of 8

quality management document.docx

Published on January 2017 | Categories: Documents | Downloads: 6 | Comments: 0



Quality management document
In this file, you can ref useful information about quality management document such as quality
management documentforms, tools for quality management document, quality management
documentstrategies … If you need more assistant for quality management document, please
leave your comment at the end of file.
Other useful material for quality management document:
• qualitymanagement123.com/23-free-ebooks-for-quality-management
• qualitymanagement123.com/185-free-quality-management-forms
• qualitymanagement123.com/free-98-ISO-9001-templates-and-forms
• qualitymanagement123.com/top-84-quality-management-KPIs
• qualitymanagement123.com/top-18-quality-management-job-descriptions
• qualitymanagement123.com/86-quality-management-interview-questions-and-answers

I. Contents of quality management document
Compliant Quality Management Document Control Systems
For life sciences organizations and similarly regulated companies, quality management and
document control are inextricably linked with FDA, ISO, and other guidelines defined by
comparable regulatory entities. Quality management systems must be meticulously managed and
proper records must be carefully maintained to comply with such regulatory requirements. A
robust, interconnected, and flexible software application can be the key to maintaining cost
effective quality control systems and maintaining affordable and hassle-free regulatory
The MasterControl Quality Management Document Control Software Solution
Providing quality management and document control solutions globally since 1993,
MasterControl Inc. offers a user-friendly, customizable software suite that allows companies to
efficiently manage quality processes. MasterControl's integrated suite of software solutions is
specifically designed to help companies get products to market faster while maintaining
continuous regulatory compliance.
Some of the features and benefits of the MasterControl quality management and document
control system include:

Automated routing, escalation, and approvals: MasterControl's quality management
and document control reduces document cycle time by automating routing and approval
procedures and by incorporating escalations for overdue tasks. This automation helps
sustain compliance by simplifying and streamlining processes and by maintaining
electronic records of such procedures in a secure, centralized repository.

Increased visibility: The MasterControl software solution provides advanced analytics
and reporting capabilities, including customizable reports and online charting. Through
the customized or pre-built reports generated by the system managers can have a "realtime" view of all quality management and document control processes and can be more
proactive about making improvements to the quality system in general.

Connected quality processes: MasterControl's solution connects all subsystems to form
a cohesive, complete quality system. For instance, any CAPA that results in a document
change can be set to automatically invoke a training task once the change is approved.

Enhanced lifecycles: MasterControl's quality management and document control
software allows for multiple lifecycle statuses, timed lifecycle movement, and flexible
approval rules. Companies are able to model their product lifecycle within the system and
simplify routes and workflows.

Quality Management and Document Control that Goes Beyond Software
MasterControl takes pride in being a quality management and document control solution
provider that goes "beyond software." MasterControl offers not just a software system, but
products and services that provide actual solutions to critical challenges faced by companies
whose products are subject to regulatory requirements. The proven MasterControl software
solution consists of configurable, integrated applications that automate, streamline, and
effectively manage quality control processes. The Web-based MasterControl system automates
all quality and document related processes and connects departments throughout the enterprise to
ensure every authorized user has proper system access.
The MasterControl quality management and document control suite includes tightly integrated
and configurable applications for managing not only documents and forms but also CAPA,
change, training, nonconformance, audit, customer complaints, and other aspects of a complete
quality system. To complement these solutions modules, MasterControl offers a wide range of
implementation, migration, validation, training, and technical support services as well.

III. Quality management tools

1. Check sheet
The check sheet is a form (document) used to collect data
in real time at the location where the data is generated.
The data it captures can be quantitative or qualitative.
When the information is quantitative, the check sheet is
sometimes called a tally sheet.
The defining characteristic of a check sheet is that data
are recorded by making marks ("checks") on it. A typical
check sheet is divided into regions, and marks made in
different regions have different significance. Data are
read by observing the location and number of marks on
the sheet.
Check sheets typically employ a heading that answers the
Five Ws:

Who filled out the check sheet
What was collected (what each check represents,
an identifying batch or lot number)
Where the collection took place (facility, room,
When the collection took place (hour, shift, day of
the week)
Why the data were collected

2. Control chart
Control charts, also known as Shewhart charts
(after Walter A. Shewhart) or process-behavior
charts, in statistical process control are tools used
to determine if a manufacturing or business
process is in a state of statistical control.
If analysis of the control chart indicates that the
process is currently under control (i.e., is stable,
with variation only coming from sources common

to the process), then no corrections or changes to
process control parameters are needed or desired.
In addition, data from the process can be used to
predict the future performance of the process. If
the chart indicates that the monitored process is
not in control, analysis of the chart can help
determine the sources of variation, as this will
result in degraded process performance.[1] A
process that is stable but operating outside of
desired (specification) limits (e.g., scrap rates
may be in statistical control but above desired
limits) needs to be improved through a deliberate
effort to understand the causes of current
performance and fundamentally improve the
The control chart is one of the seven basic tools of
quality control.[3] Typically control charts are
used for time-series data, though they can be used
for data that have logical comparability (i.e. you
want to compare samples that were taken all at
the same time, or the performance of different
individuals), however the type of chart used to do
this requires consideration.

3. Pareto chart

A Pareto chart, named after Vilfredo Pareto, is a type
of chart that contains both bars and a line graph, where
individual values are represented in descending order
by bars, and the cumulative total is represented by the
The left vertical axis is the frequency of occurrence,
but it can alternatively represent cost or another
important unit of measure. The right vertical axis is
the cumulative percentage of the total number of
occurrences, total cost, or total of the particular unit of
measure. Because the reasons are in decreasing order,
the cumulative function is a concave function. To take
the example above, in order to lower the amount of
late arrivals by 78%, it is sufficient to solve the first
three issues.
The purpose of the Pareto chart is to highlight the
most important among a (typically large) set of
factors. In quality control, it often represents the most
common sources of defects, the highest occurring type
of defect, or the most frequent reasons for customer
complaints, and so on. Wilkinson (2006) devised an
algorithm for producing statistically based acceptance
limits (similar to confidence intervals) for each bar in
the Pareto chart.

4. Scatter plot Method

A scatter plot, scatterplot, or scattergraph is a type of
mathematical diagram using Cartesian coordinates to
display values for two variables for a set of data.
The data is displayed as a collection of points, each
having the value of one variable determining the position
on the horizontal axis and the value of the other variable
determining the position on the vertical axis.[2] This kind
of plot is also called a scatter chart, scattergram, scatter
diagram,[3] or scatter graph.
A scatter plot is used when a variable exists that is under
the control of the experimenter. If a parameter exists that
is systematically incremented and/or decremented by the
other, it is called the control parameter or independent
variable and is customarily plotted along the horizontal
axis. The measured or dependent variable is customarily
plotted along the vertical axis. If no dependent variable
exists, either type of variable can be plotted on either axis
and a scatter plot will illustrate only the degree of
correlation (not causation) between two variables.
A scatter plot can suggest various kinds of correlations
between variables with a certain confidence interval. For
example, weight and height, weight would be on x axis
and height would be on the y axis. Correlations may be
positive (rising), negative (falling), or null (uncorrelated).
If the pattern of dots slopes from lower left to upper right,
it suggests a positive correlation between the variables
being studied. If the pattern of dots slopes from upper left
to lower right, it suggests a negative correlation. A line of
best fit (alternatively called 'trendline') can be drawn in
order to study the correlation between the variables. An
equation for the correlation between the variables can be
determined by established best-fit procedures. For a linear
correlation, the best-fit procedure is known as linear
regression and is guaranteed to generate a correct solution
in a finite time. No universal best-fit procedure is
guaranteed to generate a correct solution for arbitrary
relationships. A scatter plot is also very useful when we
wish to see how two comparable data sets agree with each

other. In this case, an identity line, i.e., a y=x line, or an
1:1 line, is often drawn as a reference. The more the two
data sets agree, the more the scatters tend to concentrate in
the vicinity of the identity line; if the two data sets are
numerically identical, the scatters fall on the identity line

5.Ishikawa diagram
Ishikawa diagrams (also called fishbone diagrams,
herringbone diagrams, cause-and-effect diagrams, or
Fishikawa) are causal diagrams created by Kaoru
Ishikawa (1968) that show the causes of a specific event.
[1][2] Common uses of the Ishikawa diagram are product
design and quality defect prevention, to identify potential
factors causing an overall effect. Each cause or reason for
imperfection is a source of variation. Causes are usually
grouped into major categories to identify these sources of
variation. The categories typically include
 People: Anyone involved with the process
 Methods: How the process is performed and the
specific requirements for doing it, such as policies,
procedures, rules, regulations and laws
 Machines: Any equipment, computers, tools, etc.
required to accomplish the job
 Materials: Raw materials, parts, pens, paper, etc.
used to produce the final product
 Measurements: Data generated from the process
that are used to evaluate its quality
 Environment: The conditions, such as location,
time, temperature, and culture in which the process

6. Histogram method

A histogram is a graphical representation of the
distribution of data. It is an estimate of the probability
distribution of a continuous variable (quantitative
variable) and was first introduced by Karl Pearson.[1] To
construct a histogram, the first step is to "bin" the range of
values -- that is, divide the entire range of values into a
series of small intervals -- and then count how many
values fall into each interval. A rectangle is drawn with
height proportional to the count and width equal to the bin
size, so that rectangles abut each other. A histogram may
also be normalized displaying relative frequencies. It then
shows the proportion of cases that fall into each of several
categories, with the sum of the heights equaling 1. The
bins are usually specified as consecutive, non-overlapping
intervals of a variable. The bins (intervals) must be
adjacent, and usually equal size.[2] The rectangles of a
histogram are drawn so that they touch each other to
indicate that the original variable is continuous.[3]

III. Other topics related to Quality management document (pdf
quality management systems
quality management courses
quality management tools
iso 9001 quality management system
quality management process
quality management system example
quality system management
quality management techniques
quality management standards
quality management policy
quality management strategy
quality management books

Sponsor Documents

Or use your account on DocShare.tips


Forgot your password?

Or register your new account on DocShare.tips


Lost your password? Please enter your email address. You will receive a link to create a new password.

Back to log-in