. You will receive a link to create a new password.

Back to log-in

Close