UBC_1983_A1 R49

Published on November 2017 | Categories: Documents | Downloads: 10 | Comments: 0 | Views: 827
of 407
Download PDF   Embed   Report

Comments

Content

NON-METALLIC

INCLUSIONS

ELECTROSLAG REFINED

IN

INGOTS

by FIDEL Ing.

Quim. Met., U n i v e r s i d a d

M.Sc,

REYES-CARMONA Nacional

The U n i v e r s i t y o f I l l i n o i s

A THESIS SUBMITTED

Autdnoma de M d x i c o ,

a t U r b a n a - C h a m p a i g n , 1978

IN PARTIAL FULFILMENT OF

THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE

STUDIES

Department o f M e t a l l u r g i c a l E n g i n e e r i n g

We

accept

this

t h e s i s as c o n f o r m i n g

to the r e q u i r e d

standard

THE UNIVERSITY OF BRITISH COLUMBIA January

©

Fidel

1976

19 83

Reyes-Carmona, 1983

In p r e s e n t i n g

t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f the

requirements f o r an advanced degree a t the U n i v e r s i t y o f B r i t i s h Columbia, I agree t h a t the L i b r a r y s h a l l make it

f r e e l y a v a i l a b l e f o r reference

and study.

I further

agree t h a t p e r m i s s i o n f o r e x t e n s i v e copying o f t h i s

thesis

f o r s c h o l a r l y purposes may be granted by the head o f my department o r by h i s o r her r e p r e s e n t a t i v e s . understood t h a t copying o r p u b l i c a t i o n o f t h i s f o r f i n a n c i a l gain

It is thesis

s h a l l n o t be allowed without my

permission.

F i d e l Reyes-Carmona

Department o f M e t a l l u r g i c a l E n g i n e e r i n g

The U n i v e r s i t y o f B r i t i s h Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 Date

E-6

(3/81)

March 21, 1983

written

ABSTRACT

The

o b j e c t i v e of

non-metallic chemically to the

this

inclusions

transformed,

final

1020,

were r e f i n e d by

e l e c t r o d e s was

removed and

4340 and

two

electrode

when t h e

are

t i p by

and

by

the

the

how

and electrodes

and

200

the

deoxidation

practices,

transformed

Inclusions

liquid

No

origin

in

the

are

slag at

d i s s o l v e d i n the

formed.

i n c l u s i o n s are

these

found t h a t i n c l u s i o n s i n

presence of

of e l e c t r o d e

i n mould

alloys.

chemically

entirely

mm

R e f i n i n g of

AISi

i t was

droplet i s completely as

and

electrodes

the

matrix

ingot inclusions

and

i t is

concluded

e i t h e r d i s s o l v e d or

removed

slag. The

on

mm

thermal gradients.

they are

a l l electrode

the

CaSiAlBa

p h y s i c a l l y and

were i d e n t i f i a b l e that

(7.5

s l a g systems.

research

a l t e r e d by

film

(Ni-Mo-V) s t e e l

done u n d e r d i f f e r e n t

Through t h i s

liquid

physically

c o n t r o l l e d from

rotor

ESR-units

namely p u r e A l , C a S i ,

chemically

to investigate

( i n c l u s i o n s ) are

diameter) under d i f f e r e n t

electrode

was

ESR-product.

Several

the

research

e f f e c t s o f the

chemical

composition

were t r a c e d d u r i n g i n c l u s i o n s was

refining

d e t e r m i n e d by

m e t a l samples d u r i n g m e a s u r e d by

the

slag with of the and

and

without

liquid

hence the

pool

deoxidizers and

chemistry

e x t r a c t i n g s l a g and

refining.

The

total

vacuum f u s i o n t e c h n i q u e ,

ingot of

liquid

oxygen c o n t e n t chemical

was

analyses

ii

of

s l a g by

spectrophotometric

a n a l y s i s by analysis. the

SEM

and

The

The

EPMA and

assays

deoxidation

and

chemical

techniques,

by

were u s e d t o f o r m u l a t e

precipitation

composition

slags.

inclusions and

The

The

i s the

of cooperative

2

+

3

[Ca]

+

(A1 0 )

+

3

The potential

composition

i n low

o f complex

Al-Ca-Si

silica

30 wt%

2

i n ESR

deoxidation practice

slags

Al 0 2

ingots takes

r e a c t i o n s between s l a g

3

an

and

2

wt%)

efficient

20 wt%

p l a c e by

and

Si0

(>10.0

system t o perform

CaF ,

ingots

the

CaO. process

deoxidizers i n

the

sequences:

[Al]

2

slag

slag

50 wt%

deoxidation

following

the

i s predictable i n high

deoxidation

corroborate

mechanisms.

precipitation

t h e most a p p r o p r i a t e

and

of inclusions i n refined

the e l e c t r o d e or the

content

micro-

x-ray ( c r y s t a l l o g r a p h i c )

a r e more s t r o n g l y i n f l u e n c e d by than

electron

(FeO)

t

( A l ^ )

+

(FeO)

t

(CaO)

Fe

[Ca]

t

3

+

(CaO

Fe

+ 2

[Al]

p r e c i p i t a t i o n r e a c t i o n s a r e c o n t r o l l e d by i n the melt,

thus

the

transitions

t o be

the

oxygen

expected

are : Al 0 «FeO 2

3

+ MnS An

+ MnS

I I I or

I I -»• c t - A l 0 2

(Ca, Mn)

excessive

+ Y

3

I I o r I I I -»• x C a 0 « y

Ca

+

* X CaO* (y - ^)

r a i s e s the A l content

Al 0 2

3

A l ^

CaS

to:

(A1 0 )* 2

+ MnS

S -*• x C a 0 « y A l ^

deoxidation with

ingot according X Ca

3

+ | X

[Al]

in

the

iii

R a d i a l i n c l u s i o n s i z e d i s t r i b u t i o n as w e l l as arm

spacings i n samples e x t r a c t e d

i n g o t s were determined.

I t was

from l i q u i d p o o l

found t h a t the

s i z e obeys the normal d i s t r i b u t i o n and v a r i a t i o n of the i n c l u s i o n Hence the i n c l u s i o n

s i z e along

composition and

l o c a l s o l i d i f i c a t i o n c o n d i t i o n s and thermochemical c o n d i t i o n s .

dendrite and

inclusion

there

i s a normal

radial

distances.

s i z e i s a f u n c t i o n of a l s o of the

local

iv TABLE OF CONTENTS Page Abstract

i

Table of Contents

iv

L i s t of F i g u r e s

ix

L i s t of Tables

xvii

L i s t of Symbols

xix

Chapter I II

INTRODUCTION

1

LITERATURE REVIEW

4

2.1 2.2

L i t e r a t u r e Survey on E l e c t r o d e Inclusions L i t e r a t u r e Survey on S l a g - L i q u i d Metal R e a c t i o n s and t h e i r I n f l u e n c e on the ESR Ingot Chemistry 2.2.1 2.2.2 2.2.3 2.2.4

2.3

P r i n c i p l e s of the Reaction Scheme i n the ESR Process On the Nature of the ESR R e a c t i o n Scheme Thermodynamic Approach of the ESR S l a g Systems O v e r a l l View on the M o d e l l i n g of ESR Reactions

General N u c l e a t i o n and Growth of I n clusions 2.3.2.1 2.3.2*2

2.3.3

Homogeneous Nucleation Heterogeneous Nucleation

Growth of I n c l u s i o n s

12 12 18 32 34

P r e c i p i t a t i o n of I n c l u s i o n s 2.3.1 2.3.2

4

36 * ....

36 39 39 42 43

V

Chapter

Page 2.3.4 2.3.5 2.3.6

Sulfides . . . Specific Sulfides Oxisulfides 2.3.6.1 2.3.6.2 2.3.6.3

2.3.7

III

The Fe-O-S System The Fe-O-S-Mn E q u i l i brium The Fe-O-S-Si-Mn Equilibrium

53 55 62 66

Aluminates Calcium Aluminates Complex Oxides

66 76 90

I n c l u s i o n s i n ESR-Ingots

94

NATURE OF THE PROBLEM

106

3.1 3.2

106

3.3 3.4 3.5

IV

47 51 53

Oxides 2.3.7.1 2.3.7.2 2.3.7.3

2.4



I n c l u s i o n s i n the E l e c t r o d e The Chemical I n f l u e n c e o f the ESR components on the Composition of Inclusions The P r e c i p i t a t i o n o f I n c l u s i o n s from L i q u i d Pool to Ingot D i s t r i b u t i o n o f I n c l u s i o n s During Solidification E s t a b l i s h m e n t of the Proposal and O b j e c t i v e s Sought Through t h i s Research

108 I l l 113 115

EXPERIMENTAL WORK AND TECHNIQUES

116

4.1 4.2 4.3 4.4

116 118 121 122

4.5 4.6

Experimental Procedure Analysis of Inclusions T o t a l Oxygen A n a l y s i s I n c l u s i o n E x t r a c t i o n Method 4.4.1 Apparatus and Experimental Procedure C r y s t a l l o g r a p h i c X-ray A n a l y s i s o f Extracted Inclusions Atomic A b s o r p t i o n A n a l y s i s (Spectrophotometry)

123 126 ?

127

vi Chapter 4.7 V

Page Metallographic

RESULTS AND 5.1

DISCUSSION

-^8 •

Mechanism by which E l e c t r o d e are E l i m i n a t e d 5.1.1 5.1.2

5.1.2.2

5.1.3

130 Inclusions 130

Behavior of O x i s u l f i d e I n c l u s ions i n 1 0 2 0 M.S. Electrode Tips *. , . . Removal of Oxide and S u l f i d e I n c l u s i o n s i n 4 340 and Rotor Steels 5.1.2.1

5.2

Analysis

Removal of Oxides and Sulfides i n 4340 electrodes Calcium Aluminum S i l i cates i n a Rotor ( N i Cr-Mo) S t e e l

F i n a l Remarks About the moval Mechanism

Re-

The Chemical I n f l u e n c e of the E l e c t r o d e , Slag and D e o x i d i z e r on the Chemical Composition of I n c l u s i o n s .. 5.2.1

D e s c r i p t i o n of Experimental Findings 5.2.1.1

5.2.1.2 5.2.1.3

5.2.1.4

P r e l i m i n a r y Studies on the E f f e c t of the Slag and the Deoxidation I n t e r m i t t e n t CaSi A d d i t i o n s and the Rea c t i o n Scheme R e f i n i n g of 1 0 2 0 M.S., 2 0 0 mm Diameter Ingots Deoxidized C o n t i n uously with A l 1 0 2 0 M.S. Ingots Deo x i d i z e d Continuously with a CaSi A l l o y ... .....

130 141

144 146 148

151 151

151 157

159 164

5.2.1.5

C o r r o b o r a t i o n and Ext e n s i o n o f Previous F i n d i n g s t o a 4340 S t e e l CaSi ( c o n t i n u ously) Deoxidized

D i s c u s s i o n o f R e s u l t s i n Terms of E l e c t rode and S l a g Composition, Related t o the Second Question 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5

The E f f e c t o f the E l e c t r o d e on the I n c l u s i o n Composition of ESR Ingots E l u c i d a t i o n o f the E f f e c t o f S l a g and D e o x i d i z e r s (preliminary studies) , P r e l i m i n a r y D i s c u s s i o n on the Deoxidation Mechanism Comprehensive D i s c u s s i o n on the Deoxidation Mechanism F i n a l Remarks

F i n d i n g s and D i s c u s s i o n Related t o the T h i r d Question 5.4.1

D e s c r i p t i o n of Experimental Results 5.4.1.1 5.4.1.2 5.4.1.3 5.4.1.4

5.4.2 5.4.3

The I n c l u s i o n Mean Diameter F i n d i n g s from I n d i v i d u a l Experiments Complimentary Studies Summary o f E x p e r i mental F i n d i n g s

P r e c i p i t a t i o n of Inclusions i n the Fe-Al-Ca-O-S (Mn) system D i s c u s s i o n of R e s u l t s » 5.4.3.1 5.4.3.2

N u c l e a t i o n Growth and F l o t a t i o n of Inclusions . . . Comparison between T h e o r e t i c a l and Experimental Results...*

viii Chapter VI

Page THE RADIAL DISTRIBUTION OF INCLUSIONS IN CaSi AND A l DEOXIDIZED INGOTS 6.1 6.2 6.3

VII VIII

Experimental D e t a i l s and Techniques...... Experimental F i n d i n g s D i s c u s s i o n of R e s u l t s

2

2

3

223 2

2

2 2

4

5

CONCLUSIONS

228

SUGGESTIONS FOR FUTURE WORK

2 32

LIST OF REFERENCES

235

FIGURES

251

TABLES

3

APPENDIX . . . ........

5

1

374

ix LIST OF FIGURES Figure

Page

1.

Schematic i l l u s t r a t i o n of an ESR system

2.

P r e d i c t e d and measured temperature p r o f i l e s f o r a 1018 MS e l e c t r o d e 25 mm i n diameter

252

Manganese c o n t e n t o f the metal f o r u n i v a r i a n t e q u i l i b r i u m y - i r o n + "MnO" + "MnS" + l i q u i d (1) f o r Fe-Mn-S-0 s y s tem and u n i v a r i a n t e q u i l i b r i u m Y + "MnS" + l i q u i d s u l f i d e f o r Fe-Mn-S system

253

U n i v a r i a n t e q u i l i b r i a i n Fe-Mn-S-0 system i n the presence o f y - i r o n and Mn(Fe)0 phases

254

Univariant e q u i l i b r i a involving s o l i d metal and Mn(Fe)0 i n the Fe-Mn-S-0 system bonded w i t h t e r n a r y Fe-Mn-0 and Fe-S-0 terminal-phase f i e l d s (e) , ,(p) , (f) , (n), (g) and (h)

255

L o c a t i o n o f the p l a n e s i n the quaternary (FeO-MnO-MnS-Si0 ) system

256

E q u i l i b r i u m phases i n t h r e e planes o f the FeO-MnO-MnS-SiC^ system. a) MnS-FeO2MnO«Si02, b) MnS-2FeO«Si0 -2MnO«Si0 and c) MnS-FeO-MnO

256

Behavior o f i n c l u s i o n s e n r i c h e d i n Mn and S i as a f u n c t i o n o f temperature

257

Schematic i l l u s t r a t i o n o f changes i n i n c l u s i o n composition i n a 1020 MS e l e c t rode produced v i a a c i d e l e c t r i c f u r a n c e . . . .

258

Wt. % A l and wt. % Ca and wt. % 0 i n l i q u i d i r o n a t u n i t A l 0 and CaO a c t i v i t y 3

259

Isothermal Fe-Al-Ca-0 p r e c i p i t a t i o n (Henrian a c t i v i t i e s ) diagram

260

3.

-

4.

5.

6.

i

r

o

....

n

2

7.

2

8. 9.

10.

2

11.

251

2

X

Figure 12. 13.

Page Ternary A l 0 ~ ( C a , X ) 0 - S i 0 diagram 2

3

2

inclusion 261

Slag chemical composition used i n the ,.(34,53,83) , a. • 4.past and p r e s e n t i n v e s t i g ation

262

14.

Schematic i l l u s t r a t i o n of the ESR arrangement used i n t h i s i n v e s t i g a t i o n

26 3

15.

Schematic i l l u s t r a t i o n of the " i n c l u s i o n extractor"

264

16.

T y p i c a l i n c l u s i o n s from 1020 MS ( o p t i c a l microscopy) *

265

17.

Deformed i n c l u s i o n s i n 1020 MS and t h e i r

18.

19.

20.

21.

22. 23.

24. 25.

electrodes electrodes

X-ray spectrum a n a l y s i s

(SEM)

...

266

M a c r o s t r u c t u r e of a 1020 MS e l e c t r o d e t i p where l i q u i d f i l m , p a r t i a l l y molten and f u l l y r e c r y s t a l l i z e d areas are shown

267

M a c r o s t r u c t u r e s o f a 4340 e l e c t r o d e t i p . D r o p l e t , l i q u i d f i l m , p a r t i a l l y molten, f u l l y and p a r t i a l l y r e c r y s t a l l i z e d zones are shown

268

M a c r o s t r u c t u r e o f a r o t o r (Ni-Cr-Mo) s t e e l . L i q u i d f i l m , and p a r t i a l l y molten areas are shown

269

Schematic i l l u s t r a t i o n o f 1020 MS e l e c t r o d e tip (acid e l e c t r i c furnace produced) s u b j e c t e d t o ESR-thermal g r a d i e n t s

270

M u l t i p h a s e ( r e l a t i v e l y grown) i n c l u s i o n s i n a 1020 MS e l e c t r o d e t i p

271

S i n g l e phase i n c l u s i o n s i n p a r t i a l l y and f u l l y molten r e g i o n s i n a 1020 e l e c t r o d e tip

272

Complex Ca-Al-Si-Mn i n c l u s i o n s l o c a t e d i n the l i q u i d f i l m and d r o p l e t s

273

Spectrum X-ray a n a l y s i s o f Ca-Al-Si-Mn i n c l u s i o n s i n a 1020 MS e l e c t r o d e l o c a t e d i n the l i q u i d f i l m and d r o p l e t s

274

xi Figure 26.

27.

28.

29.

30.

31.

32.

33

34.

35.

36.

37.

Page Changes i n i n c l u s i o n chemical composition i n a 4 340 e l e c t r o d e t i p s u b j e c t e d t o ESR thermal g r a d i e n t s

275

Changes i n i n c l u s i o n chemical composition i n a 4340 e l e c t r o d e t i p with a strong r e c r y s t a l l i z e d region

276

Behavior of oxide i n c l u s i o n s i n a e l e c t rode t i p of a r o t o r s t e e l subjected t o ESR thermal g r a d i e n t s

277

.

Aluminum s i l i c a t e s i n a 4340 ESR i n g o t 75 mm i n diamter. Precipitated inclusions in a l o c a l i z e d region

278

I n f l u e n c e o f CaSi and FeO i n t e r m i t t e n t a d d i t i o n s on the oxygen content of a 1020 M.S. (RIII-W)

279

Changes i n oxygen content i n a 1020 MS i n g o t as a r e s u l t o f CaSi and FeO i n t e r m i t t e n t a d d i t i o n s (RII-W)

280

Changes i n s l a g chemical composition i n a 1020 MS (RIII-W) as a r e s u l t of CaSi and FeO i n t e r m i t t e n t a d d i t i o n s

281

Changes i n s l a g chemical composition as a r e s u l t of i n t e r m i t t e n t a d d i t i o n s of CaSi and FeO i n s l a g d u r i n g r e f i n i n g (RII-W)

282,283

Changes i n i n g o t chemical composition as a r e s u l t of CaSi and FeO a d d i t i o n s i n s l a g during r e f i n i n g (RIII-W)

284

E f f e c t of CaSi and FeO a d d i t i o n s i n the s l a g on the chemical composition of a 1020 MS i n g o t (RII-W)

285

Changes i n i n c l u s i o n composition and s i z e i n a 1020 MS i n g o t (RIII-W) as a r e s u l t of i n t e r m i t t e n t a d d i t i o n s o f CaSi and FeO i n the s l a g

286

Chemical a n a l y s i s o f s l a g samples i n R I - I l .

287

xii Figure

Page

38.

Ingot chemical a n a l y s i s i n R I - l l

288

39.

S l a g chemical a n a l y s i s (wt. %) i n a cont i n u o u s l y A l d e o x i d i z e d 1020 MS i n g o t (RII-Il)

289

40.

Slag chemical a n a l y s i s

290

41.

I n c l u s i o n mean diameter and t o t a l oxygen content i n a c o n t i n u o u s l y (Al) d e o x i d i z e d ingot, (RII-Il)

291

42.

T o t a l oxygen content and i n c l u s i o n mean diameter i n i n g o t (RII-I2)

292

43.

I n c l u s i o n chemical composition (at. %) as a f u n c t i o n o f c o n t i n u o u s l y i n c r e a s i n g deoxidation rates i n RII-Il

293

I n c l u s i o n chemical composition (at. %) as a f u n c t i o n of the i n g o t h e i g h t (or continuously increasing deoxidation r a t e s ) i n RII-I2

294

45.

Ingot chemical a n a l y s i s i n R I I - I l

295

46.

Ingot chemical a n a l y s i s i n RII-I2

296

47.

"Alumina g a l a x i e s " , (EPMA), a s s o c i a t e d t o MnS I I i n i n c i p i e n t aluminum d e o x i d i z e d i n g o t s , ( R I I - I l and RII-I2)

297

"Alumina g a l a x i e s " (EPMA) and MnS I I i n A l deoxidized ingots

29 8

Faceted alumina (a-A^C^) i n samples from l i q u i d p o o l and i n g o t d e o x i d i z e d with A l ..

299

Calcium aluminates low i n Ca from h i g h l y A l d e o x i d i z e d i n g o t s . A l , Ca and S composition RII-I2

300

Composition dependence o f s u l f i d e phases on the Ca:Al r a t i o i n the oxide phase ( R I I - I l )

301

44.

48. 49. 50.

51.

(wt. %) i n R I I - I l . . .

xiii Page

Figure 52.

5 3



54.

55.

56.

Composition dependence o f s u l f i d e phases on Ca-aluminate i n c l u s i o n s phases i n RII-I2 .. 302 Segregated m a t e r i a l i n an A l d e o x i d i z e d i n g o t ( l i q u i d pool) . . Dependence o f "FeO" contents i n s l a g on the Ai2 0-.:CaO r a t i o i n s l a g o f a c o n t i n u ously A l deoxidized ingot (RII-Il) Dependence o f "FeO" contents i n s l a g on the A ^ O ^ t C a O r a t i o i n s l a g o f a c o n t i n u o u s l y A l d e o x i d i z e d i n g o t (RII-I2)

3

0

3

3

04

3

05

Changes i n t o t a l oxygen content and i n c l u s i o n mean diameter i n a c o n t i n u o u s l y CaSi deoxidized ingot (RIII-Il)

306

I n c l u s i o n mean diameter and t o t a l oxygen content i n a c o n t i n u o u s l y CaSi d e o x i d i z e d i n g o t (RIII-I2)

307

58.

I n c l u s i o n chemical composition as a f u n c t i o n of d e o x i d a t i o n r a t e s i n R I I I - I l

308

59.

I n c l u s i o n chemical composition as a funct i o n o f d e o x i d a t i o n r a t e s i n RIII-I2

309

60.

Changes i n s l a g chemical composition i n a c o n t i n u o u s l y CaSi d e o x i d i z e d i n g o t (RIIIIl)

310

Changes i n s l a g chemical composition i n a continuously CaSi d e o x i d i z e d i n g o t (RIII12)

311

Changes i n A l and S i i n R I I I - I l as a consequence o f c o n t i n u o u s l y i n c r e a s i n g CaSi deoxidation rates

312

Changes i n i n g o t composition as a consequence o f c o n t i n u o u s l y i n c r e a s i n g CaSi d e o x i d a t i o n r a t e s i n RIII-I2

313

57.

61.

62.

63.

XIV

Figure 64.

65.

66.

67.

68.

69.

Page Dependence o f "FeO" contents i n s l a g samples on the d e o x i d a t i o n r a t e s i n RIII-Il •

314

Dependence o f "FeO" contents i n s l a g samples on the d e o x i d a t i o n r a t e s i n RIII-I2

315

S u l f u r (as s u l f i d e s ) content i n i n c l u s i o n s as a f u n c t i o n of the Ca:Al r a t i o i n the Ca-aluminate i n c l u s i o n phases i n R I I I - I l ..

316

S u l f u r (as s u l f i d e s ) content i n i n c l u s i o n s as a f u n c t i o n o f the Ca:Al r a t i o i n the Ca-aluminate i n c l u s i o n phases i n RIII-I2 ..

317

Chemical composition o f i n c l u s i o n s (as Ca:Al r a t i o s ) as a r e s u l t o f c o n t i n u o u s l y i n c r e a s i n g d e o x i d a t i o n r a t e s i n RIII-I2, (a) and s u l f u r (as s u l f i d e ) i n i n c l u s i o n s i n Ca-aluminates, (b) . s

318

Segregate e n r i c h e d i n A l , Ca and S i i n a sample e x t r a c t e d from the l i q u i d p o o l of i n g o t R I I I - I l

319

S l a g chemical a n a l y s i s o f a 4340 i n g o t c o n t i n u o u s l y d e o x i d i z e d w i t h a CaSi a l l o y , [R-4340 (1)]

320

71.

Ingot chemical composition i n R-4340 ( 1 ) . . .

321

72.

I n c l u s i o n s i z e d i s t r i b u t i o n and t o t a l oxygen content i n R-4340 (1)

322

Changes i n "FeO" contents i n the s l a g as a consequence o f the c o n t i n u o u s l y i n c r e a s i n g CaSi d e o x i d a t i o n r a t e s i n R-4340(1)

323

I n c l u s i o n chemical composition (as Ca:Al r a t i o s i n a t . %) i n samples o f l i q u i d p o o l and i n g o t i n R-4340 (1)

324

I n c l u s i o n composition as Ca:Al r a t i o s and S content i n R-4340 (1)

325

70.

73.

74.

75.

XV

Page

Figure I n c l u s i o n composition (oxide and s u l f i d e phases i n a r o t o r s t e e l d e o x i d i z e d with S i based a l l o y s , namely: Ca-65 wt.% S i , Al-65% S i and "Hypercal". R-RS(I), R-RS(II) and R-RS(III)

326

77.

Segregate e n r i c h e d i n A l , Ca and S i from the A l S i d e o x i d i z e d i n g o t , R-RS(II)

327

78 .

I n c l u s i o n p r e c i p i t a t i o n sequence i n a s t e e l c o n t a i n i n g two l e v e l s o f s u l f u r

328

79.

S t a t i s t i c a l determination c l u s i o n diameter

329

80.

C e - d i s t r i b u t i o n i n a i n c l u s i o n o f a sample e x t r a c t e d from the l i q u i d p o o l

330

81.

Ce and La d i s t r i b u t i o n i n an i n c l u s i o n of a sample e x t r a c t e d from the l i q u i d p o o l . La and Ce come from a RE w i r e l o c a t e d i n the q u a r t z t u b i n g

331

A l , Ca and Zr d i s t r i b u t i o n s i n an i n c l u s i o n of a sample e x t r a c t e d from the l i q u i d p o o l . Zr was i n the q u a r t z t u b i n g

332

D i s t r i b u t i o n o f oxide formers i n an i n c l u s i o n o f a sample e x t r a c t e d from the l i q u i d pool

333

76.

82.

83.

84.

85.

86.

87.

of the mean i n -

,

D i s t r i b u t i o n o f o x i d e - s u l f i d e former i n an i n c l u s i o n o f a sample e x t r a c t e d from the l i q u i d p o o l

334

Inclusion d i s t r i b u t i o n i n a dendritic s t r u c t u r e o f 1020 MS samples taken from l i q u i d pool during r e f i n i n g

335

Inclusion d i s t r i b u t i o n i n a dendritic s t r u c t u r e o f a 4 34 0 sample from the l i q u i d pool

336

Isothermal (1823 K) p r e c i p i t a t i o n (Fe, A l , Ca, 0, S) diagram a t 0.1 a c t i v i t y o f aluminum

337

xvi Figure 88.

Page E f f e c t o f the a c t i v i t y o f A l ( h = 0.001, 0.01 and 0.1) on the " p r e c i p i t a t i o n sequence" o f Ca-aluminates

338

E f f e c t o f the a c t i v i t y of S (h = 0.01, 0.01 and 0.001) on the " p r e c i p i t a t i o n sequence" o f Ca-aluminates

339

Arrangement o f aluminates i n r e l a t i v e l y low CaSi d e o x i d i z e d ESR-ingots

340

T y p i c a l arrangement o f i n c l u s i o n s i n a r e l a t i v e l y low CaSi or high A l deoxidized ingots

341

X A1 0_• Y CaO/CaS i n t e r f a c e i n an ESR i n g o t , R-RS ( I I I ) , d e o x i d i z e d with "hypercal". X-ray spectrum analyses are a l s o i n c l u d e d

342,343

93.

Secondary DAS i n a round 1020 MS ESR i n g o t

344

94.

Secondary DAS i n a 1020 MS ESR i n g o t

345

95.

Secondary DAS i n a 4340 ESR i n g o t

346

96.

R a d i a l s i z e d i s t r i b u t i o n of i n c l u s i o n s i n an A l d e o x i d i z e d i n g o t , (RII-I2)

347

Radial i n c l u s i o n size d i s t r i b u t i o n i n a low CaSi d e o x i d i z e d i n g o t ( R I I I - I l )

348

Radial i n c l u s i o n size d i s t r i b u t i o n i n a 200 mm ESR i n g o t CaSi d e o x i d i z e d , ( R I I I - I l )

349

Radial i n c l u s i o n size d i s t r i b u t i o n i n a 4340 (ESR) i n g o t CaSi d e o x i d i z e d

350

89.

90. 91.

92.

97. 98. 99.

A 1

2

(200 mm

i n diameter)

xvii

L I S T OF

TABLES Page

Table I. II.

III. IV.

V. VI. VII.

VIII. IX. X.

XI.

Correction factor

to the

Stokes'

351

Law

Thermochemical data f o r a) I n v a r i a n t e q u i l i b r i a i n Fe-S-0 s y s t e m and b) E s t i m a t e d d a t a f o r i n v a r i a n t e q u i l i b r i a i n Fe-Mn-0, Fe-Mn-S and Mn-S-Q t e r n a r y systems

353

Estimated data for i n v a r i a n t e q u i l i b r i a i n Fe-Mn-S-0 q u a t e r n a r y s y s t e m

355

C a l c u l a t e d and p u b l i s h e d f r e e f o r F e - O - C a - A l s y s t e m a t 1823

356

E q u i l i b r i u m constants reactions

energy d a t a K (1550°C)...

for deoxidation

Equations f o r i n v a r i a n t e q u i l i b r i a i s o t h e r m a l (Fe-O-Ca-Al) system

357

i n the

Chemical a n a l y s i s o f e l e c t r o d e s used this research

in

E x p e r i m e n t s and t h e i r this investigation

in

f e a t u r e s used

Chemical c o m p o s i t i o n of d e o x i d i z e r s used i n the p r e s e n t i n v e s t i g a t i o n a)

I n c l u s i o n c o m p o s i t i o n as a r e s u l t o f r e m e l t i n g 4340 e l e c t r o d e s i n a s m a l l E S R - f u r n a c e (75 mm i n d i a m e t e r )

b)

Slag-deoxidizer effect composition

on

inclusion

c)

I n c l u s i o n c h e m i c a l c o m p o s i t i o n o f 4340 e l e c t r o d e s u s e d i n t h e s m a l l ESRfurnace

C h e m i c a l e f f e c t o f s l a g and e l e c t r o d e s u r f a c e p r e p a r a t i o n on i n c l u s i o n c o m p o s i t i o n . (A 1020 MS and a r o t o r (Ni-Cr-Mo) s t e e l were r e f i n e d i n t h e 200 mm i n d i a m e t e r E S R - f u r n a c e t h r o u g h s e v e r a l s l a g s y s t e m s ). .

358

359

360

361

362

362

362

xviii Page

Table XII.

XIII.

Slag chemical a n a l y s i s o f ESR (Ni-Cr-Mo) i n g o t s d e o x i d i z e d with S i based d e o x i dizers Chemical with: a) b) c)

XIV.

XV. XVI.

a n a l y s i s of ingots deoxidized

the Al-65% S i a l l o y the Ca-65% S i a l l o y and the CaSiAlBa (hypercal) a l l o y

D e r i v e d equations f o r i n v a r i a n t ( i s o t h e r m a l ) e q u i l i b r i a i n the Fe-O-Ca-Al-S system Computed compositions i n Table XV and e ^ and e * =

XVII.

365 366 367

T y p i c a l data recorded from EPMA a n a l y s i s of i n c l u s i o n s . a) l i q u i d p o o l and b) i n g o t

C

364

1

368 369

370

based on data g i v e n

= - 25,

e ^ 0

= -62

-40

3

7

1

3

7

2

Computed compositions i n the Fe-Ca-Al0-S system by u s i n g i n f o r m a t i o n i n Table XV, v a r i a b l e e~r

(-535, -400, -300, Al -250 and -200) i n a d d i t i o n t o the e = -62 and e = -110 Q

C

a

s

XVIII.

E f f e c t o f i n i t i a l number of i n c l u s i o n s on growth d u r i n g c o o l i n g o f l i q u i d metal

373

xix LIST OF SYMBOLS a c t i v i t y o f the i component

l

'A' s p e c i e s i n s l a g

(A)

'A' element i n s o l u t i o n i n l i q u i d iron r a t i o of A t o B s p e c i e s

[A], A A: B A

(g)'

A

(l)' (s) A

deoxidant, composition o f which i s Al-65 wt.% S i . (Table IX)

AlSi

A l

'A' s p e c i e s i n gaseous, l i q u i d or s o l i d state

alumina as a primary d e o x i d a t i o n product

2°3*

atomic p e r c e n t

at. %

i o n i c species with e i t h e r a p o s i t i v e or negative v a l e n c e allotropic

a-Fe a-Al 0 2

state of iron

corundum; i t i s a l s o g i v e n as 'A' when i t i s r e f e r r e d t o as a p a r t o f the Ca-aluminates p r e c i p i t a t i o n sequence

3

degrees i n the C e l s i u s grade) s c a l e

(centi-

s u p e r s a t u r a t i o n r a t i o i n terms of c o n c e n t r a t i o n s

C:C»

(1)'(s)

and C A 3

2

l i q u i d o r s o l i d CaO s t o i c h i o m e t r i c Ca-aluminates as g i v e n by the pseudo b i n a r y (CaO-Al 0 ) phase diagram, i.e., 2

3

CaO«Al 0 ,

CaO-2Al 0 ,

CaO«6Al 0 ,

12CaO«7Al 0

2

3

2

2

3

3CaO«2Al 0 2

3

3

2

3

and

XX

(CaO) *

p e r i p h e r a l phase on a c a l c i u m aluminate oxide i n c l u s i o n

(Ca,Mn)S

double

CaS

phase heterogeneously precipitated on a Ca-aluminate phase

(CaS)*

p e r i p h e r a l c a l c i u m s u l f i d e phase i n e q u i l i b r i u m w i t h the CaO from the Ca-aluminate and oxygen and sulfur i n solution in iron

s u l f i d e w i t h Ca and

Mn

deoxidant, composition of which i s given i n Table (IX)

CaSi CaSiAlBa

deoxidant ("hypercal"), composition of which i s given i n Table IX

DAS

d e n d r i t e arm

DAS

secondary

11

D c 6„ or Fe

6-iron

spacing

d e n d r i t e arm

spacing

c r i t i c a l drag f o r c e particle

on a

a l l o t r o p i c state

iron

of

spherical

electron

e i

i n t e r a c t i o n c o e f f i c i e n t ; the e l e ment f o r which the a c t i v i t y coe f f i c i e n t i s being c a l c u l a t e d i s designated j and the element c a u s i n g the e f f e c t i s d e s i g nated i .

EPMA

electron-probe-micro

f

Henrian

FeO"

activity

i r o n oxide,

(Fe O) x

analyses

coefficient

xxi Fe(x,y,z)-0-S

pseudo t e r n a r y i n c l u s i o n phase diagrams w i t h an oxide and a s u l f i d e p h a s e ; ( H i l t y and c o ,(129) workers)

f^

liquid fraction

GR

product thermal

of growth r a t e by gradients

Y, k, or 8-Al C>2

a l l o t r o p i c s t a t e s o f the alumina

Y^

a c t i v i t y c o e f f i c i e n t of species A

h^

Henrian

HIC

hydrogen induced

HSLA

high s t r e n g t h low a l l o y

kV

excitation

K

a b s o l u t e degrees(absolute) s c a l e

2

Kg t o n

£

- 1

£^ L

cracking steel

voltage i n k i l o v o l t s i n the K e l v i n

d e o x i d a t i o n r a t e i n kilograms of deoxidant per (metric) tonne of remelted i n g o t liquid

1

a c t i v i t y of s p e c i e s A

oxisulfide

l i q u i d metal and L„

l i n e s d i v i d i n g the t e r n a r y i n e l u s i o n and s l a g compositions suggesting the formation of low m e l t i n g phases, F i g u r e s (12) and (13)

X

wave l e n g t h i n X-rays

m(CaO) • nfA^O.j)

m and n are c o e f f i c i e n t s o f the Ca-aluminate phases which are e q u i v a l e n t t o those i n the CaOA l 0 pseudo-binary phase diagram 2

3

xxii manganese s u l f i d e type III

MnS(I,II,III)

I, I I , or

y

viscosity

yA

specimen c u r r e n t d e n s i t y i n (EPMA) microamperes u n i t l e n g t h , microns

ym

oxide of the type Mn(Fe)0 o,

"o",

or o x i

concentration

ppm

R I I I - I l and

( 1 0 2 0 ) ESR i n g o t s A l - d e o x i d i z e d (200 mm i n diameter)

RII-I2 RIII-I2

R-43040 (1) R-RS(I), R-RS(II) R-RS(III)

million

i n g o t s i n which CaSi and FeO were added ( 2 0 0 mm i n diameter)

RII-W, RIII-W R I I - I l and

i n p a r t s per

and

( 1 0 2 0 ) ESR i n g o t s CaSi ( 2 0 0 mm i n diameter) ( 4 3 4 0 ) ESR i n g o t CaSi ( 2 0 0 mm i n diameter)

deoxidized deoxidized

Rotor (Ni-Cr-Mo) s t e e l d e o x i d i z e d with C a S i , A l S i CaSiAlBa a l l o y s

and

P

density

a

interfacial

u

r e s u l t i n g vector

V

velocity

+

degree of accuracy (plus or minus) i n chemical a n a l y s i s less

<

-«-

or

s

or ^

=

< tension velocity

vector

than

reaction in equilibrium approximately gaseous phase

ACKNOWLEDGEMENTS

I would l i k e t o express my s i n c e r e g r a t i t u d e t o my s u p e r v i s o r Dr. A l e c M i t c h e l l f o r h i s c o n c i s e a d v i s e .

I am

a l s o t h a n k f u l t o P r o f e s s o r s R. B u t t e r s and B. Hawbolt f o r t h e i r c o n t r i b u t i o n s and d i s c u s s i o n s d u r i n g t h i s work.

I

a l s o a p p r e c i a t e the t e c h n i c a l a s s i s t a n c e o f A. L a c i s , G. S i d l a , R. Cardeno, H. Tump, R. McLeod and M. Mager. I would l i k e t o thank the Banco de Mexico, Consejo N a c i o n a l de C i e n c i a y T e c h n o l o g i a N a c i o n a l Autonoma de Mexico

(CONACyT), U n i v e r s i d a d

(Departamento de M e t a l u r g i a de

l a UNAM) and the Department o f M e t a l l u r g i c a l E n g i n e e r i n g of the U n i v e r s i t y o f B r i t i s h Columbia f o r the f i n a n c i a l given d u r i n g my p r o f e s s i o n a l s t u d i e s .

support

The author i s a l s o

g r a t e f u l f o r the f i n a n c i a l a s s i s t a n c e o f the American Iron and S t e e l I n s t i t u t e

( P r o j e c t No. 32-445).

T h i s work i s s p e c i a l l y brothers

and

s i s t e r s and

reach my

goal.

dedicated

everyone who

t o my

has

parents,

contributed

to

1 CHAPTER I INTRODUCTION In

today's technology

where there i s the demand f o r

e x t r a - h i g h - q u a l i t y m a t e r i a l s , there are o n l y three ary

steelmaking p r o c e s s e s capable o f f u l f i l l i n g

q u i r e d s t r i n g e n t standards

the r e -

1) E l e c t r o n Beam M e l t i n g (EBM),

2) Vacuum A r c R e f i n i n g (VAR) and (ESR).

second-

3) E l e c t r o s l a g R e f i n i n g

The p r o p e r t i e s r e s u l t i n g from any o f the above p r o -

c e s s e s can be c a t e g o r i z e d a s :

crystal structure,

chemical

homogeneity, s u l f u r and phosphorus c o n t e n t and i n c l u s i o n chemistry and s i z e d i s t r i b u t i o n .

The EBM and the VAR p r o -

cesses o f f e r the lowest gas content.

The v e r s a t i l i t y i n

c o n t r o l and o p e r a t i o n , c r y s t a l s t r u c t u r e , r e l a t i v e cal

electri-

e f f i c i e n c y and r e p r o d u c i b i l i t y are the main f e a t u r e s o f

the ESR p r o c e s s . * Research

c a r r i e d o u t s i n c e 1967

has w i d e l y demonstrated

t h a t the ESR-process o f f e r s d e f i n i t e advantages over v e n t i o n a l p r a c t i c e and i n some r e s p e c t s a l s o o f f e r s tages over other secondary

steelmaking p r a c t i c e s .

conadvan-

The con-

tinuous demand f o r h i g h q u a l i t y m a t e r i a l s has i n c r e a s e d s i n c e 1967.

From 1960 t o 1973 the western world i n c r e a s e d

i t s ESR p r o d u c t i o n from 2 600 t o about 120 000

tonne/year

and i t i s f o r e c a s t t o i n c r e a s e t o 600 000 tonneVyear i n 1985. The

S o v i e t Union's p r o d u c t i o n i s about three times t h a t

* First

I n t . Symp. on ESR

2 of the Western world.

T h i s marked i n c r e a s e i n p r o d u c t i o n

i n d i c a t e s the a c c e p t a b i l i t y of the products manufactured the

by

ESR-technology. M a t e r i a l s produced f o r p a r t i c u l a r purposes such as

r o t o r s used i n thermal and n u c l e a r e l e c t r i c a l p l a n t s ,

land-

i n g gear used i n a i r c r a f t , crank s h a f t s used i n l a r g e v e s s e l s , gun b a r r e l s , s u p e r a l l o y s used i n t u r b i n e b l a d e s , h i g h q u a l i t y t o o l and b a l l b e a r i n g s t e e l s , e t c . are examples o f the wide v a r i e t y o f m a t e r i a l s produced by the ESR-process.

These components are s u b j e c t

to d r a s t i c

temperature and environmental c o n d i t i o n s and/or to dynamic s t r e s s e s .

These two adverse c o n d i t i o n s by them-

s e l v e s generate m i c r o c r a c k s which are u s u a l l y a s s o c i a t e d w i t h chemical inhomogeneities and/or with i n c l u s i o n s i n the metal m a t r i x . I n c l u s i o n s p l a y a major r o l e i n f a i l u r e s under described situations.

the

Thus t h e i r index o f s p h e r i c i t y ,

degree o f cohesion with the metal matrix, i n t e r p a r t i c l e d i s t a n c e , volume f r a c t i o n , s i z e d i s t r i b u t i o n ,

plasticity,

thermal c o n t r a c t i o n and expansion c o e f f i c i e n t s w i t h r e s p e c t to the m a t r i x and chemistry are the parameters determine the s e r v i c e l i f e ,

which

i n terms of i n c l u s i o n s , f o r

a given material. The p o t e n t i a l of the ESR-process, because of i t s v e r satility,

can be extended to o t h e r types o f uses such as

3 E l e c t r o s l a g C a s t i n g (ESC) I t i s important

and E l e c t r o s l a g Welding

(ESW).

to note t h a t w h i l e these p r o c e s s e s

very r a r e l y used i n North America,

are

i n the S o v i e t Union's

technology they are w i d e l y p r a c t i c e d . The ESR process because of i t s m u l t i p l e degrees

of

freedom a l s o o f f e r s a wide range of parameters to be modif i e d and improved without modifying the standard f u r n a c e . To o p t i m i z e the mechanical

p r o p e r t i e s which are

r e l a t e d to i n c l u s i o n s i n a ESR-product, a s e r i e s of

strictly inter-

a c t i o n s between a l l the components of the process should be e v a l u a t e d , i . e . e l e c t r o d e , s l a g , d e o x i d i z e r and f y i n g i n g o t should a l l be c o n s i d e r e d .

solidi-

I f the mechanisms

by which i n c l u s i o n s are formed are known, then the

ESR-

process c a p a b i l i t i e s and r e s t r i c t i o n s i n t h i s r e s p e c t can be d e f i n e d .

4 CHAPTER II LITERATURE REVIEW 2.1

L i t e r a t u r e Survey on E l e c t r o d e From the thermal p o i n t of view

should be c o n s i d e r e d

as one

Inclusions the e l e c t r o d e t i p

of the sources by which

one

p a r t of the t o t a l heat produced by the s l a g i s consumed, Figure

(1).

T h i s amount of thermal energy which i s t r a n s -

f e r r e d from the s l a g to the e l e c t r o d e p l a y s s e v e r a l r o l e s : 1.

I t i s p r i m a r i l y converted to s e n s i b l e heat, thus

producing a f i n e l i q u i d f i l m which afterwards w i l l droplets, 2. and

form

and I t a l s o determines the temperature g r a d i e n t s

below the slag/gas

interface.

above

Thus, i t e s t a b l i s h e s

amount of p o s s i b l e s u r f a c e o x i d a t i o n and

the

the d i s s o l u t i o n

of c e r t a i n second phase p a r t i c l e s or i n c l u s i o n s i n the e l e c trode . (1-5) T h e o r e t i c a l and

experimental

s t u d i e s have been per-

formed to determine whether i n c l u s i o n s from the e l e c t r o d e e l i m i n a t e d before

are

or a f t e r the metal d r o p l e t i s formed.

Heat and mass t r a n s f e r models have a l s o been developed to p r e d i c t the maximum i n c l u s i o n diameter which can be s o l v e d under g i v e n

dis-

ESR-conditions. (6)

M i t c h e l l , J o s h i and

Cameron

have s t u d i e d the temp-

e r a t u r e d i s t r i b u t i o n above the slag/gas l a b o r a t o r y ESR

furnace.

interface in a

They have i n d i c a t e d t h a t gradients

the r a d i a l

i n a larger electrode-ingot

came s i g n i f i c a n t .

Their

c o n f i g u r a t i o n b<

r e s u l t s a l s o suggest

s o l u t i o n o f second phase p a r t i c l e s tent

temperature

that di;

to a varying

ex-

i s feasible. (7)

Maulvault

and E l l i o t t

who

have d e v e l o p e d a one

d i m e n s i o n a l model have t a k e n i n t o a c c o u n t t h e cal

movement o f t h e e l e c t r o d e .

w h i c h have b e e n b a s e d file,

Their

i n an assumed

verti-

computations,

parabolic

pro-

h a v e shown a r e a s o n a b l e a g r e e m e n t w i t h t h e expe

mentally

(37 mm

diameter electrode)

determined

values

(8) M e n d r y k o w s k i e t a l . ' s work fied the

one-dimensional-heat electrode

part

immersed

found t h a t w h i l e n e i t h e r vection play tions, the

sults

model and

a simpli-

considering

i n the s l a g have

also

r a d i a t i o n n o r gas p h a s e

a major r o l e ,

the convective

electrode

flow

by u s i n g

f o r a given

set of

con-

condi-

heat t r a n s f e r from the s l a g t o

i s i n d e e d more s i g n i f i c a n t .

suggest that conduction along

Their r e -

the e l e c t r o d e

pre

d o m i n a t e s a s t h e h e a t - t r a n s f e r - c o n t r o l l i n g mechanism. (9)

Tacke e t a l . f o r m e d a t U.B.C.

along (6,10) have

t h e l i n e s w i t h work p e r coupled

two m o d e l s

(one

6

to determine the s l a g temperature and the other to determine the heat f l u x e s ) t o c a l c u l a t e the e l e c t r o d e temperature, i t s m e l t i n g p r o f i l e and i t s depth o f immersion i n the s l a g .

I t has been claimed t h a t computed

v a l u e s o b t a i n e d by t h i s two-dimensional flow are i n agreement with the experimental e f f e c t was"also t h e o r e t i c a l l y yzed.

findings.

The r a d i a l

and e x p e r i m e n t a l l y

anal-

These r e s u l t s i n agreement with M i t c h e l l e t

(6)

al.

show t h a t the temperature g r a d i e n t s become

steeper i n the e l e c t r o d e nearer the l i q u i d f i l m . A r e p r e s e n t a t i v e example o f t y p i c a l g r a d i e n t s i n an e l e c t r o d e are shown i n F i g u r e

(2).

I t i s important

to mention t h a t i n a l l the above models the thermal energy spent f o r r e c r y s t a l l i z a t i o n or g r a i n growth, as shown by s e v e r a l r e s e a r c h e r s ^ ' 11-14)

n

Q

t

j

3 e e n

considered. The

i n c l u s i o n d i s s o l u t i o n phenomenon has a l s o

been approached by s e v e r a l r e s e a r c h e r s from the mass

(12) t r a n s f e r view p o i n t ,

Kay and Pomfret

f i r s t r e s e a r c h e r s t o have suggested

were the

and modelled the

d i s s o l u t i o n o f oxide i n c l u s i o n s ( s i l i c a and alumina) i n the e l e c t r o d e f i l m under normal ESR c o n d i t i o n s . They c l a i m t h a t

7 although i n c l u s i o n s can be d i s s o l v e d as a r e s u l t of l i q u i d f i l m - l i q u i d slag i n t e r a c t i o n during formation

stage,

t h e i r computed values

r a t e would o n l y r e q u i r e the time t h a t spends before

i t becomes l i q u i d .

d i s s o l u t i o n of alumina and meters were 4 and

20

ym,

silica

the

droplet

for dissolution an e l e c t r o d e

Mitchell

material

Their c a l c u l a t i o n s

for

i n c l u s i o n s whose d i a -

were performed under the

sumption t h a t thermodynamic e q u i l i b r i u m a t the t i p / s l a g i n t e r f a c e was

the

reached a t 1800

and

as-

electrode

2000°C.

based on heat t r a n s f e r c a l c u l a t i o n ^ '

has

r e c a l c u l a t e d the d i s s o l u t i o n of i n c l u s i o n s (12) u s i n g the c o n d i t i o n s o f Pomfret and Kay . Mitchell's r e s u l t s show t h a t even by u s i n g a two-fold

superheating (8)

(70°

C) above t h a t found by Mendrikowski e t a l .

s o l u t i o n i s p r e d i c t e d below 1600° C.

no

Hence the i n c l u s i o n -

d i s s o l u t i o n mechanism i n the s o l i d e l e c t r o d e t i p was considered

not

to s t r o n g l y i n f l u e n c e the o v e r a l l i n c l u s i o n

removal. (16) Hajra and

Ratnam

f e r c a l c u l a t i o n s and ESR-furnace.

have a l s o performed mass t r a n s experimental r e s e a r c h

T h e i r approach was

previously described with M i t c h e l l ' s

works.

in a

laboratory

on the same b a s i s as

Their results

show t h a t slag/metal

i n agreement

reactions play

important r o l e i n the e l e c t r o d e - i n c l u s i o n removal. a l s o found t h a t oxide p a r t i c l e s c h a r a c t e r i s t i c of e l e c t r o d e were not t r a c e d i n the

ingot.

the

an They

the

8 Experimental and

t h e o r e t i c a l work, so f a r des-

c r i b e d , has o n l y been concerned with l a b o r a t o r y

ESR

(17) furnaces.

Medovar e t a l .

800

mm

- 1200

also reported

that, i n

consumable e l e c t r o d e s r e f i n e d by

ESR,

the i n c l u s i o n removal o c c u r s i n the molten metal or i n the p r o c e s s of d r o p l e t formation.

film

They have a l s o

i n d i c a t e d t h a t i n c l u s i o n s i n d r o p l e t s d i f f e r e d from those i n the e l e c t r o d e . shape, s i z e s and

They c l a i m t h a t the i n c l u s i o n

d i s t r i b u t i o n i n the s o l i d

were s i m i l a r i n nature to those i n the ESR

Research c a r r i e d out on a q u a n t i t a t i v e b a s i s i n the e l e c t r o d e d u r i n g cated

claimed

has

'

suggested t h a t i n c l u s i o n s

r e f i n i n g are s p e c i f i c a l l y l o they have a w e l l

defined

Based on these f i n d i n g s i t has

t h a t i n c l u s i o n s are mechanically

c a l l y removed by

ingot. (19 20)

i n the S o v i e t Union

i n the l i q u i d f i l m and

size distribution.

droplets

and

been

chemi-

the s l a g . (19)

On

the other hand Roshchin e t a l

w i t h other

investigators^ ''have

due

"high temperature h e a t i n g "

to the

1

i n agreement established

that

manganese s u l f i d e s

9 are f i r s t l y

spherodized and afterwards d i s s o l v e d .

I t has

(19) been observed

that s i l i c a t e

i n c l u s i o n s were

sphero-

d i z e d , transformed and s l i g h t l y enlarged, i n c o n t r a d i c t i o n to s e v e r a l i n v e s t i g a t o r s ' r e s e a r c h reach the l i q u i d f i l m .

The

1

3

^

b e f o r e they

same c o n t r a d i c t i o n i s found

with r e s p e c t to second phase p r e c i p i t a t e s .

While some

r e s e a r c h e r s b e l i e v e t h a t d i s s o l u t i o n occurs i n the stage^

solid

o t h e r s have r e p o r t e d t h a t t h i s takes p l a c e i n

the l i q u i d stage

and s t i l l others ^

t h a t they do not d i s s o l v e and

have

suggested

serve as n u c l e a t i n g agents

i n the r e f i n i n g i n g o t . Roshchin e t a l . ' s work was

performed

u s i n g o p t i c a l and o p t i c a l - q u a n t i t a t i v e d i s t r i b u t i o n ) techniques.

exclusively

(inclusion

These r e s e a r c h e r s c l a i m t h a t

s i m u l a t e d heat t r e a t e d samples

(under an i n e r t atmo-

sphere) s u b j e c t e d to s e v e r a l p e r i o d s of time and e r a t u r e ranges, served i n a c t u a l Other

produced

size

temp-

e q u i v a l e n t r e s u l t s t o those

ob-

ESR-electrodes. (13)

studies

i n l i n e with the p r e v i o u s work,

u s i n g d i f f e r e n t schedules have agreed with the above f i n d ings.

The major disadvantage

of these simulated e x p e r i -

ments i s t h a t the c a l c u l a t e d thermal g r a d i e n t s ^ the time-temperature

and

schedules are so d i f f e r e n t to t h a t

experienced by the e l e c t r o d e t i p s t h a t a s e l f - c o n s i s t e n t

c o n c l u s i o n cannot be

derived,

(15) Studies

c a r r i e d out on a q u a n t i t a t i v e b a s i s

oxygen content and

i n c l u s i o n chemical a n a l y s i s ) have

mined t h a t i n c l u s i o n s are d i s s o l v e d i n the l i q u i d

(total deter-

film.

These a n a l y t i c a l s t u d i e s however were performed e x c l u s i v e l y on. m a t e r i a l belonging The

to the molten

family.

idea which supports the e x i s t e n c e

r e o x i d a t i o n due

to continuous i n c l u s i o n d i s s o l u t i o n , from

the heat a f f e c t e d r e g i o n to the e l e c t r o d e has

a l s o been p r o p o s e d

1

3

^.

The

these i n c l u s i o n s , however, was

not

Theoretical s t u d i e s ^ ' ^ ' ^ ^ electrode-mold

of a continuous

liquid

film,

chemical nature of investigated.

indicate that for a

diameter c o n f i g u r a t i o n some

given

superheating

i s expected at the e l e c t r o d e t i p , although f o r a s h o r t of time.

On

period

t h i s b a s i s i t has

been a n t i c i p a t e d t h a t i f (18) i n c l u s i o n s c o n t a c t the s l a g or e a r l i e r i f they are s i l i c a type, t h e i r d i s s o l u t i o n r a t e should be extremely high (21) f o r a l l common s l a g - i n c l u s i o n combinations (22) Paton e t a l .

have a l s o suggested t h a t the

l i q u i d u s - s o l i d u s l e n g t h of each a l l o y system and trode-steelmaking

p r a c t i c e a l s o p l a y an important

T h e i r s t u d i e s were performed on and

a gradual

served.

The

1200

mm

diameter

d i s s o l u t i o n of s u l f i d e s was critical

intrinsic

the e l e c role. electrodes

( o p t i c a l l y ) ob-

length at which changes i n s u l f u r con-

c e n t r a t i o n s were observed was

about one

centimeter above

the

"fusion l i n e . " (23)

Zhengbang e t a l . ' s s t u d i e s

based on the

con-

95 c e n t r a t i o n s of a r t i f i c i a l

Zr

0

2

i n c l u s i o n s have shown that

the chemistry of i n c l u s i o n s during gradually

from the e l e c t r o d e to the

the ESR ingot.

p r o c e s s change Other

research-

ers c l a i m t h a t the major r e a c t i o n s i t e where i n c l u s i o n s from the e l e c t r o d e are e l i m i n a t e d i s a t the l i q u i d f i l m (23 24) (15) slag interface ' . Mitchell who has r e f i n e d electrodes

containing

c a l c i u m aluminum s i l i c a t e s has

p o r t e d small i n c l u s i o n s i n the

liquid film,

the

re-

composition

of which d i d not correspond to the s t o i c h i o m e t r i c 2FeO«Si0 phase.

2

2.2

L i t e r a t u r e Review on S l a g - L i q u i d Metal and

2.2.1

t h e i r I n f l u e n c e on the ESR Ingot

P r i n c i p l e s o f the R e a c t i o n Among the c o n v e n t i o n a l

Reactions

12

Chemistry

Scheme i n the ESR

Process

and secondary steelmaking

prac-

t i c e s the ESR-process r e p r e s e n t s one of the most complex metallurgical reactors. study

The degree of d i f f i c u l t y

inits

a r i s e s because r e a c t i o n s take p l a c e a t s i t e s

(elect-

r o d e - s l a g , d r o p l e t - s l a g and l i q u i d p o o l i n t e r f a c e s ) which have separate

and d i s t i n c t chemical

and e l e c t r o c h e m i c a l r e -

(26 2 7 )

gimes

'

.

The d r o p l e t , due t o i t s s i z e

sees no

p o t e n t i a l d i f f e r e n c e between i t and the surrounding

slag

t h e r e f o r e i t r e a c t s under the thermochemical c o n d i t i o n s d i c t a t e d by the s l a g . and

The e l e c t r o d e

(liquid film) - slag

the molten l i q u i d p o o l - s l a g i n t e r f a c e s r e a c t almost

e n t i r e l y by imposed e l e c t r o c h e m i c a l p o t e n t i a l s . a t these and

Reactions

s i t e s are c o n t r o l l e d by the s u r f a c e environments

they are not d i r e c t l y i n f l u e n c e d by the s l a g

chemistry.

I t i s worthwhile t o mention t h a t the above p a t t e r n s are mainly a p p l i e d t o DC-ESR and t o a g i v e n extent to the AC-ESR (26) (2728) operation . Several researchers ' have suggested t h a t even i n t h i s l a t t e r o p e r a t i n g mode

slag-metal ex-

change and s u r f a c e s are r u l e d by the p o l a r i z a t i o n (28 29 ) " Several studies t i a l behavior

'

on the c u r r e n t

behavior.

density-poten-

have shown t h a t s i n c e there i s not a l i n e a r

r e l a t i o n s h i p between these parameters used i n ESR, then p o l a r i z a t i o n e x i s t s .

f o r DC and AC ranges Schwerdtfeger s 1

(28) studies

have a l s o shown t h a t a f t e r the l i m i t i n g

r e n t i s approached

f o r a g i v e n s l a g system

cur-

a plateau i s

reached.

T h i s l i m i t i n g c u r r e n t can be

i n c r e a s e d again

i f the p o t e n t i a l i s markedly i n c r e a s e d . tude o f the l i m i t i n g c u r r e n t potential relationship

has

only

Thus, the magni-

from t h i s c u r r e n t

density-

given a c l e a r i n d i c a t i o n that

2+ a s u r f a c e s a t u r a t i o n i n Fe

r e s u l t s i n the s e p a r a t i o n

of

an i r o n - r i c h phase which remains f i x e d on the anode s u r face by

i n t e r f a c i a l tension f o r c e s ^ ^ . 3

incomplete i r r e v e r s i b i l i t y i n the s l a g and

leads to a net

Therefore, "FeO"

this

production

a l s o to a net s o l u t i o n of aluminum or

cal-

cium i n the i r o n . Besides the r e c t i f i c a t i o n of AC c u r r e n t caused by i n t e r (30 32) f a c i a l e f f e c t s there i s evidence ' i n the l i t e r a t u r e which e s t a b l i s h e s t h a t r e c t i f i c a t i o n due to c u r r e n t p a s s i n g 2+ through the slag-skin/mould bulk,

i n c r e a s e s the Fe

i n the s l a g

thus r a i s i n g a l l o x i d a t i o n r a t e s i n the

ESR-reaction

(33) scheme.

Hawkins e t a l .

have shown t h a t i f 5% - 30%

the t o t a l c u r r e n t i s passed through the mould w i t h an c i e n c y of 2% f o r the anodic

reaction

of oxygen would occur, under normal (29) I t has been s p e c u l a t e d

of

effi-

a r i s e of about 40

ppm

ESR-conditions.

t h a t the mechanism which con-

t r o l s t h i s type of r e c t i f i c a t i o n i s the presence of s m a l l arc c o n t a c t s which pass through the s l a g - s k i n i n t o the s l a g . (27) Mitchell temperature and the

reaction

has a l s o i n d i c a t e d t h a t due high c u r r e n t - d e n s i t y slag-metal scheme

is

probably

not

a

to the

high

interface

well-defined

14 Faradaic i n t e r f a c e . sible

Thus e l e c t r o l y t i c

o n l y to the extent p e r m i t t e d by

r e a c t i o n s are possuch p o l a r i z a t i o n

phenomena. (28 The

30)

suggested FeU) Ca

2 +

* + 2e

' Fe

r e a c t i o n scheme i s as f o l l o w s : + 2e

2 +

* Ca

,

(1) (2)

X

Ca t (Ca) s l a g or [Ca] and at h i g h c u r r e n t d e n s i t i e s :

(3)

X

Al

3 +

Fe I t has

2 +

+ 3e

t

+ 2e

t .Fe

[Al]

(4) (5)

( £ )

a l s o been c l a r i f i e d t h a t other r e a c t i o n s with

higher decomposition p o t e n t i a l s than those allowed above scheme w i l l not take

by

the

place. (26)

From the above r e a c t i o n scheme t h a t d u r i n g the anodic h a l f c y c l e adjacent gen

to the metal s u r f a c e

i t has been

envisaged

i r o n oxides w i l l

form

e i t h e r by d i s c h a r g e of oxy-

i o n s or by d i s s o l u t i o n of Fe which w i l l r e p l a c e Ca-ions

locally.

T h i s leads to a high i r o n oxide a c t i v i t y

(

a F e 0

^

W 1

th

consequent d i s s o l u t i o n of oxygen i n t o the i r o n b u l k . 2+ 3+

Simult-

aneously

the

FeO

or Fe

(or Fe

) w i l l be t r a n s p o r t e d by

hydrodynamic regime i n t o the bulk of the s l a g c a u s i n g a ual

grad-

i n c r e a s e i n the a„ . The c a t h o d i c h a l f c y c l e w i l l d i s FeO charge A l 3+ , Ca 2+ or Fe 2+ . Any of these ions w i l l contribute to reduce the a _ in the slag. I t can also be established that i f in this n

last e l e c t r o c h e m i c a l r e a c t i o n there i s not s u f f i c i e n t

Ca

2+

or

15

(33) a slag deoxidation i s

i f Ca i s e x t e n s i v e l y evaporated necessary

to a v o i d the e l e c t r o d e s a c r i f i c i a l

Up t o t h i s p o i n t i n t h i s review

deoxidation.

only the r e a c t i o n s as

a r e s u l t o f the i n h e r e n t e l e c t r o c h e m i c a l nature of the ESRprocess

have been c o n s i d e r e d .

There are, however, other (38)

types o f r e a c t i o n s i n v o l v i n g the s l a g

atmosphere

inter-

f a c e which a l s o a f f e c t i t s o v e r a l l r e a c t i o n p a t t e r n s .

Holz-

gruber ( ^ 34

has claimed

that i f remelting

i s c a r r i e d out

under a pure oxygen atmosphere the oxygen content ranges from 1.8 t o 3.8 times t h a t o b t a i n e d atmosphere. content try.

In t h i s work

i n ingots

under an argon

i t i s a l s o shown t h a t oxygen

i n ESR-ingots i s very dependent on the s l a g chemis(1 37)

S e v e r a l r e s e a r c h e r s have e s t a b l i s h e d

v

'

' that i f

r e m e l t i n g i s not c a r r i e d out under an i n e r t atmosphere and if

the s l a g i s not d e o x i d i z e d then the oxygen content (and

the l o s s of r e a c t i v e elements) i n the i n g o t can only be c o n t r o l l e d by the s l a g (oxygen p o t e n t i a l ) . results (38)

a l s o i n favour o f the above theory

the lowest oxygen content s l a g chemistry

Miska e t a l . ' s show t h a t

i s c o n t r o l l e d s t r i c t l y by the

and i n t e r m e d i a t e oxygen contents

i n f l u e n c e d by the s l a g - e l e c t r o d e

are strongly

chemistry.

While some r e s e a r c h e r s ( 3 8 ) have found t h a t the i n t r o d u c t i o n o f oxygen i n t o the s l a g i s a mass t r a n s f e r c o n t r o l l e d process

others d ' 3 3 ) b e l i e v e t h a t i n a d d i t i o n t o t h i s

mechanism there i s an "oxygen s i n k " face) which a c t s as a d r i v i n g f o r c e .

(at the slag-metal

inter-

I t i s thought t h a t the

d e s u l f u r i z a t i o n r e a c t i o n i s c o n t r o l l e d by t h i s dual mech(1, 12)

anism

I t i s g e n e r a l l y accepted i n t r o d u c t i o n of i r o n oxide

t h a t there

i s a continuous

i n t o the melt, due t o the

continuous o x i d a t i o n of the e l e c t r o d e s u r f a c e . has p o i n t e d out t h a t the ESR-reaction

Mitchell

v

p a t t e r n i s more

s t r o n g l y i n f l u e n c e d by t h i s phenomenon than by the oxygen i n t r o d u c e d as a r e s u l t o f r e a c t i o n s t a k i n g p l a c e a t the slag-atmosphere i n t e r f a c e .

Other s t u d i e s have a l s o

shown t h a t by r e f i n i n g e l e c t r o d e s with d i f f e r e n t (36,39)

o

r

different surface preparation

wise e q u i v a l e n t ESR-conditions,

under o t h e r -

d i f f e r e n t composition

d i f f e r e n t mechanical p r o p e r t i e s a r e observed. havior

chemistry

or

T h i s be-

although i t i s i n d i r e c t , has been a t t r i b u t e d t o

the i n t r o d u c t i o n o f v a r i o u s q u a n t i t i e s of i r o n oxide

into

the s l a g as ( e l e c t r o d e ) s c a l i n g . (40 41) There a r e r e p o r t s i n the l i t e r a t u r e ' i n d i c a t e t h a t the e v a p o r a t i o n

x

'

' which

of gaseous f l u o r i d e com-

pounds i n c e r t a i n s l a g systems a l s o a f f e c t s the r e a c t i o n pattern.

The r e a c t i o n :

(A1 0 ) + 3 ( C a F ) 2

2

3

l a r g e l y c o n t r i b u t e s t o s h i f t the A l 0 : C a O r a t i o . 2

r e a c t i o n becomes very

(8)

t 3(CaO) + 2A1F +

3

important where the c a l c i u m

a c t i v i t i e s are l e s s than 10

-2 (42, 43)

Mitchell

This oxide (36)

17 has p o i n t e d out t h a t i n order to t r a c e the a c t u a l s h i f t i n g i n the chemical

composition

the CaF« and A l F ^ 3

p a r t i c u l a r l y i n s l a g s where

have about the same vapour p r e s s u r e ,

a n a l y s i s i n the 0

2-

:F

-

r a t i o as w e l l as the Ca

2+

: Al

an

3+

should be considered. Complementary r e a c t i o n s are: (CaF ) + H 0 2

2

t

( g )

(CaO)

+ 2HF+

(9)

and 2(CaF ) + 2

Chouldhury e t a l .

K i i i i )

(Si0 ) 2

±n

t

(CaO)

+ SiF^

a r e c e n t communication have

p o i n t e d out t h a t by r e m e l t i n g i n g o t s with low current

(10)

the S i l o s s e s from an a c i d i c s l a g are

frequency negligible.

They n o t i c e , however, t h a t f o r a s l a g where the CaO:Si0

2

r a t i o i s g r e a t e r than 4, S i l o s s e s r i s e to 65% d u r i n g r e melting. gations

T h i s f i n d i n g i s a l s o supported (40, 45)

.

t h a t r e a c t i o n (9)

m

i n previous

.. , , „. ^, . (39) T o b i a s ' and Bhat's work

can be c o n s i d e r e d

of oxygen i n the system.

investi-

suggests

as an a d d i t i o n a l source

In t h i s work

although

i s not c l e a r l y s p e c i f i e d , i t i s c o n s i d e r e d

a mechanism

t h a t moisture

as a condensed phase i n moulds, water vapour from the atmosphere or c h e m i c a l l y bonded moisture i n the f l u x markedly a l t e r s the recovery of t i t a n i u m and

s i l i c o n i n ESR-ingots.

2.2.2

On the Nature of the ESR-reaction

Scheme

A g r e a t d e a l of a t t e n t i o n has been d e d i c a t e d to i n v e s t i g a t e the o r i g i n , sequence and consequence o f the r e a c t i o n s i n the ESR-process.

The major o b j e c t i v e o f these

s t u d i e s have been to c o n t r o l the i n g o t composition out s a c r i f i c i n g i t s chemical

integrity.

I t i s c o n v e n t i o n a l l y accepted

t h a t the

broadest

c l a s s i f i c a t i o n of r e a c t i o n s t a k i n g p l a c e d u r i n g can be s u b d i v i d e d Reactions

with-

refining

as f o l l o w s : which are c o n t r o l l e d by the oxygen p o t e n t i a l

[Me] + [0]

(11)

* (MeO)

and r e a c t i o n s as a r e s u l t of the exchange between

two

liquids: [Me] + (MO) t

(MeO) + [M]

(12)

Among the r e a c t i o n s comprised i n the f i r s t category,

type

(11), a r e : [Ca] + [0] t

(CaO)

2[A1] + 3[0] t

'

( 4 8

6

(A1 0 ) 2

[Si] + 2 [ 0 ] t

(Si0 )

[Ti] + 2[0] t

(Ti0 )

2

(11-i)

)

( 3 6

3

'

4 8

"

5 2

'

6 2 )

(26, 33,35,36,49-51,63,64)

2

( 5 2

2

'

5

8

m i r I -*• /i-i ^ \ (26,33,35.36,63,64) x[Fe] + y[o] (Fe 0 ) ' ' ' • ' x y t

2(Ti 0 )

[Ti] + 2 ( T i 0 )

t

( T i 0 ) + (TiO)

2

2

2

2

n

_

i

i

i

)

. (11-v) (11-vi)

( 5 2 )

3

3

(

(11-iv)

)

[Ti] + 3 ( T i 0 )

(11-ii)

( 5 2 )

(11-vii)

The group of r e a c t i o n s of the k i n d (12) the

so c a l l e d d e o x i d a t i o n (FeO) t-

[Mn]+

subdivided i n

s

r e a c t i o n s , (12a),

namely:

(MnO) + Fe (57,59-61)

(12-i)

[Si]+ 2(FeO) t

( S i 0 ) + 2Fe d,57,60,61)

[Til + 2 (FeO) t

( T i 0 ) + 2Fe (52,58,60)

(12-ii)

2

(12-iii)

2

2[A1]+ 3(FeO) t [Ca] + (FeO) t and

±

( A 1 0 ) + 3Fe (35,48,57,60) 2

(12-iv)

3

(CaO) + Fe

(12-v)

( 6 2 )

the exchange r e a c t i o n s which a l s o i n v o l v e the r e a c t i v e

species,

(12-b):

3[Ti] + 2(A1 0 ) t 2

3

2[Ti] + (Si0 ) t

3(Ti0 )

2(Ti0 )

2

+ 2 [ T i ] (52,58)

2

3 [ S i ] + 2(A1,0-) t ^

+ 4[A1] (18,39,46-51)

2

3(SiCO

J

+

4[A

Z

(12-vii)

i]d/44,46,47,49,55) (12-viii)

2[Mn] + ( S i 0 ) t

2(MnO) + [ S i ] ( /56,57,76)

2[A1]

( A l ^ )

44

2

+ 3(MnO) J

+

Other r e a c t i o n s i n c l u d e d in laboratory

3

[Mn]

(ESW) experiments are (12-C): ( C u C l ) + [Al] t

Cu +

2

3(Cu 0) + 2[A1] t 2

2

0

Cu +

3

(Al 0 ) 2

S i + 2(Fe O)

(MnO) + Fe t

2 Fe +

C + (Fe O) t

CO

x

(A1C1 )

N i + (FeO)

( S i 0 ) + 2 Fe t

( g )

(12-ix) (12-x)

( 5 7 )

i n t h i s c a t e g o r y observed

( N i 0 ) + Fe t

(12-vi)

(Si0 ) 9

+ Fe

3

-(^1)

20

Although the d e p i c t e d

c a t e g o r i z a t i o n of the

reaction

scheme has been presented i n an o v e r s i m p l i f i e d manner i t s t h e o r e t i c a l basis

should be enunciated to e s t a b l i s h •

the r e a c t i n g c o n d i t i o n s under which i t takes p l a c e

and

the governing r e a c t i n g mechanism. A wide range of o p i n i o n s

and

sometimes

c o n t r o v e r s i a l r e s u l t s are found i n the

apparently

literature in re-

gard to the approach p r e d i c t i n g the E S R - r e a c t i o n sequence. While some i n v e s t i g a t o r ' s work

(63)

support the theory

there e x i s t s a s t a t e of e q u i l i b r i u m ,

other

studies

that

(58)

(33)

based i n thermodynamic data and

experimental

r e s u l t s have

found t h a t e i t h e r a "dynamic e q u i l i b r i u m " or k i n e t i c f a c t o r s govern the r e a c t i o n p a t t e r n .

I t i s w e l l recognized^®^

t h a t i f an ESR-furnace i s c o n s i d e r e d

s t r i c t l y as a

even i n the absence of e l e c t r o c h e m i c a l (65

such t h a t t r u e thermal e q u i l i b r i u m and

hence i t should be

operates under three

f a c t o r s , i t s nature i s 66)

'

i s never reached

instead considered

as a r e a c t o r which

d i f f e r e n t regimes, namely:

unsteady s t a t e which holds f o r about three

times

i n g o t diameter from bottom.

2)

for

time

and

3)

of

the

refining

stage

most

of

which

the is

refining at

the

end

Other p e c u l i a r i t i e s o f the ESR the r e a c t i o n sequence are caused by

i t s r a d i a l and

reactor

a quasi-steady

p r o c e s s which

the

1)

an

the state hot

top

time.

influence

i t s hydrodynamic regime v e r t i c a l temperature g r a d i e n t s

(30

'

65,67)^

Thus, s t r i c t l y

speaking an a c t u a l s t a t e of e q u i l

brium i s not reached because of the changing thermal cond t i o n s , hence i n f l u e n c i n g i t s chemical n a t u r e .

From t h i s

d e s c r i p t i o n and from the e l e c t r o c h e m i c a l p r i n c i p l e s a l ready d e s c r i b e d

i t can be seen t h a t the r e a c t i o n scheme

must be c o n s i d e r e d a c c o r d i n g to both thermal regime i t s resulting kinetic factors. p o r t e d by Kay's s t u d i e s d ' reaction pattern.

4 8

)

o

and

These i d e a s have been sup the behavior o f the

n

In t h i s work

ESR

i t has been suggested

t h a t s l a g - m e t a l composition r e l a t i o n s h i p s are governed by (33) kinetic factors.

Hawkins e t a l .

have c l e a r l y shown

t h a t t h i s p a r t i c u l a r s t a t e o f e q u i l i b r i u m i s not unique but i t can be r e p r e s e n t e d as a thermal-parameter denominated " c h a r a c t e r i s t i c temperature." was

T h i s parameter

c a l c u l a t e d on a thermochemical b a s i s i n d i c a t e s

the system may

see simultaneous r e a c t i o n s a t t h e i r

responding thermal r e g i o n s .

Although t h i s

which that cor-

"characteris-

t i c temperature" as a parameter does not have any p h y s i c a l meaning

i t does r e p r e s e n t the unsteady

thermal-chemi

c a l behavior of the ESR p r o c e s s . (33 61) I t has been proposed actions

are

the

result

' of

that o v e r a l l a

well defined

of steps which i n v o l v e mass t r a n s f e r t i o n and hydrodynamic

(ESR) r e -

(diffusion,

series convec-

flow) and chemical f a c t o r s (reorgan

z a t i o n o f the r e l a t i v e p o s i t i o n o f i o n s , atoms or mole-

cules).

The

i s r u l e d by:

k i n e t i c aspect of e l e c t r o a c t i v e the a c t i v i t i e s of r e a c t i n g

interfaces

species

on

both

s i d e s of t h i s s i t e , d i f f u s i o n c o e f f i c i e n t s , temperature and

concentration

gradients

extending from the

inter(33)

face to the

l i q u i d i r o n or s l a g b u l k .

Hawkins

have a l s o suggested t h a t a t h r e e f o l d - s t a g e

et a l .

reaction

se-

quence can be envisaged, namely i)

Transport of reactants

to the s l a g - m e t a l i n t e r -

face.

T h i s s t e p i s a t t a i n e d by d i f f u s i o n and

of the

two

c o n t r i b u t i n g phases

i i ) • Electrochemical

liquid

metal).

r e a c t i o n s which i n v o l v e

e l e c t r o n exchange p r o c e s s , iii)

(Slag and

convection

the

and

T r a n s p o r t of r e a c t i n g products away from

interface.

This

Experimental

(ESW)

work

( ^ 6

has

shown t h a t

dependent upon the

products a t the e l e c t r o a c t i v e i n t e r f a c e s . found t h a t l i q u i d m i s c i b l e

the reaction

I t has

been

r e a c t i o n products r e a d i l y

are e f f i c i e n t l y t r a n s p o r t e d

reacting interface.

away from

the

Gaseous r e a c t i o n p r o d u c t s which

are formed at the e l e c t r o - a c t i v e i n t e r f a c e r e a c t i o n by

the

step i s again r u l e d as stage ( i ) .

r a t e of r e a c t i o n i s s t r o n g l y

d i f f u s e and

ion-

slow

the

i n t e r f e r i n g with the d i f f u s i o n products

through the boundary l a y e r .

And

solid reaction

u c t s a l s o slow the r e a c t i o n r a t e by b l o c k i n g area a v a i l a b l e f o r r e a c t i o n .

Patchet

(^D

off

has

prodthe

also

i n v e s t i g a t e d " i n d u s t r i a l cases" component e l e c t r o d e and

i n ESW

s l a g systems.

these experiments t h a t r e a c t i o n s can taneously

and

involving multiI t i s noted i n

take p l a c e

simul-

they a l t e r the composition of the r e f i n e d (28

product.

Work c a r r i e d out by

57,

has

suggested t h a t although the process operates under

5 8

(chemical

in

and

agreement

'

33,

a

)

several investigators w i t h Patchet's f i n d i n g s

k i n e t i c ) dual regime, the s t a r t i n g thermo-

dynamic c o n d i t i o n s a t l e a s t can be used to i n i t i a t e c a l c u l a t i o n s i n v o l v e d i n p r e d i c t i n g the equilibrium" conditions.

On

et a l .

t h a t during

have r e p o r t e d

the other

metal drops l e a v i n g the e l e c t r o d e

"dynamic hand, Cooper

AC-melting;

i n terms of s u l f u r ,

reach chemical e q u i l i b i r u m with the s l a g and extent

that

of the r e a c t i o n s between l i q u i d pool and

They a l s o c l a i m t h a t the

r e a c t i o n s which o c c u r r e d

at t h i s

to minor temperature and

Hawkins e t al.(58)

who

differences

T h i s apparent

d i c t i o n i s c l a r i f i e d by M i t c h e l l

( 2 7

'

3 0

'

4 1

?

contraand

have e s t a b l i s h e d that although

an a c t u a l thermodynamic e q u i l i b r i u m may

not be

attained

i n i n d u s t r i a l ESR-operation; the k i n e t i c s of the c e s s , however, are so f a v o r a b l e brium i s reached. s l a g s and

only

( l a t t e r ) s i t e were

compositional

w i t h those of the e l e c t r o d e .

the

slag

were almost n e g l i g i b l e .

due

the

I t has

pro-

t h a t a s t a t e c l o s e to e q u i l i -

a l s o been found t h a t low. v i s c o s i t y

h i g h l y e f f e c t i v e r e a c t i n g area enable

the

r e a c t i o n s to reach

such a s t a t e of n e a r - e q u i l i b r i a

6378) .

Several studies

shown t h a t

on C a F ~ A l 0 2

2

although t h i s s l a g system has

concentrations

of A l , S i and Mn

tendency to achieve

3

'

s l a g s have

high

viscosity

i n ESR-ingots have the

(

6 3 ,

'

6 9

7 0

^

have a l s o found

t h a t r e g a r d l e s s of the number of e l e c t r o c h e m i c a l k i n e t i c parameters of the ESR-process, a simple chemical

has

or thermo-

( e q u i l i b r i u m ) approach i s s u f f i c i e n t to p r e (71)

d i e t the f i n a l i n g o t composition. s t u d i e d the S i - S i 0 t h a t i f there

2

Mitchell

r e a c t i o n , has

i s a constant

the s l a g i n which y°

i s high

a l s o sug-

i r o n oxide

source i n

then i t i s f e a s i b l e

t h a t the e f f e c t i v e oxygen p o t e n t i a l w i l l be t h a t of Fe-FeO e q u i l i b r i u m . which supports the and

53

the t h e o r e t i c a l e q u i l i b r i u m .

Other r e s e a r c h e r s

gested

'

(168)

'

who

(49

Petersen's

Perhaps (ESR)

(72, 73)_

the most t y p i c a l work

e q u i l i b r i u m theory I n

the

^h^g

W O

rk

i s Holzgruber

i t has been es-

t a b l i s h e d t h a t s u l f u r removal i s e n t i r e l y dependent upon the s l a g chemistry.

Other s t u d i e s along

of the p r e v i o u s work

a l s o c a r r i e d out by Miska e t

was

the

lines

(38) al.



.

These r e s e a r c h e r s

Holzgruber e t a l . ' s p r o p o s a l . obtained

by r e m e l t i n g

deoxidizer who

have a l s o agreed with Miska e t a l . ' s f i n d i n g s

low a l l o y s t e e l u s i n g A l as a

were not i d e n t i c a l to Holzgruber e t a l . ' s

used d i f f e r e n t e l e c t r o d e chemistry

practices.

and

Si-deoxidation

They have a t t r i b u t e d these d i f f e r e n c e s to

the d e o x i d a t i o n

p r a c t i c e and a l s o t o the presence of

Mn and A l i n the e l e c t r o d e . been s t u d i e d under s e v e r a l

The S i - S i C ^ r e a c t i o n has (ESR) s l a g systems.

g r u b e r ^ ^ , Holzgruber and P l o c k i n g e r 7 5

Holz-

^ *^ and Miska 7

(38) and

Wahlster

furnaces

have found t h a t i n i n d u s t r i a l

ESR-

t h i s r e a c t i o n reaches a s t a t e of e q u i l i b r i u m .

(75) influence of several a l l o y s and the i n f l u e n c e (38) of the A1 C>2 i n the s l a g i s a l s o shown. Kusamichi (77) The

2

et a l . ' s f i n d i n g s

i n agreement with p r e v i o u s work,

have a l s o shown t h a t the S i - S i C ^ behavior i s l i n e a r l y r e l a t e d t o the b a s i c i t y index of the s l a g . there

Although

are i n d i c a t i o n s of the v a l i d a t i o n of the thermo-

chemical e q u i l i b r i u m achieved d u r i n g should be p o i n t e d

refining i t

out t h a t t h i s e q u i l i b r i u m i s very

temperature-dependent^ ^. 48

Retelsdorf

and Winterhager

^ ^ 9

f

Boucher

and

(79) Jager and Kuhnelt

have s t u d i e d the A l - A ^ O ^ r e -

a c t i o n and conclude t h a t the A l and the oxygen content from ESR-ingots indeed f o l l o w the t h e o r e t i c a l (thermodynamic)

equilibrium.

(46 47 49-51) Abundant i n f o r m a t i o n ' ' ' exists i n the l i t e r a t u r e which e s t a b l i s h e s the v a l i d i t y of the v

(83) equilibirum-reaction

theory.

Rehak e t a l . ' s s t u d i e s

on the A l and S i d i s t r i b u t i o n i n ESR-ingots

a l s o favour

the thermodynamic approach of the ESR-reaction system.

They c l a i m t h a t r e a c t i o n s i n v o l v i n g these s p e c i e s are r u l e d by the e l e c t r o d e composition and by the i n d i v i d u a l a c t i v i t y of the components of the s l a g . (76) Holzgruber and P l o c k i n g e r ' s

work

and Choudhury

(44) et a l . ' s

are a l s o i n agreement with Holzgruber and (72

Petersen's

73) '

.

T h e i r thermodynamic approach on

s l a g chemistry as a f u n c t i o n of the a c i d i t y - b a s i c i t y concept and A l d e o x i d a t i o n

techniques

in industrial

p r a c t i c e , c l e a r l y r e v e a l t h a t indeed e q u i l i b r i u m i s reached. Kamardin e t a l . low

who have r e f i n e d 0.38 wt. % carbon

a l l o y Cr-Mo s t e e l s d e o x i d i z e d

with aluminum

have

concluded t h a t d e s p i t e t h e i r approximate method t o c a l c u l a t e the a c t i v i t y of the s l a g components

(by means o f

t e r n a r y diagrams o f the CaD-A^O^-SiG^-system) , the pred i c t i o n o f the A l and S i - c o n c e n t r a t i o n s

i n r e f i n e d ingots

can be estimated u s i n g a thermodynamic treatment. The p r e v i o u s phasized gory

d e s c r i p t i o n has e s s e n t i a l l y been

on r e a c t i o n o f the type

which i n v o l v e s r e a c t i n g

has a l s o been e x t e n s i v e l y of t h e i r study

( 1 1 ) . The other

s p e c i e s between two

studied.

i s t h a t they l a r g e l y

a l t e r the c h e m i s t r y o f

em-

liquids

The importance c o n t r i b u t e to

i n d u s t r i a l ESR - i n g o t s .

m o d i f i c a t i o n of the i n g o t chemistry

cate-

The

( " l o n g i t u d i n a l seg-

27 r e g a t i o n " ) becomes more c r i t i c a l where h i g h a c t i v i t y r e a c t i v e elements i s p r e s e n t . r o l e p l a y e d by

the T i

Because of the

in either superalloys

s t a b i l i z e d s t a i n l e s s s t e e l s , a considerable

of

important or T i -

e f f o r t has

been devoted to understand the mechanism by which a homogeneous l o n g i t u d i n a l T i - d i s t r i b u t i o n i s reached in refined ingots.

Although there are evidences i n

1-4. a. literature

71,

t h e r e are

(37, • few

74)

. . . . ,. ^ , which i n d i c a t e the mechanism,

s t u d i e s which c l e a r l y r e v e a l

(46 studies

48, •

it.

Pateisky's

47) '

have shown t h a t the r e a c t i o n

(12-vi)

indeed a t t a i n s e q u i l i b r i u m .

It i s also indicated

this equilibrium

a f f e c t e d by

i s strongly

Krucinski's

ment w i t h P a t e i s k y ' s

have a l s o i n d i c a t e d t h a t

brium.

studies

also pointed

out

that Ti-oxides

i s the r e a c t i o n

have remelted ingots

tility

the

(11-vi and

11-vii)

studied

A l l i b e r t et a l .

under S i C ^ - s l a g s

'

'

'

of lower v o l a -

have shown t h a t t h i s r e a c t i o n does f o l l o w i t s

stoichiometric slope

has

from the i n d u s t r i a l (47 49 55)

been e x t e n s i v e l y

(12-viii).

equili-

of lower valency i n

Another i n t e r e s t i n g r e a c t i o n viewpoint which has

the

Krucinski

s l a g s h o u l d be c o n s i d e r e d , i . e . r e a c t i o n s

who

i n agree-

(12-vi) a c t u a l l y reaches a s t a t e of In a d d i t i o n to the above f a c t s

that

the thermal (52)

reaction conditions.

reaction

the

i s 0.781

ratio.

The

[Al] vs

[Si] p l o t whose

indeed c o r r o b o r a t e s t h i s f a c t and

also

i n d i c a t e s the r e v e r s i b i l i t y which i s reached as a manif e s t a t i o n of a s t a t e o f e q u i l i b r i u m .

Kay's

studies^

suggest t h a t t h i s r e a c t i o n i s not i n f l u e n c e d by the oxygen p o t e n t i a l .

This conclusion

i s a l s o supported

by O p r a v i l (81) . Choudhury e t a l . (78) who have r e f i n e d ingots

(2300 mm

i n diameter) u s i n g 2.5 Hz AC. ESR

s t u d i e d the r e a c t i o n

(12-ix).

ment with Holzgruber s

Their r e s u l t s

have

i n agree-

and Holzgruber and P l o c k i n g e r s

1

1

^

c l e a r l y show t h a t the s l a g b a s i c i t y p l a y s a s i g n i f i c a n t r o l e i n the Si-Mn d i s t r i b u t i o n i n ESR-ingots.

Choudhury s 1

r e s u l t s a l s o show t h a t the type of c u r r e n t does not i n f l u e n c e the i n g o t c h e m i s t r y .

I t i s a l s o p o i n t e d out

t h a t Mn l o s s e s take p l a c e o n l y when the CaOtSiC^ r a t i o i n the s l a g i s l e s s than 3.

They a l s o c l a i m t h a t

the continuous A l - a d d i t i o n d u r i n g r e f i n i n g and

Mn are unavoidable.

The s t o i c h i o m e t r y

despite

the l o s s of S i of t h i s r e a c t i o n

was not i n v e s t i g a t e d . (37) Buzek and Hlineny recovery

rates

concerned w i t h the low Mn-

(50-58%) have used i s o t o p i c oxygen

18 {O

} above the s l a g t o determine the r e a c t i o n mechanism.

T h e i r f i n d i n g s * i n d i c a t e t h a t by A l - d e o x i d a t i o n proved Mn-recovery i s a t t a i n e d .

Although they have not s p e c i -

f i c a l l y e s t a b l i s h e d i t s thermodynamic behavior i n d i c a t e i t s high e f f e c t i v e n e s s . reduction-oxidation

im-

they d i d

They c l a i m t h a t the

mechanism i s r u l e d by the r e a c t i o n

(12-x). Regarding the has

s o - c a l l e d deoxidation

suggested the use

of extreme care i n any

s i n c e s e v e r a l r e a c t i o n s may has

been p o i n t e d

instances action

out t h a t r e a c t i o n

( 1 2 - i i ) may

has

a well-defined

(8).

^

approach

operate s i m u l t a n e o u s l y .

be c o n t r o l l e d by r e a c t i o n

(12-i)

r e a c t i o n s , Kay

It

i n some

Since the

re-

e q u i l i b r i u m constant

of a v a l u e c l o s e to u n i t y i n the range of ESR-temperatures, Fraser

has

date i t s mechanism.

d e l i b e r a t e l y s e l e c t e d i t to

He has

may

proceed to the

and

subsequently r e v e r s e

the s l a g - i n g o t

quently

noted t h a t t h i s r e a c t i o n

l e f t a t the e l e c t r o d e - s l a g

This proposal

steady s t a t e c o n d i t i o n s

d i f f e r e n c e between the two Mitchell the type

( 3 0 )

has

extended t h i s p r o p o s a l

are an

h

the A l d i s t r i b u t i o n s by

fre-

the

thermal

to r e a c t i o n s

of

i n d i c a t i o n of the

"deoxidation

a

v

e

studied

the S i , T i ,

r e f i n i n g i n g o t s under

have found a " s a t i s f a c t o r y " stab-

of these elements.

a t t a i n e d during on

which are

the

(12-vi).

s e v e r a l s l a g systems ility

l e d to

major e l e c t r o a c t i v e s i t e s .

K r i c h e v e c e t a l . (^O) and

has

observed i n r e a c t i o n s of t h i s type are a con-

sequence of a dynamic balance c r e a t e d by

Mn

interface

a t the h i g h e r temperature of

interface.

b e l i e f t h a t the

eluci-

They c l a i m t h a t these f i n d i n g s "practical" equilibrium

refining. reactions"

conditions

T h e i r s t u d i e s were performed (12-iv).

30

As d e s c r i b e d i n p r e v i o u s s e c t i o n s

the formation of

i r o n oxide d u r i n g r e f i n i n g i s almost unavoidable, e i t h e r as a r e s u l t of e l e c t r o c h e m i c a l r e a c t i o n s or as a r e s u l t of the r e a c t i o n s between the s l a g and the atmosphere d u r i n g r e f i n i n g . • These sources o f i r o n o x i d e i n c o n j u n c t i o n with the oxide on the e l e c t r o d e s u r f a c e b e f o r e and d u r i n g r e f i n i n g ,

formed

i n the presence of the oxide

components of the s l a g generate a l i q u i d with e x t e n s i v e (1 immiscibility

38 '

.

t o u n i t y a t very low

"FeO"

binary

(CaF ~FeO) ^ , 2

Al 0 ~FeO) ^ 2

'

82) Hence, the

F

e

0

concentrations.

rapidly

S t u d i e s on

t e r n a r y (CaF -CaO-FeO) ^ *,

and i n quaternary

3

rises

a

1

2

(CaF ~ 2

(CaF -Al 0 -CaO-Al 0 -FeO) ^ 2

2

3

2

3

systems have shown t h i s b e h a v i o r . A CaF

2

s l a g can permit very l i t t l e oxygen b e f o r e i t

becomes o x i d i z i n g with r e s p e c t to i r o n .

Consequently,

any

element which forms an o x i d e more s t a b l e would then be o x i d i z e d from the metal i n t o the s l a g . more c r i t i c a l where r e a c t i v e metals T i are p r e s e n t .

T h i s f a c t becomes

such as A l , S i , Zr, and

S e v e r a l techniques have been proposed such a problem:

1) A complete

to overcome

removal of s c a l e on the

e l e c t r o d e s u r f a c e and the use of an i n e r t atmosphere (74) (He or N ) , 2) p a i n t i n g the e l e c t r o d e s u r f a c e a f t e r s c a l e i s removed w i t h an A l or a magnesia-alumina s p i n e l (38) p a i n t to prevent o x i d a t i o n of the e l e c t r o d e , 3) en2

r i c h i n g electrodes i n oxidable Zr, A l , S i , e t c . , oxide

(FeAl or FeSi) ^ ^ 84

(CaF -Ca>

( 8 5

2

(83)

such as

4) continuous a d d i t i o n s of a)

formers as elements

alloys

elements

strong

( A l , S i , T i , Zr, e t c . ) , and

b) f e r r o

c) s l a g - d e o x i d i z e r composites

' >. 8 6

(34)

Holzgruber

suggests t h a t

use of a p r o t e c t i v e atmosphere d a t i o n i s achieved

i n a d d i t i o n to

a more e f f i c i e n t

i f a deoxidizer

the

deoxi-

( A l , S i or T i ) i s added

i n a s l a g system which does not c o n t a i n i t s oxide. Other . (39 , 46, 55, 60) . _ ^ researchers ' ' ' have proposed t h a t i f an element i s prone to o x i d a t i o n

l i k e T i , S i , Zr,

during

ESR-process then a d d i t i o n s of i t s r e s p e c t i v e oxide vents i t s l o s s e s .

Kay's

^

f i n d i n g s i n d i c a t e t h a t by

f i n i n g a l l o y s which c o n t a i n A l , T i and oxide

slags

Zr i n f r e e - t i t a n i u m

As the amount of Ti02 i n the s l a g i n c r e a s e s

the d e o x i d a t i o n

i s only c a r r i e d out by A l and

and

a l s o found t h a t by adding 15%

Zr.

The

the Si-decrement i n the i n g o t are con-

t r o l l e d by the exchange r e a c t i o n

containing

re-

the three elements i n the e l e c t r o d e a c t as

deoxidizers.

Al-increment

pre-

Ti0

2

(12-viii).

0.5% Zr.0

2

Kay

to the s l a g

has initially

i s s u f f i c i e n t to p r o t e c t the Zr

con-

(79)

t e n t of the r e f i n e d a l l o y .

Jager e t a l .

t h a t the e f f e c t of the A l - c o n t e n t

from the e l e c t r o d e or

a d e o x i d i z e r i s very dependent upon the s l a g The

net content

of A l t r a n s p o r t e d

have shown as

chemistry.

i n t o the i n g o t i s almost

constant f o r a given A^O^-content the s l a g

(up to 24 wt. %) i n

and a l s o f o r a g i v e n CaO: S i 0

ratio

2

(up t o 2 ) .

If these two parameters a r e i n c r e a s e d the n e t A l - c o n t e n t of the ESR-ingot

increases d r a s t i c a l l y

hence l e a d i n g t o (78)

d e l e t e r i o u s mechanical (79) and Jager e t a l . proved

properties.

Chouldhury e t a l .

have claimed t h a t by u s i n g an "im-

technique" a maximum A l content of 0.01 wt %

can be a t t a i n e d i n i n d u s t r i a l

125 tonnes

ESR-ingots.

In these two communications the d e o x i d a t i o n r a t e s , how(55) ever, a r e not g i v e n .

Kajioka e t a l .

have s t u d i e d the

e f f e c t o f A l - d e o x i d a t i o n under s e v e r a l s l a g systems, namely CaF ~CaO, C a F - A l 0 2

2

2

and C a F - A l 0 - C a O - S i 0 . They have

3

2

2

3

2

found

t h a t d e o x i d a t i o n r a t e s between 0.05 t o 0.1 wt. % A l produce the b e s t " r e s u l t s " , i n the i n g o t .

i . e . an almost

steady

Al-distribution (34)

On the other hand, Holzgruber

proposes

a d e o x i d a t i o n r a t e o f 6.2 wt. % A l . 2.2.3

Thermodynamic Approach o f the ESR-Slag Systems Another important

area o f the ESR-slag

thermo chemical approach. important,

In t h i s f i e l d

system i s i t s

although

very

very l i t t l e i n f o r m a t i o n has been r e p o r t e d .

(45) Mitchell A1 0 2

has found t h a t i n the common system CaO +

+ Si0

3

2

+ CaF

2

there a r e only three f l u o r i d e - c o n t a i n i n g

compounds other than the i n d i v i d u a l f l u o r i d e s , i . e . C

11 7 ' 3 3 A

F

C

A

F

a

n

d

C

9 3 ' S

F

w

n

e

r

e

c

' ' A

F

a

n

d

s

stand f o r

33 CaO, has

A 1 0 , CaF 2

3

2

and

Si0

respectively.

2

This

been taken as an i n d i c a t i o n t h a t the C a F

s i d e r e d as an

observation may

2

be

con-

i n e r t d i l u e n t i n h i g h l y b a s i c areas of

these systems, s i n c e the acid-base i n t e r a c t i o n s i n v o l v i n g 20 would be 54) who 30 wt.

stronger

than those f o r F .

(53 A l l i b e r t et a l . '

have remelted a l l o y s through 70 wt. %

% A1 0 2

3

with 0,

2,

5,

10,

and

15 wt.

C a F

% Si0

p e c t i v e l y , have a p p l i e d M i t c h e l l ' s c r i t e r i a .

2

res-

2

Their

f i n d i n g s show t h a t the acid-base i n t e r a c t i o n s i n the ernary

CaO

+ A l ^ O ^ + Si0

2

+ CaF

same as those i n the t e r n a r y

are approximately

2

CaO

+ A^O^

'

+ SiC^

s

Y

quatthe

s t e m

f

d i l u t e d i n the C a F . There are o t h e r i n d i c a t i o n s i n the 1 -4. t.. *_ , ^ • , (38, 58, 88 , 89) l i t e r a t u r e which a l s o support t h i s theory (14 53 54) 2

A l l i b e r t et a l .

'

'

a l s o suggest an a l t e r n a t e method

f o r r e a c t i o n s r e l a t e d p r i m a r i l y to b a s i c i t y , i . e . the C a O / S i 0 r a t i o concept which i s s t r o n g l y supported i n the (34, 49-51, 72-76) . , . , . (38) German l i t e r a t u r e ' ' . Miska and Whalster 2

M

who

have s t u d i e d

the C a F - C a O - A l 0 - S i 0 - F e O system 2

2

3

found t h a t i f the A l 0 : C a O r a t i o i s g r e a t e r 2

the C a F

2

than

3

a t ESR-temperatures remains i n e r t and

composition behaves as i t were i n the C a O - A l 0 2

Chai's and fluxes

Eagar's s t u d i e s o n

have

2

3.0,

the

slag

binary.

3

CaF ~metal oxide welding 2

have concluded t h a t the o x i d i z i n g p o t e n t i a l of

these types of s l a g s i s reduced o n l y by these s p e c i e s

i n the C a F

2 <

The

the d i l u t i o n

a d d i t i o n of C a F

2

of

i n these

34

s l a g systems has i d e s and

almost no e f f e c t on the more s t a b l e

hence the C a F

2

was

v i r t u a l l y considered

ox-

as a

diluent. 2.2.4

O v e r a l l View on the M o d e l l i n g

of ESR-Reactions

(57) A r e c e n t work

has

c l e a r l y revealed

understanding of the E S R - r e a c t i o n system.

the

I t has

i n d i c a t e d above t h a t there are e s s e n t i a l l y two proach the r e a c t i o n p a t t e r n . r e a c t o r and

the

These are the

current been

ways to

equilibrium

" s i n g l e - s t a g e r e a c t o r " concepts.

e q u i l i b r i u m - r e a c t o r method i s by

f a r a simpler

The

approach.

I t i s supported by the i d e a t h a t an a c t u a l s t a t e of brium i s reached d u r i n g r e f i n i n g ,

as p r e v i o u s l y

equili-

indi-

cated.

I t s p r i n c i p l e i s to

a

s l a g w i t h an e l e c t r o d e of a given composition

(ESR)

ap-

(thermodynamically) e q u i l i b r a t e This

technique i n t r i n s i c a l l y assumes a unique e q u i l i b r i u m tempe r a t u r e and ume.

a mass t r a n s f e r flow through a f i x e d s l a g v o l -

These two

major assumptions

as a l r e a d y

indicated,

are not n e c e s s a r i l y t r u e . The t a c t and pointed

second approach c o n s i d e r s

a t r a n s i t i o n a l phase con-

a "lumped m a s s - t r a n s f e r c o e f f i c i e n t . "

I t has

out t h a t although t h i s model resembles the

e q u i l i b r i u m nature of the process

non-

i t r e l i e s on a mass-

t r a n s f e r c o e f f i c i e n t which does not have a t h e o r e t i c a l background i n i t s computation.

Another disadvantage of

been

t h i s technique i s t h a t r e a c t i o n s o f the type

i t i s not able to account f o r (12). M i t c h e l l has a l s o p o i n t e d out 2+

t h a t both techniques r e l y on the Fe i n p u t datum.

c o n c e n t r a t i o n s as an

T h i s parameter, however, i s unknown and has

to be determined e x p e r i m e n t a l l y . As d e s c r i b e d here, these two concepts have both advantages

and disadvantages.

N e v e r t h e l e s s , i t can be un-

m i s t a k e a b l y seen t h a t the main o b j e c t i v e of these two a l t e r n a t i v e s i s to p r e d i c t and c o n t r o l the i n g o t chemical homogeneity .

36 2.3

P r e c i p i t a t i o n of

2.3.1

General

Inclusions

Since endogeneous i n c l u s i o n s are no longer as f o r e i g n p a r t i c l e s

but

" n a t u r a l " components of

today's technology demands from m e t a l l u r g i s t s

considered steel,

skillful

c o n t r o l of them to y i e l d products which c o u l d f u l l y i s f y the r e q u i r e d s t r i n g e n t standards.

sat-

A v a s t amount of

(90-98) r e s e a r c h has been devoted d e o x i d i z e r s and

to study the e f f e c t s of

deoxidation

techniques

i s known t h a t s i n c e elemental liquid iron at

(0.168 and

0.20

o r d i n a r y steelmaking

i n the p a s t .

oxygen i s h i g h l y s o l u b l e i n

wt.

% a t the monotectic

d e o x i d i z e r can be s e l e c t e d to maintain

oxygen content

to a g i v e n l e v e l .

with is has

The

first

s u l f u r i n the melt.

i n p a r t i c u l a r cases The

capability

simultaneously

second important requirement

i t s a b i l i t y to be removed from the melt once o x i d a t i o n taken p l a c e . „

. ..

..

. ,.

(99-106) .

S o l i d i f i c a t i o n - p r e c i p i t a t i o n studies shown t h a t the

tinuous

have

i n c l u s i o n p r e c i p i t a t i o n sequence, as a

measure of the degree of d e o x i d a t i o n

and

the

requirement

d e o x i d i z e r i s o b v i o u s l y a high

to r e a c t with oxygen and

and

temperatures r e s p e c t i v e l y ) , then

an a p p r o p r i a t e

expected from any

It

processes.

i s a s e r i e s of con-

These comprise the n u c l e a t i o n , growth

e l i m i n a t i o n of the d e o x i d a t i o n

products.

The

nucle-

a t i o n phenomena can be homogeneous or heterogeneous

and

i t can take p l a c e i n the l i q u i d stage or during fication.

To homogeneously n u c l e a t e a phase

sary t o o r i g i n a t e

solidi-

i t i s neces-

a s u p e r s a t u r a t i o n and i t can be reached

by u n d e r c o o l i n g o f the s p e c i e s i n s o l u t i o n ,

by a d d i t i o n s (9

of e i t h e r a d e o x i d i z e r or oxygen and during

solidification

If there a r e some s o l i d p a r t i c l e s i n a melt where deoxida t i o n products ation

can d i f f u s e t o

(precipitation) At steelmaking

then a heterogeneous n u c l e -

occurs.

temperature some oxides, o x i s u l f i d e s and

s u l f i d e s a r e g e n e r a l l y found

i n s o l u t i o n with l i q u i d

Once s o l i d i f i c a t i o n s t a r t s , s e g r e g a t i o n

(due to incomplete

d i f f u s i o n i n the s o l i d ) i n the i n t e r d e n d r i t i c As soon as t h i s i n t e r d e n d r i t i c cipitation clusions

liquid

l i q u i d i s saturated

takes p l a c e .

c o n t i n u e s u n t i l the s o l i d u s

i s reached. further

of i n c l u s i o n s

steel.

occurs. pre-

P r e c i p i t a t i o n of i n temperature o f the melt

Under p a r t i c u l a r circumstances

as w i l l be

d e s c r i b e d , p r e c i p i t a t i o n takes p l a c e a t even lower

temperature ranges.

I n c l u s i o n s i z e , shape, q u a n t i t y and

d i s t r i b u t i o n i s p r i n c i p a l l y given by the s o l i d i f i c a t i o n r a t e and by the s o l u b i l i t y i n the l i q u i d s t e e l

.

of certain

chemical

species

Maximum s o l u b i l i t y o f these

s p e c i e s i n f l u e n c e s the p r e c i p i t a t i o n sequence d u r i n g dification. solubility

soli-

As an a p r i o r i r u l e , f o r s p e c i e s which have low i n liquid steel

precipitation

c i p i e n t s o l i d i f i c a t i o n i s observed.

s t a r t s when i n -

These types o f i n -

38 e l u s i o n s w i l l have longer time f o r growth. O x i - s u l f i d e s and

s u l f i d e s which are p r e c i p i t a t e d as

a r e s u l t of monotectic r e a c t i o n s are i n c l u d e d i n t h i s

cate-

gory.

high

On the other hand, i f s o l u b i l i t y i s r e l a t i v e l y

p r e c i p i t a t i o n takes p l a c e at the l a s t stage of c a t i o n and

hence these phases are c o n f i n e d to

solidifilocalized

areas. While i n the f i r s t case i n c l u s i o n s are g l o b u l a r , large ond

and

group

have l a r g e i n t e r p a r t i c l e d i s t a n c e s , i n the i n c l u s i o n s are very

around g r a i n s or d e n d r i t e s .

small and u s u a l l y l o c a t e d

S i n g l e phase or composite

f i l m s around d e n d r i t e s are a l s o i n c l u d e d i n t h i s kind.

The

second

s o l u b i l i t y of some s p e c i e s i n l i q u i d s t e e l

a l t e r the s u l f i d e chemistry

sec-

and

, . (90,106,107) sequence and s i z e '

can

hence i t s p r e c i p i t a t i o n

2.3.2

Nucleation

2.3.2.1

Homogeneous N u c l e a t i o n

According

and Growth of I n c l u s i o n s

to the homogeneous n u c l e a t i o n theory

posed by Volmer and Weber-Becker the f o r m a t i o n

and

pro-

Doring^®^'^

o f a new phase from a l i q u i d phase

occurs

o n l y i f s u p e r s a t u r a t i o n e x i s t s i n the parent phase. , , (99,101,110,111) e r a l researchers ' • the i n t e r f a c i a l saturation Popel^

1 1

^

interfacial

tension

(a)

Sev-

. i T x. have r e v e a l e d t h a t

and the degree of super-

(C:C») of a melt i n f l u e n c e the n u c l e a t i o n r a t e . has c a l c u l a t e d the r a t e s o f n u c l e a t i o n f o r t e n s i o n s ranging

from 180 to 100 ergs/cm

and s u p e r s a t u r a t i o n r a t i o s from 1 t o 10.

2

His s t u d i e s

show t h a t f o r systems (FeO-MnO) where the a = 180 ergs/cm , 2

28 he obtained

a n u c l e a t i o n r a t e of about 10

a t i o n r a t i o s as low as .1.5.

a t super s a t u r -

With C:C°° r a t i o s o f about 10, 35

the n u c l e a t i o n r a t e s were i n c r e a s e d to 10

.

On the other

hand i n systems (FeO-MnO-Si0 ) where the i n t e r f a c i a l 2

t e n s i o n i s about 700 ergs/cm

2

i n c l u s i o n s i s extremely small

the n u c l e a t i o n r a t e o f -79 (10 ) for supersaturation

40

r a t i o s of l e s s than 3.

I t becomes a p p r e c i a b l e , however,

a t C:C°° r a t i o s of about 10. about 1000

ergs/cm

2

For i n t e r f a c i a l

t e n s i o n s of

as i n the CaO-A^O^-SiC^ system,

homogeneous n u c l e a t i o n of i n c l u s i o n s becomes very cult.

diffi-

These c o n c l u s i o n s are s i g n i f i c a n t f o r d e o x i d a t i o n

d u r i n g c o o l i n g and

solidification.

During

c o o l i n g of a

w e l l - d e o x i d i z e d melt which does not c o n t a i n any i n c l u s i o n s there i s a p o s s i b i l i t y interfacial

of formation of an oxide with

t e n s i o n , e.g.

T u r p i n and c l a s s i c a l theory

Elliot

FeO'A^O^ and

FeO-rich

lower

silicates.

u s i n g Volmer and Weber's ^^8)

obtained

an e x p r e s s i o n f o r c r i t i c a l

super-

s a t u r a t i o n i n terms of the f r e e energy f o r homogeneous n u c l e ation.

They have found t h a t h e r c y n i t e was

formed i n i r o n

melts where thermodynamically alumina should have p r e cipitated.

Thus, they

suggested t h a t s u p e r s a t u r a t i o n i s

r e q u i r e d t o produce homogeneously n u c l e a t e d Chipman ^

X 1 1

^

has

alumina phases.

suggested t h a t both A l ^ O ^ and

p r e c i p i t a t e simultaneously

FeO'A^O-j

may

i f there i s not complete mixing (112-113)

i n the melt.

McLean and Ward

have i n d i c a t e d t h a t

h e r c y n i t e may

a l s o p r e c i p i t a t e a f t e r an i n i t i a l alumina p r e -

41 c i p i t a t i o n when the metal i s d e p l e t e d brium i n t h i s case is between A^O^,

in A l .

The

FeO-A^O^

equili-

dissolved (99)

oxygen and

the l i q u i d i r o n .

shows t h a t i f the c r i t i c a l nucleate

A^O^

Turpin*s

and

E l l i o t ' s work

f r e e energy to homogeneously

were much g r e a t e r than t h a t f o r h e r c y n i t e ,

the p r e c i p i t a t i o n s of the l a t t e r phase becomes more f e a sible.

These r e s e a r c h e r s

concentrations

have a l s o concluded t h a t a t high

of d e o x i d i z e r or a l t e r n a t i v e l y of oxygen

r e l a t i v e to normal bath compositions i n e q u i l i b r i u m with pure oxide e f f e c t and

i s r e q u i r e d to overcome the s u r f a c e

tension

thus to p r e c i p i t a t e phases homogeneously.

They have a l s o p o i n t e d out t h a t the common method of adding the d e o x i d i z e r to a molten p o o l p r o v i d e s s a t u r a t i o n to form very c l u s i o n was

sufficient

small i n c l u s i o n s .

super-

T h i s con-

a l s o reached by Turkdogan ^^1)

showed

t h a t i f the deoxidant i s assumed to be evenly d i s t r i b u t e d i n the melt b e f o r e n u c l e a t i o n . then the s u p e r s a t u r a t i o n

at-

t a i n e d would be an order of magnitude l e s s than t h a t necessary f o r homogeneous n u c l e a t i o n .

He

therefore

postulated

t h a t the d i s s o l u t i o n of d e o x i d i z e r i n l i q u i d s t e e l

takes

a f i n i t e time d u r i n g which c e r t a i n r e g i o n s of the melt are expected

to be very r i c h i n s o l u t e c o n c e n t r a t i o n .

these r e g i o n s

l i q u i d metal a t t a i n s s u f f i c i e n t l o c a l

super-

s a t u r a t i o n f o r homogeneous n u c l e a t i o n . I n v e s t i g a t i o n s c a r r i e d out by Von

Bogdandy^ ^' on 114

In

n u c l e a t i o n of aluminum c o n t a i n i n g phases showed t h a t when the deoxidant i s c a r e f u l l y i n t r o d u c e d

i n t o the melt

the

i n c l u s i o n s form i n a l a y e r at a d e f i n i t e time and l o c a t i o n . They have p o s t u l a t e d t h a t very h i g h s u p e r - s a t u r a t i o n

ratios

14 (10 ) are r e q u i r e d f o r homogeneous n u c l e a t i o n of these oxides. These values are s e v e r a l o r d e r s of magnitude (99) higher

2.3.2.2

than those obtained

Heterogeneous

In a c t u a l p r a c t i c e

by

Turpin

Nucleation l a r g e degrees o f

supersaturation

are not r e q u i r e d i f the p r e c i p i t a t i o n of i n c l u s i o n s take

, . , s u r .f a c e s (115)

-i

p l a c e on s o l i d

From the above d i s c u s s i o n i t i s e v i d e n t t h a t

nucle-

a t i o n of i n c l u s i o n s i n s t e e l i s not the r a t e c o n t r o l l i n g step because high s u p e r s a t u r a t i o n

i s reached near

r e g i o n s where the d e o x i d i z e r s are t r a n s p o r t e d l i q u i d pool.

These n u c l e i are u n i f o r m l y

to s t i r r i n g of the melt f u r t h e r oxides

the

i n t o the

d i s t r i b u t e d due

(during r e f i n i n g ) and p r e c i p i t a t e

as c o o l i n g and

solidification

takes p l a c e .

However, the presence of p r e - e x i s t i n g i n c l u s i o n s from electrodes

( i f any), make heterogeneous n u c l e a t i o n more

f a v o r a b l e where r e f i n i n g c o n d i t i o n s are not optimum.

2.3.3

Growth of

Inclusions

By u s i n g Shewman's f o r m u l a t i o n ^ among the phenomena which c o n t r i b u t e clusions gots gen

from n u c l e i

(2-4 and

ym),

the

(0.1

ym)

can

see

to s i z e s found i n ESR

p r e c i p i t a t i o n on

i s the mechanism which i n the

the

nuclei

l e a s t amount of time

process.

The

in(oxy-

generate i n c l u s i o n s i z e s i n the range

a r i l y found i n the ESR

that

to growth of i n -

growth by d i f f u s i o n of s o l u t e s

d e o x i d i z e r s ) and

sees.) c o u l d

one

(^

1-2

ordin-

above c a l c u l a t i o n s 7

are very dependent on cm ). 5 - 3

(10

Turkdogan

) at the

the number of n u c l e i p r e s e n t u s e (

j

a

d i f f e r e n t number of

s t a r t i n g conditions

and

hence h i s

showed t h a t a d i f f e r e n t maximum r a d i u s (23

ym)

was

(6 sees ).

of

nuclei

calculations

inclusions

reached i n a s l i g h t l y h i g h e r p e r i o d The

(10

of

time

above i n f o r m a t i o n p l u s some o t h e r t h e o r (117)

e t i c a l c a l c u l a t i o n s performed by

Lindberg and

i n a s i m i l a r a p p l i c a t i o n of Wert's and

Torsell

Zener s model^ 1

1 1 8

^

c l e a r l y i n d i c a t e t h a t t h i s growth mechanism i s a very f a s t process. Experimental work performed by s e v e r a l r e (107 117 119 120) searchers ' ' ' agree w i t h p r e v i o u s c a l c u l a t i o n s . During c o o l i n g

and

solidification

the growth of

inclusions

becomes more s i g n i f i c a n t as p r e c i p i t a t i o n c o n t i n u e s on existing particles.

Iyengar^ ^ 1 2

has

pre-

formulated a model

44 to p r e d i c t the growth under the above c o n d i t i o n s .

His r e -

s u l t s have shown t h a t the time f o r completion of growth i s dependent on the i n i t i a l

s i z e of i n c l u s i o n s .

almost n e g l i g i b l e .

Thus, these

are c l e a r l y i d e n t i f i e d w i t h r e s u l t s found 27

de-

6 7 With 10 -10 nuclei/cm

creases with i n c r e a s e i n r a d i u s . the growth was

T h i s time

in

3

results E S R ' " ' '

2

1

'

30) '

l i q u i d p o o l s and

i n g o t s , i . e . growth i s almost

en-

t i r e l y achieved by d i f f u s i o n of s o l u t e s . (117 The

second phenomenon which has been observed

'

120-122) to l a r g e l y c o n t r i b u t e t o the growth of

inclusions

i n c o n v e n t i o n a l m e l t i n g p r a c t i c e s i s the c o l l i s i o n a l e s c e n c e mechanism.

T h i s mechanism i s s t r i c t l y

t o the motion o f oxide i n c l u s i o n s i n l i q u i d

co-

related

steel.

For a g i v e n s i z e d i s t r i b u t i o n of i n c l u s i o n s i n a melt there i s a d i s t r i b u t i o n of r i s i n g v e l o c i t i e s '

2 1

^.

The

l a r g e r i n c l u s i o n s w i l l l e v i t a t e more r a p i d l y than the s m a l l e r , ,,. . (117,122) ones and as a r e s u l t c o l l i s i o n may occur ' The c o a l e s c e n c e o f i n c l u s i o n s depends on

impact,

speed and angle, s u r f a c e p r o p e r t i e s such as s u r f a c e t e n s i o n , chemical composition l i q u i d or

and t h e i r p h y s i c a l s t a t e ( i . e .

solid).

I t has been observed

t h a t the motion of

inclusions

i n s t e e l f a l l s w i t h i n the v i s c o u s flow regime where the Reynolds number of the p a r t i c l e

i s l e s s than one.

This

45

includes

i n c l u s i o n s i z e s i n the 0-50 ym range.

condition, Stokes

1

Under t h i s

Law (13)

Ust = i s a p p l i c a b l e provided

the system i s c o n s i d e r e d

t o be d i -

l u t e and p a r t i c l e i n t e r a c t i o n can be n e g l e c t e d . a t i o n o f Stokes' L a w ^ tions:

126

^

depends upon the f o l l o w i n g

1) i n c o m p r e s s i b i l i t y o f the medium,

extent of the medium, velocity,

4) r i g i d i t y of i n c l u s i o n s ,

The parameter i n v o l v e d Ust = t e r m i n a l

condi-

2) i n f i n i t e

3) very small and c o n s t a n t

at the f l u i d - p a r t i c l e i n t e r f a c e and cles.

The d e r i v -

terminal

5) absence o f s l i p p i n g 6) s p h e r i c i t y o f p a r t i -

i n t h i s expression a r e :

v e l o c i t y according

t o Stokes' Law,

(cm/sec.) p

s

, p = density

pectively,

o f the p a r t i c l e and the medium r e s -

(g/cm ) 3

r - r a d i u s o f the sphere, (cm) y = v i s c o s i t y of the medium, The

above c o n d i t i o n s

in reality.

Corrections,

(g/cm. sec.)

are very d i f f i c u l t

however, can be a p p l i e d t o ac-

count f o r the d e v i a t i o n from i d e a l i t y . the a v a i l a b l e c o r r e c t i o n s . provided

to s a t i s f y

Table

(I) l i s t s

Stokes' Law i s a p p l i c a b l e ^

1 2 6

^

t h a t g r a v i t y i s the only e x t e r n a l f o r c e a c t i n g on

inclusions.

I f an i n c l u s i o n i s i n a melt

as i n the ESR

46

p r o c e s s , which i s i t s e l f spherical

i n motion, then the drag on a

p a r t i c l e i s g i v e n by: Dc = -6iryr (v-u)

where

v = velocity

(vector) of sphere

u = resulting velocity rounding

(14) due to g r a v i t y and

(vector) due t o movement o f the s u r -

fluid.

In order t o o b t a i n an e x p r e s s i o n f o r the v e l o c i t y of the i n c l u s i o n s i s necessary location

r e l a t i v e to a f i x e d c o o r d i n a t e system

t o know the r e s u l t i n g v e l o c i t y

it

(u) a t every

i n the melt.

Iyengar's

work' ^ 2 1

has c l e a r l y r e v e a l e d

through

e r a l mathematical approaches

t h a t growth of i n c l u s i o n s

any other mechanism i s almost

negligible.

sevby

47

2.3.4

Sulfides The

i d e a of "hot s h o r t n e s s " was

l a s t century.

conceived

i n the

T h i s t o p i c , however, r e c e i v e d more a t t e n t i o n (127

i n the e a r l y 30's

128) '

.

The

so c a l l e d

"steel

burning"

or "overheating phenomenon" has been s t u d i e d s i n c e then. Research through s u l f u r was

the years has l e d to the c o n c l u s i o n t h a t

l e s s d e t r i m e n t a l when manganese was

present.

Since then Mn has been used to modify the s u l f i d e phase. I f Mn

i s absent or p r e s e n t i n i n s u f f i c i e n t amounts

f o r m a t i o n o f FeS

i s almost

inevitable.

the

T h i s phase has

a

very low m e l t i n g p o i n t (1190° C) and when i t i s combined with i r o n or FeO phase

(940°C).

i t forms a lower m e l t i n g p o i n t e u t e c t i c T h i s e u t e c t i c p r e c i p i t a t e s between g r a i n s

(129-132) or d e n d r i t e s

. I f t h i s s t e e l i s to be heated

a u s t e n i t i c temperatures

f o r f u r t h e r mechanical

at

working

then g r a i n detachment o c c u r s ^ ^ " ^ ^ . T h i s problem (133) • (overheating") has been observed even i n ESR-materials.

Thus Mn

has the c a p a b i l i t y to modify the

phase from a l i q u i d temperatures the Mn:S

"FeS"

to a s o l i d

(1900- 1200°C) .

"MnS"

a t hot working

T h i s t r a n s i t i o n occurs where (92)

r a t i o i s h i g h e r than 4

s u l f i d e i n c l u s i o n s i n low carbon

.

The

i d e a l form f o r

s t e e l s i s to have a pure

MnS-phase which melts a t about 1610°C. k i n d s of MnS

sulfide

Three d i f f e r e n t (90 134) have been u s u a l l y r e p o r t e d ' , MnS I - I I I .

T h e i r s t a b i l i t y depends on the c o o l i n g r a t e and on chemistry of the melt (136-139) ^

T

^

e

t

r

a

n

s

-L i t

o

f

n

r

the o

m

type I to I I o c c u r s i f the oxygen content i n the s t e e l i s d i m i n i s h e d to l e s s than 100 ppm. II

The

t r a n s i t i o n of type

to I I I i s o b t a i n e d by the i n f l u e n c e of two

parameters,

a low oxygen content and a high a c t i v i t y of s u l f u r . has been r e p o r t e d t h a t the presence C a

(140

142)

p

r

o

m

0

4 -

and H i l l e r t ' ^ 3

tem

of C, S i , P, A l and

f o r m a t i o n of MnS

e

who

It

III.

Fredriksson

have s t u d i e d the Fe-O-S t e r n a r y s y s -

have claimed t h a t as a r e s u l t of a c o o p e r a t i v e -

eutectic reaction

where MnS

forms as a c r y s t a l l i n e phase

t o g e t h e r with the F e - r i c h phase, a MnS-type IV i s formed. The morphology o f these s u l f i d e s has g e n e r a l l y been desc r i b e d as g l o b u l a r , b r a n c h e d rod and i d i o m o r p h i c f o r type (93 I,

I I and I I I , r e s p e c t i v e l y

142) '

.

which they are formed i s as f o l l o w s . type I

The mechanism by Sulfide

inclusions

are u s u a l l y a s s o c i a t e d with o x i - s u l f i d e s

(eutectic

type) and are p r e c i p i t a t e d as a r e s u l t of a monotectic reaction. almost

Since p r e c i p i t a t i o n of s u l f i d e s takes p l a c e

s i m u l t a n e o u s l y with the deoxidaton process

an o x i d e ^ s u l f i d e and a s u l f i d e w i l l be formed.

(type I) e n r i c h e d phase

The phase which p r e c i p i t a t e s f i r s t i s (91 142)

r i c h e r i n oxygen than the second phase or

then

'

.

Rimmed

s e m i k i l l e d i n d u s t r i a l i n g o t s (with r e l a t i v e l y h i g h

oxygen content and low s u l f u r s o l u b i l i t y ) c o n t a i n t h i s

49 type of s u l f i d e .

Ingots which have been d e o x i d i z e d

the

t h e o r e t i c a l required

low

oxygen content and

deoxidation initially reaction ^

1 3

amount of aluminum w i l l have

high s u l f u r s o l u b i l i t y .

p r a c t i c e produces MnS

thought to be ^

.

II.

This

T h i s type

was

formed as a r e s u l t of a e u t e c t i c

More r e c e n t

ideas i n d i c a t e t h a t i t i s

o r i g i n a t e d by a c o o p e r a t i v e monotectic r e a c t i o n . also believed

with

It i s

that t h i s s u l f i d e p r e c i p i t a t e s at i n (91)

c i p i e n t s o l i d i f i c a t i o n stages. out

t h a t s i n c e alumina and

t o g e t h e r but

MnS

f o r the

frequently

to p r e c i p i t a t e MnS

These c o n d i t i o n s

observed

lower s u l f u r s o l u b i l i t y

are

I I I i n s t e e l s , than i n MnS

II.

are a t t a i n e d because of the excess of A l

This

s u l f i d e p r e c i p i t a t e s i n the e a r l y stages

of s o l i d i f i c a t i o n as a s i n g l e phase. that the

pointed

s u l f i d e (type I I ) .

Lower oxygen content and

in solution.

II are

has

as d i s t i n c t phases then the alumina phase

a c t s as a s u b s t r a t e

required

Kiessling

I t has

been o b s e r v e d ^

t h r e e types are p r e c i p i t a t e d i n between g r a i n s

or

dendrites. Recent c o m m u n i c a t i o n s ^ MnS

IV

'

1 4 3

^

which p r e s e n t s a "ribbon"

c a t i o n of e i t h e r I - I I I who

1 3 8

have s t u d i e d

( 1 3 9 )

or I I

the k i n e t i c s and

have suggested

pattern (

1

4

3

)

.

is a Ito et

that

modifial.

chemical i n f l u e n c e

(

1

3

9

of

melts on the MnS-shape

c l a i m t h a t type II r e s u l t s from

a e u t e c t i c r e a c t i o n and

type I and

III

(type N)

are

)

pre-

142

^

50 c i p i t a t e d from s o l i d s t e e l . given.

Steinmetz e t a l . d

4 3

A mechanism, however was not )

who have s t u d i e d the Fe-Mn-O

and the F e - S i - 0 systems a t 1500° and 1600°C

have shown

t h a t there are areas of s t a b i l i t y f o r the three MnS

types

when the [S] v s . [0] and the [S] v s . [Mn] are p l o t t e d . In t h i s work, i t i s a l s o proposed t h a t MnS-morphology

is

very dependent upon the l o c a l a c t i v i t y c o n d i t i o n s o f oxygen and the degree of d e o x i d a t i o n

( S i or Mn).

a s u c c e s s i o n of d i f f e r e n t c o n d i t i o n s

Thus, i f

i n terms of l o c a l

a c t i v i t y or degree o f d e o x i d a t i o n of melts

i s made then

a continuous s e r i e s of m o r p h o l o g i c a l changes i n MnS's would take p l a c e , i . e . from s p h e r i c a l

( o x i s u l f i d e ) a t h i g h oxy-

gen a c t i v i t i e s , r o d l i k e , d e n d r i t i c and " s k e l e t o n " shape a t medium oxygen a c t i v i t i e s and pseudo and h i g h l y talline last

(MnS) a t very low oxygen

"transition"

(MnS I I t o MnS

(local) a c t i v i t y .

crysThis

I I I ) has been observed

when a melt i s d e o x i d i z e d e i t h e r by A l , Ca or Ca-bearing (140,142,144,145) a l l ovc:

'

'

'

51

2.3.5

Specific

Sulfides

K i e s s l i n g and Lange

(91)

(92) and S a l t e r and P i c k e r i n g

have e s t a b l i s h e d t h a t double s u l f i d e s of the type are f r e q u e n t l y found. elements

Me r e p r e s e n t s any o f the f o l l o w i n g

T i , V, N i , Cr, Fe, Zr, Mg and Ca.

Pickering ^ h a v e

(Mn, Me)s

S a l t e r and

s t u d i e d the replacement o f Mn by Fe

i n the double s u l f i d e . 0.5 to 32 wt. % Fe.

They found t h a t i t ranges

from

The maximum s o l u b i l i t y l i m i t , however, (91)

d i s a g r e e s w i t h p r e v i o u s work performed by K i e s s l i n g (41.0).

The Cr s u b s t i t u t i o n f o r Mn i n these

has a l s o been s t u d i e d by these r e s e a r c h e r s .

,

sulfides While

Salter

(92) and P i c k e r i n g

have r e p o r t e d a replacement o f Mn by (91)

Cr ranging from 0-5 to 25 wt. % ( C r ) , K i e s s l i n g

who

has s t u d i e d these compounds i n s y n t h e t i c s u l f i d e s found a maximum replacement of 26 wt. % Cr.

has

Perhaps

the

most important double s u l f i d e which has become a f o c u s o f a t t e n t i o n with the advent o f the C a - i n j e c t i o n processes i s the (Ca, Mn)S. , .^

.

literature

There i s abundant i n f o r m a t i o n i n the

(140, 144, 158) '

'

...

^ , ,. ,

.

.

which e s t a b l i s h e s t h a t t h i s com-

pound i s p r e c i p i t a t e d on complex Ca-aluminates a p e r i p h e r a l envelope.

S a l t e r and P i c k e r i n g

forming d ^) 4

n

a

v

e

found t h a t s i n c e CaS i s isomorphous with the MnS (NaCl type o f l a t t i c e ) then e x t e n s i v e CaS s o l u b i l i t y i n MnS should be expected.

They have a l s o found a l i m i t e d s o l u b -

i l i t y of FeS

(4% Fe)

i n the above

l i n g and W e s t m a n ' ^

(CaS-MnS) system.

Kiess- ,

have determined the e x i s t e n c e of a

4

( t r i a n g u l a r shaped) m i s c i b i l i t y gap which shows a maximum

i m m i s c i b i l i t y a t approximately 120 0°C and a t 50

Ca + Mn,

(in at.%).

A t approximately 1000°C i t i s i n c r e a s e d

from 2 5 to 8 5 Ca/Ca + Mn.

These r e s e a r c h e r s

t h i s m i s c i b i l i t y gap

may

i.e.

r i c h phases.

C a - r i c h and Mn

d i v i d e the

ment with r e s p e c t to the Ca and Mn or MnS 6.0

phases.

wt.%

Mn

S a l t e r and from 1.0 ively.

(Ca, Mn)S

i n t o two

and

from 3.0

s o l u b i l i t i e s i n the

to 7.0

wt.

4

wt.

% f o r Mn

i n CaS

and

CaS

from 3.0

% Ca i n to 12.0

Ca i n MnS

to

MnS.

wt.

% and

respect-

Eklund s t u d i e s ' ^ ^ ^ supported by K i e s s l i n g and

man's f i n d i n g s o n

types

There i s c e r t a i n d i s a g r e e -

P i c k e r i n g ' * ^ r e p o r t from 1.0

to 19.0

suggest t h a t

Church e t a l . ' ^ ® ^ have r e p o r t e d

i n CaS

Ca/

West-

the i n i t i a t i o n of c o r r o s i o n i n i n c l u s -

i o n s , has a l s o i d e n t i f i e d the e x i s t e n c e of these phases. t h i s study i t i s shown t h a t while remains almost i n e r t severely attacked. l i n g and

the s u l f i d e phase e n r i c h e d

i n Ca

T h i s f i n d i n g i s i n agreement with

Westman's who

have a l s o observed the CaS

i t i o n to hydrogen s u l f i d e and sence of water.

Ca-sulfide enriched

in

In Mn

was Kiess-

decompos-

c a l c i u m hydroxide i n the

pre-

53 2.3.6

Oxisulfides

2.3.6.1

The

Fe-Q-S System

Rosenqvist and Dunicz

(161)

and

Turkdogan e t a l .

(162)

have determined the s o l u b i l i t y o f s u l f u r i n high p u r i t y iron.

I t i s e s t a b l i s h e d t h a t the maximum s o l u b i l i t y of

s u l f u r i n d e l t a - i r o n i s 0.18 wt.% a t 1365°C.

A t the same

temperature the gamma-iron holds o n l y 0.06 wt.%. bility

g e n e r a l l y decreases w i t h temperature but a l p h a -

i r o n a t 913°C holds 0.02 wt.%. has

The s o l u -

been s t u d i e d e x t e n s i v e l y .

The Fe-O-S t e r n a r y

system

H i l t y and C r a f t s ^ ^ ^ have 3

determined the l i q u i d u s s u r f a c e based on chemical and m e t a l l o graphic

analysis.

T h e i r r e s u l t s show t h a t the Fe-FeS-FeO

as the most important p a r t o f the Fe-O-S system i n the range o f p r a c t i c a l i n t e r e s t , i s c o n s t i t u t e d by a t e r n a r y e u t e c t i c a t 67 wt.% Fe, 24 wt.% S, 9 wt.% 0 920°C.

and about

A m i s c i b i l i t y gap which extends i n t o the system

from the Fe-0 s i d e to a s u l f u r content a t 21.5 wt.% a minimum p o i n t Fe,

with

( p l a i t p o i n t ) a t approximately 81.5 wt.%

16.5 wt.% S, 2 wt.% O and a t 1345°C.

The s o l u b i l i t y o f

oxygen i n i r o n a t s e v e r a l temperatures has a l s o been d e t e r mined by H i l t y and C r a f t s ^ ^ 3 ) ^

j t i s indicated that f o r

increasing s u l f u r concentrations

the oxygen content o f

i r o n f i r s t decreases s l i g h t l y up t o about 0.1% S and then increases r a p i d l y .

The s o l u b i l i t y o f s u l f u r i n i r o n as a

54 r e s u l t o f the oxygen i n f l u e n c e has been determined dogan e t a l .

166)^ T h e i r f i n d i n g s i n d i c a t e t h a t i n

the e q u i l i b r i u m Fe-S-O. s a t u r a t e d with w u s t i t e temperature

by Turk-

i n the

range between 913°C t o 1375°C, there i s a p r o -

nounced expansion on the s u l f u r s o l u b i l i t y curve which reaches a maximum o f 143 ppm o f S a t about v a l u e corresponds

1200°C.

This

to almost h a l f o f t h a t of the s o l i d u s on

the Fe-S diagram. Yarwood e t a l . ' ^ " ^

have proposed

an i n c l u s i o n pre-

c i p i t a t i o n model f o r the Fe-FeS-FeO system. mgs

Their f i n d -

4. - 4 . U 4-v, u (90,134,135, 163) i n agreement with other r e s e a r c h e r s ' ' ,

show t h a t the p r e c i p i t a t i o n sequence monotectic r e a c t i o n ,

as a r e s u l t o f the

i s indeed a f f e c t e d by the %0:%S r a t i o ,

(0:S), i n the a l l o y .

I f t h i s r a t i o i s g r e a t e r than 0.05.

i n c l u s i o n s w i l l have a wide range of compositions.

They a l s o

found t h a t w h i l e the maximum oxide content i n i n c l u s i o n s was

dependent on the i n i t i a l J m

was

not.

i J

0:S r a t i o , the minimum content

• (164-166)

Kor and Turkdogan's

ment w i t h Yarwood e t a l . ' s '

0 5

.

-it,

, •

i n qualitative ^

agree-

i n d i c a t e t h a t f o r 0:S

r a t i o s g r e a t e r than 0.12 two l i q u i d s form a t a g i v e n tempe r a t u r e and composition.

T h e i r experiments

on an a l l o y

con-

t a i n i n g 0.02% C and an 0:S r a t i o o f 0.29, c l e a r l y r e v e a l the presence o f the l i q u i d

oxysulfide.

55 2.3.6.2

The Fe-O-S-Mn

"Equilibrium"

H i l t y and C r a f t s ^ ter

1 2 9

'

i

n

t h e i r aim t o g a i n a b e t -

understanding of the d e o x i d a t i o n p r a c t i c e and the i n -

c l u s i o n chemistry

have

s t u d i e d the Fe-S-O,

Fe-S-Mn, Mn-O-S

and the Fe-O-Mn systems t o develop the Fe-O-S-Mn

system.

They have suggested t h a t the Fe-S-0 i s s t r o n g l y m o d i f i e d if

the Mn content i n the a l l o y

i s h i g h enough t o enhance

the p r e c i p i t a t i o n o f the s u l f u r - f r e e oxide and the oxygenfree sulfides,

s i m u l t a n e o u s l y with the s o l i d i f i c a t i o n of

the m e t a l l i c phase.

S e m i - q u a n t i t a t i v e work performed on

the Fe-O-S system

by these r e s e a r c h e r s

by adding 0.3% Mn

the i m m i s c i b i l i t y r e g i o n s from the Fe-O-S

and the Fe-S-Mn a r e encountered m i s c i b l e r e g i o n i s formed.

indicates

and hence a continuous im-

They propose

t h a t the metal

oxide and metal s u l f i d e e u t e c t i c s are i n i t i a l l y to

that

formed c l o s e

the i r o n c o r n e r , d i a g o n a l l y i n t e r s e c t the i m m i s c i b i l i t y

r e g i o n and meet the " t e r n a r y " e u t e c t i c .

I t was a l s o

t h a t the e u t e c t i c i n the m o d i f i e d t e r n a r y remained i n the same l o c a t i o n as i n the o r i g i n a l Fe-O-S Van V l a c k e t a l . ^ s h o r t n e s s " problem

1

3

^

almost

system.

a l s o concerned w i t h the "hot

have observed t h a t i f the Mn content

i s about 0.8% i n the Fe-O-S system, d u r i n g quenching

found

this alloy

originates

duplex o x i d e - s u l f i d e i n c l u s i o n s .

The

s u l f i d e phase e n r i c h e d i n Mn was a r e s u l t o f a primary crystallization.

I t was a l s o noted t h a t i f the Mn content

56 i n the t e r n a r y a l l o y

(Fe-O-S) was low then FeS and Mn-

r i c h oxide phases were p r e c i p i t a t e d . (164-166)

. m

Turkdogan and Kor

,

f

.. . _

a s e r i e s o f papers have compiled

i n f o r m a t i o n concerning the Fe-Mn-S-0 system.

thermodynamic Oxygen and

s u l f u r p o t e n t i a l diagrams which a r e i n v o l v e d i n t h i s q u a t e r (93) nary have been developed

'.

Turkdogan and Kor based

on H i l t y and C r a f t s o b s e r v a t i o n s ' * * ^ and on t h e o r e t i c a l 3

thermodynamic

data developed by Darken and Gurry

have p r o -

posed t o r e p r e s e n t the s t a b i l i t y phase f i e l d s f o r the Fe-Mn-S-0 system under s e v e r a l c o n d i t i o n s .

They have

esti-

mated t h e c o e x i s t e n c e o f gamma i r o n , Fe(Mn)0, FeS, Mn(Fe)S and a l i q u i d o x y s u l f i d e , £^ , as the e q u i l i b r i u m phases a t about 900°C, F i g u r e

( 3 ) . The a

mated t o be u n i t y and 0.4 r e s p e c t i v e l y

p

e

S

and a

(condensed) M

n

g

were e s t i -

and hence t h e e q u i l i _3

brium manganese i n gamma i r o n was computed

t o be lOppm (10

%).

The f o u r f o l d phase e q u i l i b r i u m i n v o l v i n g the gamma i r o n , Mn(Fe)0, Mn(Fe)S and l i q u i d o x y s u l f i d e

(£^), c o n s i d e r e d as

perhaps the most important u n i v a r i a n t e q u i l i b r i u m i n the quaternary

(Fe-O-S-Mn) system

has been estimated on the

premise o f an i d e a l l i q u i d o x y s u l f i d e s o l u t i o n , i . e . a + a + a _ + = i. They c l a i m t h a t s i n c e FeO FeS MnO MnS a

J

ideal

mixing behavior i s observed i n the FeO-FeS l i q u i d i n e q u i l i brium with gamma i r o n and MnO-MnS and s i n c e the FeO-MnO forms an i d e a l s o l u t i o n

then the i d e a l behavior c o n s i d e r e d i n

the FeO-FeS-MnO-MnS i s a reasonable assumption.

The behavior

of Mn i n i r o n under the above c o n d i t i o n s i s g i v e n i n F i g ure

(3) and Table ( I I ) . The r e a c t i o n scheme used t o e s t a b l i s h the phases i n -

v o l v e d i n such e q u i l i b r i a a r e :

M n 0

M n S

(s)

+

(s)

+

F e

F e

( s ) * FeO (s)

t

FeS

+ Mn

( 1 )

MnO

(s)

t MnO

MnS

( s )

t

M n S

+ Mn

( 1 )

(15)

( s )

(16)

( s )

< ) 17

(1)

(i)

( 1 8

I t has been e l u c i d a t e d t h a t i f a., _ = a.. _ s 1 MnS MnO

)

(be-

cause o f t h e i r low Fe i n s o l u t i o n and the Mn a c t i v i t i e s or atom f r a c t i o n s i n i r o n ) then an e x p r e s s i o n i s o b t a i n e d to r e p r e s e n t the Mn content o f s o l i d i r o n f o r t h i s

equili-

brium: 1 -N (K, + K_) ( — - — — ) + Mn

K-, + K. = 1 ; where N = atom

fraction.

By t a k i n g a., „ = 0.4 and a., = 0.5 a t the i n v a r i a n t MnS MnO 3

e q u i l i b r i u m l o c a t e d a t 900°C and u s i n g the above e x p r e s s i o n , the d o t t e d curve

i n Figure

(3) i s o b t a i n e d .

The Mn contents

o f gamma i r o n i n e q u i l i b r i u m w i t h s o l i d Mn(Fe)S and l i q u i d s u l f i d e , i n curve

(k) have been e s t a b l i s h e d u s i n g the "FeS"-

"MnS" phase diagram.

Raoult's

Law was assumed f o r the s o l u b -

i l i t y o f "FeS" i n "MnS". The curves

j and k show the s t r o n g e f f e c t o f oxygen on the

m e l t i n g p o i n t o f t h e o x y s u l f i d e phase i n the Fe-Mn-O-S (j) and

58 the

Fe-Mn-S (k) systems r e s p e c t i v e l y .

a l i q u i d phase l e s s than 10

I t i s seen t h a t w h i l e

(point A) i s formed when the Mn content i s % i n the former system ( j ) , the minimum Mn

content t o suppress the l i q u i d phase on the Fe-Mn-O-S system at

1200°C i s 1%.

The i n v a r i a n t e q u i l i b r i u m

(j)

which i n -

v o l v e s the gamma i r o n , Mn(Fe)0, Mn(Fe)S and the l i q u i d s u l f i d e phases

oxy-

i s the most important e q u i l i b r i u m i n the

Fe-Mn-O-S system by which the "hot s h o r t n e s s " can be avoided. Turkdogan and Kor have shown t h a t as long as the s t e e l cont a i n s Mn(Fe)0 and Mn(Fe)S i n e q u i l i b r i u m with the metal, a l i q u i d o x y s u l f i d e may

form between 900° and 1225°C

on the c o n c e n t r a t i o n o f Mn i n s o l u t i o n i n s t e e l . the

Mn-content i n s o l u t i o n

depending The h i g h e r

the h i g h e r i s the temperature

above which a l i q u i d phase i s p r e s e n t . (165 Experimental work performed by Kor and Turkdogan

'

166) have

clearly

shown

the

above

by

(0.34% Mn and 150 ppm S) a t about 900°C.

oxidizing

iron

They found a de-

p l e t i o n of Mn and accumulation of S i n the metal c l o s e t o the

scale-metal i n t e r f a c e .

These changes b r i n g about the

f o r m a t i o n of l i q u i d o x y s u l f i d e near the s u r f a c e above 900°C and the p r e c i p i t a t i o n of p y r r h o t i t e below 900°C. of

low i n t e r f a c i a l

tension

Because

the l i q u i d o x y s u l f i d e has been

seen to p e n e t r a t e i n t o the g r a i n boundaries i n the metal and the s c a l e .

They have a l s o observed t h a t most of the

l i q u i d phase i s found a t the s c a l e - m e t a l i n t e r f a c e . o b s e r v a t i o n s have a l s o been r e p o r t e d by other 1 6 9

)

These (130,

researchers

who have s t u d i e d more complex systems. Turkdogan and Kor who have taken as a b a s i s the i n -

formation and technique

used t o c o n s t r u c t f i g u r e

have extended t h e i r experimental table

( I I I ) , t o d e s c r i b e the Mn behavior

of other

(terminal) phase f i e l d s .

Mn-S-0 and Fe-Mn-O. low

and t h e o r e t i c a l

s o l u b i l i t y o f oxygen i n i r o n

the Fe-S-O, t h a t due t o the

stable deoxidation

u c t s i n commercial s t e e l s must be present. nary Fe-Mn-O-S system

data,

i n the presence

Namely

They have suggested

(4),

prod-

In the q u a t e r -

the Mn(Fe)0 has been taken as the

most s t a b l e oxide which i s p r e s e n t a t a l l temperatures o f interest.

As shown i n F i g u r e

(4),

the M n - p o t e n t i a l

i s given by two i n v a r i a n t s a t two temperatures, 900 and 1225°C: m-n-j

1) the i n v a r i a n t

g i v e n by the i n t e r s e c t i o n o f the

u n i v a r i a n t s which i s c o n s t i t u t e d by the gamma i r o n ,

Mn(Fe)0 as ( o x i ) , FeS, i^, "MnS" and the gaseous phase a t about 900°C and

2) the i n v a r i a n t given by the i n t e r s e c t i o n

of the u n i v a r i a n t s j , p and q.

The i n v o l v e d phases i n

t h i s e q u i l i b r i u m are an Fe/Mn s o l i d phase, "MnS", "MnO", l i q u i d oxide

(SL^) and l i q u i d metal

{l^) a t about

1225°C.

The most complete r e p r e s e n t a t i o n o f the phase changes i n c l u d i n g the l i q u i d , d e l t a and gamma i r o n developed Figure

by Kor and Turkdogan

(5).

The i n v a r i a n t VII

has a l s o been

^ and i t i s g i v e n i n r e p r e s e n t s the immiscible

r e g i o n i n the Fe-Mn-0 system

a t 1527°C.

I t i s important

to p o i n t o u t t h a t t h i s i n v a r i a n t was assumed t o be e q u i v a l e n t t o the Fe-0 m i s c i b i l i t y gap.

The phases i n e q u i l i -

brium a t V I I are d e l t a - i r o n , Mn(Fe)0, (£ ^) and l i q u i d metal previously described involved

"i^- •

system, a r e d e l t a - i r o n "MnO" a low s o l u b i l i t y product

oxide

The u n i v a r i a n t s V and VI were

i n Figure

i n the u n i v a r i a n t e

(Oxi), l i q u i d

(4).

The e q u i l i b r i u m phases

which are f o r the Fe-Mn-0 and l^-

Since

the "MnO" has

a t high M n - a c t i v i t i e s

(>1% Mn)

the e q u i l i b r i u m oxygen i n s o l u t i o n i s so low t h a t the s o l i dus

i n the Fe-Mn-0 i s almost e q u i v a l e n t

The

u n i v a r i a n t g was a l s o assumed e q u i v a l e n t

binary

system.

In g e n e r a l

g and f r e p r e s e n t liquid

t o the Fe-Mn system. t o the Fe-Mn

i t can be s a i d t h a t the u n i v a r i a n t s

the gamma t o d e l t a and the d e l t a t o

i r o n transformations

respectively.

The three

phase f i e l d s i n t h i s f i g u r e a r e the d e l t a - i r o n

new

+ Ox +

which i s l i m i t e d by the e - f u n i v a r i a n t s , the gamma-iron + Ox + £

2

which l i e s between

6 i r o n + Ox + g and f .

f';^ e u n i v a r i a n t s and the

which i s l o c a t e d between the u n i v a r i a n t s

The f - f ' u n i v a r i a n t s correspond t o the Fe-Mn-0

system a l r e a d y

described

i n Figure (4).

C r a f t s and H i l t y ' s w o r k '

2 9

' * ) on

i n c l u s i o n p r e c i p i t a t i o n diagrams representation

6 7

pseudo-equilibrium

has a l s o i n c l u d e d the

o f the Fe-O-Si-Mn-S system as a pseudo-

t e r n a r y , Fe(Mn, S i ) - 0 - S .

I t i s proposed t h a t t h i s

system

61

i s i n t e g r a t e d by metal-oxide,

m e t a l - s u l f i d e and s u l f i d e -

oxide m i s c i b i l i t y gaps which i n t e r s e c t themselves ucing an almost i s o m e t r i c i n t e r n a l t r i p l e

liquid

prodregion.

E q u i v a l e n t t o t h e i r proposed Fe(Mn)-0-S pseudo-ternary there are metal-oxide and metal s u l f i d e e u t e c t i c s which g i n a t e i n the metal corner and pass through f o l d immiscible

region.

ori-

the t h r e e -

These b i n a r y e u t e c t i c s c o n t i n u -

o u s l y decrease i n temperature u n t i l they reach the pseudotriple eutectic.

I t i s a l s o p o s t u l a t e d t h a t while the

above " t e r n a r y " i s u s e f u l t o r e p r e s e n t melts

silica

saturated

a pseudo t e r n a r y which c o u l d d e s c r i b e low S i t o Mn

r a t i o s should be d i f f e r e n t . fluxes s i l i c a

They c l a i m t h a t s i n c e the Mn

a s h i f t of the metal o x i d e - e u t e c t i c towards

the o x i d e c o r n e r o f the diagram would be expected.

I t has

a l s o been proposed t h a t s i n c e there i s s o l u b i l i t y between "MnS" and MnO-SiC^ may disappear

then the s u l f i d e - o x i d e m i s c i b i l i t y gap

and the pseudo-ternary e u t e c t i c would move

towards the oxide c o r n e r . granular higher

I t i s a n t i c i p a t e d t h a t more i n t e r -

s u l f i d e s are expected i n t h i s case than i n the

silicon

steels.

62

2.3.6.3

The Fe-Si-O-S-Mn

System

Other more complex systems have a l s o been g e n e r a l i z e d i n the m o d i f i e d p s e u d o - t e r n a r i e s , namely the F e ( S i ) - 0 - S , Fe(Mn, S i , h i g h A l ) - 0 - S , Fe(Mn, S i , low Al)-0-S and the Fe(Al,Ca)-0-S s y s t e m s

( 1 2 9 ,

1

6

7

)

.

The e x t e n s i v e e f f o r t d e d i c a t e d to c o n t r o l the "hots h o r t n e s s " problem i s c l e a r l y r e v e a l e d by C r a f t s and H i l t y (129) studies

.

I t i s seen t h a t the search f o r adequate de-

o x i d i z e r s which c o u l d promote the formation of h i g h m e l t i n g p o i n t phases has been the main aim.

The most common

f e a t u r e o f these diagrams i s t h a t the l a s t l i q u i d to solidify

i s a ternary e u t e c t i c .

as t h e i r authors have s t a t e d

These t e r n a r y diagrams

are n o t t r u e t e r n a r i e s and

hence "the r a t i o n a l i z a t i o n o f the problem i s i n t u i t i v e i n c h a r a c t e r and l i a b l e t o c o n s i d e r a b l e e r r o r , but should be h e l p f u l i n the e f f o r t t o b r i n g i n c l u s i o n s under c o n t r o l " . Silverman^ problem

a l s o concerned with the "hot s h o r t n e s s "

has s t u d i e d the Fe-Mn-Si-S-0

system.

He has

claimed t h a t i f the m e t a l l i c phase i s r e l a t i v e l y

neglected

the i n c l u s i o n chemistry o f the f i v e f o l d system can be reasonably w e l l r e p r e s e n t e d by the MnS-MnO-FeO-Si0 T h i s system was " s l i c e d " ,

as d e p i c t e d i n F i g u r e

t e r n a r y p l a n e s , shown i n F i g u r e are pseudo t e r n a r i e s FeO-MnO-MnS.

(7a-c).

2

system.

(6)

Two o f these

i n three planes

the 2FeO«Si0 -2MnO«Si0 -MnS and the

The t h i r d plane.

2

2

FeO-MnO•Si0 ~MnS 2

i s more d i f -

63

f i c u l t t o analyze because of i t s f i v e primary phase The

fields.

"A" area i s p r e s e n t i n the three planes and i t r e p -

r e s e n t s the "FeS" s t a b i l i t y

field.

The primary c r y s t a l l i z a t i o n 2MnO«Si0 -MnS-plane i s a s o l i d 2

2FeO«SiC>

2

and 2MnO«SiC> . 2

product on the 2FeO«SiC> 2

s o l u t i o n c o n s i s t i n g of

The second and t h i r d

products

are the FeS'-phase a t "A" and a mixture o f two i m m i s c i b l e l i q u i d s a t "B". as f o l l o w s : silicates

Silverman's o b s e r v a t i o n s can be summarized

1) The MnS-FeO-MnO•Si0

2

plane shows t h a t

liquid

e n r i c h e d i n "FeO" a l l o w more "MnS" i n s o l u t i o n

than l i q u i d

silicates

e n r i c h e d i n "MnO".

2)

This plane

a l s o shows t h a t "MnS" i s more s o l u b l e i n "FeO" than i n the l i q u i d

silicates

content o f the l i q u i d

i n t h i s plane.

s i l i c a t e decreases and the S i 0

t e n t i n c r e a s e s , the s o l u b i l i t y decreases.

3) As the "FeO"

o f "MnS" i n l i q u i d

2

con-

silicate

4) Samples from area "A" i n the MnS-FeO-MnO«Si0

2

plane suggest t h a t the "FeS"-phase s o l i d i f i e s as a e u t e c t i c a t about 910°C.

Silverman^

MnS i s f l u x e d by s i l i c a t e s

has concluded t h a t s i n c e

and oxides i n the planes s t u d i e d

then i n c l u s i o n s i n t h i s system are p a r t i a l l y and f i n i s h i n g

liquid

temperatures.

Van Vlack e t a l . ' s r e s e a r c h ' ^ i n l i n e with 3

work'^ ^ 9

at r o l l i n g

Silverman's

has s e m i - q u a n t i t a t i v e l y shown how the s i l i c o n

a f f e c t s the i n c l u s i o n chemical behavior i n v a r i o u s

systems.

64

In

t h i s work the m e t a l l i c phase n e g l e c t e d by Silverman i s

now

taken i n t o account.

Van V l a c k e t a l . ' s f i n d i n g s

be summarized i n the f o l l o w i n g p o i n t s :

can

1) I f s i l i c o n i s

added i n "small or moderate" q u a n t i t i e s to an Fe-S

alloy

u n d e t e c t a b l e changes i n i n c l u s i o n shape and composition w i l l be observed.

"FeS" was

the o n l y phase p r e s e n t .

Fe-S-0 a l l o y

s i l i c o n was

a l s o added.

n o n - m e t a l l i c phases were p r e s e n t . in

One

In t h i s a l l o y

2

3) I f s i l i c o n

i s added to a t e r n a r y Fe-Mn-S a l l o y whose Mn:S i n c l u s i o n s remain

(about

1200°C).

were observed.

solid at austenitic

ratio

(Mn,Fe)S

4) I f s i l i c o n and oxygen were added to (they generate the Fe-Mn-Si-S-0 system)

a l i q u i d phase s i l i c e o u s i n c h a r a c t e r was

observed.

a s s o c i a t e d with s a t u r a t e d MnS.

observed t h a t i f the S i : 0 r a t i o was

This

They a l s o

l a r g e r than t h a t

r e q u i r e d to form Si02 then a g l a s s y type of i n c l u s i o n formed d u r i n g c o o l i n g . was

smaller

On the o t h e r hand, i f t h i s

the g l a s s y phase disappeared.

a l s o observed t h a t i f oxygen was content then the l i q u i d

i n excess

composition was

phase was

was

ratio

Van V l a c k e t a l . of the

silicon

s h i f t e d from the

s i l i c e o u s range to a more o x i d i z i n g compositions. latter

was

temperatures

G l o b u l a r i n c l u s i o n s of the type

the Fe-Mn-S system

l i q u i d phase was

two

phase was e n r i c h e d

"FeS" and the other e n r i c h e d i n " S i 0 " .

3:1,

2) In an

This

s i m i l a r i n nature to t h a t encountered i n

the Fe-Mn-O-S-system.

T h i s f i n d i n g was

a l s o observed by

65 H i l t y and C r a f t s <

1 2 9

'

l 6 7 )

.

Van V l a c k e t a l . ' s work based on t h e i r own and a l s o on Silverman's work have

illustrated

the

(MnS-MnO-FeO-Si0 ~system)

phase

2

changes

l i q u i d phase u s i n g F i g u r e s (8 a-b) MnS-MnO-FeS-Si0 -system. 2

in

the

which r e p r e s e n t the

I t has been p o i n t e d out t h a t

although t h i s system i s q u a l i t a t i v e

i n c h a r a c t e r and

m e t a l l i c phase i s " t e m p o r a r i l y " ignored used

findings

the

approach

i n t h e i r experimental work indeed d e s c r i b e s phase

changes t o which the i n c l u s i o n s are s u b j e c t e d . et a l . d

3 (

^

have proposed

e n r i c h e d composition temperature

ranges)

ary e q u i l i b r i u m .

(C)

Van

Vlack

t h a t s i n c e the l i q u i d phase

v a r i e s from a s i l i c a e n r i c h e d composition

(A) to a

then the quaternary

can be r e p r e s e n t e d

MnO

(at h i g h

by a Mn0-Si0

2

Once the s o l u b i l i t y product f o r S i 0

the melt i s reached

the excess s i l i c o n goes i n t o

i n the metal and the excess oxygen r e a c t s with Mn MnO

the

(and l i m i t e d l y with i r o n to produce

FeO).

binin

2

solution to

produce

These r e -

a c t i o n products w i l l generate a composition B i n F i g u r e which f l u x e s the MnS, Figure

as i n d i c a t e d by Silverman's work i n

(76).

The r e s u l t i n g l i q u i d w i l l be composed of 50 % "MnS" about

(8)

1320°C

of "MnS" Rhodonite

at

and hence, d u r i n g s o l i d i f i c a t i o n a mixture

and a s i l i c a t e

either tephroite

(Mn0«Si0 ) depending o

(2MnO*Si0 ) or

on the MnO:Si0

2

9

ratio

will

p r e c i p i t a t e a t low a u s t e n i t i c temperature. have a l s o observed

Van Vlack e t a l . ^

and q u a l i t a t i v e l y p r e d i c t e d with

1 3 0

this

s i m p l i f i e d model t h a t the l i q u i d phase becomes a s i l i c e o u s g l a s s i f the l i q u i d c o n t a i n s an e x c e s s i v e amount o f s i l i c o n . Under t h i s c o n d i t i o n a l i q u i d

which i s r a p i d l y

can remain as a " g l a s s y " i n c l u s i o n a t room Composition

C

i n Figure

(8a)

solidified

temperature.

i s a t t a i n e d i f the oxygen

content exceeds the s i l i c o n content.

Under t h i s

circumstance

the l i q u i d phase d i s s o l v e s a c o n s i d e r a b l e amount of "MnS" and the excess oxygen may r e a c t with some Mn from the MnS. I t i s a l s o b e l i e v e d t h a t some o f the i r o n i s t r a n s f e r r e d i n t o the l i q u i d t o balance the s u l f u r . compositions

are sketched

i n Figure

These s h i f t s i n

(9). In subsequent

s o l i d i f i c a t i o n stages the f o r m a t i o n o f FeS i s expected. 2.3.7

Oxides

2.3.7.1

Aluminates

Experimental

and t h e o r e t i c a l s t u d i e s on the A l - 0 e q u i l i -

brium have been t r a c e d i n the l i t e r a t u r e s i n c e e a r l y i n t h i s century.

The d i f f i c u l t i e s presented i n determining the

thermodynamic e q u i l i b r i u m a r e o b v i o u s l y observed

i n F i g u r e (10).

This summarizes the e q u i l i b r i u m v a l u e s found by s e v e r a l researchers

( 1 7

° "

1

8

3

)

a t 1600°,

1800° and 1900° C.

l a t e s t e q u i l i b r i u m v a l u e s g i v e n by Gustafsson and

The

Melberg^ ^

.. - work , from s e v e r a, are summarized l r e s e a r c h e r s (176, 177, u

179—18 2) Gustafsson and Melberg

c l a i m t h a t t h i r d order

17

67 polynomial (regression) parameters should be i n c l u d e d i n the determination

of the i n v o l v e d a c t i v i t i e s where there e x i s t s

s t r o n g oxygen-metal

(Al or Ca)

interaction.

Their tech-

nique u n f o r t u n a t e l y o n l y works when b i n a r y oxygen-aluminum or oxygen-calcium systems are c o n s i d e r e d .

Sims^ ^ 9

has

p o i n t e d out t h a t the observed d i s c r e p a n c i e s can be r e c o n c i l e d on the b a s i s t h a t the oxide phase i n e q u i l i b r i u m with Fe-O-Al i s not pure A^O^

but i n s t e a d FeO'A^O^ and

t h i s s p i n e l phase w i l l always be p r e s e n t .

the

hence

Other s t u d i e s on

t h i s matter have shown t h a t by d e o x i d i z i n g a melt with aluminum at s e v e r a l l e v e l s served: melt

three g e n e r a l stages can be

1) I f i n s u f f i c i e n t aluminum i s added to an

ob-

iron

( i . e . there i s an excess o f oxygen i n s o l u t i o n ) f e r r o u s

oxide

and h e r c y n i t e should be p r e c i p i t a t e d

as d i c t a t e d by

(112-113) the FeO-Al^O^ e q u i l i b r i u m diagram mediate A l - l e v e l s *

(about

.

.

0.4-0.5% Al) a mixture of •

-a-

4-

^d83,

n i t e and alumina i s p r e c i p i t a t e d

184) '

n i t e phase w i l l be the major phase present high Al-contents found'

8 3

'

1 8 4 )

F a r r e l l ^^5)

steel

_. .

hercy-

.

The and

inter-

hercy3) At

i n an i r o n melt almost pure A^O^

is

.

According and

2) At

to the d e o x i d a t i o n diagram proposed by a

f n u

v

kin

e <

3 carbon or low

alloy

d e o x i d i z e d with aluminum, the s o l i d i f i c a t i o n of

m e t a l - o x i d e - s u l f i d e system s t a r t s by s o l i d i f y i n g crystals

(A^O^) i n s t e a d of metal.

As the

Hilty

oxide

temperature

the

68 decreases

s o l i d i f i c a t i o n o f metal and some oxide

takes

p l a c e s i m u l t a n e o u s l y u n t i l the metal-oxide b i n a r y e u t e c t i c i s reached.

S o l i d metal, s o l i d oxide and a phase r i c h i n

sulfide w i l l p a r t i a l l y precipitate i n further stages.

solidification

The remaining phase r i c h i n s u l f i d e w i l l

precipitate,

finally

i n the same manner as the Fe-O-S system, as

the temperature

approaches the t e r n a r y e u t e c t i c .

McLean

(112-113) and coworkers

who have s t u d i e d the thermodynamic

behavior of the Fe-O-Al system c l e a r thermochemical

have found t h a t there a r e

c o n d i t i o n s under which e i t h e r

A ^ O ^ o r h e r c y n i t e a r e formed.

In t h i s work

pure

i t has been

p o i n t e d o u t t h a t t o p r e v e n t the f o r m a t i o n o f h e r c y n i t e the oxygen a c t i v i t y a t 1600°C.

should be reduced

to l e v e l s below 0.058

A c t i v i t i e s o f oxygen equal t o 0.058 r e p r e s e n t

the l o c a t i o n o f the (A^O^-FeO• A^O^) t r a n s i t i o n p o i n t . S e v e r a l r e s e a r c h e r s have a l s o agreed

that k i n e t i c

fac-

t o r s a r e i n v o l v e d i n the FeO-FeO'A^O^-A^O^ p r e c i p i t a t i o n sequence.

T o r s e l l and O l e t t e ^

i n the submicron Hammar's'^^

1 2

^

s i z e s one second

have observed

a f t e r aluminum was added.

t h e o r e t i c a l p r e d i c t i o n s a r e i n agreement with

T o r s e l l * s and O l e t t e s f i n d i n g s . 1

Hammar s e x p e r i m e n t a l 1

work, however, d i d not f o l l o w such a b e h a v i o r . t h a t the f i r s t

*

inclusions

t r a n s f o r m a t i o n i s g i v e n by

He c l a i m s

FeO'A^O^dT

FeO'A^O-jCs) and i t i s very dependent o f the i n c l u s i o n

size.

T h i s t r a n s f o r m a t i o n has been t r a c e d 17 seconds a f t e r the Al-addition.

L a t e r d e o x i d a t i o n stages t r a n s f o r m the

F e O ' A ^ O ^ s ) t o almost pure A^O^.

The mechanisms proposed

to c o n t r o l these t r a n s f o r m a t i o n s a r e the simultaneous

dif-

f u s i o n o f oxygen from the p a r t i c l e and d i f f u s i o n of aluminum i n t o the p a r t i c l e .

Since, Hammar s r e s u l t s were not i n 1

agreement w i t h h i s theory

i t was proposed t h a t i n c l u s i o n s

may have a p e r i p h e r a l case of FeO-A^O^Csf which enclose the FeO « A 1 0 ( i f 2

thus d i f f u s i o n o f A l i n t o l i q u i d

3

ates was prevented.

precipit-

T h i s p r o p o s a l was indeed c o r r e c t ,

„ . ,. (184, 186-188) , . . , s i n c e EPMA-studies ' showed an e n r i c h e d A l - c a s e p n u

surrounding state.

the FeO'Al^O^ which was o r i g i n a l l y i n l i q u i d

Another i n t e r e s t i n g o b s e r v a t i o n t r a c e d by Hammar

was t h a t the FeO-phase was not detected one second a f t e r the (18 7) a d d i t i o n o f aluminum. t h a t a sharp decrease

Wadby and S a l t e r i n oxygen

have noted

as w e l l as pure alumina

i n c l u s i o n s a r e seen w i t h i n a p e r i o d o f 30 seconds. and D r i o l e s t u d i e s '

8 9

Cremer

^ on the i n f l u e n c e o f e l e c t r o m a g n e t i c

s t i r r i n g and the removal of i n c l u s i o n s , have e s t a b l i s h e d t h a t a f t e r 20 seconds o f the aluminum a d d i t i o n p a r t i c l e s were grown i n s i d e c l u s t e r s .

spherical

Hammar has a l s o ob-

served r e l a t i v e l y l a r g e FeO-A^O^ i n c l u s i o n s transforming t o pure A ^ O ^ i n t h e p e r i o d o f one t o three minutes a f t e r the a d d i t i o n o f A l i n t o the molten i r o n . * F e O « A l 0 i s not intended t o i n d i c a t e s t o i c h i o m e t r y and i n f a c t the F e O « A l 0 ( s ) would have a d i f f e r e n t A l 0 / F e O r a t i o 2

3

2

than

3

FeO«Al 0 (1). 2

3

2

3

70 Straube and P l o c k i n g e r ^ '

1 9 1

^

who

have s t u d i e d the p r e -

c i p i t a t i o n of alumina i n melts c o n t a i n i n g some manganese, have s t a t e d t h a t the primary d e o x i d a t i o n p r o d u c t s are lean i n alumina and c o n t a i n e s s e n t i a l l y Mn-oxides.

The

A^O^-

content i n c r e a s e d very r a p i d l y d u r i n g the next few u n t i l the composition reached t h a t of the s p i n e l A^O-j.

I t was

partially

seconds

(Fe,Mn)0«

observed t h a t i n c l u s i o n s were i n a f l u i d or

f l u i d state.

(18 7) Waudby e t a l . have a l s o agreed (190 191)

with Straube and P l o c k i n g e r ' s f i n d i n g s

'

.

Waudby

(187) et a l . noted t h a t once the s p i n e l type was formed i t r e a c t e d with A l i n f u r t h e r stages to produce i r r e g u l a r h i g h l y aluminous

i n c l u s i o n s which e n c l o s e d i r o n .

Morgan

(188) et a l .

who

have s t u d i e d the d e o x i d a t i o n e f f e c t on the

i n c l u s i o n chemistry have a l s o observed s i l i c a t e d e o x i d a t i o n products p e r i p h e r a l l y p r e c i p i t a t e d on A^O^ phases.

or FeO'A^O^

Waudby's and S a l t e r ' s experiments were performed

a t s e v e r a l A l - d e o x i d a t i o n l e v e l s , namely 0.05, and 0.5 wt.

%.

0.15,

0.3

T h e i r samples were quenched and heat t r e a t e d

afterwards f o r 7 days at 1150°C.

Under the above experimental

c o n d i t i o n s , i t was

found t h a t by d e o x i d i z i n g the i r o n

melt w i t h 0.5%

i n as c a s t c o n d i t i o n duplex h e r c y n i t e -

Al

alumina i n c l u s i o n s were observed.

A f t e r the heat t r e a t -

ment, however, i n c l u s i o n s d i s s o l v e d more oxygen u n t i l hercynite •has

equilibrium

composition

was

a l s o i d e n t i f i e d s i m i l a r compounds,

reached.

the

Hammar

(Fe,Ni) 'A^O^,

71 i r r e s p e c t i v e of the quenching time.

The o u t s t a n d i n g c r y s (183)

t a l l o g r a p h i c work performed by Watanabe and coworkers (192)

along the l i n e s of Sloman's and Evan's work inum d e o x i d i z e d melts

has c l e a r l y r e v e a l e d the nature of (183)

the t r a n s f o r m a t i o n i n the Fe-O-Al system. was

on alum-

T h e i r work

c a r r i e d out by m e l t i n g l e v i t a t e d samples under a p u r i -

f i e d Ar-atmosphere and s o l i d i f i e d under three cooling conditions.

The 0:A1

r a t i o was

different

1.45 which i s c l o s e

to the s t o i c h i o m e t r i c r a t i o found i n the A 1 0 2

3

phase.

Ex-

t r a c t e d i n c l u s i o n s from the m e t a l l i c m a t r i x were a n a l y z e d by X-ray (powder) d i f f r a c t i o n u s i n g Cr-Ka r a d i a t i o n . r e s u l t s showed t h a t s i n c e the F e O « A l 0 2

3

phase had

Their

inter-

p l a n a r spacing approximately e q u i v a l e n t t o the y ' - A ^ O ^ a ' ) then the y'-A^O^ was though to o r i g i n a t e from the s p i n e l phase, as f o l l o w s : F e O A l 0 -•• Y ' - A l 0 ( a ' ) -> y - A l 0 ( a ) l

2

3

The f i n a l Y

, -

2

A1 0 2

3

2

3

3

+

Y'-AljOg

i s o b t a i n e d a c c o r d i n g to the degree of

simultaneous m i g r a t i o n of i r o n and aluminum out and the o r i g i n a l F e O « A 1 0 2

3

phase.

s i n c e i n the p r o c e s s o f K - A 1 0 2

phase d i s a p p e a r s and Y ' - A 1 0 2

i s d e r i v e d from Y ' ~ 2 ° 3 ^ • a 1

i n t h e i r experiments a-Al 0 . 2

3

( b )

The a - A l 0 2

3

I t was 3

a l s o proposed t h a t

formation the F e 0 « A l 0 2

3

(b) shows up, then K - A 1 0 2

T n

e

third cooling

produced Y ' - A 1 0 2

3

into

phase was

3

3

condition

(b), 0 - A l O 2

3

and

the more abundant phase.

Hence, the o v e r a l l t r a n s f o r m a t i o n sequence

was

proposed

to be: FeO-Al 0 2

3

+ y ' - A l 0 (a') 2

-* 6 - A l 0 2

2

Since y' -A1 C> was was

A 1

+ ^' ~ 2 ° 3 A l

"*" * ~ 2 ° 3

( b )

A l

3

found i n a l l the c o o l i n g c o n d i t i o n s , i t

3

suggested t h a t the r a t e of t r a n s f o r m a t i o n from t o y '-A1 C> i s f a s t and t h a t the y '-A^C^

FeC"Al 0

3

a-Al 0

is relatively

2

2

3

2

3

2

studied.

(b) to

slow.

The morphology of Al C>

who

°3 > (a

2

a-Al 0 .

3

2

y'

3

3

type of i n c l u s i o n s has been widely

T o r s e l l and O l e t t e ^

1 2

^

were the f i r s t r e s e a r c h e r s

proposed t h a t i n a d d i t i o n to a l o c a l s u p e r s a t u r a t i o n , a

continuous d i f f u s i o n of aluminum and oxygen i n t o these r e g i o n s i s r e q u i r e d t o p r e c i p i t a t e the d e n d r i t i c type of inclusions.

Under these c o n d i t i o n s

t h a t d e n d r i t i c alumina was

i t has been proposed

a r e s u l t of a homogeneous n u c l e (189)

ation.

Cremier and D r i o l e

have suggested t h a t

alumina i n c l u s i o n s are products of heterogeneous T h i s type grows i n areas low i n d e o x i d i z e r .

spherical

nucleation.

Torsell

and

O l e t t e have a l s o proposed t h a t c l u s t e r s are not formed i n r e g i o n s e n r i c h e d i n aluminum. c l u s t e r s of alumina

I t i s also indicated

that

which are very commonly observed i n

aluminum d e o x i d i z e d melts

are formed due to c o l l i s i o n of

s i n g l e p a r t i c l e s as a r e s u l t o f thermal, mechanical or e l e c t r o m a g n e t i c a g i t a t i o n of the molten bath.

Cremier and

D r i o l e have concluded t h a t the importance

of magneto-hydro-

dynamic phenomena on the k i n e t i c s of d e o x i d a t i o n o f s t e e l i s mainly a p h y s i c o - c h e m i c a l p r o c e s s , i . e . shape and type of i n c l u s i o n s i n the Fe-Al-0 system are c o n t r o l l e d by the l o c a l flow and a c t i v i t y c o n d i t i o n s .

Steinmetz

et a l . '

8

4

^

who have s t u d i e d the above system under s e v e r a l c o n d i t i o n s ( i n d u c t i o n - s t i r r i n g , c o n v e c t i o n - f r e e and i n the gas phase) have a l s o agreed with t h a t p r o p o s a l .

They found t h a t w i t h

an oxygen supply h i g h enough compared to the supply of r e s p e c t i v e elements, cipitate.

l i q u i d phase o f h i g h F e O - a c t i v i t y p r e -

I t i s a l s o suggested

t h a t t h e i r growth i s a l -

most s t r i c t l y c o n t r o l l e d by the flow c o n d i t i o n s a t which the g i v e n r e g i o n i s s u b j e c t e d .

They c l a i m t h a t the s p h e r i -

c a l contours become u n s t a b l e and change t o " r o s e t t e s " and f i n a l l y t o d e n d r i t e shape as the " p h a s e - s p e c i f i c concent r a t i o n s " or " m a t e r i a l s flow" are changed.

The degree o f

l o c a l d e o x i d a t i o n and the type and shape of oxides and s u l f i d e s have a l s o been shown i n t h i s work. o f p l a t e - l i k e alumina

and the MnS

The a s s o c i a t i o n

I I I are g i v e n where the

l o c a l c o n c e n t r a t i o n of aluminum i s h i g h e r

(2 t o 3%).

At

i n t e r m e d i a t e d e o x i d a t i o n (0.25-1.0% A l ) a mixture of coarse s u l f i d e type I I and a c i c u l a r oxide i n the presence of s u l f i d e are found.

Between these two ranges

a mixture of MnS

I I and I I I i s expected

aluminum contents

(1.25-1.75% A l ) and a t very low

(0-0.25%) o x y s u l f i d e s , primary

I I and d e n d r i t i c oxides may be formed. Steinmetz

s u l f i d e s , type (184) et a l . have

74 a l s o proposed the mechanism a l r e a d y d e s c r i b e d f o r s u l f i d e s for

the alumina, i . e .

1) d e n d r i t e s and coarse g l o b u l a r

hercynite at high i n i t i a l

oxygen contents,

2)

initial

g l o b u l a r to " c o r a l " shape alumina f o r low oxygen contents under very d r a s t i c c o o l i n g c o n d i t i o n s . gen o n l y d e n d r i t i c A ^ O ^

i s expected.

Above 0.019% oxySlower growth i s r e -

q u i r e d f o r the b r a n c h e d - i r r e g u l a r shape alumina type.

They

have a l s o proposed t h a t under low i n i t i a l oxygen contents r a d i a t e d - c r y s t a l l i n e to compact n i t r i d e s are grown on the alumina. Braun e t a l . ^ stirring

l 9 3

^ , who have s t u d i e d the i n f l u e n c e of

time, s t i r r i n g r a t e and i n i t i a l oxygen i n i r o n melts

have c l a s s i f i e d the morphology of the alumina i n c l u s i o n s f i v e types, namely:

d e n d r i t i c , faceted,

s p h e r i c a l and c l u s t e r s . not

into

plate-like,

I t was found t h a t these types are

e x c l u s i v e l y found as a unique type but as a mixture f o r

a g i v e n s e t of experimental c o n d i t i o n s .

They have a l s o

observed t h a t i n c l u s i o n s which i n t e g r a t e the c l u s t e r s change from d e n d r i t i c to p l a t e - l i k e shapes a t low oxygen contents t o s p h e r i c a l a t high oxygen l e v e l s . Olette et

( 1 2 0 )

al. (

l 9 5

^

,

Braun e t a l .

(

1

9

3

)

,

T o r s e l l and

Okohira e t a l .

and Cremer and D r i o l e ^

1 8 9

^

(

1

9

4

)

,

Ooi

have agreed on the

mechanism by which alumina c l u s t e r s are formed, i . e . c o l l i s i o n and

coalescence o f s i n g l e p a r t i c l e s as a r e s u l t of f l u i d

motion i n the melt.

Ooi e t a l . 's s t u d i e s on n o n - s t i r r e d

75 and s t i r r e d melts

have shown t h a t under the former

condi-

t i o n d e n d r i t i c and alumina c l u s t e r s are the major t y p e s . S p h e r i c a l i n c l u s i o n s were almost absent. type o f experiment produced

Their

second

1) i n c l u s i o n s l a r g e r than

20 ym i n diameter with adhered p a r t i c l e s of about 0.5 2.0

-

ym i n diameter and 2) c l u s t e r s composed of v e r y small

s p h e r i c a l i n c l u s i o n s with the maximum diameter o f which about 2 ym.

Ooi e t a l . ^

1 9

~^

have c o r r o b o r a t e d the

was

"collision

coalescence and s i n t e r i n g theory" on the f o r m a t i o n o f alumina c l u s t e r s by measuring

the neck growth and assuming

volume

d i f f u s i o n as the c o n t r o l l i n g mechanism. H i l t y and C r a f t s ^

1 6 7

^

have found t h a t 0.5%

Mn

in liquid

i r o n enhances the A l - d e o x i d a t i o n power as much as f i v e times. McLean^

113

^

suggests t h a t Mn

lowers the oxygen and

the A l c o n c e n t r a t i o n f o r u n i v a r i a n t t r a n s i t i o n from Al 0 2

3

to

Sims^ ^ 9

h l ^ O ^ i

as suggested by P l o c k i n g e r

raises (Fe, Mn).

) and Waudby ^

has s t u d i e d the dual A l - S i d e o x i d a t i o n of melts

(0.4% A l and 0.5%

S i ) . He noted t h a t the i n c l u s i o n s are

c h a r a c t e r i s t i c o f those e x c l u s i v e l y d e o x i d i z e d with A l and s t r o n g e r d e o x i d a t i o n was Al-deoxidized.

reached than when the melt i s

Sims p o i n t s out t h a t i f s i l i c o n i s added

b e f o r e o r with the aluminum

one minute

o b t a i n the maximum c l e a n l i n e s s studies^

l 9

^



i s s u f f i c i e n t to

Waudby s and Wilson's 1

on p r o g r e s s i v e d e o x i d a t i o n o f iron-oxygen

melts by A l - S i a l l o y s

(0.3, 0.6

and 0.9%

A l - S i ) . have

1 8 7

\

76 found t h a t because o f the much more r a p i d f o r m a t i o n of alumina compared with s i l i c a ,

the alumina c o n t e n t o f

the i n c l u s i o n s p r o p o r t i o n a l l y i n c r e a s e with the A l - S i addition.

Hence, they concluded t h a t the dual

(Al-Si)

d e o x i d i z e r behaves i n a complex manner only when a melt is

(Al-Si) deoxidized i n r e l a t i v e l y c r i t i c a l

additions.

D e o x i d a t i o n of melts by l a r g e q u a n t i t i e s of A l - S i behave as c o n v e n t i o n a l a d d i t i o n s o f the s t r o n g e s t element deoxidizer.

As proposed by S i m s ^ ^ 9

c l u s t e r s i s expected.

i n the

formation o f alumina

G a t e l l i e r et a l . '

9

^

i n agree-

ment with Waudby's and Wilsons's and Sim's f i n d i n g s have noted t h a t i f aluminum i s f i r s t l y metal bath the s i l i c o n remains

i n t r o d u c e d t o the

as a p a s s i v e d e o x i d i z e r .

G a t e l l i e r e t a l . ' s t h e o r e t i c a l c o n s i d e r a t i o n have shown t h a t t h r e e d i f f e r e n t b e h a v i o r s might be observed, a t 1600°C: 3/4 1) I f the a / A l ° ° / alumina should be p r e c i p i t a t e d , 3 /4 2) i f a / A l " 1400/ pure SiC> p r e c i p i t a t e s and 3) i n the 3/4 a

s

6

0

i

a

2

i n t e r m e d i a t e range o f these s t a b i l i t y ranges a A

l

(600 S a c

/

i 1400), m u l l i t e i s the most s t a b l e phase.

2.3.7.2

Calcium aluminates

Although the use o f c a l c i u m as a d e o x i d i z e r and des u l f u r i z e r i n i r o n melts has become an a t t r a c t i v e

alternative

(198) s i n c e S p o n s e l l e r ' s and F l i n n ' s r e s e a r c h the foundry i n d u s t r y ,

i t s use i n

to d e s u l f u r i z e , i n o c u l a t e and to

77

enhance t h e s p h e r o i d i z a t i o n o f g r a p h i t e early has of

i n this

century.

been c o n s i d e r e d research

Sponseller's

t h a t has c o n c l u s i v e l y c o n t r i b u t e d

Al,

C/ N i , S and Au.

liquid

iron.

i t s i n t e r r e l a t e d e f f e c t s with

calcium

in liquid

1880°K.

At t h i s

1.87

-

( l 9 8 )

In

light

other

of Sponseller's

( 1 4 4

'

reducing Al,

1

5

5

'

1

9

7

'

9

9

_

2

0

2

) .

i t s vapour pressure

i s 0.032% a t

a t about

t o improve

1780°K

W

o

r

k

( 1 9 9 )

.

inten-

i t s solubility,

respect

i t s vapour p r e s s u r e 1

elements, i . e .

and F l i n n ' s f i n d i n g s

t o overcome t h e p r o b l e m o f d e n s i t y w i t h

years

also

i t s vapour p r e s s u r e i s

has been d e d i c a t e d

i r o n and t o d i m i n i s h

to the develop-

the s o l u b i l i t y of

atm. and i t b o i l s

( 1 9 9 )

pieces

They have

i r o n under p r e s s u r e

temperature

1.645

sive research

They f o u n d t h a t

since

and F l i n n ' s work

a s one o f t h e most f u n d a m e n t a l

ment o f t h e C a - t r e a t m e n t o f l i q u i d studied

has been used

to liquid

i n the l a s t

20

has been devoted t o

by a l l o y i n g

i t with

Ba o r a s m u l t i p l e m i x t u r e s o f v a r i o u s

S i , C,

elements,

CaAlSi,

(9 5) CaAlSiFe, the

CaAlBaFe, e t c .

who

has reviewed

s t a t e o f t h e a r t o f oxygen and i t s r e a c t i o n s w i t h

ferent deoxidizers, of

Philbrook

has d e s c r i b e d

C a - t r e a t m e n t up t o 19 77.

Sweden, t h e F i r s t Metallurgy

the current

dif-

understanding

I n June o f t h e same y e a r i n

I n t e r n a t i o n a l C o n f e r e n c e on I n j e c t i o n

took p l a c e .

In the proceedings o f t h i s

a new d i r e c t i o n on t h e d e o x i d a t i o n

meeting^ *^

practice i s clearly

9

seen.

78

Thermodynamic and k i n e t i c theory t o support the e x p e r i mental work, f i n a l l y g i v e c r e d i t t o the d e o x i d a t i o n capab i l i t y o f Ca-bearing m i x t u r e s .

The second conference on (97)

i n j e c t i o n p r o c e s s e s a l s o h e l d i n Sweden more, r e c o n f i r m s the advantages

i n 1 9 8 0 , once

( d e o x i d i z e r and d e s u l f u r -

i z e r ) and disadvantages (low y i e l d ) of i t s usage. i n a more r e c e n t communication

Holappa^ ^ 98

a l s o p r e s e n t s an o v e r a l l

view of the Ca-treatment i n the l a d l e . In a d d i t i o n t o the p r e v i o u s l y d e s c r i b e d advantages o f the usage o f Ca-bearing mixtures

the major a t t r i b u t e s o f

t h i s d e o x i d a t i o n p r a c t i c e i n terms o f i n c l u s i o n s a r e : 1)

the e l i m i n a t i o n o f c l u s t e r s and angular alumina i n -

c l u s i o n s which otherwise would be formed from the A l deoxidation p r a c t i c e ' ^ 4

1 6 8 ) ^ ) ^he t r a n s i t i o n o f 2

MnS type I I t o MnS I I I o r p e r i p h e r a l c a l c i u m s u l f i d e around C a - a l u m i n a t e s

( 1 4 4

'

1 4 5

'

1 4 7

'

1 6 8

'

1 9 7 ]

.

The presence

of the MnS I I I has been observed a t r e l a t i v e l y low Cacontent

(< 20 ppm) and the "CaS" a t much h i g h e r Cat

O A

,

.

,^

(157, 158, 168)

_ .

,

content (> 20 ppm) i n the melt ' • . I t has a l s o j. * • *.u T * . (146, 159, 160) _ . been r e p o r t e d i n the l i t e r a t u r e • • that i n a d d i t i o n t o the above c h a r a c t e r i s t i c s

TJ

e x c e l l e n t de-

79

(96—98) oxidation, desulfurization (157,

ation

158, 204)

'

'

processes. added"to ^ ( 2 0 4 ) t

and some dephosphoriz,

,

,

i

.

.

. .

a r e reached by the c a l c i u m i n j e c t i o n

Gaseous

and m e t a l l i c c a l c i u m has been

the s t e e l stream d u r i n g tapping ^ , ' p l u n g i n g ' 8

o

s n

r

ooting

i t as b u l l e t s i n t o

the metal bath.

When m e t a l l i c c a l c i u m i s added to the melt i t t u r n s i n t o vapour bubbles which r a p i d l y r i s e t o the metal s u r f a c e and subsequently r e a c t v i o l e n t l y with the s l a g and the oxygen i n the a i r producing c o n s i d e r a b l e f l a r e , s p l a s h i n g and fumes.

B u r n - o f f and r e a c t i o n s with the s l a g and l i n i n g

m a t e r i a l s reduce the y i e l d o f the Ca-treatment t o about 10-50% (

l

9

7

'

2

0 5 )

m

Thus, new means t o u t i l i z e c a l c i u m as

calcium-composite wires

(97)

o r i r o n tube c o n t a i n i n g Ca(155)

a l l o y s have been developed techniques o b v i o u s l y

.

In a d d i t i o n to these

the simultaneous d e o x i d i z e r a d d i t i o n s

(as mixtures of d e o x i d i z e r s with o r without s l a g s ) e i t h e r top or bottom blown i n t o the c o n v e r t e r have a l s o been industrially

practiced.

I t i s a general p r a c t i c e

in

c o n v e n t i o n a l steelmaking, to f i r s t l y d e o x i d i z e e f f i c i e n t l y the melt w i t h A l and secondly by the c a l c i u m t r e a t m e n t ^ . Regarding the mechanical p r o p e r t i e s , i t i s g e n e r a l l y accepted t h a t g l o b u l a r i n c l u s i o n s improve (92

of the mechanical p r o p e r t i e s

the a n i s o t r o p y

95-97)

'

. I t has been pro-

posed as a p r i o r i r u l e s t h a t e i t h e r a Ca:S r a t i o g r e a t e r than 1 . 2 5

(

1

5

3

)

or more than 2 0 - 3 0

ppm of C a

( l 5 1 )

i s required to

80 achieve the t r a n s i t i o n from the alumina

(clusters) to

c a l c i u m aluminates and the MnS I I t o a t l e a s t MnS I I I or t o p e r i p h e r a l c a l c i u m s u l f i d e s .

Gatellier et a l . '

have found i n experimental melts t h a t a complete of A l 0 2

3

(144) 9

7

^

elimination

as c l u s t e r s i s a t t a i n e d when the 0:Ca r a t i o

(wt %) i n i n c l u s i o n s i s about to be independent

three.

T h i s r u l e was found

of the i n g o t chemical composition.

(209) Faulring et a l .

have r e p o r t e d t h a t the n o z z l e b l o c k -

age by the aluminate type o f i n c l u s i o n s i s e l i m i n a t e d when the Ca:Al r a t i o

( i n wt.%) i s g r e a t e r than 0.14.

This

r a t i o r e p r e s e n t s compositions which c l o s e l y correspond (133) to the CaO • 2 A 1 0 2

3

phase.

gested t h a t "burning"

Boldy e t a l .

have sug-

which occurs even i n ESR-ingots

where the s u l f u r content i s u s u a l l y thousandths

of a

p e r c e n t might be e l i m i n a t e d o n l y by r a r e - e a r t h or Catreatments.

These r e s e a r c h e r s have r e p o r t e d t h a t the

problem was e l i m i n a t e d , i n c o n v e n t i o n a l p r a c t i c e

:

when

manganese s u l f i d e s were completely transformed t o CaS. (157 158) Japanese r e s e a r c h e r s drogen

'

who have s t u d i e d the hy-

induced c r a c k i n g (HIC) on p i p e l i n e s t e e l s

have

concluded t h a t a Ca:S r a t i o g r e a t e r than or equal t o 1.5 i s r e q u i r e d t o prevent the r e o x i d a t i o n of Ca d u r i n g the teeming

o f the melt.

t a n t or t o t a l l y

Under these c o n d i t i o n s high r e s i s -

i n s u s c e p t i b l e s t e e l s t o HIC were developed.

I t has a l s o been e s t a b l i s h e d t h a t Ca-aluminates

are a l s o

81 p r e s e n t i n s t e e l s produced v i a the b a s i c e l e c t r i c a r c furnace^ ^^. 2

T h e i r presence a r i s e s due t o the aluminum

which i s used as a d e o x i d i z e r and the b a s i c i t y of the s l a g or by the Ca-(Si) treatment.

While some work i n the

l i t e r a t u r e r e p o r t s the presence o f Ca-aluminates by the Ca-treatment 19 7

( 1 4 4

'

1 4 7

'

1 4 8

'

1 5 1

'

1 5 3

'

2 0 7 )

,

others

( 9 6

'

97

<

20 8) '

have shown t h a t complex c a l c i u m - a l u m i n u m - s i l i c a t e s (159)

are formed.

Church e t a l . ' s

s t u d i e s on a s t e e l

processed under two d i f f e r e n t c o n d i t i o n s , a i r melt and d e o x i d i z e d i n the l a d l e and carbon d e o x i d i z e d i n vacuum have found g l o b u l a r type o f i n c l u s i o n s .

( g a l a x i t e ) o x i d e s , s u l f i d e s and

stringer

In the s t e e l t r e a t e d under vacuum,

i n c l u s i o n s were s m a l l e r , fewer and were l e s s complex than i n t h a t t r e a t e d under a i r . These

inclusions consisted

o f a nucleous of g a l a x i t e surrounded by a C a - A l - S i matrix. Whereas the a i r melted s t e e l c o n t a i n e d (Mn, Ca)S around g l o b u l a r oxides and MnS

the

I with some Ca, Cr and Fe i n

s o l u t i o n , i n the s t e e l melted under vacuum o n l y the l a t t e r type was

observed.

The presence of s l a g i n some c o n v e n t i o n a l

processes and the chemistry of the d e o x i d i z e r s employed i n the Ca-treatment p l u s the chemistry o f the melt indeed c o m p l i c a t e the e l u c i d a t i o n of the mechanism(s) by which the i n c l u s i o n chemistry i s c o n t r o l l e d .

Ja*ger and H o l z -

(202) gruber

have found t h a t a l l o y s of Ca with A l , Mn o r S i

used as deoxidants i n 18-8

s t e e l s a f t e r the A l - t r e a t m e n t

i n c r e a s e the Ca y i e l d when 0.1 wt.%

(Ca + Ba) i s a l s o

present. CaO

D^type of i n c l u s i o n s c o n s i s t i n g of 40-60 ^2°3

and 60-40 wt.%

under t h i s

w

i

t

wt.%

p e r i p h e r a l CaS are found

h

treatment.

S a l t e r and P i c k e r i n g '

^

4 0

i n t h e i r s t u d i e s on

C-Cr

b e a r i n g s t e e l s dexodized with a CaSi a l l o y and H i l t y coworkers' ' 4 4

1 6 8

^ who

used C a S i , CaSiB'a and

and

CaSiBaAl

a l l o y s to d e o x i d i z e an i r o n melt and C a S i T i to d e o x i d i z e some c a s t i n g melts, have h i g h l i g h t e d the p r e c i p i t a t i o n scheme.

These r e s e a r c h e r s have found t h a t

inclusions

g e n e r a l l y obey the sequence of phases g i v e n by the pseudobinary Ca0-Al 0 2

diagram.

3

Although these phases d i d not

necessarily follow a stoichiometric relationship c a l c i i m aluminates i d e n t i f i e d were: CaO-2Al 0 2

3

(CA ), C a O - A l ^ 2

CaO*f>Al 0 2

(CA) , 12CaO• 7 A l 0 2

3

3

the

(CAg), (C A ). 1 2

7

S a l t e r and P i c k e r i n g have r e p o r t e d as an e x c e p t i o n a l case a Ca-aluminate

the composition of which corresponded

c l o s e l y to the C ^ A . 2

Pickering s^

o x i d a t i o n i n the l a d l e , of

reactions.

2 <

have

9

de-

have a l s o found the same sequence

In these s t u d i e s the C^A^

Faulring et a l . ^ ^ ^ (201, 207)

s t u d i e s on

1

7

and S a l t e r e t a l . '

4

was (

^

identified.

and o t h e r s

agreed t h a t f o r a g i v e n l e v e l of d e o x i -

d a t i o n with c a l c i u m

a mixture of a t l e a s t two

s t o i c h i o m e t r i c c a l c i u m aluminate phases

different

are found.

(144) H i l t y and coworkers

have approached

the i n -

c l u s i o n f o r m a t i o n mechanism as another p a r t i c u l a r case of the g e n e r a l theory t o e x p l a i n the metal-oxide

sulfide

83 co-precipitation. to

These r e s e a r c h e r s ' work c o i n c i d e n t a l l y

S a l t e r ' s and P i c k e r i n g • s

190,

210)

A^O^

S U

gg

( 1 4 0 J

( 1 4 7

'

1 4 8

'

t h a t s i n c e CaO s u b s t a n t i a l l y f l u x e s

e s t

then the CaO decreases

the m e l t i n g p o i n t of the

" A l 0 " to produce Ca-aluminates 2

and o t h e r s

3

range o f steelmaking

which melt w i t h i n the

temperatures.

Hilty et a l . ^ ^ ^ 8

propose t h a t the pseudo t e r n a r y e u t e c t i c i n t h e i r t e r n a r y ( m e t a l - o x i d e - s u l f i d e ) diagram should be moved c l o s e r t o the oxide corner and hence a h i g h e r m e l t i n g p o i n t " e u t e c t i c " should be expected.

The Ca-aluminate

p r e c i p i t a t i o n se-

quence g i v e n by H i l t y and F a r r e l l suggest t h a t t h i s i s m o d i f i e d by the s u l f u r content, i . e . while a s t e e l t a i n i n g 0.015% S p r e c i p i t a t e s

con-

( C A ) , a s t e e l with 0.005% S 2

and the same Ca- content ('v, 40 ppm) , i t w i l l

precipitate

(CA) . Laboratory and i n d u s t r i a l work performed

by

Takenouchi

(154) and Susuki described.

have agreed w i t h the r e s u l t s p r e v i o u s l y The shape c o n t r o l o f the Ca-aluminates

disappearance

and the

of the manganese s u l f i d e s was a l s o o b t a i n e d .

The d e o x i d i z e r used was a CaAl a l l o y as wires 4.8 and 7 mm diameter

s h i e l d e d with a s t e e l p l a t e 0.2 mm

Emi e t a l . ^

X

1

^

w

i n thickness.

h o have used the same d e o x i d i z e r and

technique, have r e p o r t e d e s s e n t i a l l y the same trend o f (144) r e s u l t s as t h a t g i v e n by H i l t y and F a r r e l l

.

The

s t o i c h i o m e t r i c C^A-y phase was c l e a r l y seen a t a p p r o x i mately

75-80 ppm o f Ca i n the (HSLA) s t e e l .

84 Researchers a t

(Wakayama works) Sumitomo Metal i n -

dustries i n Japan^^3) et a l . ' s and

Emi

i

a

o

n

g

et a l . ' s work

Ca treatment) have introduced b u l l e t shooter" L.D.

the l i n e s of Takenouchi (pipeline

The

the above r e s e a r c h . aluminates) and

i n the

CaO

to A^O^

The

presence of the

the e x t e r n a l

and

the C a - a l l o y by the " A l -

i n t o the S t e e l contained

converter.

steels

r a t i o was

160

ton

equivalent

internal

(A^O^-MnS and

CaS)

(Ca-

phases

have shown a c l e a r dependence on the t o t a l c a l c i u m t e n t of the p r e v i o u s l y Saxena and

(Al)-deoxidized

coworker's

'

previously deoxidized

con-

steel.

research

j e c t i o n of CaO-bearing s l a g s i n t o the was

to

(30 kg)

on i n melt which

with aluminum, have shown t h a t

by t h i s treatment alumina c l u s t e r s i n t o the melt changed to CaO-A^O^ i n c l u s i o n s and

that MnS

are

gradually

'disappears." I t i s a l s o i n d i c a t e d t h a t the i n c l u s i o n s , present a f t e r the p r e f u s e d

slag i s injected

are s p h e r i c a l

aluminates with p e r i p h e r a l s u l f i d e s . 1

4

8

J

Saxena e t a l .

have proposed t h a t as soon as the

s l a g i s i n c o n t a c t with the melt two place,

calcium (147,

CaO-bearing

primary r e a c t i o n s

take

namely:

mCaO, , . + (slag)

nAl_0 * t 2 3

mCaO-'n A1,0,(1) 2 3

(19)

and

3 C a 0

(slag)

+

2 [ A 1 ]

*

Al 0 *(s) 2

3

+ 3[Ca]

(20-a)

85 where the c o e f f i c i e n t s m and n i n r e a c t i o n (19) r e p r e s e n t s t o i c h i o m e t r i c f a c t o r s a c c o r d i n g t o the e q u i l i b r i u m pseudo * b i n a r y (CaO-A^O^) phase diagram. A l ^ O ^ r e p r e s e n t s the primary

(Al) d e o x i d a t i o n

Gatellier et a l .

products.

(19 7)

and Holappa

(210)

also

support

the d e o x i d a t i o n mechanism g i v e n by the r e a c t i o n (20). Holappa g i v e s an e q u i v a l e n t r e a c t i o n which comprises

both

e q u i l i b r i a ; namely A l - d e o x i d a t i o n and Ca-treatment: x[Ca]

+ y(Al 0 ). 2

3

n

c

l

u

s

Saxena and c o w o r k e r s ^ reactions

i

o

1 4 7

t

n

'

1 4 8

xCaO.[y-Kr]Al 0 2

^

+ |x.[Al]

3

(20-b)

have p o i n t e d out t h a t these

(19) and (20) o r (21) take p l a c e i n s o f a r as the

bath c o n t a i n s s u f f i c i e n t aluminum and hence low oxygen

acti-

vity. Since a simultaneous ation^

'

'

'

d e o x i d a t i o n and d e s u l f u r i z ;

i n C a - i n j e c t i o n processes

, . , _ (147,148) , ,^ has been observed then Saxena has proposed t o r e p r e s e n t t h i s e q u i l i b r i u m by the r e a c t i o n : (CaO)* + [S] = (CaS)* + [0]

(21)

I t i s a n t i c i p a t e d t h a t i f the CaO and CaS have u n i t a c t i v i t i e s then a ^ = 0.0266 a and hence Saxena and c o O s workers p r e d i c t the p r e c i p i t a t i o n o f CaS s o l e l y i f the oxygen l e v e l i n the melt

i s lower than or equal t o 10 ppm.

Thus, i f a strong d e o x i d a t i o n i s obtained oxygen l e v e l s

pure CaS would p r e c i p i t a t e .

t o reach

such

They propose

86 t h a t s i n c e the CaO has a l s o a very h i g h a f f i n i t y f o r A l 0 2

3

then a s e r i e s o f c a l c i u m aluminates would be formed, namely: CaO + 6A1_0_

Z

Ca0«6Al_0 2 3

(CA,) 6

(19-a)

CaO + 2 A 1 0

3

t

Ca0-2A1 0

(CA )

(19-b)

CaO +

3

t

CaO-Al 0

(CA)

(19-c)

12CaO + 7 A 1 0

3

t

12CaO-7Al 0

3CaO + 2 A 1 0

3

t

3Ca0*2Al 0

2 -i

2

A1 0 2

2

2

Although

o

2

2

3

3

2

(

3

2

2

3

C

A 1 2

7

)

(19-d)

(C^)

i n these l a b o r a t o r y s t u d i e s '

4 7

(19-e) '*

4 8

^

r i c h e d i n c a l c i u m were i d e n t i f i e d , r e a c t i o n which p r e c i p i t a t e the C ^ A 2

, c l e a r l y revealed. the

CaO-CaF

and the C A

7

3

2

oxides en(19d) and (19e)

phases were not

, (147,148) ^, ^ Saxena e t a l . propose t h a t

s l a g s do not c o n t r i b u t e to form CaS on i n -

2

c l u s i o n s u n l e s s the A 1 0 2

aluminates.

i s f i r * s t l y transformed i n t o Ca-

3

Hilty et a l .

Nashiwa e t a l . ' * ^ 5

(

1

6

8

)

,

Salter et a l .

(

1

4

0

)

and

have a l s o agreed w i t h Saxena' s p r o p o s a l .

Gatellier et a l .

(

1

9

7

)

,

Saxena e t a l .

(

1

4

7

,

1

4

8

)

and

Holappa( *°) h o have s t u d i e d the d e o x i d a t i o n i n l a d l e s w i t h 2

w

Ca-treatments have suggested t h a t the i n c l u s i o n morphology can

be r e t a i n e d i n the f i n a l i n g o t only i f sources o f oxy-

gen, which produce r e o x i d a t i o n

are r e s t r i c t e d .

(159) Church e t a l .

have proposed t h a t n u c l e a t i o n o f

Ca-bearing s u l f i d e s take p l a c e e x c l u s i v e l y on Ca-aluminates. • ^ - . - ^ • , ^ , (147,148) Experimental evidence g i v e n by Saxena and Engh shows t h a t as the i n j e c t i o n time o f CaO-slags i n t o the melt

87 increases., the amount o f s u l f u r i n the (Ca) s u l f i d e phase a l s o i n c r e a s e s g r a d u a l l y up to a l e v e l which i s thought t o be the maximum s u l f u r s o l u b i l i t y i n c a l c i u m a l u m i n a t e s . As a f u r t h e r c o r r o b o r a t i o n of these o b s e r v a t i o n s chemical a n a l y s e s o f samples

e x t r a c t e d d u r i n g the i n j e c t i o n

process show a g r a d u a l and continuous increment o f

Ca

which reaches a p l a t e a u a t approximately 20 ppm a t l a t e r i n j e c t i o n stages.

Saxena's and coworkers

previous lab-

o r a t o r y work on CaO-CaF2 i n j e c t i o n has been extended to industrial t r i a l s ^ oratory scale

2 1 4

have

).

Although the r e s u l t s on a l a b -

indicated a r e l a t i v e l y high y i e l d , i n

terms o f t r a n s f o r m a t i o n o f A l ° 3 2

to

t

o

Ca-aluminates and MnS I I

C a - s u l f i d e s , the i n d u s t r i a l s c a l e t r i a l s

d i d not show

such e f f i c i e n c y . The MnS I I was o n l y transformed t o duplex(Ca,

Mn)S- s u l f i d e In

and pure CaS by i t s e l f was not t r a c e d .

an apparent disagreement with a l l o f the p r e v i o u s l y

, , . (140, 147, 148, 159, 168) . .. described investigations with r e s p e c t to the r e q u i r e d c o n d i t i o n s t o change the A ^ O ^ and the MnS I I morphology, i t has been r e p o r t e d ^

2 1 !

^ that

"pure" CaS i s formed e x c l u s i v e l y a f t e r the "A^O^" c o n t e n t i n the Ca-aluminates

i s reduced by Ca t o l e s s than about

40.0%, i . e . when the CaO:Al C>2 r a t i o i s 3.0 or when the 2

3CaO«Al 0.j s t o i c h i o m e t r i c compound i s formed. 2

i n d i c a t e d t h a t once t h i s r a t i o i s reached

I t i s also

the CaS i s

sharply increased. (209) F a u l r i n g and H i l t y

have observed CaS i n the p r e -

88 sence of CaO-A^O^ and C a O ^ A ^ O ^ as the major and minor compounds r e s p e c t i v e l y .

According to the schematic

formation model proposed by T a h t i n e n e t a l .

(97)

trans-

and sup-

(94)

p o r t e d by Holappa

i t i s seen t h a t f a c e t e d

probably as the hexagonal

Ca-aluminate

inclusions,

which corresponds

to CaO'GA^O^, r e p r e s e n t the i n c i p i e n t t r a n s i t i o n o f the a-A^O-j to the Ca-aluminates

and the simultaneous

tran(94)

s i t i o n o f the MnS to (Ca, Mn) ,S. G u s t a f f s o n and Melberg (209 217) Faulring et a l . ' have observed these phases i n (15) Ca-treated ingots. phases

Mitchell

has a l s o r e p o r t e d these

i n ESR-ingots.

The most comprehensive

work which a n a l y z e s , on thermo-

dynamic p r i n c i p l e s , the p r e c i p i t a t i o n sequence o f A ^ O ^ and Ca-aluminates

i s t h a t developed by F a u l r i n g and

Ramalingam^ ^.

These r e s e a r c h e r s have developed a

21

t e r n a r y Al-O-Ca e q u i l i b r i u m , i s o t h e r m a l (1550°C, 1823°K) p r e c i p i t a t i o n diagram based on Henrian a c t i v i t i e s . have e s t a b l i s h e d t h a t although diagrams

They

o f t h i s k i n d (three

components, i s o t h e r m a l and Henrian behavior) are hypot h e t i c a l i n nature, these a r e very h e l p f u l

i n the

understanding and p r e d i c t i n g of the i d e n t i t y o f i n c l u s i o n s from the c h e m i s t r y o f the bath o f v i c e v e r s a . I t i s a l s o emphasized

by these r e s e a r c h e r s , t h a t

Henrian a c t i v i t y behavior was assumed due t o the i n c o n s i s t e n c y found i n the thermodynamic data a v a i l a b l e f o r

89 calcium. was

T h i s t h r e e dimensional diagram

developed

(h^, ^ c a ' ^ A l ^

by p r o j e c t i n g the i s o t h e r m a l Al-O,

and Ca-Al b i n a r y e q u i l i b r i a .

Ca-O

Thus, o r i g i n a t i n g the

sat-

u r a t e d and unsaturated s u r f a c e s which w i l l g i v e the volume of s t a b i l i t y ,

Figure (11).

Thermodynamic data used to

c o n s t r u c t t h i s diagram i s condensed i n t a b l e s (IV, V and VI) . F a u l r i n g ' s and Ramalingam's experimental and

theoreti-

c a l f i n d i n g s are condensed i n the f o l l o w i n g p o i n t s : 1)

The Ca:Al r a t i o determines

c l u s i o n phases.

2)

The

the i d e n t i t y o f the i n -

amount of c a l c i u m f o r a g i v e n

amount of aluminum v a r i e s over a narrow range f o r each aluminate phase.

3)

If h ^ A

> 0.01

i n s t e e l , c a l c i u m has

a n e g l i g i b l e e f f e c t as a d e o x i d i z e r but does a l t e r

the

composition and thus the morphology of the i n c l u s i o n s 4)

as the major phase

F i n a l l y , F a u l r i n g and Ramalingam have determined p i r i c a l l y s e v e r a l c o r r e c t i o n parameters based on C a

and

Close c o n t r o l of the Ca:Al r a t i o to o b t a i n a d e s i r e d

Ca-aluminate

h

Ca-

:

h l A

a n <

3

t

n

e

%Ca:%Al r a t i o s

h

i.e.

Ca "Al

2.3

Ca

_

Al

'

x 10~

6

from Ca

f

the

Al

f o r CA , C

• %Ca %

CA

0

A

1

and CA and when

em-

90

alumina

i s present as one of the phases

= 10 x 10 r

2.3.7.3

u

.

Al

Complex Oxides (92)

Pickering

i n h i s aim to c l a s s i f y the nature o f

n o n - m e t a l l i c i n c l u s i o n s i n complex s i l i c a t e systems d e f i n e d f i v e d i f f e r e n t c a t e g o r i e s-,namely: 2)

Olivines,

ierites.

3)

Garnets,

4)

has

1) Pyroxenes,

F e l d s p a r s and

5)

At the same time, these c a t e g o r i e s can be

Cordsub-

c l a s s i f i e d as f o l l o w s : 1)

Pyroxenes, these are compounds of the

MO«Si0 .

Where M can be Fe, Mn

2

grunerite

(FeO«Si0 ), 2

(MgO«Si0 ), 2

the d i o p s i d e

2

and MgO

and

enstatite

Since t h e r e i s e x t e n s i v e s o l u ^ i n the presence

of S i 0

2

then

be c o n s i d e r e d as a mix-

2

2

T h e i r names are

(MnO«Si0 ) and

(CaO«MgO•2Si0 ) may

t u r e of CaO*Si0 2)

rhodonite

respectively.

b i l i t y between CaO

and Mg.

type

MgO«Si0 2

O l i v i n e s , t h i s category comprises

the same e l e -

ments as the p r e v i o u s c l a s s i f i c a t i o n ; t h e i r s t o i c h i o m e t r y , however, i s g i v e n as: (2FeO-Si0 ), 2

2 MO«Si0 . 2

Thus,

t e p h r o i t e (2MnO«Si0 ) and 2

fayalite

forsterite

(2MgO«Si0 ) are the main phases of t h i s k i n d . 2

w i t h Ca i n this category i s not i n c l u d e d due ionic size.

A compound

to t h i s l a r g e

I t i s a n t i c i p a t e d , however, t h a t s i n c e the

main t h r e e phases have complete mutual s o l u b i l i t y d i s s o l v e up to 50%

CaO.

they

can

3) general

Garnets.

T h i s s e r i e s of compounds f o l l o w s the

stoichiometry

given by 3 M 0 « A 1 0 • 3SiC> 2

case can be Fe, Mn, Mg and Ca. A1 0 «3Si0 ), spessartite 2

3

2

(3MgO«Al 0 «3Si0 ) 2

3

3

Thus, almandine 2

(3FeO*

3

2

and g l o s s u l a r i t e (3CaO•A1 0 •3Si0 ) a r e

2

2

show v i r t u a l l y complete mutual

form:

M i n this

( 3 M n O « A 1 0 • 3 S i 0 ) , pyrope

the s u b c l a s s i f i e d phases i n t h i s group.

4)

.

2

3

2

A l l these phases

solubility.

The f e l d s p a r group i n c l u d e s phases o f the general

MO•A1 0 •2Si0 2

3

where M represents

2

Mn and Ca. These

phases a l s o show mutual s o l u b i l i t y and take i n t o s o l u t i o n c e r t a i n q u a n t i t i e s o f FeO or MgO r e p l a c i n g MnO o r CaO. 5)

Cordierites.

T h i s i s a group which

compounds o f the f o l l o w i n g g e n e r a l 5Si0 .

M there

2

represents

K i e s s l i n g and Lange

encompasses

chemistry:

2MO«2Al 0 « 2

3

Fe, Mn and Mg. (91)

(92) Pickering

i n agreement w i t h

have c l a s s i f i e d the most common compounds i n the C a O - A l 0 ~ 2

Si0

2

(C-A-S) system, i n the f o l l o w i n g manner:

anorthites.

2)

C A«S, gehlenite. 2

C o r d e r i t e and 4)

3)

2

2

Lange have e s t a b l i s h e d t h a t the C « A « S , C « A « S C

2* 2* 5 A

S

t v

P

e s

a

r

e

n

o

t

,

5

K i e s s l i n g and

3

2

2

C « A « S , Ca-

C «A«S , glossularite. 3

1) C « A « S

3

3

3

and the

common i n c l u s i o n phases. (9192)

I t i s g e n e r a l l y agreed

'

that to avoid

chemical a n a l y s i s by EPMA, due t o the extensive

misleadin

mutual s o l u -

92 bilities

and the wide v a r i a t i o n o f compositions

around the

s t o i c h i o m e t r i c v a l u e s , i t i s r e q u i r e d t o know not only the Ca, A l and S i but a l s o the amount o f Mn, Mg, Fe and T i . (91) A summary o f work performed

by K i e s s l i n g and Lange

i n the C-A-S system i s g r a p h i c a l l y shown i n F i g u r e (12). The L^ and

l i n e s r e p r e s e n t the maximum and the minimum

MeO:SiC>2 r a t i o s i n the phases o f the i n c l u s i o n s .

Although

the b i n a r y oxide MeO p r i n c i p a l l y r e p r e s e n t s CaO, i t can f r e q u e n t l y c o n t a i n v a r i o u s amounts o f FeO, MnO and MgO. I t has a l s o been p o i n t e d out t h a t the c e n t r a l between L^ and L

2

l a r g e l y corresponds

p a r t s o f the above systems.

t o the low-melting

The open c i r c l e s r e p r e s e n t

chemical composition o f indigeneous by K i e s s l i n g and Lange.

area

inclusions

determined

The major area, on the A l 0 2 - S i 0 2 2

s i d e are chemical a n a l y s i s o f e x t r a c t e d samples from a Ca-Si A • a. (207) d e o x i-Ad i z e dA ingots (91 92) I t i s suggested

'

the d e o x i d a t i o n products

t h a t t o t r a c e the o r i g i n o f a knowledge o f the furnace and

l a d l e s l a g and r e f r a c t o r y composition as w e l l as the deoxidation practice i s required.

S a l t e r and P i c k e r i n g ' ^ 4

have r e p o r t e d t h a t i n c l u s i o n phases i n the range of the C2*A'S-C2* * 2 types a r e commonly found i n Ca-Si de(208) M

S

o x i d i z e d melts.

Other

studies

on d e o x i d a t i o n o f s t e e l

w i t h complex d e o x i d i z e r s ( C a S i A l and MgSiAl) have r e p o r t e d i n c l u s i o n compositions

as f o l l o w s : A^O^/

5.0 - 82.7 %,

93

CaO,

6.6

- 37%;

FeO,

1.4

- 6.0%;

Lindon and B i l l i n g t o n ^ alumina

content i n the C-S-A

pure alumina

1 1 5

^

and S i 0 , 2

2.4

- 64.4%.

have a l s o found t h a t the

products i n c r e a s e s to approach

as the A pet. 0: pet. A l added decreases

l e s s than the s t o i c h i o m e t r i c r a t i o .

to

The c h e m i s t r y of the

d e o x i d a t i o n products i n d i c a t e t h a t the degree of u t i l i z a t i o n (181 of c a l c i u m i s maximum o n l y f o r a s h o r t p e r i o d of time 202 •'

'

20 5) .

Hence, i f there i s not s u f f i c i e n t r e s i d u a l

cium i n the melt

although CaO

cal-

i s present i n the d e o x i d a t i o n

p r o d u c t , i t w i l l mainly c o n t r i b u t e to reduce

the

activity

of s i l i c a and thus to achieve a lower oxygen content. (94) Holappa's r e s u l t s Experiments

also e x h i b i t s i m i l a r trends.

i n t h i s r e s e a r c h show t h a t the aluminum i n

s o l u t i o n c o n t r o l s the A l 0 : C a 0 r a t i o and a l s o the 2

3

content i n the d e o x i d a t i o n p r o d u c t s . s o l u t i o n i n c r e a s e s from 0.05

to 0.4%

a l s o i n c r e a s e s whereas the S i 0 the endogenous

Si0

2

I f the aluminum i n the A l 0 : C a O 2

3

ratio

g r a d u a l l y decreases i n

2

p r e c i p i t a t i o n products.

As d e p i c t e d i n the C a 0 - S i 0 ~ A l 0 2

2

3

ternary, t h i s (91)

h a v i o r agrees w i t h K i e s s l i n g ' s and Lange's i . e . i n c l u s i o n chemistry w i l l f o l l o w a tendency w i t h i n the area of low m e l t i n g p o i n t

be-

proposal, to

e n c l o s e d by

fall and

94 2.4

I n c l u s i o n s i n ESR-ingots In s p i t e of the improvement i n mechanical p r o p e r t i e s

mainly due to i n c l u s i o n s i z e and q u a n t i t y

o b t a i n e d by the

ESR-process/ l i t t l e work has been p u b l i s h e d with r e s p e c t to the i n c l u s i o n c h e m i s t r y .

One of the major drawbacks found

i n approaching the i n c l u s i o n chemistry m e t a l l o g r a p h i c o r microprobe t r a c t i o n methods

e i t h e r i n s i t u by

(EPMA) techniques

o r by

ex-

i s the s m a l l i n c l u s i o n s i z e .

While

en-

dogeneous (primary d e o x i d a t i o n products) i n c l u s i o n s i n conv e n t i o n a l steelmaking p r a c t i c e s are 15-40 products

manufactured

by

the

between 2 to 10 ym i n diameter.

ym i n diameter,

ESR-technology

;

they range

The second major d i f f i c u l t y

of t h e i r study i s the complexity of the r e a c t i o n scheme. The p r e c i p i t a t i o n of i n c l u s i o n s i n the ESR-process been s t u d i e d by B e l l

( 2 1 8 )

and M i t c h e l l

f e r e n t s l a g and d e o x i d a t i o n p r a c t i c e s . the Fe-O-Al system and CaF ~30% A^O^ 2

( 1 5

'

under

2 1 9 )

has

dif-

B e l l ' s f i n d i n g s on slag,

indicate

that

the f i n a l i n c l u s i o n composition cannot be e x p l a i n e d by the c l a s s i c a l n u c l e a t i o n theory a p p l i e d t o the l i q u i d i.e.

i n s u f f i c i e n t supersaturation for nucleation.

observed, however, t h a t t h i s requirement was e x c l u s i v e l y i n l a t t e r stages of

pool,

I t was

fulfilled

solidification.

(15) Mitchell

i n an attempt t o i n f l u e n c e the p r e c i p i t -

a t i o n s i t e i n l a b o r a t o r y ESR-ingots

has induced an i n s t a n t -

aneous s u p e r s a t u r a t i o n by adding f e r r o s i l i c o n i n t o the

95 metal p o o l through was

the s l a g .

Under these c o n d i t i o n s , i t

a n t i c i p a t e d t h a t the i n c l u s i o n s i z e d i s t r i b u t i o n i n the

i n g o t would show the e f f e c t of growth time and flotation. produced inclusion

possibly

His r e s u l t s i n agreement with B e l l ' s , however,

no d e t e c t a b l e change i n e i t h e r oxygen content or distribution.

Other s t u d i e s on F e - C u which e x h i b i t w e l l developed

( 1 5 )

and F e - N i

( 2 1 8 )

(ESR)-alloys

d e n d r i t e s , have shown e i t h e r

i n c l u s i o n s a l i g n e d along the i n t e r d e n d r i t i c r e g i o n or d e n d r i t e s f o l d e d around i n c l u s i o n s . enabled them to suggest

These o b s e r v a t i o n s have

that inclusions

i n the f i r s t

case

were formed a t e a r l y stages and i n the second case - they might be formed a t the beginning of s o l i d i f i c a t i o n . Hence, i t was

concluded

t h a t d e o x i d a t i o n i n the ESR process

occurs

by chemical e q u i l i b r a t i o n of oxygen and deoxidant with s l a g and

the

s i n c e almost a l l i n c l u s i o n s are n u c l e a t e d and

grown i n i n t e r d e n d r i t i c r e g i o n s d u r i n g s o l i d i f i c a t i o n , i n c l u s i o n f l o t a t i o n mechanism (15 Mitchell

was

the

discarded.

i

' has r e p o r t e d t h a t o n l y very few

inclusions

from the e l e c t r o d e p e n e t r a t e to the l i q u i d p o o l bulk

and

those which do so are s u b s t a n t i a l l y a l t e r e d i n composition. I t has been widely r e c o g n i z e d t h a t due area a v a i l a b l e f o r thermochemical a c t i o n s and temperature

to the s u r f a c e

and e l e c t r o c h e m i c a l r e -

d i f f e r e n c e s i n ESR-furnaces;

two

96 d i f f e r e n t behaviors a l s o observed.

i n terms o f i n c l u s i o n chemistry

are

Work on the Fe-O-Al and on the Ni-O-Al

(218 220) systems performed a t U.B.C. ' i n agreement with (38) Miska's and Wahlster's work i n l a b o r a t o r y ESR-furnaces has shown t h a t the A l - 0 behavior does not obey the s t o i c h i o (218) metric who

r a t i o expected from e q u i l i b r i u m c o n d i t i o n s .

has remelted e l e c t r o d e s i n CaF -25% A^O^

under an argon

2

atmosphere

has found t h a t i f an

t o t a l oxygen content of 30 ppm

(anodic) e l e c t r o d e

with a

i s remelted, a d r a s t i c i n -

crement of oxygen i s observed a t the d r o p l e t s and t h i s i s reduced down t o about 70 ppm passed through the c a t h o d i c

Bell

ppm)

a f t e r they have

ingot surface.

c o n d i t i o n s h e r c y n i t e or a mixture e n r i c h e d alumina as i n c l u s i o n s would be expected.

1600

Under the above i n hercynite

and

Miska e t a l . ' s

(38) work

on aluminum a l l o y e d s t e e l s remelted i n a l a b o r -

a t o r y ESR-furnace under alumina s a t u r a t e d C a F ~ s l a g s has 2

a l s o shown t h a t the oxygen content f a r exceeded brium,

2 3 [Al] [0] , product.

B e l l has a l s o performed

(ESR)

laboratory scale experi-

ments i n which aluminum d e o x i d a t i o n was trodes c o n t a i n i n g 700 and 30 ppm through a CaF ~25 wt% 2

levels

the e q u i l i -

(1.15, 10.3

A l 2

°3

s l a

and 44.0

d e o x i d i z e r i n the melt was

9~ ' s

c a r r i e d out.

Elec-

of oxygen were r e f i n e d deoxidized a t various

grams).

The i n t r o d u c t i o n of

c a r r i e d out by a t t a c h i n g aluminum

97 wires to the e l e c t r o d e s .

R e s u l t s o f these s e r i e s of ex-

periments showed an 'apparent e q u i l i b r i u m temperature' of 2000 to 2100°C

r a t h e r than 1700°C.

/

Thus, whereas the

metal was expected t o l o s e aluminum and oxygen as alumina to the s l a g

sometimes the opposite

was observed.

I t was

suggested t h a t t h i s d i f f e r e n c e i s due to the i n e f f i c i e n c y of the aluminum d e o x i d a t i o n i s required

and t h a t an excess of aluminum

to lower the oxygen content.

Since c a l c u l a t i o n s

have shown t h a t l o s s e s of aluminum to atmospheric o x i d a t i o n would be as important as the s l a g d e o x i d a t i o n

reaction

then i t was proposed that the r e a c t i o n s : 2A1

( 1 )

+ 3(FeO) t

2A1

( 1 )

+ |

F

e

(i)

+

Al 0 (s) 2

3

(12-iv)

and

take p l a c e .

(O)

t Al 0 (s) 2

3

(ll'-ii)

T h i s l a s t r e a c t i o n was the most probable,

since

the condensation s i t e would be the c o l d mold w a l l where the aluminum i s not r e f l u x e d but removed from the system. Miska e t a l . ' ^ 8

2 2 0

in

^

have

found

i n agreement w i t h B u r e l ' s findings'"'"'

. t h a t the amount o f alumina or h e r c y n i t e

(ESR) l a b o r a t o r y

s c a l e i n g o t s was s t r o n g l y

as compared t o the i n i t i a l q u a n t i t y

increased

t r a c e d i n the e l e c t r o d e .

(55) Kajioka achieved

et a l .

have r e p o r t e d

that better c l e a n l i n e s s i s

i n l a r g e r r a t h e r than i n smaller ESR-furnaces.

e r a l explanations

Sev-

have been proposed to account f o r the above

98

facts; than

i t i s , however, accepted t h a t e l e c t r o c h e m i c a l r a t h e r chemical

reactions

control

the

ingot

and

hence

(63)

the

inclusion

chemistry.

Boucher's

work

on e q u i v a l e n t s l a g compositions to the p r e v i o u s works have suggested t h a t i n i n d u s t r i a l ESR-ingots i s a l a r g e r s u r f a c e area exposed

where t h e r e

t o the s l a g , chemical

i n s t e a d o f e l e c t r o c h e m i c a l r e a c t i o n s govern the i n g o t and thus the i n c l u s i o n chemistry. w i t h some s c a t t e r

Boucher's

findings,

show t h a t there i s a l i n e a r

although

relationship

between the "FeO" content i n the s l a g and the aluminum i n the i n g o t .

T h i s behavior was an i n d i c a t i o n that thermo-

dynamic e q u i l i b r i u m was p r a c t i c a l l y achieved.

While

Bell's

f i n d i n g s suggest an "apparent e q u i l i b r i u m temperature" i n the 1900° t o 2000°C range f o r alumina i n s m a l l Boucher's an almost 1700°C.

i n d u s t r i a l s c a l e ESR-experiments

ESR i n g o t s ,

suggest t h a t

t r u e thermodynamic e q u i l i b r i a i s reached a t He a l s o c l a i m s t h a t almost pure alumina

were i d e n t i f i e d when the p r o t e c t i v e

inclusions

(Ar) atmosphere was

t i g h t l y maintained throughout the r e f i n i n g p e r i o d . R e t e l s d o r f and W i n t e r h a g e r ^ ^ 9

i n t h e i r aim t o produce

alumina f r e e h i g h carbon ferrochrome and metal chrome by ESR.

have found t h a t r e l a t i v e l y l a r g e diameter

about 200 mm,

ingots,

c o n t a i n e d e i t h e r a-A^O^ 'C^O^ or a-alumina

(corundum) and the aluminum and oxygen contents always c o r -

responded

to the A l - 0 e q u i l i b r i u m .

Their "unsuccessful"

f i n d i n g s were claimed to be due t o the high o x i d a t i o n p o t e n t i a l of the s l a g

(CaF -CaO-Al C> 2

2

3

w i t h 30%

Al 0 ) 2

3

and to the i n e f f i c i e n c y of the p r o t e c t i v e atmosphere. (15) Mitchell complex

who

has remelted e l e c t r o d e s c o n t a i n i n g

(calcium alumina s i l i c a t e ) i n c l u s i o n phases

r e p o r t e d t h a t i n g o t s remelted through CaF ~20 wt.%

A1 0

2

and h i g h aluminum d e o x i d a t i o n (0.5% A l ) t a i n calcium bearing i n c l u s i o n s .

has 2

3

are prone to con-

I t has a l s o been r e p o r t e d

i n t h i s study t h a t although l e s s than one p e r c e n t of these i n c l u s i o n s c o n t a i n e d s i l i c a , where i t was h i g h as

found i t was

as

50%. (74)

Holzgruber's work CaF ~CaO-Al 0 2

2

levels

3

on the e f f e c t of s i l i c a of the

s l a g system,

has found t h a t a t low

silica

(4.2%) i n the s l a g , c a l c i u m aluminates c o n t a i n i n g

84% Al C» , 12% CaO 2

3

and about

sulfide phase—probably Another 32% A l 0 ^ 2

1% s i l i c a w i t h a p e r i p h e r a l

( C a M n ) s — a r e commonly found.

p e c u l i a r i n c l u s i o n composition

and 56% CaO)

(14%

r e p o r t e d by Holzgruber

c o n t a i n e d a p e r i p h e r a l s u l f i d e phase

was

Si0 , 2

which a l s o

obtained under

the above experimental c o n d i t i o n s , the s i l i c a i n the however was t h a t about

about

12.0

wt.%.

12-15% s i l i c a

Holzgruber's f i n d i n g s

slag, indicate

i n the s l a g y i e l d s the h i g h e s t Ca

100

content i n i n c l u s i o n s . These r e s u l t s were l a t e r confirmed by A l l i b e r t e t (53 al.

54) '

.

I t should be mentioned t h a t Holzgruber's e x p e r i -

ments were performed though s i l i c o n was

under v a r i a b l e CaOrSiC^

used as d e o x i d i z e r

r a t i o s and a l -

the amount was

not

specified. (53 A l l i b e r t et a l . ' s studies

54) '

on the a c i d - b a s i c

r e a c t i o n s i n the CaF2-Al202-CaO-SiC>2 s l a g system i n agreement with Holzgruber's

f i n d i n g s have r e p o r t e d t h a t a t

low

s i l i c a content i n the s l a g , c a l c i u m aluminates a s s o c i a t e d with a s u l f i d e phase are c o i n c i d e n t a l l y Holzgruber's of

precipitated.

and A l l i b e r t ' s e t a l . ' s f i n d i n g s i n terms

s l a g and i n c l u s i o n chemical composition a r e shown i n (53 54)

Figures

(12) and

(13).

A l l i b e r t et a l .

'

have c l a s s i -

f i e d the i n c l u s i o n composition i n oxides p l u s s u l f i d e s sulfides.

The

and

f i r s t types are l o c a t e d i n the t e r n a r y where

a r e l a t i v e l y high a c t i v i t y of s i l i c a The s u l f i d e zone

i s found, Zone (1).

(2) i s l o c a t e d a t moderate s i l i c a

activities.

Holzgruber*s r e s u l t s , c i r c l e s e n c l o s i n g a s o l i d square,

also

r e f l e c t s i m i l a r trends. (74) I t has been r e p o r t e d the ESR-slag

t h a t i f th,j s i l i c a content i n

i s h i g h e r than 10%,

the percent of s i l i c a i n

i n c l u s i o n s w i l l be higher than the p e r c e n t i n the s l a g . Simu l t a n e o u s l y to t h i s s i l i c a increment

the s i z e of

inclusions

w i l l be l a r g e r and hence the t o t a l oxygen w i l l a l s o be i n creased. (92) Holzgruber i n agreement with P i c k e r i n g and Lange (91) has a l s o found t h a t higher s i l i c a

and K i e s s l i n g content

101 i n the s l a g , the alumina s i l i c a t e phase i n i n c l u s i o n s c o n t a i n s e i t h e r CaO or MnO, but n o t both compounds t o g e t h e r . Holzgruber has a l s o noted t h a t i f r e f i n i n g i s c a r r i e d out

i n alumina f r e e CaO-CaF

2

slags

manganese s i l i c a t e s which c o n t a i n

small alumina f r e e a maximum o f 10 wt %

CaO w i l l be the most common type o f i n c l u s i o n s

found.

(83) Rehak e t a l .

who have s t u d i e d

the e f f e c t of e l e c -

trode and s l a g chemistry on i n c l u s i o n s i n ESR-ingots remelted a s t e e l (CSN 19.426 used f o r c o l d r o l l i n g

have

rods)

produced v i a e l e c t r i c a r c furnace under e i t h e r CaSi or A l deoxidation

practices.

clusions i n electrodes

The chemical composition o f i n Al-deoxidized

2.23 wt% CaO and 5.43 wt % MgO. electrodes

i t was as f o l l o w s :

CaO, 5.36 wt. % S i 0

2

is:

92.25 wt% A^O^,

In the CaSi

deoxidized

58.48 wt.% A l 0 , 2

3

19.46 wt. %

and 16.7% MgO.

Three major s l a g types were s e l e c t e d t o r e f i n e these electrodes;

namely b a s i c , n e u t r a l and a c i d i c .

s e r i e s o f aluminum d e o x i d i z e d i n i n c l u s i o n s and only

ingots

While the

showed almost pure

Al 0

t r a c e s of Ca ( l e s s than 1%), s i l i c a

was d e t e c t e d e x c l u s i v e l y i n one case where the s i l i c a

con-

t e n t i n t h e s l a g was as h i g h as 25%. The

CaSi d e o x i d i z e d

after refining

s e r i e s of e l e c t r o d e s

a h i g h e r Ca-content

showed,

(2.41 t o 6.91%). The

e f f e c t o f the s i l i c a content i n the s l a g was s t r o n g l y

2

3

r e f l e c t e d i n the i n c l u s i o n chemistry.

The

s l a g and

chemistry are a l s o shown i n Figures (12 and t a i n i n g 50% C a F

2

30% CaO

and 20% S i 0

both c o n s i d e r e d as n e u t r a l duced S i 0

2

v a r i e d from 2.4 1.5

to The

(53.0

from 27.0

to 5.0%.

and a pure C a F

2

The MgO

t o 71.36% S i 0 ) . 2

t o 39.4%. ranged

The CaO

from

con-

slag,

Their

content

approximately

3.5%. CaSi s e r i e s of e l e c t r o d e s remelted through b a s i c

s l a g s showed a s l i g h t l y higher CaO-contents than i n the p r e v i o u s ESR s i o n s of about 0.3

ingots.

to 0.57%

were

on the other hand v a r i e d from 5.1 content

A slag

and the h i g h l y a c i d i c s l a g s p r o -

enriched inclusions

alumina content ranged

2

13).

inclusion

which was

(3.2 to 6.9 5%)

Traces of s i l i c a i n i n c l u f o u n d s

The MgO

t o 10.0%

the major component, was

contents,

and the

alumina

86-87%.

Rehak e t a l . have concluded t h a t oxide i n c l u s i o n s are s e q u e n t i a l l y formed as t h e i r thermochemical oxygen i s d i c t a t e d .

They have suggested

affinity for

t h a t the a-A^O^

(corundum) w i l l form f i r s t and as the a c t i v i t y of aluminum in for

the melt decreases other elements with lower

affinity

oxygen, such as c a l c i u m - a l u m i n u m - s i l i c a t e i n c l u s i o n s ,

w i l l subsequently be formed.

Thus, the parameters which i n f l u e n c e the f i n a l i n c l u s i o n chemical composition are the s l a g chemical composition trode

(49 51 53 54 74)

( 8 3 )

o f the e l e c -

.

Several obtained

and the d e o x i d a t i o n

s t u d i e s on mechanical p r o p e r t i e s o f ESR-ingots

under d i f f e r e n t p r a c t i c e s have been r e c e n t l y pub(133)

lished.

Work c a r r i e d out by Boldy e t a l .

w i t h the e f f e c t of s u l f i d e i n c l u s i o n s on the phenomenon.

has d e a l t "overheating"

Overheated m a t e r i a l s , as a r e s u l t of p r e c i p i -

t a t i o n o f manganese s u l f i d e s onto h i g h temperature 1400°C) a u s t e n i t i c g r a i n boundaries toughness.

These r e s e a r c h e r s

(1100°-

show a r e d u c t i o n i n

describe

t h a t a f a c e t e d ap-

pearance of the f r a c t u r e s u r f a c e i s c h a r a c t e r i s t i c of an "overheated" m a t e r i a l . I t has been found t h a t although r e f i n i n g processes such as ESR and VAR i n g o t s

a r e capable o f r e d u c i n g the

s u l f u r content i n i n g o t s down t o very

low l e v e l s and hence

promoting the p r e c i p i t a t i o n o f a f i n e d i s p e r s i o n o f s u l -

104

f i d e s , i t enhances the i n t e r g r a n u l a r ( a u s t e n i t i c ) p r e c i p i t a t i o n which causes o v e r h e a t i n g .

S e v e r a l c o u n t e r a c t i n g measures

have been proposed t o overcome such a problem, i . e . changes i n i n g o t chemistry o r d e o x i d a t i o n p r a c t i c e s o r c o o l i n g r a t e s other

than a i r c o o l i n g (^100°C/min).

Another communication

(221) which has e v a l u a t e d and compared mechanical p r o p e r t i e s between VAR and c a l c i u m - t r e a t e d ESR-ingots under s e v e r a l s l a g s and d e o x i d a t i o n r a t e s , has shown t h a t impact s t r e n g t h i s s t r o n g l y a f f e c t e d by these v a r i a b l e s . at h i g h c a l c i u m d e o x i d a t i o n r a t e s

T h i s work shows t h a t

(0.14% Ca) the aluminum

and oxygen and p a r t i c u l a r l y the s i l i c o n content are s h a r p l y increased during remelting.

The ESR i n g o t s e x h i b i t e d a

g r a d u a l increment i n the i n c l u s i o n s i z e as the Ca-deoxidation l e v e l was i n c r e a s e d

(0.032%, 0.047% and 0.14% Ca).

As a

r e s u l t o f the above parameters the lowest toughness was a t the h i g h e s t c a l c i u m d e o x i d a t i o n l e v e l s . studies

found

In these

n e i t h e r the i n c l u s i o n chemical composition

nor a

s e l f - c o n s i s t e n t e x p l a n a t i o n as t o why the mechanical prope r t i e s e x h i b i t e d such a behavior, Although

the Ca/CaF

2

have been c o n s i d e r e d .

s o l u t i o n has been used

industri-

(86) ally and

i n ESR f o r removing phosphorous from s t a i n l e s s (85) s u l f u r from r o t o r s t e e l s

and as a r e s u l t

improved

mechanical p r o p e r t i e s have been r e p o r t e d , the i n c l u s i o n chemical composition

has not been i n v e s t i g a t e d .

steels

105

Viswanatan

and Beck (222) have r e c o n f i r m e d f i n d i n g s from R a t l i f f

(223) and Brown

i n terms of determining the i n f l u e n c e o f

A l i n the mechanical p r o p e r t i e s o f a r o t o r Their results c l e a r l y (more than 230 ppm) trides,

(Cr-Mo-V) s t e e l .

show t h a t the presence o f aluminum

i n solid solution

without forming n i -

markedly reduces the r u p t u r e d u c t i l i t y and hence

leads to premature

failures.

106

CHAPTER I I I NATURE OF THE PROBLEM A comprehensive work on s e m i - i n d u s t r i a l o r f u l l - s c a l e ESR

experiments, which would account f o r a l l o f the s t e p s -

a t the e l e c t r o d e , e l e c t r o d e - s l a g , s l a g - l i q u i d p o o l and i n the process

of s o l i d i f i c a t i o n during r e f i n i n g and the e f -

f e c t s o f s l a g s and d e o x i d i z e r s on the f i n a l i n g o t and hence the i n c l u s i o n chemistry,

3.1

has y e t not been performed.

I n c l u s i o n s i n the E l e c t r o d e (2-5) Several studies

have attempted t o e l u c i d a t e the

nature o f the t r a n s f o r m a t i o n s to i n g o t s d u r i n g r e f i n i n g . have analysed

of i n c l u s i o n s from e l e c t r o d e s

Mathematical m o d e l s ^ ^ which 9

the thermal h i s t o r y o f e l e c t r o d e s

s t r a t e d that c r i t i c a l

have demon-

thermal g r a d i e n t s are developed a t

the e l e c t r o d e t i p . Regarding the mechanism by which i n c l u s i o n s i n the e l e c t r o d e a r e removed, c o n t r o v e r s i a l and i n c o n s i s t e n t models -,(1,5) have been proposed ' .

., . (1,12,13,15,16) While some r e s e a r c h e r s '

have r e p o r t e d t h a t i n c l u s i o n s are g r a d u a l l y d i s s o l v e d

as a

consequence o f the thermal g r a d i e n t s a t the e l e c t r o d e t i p , (17 19 20) others (?

ers

'

•' 35

have r e p o r t e d the o p p o s i t e .

Other

research-

i

have suggested t h a t the e l i m i n a t i o n o f i n c l u s i o n s

from e l e c t r o d e s i s by mechanical a c t i o n .

On the other hand,

107 (15) studies

performed on i n c l u s i o n s a t the l i q u i d f i l m have

demonstrated t h a t i n c l u s i o n s do not c h e m i c a l l y show any l a r i t y with i n c l u s i o n s i n areas where e l e c t r o d e s (22) low thermal g r a d i e n t s .

Other s t u d i e s

simi-

experience

i n f u l l scale

(ESR)

e l e c t r o d e s , i n agreement with t h i s p r o p o s a l , have a l s o suggested

t h a t there i s a c r i t i c a l l e n g t h above the l i q u i d

where c e r t a i n v o l u m e t r i c Russian

changes of i n c l u s i o n s take (19 20)

investigators

'

film

place.

have a l s o p o i n t e d

out

t h a t the c h a r a c t e r i s t i c

l i q u i d u s - s o l i d u s l e n g t h of

a l s o p l a y s an important

r o l e i n the removal of i n c l u s i o n s

from the e l e c t r o d e .

seen i n t h i s summarized review,

As

there i s a v a s t q u a n t i t y of q u a l i t a t i v e i n f o r m a t i o n

alloys

but

o n l y a l i m i t e d amount of q u a n t i t a t i v e i n f o r m a t i o n a v a i l a b l e . Since the chemical

nature of i n c l u s i o n s i s r e l a t e d to

t h e i r t r a n s f o r m a t i o n as a r e s u l t of the steep thermal g r a d i ents a t the e l e c t r o d e t i p i t has qualitative basis

only been approached on a

( i n terms of the chemical

composition

of

the e l e c t r o d e ) and q u a n t i t a t i v e a n a l y s i s ( i n terms of i n clusion size distributions),

i t was,

however, very c l e a r

t h a t a deeper study which c o u l d r a t i o n a l i z e the r e s e a r c h , would be very

valuable.

reported

108 3.2

The

Chemical I n f l u e n c e of the ESR

Components on

the

Composition of I n c l u s i o n s TT



(37,55,58,75-77,79) .

Various to o p t i m i z e by the ESR melting

-

,

have been performed

the chemical homogeneity of i n g o t s manufactured technology.

I t i s widely

accepted

that i f r e -

i s conducted under atmospheric c o n d i t i o n s , an

hanced and occurs.

studies

.

continuous

accumulation

of i r o n oxide

en-

i n the s l a g

I t i s a l s o known t h a t the o x i d a t i v e s t a t e of

the

s l a g with r e s p e c t to the l i q u i d p o o l i s r e l a t e d to the s l a g ^ (38,48,82) system ' ' On an a p r i o r i b a s i s , i t i s understood t h a t i f d e o x i d a t i o n i s not c a r r i e d out d u r i n g r e m e l t i n g then a

sacrifi-

c i a l o x i d a t i o n of r e a c t i v e a l l o y i n g elements takes

place.

S e v e r a l w o r k e r s ' ^ ' ^ ' ^ ' have p o i n t e d out t h a t the

chemical

composition

of the s l a g s t r o n g l y enhances or suppresses c e r -

t a i n reactions during r e f i n i n g . (28 29 58 71) oxides

and

The

net p r o d u c t i o n of

iron

the p r o d u c t i o n of c a l c i u m or alum-

inum a t the e l e c t r o - a c t i v e i n t e r f a c e s d i c t a t e s the o x i d a t i v e s t a t e of the molten p o o l and hence the f i n a l ESR-ingot and i n c l u s i o n chemical

composition.

I t has been proposed t h a t p o l a r i z a t i o n due p a s s i n g through the slag-^skin/mould

w a l l i n t e r f a c e , which

generates s m a l l arc c o n t a c t s , i n c r e a s e s the i n the A.C.

ESR

process

and hence

symetry of r e a c t i o n s (1-5).

to c u r r e n t

rectification

i t enhances the net

as-

This p o l a r i z a t i o n increases

the

109 Fe 2+ content

of the s l a g bulk

a t i o n r a t e s i n the system. p l a i n the chemical

and

thus, accentuates a l l o x i d -

T h i s p r o p o s a l has been used to

composition

of i n c l u s i o n s i n the

ex-

Fe-Al-0

. (219,220) system • ' . The b a s i c i t y index of the s l a g chemical

p o t e n t i a l ) and

(as a measure of i t s

i t s e f f e c t on the chemical

composition

(49-51) of i n g o t s

and

to a l i m i t e d extent on the chemical

t u r e of i n c l u s i o n s ' ' 8

7 4

the German l i t e r a t u r e .

na-

^ , has been s t r o n g l y supported i n These s t u d i e s , however, have not

c l u s i v e l y determined the r o l e of the d e o x i d i z e r , the of the s l a g and/or d e o x i d i z e r , and/or the chemistry

con-

chemistry of

the

e l e c t r o d e or the combined e f f e c t of these parameters on i n c l u s i o n chemical

composition

of ESR

the

ingots.

S e v e r a l d e o x i d a t i o n p r a c t i c e s have been suggested i n / ^ g 74 the l i t e r a t u r e ^

'

8 3)

'

.

Among the uneconomic

deoxidation

techniques,

to overcome l o s s e s of r e a c t i v e elements ( A l ,

Ti,

e t c . ) , i t has been proposed t o :

S i , Mn,

eliminate

the

hard s c a l e from r o l l e d e l e c t r o d e s , d e l i b e r a t e l y i n c r e a s e

the

r a t i o of these s p e c i e s i n the e l e c t r o d e , use p r o t e c t i v e p a i n t i n g s based on Mg or A l , to d e p o s i t o x i d a t i v e elements on electrode surface, etc. nique

The most f r e q u e n t d e o x i d a t i o n

developed e x c l u s i v e l y on an e m p i r i c a l b a s i s

the

tech-

has

been the e x t e r n a l a d d i t i o n of e i t h e r aluminum or s i l i c o n

as

wire, p e l l e t s , f e r r o a l l o y s , e t c . i n t o the s l a g to achieve

a

d e s i r e d i n g o t chemistry.

The

conventional

widespread

deoxi-

110

d a t i o n l e v e l i s about 0.2 wt. % A l o r S i .

I t has been p r o -

(74) posed

t h a t e f f i c i e n t d e o x i d a t i o n i s achieved when a de-

o x i d i z e r i s i n t r o d u c e d i n t o the s l a g which does not c o n t a i n i t s oxide.

On the other hand, other r e s e a r c h e r s have p r o -

(39 48) posed

'

t h a t i f an element i s prone t o o x i d a t i o n ( i . e .

r e a c t i v e elements as T i , S i , Z r , A l etc.) d u r i n g r e f i n i n g , then a d d i t i o n s o f i t s r e s p e c t i v e oxide i n t o the s l a g p r e vents i t s l o s s e s .

The p o t e n t i a l harm o f i n a p p r o p r i a t e de-

o x i d a t i o n w i l l m a n i f e s t i t s e l f i n an uneven d i s t r i b u t i o n (55 75 79) of c r i t i c a l a l l o y i n g elements i n i n g o t s ' ' and r e (221) s u i t i n d e l e t e r i o u s mechanical p r o p e r t i e s These s t u d i e s , however, have not approached the r e a c t i o n mechanisms and hence i n g o t and i n c l u s i o n composition has remained unexplored.

chemical

In summary, although

the need t o i n t r o d u c e a deoxidant i n t o the s l a g , has been i d e n t i f i e d , the net e f f e c t o f i t has not been e l u c i d a t e d . Thus, t o a l a r g e extent the e x p l a n a t i o n f o r the i n g o t chemi s t r y and hence the composition o f i n c l u s i o n s has remained obscure.

In a d d i t i o n , s i n c e the r e a c t i o n mechanisms which

c o n t r o l the chemistry of i n g o t s have not been completely understood,

the e x p l o r a t i o n o f o t h e r a l t e r n a t i v e means of

d e o x i d a t i o n — w i t h t h e i r p o t e n t i a l advantages and d i s a d v a n t a g e s — h a s never been p r o p e r l y i n v e s t i g a t e d .

Ill 3.3

The

P r e c i p i t a t i o n of I n c l u s i o n s from L i q u i d Pool

to

Ingot ,

. ,.

(1,33,36,48,58,61,64)

Several studies

'

' • '

'

'

proached the r e a c t i o n scheme i n the ESR

'

.. . , which have

process

have c l e a r l y

demonstrated the e x i s t e n c e of o x i d a t i o n - r e d u c t i o n a t the e l e c t r o a c t i v e ( e l e c t r o d e t i p - s l a g and

ap-

reactions

slag-liquid

pool) i n t e r f a c e s which l a r g e l y c o n t r i b u t e to c o n t r o l the (218—220) i n g o t and ried

the i n c l u s i o n chemistry.

out a t U.B.C.

has

Research

c l e a r l y r e v e a l e d the

carelectrochemical

nature of i n c l u s i o n p r e c i p i t a t i o n i n the Fe-O-Al system. Chemical a n a l y s i s ( i n s i t u by m e t a l l o g r a p h i c microscopic

techniques

and e l e c t r o -

and by e x t r a c t i n g i n c l u s i o n s and

an-

a l y z i n g them by X-ray techniques) have c o n c l u s i v e l y shown t h a t a s t a t e of thermochemical e q u i l i b r i u m i s only i v e l y obeyed. alumina was

qualitat-

From thermochemical c o n d i t i o n s i n s l a g s

where

expected as the o n l y type of i n c l u s i o n , a mix-

t u r e of i r o n oxide

and h e r c y n i t e , h e r c y n i t e and

found i n s t e a d of pure alumina. The m a j o r i t y of s t u d i e s on the chemical

alumina were

composition

i n c l u s i o n s have been performed on samples from the

of

liquid

(15) film

(at the e l e c t r o d e t i p ) , d r o p l e t s i n process

of form-

a t i o n which have been i n c o n t a c t with the s l a g ' ^ ' ^ " ^ ( a l s o at the e l e c t r o d e t i p ) and ingots.

from samples of a l r e a d y

solidified

112

I t should be p o i n t e d out t h a t these s t u d i e s have been performed i n i n g o t s r e f i n e d i n l a b o r a t o r y ESR-furnaces as p r e v i o u s l y c i t e d , the i s smaller

s u r f a c e area

than i n i n d u s t r i a l

and

available for reactions

s i z e furnaces.

p h y s i c a l l i m i t a t i o n s i n the s m a l l furnaces

In a d d i t i o n

( i . e . electrode

mould w a l l spacing) pose another drawback f o r e x t r a c t i n g samples from e i t h e r l i q u i d p o o l or s l a g . not allowed

researchers

These f a c t o r s have

to e l u c i d a t e the o r i g i n of i n c l u s i o n s .

Thus, the need to i n v e s t i g a t e the thermochemical or e l e c t r o chemical

i n f l u e n c e of the s l a g - l i q u i d p o o l i n t e r f a c e on

chemical

composition

of i n c l u s i o n s and

the

t h e r e f o r e t o unambigu-

ously i d e n t i f y t h e i r o r i g i n i s e s s e n t i a l .

113 3.4

D i s t r i b u t i o n of Inclusions during I t i s g e n e r a l l y accepted

b u t i o n s i n ESR-ingots a r e

Solidification

that i n c l u s i o n size

distri-

markedly s m a l l e r compared t o

i n g o t s produced under c o n v e n t i o n a l and most of the secondary ( r e f i n i n g ) steelmaking

processes.

While i n c o n v e n t i o n a l processes

localized

concen-

t r a t i o n o f i n c l u s i o n s have been widely r e p o r t e d

due to

t h e i r c h a r a c t e r i s t i c c r y s t a l l i z a t i o n mode, i n s e m i - i n d u s t r i a l or f u l l

s c a l e ESR-ingots t h i s phenomenon has almost never been

reported. ESR-ingots

Other i n t e r e s t i n g f e a t u r e s commonly observed i n o b t a i n e d under c o n v e n t i o n a l d e o x i d a t i o n p r a c t i c e s , (224)

are t h e i r i n c l u s i o n s i z e d i s t r i b u t i o n s

(about 2 t o 12ym) (225)

and t h e i r r a d i a l l o c a l s o l i d i f i c a t i o n times

, expressed

as a r e g u l a r d e c r e a s i n g v a r i a t i o n o f t h e i r primary

and second-

ary d e n d r i t e arm spacings along t h e i r r a d i a l d i r e c t i o n s from (65) the c e n t r e l i n e towards the mould w a l l . Several d e t a i l e d (218) s t u d i e s on i n c l u s i o n s i n ESR i n g o t s

where r e f i n i n g o f a

f e r r o u s N i e n r i c h e d a l l o y was performed through a CaF^^CaO s l a g , have found round i n c l u s i o n s a l i g n e d along d e n d r i t e arms.

primary

These o b s e r v a t i o n s l e d to the b e l i e f t h a t

p r e c i p i t a t i o n o f i n c l u s i o n s takes p l a c e homogeneously from the i n t e r d e n d r i t i c l i q u i d . (15 219) formed a t U.B.C. In t h i s study

'

Complementary s t u d i e s

also per-

have a l s o c o r r o b o r a t e d t h i s p r o p o s a l .

i t i s r e p o r t e d t h a t i n c l u s i o n s were l o c a t e d i n

i n t e r d e n d r i t i c spaces and very r a r e l y were d e n d r i t e arms seen

114 f o l d e d around i n c l u s i o n s . Since a t t e m p t s ^ ^ 15

t o generate a s i l i c o n

supersaturation

i n l a b o r a t o r y ESR melts d i d not produce any d e t e c t a b l e

change

i n the i n c l u s i o n s i z e or i n the t o t a l oxygen a n a l y s i s , i t was proposed t h a t n u c l e a t i o n and growth o f i n c l u s i o n s takes almost e x c l u s i v e l y as a r e s u l t of r e j e c t i o n of s o l u t e s solidification.

during

I t was t h e r e f o r e concluded t h a t under a con-

v e n t i o n a l degree o f d e o x i d a t i o n

the i n c l u s i o n f l o t a t i o n mech-

anism was not a p p l i c a b l e , i n disagreement with other ers

place

research-

(1,12,35) ' ' As p r e v i o u s l y s t a t e d

s i n c e there are p h y s i c a l

limit-

a t i o n s and d i f f e r e n t k i n e t i c s a t the e l e c t r o a c t i v e i n t e r f a c e s i n s m a l l ESR furnaces

researchers

have not been able t o ap-

p r o p r i a t e l y monitor a l l o f the r e a c t i o n s i n the v a r i o u s

com-

ponents and stages of r e f i n i n g , a more complete i n v e s t i g a t i o n is

required.

115

3.5

E s t a b l i s h m e n t of the P r o p o s a l and O b j e c t i v e s Sought Through t h i s

Research

A c l e a r n e c e s s i t y to understand

and thereby to c o n t r o l

the sequence of events to which i n c l u s i o n s and the

liquid

metal are s u b j e c t e d i n the v a r i o u s stages of r e f i n i n g i s r e q u i r e d , as seen from the p r e v i o u s review.

Thus, i n order t o

cover a l l the e x i s t i n g gaps and to extend our p r e s e n t unders t a n d i n g r e g a r d i n g the nature of i n c l u s i o n s i n t h i s f i e l d s e r i e s of f o u r q u e s t i o n s was

a

addressed:

1)

How

are e l e c t r o d e i n c l u s i o n s removed?

2)

Is the i n c l u s i o n composition c o n t r o l l e d

by

the chemistry of e l e c t r o d e s , s l a g s or d e o x i d i z e r s ? 3)

Are i n c l u s i o n s i n the l i q u i d p o o l the same as i n the i n g o t ? and

4)

Is the i n c l u s i o n s i z e d i s t r i b u t i o n r e l a t e d to r a d i a l d i s t a n c e s from the c e n t r e l i n e to the mold w a l l of ESR i n g o t s .

These q u e s t i o n s were s t a t e d i n such a way

t h a t a l l of the

phenomena i n v o l v e d i n the process of r e f i n i n g , i n terms of inclusions

were addressed.

the o r i g i n of i n c l u s i o n s

Once the mechanisms which

( r e a c t i o n s ) were determined

the deoxidant, d e o x i d a t i o n technique and the s l a g

govern

then

chemical

composition would be s e l e c t e d and a comparison between r e sults

as a f u n c t i o n of e l e c t r o d e and s l a g compositions

w e l l as deoxidants c o u l d be c a r r i e d out.

as

116 CHAPTER IV EXPERIMENTAL WORK AND TECHNIQUES 4.1

Experimental Procedure Ingots were r e f i n e d through s e v e r a l s l a g systems u s i n g

l a b o r a t o r y and s e m i - i n d u s t r i a l s c a l e ESR-furnaces cribed e l s e w h e r e ^ ^ ' 2 2

2 2 7

^.

des-

E l e c t r o d e s of s e v e r a l chemical

compositions and diameters were r e f i n e d u s i n g s e v e r a l systems and

(commercial grades) and deoxidants.

slag

Tables (VII)

(VIII) summarize t h i s i n f o r m a t i o n . E l e c t r o d e s 31.75 and 44.75 mm

i n the l a b o r a t o r y s i z e ESR-furnace from

1.2 t o 1.5 Kg m i n . - 1

i n diameter were melted at melting rates ranging

1020, 4340 and r o t o r (Ni-Cr-Mo)

s t e e l s which were 76.2, 88.9 and 114.3 mm remelted i n the s e m i - i n d u s t r i a l

(200 mm)

m e l t i n g r a t e s o f approximately 1 Kg min use l i n e frequency A.C. power.

i n diameter were ESR-furnace a t .

Refining

with and without a p r o t e c t i v e atmosphere.

Both furnaces

was c a r r i e d out In the f i r s t

case

the system e n c l o s e d an argon gas s h i e l d and deoxidant a d d i t i o n s c o u l d be made a t monitored r a t e s , F i g u r e (14). The d e o x i d i zers were g r a n u l a r aluminum 99.99% p u r i t y , c a l c i u m s i l i c i d e a l l o y s and aluminum 65 wt.% S i , i n the s i z e range o f 8-32 mesh-

S p e c i f i c compositions are g i v e n i n Table ( I X ) . S e v e r a l d e o x i d a t i o n p r a c t i c e s were f o l l o w e d , namely i)

Constant a d d i t i o n i n s m a l l ESR-ingots,

117 ii)

i n t e r m i t t e n t a d d i t i o n s and

iii) The

continuously

increasing.

l a s t two p r a c t i c e s were performed i n i n g o t s 200 mm i n

diameter.

Experiments t o determine the i n c l u s i o n removal

mechanisms i n e l e c t r o d e

t i p s were c a r r i e d out i n 1020 m i l d

s t e e l produced v i a a c i d e l e c t r i c furnace, 4340 C a - S i - A l steel pleted

t r e a t e d , and 114 mm diameter r o t o r

Ca-Si-Al

treated.

electrodes

Once r e f i n i n g

scopic

(Ni-Cr-Mo)

experiments were com-

were r a p i d l y withdrawn from s l a g s t o achieve

as f a s t a c o o l i n g r a t e as p o s s i b l e . sectioned

89 mm diameter

and m e t a l l o g r a p h i c

Electrode

t i p s were

( o p t i c a l ) and e l e c t r o - m i c r o -

(SEM and EPMA) a n a l y s i s were performed.

Qualitative

d i s p e r s i v e - X - r a y - s p e c t r u m a n a l y s i s by the SEM and backs c a t t e r e d and e l e c t r o n composition maps by the EPMA as w e l l as q u a n t i t a t i v e a n a l y s i s

(by EPMA) on i n c l u s i o n s were c a r r i e d

out. Samples from l i q u i d p o o l s and slags were taken as deoxidation

and r e f i n i n g was t a k i n g p l a c e .

samples were e x t r a c t e d

L i q u i d metal

by s u c t i o n from l i q u i d p o o l s and s l a g

samples by means of a s m a l l copper c h i l l .

Chemical a n a l y s i s

of i n c l u s i o n s i n samples d i s c r e t e l y e x t r a c t e d p o o l s as w e l l as from s o l i d i f i e d EPMA.

The

liquid

i n g o t s were c a r r i e d out by

Oxygen a n a l y s i s by vacuum f u s i o n

of samples

from

a l s o on both types

were performed. chemical composition o f s l a g samples

were analyzed

118 by standard spectrophotometric techniques.

The chemical

composition o f i n g o t s was c a r r i e d out by s p e c t r o g r a p h i c a n a l y s i s along the v e r t i c a l a x i s of i n g o t s . F i n a l l y , complementary experiments

to determine

where and when i n c l u s i o n s were n u c l e a t e d and grown were performed.

S i l i c a tubes which c o n t a i n e d e i t h e r r a r e e a r t h metals

(mischmetal) the s l a g

o r Zirconium wires were i n t r o d u c e d through

w h i l e helium was g e n t l y blown

i n t o the l i q u i d

p o o l to e x t r a c t l i q u i d metal by the s u c t i o n technique. wards

After-

samples were p o l i s h e d and q u a l i t a t i v e and q u a n t i t -

a t i v e a n a l y s i s o f i n c l u s i o n s were performed. s t u d i e s on i n c l u s i o n s t o determine

EPMA and SEM

t h e i r chemical

and the d i s t r i b u t i o n o f t h e i r phases

composition

(composition maps) were

c a r r i e d out.

4.2

Analysis of Inclusions A t r i p l e spectrometer

J e o l c o JXA-3A e l e c t r o n

probe and an E t e c "Autoscan"

scanning e l e c t r o n

micro-

microscope

w i t h a d i s p e r s i v e X-ray a n a l y s e r were used to determine the chemical nature o f i n c l u s i o n s . Since the diameter

o f the e l e c t r o n beam which e x c i t e s

the sample, the specimen c u r r e n t d e n s i t y and the a c c e l e r a t i n g v o l t a g e determine signals

the s t e a d i n e s s and the magnitude o f the

(X-rays, secondary

and b a c k s c a t t e r e d e l e c t r o n s , e t c . )

119

emitted they were c o n t i n u o u s l y c a l i b r a t e d t o g i v e a beam approximately

1.0 ym i n diameter when the e x c i t a t i o n

age was 25 kV and the specimen c u r r e n t d e n s i t y was 0.08 yA .

voltabout

Hence, the e l e c t r i c a l - o p t i c a l c o n d i t i o n s i n these

instruments were c a l i b r a t e d i n such a manner t h a t the maximum

p o s s i b l e c u r r e n t was o b t a i n e d i n the s m a l l e s t e l e c t r o n

probe. Aluminum, c a l c i u m , s i l i c o n ,

s u l f u r , manganese, chromium,

t i t a n i u m , and magnesium were determined f l u o r i n e were determined

a t 10 kV.

a t 25 kV.

Oxygen and

The i d e n t i f i c a t i o n o f

i n c l u s i o n phases was a l s o o b t a i n e d by the v i s i b l e l i g h t uced by the e l e c t r o n beam and photon r a d i a t i o n

prod-

(cathodo-

luminescence). Since compound standards are known t o produce

more a c -

(228229) c u r a t e and r e p r o d u c i b l e a n a l y s i s l i k e CaC0 , A^O^, 3

S l

0 ' 2

standards t o determine inclusion

M (

? ' 0

Z

n

S

a

' n

d

,

compounds

pure Mn were used as

the chemical composition

of the

phases.

Raw data

(specimen background, a c c e l e r a t i n g v o l t a g e ,

t a k e - o f f angle, specimen counts, compound standard i n f o r m a t i o n , background from standards, X-ray counting time, e t c ) were t r a n s l a t e d i n t o chemical composition, t a k i n g i n t o account c o r r e c t i o n f o r atomic number e f f e c t s , a b s o r p t i o n and secondary f l u o r e s e c e n c e , by Colby's MAGIC IV p r o g r a m ' * with U.B.C.'s 3 0

120 AMDAHL computer.

R e l a t i v e accuracy of ± 7-10%

was

obtained.

These v a l u e s are i n f a i r agreement with r e p o r t s a v a i l a b l e i n the l i t e r a t u r e '

0 6

'

2 2 8

'

2 2 9

!

(±5-7%).

to mention t h a t , as r e p o r t e d i n the

I t i s also

worthwhile

literature'

4 0

the c a l c i u m to aluminum r a t i o i n i n c l u s i o n s i n the

'

2 1 6

'

2 1 7

^

Ca-deoxidized

i n g o t s gave a c l o s e r i n d i c a t i o n of the d e o x i d a t i o n sequence. These r a t i o s et a l . • s

( 2 0 9

'

3 1 6 )

(Ca:Al)

i n agreement with F a u l r i n g ' s

and S a l t e r ' s and P i c k e r i n g • s '

4 0 }

findings

were found to approximate the corresponding s t o i c h i o m e t r i c of those phases given by the pseudo-binary

ratios

CaO-A^O^ diagram.

S p e c t r o g r a p h i c and oxygen a n a l y s i s of samples from i n gots and l i q u i d p o o l

and

spectrophotometric and

graphic a n a l y s i s of i n c l u s i o n s

crystallo-

(by Debye-Scherrer

and d i f -

f r a c t o m e t e r techniques) e x t r a c t e d from i n g o t s c o r r o b o r a t e d (207) these f i n d i n g s . aluminate

Based on a r e p o r t e d work

on c a l c i u m

i n c l u s i o n s a minimum o f twenty and a maximum of

50 s i n g l e assays were performed

to o b t a i n a r e p r e s e n t a t i v e

a n a l y s i s o f a sample, i . e . t h i s r e p r e s e n t s one p o i n t on

the

graphs. The

i n c l u s i o n s were grouped a c c o r d i n g to s i z e , chemi-

c a l composition, tities.

f l u o r e s c e n c e , shape and r e p r e s e n t a t i v e quan-

I n c l u s i o n s s m a l l e r than 3 ym i n diameter were chemi-

c a l l y analyzed; they were, however o n l y q u a l i t a t i v e l y

con-

s i d e r e d due t o the cumbersome i n t e r a c t i o n e f f e c t s o f the i n c l u s i o n chemical composition and

the metal m a t r i x .

Aluminum

121

d e o x i d i z e d i n g o t s c o n t a i n e d e i t h e r FeO-A^C^, pure or

c a l c i u m hexaluminate

as i n c l u s i o n s phases which were

very s m a l l s i n g l e or c l u s t e r e d . were l e s s than 6-8 pm

alumina,

Since i n c l u s i o n

diameters

i n c l u s i o n s s m a l l e r than 3.0 ym were

a l s o a n a l y s e d on a q u a l i t a t i v e b a s i s . Analyses were c a r r i e d out by scanning d i a g o n a l l y a c r o s s the sample and the i n c l u s i o n s so t h a t r e s u l t s s t a t i s t i c a l l y r e p r e s e n t e d the i n c l u s i o n chemistry of the sample. T y p i c a l i n c l u s i o n s o f a g i v e n sample were microphotographed, o p t i c a l , scanning and b a c k s c a t t e r e d (EPMA) analyses and composition maps were a l s o o b t a i n e d .

4.3

T o t a l Oxygen Analyses The

t o t a l oxygen content of samples e x t r a c t e d from

l i q u i d p o o l s and i n g o t s was determined

by the standard

inert

gas vacuum f u s i o n technique u s i n g a Leco 537 i n d u c t i o n f u r nace

(507-800) and a Leco oxygen analyzer

weighing

(509-600).

Samples

1.0 - 1.5 grams were c u t , ground, and washed, u l t r a -

s o n i c a l l y cleaned and r i n s e d with anhydrous 1,1,1, t h r e e chloroethane.

Since the accuracy and r e p r o d u c i b i l i t y of

t h i s a n a l y s i s was s t r o n g l y i n f l u e n c e d by the weight o f the sample and i t s p r e p a r a t i o n ,

a

meticulous procedure

was

f o l l o w e d to o b t a i n a minimum of t h r e e assays with a maximum o f 2-5% d e v i a t i o n amongst them.

I f the d e v i a t i o n i n analyses

were g r e a t e r than t h i s , a new s e t of t h r e e analyses was p e r -

122

formed. To o b t a i n an a p p r o p r i a t e

c a l i b r a t i o n of the

analy-

t i c a l equipment standards of known oxygen content were analyzed.

A n a l y s i s on samples c o n t a i n i n g

an upper and

l i m i t of oxygen as w e l l as a blank t e s t to check the a t i o n i n gas

(helium) flow r a t e were c o n t i n u o u s l y

to m a i n t a i n them c o n s t a n t l y Samples e x t r a c t e d

throughout any

lower

vari-

performed

s e r i e s of

analyses.

from l i q u i d p o o l s were c a r e f u l l y s e l e c t e d

because p o r o s i t i e s and

s l a g entrapment were o c c a s i o n a l l y

de-

tected .

4.4

Inclusion

E x t r a c t i o n Method

I t i s an accepted f a c t t h a t c h e m i c a l e x t r a c t i o n methods

of n o n - m e t a l l i c

i n c l u s i o n s followed

by a n a l y s i s p r e -

sent s e v e r a l advantages over chemical a n a l y s i s performed i n s i t u . ( b y microprobe or scanning E.M.). vantages are the 1.

The

major

ad-

following:

A n a l y t i c a l r e s u l t s are f a r more

representative

because a much l a r g e r sample i s taken f o r e x t r a c t i o n than f o r i n s i t u methods. 2.

Phases can be

specifically identified after

ex-

traction. 3.

The

t o t a l oxygen content and

the t o t a l amount

of most phases i n s t e e l can be estimated by chemical a n a l y s i s of the

residue.

123

There are, however, s e v e r a l disadvantages as w e l l . 1.

Some phases cannot be q u a n t i t a t i v e l y e x t r a c t e d .

T h i s f a c t i s due t o e i t h e r i n c l u s i o n s i z e (< 5ym i n d i a meter) o r t o the chemical nature o f i n c l u s i o n s and r e agents

(too a g r e s s i v e ) . 2.

Phases c o n t a i n i n g

common elements and amorphous

or/and isomorphic s t r u c t u r e s may i n t e r f e r e with c e r t a i n a n a l y sis . 3. small

Since i n c l u s i o n s i z e i n ESR-materials i s r e l a t i v e l y

(S 10ym i n diameter) a n a l y s i s by X-rays i s r a t h e r

dif-

ficult. S e v e r a l chemical methods o f i n c l u s i o n e x t r a c t i o n were performed.

Among them

bromine i n methanol,

a n o l , bromine-ester-methanol methanol.

i o d i n e i n meth-

and i o d i n e - m e t h y l a c e t a t e -

From a l l the above methods only the l a s t two were

s u i t a b l e t o t h i s purpose.

The iodine-methanol-methyl a c e t a t e

however, was found to be the most convenient because o f i t s accuracy and r e p r o d u c i b i l i t y . 4.4.1

Apparatus and Experimental Procedure The apparatus used was i n t e g r a t e d i n f o u r u n i t s .

f i r s t unit

(I) was used to pour i o d i n e c r y s t a l s and the

methyl acetate-methanol mixture sphere c o n s i s t i n g of) anhydrous

under a p r o t e c t i v e atmoargon.

T h i s p a r t o f the s y s -

tem was a l s o used as a d i s s o l u t i o n chamber. s o n i c c l e a n e r o r a magnetic erature

The

An u l t r a -

s t i r r e r w i t h c o n t r o l l a b l e temp-

served t o speed up the i o d i n e d i s s o l u t i o n .

The second u n i t

(II) c o n s i s t e d of a m i l l i p o r e

which c o n t a i n e d a whatman paper No. pore f i l t e r

(0.5 ym) .

u n i t . T h i s was served as

was

or a t e f l o n

a g l a s s c o n t a i n e r w i t h four o u t l e t s which

a) b r e a t h i n g system

b) r e a g e n t - l e v e l r e g u l a t o r ,

d) a r g o n - f l u x

valve.

T h i s cham-

i n s i d e the u l t r a s o n i c a g i t a t o r which was

speed up the d i s s o l u t i o n of the metal sample. unit

(IV) was

milli-

The r e a c t i o n chamber was the third (III)

c) vacuum c o n t r o l l e r and ber

50

filter

used to

The

fourth

a l s o equipped w i t h another m i l l i p o r e

filter

s i m i l a r t o the one used i n u n i t no. 2 but t h i s had a ym diameter porous s i z e f i l t e r

0.5

(made of teflon), F i g u r e

(15) .

Since humidity i s one of the major concerns i n any halogen-methanol-methyl a c e t a t e technique cedure was

followed.

Reagents used

methyl a c e t a t e were 99.99% i n p u r i t y

a c a r e f u l pro-

such as methanol

and

and i o d i n e c r y s t a l s

were p r e v i o u s l y d r i e d i n a d e s s i c a t o r which c o n t a i n e d gel

and

silica

drierite.

T h i s e x t r a c t i o n method was based on Rooney's and S t a p l e (231) ton's

, i t was,

however, improved i n terms of a v o i d i n g

c e r t a i n complexity In i t s d e s i g n and m i n i m i z i n g the r i s k of

contaminating the apparatus by moisture and o t h e r vapours

c a r r i e d away during e v a c u a t i o n and h e a t i n g .

Combustion

tube

c o n t a i n i n g s p i r a l s o f copper and n i c k e l as w e l l as s u l f u r i c a c i d and contaminated

i r o n t u r n i n g s were a l s o avoided.

125 Experimental Procedure 20-30 grams of an E S R - s t e e l sample cleaned

with 1,1,1-trichlorethane

were i n t r o d u c e d

and d r i e d w i t h h o t a i r

i n t o the r e a c t i o n chamber.

completely dehydrated by p a s s i n g taning d r i e r i t e ,

Argon was

i t through 3 U-tubes con-

s i l i c a - g e l - i n d i c a t i n g and a c t i v a t e d carbon

i n a U-tuhe immersed i n l i q u i d n i t r o g e n . functions:

f r e e o f oxide,

The argon had two

t o sweep out t h e a i r and humidity i n the f o u r

u n i t s and to pump the l i q u i d s from one u n i t t o another. t h i s l a s t purpose The

a vacuum was a l s o used.

whole d r y i n g o p e r a t i o n

was executed i n two hours.

Once the system was f r e e o f moisture and a i r the p r e d r i e d

For

dissolution of

i o d i n e c r y s t a l s was c a r r i e d out.

The next

step

i n t h i s technique was t o pump the i o d i n e s o l u t i o n e i t h e r by vacuum or by argon t o the f i r s t

f i l t e r i n g unit.

Then the

s o l u t i o n was pumped t o the r e a c t i o n chamber. When the s t e e l sample was completely d i s s o l v e d a f t e r 10-24 was

hours, the l i q u o r c o n t a i n i n g

sent t o the l a s t f i l t e r i n g u n i t .

r i n s i n g o f the f i l t e r e d was

inclusions

At t h i s l a s t u n i t ,

i n c l u s i o n s w i t h 99.99% methyl a l c o h o l

performed s e v e r a l times u n t i l the f i l t e r e d

completely c o l o r l e s s , i . e . was

the e x t r a c t e d

iodine free.

alcohol

This l a s t

was

operation

performed under an argon atmosphere. Extracted

i n c l u s i o n s were d r i e d and weighed

a f t e r s u l f i d e i n c l u s i o n s were e l i m i n a t e d .

b e f o r e and

Samples from sev-

126

e r a l ESR

i n g o t s were s u b j e c t e d under t h i s e x t r a c t i o n t e c h -

nique f o r v a r i o u s purposes, namely EPMA i n c l u s i o n chemistry

1) to c o r r o b o r a t e the

by q u a n t i t a t i v e

and q u a l i t a t i v e c r y s t a l l o g r a p h i c

(spectrophotometry)

(X-rays) a n a l y s i s

v e r i f y the v a l i d i t y of the t o t a l oxygen a n a l y s i s and determine how

4.5

2) to 3) to

i n c l u s i o n s were p r e s e n t i n the f i n a l product.

C r y s t a l l o g r a p h i c X-ray A n a l y s i s of E x t r a c t e d I n c l u s i o n s The e x t r a c t e d i n c l u s i o n s were c r y s t a l l o g r a p h i c a l l y

an-

a l y s e d by a P h i l i p s high angle d i f f r a c t o m e t e r and a DebyeS c h e r r e r camera was

114.83 mm

40 kV and 15 uA.

meter was

1° 26/min.

The

i n diameter.

The machine s e t t i n g

scanning r a t e used i n the d i f f r a c t o -

The camera i s designed such t h a t 2

measured on the f i l m corresponds to 1° 6.

mm

The d i s t a n c e along

the f i l m between the zero p o i n t and the r e f e r e n c e end i s 180mm. In both X-ray techniques the i r o n ka^ r a d i a t i o n was

(X = 1.9 36)

used. Although the amount of e x t r a c t e d i n c l u s i o n s ranged

from

10 t o 30 m i l l i g r a m s , p r i o r t o t h e i r X-ray a n a l y s i s , microphotographs

and q u a l i t a t i v e SEM

a p o r t i o n of the sample.

a n a l y s i s were performed

The c r y s t a l l o g r a p h i c X-ray

o f i n c l u s i o n s c l e a r l y showed a sequence of A ^ O ^ and 12 CaO*7Al C> 2

3

(as g i v e n by the C a O - A l 0 2

3

on

analysis

up t o C a O * A l 0 2

3

pseudo b i n a r y phase

127

diagram) as the Ca-Si d e o x i d a t i o n l e v e l was

increased.

It

i s worthwhile to mention t h a t i n the c a l c i u m aluminates riched i n calcium

(CaO•2Al 0 ~CaO•A1 0 2

3

2

3

and

CaO•Al 0^-12CaO• 2

7 A l 0 ) very wide d i f f r a c t i o n peaks and bands were 2

3

T h i s was

en-

observed.

a c l e a r i n d i c a t i o n of t h e i r lower degree of c r y -

stallinity.

The d i f f r a c t i o n bands corresponding

12CaO«7Al 0 2

3

to the

were very weakly t r a c e d .

G e n e r a l l y , the c r y s t a l p a t t e r n s showed from 6 to 16 p r i n c i p a l d i f f r a c t i o n bands with v a r i o u s i n t e n s i t i e s . t u r e s of at l e a s t two

i n c l u s i o n c r y s t a l s t r u c t u r e s and some

n i t r i d e s and c a r b i d e s were

4.6

observed.

Atomic A b s o r p t i o n A n a l y s i s A P e r k i n Elmer 306

model HGA-220 was

(Spectrophotometry)

spectrophotometer with a c o n t r o l l e r

used to analyze

c l u s i o n s from metal m a t r i c e s .

s l a g s and e x t r a c t e d i n -

The

l i t h i u m metaborate f u s i o n (232

procedure The

Mix-

a v a i l a b l e i n the l i t e r a t u r e

233) '

was

followed.

c o n c e n t r a t i o n of the elements of i n t e r e s t were determined

by u s i n g a p p r o p r i a t e l y matched standards

and blanks with

r o u t i n e procedure given i n the g e n e r a l i n f o r m a t i o n of Perkin-Elmer

manual.

s o l u t i o n a n a l y s i s was F + 0.2%,

Mg

G e n e r a l l y speaking Ca ± 0.2%,

the

the

the accuracy of the

A l ± 0.06%, S i ± 0.04%, .

± 0.002% and Fe ± 0.001

wt

%.

Stoichiometric

balances were c a r r i e d out on the bases t h a t Ca, A l , S i , Fe, and F were p r e s e n t as CaO, pectively.

Al 0 , 2

3

Under t h i s assumption

S i 0 , FeO, 2

MgO

and C a F

2

res-

the s t o i c h i o m e t r i c c a l c u -

l a t i o n s gave 10 0% with a minimum accuracy of +

1.0%.

Mg,

128 4.7

Metallographic

Analysis

Ingots were s e c t i o n e d l o n g i t u d i n a l l y i n such a manner t h a t a s l i c e 2.5 cm i n t h i c k n e s s across the diameter was obtained.

These p l a t e s were s u r f a c e ground and etched with a 50%

HCl-H^O s o l u t i o n a t 70-80°C f o r approximately

one hour.

l i q u i d p o o l marks made with m e t a l l i c tungsten

powder to

identify vealed.

deoxidation

Thus

l e v e l s and i n g o t s t r u c t u r e were r e -

L o n g i t u d i n a l d i s c r e t e sampling

(matching the pro-

g r e s s i v e sampling o f l i q u i d p o o l s and s l a g s ) t o perform spectrographic, were thus

i n c l u s i o n chemical

and t o t a l oxygen a n a l y s i s

obtained.

Samples o b t a i n e d

r a d i a l l y were used t o determine i n -

c l u s i o n s i z e d i s t r i b u t i o n s and d e n d r i t e arm s p a c i n g s .

The

o p t i c a l a n a l y s i s was performed u s i n g a Z e i s s u l t r a p h o t i n d i f f e r e n t i a l i n t e r f e r e n c e mode. tips,

Samples from e l e c t r o d e

l i q u i d pools and r a d i a l and l o n g i t u d i n a l specimens

from i n g o t s were ground on emery paper and diamond p o l i s h e d . P o l i s h i n g was c a r r i e d o u t t o determine i n c l u s i o n s i z e s and

t h e i r l o c a t i o n with r e s p e c t t o d e n d r i t e s i n samples ex-

t r a c t e d from l i q u i d p o o l and i n g o t s u s i n g : pastes met,

(Metadi

diamond compound

II) down t o 0.25 ym diamond p a r t i c l e s i z e , t e x -

m i c r o c l o t h and n y l o n p o l i s h i n g (Buehler)

cloth

( o i l and

water r e s i s t a n t and a l c o h o l and an o i l based l u b r i c a n t , (Geomet t h i n n e r M i c r o m e t a l l u r g i c a l MM218). By f o l l o w i n g the above sequence

removal o f i n c l u s i o n s

from metal m a t r i c e s i n any s i z e range was completely avoided. To determine the l o c a t i o n o f i n c l u s i o n s and d e n d r i t e arm spacings

standard O b e r h o f f e r ' s reagent was used t o l i g h t l y

e t c h these specimens.

Four and f i v e f a c e s of each

specimen

were p o l i s h e d , etched and microphotographs were taken a t a m a g n i f i c a t i o n such t h a t r e p r e s e n t a t i v e number of i n c l u s i o n s were i n each photograph.

The m a g n i f i c a t i o n used was very

dependent on the l e v e l o f d e o x i d a t i o n and the c h e m i s t r y o f the deoxidant.

130 CHAPTER V

RESULTS AND 5.1

DISCUSSION

Mechanism by Which E l e c t r o d e I n c l u s i o n s are In the l i t e r a t u r e review on i n c l u s i o n s

emphasis has

Eliminated

particular

been given to the p r e c i p i t a t i o n sequence.

has been e s t a b l i s h e d t h a t i n c l u s i o n s

according

It

to the

de-

o x i d a t i o n technique

e x h i b i t s e q u e n t i a l changes i n t h e i r

chemical

as s o l i d i f i c a t i o n takes p l a c e .

composition

t r a n s i t i o n s may

take p l a c e a t s u b s o l i d u s

These

temperatures;

parti-

c u l a r l y where s u l f i d e phases p r e c i p i t a t e . Thus, to f u l l y understand the mechanism by which i n c l u s i o n s are removed, e l e c t r o d e t i p s from 1020 and

rotor

(Ni-Cr-Mo) s t e e l s were s t u d i e d .

M.S.,

1020

4340

M.S.

ingots

were o r i g i n a l l y produced by a c i d e l e c t r i c furnace p r a c t i c e . The

4340 and

the r o t o r s t e e l were c a l c i u m aluminum t r e a t e d

in

the l a d l e .

Subsequently,

i n t o e l e c t r o d e s 76.2,

88.9

and

they 114.3

were mm

hot

rolled

i n diameters r e s -

pectively. 5.1.1

Behavior of O x i s u l f i d e I n c l u s i o n s i n 1020 Electrode The

and 1020

Tips

most complete p i c t u r e of the i n c l u s i o n d i s s o l u t i o n

the t r a n s f o r m a t i o n M.S.

M.S.

electrodes.

of the metal matrix

i s g i v e n by

the

Typical inclusions i n electrodes i n

t h i s s e r i e s of experiments, as r e c e i v e d , are shown i n Figures

(16)

and

(17).

T h e i r q u a l i t a t i v e (SEM)

chemical

131

composition are a l s o presented Two

(spectrum X-ray

w e l l - d e f i n e d phases are i d e n t i f i e d .

analysis).

The darker phase

i s e n r i c h e d i n S i and the l i g h t phase i s e n r i c h e d i n manganese s u l f i d e .

Iron was

a l s o found i n both phases.

M e t a l l o g r a p h i c s t u d i e s o f e l e c t r o d e t i p s which were subjected to c r i t i c a l

(ESR)

thermal g r a d i e n t s have c l e a r l y r e -

v e a l e d the e x i s t e n c e of s e v e r a l heat a f f e c t e d areas, F i g u r e s (18) t o

(21).

F i n d i n g s from t h i s r e s e a r c h

agreement w i t h p r e v i o u s t h e o r e t i c a l 19 20 '

(8)

in qualitative

and experimental work

(13

'

22) '

. show t h a t a u s t e n i t i c g r a i n growth and changes i n

the morphology of i n c l u s i o n s occurs between 0.5 the l i q u i d f i l m .

S u l f i d e i n c l u s i o n s are f i r s t

and subsequently

- 0.8

spherodized

d i s s o l v e d i n t h i s r e g i o n as w e l l .

i c a l composition of i n c l u s i o n s determine

cm above

The chem-

the c r i t i c a l l e n g t h

at which the above changes take p l a c e . The d r i v i n g f o r c e s t o produce these changes i n order of importance of

are:

the heat produced

by the h i g h r e s i s t i v i t y

the s l a g and hence the a u s t e n i t i c g r a i n growth of the e l e c -

trode t i p .

The deformation of i n c l u s i o n s and metal matrix which

produce sharp c o n c e n t r a t i o n g r a d i e n t s and the n o n - e q u i l i b r i u m nature of the i n c l u s i o n p r e c i p i t a t i o n — a s

indicated i n Figure

(5)

by the s i n g l e d o t t e d l i n e — c a n a l s o p r o v i d e a d r i v i n g f o r c e f o r this

sequence

'

6

4

~

1

6

6

\

The

Mn

depletion

around

i n c l u s i o n s i n the metal m a t r i x should another d r i v i n g f o r c e ' inclusions tory

according

166,199)^

6 4

a l s o be c o n s i d e r e d T h e

c n e m

i

c a

to t h e i r appearance and

( l o c a t i o n ) can be c l a s s i f i e d a s :

phase o x i - s u l f i d e s and

-]_

as

nature of

thermal h i s -

a) Deformed double

deformed s u l f i d e s , F i g u r e s

(16,17).

These i n c l u s i o n s were commonly found i n areas where i n c i p i e n t g r a i n growth was s u l f i d e s and

observed,

b)

Comparatively l a r g e

o x i s u l f i d e s which were l o c a t e d i n r e l a t i v e l y grown

a u s t e n i t i c grains, Figure

(22).

dark i n appearance, F i g u r e p r e c i p i t a t e d complex

c) S p h e r i c a l s i n g l e oxide phas

(23)

and d) R e l a t i v e l y small

(Ca, A l and

Si) o x i d e s .

of i n c l u s i o n s were l o c a t e d i n p a r t i a l l y and q u i d areas.

globular

The

l a s t type was

These two

rekinds

completely

li-

p r e f e r e n t i a l l y l o c a t e d i n the

l i q u i d f i l m and

i n droplets, Figures

As

shown i n

Figures

(20), areas at which p h y s i c a l and

chemical

(18)

to

(24,25).

changes take p l a c e e i t h e r i n i n c l u s i o n s or i n the metal t r i x are very w e l l d e f i n e d . previously of

time

described at

which

a l l y affected. conditions Figures ive

(SEM)

presence of the d r i v i n g f o r c e s

compensate the r e l a t i v e l y the

volume

of

(5).

the

Based on

and q u a n t i t a t i v e

e l e c t r o d e t i p and

predicted the

short

electrode

T h i s promotes q u a s i - e q u i l i b r i u m

approaching

(4) and

The

ma-

is

therm-

thermo-chemical

changes

given

experimental

(EPMA) i n f o r m a t i o n

periods

qualitat-

about how

i n c l u s i o n s are p h y s i c a l l y and

formed as a p r i n c i p a l consequence of the thermal

in

the

chemically gradients

tran

and

the chemical

describes

composition

of

inclusions,

a mechanism w h i c h

the removal of o x y s u l f i d e i n c l u s i o n s

is

proposed.

Once a g i v e n r e g i o n i n t h e e l e c t r o d e t i p i s a f f e c t e d by

the heat

metal

coming from

matrix

oidization

start

of

the l i q u i d

to experience

sulfides

and

slag

the

certain

oxisulfides

inclusions

changes.

takes place

simultaneously

t o the growth o f the a u s t e n i t i c

metal

Experimentally estimated

matrix.

positions

i n t h e e l e c t r o d e and

the

The

spher-

almost

grains of

temperatures

theoretical

and

the

along

axial

calculations

(8) indicate occur

that this

a t a b o u t 0.5

electrode 21).

transition

t o 0.8

cm

above t h e

i s a t a temperature

This finding

(a + p e a r l i t e -»• y) liquid

o f about

approximately

i r o n p l u s p e a r l i t e t o gamma i r o n

f i l m where

corresponds

t o the

transformation.

1350°C) s u l f i d e s

e n r i c h e d i n manganese a r e a l m o s t

the

(about

should

a l s o be

166)^

4

Figures

d e p e n d e n t on

literature'°"*' "'" * . 1

3

(4) and

t h e Mn:S

Oxisulfide

(5). ratio

(2,

zone

1000°C t o totally

dis-

a f a c t w h i c h i s i n a g r e e m e n t w i t h T u r k d o g a n ' s and

workers' f i n d i n g s ^ ^

in

the

alpha

In the

l a r g e g r a i n s were o b s e r v e d

sults

to

850-950°C, Figures

where r e l a t i v e l y

solved,

starts

co-

These r e as

indicated

inclusions containing

s i l i c o n , a c c o r d i n g t o Van V l a c k e t a l . ' * , Silverman'^ * * r, (129,163,168) ,. ., , . . and H i l t y and C r a f t s • a r e d i v i d e d i n two c a t e g o r i e s , 3

namely those

i n which the

Si:0 r a t i o

0

i n wt.

9

% i s either

smaller

or g r e a t e r than u n i t y . Low

S i phases, S i : 0 r a t i o s

obey T u r k d o g a n e t a l . ' s ' * *

4

less

than u n i t y

* equilibrium

qualitatively

stability

phase

diagram.

In the temperature

e q u i l i b r i u m phases

i n the Fe-Mn-S-0 system are r u l e d by the

u n i v a r i a n t h i n F i g u r e (5). by the gamma i r o n , "0"as oxisulfide. it

range of 900° t o 1225°C the

This univariant i s constituted

[Fe(Mn)0],

Under normal

"MnS"

and

%^ as

liquid

ESR-operating c o n d i t i o n s , however,

i s not expected t h a t the composition of i n c l u s i o n s

l y follows t h i s univariant

(h).

Instead

strict-

the b e h a v i o r given

by the " t r i p l e - d a s h e d " - l i n e s i n t h i s diagram i s expected, Figure

(5).

cumulated

Simultaneous w i t h the above changes

s o l u t e ac-

i n g r a i n boundaries, growth of some i n c l u s i o n s

and s u l f u r d e p l e t i o n from s u l f i d e i n c l u s i o n s are observed. These events f u l l y c o i n c i d e w i t h the formation o f oxisulfide,

i^, i n F i g u r e s (4,5).

that the s p e c i f i c temperature

I t i s important to note

a t which

%^ forms, i s s t r i c t l y

a f u n c t i o n o f the o r i g i n a l amount of Mn p r e s e n t and the degree which Mn(Fe)S' commercial content,

6 4

~

1 6 6

^.

(Mn:S

ratio)

the i r o n i s s a t u r a t e d w i t h Mn(Fe)0 and

I t a l s o has to be emphasized

s t e e l s i n these s e r i e s

that with

which have standard S

(0.02-0.05 wt % ) , t h e r e i s s u f f i c i e n t Mn and S i

p r e s e n t t h a t no l i q u i d o x i s u l f i d e e r a t u r e s lower than 1150°C.

u i d o x i s u l f i d e i s expected p e n e t r a t i n g the " o r i g i n a l "

(^)

i s p r e s e n t a t temp-

Above t h i s temperature

(131

was

liquid

*~'

the

liq-

132) to show up as m a t e r i a l

austenitic grainsi

a fact

which

indeed observed. In areas c l o s e r to the f u l l y transformed

(austenitic)

grains

the Mn content i n i n c l u s i o n s , due mainly t o the d i s s o l -

u t i o n o f s u l f u r i n the metal m a t r i x

i s i n c r e a s e d , F i g u r e (4).

Although the Mn content was not s i g n i f i c a n t l y g r e a t e r the i n c l u s i o n composition q u a l i t a t i v e l y obeyed the u n i v a r i a n t h. From approximately 1150° t o 1250°C the composition o f low S i o x i s u l f i d e i n c l u s i o n s changes and £^ i s expected t o f l u x the s o l i d s u l f i d e as S i l v e r m a n ' * ' * and Van V l a c k e t a l . ' 9

have i n d i c a t e d .

3

0

*

Mn w i l l c o n t i n u e i n c r e a s i n g a t slower r a t e s

than i n p r e v i o u s t r a n s f o r m a t i o n s as the temperature i s increased. Upon quenching f u l l y ytransformed

a sample taken from areas c l o s e r t o t h e region, duplex

( r e l a t i v e l y grown) o x i -

s u l f i d e s low i n S i should be p r e c i p i t a t e d ; a f a c t which i s c l e a r l y 'seen i n F i g u r e (22 a-b).

T h e i r major c o n s t i t u e n t s

were i d e n t i f i e d as a Mn r i c h s u l f i d e , Mn(Fe)S, and a Mn r i c h o x i d e , Mn(Fe)0.

At temperatures higher than 1250°C the

manganese s u l f i d e e n r i c h e d phase p r a c t i c a l l y d i s a p p e a r s ; a f a c t which was observed i n the q u a l i t a t i v e

(SEM X-ray

spectrum a n a l y s i s ) and s e m i q u a n t i t a t i v e (EPMA) a n a l y s i s , F i g ures

(23 and 25). A t temperatures

about

1370° t o 1420°C r e l a t -

i v e l y l a r g e a u s t e n i t i c g r a i n s a r e observed. i s exposed

t o t h i s temperature

to d e l t a i r o n t r a n s f o r m a t i o n .

The r e g i o n which

range experiences the gamma This t r a n s i t i o n i s i d e n t i f i e d

i n F i g u r e (5) as the i n t e r s e c t i o n o f the " t r i p l e - d a s h e d "

line

c r o s s i n g the u n i v a r i a n t g_ i n which d e l t a and gamma i r o n , 0

136 and

£^ are

i n equilibrium.

The major changes i n i n c l u s i o n

composition w i l l s t a r t j u s t a f t e r u n i v a r i a n t f i s a univariant i r o n , o, ^

equilibrium

and & , 2

where &

2

f i s reached,

which i s c o n s t i t u t e d i s the l i q u i d metal.

by d e l t a After

f_ i s reached the o n l y s o l i d compounds may be the Fe(Mn)0 and

a very s m a l l amount o f i r o n o x i d e .

I t i s important to

r e c a l l t h a t t h i s event takes p l a c e only i f S i content i s low 4-u i•n these li a tx-ot e r stages (130,169) ' Under t h i s c o n d i t i o n ,

between f_ and e u n i v a r i a n t s

d e l t a i r o n , o and £, are i n e q u i l i b r i u m 2

the remaining S from

i n c l u s i o n s goes i n s o l u t i o n i n d e l t a i r o n . the

Furthermore,

remaining i n c l u s i o n s w i l l be e x c l u s i v e l y c o n s t i t u t e d by

Mn(Fe)0.

This

l a s t step was p a r t i c u l a r l y c l e a r i n the range

a t which the l i q u i d f r a c t i o n was about the

where

l i q u i d f r a c t i o n was g r e a t e r than 0.5

completely d i s s o l v e d

and r e p r e c i p i t a t e d .

0.5.

In areas where

i n c l u s i o n s were Since t h i s

was i n c o n t a c t with the s l a g some r e p r e c i p i t a t e d clusions acter,

(very

few)

Figures

region

small i n -

(24, 25), show the s l a g char-

i . e . , some A l and Ca.

The

second category o f o x i s u l f i d e i n c l u s i o n s which S i : 0

r a t i o i s l a r g e r than u n i t y e x h i b i t an almost e q u i v a l e n t t e r n as the p r e v i o u s behavior l a s t stages. and

(i.e.

pat-

S i : 0 < 1 ) , except i n the

Instead of p r e c i p i t a t i n g Mn(Fe)0 and FeO, S i 0

MnO o r 2Mn0 w i l l p r e c i p i t a t e i n the f u l l y

austenitized

zone and when l i q u i d f r a c t i o n s a r e s m a l l e r than 0.5

2

These t r a n s f o r m a t i o n s as proposed and Van V l a c k e t a l . ^

1 3

^*

9

can be r e p r e s e n t e d by quaternary

diagrams, F i g u r e s (6) and (7). and

by S i l v e r m a n ' * * *

(7) as the temperature

As shown i n F i g u r e s (6)

i n c r e a s e s Mn ( and thus 'MnO')

and the p r o p o r t i o n o f o r t h o s i l i c a t e

i n c r e a s e s . As a r e s u l t

the l i q u i d u s f o r the "MnS" i s decreased, nificant sulfide if

range o f compositions i s increased.

thus over a s i g -

the amount of l i q u i d o x i -

Silverman'** * 9

has p o i n t e d o u t t h a t

the p r o p o r t i o n o f s i l i c a t e i s i n c r e a s e d , as observed i n

t h i s case

then a t temperatures

above 1300°C what i s l e f t

as a s o l i d

(from the p r e v i o u s Fe-O-S-Mn-system, FeO and

Mn(Fe)O) w i l l become almost completely l i q u i d . t r a n s f o r m a t i o n s as proposed from C t o B i n F i g u r e During t h i s

by Van V l a c k e t a l . '

(8a) and C

temperature

These

to B

3

0

*

occur

i n F i g u r e (8b).

i n c r e a s e "FeS", "MnS" and "FeO" a r e d i s -

s o l v e d , F i g u r e (25). Subsequent chemical r e a c t i o n s o f the i n c l u s i o n components which take p l a c e i n the f u l l y a u s t e n i t i z e d meta l and the p a r t i a l l y

l i q u i d zones a r e shown i n macrophotographs

(18a-b) and (21) and photographs

(23a) and 23b). These r e a c t i o n s

are r e p r e s e n t e d by:

2MnO + S i 0

2

Z

2MnO«Si0 «- M n S i 0

2

X

MnO«Si0

2

2

4

or 2MnO + S i 0

2

+ MnO

t Mn

0

+ MnSi0

3

138 I f a sample with t h i s composition and thermal h i s t o r y i s r a p i d l y c o o l e d then

. s i n g l e phase i n c l u s i o n s e n r i c h e d i n

manganese and s i l i c o n must be found, a f a c t which i s l a t e r c o r r o b o r a t e d w i t h the i n c l u s i o n chemical a n a l y s i s . f i n a l composition, a c c o r d i n g t o Van V l a c k e t a l . ' s

Their

work' °V 3

i s d i c t a t e d by the S i : 0 r a t i o and the amount of manganese p r e s e n t i n the e l e c t r o d e .

Thus, i f the S i content exceeds

the amount o f oxygen, as seen i n a n a l y s i s this series

from samples o f _3

(0.25 wt% S i and 90 ppm = 9.0 x 10

wt!)

then

a v i t r e o u s ( s i l i c e o u s ) type of i n c l u s i o n i s formed i n p l a c e of the monophasic t e p h r o i t e

(MnO'SiC^) o r rhodonite

(2MnO'SiO^) as the temperature i s i n c r e a s e d , Some e l e c t r o d e s the

Figures

(23a,b).

which were very r a p i d l y withdrawn from

s l a g showed s m a l l s i l i c e o u s and (iron) s u l f i d e s as r e -

precipitated inclusions exclusively Their q u a l i t a t i v e

(SEM) and s e m i q u a n t i t a t i v e (15)

as reported, i n the l i t e r a t u r e stoichiometric

i n the l i q u i d (EPMA)

film. analysis,

i d e n t i f i e d them as non-

f a y a l i t e ^ F e O S i C ^ ) compounds.

To c o n f i r m the p r e v i o u s l y

described

uence o f t y p i c a l a n a l y s i s

i s shown.

(spectrographic) analysis

i n wt. %

mechanism a seq-

The e l e c t r o d e as r e c e i v e d ,

follows: C

Mn

S

Si

0.19

0.71

0.026

0.025

P 0.01

chemical

i s as

The average i.e.

total

oxygen a n a l y s i s

as r e c e i v e d , was 90 ppm.,

a t c e n t r e l i n e 87 ppm., midradius

93 ppm.

The average

91 ppm.

i n c l u s i o n chemistry i n a t . %

and edges as r e -

c e i v e d , was S 35.0 The average

Si

Mn

Fe

27.0

37.0

balance

chemical composition o f i n c l u s i o n s l o c a t e d b e t -

ween the r e c r y s t a l l i z e d area and l i q u i d

f r a c t i o n s smaller

than 0.5,were ( i n at.%) as f o l l o w s Si

Mn

51.0 T h i s composition roite

( 1 3 0

S

46.0

2.0

immediately

Fe balance

suggest the formation o f teph-

>.

Due t o the number and s i z e of i n c l u s i o n s found i n the neighbourhood o f the l i q u i d

film

chemical a n a l y s i s

from

i n c l u s i o n s l o c a t e d i n l i q u i d f r a c t i o n s g r e a t e r than 0.6 were performed

o n l y on a q u a l i t a t i v e b a s i s .

aluminum i n these i n c l u s i o n s and

(25)

Calcium and

as shown i n F i g u r e s (24)

were t r a c e d .

T h i s p a r t i c u l a r e l e c t r o d e was remelted through a (50 wt% C a F , 30 wt% Al C> 2

2

Ca-Si d e o x i d i z e d . l i q u i d pool

3

and 20 wt% CaO) s l a g which was

The chemical a n a l y s i s o f i n c l u s i o n s

(a) and from the (ESR) i n g o t (b) i n a t . % .

from

140 are as f o l l o w s :

Al

Ca

S

a)

49.0

30.0

20.43

b)

46.0

30. 5

22.80

Thus, i n summary position

Mn

Fe

0.3

balance balance

the change i n i n c l u s i o n chemical com-

i n terms o f s u l f i d e s and low S i - o x y s u l f i d e s and the

m o r p h o l o g i c a l changes o f i n c l u s i o n s take p l a c e i n a u s t e n i t i c temperature

ranges

i n the metal matrix.

In i n t e r m e d i a t e stages

the d i s s o l u t i o n o f s u l f i d e s i n the metal matrix a l s o o c c u r s . These s e r i e s o f events r e p r e s e n t approximately total

10-30% o f the

" t r a n s f o r m a t i o n - d i s s o l u t i o n " mechanism and i t takes p l a c e

a t about

0.4 - 0.8 cm

above the l i q u i d f i l m .

The next 20-

40% o f the t r a n s f o r m a t i o n o f i n c l u s i o n phases occur

either

between the g_-f u n i v a r i a n t s , F i g u r e (5), i n the low S i cont e n t phases o r i n the C-B sequence o f t r a n s f o r m a t i o n s , F i g u r e (8a),

i n the h i g h S i c o n t e n t phases.

The next sequence o f

t r a n s f o r m a t i o n s takes p l a c e between f - e and B-A f o r low and h i g h S i c o n t e n t phases r e s p e c t i v e l y . f u l l y austenitized t i o n does not exceed remaining

I t occurs between the

r e g i o n and the p o i n t where the l i q u i d 0.5.

I t r e p r e s e n t s another 20-40%.

fracThe

" t r a n s f o r m a t i o n - d i s s o l u t i o n " takes p l a c e i n the

neighbourhood

of the l i q u i d f i l m where i n c l u s i o n

dissolution

i s the major mechanism and i n c l u s i o n s l a g r e a c t i o n s (forma t i o n o f lower m e l t i n g p o i n t i n c l u s i o n phases with s l a g chara c t e r ) a c t s as a very l i m i t e d mechanism (^1.0-3.0%).

141 5.1.2

Removal of Oxide and S u l f i d e I n c l u s i o n s i n 4340 and Rotor

Steels

Since the aim of t h i s r e s e a r c h i s t o g a i n an e x t e n s i v e understanding of the i n c l u s i o n - r e m o v a l mechanism; e l e c t r o d e s w i t h d i f f e r e n t m a t r i x - i n c l u s i o n compositions were a l s o a n a l yzed.

4 340-electrodes w i t h alumina type of i n c l u s i o n s and

t o o l s t e e l e l e c t r o d e s with c a l c i u m - a l u m i n u m - s i l i c a t e s were a l s o i n c l u d e d i n t h i s r e s e a r c h program. Macrophotographs

(19) and (20) show the sequence of t r a n s -

formations i n 4340 and r o t o r s t e e l s r e s p e c t i v e l y .

One of

the f i r s t d i f f e r e n c e s t o n o t i c e between these two types of s t e e l s i s t h a t i n the l a t t e r type a u s t e n i t i z a t i o n d i d not occur due t o t h e i r chemical composition the chemical composition of i n c l u s i o n s .

( e l e c t r o d e ) and t o Another

conse-

quence of t h i s i s t h a t s o l u t e p e n e t r a t i o n (between a u s t e n i t i c g r a i n s ) a t s u b s o l i d u s temperatures d i d not take p l a c e . molten

i n the r o t o r

steel

On the other hand i n the p a r t i a l l y

e l e c t r o d e much more"segregated

m a t e r i a l , " as a r e -

s u l t of the i n c l u s i o n d i s s o l u t i o n and the i n t e r a c t i o n o f the e l e c t r o d e with the s l a g , was observed a t l i q u i d

fractions

l a r g e r than 0.5. Once the d i f f e r e n t areas were i d e n t i f i e d

(incipiently

heat a f f e c t e d a r e a , semi or a u s t e n i t i z e d r e g i o n , l i q u i d f i l m i n o r out of the d r o p l e t ) i n each type o f e l e c t r o d e , m e t i c u l o u s c h e m i c a l a n a l y s i s of i n c l u s i o n s

(by EPMA) was

c a r r i e d out a t every 250-300 ym.

R e s u l t s o b t a i n e d from 4340

and r o t o r s t e e l e l e c t r o d e s are shown r e s p e c t i v e l y i n F i g u r e s (26) t o

(28).

Among the most important c o n c l u s i o n s from t h i s are the f o l l o w i n g :

study

a) s i n c e the a u s t e n i t i c t r a n s f o r m a t i o n

i n the r o t o r s t e e l was

almost absent

the i n c l u s i o n

transform-

a t i o n - d i s s o l u t i o n s t a r t e d t o take p l a c e p r i n c i p a l l y i n the partially liquid the s o l i d u s . electrodes

zone.

I t takes p l a c e about 0.3-0.5 cm above

b) A l and S i n i n c l u s i o n s i n both types of

(4340 and r o t o r s t e e l ) were g r a d u a l l y d i s s o l v e d

as the e l e c t r o d e experienced h i g h e r thermal g r a d i e n t s . changes, shown i n F i g u r e s

(26) t o

(28)

s t a r t t o take p l a c e

i n a very d i s c r e t e manner j u s t above the s o l i d u s f o r the r o t o r s t e e l and i n e a r l i e r ents) s u b s o l i d u s temperatures graph

(27), i t can be observed

isotherm

(lower temperature

i n the 4340 i n g o t s .

t h a t due t o a s t r o n g g r a i n

compositions were s h i f t e d i n 2500-4500 ym range. u

163

gradi-

c) In

growth and thus i n t e r g r a n u l a r s e g r e g a t i o n , the A l , Mn

suits

These

and

S

These r e -

. . ... . (1,17,18,129,131-133, i n agreement with p r e v i o u s r e s e a r c h ' ' ' ' '

169)

a

n

(

j^ w

t n

p

r

e

v

i

o

u

s

f i n d i n g s i n the

1020-series

show t h a t s u l f i d e s are the most t h e r m a l l y a f f e c t e d phases. Oxide i n c l u s i o n s i n deformed 4340 e l e c t r o d e s a l s o e x p e r i enced g r a d u a l m o r p h o l o g i c a l changes.

d)

The

largest

changes

i n the i n c l u s i o n chemical composition i n both e l e c t r o d e s a

manner

curred

in

equivalent the

to

partially

the

1020

liquid

M.S. region.

electrodes

in oc-

The presence

of

s t r o n g i n t e r g r a n u l a r and i n t e r d e n d r i t i c (segregated) m a t e r i a l which c o n t a i n e d

inclusion-formers

c l u s i o n s were completely l i q u i d Figure

c l e a r l y indicate that i n -

i n t h i s t r a n s i e n t zone.

(19a) from 4340-electrodes and (20) from the r o t o r

steel electrodes

strongly corroborate

these f i n d i n g s ,

e) Chemical a n a l y s i s i n 4340 e l e c t r o d e s , F i g u r e s

(26,27),

suggest t h a t S i and Mn i n i n c l u s i o n s , p a r t i c u l a r l y i n the liquid film

f o l l o w the same behavior as i n 1020 M.S., i . e .

i n c l u s i o n s get r i c h e r i n S i and Mn j u s t b e f o r e totally

dissolved.

they are

144 5.1.2.1

Removal of Oxides and S u l f i d e s i n 4340-electrodes

The sequence of changes i n the chemical

composition

of i n c l u s i o n s i n these e l e c t r o d e s i s summarized as f o l l o w s . The s p h e r o i d i z a t i o n and a subsequent fides

d i s s o l u t i o n of

sul-

j u s t as i n p r e v i o u s o b s e r v a t i o n s i n the 1 0 2 0

M.S.

e l e c t r o d e s i s the f i r s t

step i n the removal mechanism.

takes p l a c e i n s u b s o l i d u s temperature (26) and

It

ranges. F i g u r e s (19),

(27) i n d i c a t e t h a t these changes occur a t about

2000-

3000 ym above where the s o l i d u s of the a l l o y was m e t a l l o g r a p h i cally identified.

The most d r a s t i c changes, however, take p l a c e

i n areas where complete

a u s t e n i t i z a t i o n was

In f u l l y a u s t e n i t i z e d

observed.

areas and i n the r e g i o n

where the m e l t i n g s t a r t e d the A l and S i n i n c l u s i o n s

de-

crease w h i l e the S i , Mn and the Ca c o r r e s p o n d i n g l y i n c r e a s e . T h i s behavior i s accentuated as the l i q u i d f r a c t i o n i n creases.

A mixture of f e l d s p a r s

and garnets 2AI2O.J

(3M0«Al 0.j *3Si02) °

r

(9192) ' e

v

e

n

2

• 5Si02)

(MO "A^O^

cordierites

i n s t e a d of the o r i g i n a l aluminates

p r e c i p i t a t e as the l i q u i d f r a c t i o n approaches

«2Si02) (2M0* should

unity.

The

a c t u a l s t o i c h i o m e t r y of t h i s compound i s i r r e l e v a n t s i n c e M i n a l l of these compounds cart be e i t h e r Fe, Mn or Ca these s e r i e s of (91 solubility

compounds show v i r t u a l l y complete

and

mutual

92) '

.

The most important f i n d i n g , however,

i s t h a t oxides i n t h i s matrix are suddenly not so much i n s u b s o l i d u s temperature

transformed

ranges

as occurs i n

145 the 1020 M.S. as i n the s e m i - l i q u i d stage.

The presence

of i n c l u s i o n r e l i c s and " l i q u i d " e n r i c h e d i n i n c l u s i o n c o n s t i t u e n t s i s shown i n F i g u r e s (19c) and (2 0a) as i n t e r dendritic

segregates.

In the l i q u i d f i l m ,

about

50ym from the edge o f the

e l e c t r o d e t i p a s i m i l a r e f f e c t as t h a t seen i n the 1020 M.S. e l e c t r o d e s was observed.

Since t h i s volume of l i q u i d

e l e c t r o d e was s u b j e c t e d to a d i r e c t i n t e r a c t i o n with the s l a g a s h i f t i n the chemical composition o f i n c l u s i o n s was detected.

T h i s i n d i c a t e s t h a t the e l e c t r o d e

composition was completely transformed. of i n c l u s i o n s i n the l i q u i d f i l m it

4340 (I)

a) b)

4340 (II)

a) b)

inclusion

The chemical

analysis

(a) i n the d r o p l e t or

are ( i n at.%) as f o l l o w s : Al

Ca

S

19.0 7.0

2.78 3.90

_

8.27 6.30

9.30 11.00

1.5 _

-

Si

Mn

78.0 70 .20

0.22 17.40

56.0 56.0

26.46 27.60

F i n a l l y , the chemical composition o f i n c l u s i o n s i n e i t h e r (a') l i q u i d

434 0 (I)

4340 (II)

(pool) stage o r .(b')the i n g o t correspond t o : a')

Al„0_ and t r a c e s o f s i l i c a + MnS I I

b')

A1 0

a')

Ca«Al 0

b')

2

2

3

3

+ MnS I I

2

3

12CaO-7Al 0 2

3

146

I t i s important t o note t h a t 4340 (I) was A l - d e o x i d i z e d and 4340 (II) was CaSi t r e a t e d . deoxidized

Ingot 4340

(I) was

0.02 kg ton "'') and i n g o t 4340 (II) was h e a v i l y -

CaSi d e o x i d i z e d (10 Kg t o n ) - 1

both i n g o t s were r e f i n e d

through a 50wt % C a F , 30 wt% Al C> 2

2

3

and 20 wt% CaO.

I f the above chemical analyses are compared clearly

slightly

i t can

be seen t h a t i n c l u s i o n r e l i c s from the bulk o f the

e l e c t r o d e , i f any, are d i s s o l v e d and r e p r e c i p i t a t e d i o n s which show the s l a g c h a r a c t e r .

inclus-

I n c l u s i o n s i n the l i q u i d

f i l m are s m a l l and complex i n composition.

Therefore, i n -

c l u s i o n s l o c a t e d i n t h i s narrow f i l m do not r e p r e s e n t i n any way what happened i n the t r a n s f o r m a t i o n - d i s s o l u t i o n o f p r e v i o u s stages.

5.1.2.2

Calcium-Aluminum S i l i c a t e s

i n a Rotor

(Ni,Cr,Mo)

Steel The

i n c l u s i o n chemical composition was m e t i c u l o u s l y

determined

at discrete locations i n electrode tips.

These

a n a l y s i s were c a r r i e d out a t every 250-300 ym s t a r t i n g the l i q u i d f i l m . studies

as i n p r e v i o u s

(1020 and 4340), they were arranged a c c o r d i n g t o

the s p e c i f i c film

For the sake of c l a r i t y

from

area a t which they belonged

i.e., liquid

( i n and out o f d r o p l e t ) , p a r t i a l l y molten

s e v e r a l l i q u i d f r a c t i o n s and a t s u b s o l i d u s

area a t

temperatures.

147 A summary of the r e s u l t s o b t a i n e d by EPMA and t h e i r c l a s s i f i c a t i o n a c c o r d i n g t o the thermal h i s t o r y a t which these volumes were subjected

i s shown i n F i g u r e

Since these e l e c t r o d e s during

(28) *

experienced almost no g r a i n growth

a u s t e n i t i z a t i o n , the composition o f i n c l u s i o n s was

exclu-

s i v e l y changed i n r e g i o n s c l o s e t o the s o l i d u s temperature o f the alloy.

I t i s important t o n o t i c e t h a t the s i z e o f the mushy zone

i n the r o t o r s t e e l (> 2800 pm) i s l a r g e r than i n 1020 M.S. o r the 4340 s t e e l s .

The s l a g - i n c l u s i o n d i s s o l u t i o n ( i n only

remaining i n c l u s i o n s )

took p l a c e

of the o t h e r e l e c t r o d e s ,

i.e.

very few

i n a manner e q u i v a l e n t

liquid

to a l l

film.

T y p i c a l a n a l y s i s o f i n c l u s i o n s from these areas i n a t . %, are as f o l l o w s : Al

Ca

Si

i n g o t (1)

25.18

61.15

8.65

5.0

ingot

25.88

61.36

9.40

3.5

38.48

20.20

34. 85

6.50

61.16

21.63

16.38

0. 82

62.35

2.27

3.16

0.16 1.16

Partially Liquid

Liquid

( f ^ ^ 1)

(2)

S

Mn

Film out in

A f t e r ESR

of droplet droplet

148 These

i n g o t s were r e f i n e d through the 50% C a F , 2

30% A ^ O ^ and 20% CaO s l a g .

T h e i r d e o x i d a t i o n was c a r r i e d

out with the CaSi a l l o y a t approximately

5.1.3

0.1-0.2 Kg ton . 1

F i n a l Remarks About the Removal Mechanism I n c l u s i o n s i n e l e c t r o d e t i p s d u r i n g ESR are removed by

d i s s o l u t i o n i n the metal matrix

i n w e l l d e f i n e d steps a c -

c o r d i n g t o the e l e c t r o d e i n c l u s i o n composition i n the e l e c t r o d e t i p .

and l o c a t i o n

The thermal g r a d i e n t to which the

e l e c t r o d e and hence i n c l u s i o n s are s u b j e c t e d d r i v i n g f o r c e f o r t h e i r removal.

i s the main

T h i s mechanism, however,

does n o t correspond

t o t h a t p r e v i o u s l y d e s c r i b e d i n the

l i t e r a t u r e review.

Gradual d i s s o l u t i o n along the heat

a f f e c t e d zones or s t r i c t d i s s o l u t i o n of i n c l u s i o n s a t the l i q u i d film,

and the "washing o f f " or the mechanical r e -

moval o f i n c l u s i o n s are not o p e r a t i v e mechanisms. stead

In-

a mechanism based on s u b s t a n t i a l experimental

t h e o r e t i c a l evidence chemical

and

which suggests the quasi-thermo-

e q u i l i b r i u m of i n c l u s i o n s and t h e i r l o c a t i o n

is indicated. The

s e r i e s of a c t u a l chemical

transformations

and the

d i s s o l u t i o n of i n c l u s i o n s i n electrode t i p s are s t r i c t l y c o n f i n e d t o a d i s t a n c e no g r e a t e r than 0.5 - 0.8 cm above the l i q u i d f i l m .

S u l f i d e s i n the Fe-Mn-S-0 system and o x i -

s u l f i d e s i n the Fe-O-S-Mn-Si system a r e p a r t i a l l y d i s s o l v e d and p a r t i a l l y transformed

a t subsolidus

temperatures..

149 Reactions between i n c l u s i o n components and the metal matrix leads t o the s o l u t i o n o f c e r t a i n i n c l u s i o n components as

"FeS", "FeO", "MnS", e t c . , which i n i t i a t e

t i o n i n a u s t e n i t i c g r a i n boundaries.

such

solute penetra-

This f a c t implies

that

these i n c l u s i o n s are a mixture o f phases, namely "MnS", "FeO" and

a small amount o f "FeS".

i n c l u s i o n s are subjected

The chemical r e a c t i o n s t o which

and t h e i r d i s s o l u t i o n i n the metal

m a t r i x a r e q u a l i t a t i v e l y p r e d i c t e d by u s i n g diagrams a v a i l a b l e (164 —16 6) i n the l i t e r a t u r e S-0

.

S u l f i d e s belonging

t o the Fe-Mn-

system and o x i s u l f i d e s low i n s i l i c o n which belong t o the

general

Fe-O-S-Si-Mn system i n e l e c t r o d e t i p s f o l l o w a q u a s i -

thermochemical e q u i l i b r i u m d i c t a t e d by the F i g u r e e q u i l i b r i u m phase diagram workers

is

n

o

obtained

(5).

This

by Turkdogan and c o -

t completely obeyed and i n s t e a d a be-

h a v i o r g i v e n by the " t r i p l e dashed l i n e " Inclusions belonging

i s followed.

t o the Fe-Si-Mn-O-S system which

have a s i l i c o n content such t h a t the S i : 0 r a t i o i s g r e a t e r than 0.5, f o l l o w the FeO-MnS-MnO-Si0 quaternary system dev2

eloped ure

by S i l v e r m a n ' * * ^ 9

(9).

The b e h a v i o r o f these i n c l u s i o n s i s a l s o complemented

by the b i n a r y MnO-Si0 ernary (8a)

as i n d i c a t e d by the arrow i n F i g -

2

as p a r t o f the Si0 ~MnO-FeS-MnS quat-

diagram developed by Van V l a c k

and (8b).

This proposal

2

et a l .

, Figures

corresponds l a r g e l y t o t h a t a l (168) ready suggested by H i l t y and C r a f t s , i . e . the pseudo

150 t e r n a r y behavior

of the m e t a l - o x i d e - s u l f i d e phases.

Thermo-

d y n a m i c a l l y more s t a b l e phases such as Mn(Fe)0, MnO, MnO«Si02A

2 M n 0 « S i 0 2 / c a l c i u m aluminates,

uminates, e t c . , a r e transformed bourhood o f the l i q u i d

calcium s i l i c o n a l -

and d i s s o l v e d i n the n e i g h -

f i l m between the f u l l y a u s t e n i t i z e d

area and the f u l l y l i q u i d metal.

Electrode inclusion

( i f any) i n the l i q u i d

f i l m r e a c t , up t o a l i m i t e d

w i t h the s l a g producing

complex i n c l u s i o n phases.

Finally,

relics

extent

i n c l u s i o n s i n ESR i n g o t s which show the e l e c t -

rode i n c l u s i o n c h e m i c a l composition s t a b l e ESR c o n d i t i o n s , "hot t o p p i n g "

Si02^

stages.

a r e found o n l y under un-

i . e . a t the s t a r t i n g and d u r i n g the

151

5.2

The Chemical

I n f l u e n c e o f the E l e c t r o d e , Slag

and D e o x i d i z e r on the Chemical Composition o f Inclusions

5.2.1

D e s c r i p t i o n of Experimental F i n d i n g s

5.2.1.1

P r e l i m i n a r y S t u d i e s on the E f f e c t o f the S l a g and the D e o x i d a t i o n

4340-electrodes

31.75 and 44.75 mm

i n diameter and with

d i f f e r e n t i n c l u s i o n chemical compositions were r e f i n e d t o 75 mm i n diameter

i n g o t s a t m e l t i n g r a t e s o f about

1.3 Kg m i n

through d i f f e r e n t s l a g systems and under a p r o t e c t i v e

- 1

(argon)

atmosphere. The components o f the s l a g systems

(CaF , CaO, Al-^O^ 2

and S i 0 ) were p r e v i o u s l y d r i e d a t 650°C and the " c o l d 2

s t a r t i n g procedure" was f o l l o w e d . through s l a g s which had s e v e r a l S i 0 f e r e n t s l a g systems were chosen CaSi a l l o y and A l , Table form o f p e l l e t s

(99.9%).

E l e c t r o d e s were r e f i n e d 2

contents.

Two

dif-

t o be d e o x i d i z e d w i t h a

(X). The aluminum was i n the The CaSi a l l o y c o n t a i n e d 62.5

152

wt.

% S i , Table

(^ 2.3

(IX).

The d e o x i d a t i o n r a t e s were c o n s t a n t

Kg/ton) and they were performed

when steady r e m e l t i n g

c o n d i t i o n s were observed. The purpose

of these experiments

were:

i ) to

determine

the chemical composition of i n c l u s i o n s as an e x c l u s i v e e f f e c t of the s l a g composition

(and e l e c t r o d e ) .

i i ) to i n -

v e s t i g a t e what changes i n i n c l u s i o n compositions c o u l d be achieved by u s i n g the same s l a g system to compare r e s u l t s from

and d e o x i d i z e r s

( i ) a g a i n s t ( i i ) and

(iii)

and

to d e t -

ermine the most a p p r o p r i a t e s l a g systems to be used i n the 200 mm

i n diameter

ESR-furnace.

Experimental r e s u l t s are shown i n Table s l a g chemical composition i n wt.

%

#

(X)

where the

the i n c l u s i o n chemical

composition i n a t . %, the chemical composition of i n c l u s i o n s i n e l e c t r o d e s and the major i n c l u s i o n phases are g i v e n . i s important to note t h a t although c l u s i o n s was scatter

performed

(± 5.0

- 7.0%)

It

chemical a n a l y s i s of i n -

on a l a r g e number

(30-40) a wide

i n t h e i r a n a l y s i s was

found.

s c a t t e r i s p r i n c i p a l l y a t t r i b u t e d t o the i n c l u s i o n

The size

153

distributions

( l e s s than 5ym

i n diameter) and

steady r e f i n i n g c o n d i t i o n s due s l a g systems.

to the use

of

to the

inappropriate

As a consequence o f t h i s l a c k of

o c c a s i o n a l l y an uneven s u r f a c e of the ingot was and

l i q u i d enriched

un-

stability observed

i n d e o x i d i z e r s and oxygen p r e c i p i t a t e d

alumina type of i n c l u s i o n s i n a c o n f i n e d volume, F i g u r e The

first

oxidizer was

s e t of experiments

performed without a

than 10

wt

%.

Calcium-aluminum s i l i c a t e s i n

i n c l u s i o n s were found above t h i s l e v e l . more than two

i n c l u s i o n phases was

same sample. Table

was

composition

s p e c i f i c a l l y ingots as i n g o t

of i n c l u s i o n s i n i n g o t

showed almost e x c l u s i v e l y c a l c i u m (9)

presence of

commonly observed i n the

second s e r i e s of experiments

c a r r i e d out,

The

(X).

v i r t u a l l y the same behavior

and

de-

showed s i l i c o n i n i n c l u s i o n s where S i C ^ i n s l a g s

higher

The

(29).

i n which (7) and (1).

The

aluminates.

chemical

(1) and

whereas i n i n g o t

higher.

reference

Ingots

(7)

the Ca:Al r a t i o ,

cases.

t e n t of i n c l u s i o n s i n i n g o t s (9). i t was

(9), showed

(1), used as a

a l s o showed c a l c i u m aluminates,

however i s l a r g e r than i n p r e v i o u s

deoxidation

The

s i l i c o n con-

(7) were e q u i v a l e n t ,

I f the a n a l y s i s of i n c l u s i o n s from e l e c t r o d e s used i n ingots

(1) to

(7) are compared a g a i n s t

(9) and

(10)

then

154 i t can be i n f e r r e d t h a t the i n c r e a s e d S i content comes from the e l e c t r o d e , Table

(X).

c a l c i u m aluminates, was

The maximum c a l c i u m c o n t e n t , as

found i n i n g o t s remelted

through

r e l a t i v e l y high CaO

(15-22 wt %) and r e l a t i v e l y low

( l e s s than 10 wt %)

slags.

The and

i n c l u s i o n chemical a n a l y s i s performed

15/15/15) s l a g system, t h e i r composition with and

the

(2)

(55/

without

On the other hand,

f o r e l e c t r o d e s r e f i n e d under the same s l a g system and o x i d i z e d w i t h aluminum; lower

2

i n ingots

(10) shows t h a t by r e f i n i n g e l e c t r o d e s through

Ca-Si d e o x i d a t i o n remains u n a l t e r e d .

Si0

de-

s i l i c o n and r e l a t i v e l y higher

c a l c i u m and hence higher aluminum i n i n c l u s i o n phases i s found. R e s u l t s i n t h i s i n v e s t i g a t i o n c l e a r l y show t h a t the i n trinsic

s l a g e f f e c t i n the chemical composition of

f o l l o w s a very w e l l d e f i n e d p a t t e r n . the S i 0 (5),

2

S l a g systems i n which

content i s lower than 10 wt

(7), and

dominantly

2

2

3

%

as i n i n g o t s (1), (4),

(9) y i e l d e d i n c l u s i o n compositions which p r e -

l i e i n the C a O - A l 0

on the A l 0

inclusions

r i c h side, i . e .

3

pseudo b i n a r y phase diagram

alumina

types and low

CaO-

aluminates. To c o r r o b o r a t e these f i n d i n g s periments

i n the 200 mm

other s e r i e s of

ESR-furnace were performed.

exEx-

p e r i m e n t a l d e t a i l s and a summary of f i n d i n g s are g i v e n i n

155

Tables

(VIII) and

(XI).

The main p o i n t to be c o n s i d e r e d

i n t h i s s e t of experiments (0.02

kg ton

1

i s the low l e v e l of d e o x i d a t i o n

) to which the s l a g - l i q u i d p o o l was

j e c t e d and the e l e c t r o d e s u r f a c e p r e p a r a t i o n . Table

(XI)

sub-

As seen i n

c o n s i s t e n t q u a l i t a t i v e r e s u l t s are found

terms of the chemical composition of i n c l u s i o n s

in

i n both

ESR-furnaces. P a r t i c u l a r emphasis should be g i v e n to r e s u l t s t a i n e d from i n g o t (11).

A rotor steel electrode

ob-

with

chemical composition i s g i v e n i n Table

(VII)

average

( i n at%) as f o l l o w s :

was

i n c l u s i o n chemical composition Al

Ca

Si

S

28.5

24.1

42.0

2.2

Mn

2

12 wt

% Si0

2

and 6 wt

% MgO

Fe

2.5

remelted through a 49 wt % C a F , 16 wt

A^O-j,

slag.

balance % CaO,

(ESR)

chemical ingot,

i s as f o l l o w s :

Al 44.70

Ca 13.60

Si

S

Mn

24.5

7.4

9.2

Since the at.%Mn:at.%S r a t i o i s approximately it

17 wt %

The average

composition o b t a i n e d from 40 i n c l u s i o n s i n the in at.%

and with an

can be assumed t h a t a MnS

s u l f i d e phase was

phase was

Mg + Fe balance one

then

precipitated.

The

commonly found surrounding the oxide phase.

156 X-ray composition p r o f i l e s and maps as w e l l as d i s p e r s i v e X-ray

spectrum

a n a l y s i s confirmed these f i n d i n g s .

oxide phase was

not s p h e r i c a l

The

(as c a l c i u m aluminates-

c a l c i u m s u l f i d e i n c l u s i o n s ) , i n s t e a d angular oxides were observed. maining

I f the above v a l u e s are normalized

then the r e -

elements can be f u r t h e r analyzed; thus the o v e r a l l

composition i s Al

Ca

Si

^54

^16

^30

From these computed v a l u e s the r a t i o s f o r A l , Ca and S i r e s p e c t i v e l y are approximately

4:1:2.

Thus, the f e a s i b l e phase

p r e s e n t i n these type of i n c l u s i o n s c o u l d be: CaO«2Al 0 '2Si0 2

T h i s compound, as i n d i r e c t l y 9 2

^

3

2

s t a t e d i n the l i t e r a t u r e

review*

has not been r e p o r t e d as an i n c l u s i o n phase; i t can

i n s t e a d a f e l d s p a r of the type M 0 « A 1 0 « 2 S i 0 2

can be e i t h e r FeO,

MgO,

MnO

or CaO.

3

2

Based on

i n which

individual

a n a l y s i s of i n c l u s i o n s ; alumina r i c h phases and CaO-Al 0 2

3

MO

complex

s i l i c a t e s were indeed the major phases p r e s e n t .

Hence, the o n l y f e a s i b l e compounds i n t h i s i n g o t are the Al 0 «CaO•2Si0 2

3

Al_0_

2

( a n o r t h i t e ) phase i n c o n j u n c t i o n with

(corundum) e n r i c h e d phase.

an

be

157

5.2.1.2

I n t e r m i t t e n t CaSi A d d i t i o n s and the R e a c t i o n Scheme

Since no d i f f e r e n c e was

found between d e o x i d i z e r s

(Al and the Ca-Si a l l o y ) i n s m a l l ESR-furnace, the chemical composition of i n c l u s i o n s of

(i.e.

i n terms of precipitation

c a l c i u m aluminates and up t o a given e x t e n t c a l c i u m

s u l p h i d e s ) , an e x t e n s i o n of these experiments

i n the

i n d u s t r i a l s i z e ESR-furnace was

These e x p e r i -

ments are l i s t e d

i n Table

c a r r i e d out.

(VIII).

50 grams of

the Ca-Si a l l o y were a l t e r n a t e l y added a t two

FeO

semi-

and

discrete

time

i n t e r v a l s d u r i n g r e f i n i n g under two d i f f e r e n t s l a g systems; namely 50/30/20 and 70/30/0. C a F , A^O^, 2

and the CaO

These f i g u r e s r e p r e s e n t the

compositions

i n wt %.

1020

M.S.

e l e c t r o d e s whose chemical composition and i n c l u s i o n chemi s t r y have a l r e a d y been d e s c r i b e d , were r e f i n e d a t about 1 kg min

1

, with and without

(RIII-W and RII-W r e s p e c t i v e l y )

an argon atmosphere s h i e l d i n g . T o t a l oxygen content, s l a g chemical a n a l y s i s from

samples

taken d u r i n g r e f i n i n g , i n g o t chemical a n a l y s i s and

inclusion

chemical composition as w e l l as s i z e d i s t r i b u t i o n s

from

i n g o t s were determined.

These r e s u l t s are shown i n F i g u r e s

(30) to

(36).

S i , Mo,

Cr, A l and N i were analyzed i n the s l a g s and i n g o t s

respectively.

Ca, F, A l , S i , Mn

and Fe and Mn,

C, P,

S,

Elements with s i g n i f i c a n t changes i n t h e i r

composition are p l o t t e d . Figures

(32) and

(33a-b) from RII-W and RIII-W, show the

158 e f f e c t of the Ca-Si a l l o y

(intermittent) additions.

These

graphs show t h a t the d e o x i d i z e r produces a sharp decrement i n a l l of the s l a g c o n s t i t u e n t s .

Correspondingly,

the chem-

i c a l composition of i n g o t s show a sharp increment i n A l and

S i , Figures

considered

(34,35).

Mn,

Other important p o i n t s to

be

from these graphs are t h a t s u l f u r i s decreased

when the Ca a l l o y was

added and

i r o n oxide a d d i t i o n s i n the

s l a g d i d not produce as sharp changes i n the i n g o t composit i o n as d i d a d d i t i o n s o f the d e o x i d i z e r . comes from the e l e c t r o d e

gradually

as r e f i n i n g takes p l a c e ,

Figure

The

and

response time of the system was

The

i n the s l a g

(33b). a l s o observed.

RII-W

i n about 100-150 seconds

RIII-W w i t h i n 200-250 seconds. The

i n the s l a g and

s i l i c o n which

increased

(32) and

showed a response to the d e o x i d i z e r

The

e f f e c t of the

deoxidizer

i n g o t decrease i n a r e l a t i v e l y slow manner.

sudden changes i n FeO

content

(expressed

as wt

% of

Fe)

i n the s l a g as w e l l as the abrupt changes i n the t o t a l oxygen content and

the i n c l u s i o n chemical composition as a d i r e c t

e f f e c t o f these i n t e r m i t t e n t ( C a - S i )

a d d i t i o n s are the most

important responses i n the r e f i n e d i n g o t , F i g u r e s (33).

I t i s important t o n o t i c e t h a t there was

r e a c t i o n time t o show t h e • i n d i v i d u a l Ca or FeO o f oxygen i n (RIII-W), F i g u r e The

to

not enough e f f e c t s i n terms

(30).

d i f f e r e n c e between RII-W and

s t a r t i n g s l a g compositions and

(30)

RIII-W are

the

the presence o f an argon

s h i e l d i n g atmosphere i n the l a t t e r , T a b l e

(VIII).

Thus

a

159

lower oxygen content

(15-20 ppm)

and observed, F i g u r e s The

(30)

and

i n RIII-W was

expected

(31).

main c o n c l u s i o n from the above r e s u l t s i s t h a t

ESR-process i n terms of s l a g s and plex reactor.

The

s l a g do not occur

d e o x i d i z e r s i s a very com-

s e r i e s o f r e a c t i o n s t a k i n g p l a c e i n the independently

the l i q u i d p o o l and

of the ones t a k i n g p l a c e i n

i n the i n g o t , i . e .

p o s i t i o n i s not c o n t r o l l e d by one 5.2.1.3

the

R e f i n i n g of 1020 Deoxidized

M.S.,

Continuously

the

i n c l u s i o n com-

single factor. 200

mm

Diameter Ingots

with Aluminum

To g a i n a b e t t e r understanding of the above sequence of r e a c t i o n s , complementary and more d e t a i l e d experiments by which r e a c t i o n s i n the l i q u i d monitored were planned.

s l a g l i q u i d p o o l and The

purpose of these experiments was

s l a g compositions.

to d i s c r i m i n a t e the

to i d e n t i f y s e p a r a t e l y the e f -

f e c t of d e o x i d i z e r s on the s l a g d u r i n g the three the r e f i n i n g p r o c e s s . c l u s i o n chemistry a t i o n and / and

f o r other

stages

through an i n i t i a l

% CaO,

was

i n g o t s , CaSi and

of

intrinsic electrode-slag-in-

of a r e f i n e d (1020) i n g o t , without

remelted 20 wt

The

50 wt%

CaF^,

deoxid-

30 wt

%

used as the b a s i s of comparison Al-deoxidized.

the The

intrinsic

e f f e c t o f the e l e c t r o d e i t s e l f on the s l a g ( i . e .

without any d e o x i d i z e r ) . a n d

A^O^

be

next s e t o f experiments i n c l u d e d

r e f i n i n g of e l e c t r o d e s through e q u i v a l e n t

chemical

ingots could

160

The

i n g o t i d e n t i f i e d as R I - I l was

argon atmosphere and "FeO"

r e f i n e d under an

i n the absence of a deoxidant.

i n the s l a g and

the t o t a l oxygen content

approximately constant

i n the i n i t i a l

stages,

The

remained Figure

(37).

I n c l u s i o n s i n samples e x t r a c t e d from the l i q u i d p o o l and

from

the i n g o t were e s s e n t i a l l y i d e n t i f i e d as s p h e r i c a l s i n g l e p a r t i c l e s or as small c l u s t e r s of alumina type and

a-A^O-j) and

The

alumina type was

fides,

l e s s f r e q u e n t l y as f a y a l i t e type

i n the s l a g was

The

to 0.125

wt.%

MnS

II.

The

considerable. up to

s i l i c o n content

(2FeO«Si02) •

u s u a l l y a s s o c i a t e d with manganese s u l -

(Fe,Mn)S and

the bottom and

(FeQ'A^O^

gradual

i n c r e a s e of

I t ranged from 0.75

about 2.0

wt.%

a l y s i s i s shown i n F i g u r e

The

2

at

at the top of the

ingot. up

i n g o t chemical

an-

(38).

Experiments which are e q u i v a l e n t to the s m a l l

M.S.

wt.%

i n the i n g o t ranged from 0.095

from s t a r t to f i n i s h .

and A l ) d e o x i d i z e d

Si0

(Ca-Si

(4340) ingots were a l s o c a r r i e d out.

e l e c t r o d e s were r e f i n e d through e q u i v a l e n t

slags

1020

and

samples from l i q u i d s l a g s and pools were e x t r a c t e d while

continu-

o u s l y i n c r e a s i n g a d d i t i o n s of d e o x i d i z e r s to the s l a g were made.

Table

experiments.

(VIII) summarizes the d e t a i l s of t h i s s e t of Refined

i n g o t s r e f e r r e d to as R I I - I l and

RII-I2 were aluminum t r e a t e d by u s i n g two

different

deoxid-

a t i o n sequences.

Deoxidation

r a t e s were 3.63,

6.1,

6.8

and

7.6

1.21,

3.64,

and

12.12

kg

kg t o n

- 1

and

2.42,

4.85,

6.06

ton

- 1

161 f o r R I I - I l and RII-I2 r e s p e c t i v e l y .

RII-I2 was CaSi (50

grams) d e o x i d i z e d i n the i n i t i a l r e f i n i n g stage. .. The i r o n oxide content, g i v e n as wt- % i r o n i n F i g u r e s (39) and (40), slowly and c o n t i n u o u s l y decreased

from about

0.6 wt.% down t o about

0.4 wt-%

as the aluminum a d d i t i o n

r a t e s were i n c r e a s e d .

While h i g h d e o x i d a t i o n r a t e s

r e l a t i v e l y steady t o t a l oxygen content

( R I I - I l ) and hence

e q u i l i b r i u m behavior i n i n c l u s i o n compositions, o x i d a t i o n r a t e s produced parameters,

(RII-I2),

an o s c i l l a t i n g behavior

Figures

(41, 42) and

F i n d i n g s i n these experiments,

produced

the low dei n both

(43,44).

although not as drama-

t i c as the (Ca-Si) i n t e r m i t t e n t l y d e o x i d i z e d i n g o t s , show t h a t the aluminum as a d e o x i d i z e r a l s o produces s i m u l t aneous exchange r e a c t i o n s between two l i q u i d s o f the g e n e r a l type

(11) and r e a c t i o n s o f the type

.(12).

The elements i n -

v o l v e d i n these r e a c t i o n s , i n a manner e q u i v a l e n t t o the i n termittent itself,

Ca-Si a d d i t i o n s

F i g u r e s (37-40) and

are the S i , Mn and the A l by (43-46).

The most s e n s i t i v e p a r t s of the system t o the aluminum d e o x i d a t i o n were the t o t a l oxygen content and the chemical composition o f i n c l u s i o n s r e p r e s e n t e d by the a t . % C a : a t % A l i n Figures Figure

(43) and (44). (40) from RII-I2

shows t h a t the aluminum was

a b l e t o s l o w l y overcome the s i l i c o n e f f e c t from the e l e c t r o d e .

162 Hence, from the c a l c i u m

t o aluminum, r a t i o of i n c l u s i o n s ,

the chemical composition o f i n g o t s and s l a g , i t i s i n f e r r e d t h a t the major r e a c t i o n s which govern the chemical composition of i n c l u s i o n s d e f i n i t e l y slag.

On the other

i n v o l v e the CaO and A ^ O ^ from the

hand the s i l i c o n - from e l e c t r o d e s ,

although i t i s t r a n s p o r t e d

i n the i n g o t , F i g u r e s

not play a r o l e i n the d e o x i d a t i o n The

(45,46), does

scheme.

sequence o f i n c l u s i o n formation

was as f o l l o w s :

1) i n the bottom p a r t o f these i n g o t s , where r e f i n i n g was unstable

some i n c l u s i o n s (approximately 5%)

contained

silicon.

T h i s was almost i n v a r i a b l y l o c a t e d i n the i n -

c l u s i o n core and a s s o c i a t e d with manganese and c a l c i u m . This i s considered

as a c l e a r i n d i c a t i o n t h a t some i n c l u s i o n s ,

a t low r e f i n i n g e f f i c i e n c i e s , come from the e l e c t r o d e and i n subsequent stages they a r e t r a n s p o r t e d

d i r e c t l y i n t o the

i n g o t which i s a l s o s o l i d i f y i n g under unsteady s t a t e tions.

condi-

The b u l k of these i n c l u s i o n s are, however, mainly

represented

by s m a l l s i n g l e o r c l u s t e r e d type

galaxies) of i n c l u s i o n s , Figures degree o f d e o x i d a t i o n

(47) t o (48).

i s increased,

s i n g l e i n c l u s i o n s were observed

(alumina 2) As the

g l o b u l a r and f a c e t e d

(FeO-A^O^ and a-A^O^ r e s -

p e c t i v e l y ) , F i g u r e (49). These types were u s u a l l y a s s o c i a t e d with a s u l f i d e phase (MnS I I ) and

3) A t the h i g h e s t

deoxidation

rates,

163 a mixture of s p h e r i c a l and f a c e t e d alumina w i t h

hexagonal

aluminates were observed, F i g u r e (50). T h i s l a t t e r type had a p e r i p h e r a l double, are shown i n Graphs a g a i n s t the S:Mn

(Mn,Ca)S, s u l f i d e .

These f i n d i n g s

(51) and (52) where the Ca:Al r a t i o

i n a t . % are p l o t t e d .

These f i g u r e s were

o b t a i n e d from i n c l u s i o n s i n R I I - I l and RII-I2 RII-Il

respectively.

which was a h e a v i l y d e o x i d i z e d i n g o t

very h i g h l y segregated m a t e r i a l .

These segregates

under the e l e c t r o n beam produced

a red fluorescence

showed which occurred

i n the t h i r d d e o x i d a t i o n l e v e l , F i g u r e (53) and t h e i r

typical

composition i n a t %, was as f o l l o w s : Al

Ca

26.23

Si

45.67

17.19

Mn Balance

Composition maps shown i n F i g u r e s (53a-d) are t y p i c a l of these segregates.

T h e i r area ranged from 10ym

2

up t o 65-70ym . 2

T h i s f i n d i n g a l s o confirms the " m u l t i - e x c h a n g e - r e a c t i n g " nature of the d e o x i d a t i o n i n the ESR-process, r e a c t i o n s of the type were commonly

(12 a-b).

e.g.

exchange

These types of segregates

seen i n samples e x t r a c t e d from l i q u i d p o o l s .

In these types of samples

inclusions containing s i l i c o n

and o c c a s i o n a l l y f a y a l i t e type of i n c l u s i o n s were a l s o found. Based on mass balances the "FeO" content of the s l a g d u r i n g r e f i n i n g changed from 0.45 wt % down t o 0.27 wt %

164

i n R I I - I l and

from 0.6

wt % to 0.26

lowest "FeO" l e v e l i n s l a g s was

wt % i n RII-I2.

The

a l s o accompanied by a change

i n the A^O^tCaO r a t i o ; whereas the C a F ^ content was s l i g h t l y changed

(from 0.5

to 1.0

wt % ) .

Thus, the minimum

l e v e l of d e o x i d a t i o n reached without

s h i f t i n g the

composition

% FeO

i s about

0.28

- 0.30

wt

5.2.1.4

(54,

slag

f o r 1.3

C a O i A ^ O ^ r a t i o s i n s l a g s of R I I - I l and RII-I2 Figures

only

and

1.5

respectively,

55).

1020

M.S.

Ingots Deoxidized Continuously with a

CaSi A l l o y Since the e f f i c i e n c y

of the Ca-Si a l l o y i n the s m a l l

4340 i n g o t s and i n the l a r g e diameter intermittently deoxidized

was

(200 mm)

observed *

1020

to be h i g h e r

i n the aluminum d e o x i d i z e d i n g o t s , a s e r i e s of were conducted

than

experiments

u s i n g e q u i v a l e n t s l a g systems and

of d e o x i d a t i o n as w e l l as m e l t i n g r a t e s (1 kg min the CaSi a l l o y .

M.S.

Experimental techniques used t o

degrees *) w i t h determine

the t o t a l oxygen content from l i q u i d pool and i n g o t , the s l a g chemical a n a l y s i s , the i n c l u s i o n composition and

their

s i z e d i s t r i b u t i o n s and the chemical a n a l y s i s of i n g o t s were the same as those used to study the 1020 f i n e d through

the C a F - A l 0 - C a O system. 2

2

3

M.S.

ingots r e -

The Ca-Si a l l o y

was *

added to the s l a g i n R I I I - I l and RIII-I2 i n about e q u i v a l e n t

* N o t i c e t h a t 1 gram A l i s approximately of the CaSi a l l o y ; Table (IX).

e q u i v a l e n t t o 3.12

grams

165 aluminum r a t e s as i n R I I - I l and RII-I2 namely: 16.83, 22.24 and p a r t i a l l y 28.0 kg t o n 16.83, 22.44, 28.05, and 56.1 kg t o n

- 1

- 1

5.11, 11.23,

and 5.11, 11.23,

, Table

(VIII).

The p r i n c i p a l d i f f e r e n c e s between R I I I - I l and RIII-I2 are . t h e i r s l a g chemical composition and t h e i r d e o x i d a t i o n r a t e s . R I I I - I l and RIII-I2 were r e f i n e d through 60/36/4 and 50/30/20; lowest

(CaF , A 1 0 2

2

3

and CaO) r e s p e c t i v e l y .

The t h r e e

(CaSi) r a t e s were added i n s h o r t e r p e r i o d s o f time

a t the bottom o f the i n g o t i d e n t i f i e d as RIII-I2 and the f o u r t h l e v e l of a d d i t i o n s than i n R I I I - I l . analysis

(22.4 4 kg ton ^),was longer

Due to these d i f f e r e n c e s the t o t a l oxygen

shown i n F i g u r e s (56) and (57)

c l u s i o n chemical compositions,

and hence the i n -

F i g u r e s (58) and (59) from

R I I I - I l and RIII-I2 r e s p e c t i v e l y , were the most affected

critically

parameters.

T h e i r s l a g and i n g o t compositions f o l l o w e d e q u i v a l e n t b e h a v i o r , F i g u r e s (60) and (61) and F i g u r e (62) and (63). The S i and Ca contents i n s l a g s g r a d u a l l y i n c r e a s e d the "FeO"and the A l 0 2

3

given as Fe and A l i n wt %

whereas

gradually

decreased as the (Ca-Si) d e o x i d a t i o n r a t e s were i n c r e a s e d . An important p o i n t to note i s t h a t the i r o n oxide i n s l a g s from both i n g o t s was reduced t o about Figures

(64) and (65)

0.2 wt%

as shown i n

without producing s t r o n g changes i n

the composition o f the s l a g s .

These graphs c o n s i s t e n t l y show

166

t h a t the aluminum and

s i l i c o n g r a d u a l l y i n c r e a s e d as

the

l e v e l of d e o x i d a t i o n i s i n c r e a s e d . The

i n c l u s i o n chemical composition

principally

as the a t . % Ca: a t % A l r a t i o i n F i g u r e s R I I I - I l and pattern.

RIII-I2

(58) and

given

(59) f o r

r e s p e c t i v e l y , f o l l o w e d an e q u i v a l e n t

T h i s r a t i o , however, was

l a r g e r i n RIII-I2

to h e a v i e r d e o x i d a t i o n i n i t s f o u r t h l e v e l .

due

Another

import-

ant f i n d i n g i n regard to the i n c l u s i o n composition

was

p r o p o r t i o n a l changes of s u l f u r

Ca:Al

(as a CaS)

with the

r a t i o s and hence with the d e o x i d a t i o n r a t e s , F i g u r e s to

(68).

I n c l u s i o n s a t the bottom of i n g o t s

r a t e s of d e o x i d i z e r were used alumina types,

were mainly

( a - A ^ C ^ and F e O * A l 0 ) . 2

3

where

I I I and

At i n t e r m e d i a t e

de-

(rate) ranges

s p h e r i c a l aluminates

(CaO«2Al 0 , C a O « A l 0 2

3

3

(Mn,Ca)S) were found.

2

3

and

d i t i o n s , as i n RIII-I2 CaS

In the h i g h

aluminates, sulfides

deoxidation

enriched i n calcium,

12CaO•7A1 0 ) 2

p e r i p h e r a l CaS were i d e n t i f i e d .

low round

(a-A^O^ and C a O 6 A l 0 ) as c l u s t e r s , together with (MnS

(66)

f a c e t e d and

grees of d e o x i d a t i o n f a c e t e d alumina and hexagonal 2

the

a s s o c i a t e d with

3

Extreme d e o x i d a t i o n con-

and p a r t i a l l y i n R I I I - I l , produced a

phase w i t h i n c i p i e n t amounts o f aluminum ( u s u a l l y

l o c a t e d i n t h e i r core) and

the l a r g e s t segregated

e n r i c h e d i n d e o x i d i z e r s ( A l , S i , Ca and

sometimes

These r e s u l t s indeed c o r r o b o r a t e the

material Mn).

qualitative

f i n d i n g s p r e v i o u s l y d e s c r i b e d f o r RII-W and RIII-W as w e l l as f o r the small 4340-ingots which were Ca-Si

deoxidized.

167 The above f i n d i n g s RIII-I2) c l e a r l y

(RII-W, RIII W,

RIII-Il

and

i n d i c a t e t h a t the CaSi as a d e o x i d i z e r

p l a y s by f a r a more important r o l e i n the chemical composit i o n of i n g o t and of the

composition

slag.

The A^O^

i n c l u s i o n s than the chemical

low l e v e l of SiC>2 and the gradual decrement of

i n the s l a g , the amounts of S i and A l which are c o n t i n u -

o u s l y i n c r e a s i n g i n the i n g o t and the Ca:Al r a t i o i n i n c l u s i o n s immediately reacting

(ESR)

suggest t h a t the S i i s u t i l i z e d

system as a c a r r i e r .

t h a t simultaneous

I t i s also

i n the

observed

exchange r e a c t i o n s between the two

liquids

(slag and metal pool) d e f i n i t e l y c o n t r i b u t e t o the deoxida t i o n mechanism, F i g u r e s (60-68). t h i s mechanism, r e a c t i o n s of the type

Further evidence t h a t (11) and

(12 a-b) ,

r u l e s the chemistry of the melt, i s seen i n the S i content i n i n c l u s i o n s at h i g h d e o x i d a t i o n r a t e s i n RIII-I2, F i g u r e (68).

Excessive

(CaSi) d e o x i d a t i o n performed

i n t h i s ingot

induced the f o r m a t i o n of c a l c i u m aluminates with p e r i p h e r a l CaS

and some s i l i c o n as w e l l as the formation of

e n r i c h e d i n d e o x i d i z e r s , F i g u r e (69).

segregates

168 5.2.1.5

C o r r o b o r a t i o n and E x t e n s i o n of Previous F i n d i n g s t o a 4340 S t e e l CaSi (continuously) Deoxidized

Once the l i q u i d p o o l - s l a g d e o x i d a t i o n mechanism was unmistakenly

i d e n t i f i e d through the p r e v i o u s work, a f u r -

t h e r s e t o f experiments was c a r r i e d out t o r e c o n f i r m and extend

these r e s u l t s t o more complex d e o x i d i z e r s and a l l o y

systems such as 4340 and a r o t o r (Ni-Cr-Mo) s t e e l .

Re-

m e l t i n g of these e l e c t r o d e s was performed u s i n g the e q u i v a l e n t experimental remelted

c o n d i t i o n s as i n the 4 340 e l e c t r o d e s

by the s m a l l ESR-furnace and the 1020 M.S.

rodes remelted

by the s e m i - i n d u s t r i a l ESR-furnace.

m e l t i n g r a t e s were kept i n the 1 kg min The

1

electThe

range.

l a s t i n g o t i n c l u d e d i n the f u l l y monitored s e t o f

experiments

(through the three r e f i n i n g stages) was a

4 340-electrode

which was r e f i n e d through a 50 wt. % CaF /

30 wt. % A 1 0

and 20 wt. % CaO s l a g and CaSi

2

The

3

2

deoxidized.

degree o f d e o x i d a t i o n was c o n t i n u o u s l y i n c r e a s e d from

4.17 to 41.67 kg (CaSi) t o n

- 1

f o r almost e q u i v a l e n t p e r i o d s

of time as i n R I I I - I l .

The l a s t l e v e l o f d e o x i d a t i o n was

a l s o suddenly

from 41.67 down t o 20.83 kg ton

decreased

Chemical composition

of the s l a g and i n g o t f o l l o w e d

the same p a t t e r n as the 1020-ingots, a l l o y , Figures

d e o x i d i z e d with the CaSi

(70) and (71). The major d i f f e r e n c e found

i n t h i s i n g o t was i t s i r o n oxide and i t s oxygen Figure

(72). The i r o n oxide

given i n Figure

content,

(73)

changed

169 from 0.4

down to 0.15

creased.

The average

10-20

ppm.

deoxidized

as the r a t e of d e o x i d a t i o n was i n t o t a l oxygen content was about

Whereas i n the 1020 the l e v e l ranged

ingots

e i t h e r A l or CaSi

from 30 and up to 80

ppm.

This s u b s t a n t i a l d i f f e r e n c e i s e s s e n t i a l l y a t t r i b u t e d to the t i g h t Ar-atmosphere e n c l o s u r e of the f u r n a c e , the gree of

(Ca-Si) d e o x i d a t i o n of these

ingots

de-

(50-70

ppm

of oxygen) and the chemical composition of the e l e c t r o d e . The chemical composition of i n c l u s i o n s Figures

given i n

(74 a,b), f o l l o w e d the g e n e r a l t r e n d observed i n

the e q u i v a l e n t 10 20 M.S. of i n c l u s i o n s

ingots.

The chemical

composition

i n s i m i l a r manner to p r e v i o u s 1020

i n g o t s d e o x i d i z e d with the CaSi a l l o y

e x h i b i t e d the

a l t r a n s i t i o n from aluminate

to c a l c i u m aluminate

T h e i r p r o p o r t i o n a l increment

i n s u l f u r content

up to 25 a t . % was was

a l s o observed,

increased, Figure A very important

M.S. gradu-

phases.

(as

CaS)

as the d e o x i d a t i o n r a t e

(75). f a c t to address

i s the r a t i o of the S i

in

i n these

the C a S i - a l l o y

i s c o n s t i t u t e d by approximately

62.0

wt.

even

experiments though i t

% S i , i t has

not

p l a y e d a r o l e i n the d e o x i d a t i o n scheme p r e v i o u s l y presented, i.e.

i n v o l v i n g the CaO

and A^O^

of the s l a g and the Ca

and A l i n i n c l u s i o n s and d e o x i d i z e r s .

It i s also

important

to emphasize t h a t the S i from e i t h e r the e l e c t r o d e ( i n

170 the 1020 ported

e l e c t r o d e s ) or the CaSi a l l o y i s v i r t u a l l y c o n j o i n t l y to the A l and

Ca

trans-

i n t o the i n g o t

and

i t does not appear i n i n c l u s i o n s . At t h i s p o i n t i n t h i s d e s c r i p t i o n , i t becomes e s s e n t i a l to r e c a l l t h a t although the A l as a d e o x i d i z e r seems to be o p e r a t i n g w i t h i n the same frame of r e a c t i o n s as the ( s l a g - d e o x i d i z e r and

l i q u i d pool), i t

t o r s , does not d e o x i d i z e CaSi a l l o y .

due

to k i n e t i c

to c o r r o b o r a t e

fac-

the ESR-melt as e f f i c i e n t l y as

In the l i g h t of these f i n d i n g s a new

three experiments was

CaSi

planned.

s e t of

The major purpose

was

the c o n c l u s i o n t h a t the s i l i c o n i n the

de-

o x i d i z e r works e x c l u s i v e l y as a c a r r i e r , to r e c o n f i r m v a l i d i t y of the proposed mechanism

the

( r e a c t i o n scheme) and

to compare the degrees of d e o x i d a t i o n

reached through

d i f f e r e n t d e o x i d i z e r s , Table

Three r o t o r

(VIII).

s t e e l e l e c t r o d e s were r e f i n e d i n the 200 furnace

using e q u i v a l e n t m e l t i n g

deoxidation

r a t e s , Table

were C a S i , SiAlCaBa chemical

(XII).

mm

The and

diameter

ESRand

(Si-based) d e o x i d i z e r s an A l S i a l l o y .

compositions are given i n Tables

Despite

three

(Cr-Mo-V)

r a t e s , s l a g system

("hypercal")

the

the f a c t t h a t the chemical

Their

(XII a - c ) .

composition

of

the

d e o x i d i z e r s i s q u i t e d i f f e r e n t c a l c i u m aluminate phases with p e r i p h e r a l c a l c i u m

s u l p h i d e are p r e c i p i t a t e d .

Ca:Al r a t i o vs. the s u l f u r content

The

are p l o t t e d i n F i g u r e

(76).

171 Again

i t i s shown t h a t exchange r e a c t i o n s of the

(12 a-b)

type

p l a y the most important r o l e i n the d e o x i d a t i o n

( r e a c t i o n ) scheme and s i n c e the S i appears

i n the i n g o t

but i t does not i n i n c l u s i o n s i t s r o l e i s p r i n c i p a l l y

as

a c a r r i e r of Ca and A l i n t o the l i q u i d p o o l and i n g o t . These r e s u l t s support the three p r e v i o u s p r o p o s a l s . The chemical composition of i n c l u s i o n s i n d i c a t e t h a t s i l i c o n free, c a l c i u m aluminates with p e r i p h e r a l c a l c i u m s u l f i d e ( i . e . o t h e r s than C a O 6 A l 0 2

c i p i t a t i n g phases.

The

3

and

(Mn,Ca)S) were the p r e -

s i l i c o n content i n the s l a g

c o n s i d e r a b l y i n c r e a s e d and the "FeO"content was i n the ranges p r e v i o u s l y d e s c r i b e d , Table Furthermore,

was

also held

(XII).

segregates which were found i n the

ex-

c e s s i v e l y and a b r u p t l y A l and CaSi d e o x i d i z e d i n g o t s were the same as observed

i n ( s i z e , f l u o r e s c e n c e under the

ron beam and t h e i r chemical composition) ingot.

elect-

the A l S i d e o x i d i z e d

The d i s t r i b u t i o n of elements i n a segregate e n r i c h e d

i n s t r o n g oxide formers, namely aluminum, s i l i c o n and c u l a r l y c a l c i u m , i s shown i n F i g u r e s composition was

(77a-d).

parti-

Their t y p i c a l

( i n at.%) as f o l l o w s : Ca 40.6

Al 41.5

Si

Mn + Fe

19.7

balance

T h i s f i n d i n g i s c o n s i d e r e d as another evidence t h a t the p r o posed mechanism i s indeed o p e r a t i n g .

172 5.3

D i s c u s s i o n of R e s u l t s

i n Terms of E l e c t r o d e

Slag Composition, Related 5.3.1

The

and

to the Second Question

E f f e c t of the E l e c t r o d e on the I n c l u s i o n Comp-

o s i t i o n of ESR-ingots The

experimental

f i n d i n g s p r e v i o u s l y d e s c r i b e d have

been used to address the second q u e s t i o n III, i . e . chemical

i s the i n c l u s i o n composition

composition

This question

s t a t e d i n Chapter c o n t r o l l e d by

of e l e c t r o d e s , s l a g or

deoxidizers?

as envisaged i n the l i t e r a t u r e review ( i n

terms o f the complexity

of the r e a c t i o n scheme and

c l u s i o n chemical

composition

and

the p r e v i o u s l y d e s c r i b e d r e s u l t s

as shown i n

of r e f i n i n g and

the i n -

of i n g o t s i n the ESR-process) cannot

be answered u n l e s s the r e a c t i o n s between the three f e r e n t stages

the

i t s components

dif-

(electrode,

slag, s l a g - l i q u i d film, deoxidizer, l i q u i d pool-slag

and

ingot) are c a r e f u l l y monitored. Through the f i r s t p a r t of t h i s r e s e a r c h concluded t h a t i n c l u s i o n s from e l e c t r o d e s r e f i n i n g conditions rode t i p . The and

are completely

i t has

under s t a b l e

d i s s o l v e d i n the

Thus, f u r t h e r d i s c u s s i o n assumes t h i s

e l u c i d a t i o n of the r o l e p l a y e d by the

the s l a g on the chemical

composition

been

elect-

fact.

electrode

of i n c l u s i o n s i n

the ESR-ingot have been shown through s e v e r a l experiments: 1)

The

small 4340 i n g o t

.(6), Table

(X), r e f i n e d through

173

an alumina

f r e e s l a g and

a t i v e and deoxidant

(external) sources, i . e .

and without deoxidant. 1020

M.S.

i n the absence of gaseous o x i d -

2) A l a r g e diameter

e l e c t r o d e r e f i n e d through

under (200

M.S.

mm)

a CaF -CaO-Al 0 2

2

s l a g under the above c o n d i t i o n s , ( R I - I l ) , Table and 3) A s e r i e s o f 1020

argon

3

(VIII)

e l e c t r o d e s r e f i n e d i n the 200

mm

i n diameter ESR-furnace which were i n t e r m i t t e n t l y d e o x i d i z e d with CaSi and o t h e r s c o n t i n u o u s l y d e o x i d i z e d with A l and a CaSi

alloy.

1. 31 wt.%

The

i n g o t (6)

C a F , 46 wt. 2

which was

% CaO,

remelted through

and 23.0

wt.

% Si0

a dominant r o l e i n the f i n a l i n c l u s i o n chemical of the r e f i n e d i n g o t .

The

r e p r e s e n t e d as A l i n Table g i v e n as s i l i c o n ,

alumina

has

2

c l u s i v e l y shown t h a t the e l e c t r o d e composition

the con-

indeed p l a y s composition

content i n i n c l u s i o n s

(VIII) with r e s p e c t t o

silica,

shows t h a t the aluminum which came ex-

c l u s i v e l y from the e l e c t r o d e ( i n s o l u t i o n ) has the i n c l u s i o n chemical composition.

controlled

This finding

i n agree-

(83) ment with Rehak s e t a l . ' s 1

i n A l and CaSi t r e a t e d e l e c t r o d e s

c l e a r l y demonstrates t h a t the chemical composition of e l e c t rodes s p e c i f i c a l l y due

to the presence of d e o x i d i z e r s i n

s o l u t i o n , under a g i v e n s l a g system can p l a y an

important

r o l e i n the f i n a l i n c l u s i o n composition of r e f i n e d i n g o t s , i.e.

self-deoxidation.

174 2.

Results

found from a 1020-ingot remelted under a

p r o t e c t i v e atmosphere without the i n f l u e n c e of a are shown i n F i g u r e s illustrate 200

mm

t h a t as the r e m e l t i n g

mould takes p l a c e

s l a g and

a gradual

occurs.

The

and

(37,38). These graphs

from R I - I l

of the e l e c t r o d e

clearly

i n the

an accumulation of s i l i c a

change i n the alumina and

i n the

calcium

oxide

S i C ^ i n the s l a g a c t s e x c l u s i v e l y as a d i l u e n t

only c o n t r i b u t e s

to a g r a d u a l

s h i f t i n the II

r a t i o s and

deoxidizer

CaOiA^O^ (38

II

to c o n t r o l the i n t r i n s i c "FeO"content i n the

slag

I t does not,

however, i n f l u e n c e the chemical composition of

inclusions

A deeper d i s c u s s i o n r e l a t e d to t h i s matter w i l l

r

be pursued i n a subsequent s e c t i o n . clarify

t h a t the change i n the CaOrA^O^ r a t i o was

f l u e n c e d by or HFl)

the formation

s i n c e the f l u o r i n e a n a l y s i s was

The

i n the

as the t o t a l A l and d e p l e t i o n i n the p o i n t out (0.65

i n the

% and

0.09

i n g o t , o n l y aluminates

sulfides

and "FeO"in the

2

Ca content i n F i g u r e

ingot, Figure

wt.

((Fe,Mn)S and

changed only

CaOtA^O^ r a t i o i n the

t h a t i n s p i t e of the to 0.72

MnS

not i n -

(38).

i n the

slag

slag—given

(37)--and an A l

I t i s worthwhile to

(gradual) to 0.13 (A^O^

2

(± 0.2%).

continuous increment of S i 0

produces a s h i f t

to

of v o l a t i l e f l u o r i d e s (AlF^, S i F

measure of the experimental e r r o r ,

Si

It i s pertinent

i n c r e a s e i n Mn wt.

and

% respectively)

and A^O^'FeO)

II) were p r e c i p i t a t e d .

and

3.

A t y p i c a l a l t e r a t i o n o f the otherwise

o u s l y i n c r e a s i n g content

of s i l i c a

S i i n the i n g o t i s shown i n F i g u r e f i e d as RIII-W

was remelted

v a l e n t s l a g to R I - I l . contents

continu-

i n the s l a g and hence (32). T h i s i n g o t

identi-

under argon and under an e q u i -

The abrupt changes i n the S i and Mn

i n the s l a g and i n g o t

and'the Ca:Al r a t i o i n i n -

c l u s i o n s are a r e s u l t from the i n t e r m i t t e n t a d d i t i o n s of the (CaSi) d e o x i d i z e r .

Since the s i l i c o n comes from the e l e c t -

rode and the d e o x i d i z e r a more a p p r o p r i a t e

analysis

should

be performed on the Mn s i n c e i t comes e x c l u s i v e l y from the electrode.

The Mn content

changes from about 0.65 down t o

0.45 wt. % i n the s l a g , F i g u r e (32). The

behavior

o f the S i from the e l e c t r o d e becomes more

important when the 1020 M.S. e l e c t r o d e s are A l d e o x i d i z e d . The

i n g o t i d e n t i f i e d as R I I - I l c l e a r l y shows t h a t as the

degree o f d e o x i d a t i o n

i s increased

i n the s l a g and i n g o t — F i g u r e s a constant

level.

the l e v e l o f S i and Mn

(39) and ( 4 5 ) — a r e

held to

T h i s suggests t h a t the chemical

composition

of the e l e c t r o d e no longer p l a y s a r o l e i n the r e f i n i n g cess.

T h i s i n g o t was r e f i n e d , as shown i n Table

pro-

(VIII),

through a S i and Mn f r e e s l a g under an argon atmosphere. Thus, the o n l y source o f S i (0.25 wt. %) and Mn

(0.6 - 0.7

wt. %) e i t h e r i n s o l u t i o n o r as i n c l u s i o n s i s the e l e c t r o d e . The

above r e s u l t s c l e a r l y i n d i c a t e t h a t i f an e l e c t r o d e

176 c o n t a i n s oxide forming elements i n s o l u t i o n or as i n c l u s i o n s , which are not present as oxides d e o x i d i z e r s than those present d e o x i d a t i o n takes p l a c e .

i n the s l a g and are stronger i n the s l a g , a c o o p e r a t i v e

The mechanism by which these r e -

a c t i o n s take p l a c e i s w i t h i n the g e n e r a l scheme given by reactions

(11) and (12 a-b). The most important

conclusion

from these experiments i s t h a t these r e a c t i o n s predominate s o l e l y i n the absence of or under i n e f f i c i e n t A conventional Al-deoxidation

deoxidation.

(0.05 - 0.2 wt. %) i s able

to overcome the e f f e c t of the S i from the e l e c t r o d e i f the r e f i n i n g s l a g i s low (< 10 wt, %) i n SiO,,.

5.3.2

E l u c i d a t i o n of the E f f e c t of Slag and D e o x i d i z e r s (Preliminary The

Studies)

e l u c i d a t i o n of the e f f e c t of s l a g s and d e o x i d i z e r s

was approached through the s m a l l 4340 i n g o t s . to

(6)

slags,

Ingots

(1)

which were r e f i n e d through d i f f e r e n t S i 0 - c o n t a i n i n g 2

y i e l d e d c a l c i u m aluminate

c a t e phases.

and calcium-aluminum

sili-

The former type of i n c l u s i o n s d i d not exceed

3.75 a t . % Ca and they were i d e n t i f i e d o n l y where the S i 0 ~ 2

content

i n the s l a g was l e s s than

10 wt. %.

Above t h i s

c e n t the l a t t e r type of phases were i d e n t i f i e d . summarizes the main f e a t u r e s of these

Table

experiments.

per(X)

177 I f the above a n a l y s i s i s extended to both s l a g s and i n c l u s i o n compositions

and they are p l o t t e d i n t e r n -

ary diagrams

by A l l i b e r t e t a l . (207)

f o r ESR

as suggested

i n g o t s and

s l a g s and Bruch

(14 53 54) ' '

and K i e s s l i n g

and

(91) Lange

f o r CaSi d e o x i d i z e d i n g o t s i n c o n v e n t i o n a l

making processes c l u s i o n s and Figures

then the chemical compositions

t h e i r probable o r i g i n i s e a s i l y

(12) and

(13) .

of i n -

followed.

S e v e r a l important p o i n t s should

c o n s i d e r e d i n these diagrams:

i ) the s l a g chemical

t i o n i s p l o t t e d under the assumption t h a t the C a F an i n e r t d i l u e n t

( 3 3

'

3 8

steel-

'

4 5

'

5 3

'

8 8

'

8 9 }

.

composia c t s as

i i ) r e g a r d i n g the

nary diagram which d e s c r i b e s the i n c l u s i o n (91) K i e s s l i n g ' s and Lange*s

2

be

ter-

composition,

s t u d i e s as an e x t e n s i o n of

(207) Bruch's have c o n s i d e r e d a replacement of e i t h e r Mn, Mg or Fe by Ca as oxides i n the CaO c o r n e r . The replacement (34) of Mn by Ca as oxides has a l s o been r e p o r t e d by i n ESR

ingots.

the A^O-j

And

the two

Holzgruber

d i v e r g e n t l i n e s which emerge from

corner to the CaO-Si0

2

b i n a r y are l i n e s which r e p -

r e s e n t the maximum and minimum MeO:Si0 respectively, in inclusions.

2

i i i ) The

r a t i o s , L^ and

f i n d i n g s from C a - t r e a t e d

3

(conventional) i n g o t s

al.'s' and

data o b t a i n e d by other r e s e a r c h e r s i n c o n v e n t i o n a l '

'

diagram.

and

i n ESR-research

1 0

^

iv) 4 0

'

15115783) '

2

t r i p l e l i n e which

a l s o emerges from the A l 0 ~ c o r n e r are Holappa e t 2

L

i s also included i n t h i s

1 4 4

'

178

Slags c o n t a i n i n g l e s s than 10 wt.

% Si0

2

c l u s i o n s l y i n g along the A^O^-CaO b i n a r y and l o c a t e d c l o s e r to the A l 0_-corner. 2 3 u s u a l l y a s s o c i a t e d with s u l f i d e s (Ca, Mn)S).

The

produce i n specifically

These types were J

(MnS

c

I I , MnS

I I I or

type and composition of these

sulfides (34)

depended on the Ca:Al r a t i o i n the oxide phase. (14 53 54) and A l l i b e r t e t a l . (12 v i i i ) , Figures

have

also

'

'

who

reported

Holzgruber

have s t u d i e d the r e a c t i o n these

inclusion

phases,

(12,13).

The chemical composition of i n c l u s i o n s which were obt a i n e d from s l a g s c o n t a i n i n g more than 10 wt. l o c a t e d along the S i C ^ - A ^ O ^ a x i s . (8),

(10) and

20 t o 85 wt. about

30 wt.

Bruch's

Ingots

% Si0

2

were

(2), (3),

(11) were l o c a t e d i n an area c o n f i n e d i n the %.

Al 02 2

% CaO.

range along the S i C ^ - A ^ O ^ a x i s

and

These r e s u l t s are i n agreement with

and K i e s s l i n g ' s and L a n g e ' s ^ ^ ' and

with A l l i b e r t ' s et a l . ' s

( 5 3 )

,

Rehak's

( 8 3 )

qualitatively

and Holzgruber ' s

( 3 4 )

F i n d i n g s from the l a t t e r two r e s e a r c h e r s were o b t a i n e d from ESR experiments

where experimental c o n d i t i o n s were not

dir-

e c t l y concerned with the s l a g chemical composition. Thus, i f C a F

2

i s s t r i c t l y c o n s i d e r e d as an i n e r t (234 )

and Rein's and Chipman's data

diluent

are used t o s u b s t a n t i a t e

the thermodynamic behavior of s i l i c a

i n ESR-slags

then i f

.

a_.__ Si0

2

£ 0.01, a , , . AlO^

S 0.5 and a„ . 5 0.1 , aluminates CaO

5

w i l l precipitate.

On the other hand i f the S i 0

of s l a g s exceeds 10 wt. % with some c a l c i u m

then a l u m i n u m - s i l i c a t e i n c l u s i o n s

(up to about 30 wt. % CaO) w i l l

The a c t i v i t y r e l a t i o n s a r e as f o l l o w s : a

C

a

0

< 0.10 and a

content

2

A

1

^ 0.5.

Q

a„.^

precipitate.

^0.01,

SiO„

'

Holappa's r e s u l t s

'

v

1. 5 from C a - t r e a t e d i n g o t s suggest i n the melt i s reduced

t h a t as the a c t i v i t y of A l

and the a c t i v i t i e s o f S i and Ca are i n -

creased, a g r a d u a l change i n composition of the i n c l u s i o n phase as i n d i c a t e d by the ' t r i p l e - d o t t e d ' l i n e i n F i g u r e be observed.

(12) should

T h i s behavior i n ESR i n g o t s (1) t o (6) was not

completely f o l l o w e d and i n s t e a d a mixture o f c a l c i u m -

silicon-

aluminate and aluminate phases were found, Table (X). The b e s t d e o x i d a t i o n in inclusions* * ^ 2 1

3

measured as the C a O : A l 0 2

was found i n the C a F - C a O - A l 0 2

s p e c i f i c a l l y where the C a F

2

2

3

ratio

3

system,

and CaO contents were 50 wt. %

and 20 wt. % r e s p e c t i v e l y i n the s l a g .

Polish researcher's

work ^ ^ ' o n s l a g s b e l o n g i n g to t h i s system have r e p o r t e d a maximum of 71.0% r e d u c t i o n o f n o n - m e t a l l i c i n c l u s i o n s i n r e l a t i o n t o the s t a r t i n g s t e e l e l e c t r o d e i n e x a c t l y the same s l a g composition

(50/30/20) a t which the l a r g e s t

Ca:Al

r a t i o i n i n c l u s i o n s was found i n t h i s r e s e a r c h , Table (X). Thus, through

the p r e v i o u s d e s c r i p t i o n

i t has been

found t h a t the s l a g d e f i n i t e l y p l a y s a r o l e i n the r e f i n i n g process.

What has not been answered y e t i s how l a r g e the

180 s l a g e f f e c t i s i n comparison with

the d e o x i d i z e r .

q u e s t i o n can be answered i n a t r i v i a l manner by r e s u l t s i n Table composition

(X).

of i n g o t

This

analyzing

By comparing the i n c l u s i o n chemical (1) a g a i n s t

(7) and

(9),

can

ob-

serve t h a t the Ca-content i n i n c l u s i o n s i n the l a t t e r

two

i n g o t s i s double that i n the former. b a s i s , one

one

Thus, on an

apriori

could e s t a b l i s h that since deoxidation

s l a g were e q u i v a l e n t

rates

(2.3 kg ton ^, 50/30/20) and

ratios in

i n c l u s i o n s i s twofold

deoxidized

ingots

(7) and

i n the A l and

(9) r e s p e c t i v e l y

the

the

l a r g e r than 1.15

kg ton

And

deoxidation

molten i r o n then a r e l a t i v e l y

ex-

higher

r a t e c o u l d generate aluminates r i c h e r i n c a l c i u m

however, do not r e s t on any do not e x p l a i n why

mechanism and

the A l and

compositions.

62.5

i n c l u s i o n chemical

(2.3 kg ton

wt.%

Si.

The

composition,

r e f i n e d through the 55 wt.% 15 wt.

consequently they produce

i n terms o f i n c l u s i o n

I t i s important to c l a r i f y t h a t although

amounts of d e o x i d i z e r s a l l o y contains

These premises,

the CaSi d e o x i d a t i o n

an almost e q u i v a l e n t t r e n d i n r e s u l t s

and

rates

t h a t s i n c e the Ca i s

and hence much lower t o t a l oxygen c o n t e n t s .

CaO

de-

i f these f i n d i n g s are

t r a p o l a t e d , i t c o u l d be estimated almost i n s o l u b l e i n

Ca:Al

CaSi

then the

o x i d i z e r overcomes the s l a g e f f e c t at d e o x i d a t i o n

and

% Si0

0

1

) were e q u i v a l e n t

the

e f f e c t of d e o x i d i z e r s

i n the s m a l l 4 340

C a F , 15 wt.% 2

the

Al 0 ,

s l a g i s shown i n Table

2

3

(X).

ESR

CaSi

on

ingots

15 wt.

%

the

181

If

ingots

oxidized the

a r e compared

against ingot

The S i C ^ e f f e c t

e v e r , was a l m o s t (Al).

from

completely

( 2 ) , one c a n s e e t h a t

i n diameter

This p a r t i c u l a r

findings

was r e m e l t e d

ingot

a constant rate

i n ingot

by t h e d e o x i d i z e r , a

1020-electrode

under e q u i v a l e n t c o n d i t i o n s .

Kg/ton

).

The e f f e c t o f

(X) and i n c l u s i o n

composition

was n o t enough t o c o u n t e r b a l a n c e

the slag.

( 8 ) , how-

( 1 1 ) , however, was A l - d e o x i d i z e d

(0.02

the d e o x i d i z e r , T a b l e ously c i t e d ,

the s l a g

suppressed

To c o r r o b o r a t e t h e s e

76.2 mm

of

(10) w h i c h were A l and C a S i d e -

C a S i d e o x i d i z e d i n g o t d i d show t h e i n f l u e n c e o f t h e

silica.

at

(8) and

The i n c l u s i o n p h a s e s were

previ-

the SiC^ e f f e c t

" a n o r t h i t e " and

alumina. It

i s worthwhile

t o p o i n t out that the s i l i c o n

in

the i n c l u s i o n phases of i n g o t s

of

magnitude

And

although

sition of

there

silicon

deoxidant

slag

the aluminum-deoxidized

ingots.

i n the chemical

(1) t o ( 8 ) and (9) and (10) (SiC^ i n i n c l u s i o n s ) ,

to the large q u a n t i t i e s

and t h e c h e m i c a l

than

(2) and (8) a r e one o r d e r

i s a difference

content

i s attributed

larger

than

of electrodes

their

fect

the

larger

10 wt. %.

composition

treatment,

contents

s m a l l e r than

10 wt. %.

i n terms

t h e main e f -

of the slag, i . e . ,

Thus, t h e c h e m i c a l

s h o u l d be c a r r i e d

compo-

i n t h e (CaSi)

composition of

a t w h i c h an a p p r o p r i a t e d e o x i d a t i o n

the CaSi

content

i n terms o f

out i s at s i l i c a

182 Hence, the most important

c o n c l u s i o n from p r e v i o u s

f i n d i n g s i s t h a t the d e o x i d a t i o n phenomenon i s a n e t r e s u l t o f c o o p e r a t i v e r e a c t i o n s between d e o x i d i z e r s and s l a g s . Thus, t o o b t a i n an e f f i c i e n t d e o x i d a t i o n

an a p p r o p r i a t e

s e l e c t i o n o f these parameters i s e s s e n t i a l . of these statements

A f u r t h e r proof

w i l l be approached i n the next s e c t i o n .

I t i s a l s o worthwhile to c l a r i f y

t h a t although there i s

a common t r e n d o f r e s u l t s i n both ESR-furnaces the v a l i d i t y of p r e v i o u s f i n d i n g s i s q u a l i t a t i v e .

The

lower

sur-

f a c e area a v a i l a b l e f o r r e a c t i o n s , the higher thermal

gradi-

ents and the unsteadiness o f the s o l i d i f i c a t i o n c o n d i t i o n s i n the small ESR-furnace

a r e f a c t o r s t h a t must be con-

sidered.

5.3.3

P r e l i m i n a r y D i s c u s s i o n on the Deoxidation Mechanism In the l i g h t of p r e v i o u s d i s c u s s i o n o f f i n d i n g s , the

e v a l u a t i o n of the o r i g i n a l q u e s t i o n — I s the i n c l u s i o n compo s i t i o n c o n t r o l l e d by the chemical composition slag or deoxidizers?—becomes

of electrodes,

i r r e l e v a n t and i n s t e a d o t h e r

q u e s t i o n s emerge, i . e . what i s the mechanism by which the deoxidation

( i n i n d u s t r i a l s l a g s and deoxidants)

What i s the r o l e p l a y e d by the s l a g ?

takes p l a c e ?

and What a r e the c o n d i -

t i o n s which an a p p r o p r i a t e d e o x i d a t i o n i s c a r r i e d out under? To s a t i s f a c t o r i l y answer t h i s s e t o f q u e s t i o n s

a summary

183 of experimental i s presented

r e s u l t s c o r r e l a t e d to the g e n e r a l

i n advance.

The

theory

f o l l o w i n g s e c t i o n emphasizes

the r e s u l t s obtained w i t h the 20 0 mm

ESR

ingots continu-

o u s l y or c o n s t a n t l y d e o x i d i z e d . F i n d i n g s from the small suggest

t h a t the chemical

clusions A^O^

(4340) ESR

composition

i n g o t s , Table

of i n g o t s and i n -

(Ca:Al r a t i o s ) i s determined s o l e l y by the

r a t i o i n the s l a g when the Si02 content

10 wt.

% and d e o x i d a t i o n i s absent.

through the 200 mm

(X)

The

i s lower

results

ESR-furnace have confirmed

ings and they have a l s o c o n t r i b u t e d to the

CaO: than

obtained

these

find-

formulation

of a more s e l f - c o n s i s t e n t d e o x i d a t i o n model. The

i n h e r e n t r e a c t i o n scheme (1-5)

a t the e l e c t r o a c t i v e

• ^ * • v „r.T, (27,28,30, 33,34) i n t e r f a c e s i n the ESR-process • ' ' / atmos• (1,34,38) , . . phere-slag-liquid pool i n t e r a c t i o n ( i n terms of t

t

h

e

n

the oxygen t r a n s p o r t ) . and the amount of s c a l e (as a r e s u l t o f the thermal i n the s l a g

h i s t o r y of the e l e c t r o d e )

introduced

are the main f a c t o r s which determine the

oxi-

d a t i v e s t a t e of the s l a g and hence the oxygen p o t e n t i a l i n the l i q u i d

pool.

Thus, the deoxidant,

the sequence and degree of

de-

o x i d a t i o n as w e l l as the s l a g system are parameters which should be adequately without The

s e l e c t e d to optimize

s a c r i f i c i n g the chemical

deoxidation

i n t e g r i t y of

a p p r o p r i a t e c o n t r o l of the '^ed i n the s l a g 1

ESR-ingots. by the

de-

184 oxidation p o o l and The "FeO"

w i l l i n f l u e n c e the l e v e l of oxygen i n the molten consequently the p r e c i p i t a t i o n of i n c l u s i o n s . importance of the e l e c t r o c h e m i c a l r e a c t i o n s on

l e v e l of a melt and

composition Table

(XI).

t h e i r i n f l u e n c e on the

of i n c l u s i o n s i s seen through i n g o t This rotor

the

chemical (14) i n

(Cr-V-Mo) s t e e l e l e c t r o d e was

sur-

face ground, thus s c a l i n g formed during mechanical working was

removed from i t s s u r f a c e

was

a l s o coated

with

The

(ESR)-ingot

vious surface preparation,

c l u s t e r s o f aluminates

i r o n oxides

and

This

chemical

a n a l y s i s of i n -

the argon atmosphere (0.02

kg ton ^ ) , round, s i n g l e

(mostly

s u l f i d e s (FeO,

FeS)

FeO-A^O^ and A^O^) and

(Mn,Fe)S) were

(218) metal i n thermodynamic e q u i l i b r i u m , i.e. (234) Chu

saturated. rates

Kun ' s phase diagram

- 1

s l a g which can be achieved The

i s a minimum "FeO"

"FeO"

de-

according A^O^-

deoxidation l e v e l i n the

for a given deoxidation p r a c t i c e .

e f f e c t of the atmosphere as w e l l as the

introduced

and

slag-liquid

this slag i s

On the other hand, d e s p i t e l a r g e

(10 kg t o n ) there

pre-

enclosure

t e c t e d i n s t e a d of the a-A^O^ expected from the

to Kuo

electrode

show t h a t d e s p i t e the

and a s l i g h t A l - d e o x i d a t i o n and

1 mm).

an Al-Mg s p i n e l p a i n t i n g t o prevent i t s

oxidation during r e f i n i n g . clusions in this

(about

artificially

i n the s l a g and hence i n the l i q u i d

are c l e a r l y shown i n F i g u r e s

(32,33) and

to the i n g o t s i d e n t i f i e d as RII W and

RIII

pool

(34,35) which belong W.

185 The

i n i t i a l stages

s l a g composition "FeO

( 1 , 3 8

mitted

'

8 2 )

.

of r e f i n i n g are c o n t r o l l e d by

which i n i t s e l f allows a g i v e n amount of I f the

"FeO"

content

i n the s l a g i s p e r -

to r i s e above t h i s l e v e l by any of the

mechanisms

the

described

the r e s u l t i s an i n c r e a s e d r a t e of o x i d a t i o n

of the r e a c t i v e s p e c i e s from the e l e c t r o d e or the s l a g , hence moving the system towards unacceptable r e f i n i n g i n terms of s l a g or i n g o t composition. 2[A1] which has

+ 3 (FeO)

t

The

(Al^)

reaction

+ 3Fe

d e p l e t i o n of

A l i n the i n g o t ; i d e n t i f i e d as R I - I l , F i g u r e s

the slag) has gradual

slag

(37,38),

(change i n the C a O i A ^ O ^ r a t i o i n

a l s o been i n f l u e n c e d by the presence of

i n t r o d u c t i o n of "FeO"

(mostly

s l a g as the r e f i n i n g took p l a c e . controlled

(12-iv) (12-iv)

c o n t r i b u t e d to produce the gradual

a t expense of the

conditions,

The

the

as s c a l e ) i n t o the CaOtA^O^ r a t i o i s

by 2[A1]

+ 3(CaO)

J

( A 1 0 ) + 3[Ca] 2

(20-C)

3

Although the extent t o which t h i s r e a c t i o n o c c u r r e d was limited,

i t s r e s u l t s were d e t e c t e d ,

Figures

(37) and

very

(38).

These r e a c t i o n s can take p l a c e only when there i s not enough d e o x i d i z e r to suppress the c o n t i n u o u s l y "FeO"

i n the s l a g .

i n c r e a s i n g amount of

Under these c o n d i t i o n s the major pre-

c i p i t a t i o n r e a c t i o n s are governed by the oxygen p o t e n t i a l as follows:

186 Fe + 2[A1]

t

+ 4[0]

(22)

(FeO«Al„0 ) 2 3 inclusion

or 2[A1]

+ 3[0]

t

(11-i)

(Al 0_) 2 3 inclusion o

These p r e c i p i t a t i o n r e a c t i o n s are c o n t r o l l e d by r e a c t i o n (12-iv) i n the A l d e o x i d i z e d i n g o t . e n t i a l has been decreased finite

"FeO"

content

p l a y s a very Figures

(45) and

RII-I2).

the r e a c t i o n

(46) which r e p r e s e n t the

deoxid-

(RII-Il

and

I t can a l s o be seen t h a t the"FeO"content i n the to about 0.3

i n c l u s i o n composition, FeO«Al 0 2

to a - A l 0

3

CaO«6Al 0 2

2

3

3

wt.

%.

7

Figures

(54,55).

and at. v e r y h i g h d e o x i d a t i o n r a t e s

i n c l u s i o n phase i s p r e c i p i t a t e d , F i g u r e s

(41,42).

of Mn

it

This

the p r e c i p i t a t i o n of the C a O - e A ^ O ^ phase

(up to the same degree) the p a r t i a l s u b s t i t u t i o n

by Ca i n the s u l f i d e phases,. F i g u r e s

consequence of these according

trend,

"deoxidation

Phenomenon" i s a l s o a t t r i b u t e d to the r e a c t i o n (20).

also

the

(47-50).

From a c o n s i d e r a t i o n of these r e s u l t s

i s i n f e r r e d t h a t to a l i m i t e d extent the

r e a c t i o n induces

The

however,•changes g r a d u a l l y from

t o t a l oxygen a n a l y s i s a l s o r e f l e c t s the d e o x i d a t i o n

Figures

and

(20)

behavior

show t h a t the A l as a

i n t r o d u c e d i n t o the i n g o t s

s l a g i s decreased

The

then

but

role.

of the A l - d e o x i d i z e d i n g o t s izer is virtually

as a r e s u l t of the low

i n the s l a g

important

Once the oxygen p o t -

(50,52).

As a

r e a c t i o n s i n c l u s i o n s are p r e c i p i t a t e d

(140,144,147,148,216)

to:

187 m CaO + n A l 0 2

J

3

[m(CaO) « n ( A 1 0 ) ] i n c l u s i o n 2

(19)

3

or i n a more s p e c i f i c f o r m u l a t i o n : CaO

+ 6(A1 0 ) t 2

CaO-6Al 0

3

2

(19-a)

3

Since these r e a c t i o n products are i n e q u i l i b r i u m w i t h oxygen and s u l f u r according

then a s u l f i d e phase can be p r e c i p i t a t e d

(147, 148,197,210,215),. ' ' ' ' to: CaO

ic

+ [S] t

For low CaO content phases

ic

CaS

+ [0]

such as the C a O « 6 A l 0 , a 2

s u l f i d e phase such as the double s u l f i d e be

expected

3

(Mn, Ca)S should

t o (heterogeneously) p r e c i p i t a t e on o x i d e s .

Although very r a r e Ca,

(21)

when the s u l f i d e phase d i d not c o n t a i n

i t was f a c e t e d and c o n t a i n e d o n l y Mn and S.

Hence, i t

was c l e a r l y i d e n t i f i e d as MnS I I I . The

1020-M.S. i n g o t s i n t e r m i t t e n t l y d e o x i d i z e d with

the CaSi a l l o y have c l e a r l y r e c o n f i r m e d t h a t the d e o x i d a t i o n r e a c t i o n s are n o t e x c l u s i v e o f each o t h e r .

Instead a

c o o p e r a t i v e process between the d e o x i d i z e r , s l a g and l i q u i d metal takes p l a c e .

At a g i v e n d i s c r e t e

addition

of CaSi i n t o the s l a g i t s "FeO" content decreases, F i g u r e s (32) and (33).

Simultaneously t o t h i s change an increment

of A l i n the i n g o t and a decrement o f A l 0 ^ in. the s l a g 2

i s a l s o observed. reactions

As a r e s u l t of the above c o i n c i d e n t a l

a net change i n t o t a l oxygen content

which i s

a consequence of the i n c l u s i o n q u a n t i t i e s and compositions i s expected.

A r e d u c t i o n from 75 down t o 30 ppm was ob-

it r e p r e s e n t s a p e r i p h e r a l phase on i n c l u s i o n s

188 served. Another i n t e r e s t i n g f i n d i n g i s t h a t the r e d u c t i o n of t o t a l oxygen content was very dependent on the m e l t i n g conditions.

RII-W was melted under a i r w h i l s t RIII-W

was under an argon b l a n k e t .

The i n c l u s i o n phases

identified

i n t h i s experiment (RII-W and RIII-W) were e s s e n t i a l l y a-A^O^ and FeO-A^O^ as c l u s t e r s of s m a l l s p h e r i c a l p r e cipitates.

The samples c r i t i c a l l y

of d e o x i d i z e r — F i g u r e

a f f e c t e d by the a d d i t i o n s

(36)—showed Ca:Al r a t i o s

(at. %)

which c l o s e l y correspond to the f o r m a t i o n of the C a O « 6 A l 0 2

phase.

T h i s phase was m e t a l l o g r a p h i c a l l y i d e n t i f i e d

3

be-

cause of i t s f a c e t e d hexagonal appearance and i t s p e r i p h e r a l envelope of ( C a , M n ) S

( 1 5

'

9 4

'

1 4 5

'

2 0 3

'

2 1 0 )

.

The a - A l 0 2

the F e O A ^ O ^ were observed c l o s e r t o the and they were a s s o c i a t e d with

FeO

3

and

additions

(Mn,Fe)S or MnS I I .

The s e r i e s of f i n d i n g s from the c o n t i n u o u s l y CaSi deo x i d i z e d i n g o t s remelted through the CaF -Al 0.j-CaO s l a g 2

i n the 200 mm

2

diameter moulds can be condensed as f o l l o w s .

The s l a g chemical a n a l y s i s have s h o w n — F i g u r e s

(60) and

(61)-^that as the degree o f d e o x i d a t i o n i s i n c r e a s e d

the

CaO content of the s l a g i s i n c r e a s e d w h i l e the A l i s decreased. decrement

Although the f l u o r i n e a n a l y s i s showed a s l i g h t suggesting the formation o f v o l a t i l e

by r e a c t i o n s

fluorides

(8 to 10), the major changes, however, were

189 due to the r e a c t i o n between the d e o x i d i z e r and the s l a g . The "FeO' Content of the s l a g was g r a d u a l l y reduced

as the

1

d e o x i d a t i o n r a t e s were i n c r e a s e d . changes are adequately (FeO) t

[Ca] +

The i n i t i a l

d e s c r i b e d by the f o l l o w i n g r e a c t i o n s :

Fe(1) + (CaO)

2[A1] + 3(FeO) t

(12-v)

3Fe(l) + ( A l 0 ) 2

(12-iv)

3

At t h i s degree of d e o x i d a t i o n of the s l a g i n c l u s i o n s and MnS cipitated. increased observed,

deoxidation

alumina type of

I I were v i r t u a l l y the only phases p r e -

As the l e v e l of d e o x i d a t i o n i n the s l a g

was

Ca-aluminates with i n c r e a s i n g CaO-content were Figures

(58,59) and

(66 ,67). The i n c l u s i o n chem-

i c a l a n a l y s i s r e v e a l e d the f o l l o w i n g p r e c i p i t a t i o n s e quence:

a-Al 0 , 2

3

CaO«6Al 0 , CaO«2Al 0 , CaO«Al 0 2

traces of 12Ca0«7Al 0 2

(^0.2

wt

"FeO").

a t i o n o f segregates

3

3

2

3

2

3

and

a t extreme degrees o f d e o x i d a t i o n

Beyond t h i s d e o x i d a t i o n l e v e l the forme n r i c h e d i n Ca, A l , S i (and Mn)

formation o f ( A l , Ca)S were seen.

These s u l f i d e s showed

(EPMA a n a l y s i s ) t h a t the A l ( A l 0 ) although 2

and the

3

i n very

amounts was p r e f e r e n t i a l l y l o c a t e d i n the i n c l u s i o n

low core.

C o i n c i d e n t a l to the p r e c i p i t a t i o n o f the oxide phases a s u l f i d e phase, which was e n r i c h e d i n c a l c i u m p r o p o r t i o n a l to the amount o f CaO i n the Ca-aluminate phase served.

was

ob-

These a n a l y s i s l e a d to the c o n c l u s i o n t h a t the

mechanism by which the d e o x i d a t i o n - p r e c i p i t a t i o n occurs

is

190 as f o l l o w s : reached

once the l e v e l of the "FeO"

i t s minimum

the t r a n s p o r t of aluminum and

i n t o the l i q u i d p o o l 3[Ca] takes p l a c e .

2

3

2[A1]

+

calcium

(CaO)

(20-c)

Thus, the l e v e l s of d e o x i d a t i o n are

t i o n a l to the amount of A l and to the amount of CaO ratios).

has

by:

(A1 0 ) t

+

i n the s l a g

propor-

S i i n the i n g o t and

i n the i n c l u s i o n phases

also

(i.e.

Ca:Al

Hence the p r e c i p i t a t i o n sequence, i n terms of

the degree of d e o x i d a t i o n

i s as f o l l o w s :

i n the absence

of or a t very low d e o x i d a t i o n r a t e s i n a c o n v e n t i o n a l ( i n dustrial)

C a F - A l 0 - C a O s l a g , the p r e c i p i t a t i o n i s gov2

2

erned

by:

2[A1]

+ 4[0] + Fe

2[A1]

+ 3[0] =

The

3

(24)

(A1 0 ) i n c l u s i o n

(11-ii)

former oxide

(Mn,Fe)S or MnS or MnS

3

=

2

(FeO«Al 0 ) i n c l u s i o n 2

3

(Fe0*Al 0 ) 2

II.

3

i s u s u a l l y a s s o c i a t e d wi th

With the l a t t e r oxide

I I I are u s u a l l y observed.

(a-Al 0 )

The degree of

2

3

MnS

II

(Al) de-

o x i d a t i o n d i c t a t e s the f o r m a t i o n of a s p e c i f i c s u l f i d e .

At

i n t e r m e d i a t e d e o x i d a t i o n l e v e l s the r e a c t i o n (20-c) s t a r t s to operate

a c c o r d i n g to r e a c t i o n (19) or

(19a).

191 T h i s p a r t i c u l a r oxide phase w i t h e i t h e r MnS

I I I or

a d d i t i o n to r e a c t i o n

2

(Ca,Mn)S.

(20-c)

[Ca] + MnS was

(CaO«6Al 0 ) was

commonly

3

observed

Hence suggesting t h a t i n

the f o l l o w i n g r e a c t i o n CaS

t

+

[Mn]

(25)

also taking place. At r e l a t i v e l y h i g h d e o x i d a t i o n l e v e l s , where the r e -

action

(20-c) e n t i r e l y c o n t r o l s the t r a n s p o r t of d e o x i d i z e r s

i n the melt and when very low reached

"FeO"

content i n the s l a g i s

the p r e c i p i t a t i n g phases are C a O « 2 A l 0 2

(CaMn)S or CaS

and C a O « A l 0 2

These l a t t e r two envelope

of CaS.

f i d e s ) suggests aluminates

and

3

3

with

either

12CaO«7Al 0 . 3

3

oxide phases were surrounded

T h i s mixture of phases (oxide and

by

an

sul-

t h a t the c a l c i u m oxide from the c a l c i u m

s t r o n g l y i n t e r a c t s w i t h the s u l f u r and oxygen

i n s o l u t i o n according to: (CaO)* +

[S] =

T h i s r e a c t i o n generated

(CaS)* + a CaS

minimum oxygen content was F i n a l l y , a t extremely CaO:Al 0 2

shifted,

3

[0]

(21)

e n r i c h e d phase wherever the

reached

(^20-30

ppm).

h i g h d e o x i d a t i o n r a t e s where the

r a t i o i n the s l a g i s d r a s t i c a l l y and

suddenly

the f o r m a t i o n of s m a l l segregates e n r i c h e d i n Ca,

A l and S i can o c c u r .

Under these d e o x i d a t i o n c o n d i t i o n s

192 the f o r m a t i o n of Si-phase

(Al,Ca)S and

around the CaS

a p e r i p h e r a l envelope of

(which surrounds the

aluminate) were a l s o observed. w i t h 4 340

and

rotor

calcium

S i m i l a r r e s u l t s were obtained

(Cr-Mo-V) s t e e l s .

This allows

the

f o r m u l a t i o n of a comprehensive mechanism d i s c u s s e d i n the next s e c t i o n . I t i s worthwhile t o mention t h a t while t h e r e are some , . (151,153, 157,214,221,235,236) . . .^ . . advantages • ' • ' • ' ' ' to p r e c i p i t a t i n g aluminates shape and and

e n r i c h e d on c a l c i u m oxide t h e i r CaS

(because of t h e i r

round

envelope) i n s t e a d of the alumina g a l a x i e s

the manganese s u l f i d e s

the c o i n c i d e n t a l t r a n s p o r t of

aluminum i n t o the r e f i n e d i n g o t c o n s t i t u t e s a p o t e n t i a l problem.

T h i s behavior

j e c t i o n processes X[Ca]

+ Y(Al 0 ) 2

This r e a c t i o n

3

can be r e p r e s e n t e d

(210)

i n c l u s

, by: .

o n

ixCaO(Y-f)

as H o l a p p a *

ent to r e a c t i o n (20-c). i s used

as i n the c a l c i u m i n -

2 1 0

^

A l ^ + § X(A1)

has p o i n t e d out

(20-b)

i s equival-

Thus, i f an excess of d e o x i d i z e r

(CaSi)

A l i s i n t r o d u c e d i n the melt and hence the p o t e n t i a l • (221-223)

to reduce the mechanical p r o p e r t i e s i s enhanced

5.3.4

Comprehensive D i s c u s s i o n on the D e o x i d a t i o n When A l or Ca i s added to the ESR-slag as a

i t becomes p a r t of a r e a c t i o n scheme r e p r e s e n t e d

Mechanism deoxidant,

by:

193 [Ca] + 2[A1]

(FeO)

%

Fe(l) +

(CaO)

+ 3(FeO) + F e ( l ) + A l 0 2

3[Ca] +

( A 1 0 ) % 2[Al] 2

3

(12-v) (12-iv)

3

+ 3(CaO)

(20-C)

At high l e v e l s of "FeO", r e a c t i o n s (12-v) and dominate

l e a d i n g to a simple d e o x i d a t i o n scheme

the deoxidant a d d i t i o n appears component. over

(12-iv) w i l l prewhich

as the a p p r o p r i a t e s l a g oxide

At low l e v e l s of "FeO"

(12-v) and

in

reaction

(20-c) w i l l

(12-iv) and i t w i l l be observed

take

t h a t an

ex-

(46 47 change r e a c t i o n

( s i m i l a r to those a l r e a d y r e p o r t e d

'

52 '

'

54) for

S i / A l and T i / A l ) i n which the a l l o y Ca:Al r a t i o i n

the i n g o t w i l l be determined by the CaO:Al20 s l a g low i n s i l i c a ,

( l e s s than 10 wt.

% S i 0 ) , not by the 2

r a t e , form or composition o f the deoxidant. the p o i n t a t which r e a c t i o n s (12-v) and way

r a t i o i n the

3

In determining

(12-iv) w i l l g i v e

t o (20-c) i n the sense of producing i n g o t composition,

the l e v e l of s l a g F e O - a c t i v i t y i s e v i d e n t l y of prime ance.

I t i s more important than the i n t r i n s i c

e l e c t r o d e chemical composition. slag

import-

s l a g and

the

At low F e O - a c t i v i t y i n the

i f l a r g e q u a n t i t i e s of Ca are added as a d e o x i d i z e r ,

the r e s u l t

i n a c o n v e n t i o n a l ESR-slag composition

be a c o r r e s p o n d i n g i n c r e a s e i n the a l l o y A l l e v e l , reaction

(20-c).

will through

194 In order to i l l u s t r a t e the r o l e o f r e a c t i o n s (12-v) to

(12-iv) the r e s u l t s o b t a i n e d from the 4 340

selected

i n g o t were

as the p r o t o t y p e o f the g e n e r a l behavior

approach t h i s d i s c u s s i o n .

to

The d e o x i d a t i o n sequence

in

terms o f the chemical composition of the i n g o t and the s l a g are shown i n F i g u r e s (70) and (71). A p p l y i n g a mass balance to t h i s i n g o t and the s l a g , i t i s apparent addition

(from the d e o x i d i z e r ) , appears

t h a t the s i l i c o n

almost q u a n t i t a t -

i v e l y i n the i n g o t

with very l i t t l e

I t i s a l s o observed

t h a t the c o n c e n t r a t i o n o f A ^ O ^ i n

the s l a g decreases

w h i l e the CaO content

p a r t o f the t o t a l Ca content) data

o f S i C ^ t o the s l a g .

increases.

(represented as a Utilizing

this

i n c o n j u n c t i o n with the i n c r e a s e d A l assay o f the

i n g o t l e a d s to an e x c e l l e n t c l o s u r e o f a mass balance drawn on the system u s i n g equation

(20-c).

In consequence, i f

the f o l l o w i n g s t o i c h i o m e t r i c r e l a t i o n s h i p *

^

2 1 0

which r e -

l a t e s the r e d u c t i o n o f alumina by Ca i n the chemical

comp-

o s i t i o n o f the i n c l u s i o n s , X[Ca]

+ Y(Al 0,). , t z J inclusion o

XCaO-(Y - *-) A l 0 , + \ X[A1] J z 6 s o

(20-b) is u t i l i z e d

t o perform the balance, e q u i v a l e n t r e s u l t s and

a very c l o s e p r e d i c t i o n o f the i n c l u s i o n chemical i s obtained.

composition

These r e s u l t s are taken as a s t r o n g evidence

t h a t the c a l c i u m component o f the CaSi a l l o y a d d i t i o n has r e duced A ^ O ^

from

s l a g , f o l l o w i n g (20C) producing A l i n the

195 i n g o t and l e a d i n g to a CaO

i n c r e a s e i n the s l a g .

d u c t i o n i s s t o i c h i o m e t r i c , as would be 210

expected'

4 7

'

1 4 8 ,

216) '

from an e q u i l i b r i u m a n a l y s i s of

process of r e f i n i n g , as expected ' ' l e v e l i n the s l a g remained 0.1

This re-

- 0.2

wt.

2 7

'

3 8

(20) .

'^ ' 7

8 2

During

^

a t low but f i n i t e

the

the

"FeO"

l e v e l of

%, F i g u r e (73).

These r e s u l t s l e a d to the c o n c l u s i o n t h a t a t an 'FeO" a c t i v i t y c o r r e s p o n d i n g to approximately 0.1 in t h i s slag

(50/30/20),

- 0.2

the r e a c t i o n of A l 0 2

wt.

%

to g i v e an

3

i n c r e a s e i n the i n g o t w i l l take p l a c e i f c a l c i u m i s used as a deoxidant.

When e i t h e r A l or aluminum s i l i c o n

used as deoxidant at e q u i v a l e n t r a t e s , i t was the s l a g "FeO"concentration was Figures

(39, 40) and

was

observed

again h e l d a t low

that

levels—

(45,46) and Tables XII and X I I I

(a-c)

— a n d t h a t both A l and S i were q u a n t i t a t i v e l y t r a n s f e r r e d to ... . . . , . ,(147, 148,210,216) the i n g o t .

T h i s r e s u l t i s to be expected

from r e a c t i o n

'

'

(20-C) as o n l y a very s l i g h t degree of alum-

inum r e d u c t i o n of Ca from CaO would a r i s e from

reaction

(20-C), producing composition changes not d e t e c t a b l e w i t h i n the accuracy o f t h i s mass balance. c l u s i o n compositions

The behavior of the i n -

i s a more s e n s i t i v e guide than the

mass balance i n r e l a t i o n to the Ca/Al exchange r e a c t i o n i n the s l a g .

The Ca:Al r a t i o i n the oxide phase and

the

p a r t i a l s u b s t i t u t i o n of Mn by Ca i n the s u l f i d e phase i n i n c l u s i o n s i n A l - d e o x i d i z e d i n g o t s — F i g u r e s (43,44) and 52)--as w e l l as the Ca:Al r a t i o i n the oxide

(51,

(inclusion)

196 phases and t h e i r p r o p o r t i o n a l amounts of CaS

i n the CaSi

and i n the A l - S i based d e o x i d i z e d i n g o t s — F i g u r e s (66,67),

(71,75) and F i g u r e

( 7 6 ) — i n d e e d monitor

(58,59),

the magni-

tude and d i r e c t i o n of the e q u i l i b r i u m d i c t a t e d by r e a c t i o n s (20-b,c). F i g u r e 4340 i n g o t

(74)

which shows the behavior of the

shows t h a t the Ca:Al r a t i o i n the oxide i n -

c l u s i o n s r i s e s r a p i d l y to a c o n s t a n t value which i s a p p r o x i mately may

equal t o a composition CaD'A^O^.

These r e s u l t s

be compared to those r e p o r t e d f o r c a l c i u m i n j e c t i o n

processes

(144

'

148

'

154

'

steelmaking p r o c e s s '

157) 4 0 , 2 0 6

and f o r the b a s i c e l e c t r i c arc ^

p a r t i c u l a r l y those shown i n

(178) Figure

(78)

where an e q u i v a l e n t l y l o w - s u l f u r s t e e l shows

the same b e h a v i o r .

F a u l r i n g and R a m a l i n g a m * ^ 21

s t u d i e d the r e l a t i o n s beween CaO oxide i n c l u s i o n s i n t h i s system. r e p r e s e n t e d by the p r e c i p i t a t i o n shown i n F i g u r e (11).

and A^O^

have

i n generating

T h e i r c o n c l u s i o n s are ( e q u i l i b r i u m ) phase diagram

When the Ca a c t i v i t y i s estimated

i n the ESR s l a g / m e t a l system f o l l o w i n g r e a c t i o n (20-c), (234 ) (19 8) u s i n g the data of Rein e t a l . and S p o n s e l l e r and F l i n n and assuming t h a t C a F v i t y of h

(_a

= 6.7

2

x 10

a c t s as an i n e r t d i l u e n t , an —8

a t 0.1

wt.%

acti-

A l i s obtained.

This

c o n c l u s i o n would i n d i c a t e from F a u l r i n g ' s data, F i g u r e (11), t h a t one

should observe an i n c l u s i o n composition c l o s e t o

CaO-A^O^/ which i s indeed the case.

I t i s c l e a r , there-

f o r e , t h a t i n s p i t e of an e x c e s s i v e l y h i g h a d d i t i o n of

197

calcium

('vlO kg/ton)

, the i n c l u s i o n composition i s

c o n t r o l l e d e n t i r e l y by r e a c t i o n

(20-c) and t h a t i n c l u s i o n

c a l c i u m contents w i l l not r i s e above those p e r m i t t e d by reaction

( 2 0 - c ) , d e s p i t e the c a l c i u m a d d i t i o n .

teresting dition,

It i s i n -

to note a l s o t h a t a t t h i s l e v e l o f c a l c i u m ad-

the s u l f i d e i n c l u s i o n

surrounding the c a l c i u m a l -

uminates were e x c l u s i v e l y composed of CaS not MnS.

This

f i n d i n g can a l s o be compared t o those r e p o r t e d i n (Ca,CaO) i n j e c t i o n p r o c e s s e s i n A l d e o x i d i z e d melts of r e l a t i v e l y low oxygen a c t i v i t y , where the p r e c i p i t a t i o n

o f e i t h e r MnS

c i p i t a t i o n o f aluminates ls

, ,

ui

p h e r a l double 19 7

i n c i p i e n t amounts o f Ca induce o

4-

r

n e

pre-

(low i n CaO content) with a p e r i -

/„

sulfide,

m ' ^ " ' ^ ^

„ ^ ( 1 4 0 , 144, 146,153, 159, 160,

(Mn,Ca)S

'

212)

'

'.

T h i s t r a n s i t i o n i s o b v i o u s l y d i c t a t e d by: MnS

and i t i s expected

+ [Ca]

.



(25)

t o occur when the Ca i n the melt i s ap-

p r o x i m a t e l y 5-10 ppm. N

CaS + [Mn]

t

At h i g h e r l e v e l s of Ca, the s u l -

. ,(140, 144, 146,147, 153,157,211,216)

f i d e phase i s expected



'



'

'

'



.

to

be r u l e d by: * CaO

* + [S]

and hence p r e c i p i t a t i n g or pure CaS. the observed

t

CaS

+ [0]

a p e r i p h e r a l s u l f i d e , namely

(21)

(Mn,Ca)S

In the case o f d e o x i d a t i o n with the A l S i

alloy,

changes i n s l a g composition were almost e q u i -

198

v a l e n t t o the C a S i , the o n l y change being a s l i g h t i n c r e a s e i n both S i C ^ and Al^O^ a t low "FeO" Table

(XII).

The observed

of Ca-aluminates about 5-7%

l e v e l s i n the

i n c l u s i o n composition was

c o n t a i n i n g approximately

S as CaS

slag, that

20-30% CaO

and

i n t h e i r p e r i p h e r y , F i g u r e (76).

These

f i n d i n g s i n d i c a t e t h a t s i n c e the e q u i l i b r i u m p o s i t i o n of reaction

(20-c) r e s u l t s i n r e d u c t i o n of CaO

by A l , the

t o t a l mass of Ca c a r r i e d i n t o the metal by t h i s means w i t h the A I S i a l l o y i s s i m i l a r t o t h a t i n the CaSi and " h y p e r c a l " case, F i g u r e (76).

the

The e q u i l i b r i u m r a t i o s of

Ca:Al r e p o r t e d by F a u l r i n g and R a m a l i n g a m ^ ^

hence are

2 l

r

a t t a i n e d by the C a S i , " h y p e r c a l " and the A I S i a l l o y .

The

chemical r e s u l t of d e o x i d a t i o n by A I S i and the " h y p e r c a l " a l l o y i n r e s p e c t of i n g o t composition i s t h e r e f o r e v i r t u a l l y i d e n t i c a l w i t h t h a t o b t a i n e d by c o n v e n t i o n a l CaSi d e o x i d a t i o n a t about the same r a t e .

It i s interest-

i n g t o note t h a t aluminum d e o x i d a t i o n f o l l o w s a p a t t e r n f a m i l i a r from e l e c t r i c furnace p r a c t i c e . aluminum d e o x i d a t i o n a t the p r e s e n t l e v e l s

In the case of (10 k g / t o n ) , a

range of A l content i s achieved i n the i n g o t as shown i n Figure

(71).

The

corresponding l i q u i d and s o l i d i n g o t

oxygen a n a l y s i s are shown i n F i g u r e (72 a-b)

where i t can

be seen t h a t the minimum oxygen content i s a t 0.1 wt% A l .

T h i s minimum i s a t the composition (175

Figure 2

(10) J

expected,

177) '

, from a c o n s i d e r a t i o n of

[Al] + 3 [0] t

1

approximately

1

J

(Al 0-,) . i . ' 2 3 inclusion o

(11-ii)

199 u s i n g the compiled

i n f o r m a t i o n by G u s t a f f s o n and

Melberg

(175)

Al Figure

(10), f o r e

proximately

a t an e q u i l i b r i u m temperature of

Q

ap-

1600°C.

I t can t h e r e f o r e , be assumed t h a t the d e o x i d a t i o n p r e c i p i t a t i o n of i n c l u s i o n s are c l o s e l y e q u i v a l e n t to e s t a b l i s h e d i n the e l e c t r i c 5.3.5

furnace'

4 0 , 2 0 6

and

those

^.

F i n a l Remarks I t i s important

to emphasize t h a t an inadequate

o x i d a t i o n o f a ESR-melt w i t h A l or Ca-bearing becomes very important properly adjusted.

de-

deoxidants

where ever the aluminate-CaS i s not

The A l d e o x i d a t i o n or the l a c k of

CaSi d e o x i d a t i o n seen as generators

of alumina g a l a x i e s or as

(133) i n d u c e r s of "burning"

or the excess

a l l o y s , because of the excess through r e a c t i o n (15 a-b)

of A l , A l S i or CaSi

of A l i n i n g o t s i n t r o d u c e d

c o n s t i t u t e a p o t e n t i a l source of

sul-

f i d e s and n i t r i d e s and hence to a d e g r a d a t i o n of mechanical (221-223) properties

of the r e f i n e d i n g o t s .

Hence, the f i n a l remarks, the l a t t e r s e t of q u e s t i o n s i)

ESR-deoxidation

which at the same time answer

to be drawn a r e :

w i t h Ca w i l l f o l l o w the r e a c t i o n

(20-c) a t low oxygen p o t e n t i a l s , i . e . below 0.2 ii)

s l a g "FeO"

contents

wt.%; At i n t e r m e d i a t e oxygen p o t e n t i a l s

( s l a g "FeO"

ranging between 0.4-0.6 wt,%), the d e o x i d a t i o n process e i t h e r A l or Ca i s e q u i v a l e n t and

content using

serves o n l y to c o n t r o l

the s l a g composition.

This l a t t e r

f a c t o r w i l l t h e r e f o r e de-

termine the c h o i c e o f deoxidant; iii)

Deoxidation

w i t h A l w i l l a l s o f o l l o w the r e a c t i o n

(20-c) but w i l l not reach the p r e d i c t e d i n g o t Ca:Al due

t o unfavorable

a carrier

k i n e t i c f a c t o r s , unless

ratio

S i i s added as

f o r Ca;

i v ) The maximum S i C ^ content

i n the s l a g f o r e f f i c i e n t

d e o x i d a t i o n through r e a c t i o n ( 1 2 - v ) , ( 1 2 - i v ) , and ( 2 0 - c ) ; i s l e s s than

10 wt. %;

v) The chemistry r o l e i n the d e o x i d a t i o n (low)

o f the e l e c t r o d e does not p l a y a ( r e a c t i o n ) scheme u n l e s s

d e o x i d a t i o n r a t e s a r e used, i . e .

inappropriate

sacrificial

elect-

rode d e o x i d a t i o n which leads t o change the ESR s l a g or i n g o t composition; v i ) E x c e s s i v e and/or abrupt

d e o x i d a t i o n can l e a d t o

d e l e t e r i o u s mechanical p r o p e r t i e s , i . e . h i g h l e v e l s o f A l or d e o x i d i z e r s

i n i n t r o d u c t i o n of

(as s m a l l segregates) i n

the ESR i n g o t ; and v i i ) The shape o f i n c l u s i o n s depends upon the type and degree o f d e o x i d a t i o n :

1) i n A l d e o x i d i z e d i n g o t s s p h e r i c a l

s i n g l e o r c l u s t e r s o f alumina phases

( a - A l ^ ^ and FeO'A^O^)

a s s o c i a t e d w i t h manganese s u l f i d e s are found a t r e l a t i v e l y low deoxidation inates

l e v e l s and f a c e t e d aluminates

and low c a l c i u m alum-

(CaO-eA^O-j) as s i n g l e o r c l u s t e r s a t r e l a t i v e l y

deoxidation rates.

2) i n C a S i ,

high

"hypercal" or AISi deoxidized

201 ingots, faceted calcium

(a-Al 0 2

3

and C a O 6 A l 0 ) and s i n g l e s p h e r i c a l 2

3

aluminates ( C a O * 2 A l 0 , C a O « A l 0 2

3

2

3

and

12CaO«7Al 0 )

w i t h p e r i p h e r a l s u l f i d e s are found at r e l a t i v e l y low and deoxidation

rates respectively.

2

3

high

202 5.4

F i n d i n g s and D i s c u s s i o n Related t o the T h i r d Question

5.4.1

D e s c r i p t i o n of Experimental

5.4.1.1

The I n c l u s i o n Mean Diameter Tables

Results

(XIV a-b) show the standard i n f o r m a t i o n drawn

from the i n c l u s i o n

(EPMA) a n a l y s i s .

As p r e v i o u s l y d e s c r i b e d ,

a minimum o f twenty and a maximum o f 40 s i n g l e analyses were performed i n each sample.

S o l i d i n g o t samples 2.5 x 2.5 cm

i n area and l i q u i d p o o l samples approximately

2

75% o f t h i s

area were s y s t e m a t i c a l l y analyzed. Analyses were performed i n l o n g i t u d i n a l and t r a n s v e r s a l d i r e c t i o n s i n both

types

of samples. The mean i n c l u s i o n diameter Figures The

was s t a t i s t i c a l l y

obtained.

(79 a,b) show an example o f each type of sample.

linearity

shown i n these graphs c l e a r l y i n d i c a t e s t h a t

the s i z e o f i n c l u s i o n s i s r e p r e s e n t e d by a normal d i s t r i b u t i o n . The

c o r r e l a t i o n c o e f f i c i e n t s ranged from 0.97 t o 0.99 which

are e x c e l l e n t f o r the p a r t i c l e s i z e found. information

Based on t h i s

p l o t s o f mean i n c l u s i o n diameter,

50% o f the cumulative

frequency,

given as the

a g a i n s t i n g o t h e i g h t (or

d e o x i d a t i o n l e v e l s ) were o b t a i n e d .

To c o r r e l a t e t h i s

inform-

a t i o n to the d e o x i d a t i o n b e h a v i o r , these f i n d i n g s are a l s o p l o t t e d along w i t h the t o t a l oxygen a n a l y s i s from both of

samples.

types

203 5.4.1.2

F i n d i n g s from I n d i v i d u a l Experiments The

as RII-W

Figure

( 36 ) which corresponds t o i n g o t

labelled

i n which the CaSi was d i s c r e t e l y added, shows t h a t

the i n c l u s i o n average s i z e depends s t r o n g l y on the d e o x i d a t i o n practice.

T h i s p l o t c l e a r l y shows t h a t c o i n c i d e n t a l to the

l a r g e s t Ca:Al r a t i o s i n i n c l u s i o n s

the s m a l l e s t mean i n -

c l u s i o n s i z e i s found. The Figure with

behavior

corresponding

t o R I I - I l i s shown i n

(41). T h i s shows t h a t the mean i n c l u s i o n s i z e v a r i e s

the t o t a l oxygen content.

a t low d e o x i d a t i o n

T h i s graph a l s o shows t h a t

r a t e s (3.60 and 6.1 kg ton ^ ) , the i n -

c l u s i o n s i z e of samples from the l i q u i d p o o l are s m a l l e r the ones from the i n g o t .

At moderate and high

l e v e l s , however, the opposite

behavior

deoxidation

i s observed.

ference i n average s i z e i s approximately 1 pm.

(43)—also

behavior.

Findings

from

RII-I2 a r e shown i n F i g u r e (42).

Since t h i s i n g o t was d e o x i d i z e d than R I I - I l

The d i f -

Vari-

a t i o n s i n the Ca:Al r a t i o s i n i n c l u s i o n s — F i g u r e reflect this

than

by lower A l - a d d i t i o n r a t e s

the mean i n c l u s i o n diameter i n samples from

i n g o t and l i q u i d p o o l were almost e q u i v a l e n t .

The average

Ca:Al r a t i o s o f i n c l u s i o n s i n t h i s i n g o t a l s o changed i n an e q u i v a l e n t manner, F i g u r e (44). The

i n g o t i d e n t i f i e d as R I I I - I l , which was CaSi de-

oxidized,

i n some r e s p e c t behaved as RII-I2.

Variations in

the Ca:Al r a t i o s i n i n c l u s i o n s and oxygen contents are a l s o r e f l e c t e d i n the mean s i z e o f i n c l u s i o n s .

It i s

important t o note t h a t the CaSi a d d i t i o n r a t e s were almost e q u i v a l e n t from one t o the other and g r a d u a l l y i n c r e a s e d during r e f i n i n g , Figures

(56 a-b) and

(58).

RIII-I2 used an e q u i v a l e n t d e o x i d a t i o n procedure to RIII-Il.

R I I I - I 2 , however, was r e f i n e d under d i f f e r e n t de-

o x i d a t i o n regimes.

The three lowest CaSi a d d i t i o n s were

added i n s h o r t e r p e r i o d s o f time a t the bottom o f RIII-I2, w h i l e the f o u r t h l e v e l of a d d i t i o n s (22.4 4 kg t o n ^) was much longer than i n R I I I - I l . unmistakenly

In t h i s experiment,

i t is

shown t h a t i n c l u s i o n s from l i q u i d p o o l , a t

moderate and h i g h e r CaSi a d d i t i o n s , a r e l a r g e r i n s i z e the ones from the i n g o t .

The Ca:Al r a t i o s , the t o t a l oxygen

content as w e l l as the mean i n c l u s i o n

diameters behaved i n

e x a c t l y the same way as R I I - I l , F i g u r e s 57(a-b) and Finally,

than

(59).

Ingot 4340 which was CaSi d e o x i d i z e d shows

the same p a t t e r n , i n terms o f t o t a l oxygen a n a l y s i s , r a t i o s and p a r t i c l e s i z e s , as RII-I2 (72 a,b) and (74a,b).

Ca:Al

and R I I I - I l , F i g u r e s

205 5.4.1.3

Complementary S t u d i e s To gain a b e t t e r understanding about i n c l u s i o n

a t i o n and growth and

to e l u c i d a t e whether the

mechanism operates

under the ESR-conditions

of experiments was

performed.

form-

flotation one more s e t

Samples were sucked

from

the l i q u i d p o o l i n t o s i l i c a tubes which contained e i t h e r a mishmetal or Zr w i r e .

R e f i n i n g was

and at a constant d e o x i d a t i o n r a t e A I S i or C a S i ) . of i n c l u s i o n s

c a r r i e d out under argon (10 kg/ton of e i t h e r

Three major areas, i n terms of the were i d e n t i f i e d

i n these samples.

composition Regions

where i n c l u s i o n s were mainly c o n s t i t u t e d by e i t h e r r a r e e a r t h or z i r c o n i u m e n r i c h e d phases.

A r e g i o n where the Zr o r the

r a r e e a r t h phases were mixed w i t h complex C a - A l - s i l i c a t e s and a r e g i o n where a mixture few

of pure Ca-aluminates and

very

i n c l u s i o n s with p e r i p h e r a l r a r e e a r t h or z i r c o n i u m

s u l f i d e phases were i d e n t i f i e d . c l u s i o n s i s shown i n F i g u r e s

T h i s l a t t e r type of i n -

(80,81) and

(82,83) where

the composition maps f o r A l , Ca,Ce, La, S and i s very important as much as 7-10%

Zr are g i v e n .

to emphasize t h a t t h i s type accounted of the t o t a l amount of i n c l u s i o n s

for

analyzed

(40-50) i n each sample. M e t a l l o g r a p h i c a n a l y s i s on specimens o b t a i n e d from l i q u i d pools

(1020

and 4340)show t h a t a c o n s i d e r a b l e amount

It

of i n c l u s i o n s was found c l o s e t o the w a l l of the s i l i c a

206 tube.

Most of them, however, were l o c a t e d i n i n t e r d e n d r i t i c r e g i o n s and o n l y approximately 5-7% were trapped by primary d e n d r i t e s , Figures

(85) and (86).

207 5.4.1.4

Summary of Experimental F i n d i n g s

In o r d e r to approach

the answer

q u e s t i o n a summary of f i n d i n g s , size,

( d i s c u s s i o n ) to t h i s

i n terms of 1) i n c l u s i o n mean

2) i n c l u s i o n composition and 3) t o t a l oxygen a n a l y s i s ,

i s presented. 1)

-

I n c l u s i o n s i z e d i s t r i b u t i o n s obey the normal bution 0.96

(the c o r r e l a t i o n c o e f f i c i e n t ranged

distri-

from

- 0.99) .

The mean i n c l u s i o n diameter was The average

approximately 6-8

ym.

i n c l u s i o n s i z e i n c r e a s e s approximately

1 ym i n diameter i n both types of samples

(ingot

and l i q u i d pool) as the d e o x i d a t i o n r a t e i s i n creased. In i n g o t heads (CaSi d e o x i d i z e d ) some i n c l u s i o n s were seen as l a r g e as 30 ym i n samples e x t r a c t e d from l i q u i d p o o l s and t h i s s i z e was

very r a r e l y seen i n

the i n g o t . The

i n c l u s i o n d e n s i t y , number of i n c l u s i o n s per a r e a ,

i s g r a d u a l l y i n c r e a s e d from the c e n t e r t o the mould wall.

T h i s f a c t was

accentuated i n CaSi d e o x i d i z e d

ingots. 2)

-

Calcium aluminates were almost always observed to c o n t a i n a core e n r i c h e d i n alumina

( i . e . A l by EPMA).

208 The

Ca:Al r a t i o s i n i n c l u s i o n s i s almost always smaller

i n samples e x t r a c t e d from l i q u i d p o o l s than from i n g o t s The p e r i p h e r a l S content

as CaS

i s p r o p o r t i o n a l to

the Ca:Al r a t i o s i n the c a l c i u m e n r i c h e d

aluminate

phases. At r e l a t i v e l y l a r g e d e o x i d a t i o n r a t e s the formation of segregates ( A l , Ca and

Si) was

enriched i n deoxidizers

observed.

r e c a l l t h a t these segregates

(^10-12 kg/ton)

I t i s important

to

were commonly seen i n

samples e x t r a c t e d from the l i q u i d p o o l and very in ingots.

3)

-

The

They a l s o contained

some

mately 20

5.4.2

Mn.

average d i f f e r e n c e i n t o t a l oxygen content

samples e x t r a c t e d from l i q u i d p o o l and

rarely

between

ingot i s approxi-

ppm.

P r e c i p i t a t i o n of I n c l u s i o n s i n the Fe-Al-Ca-O-S(Mn) System By using F a u l r i n g ' s and

Tables

(IV) to

Ramalingham's d a t a ^

2 1

^

given i n

f

(VI), to c o n s t r u c t the Fe-Al-Ca-0 p r e c i p i -

t a t i o n diagram, c o n j o i n t l y with o b s e r v a t i o n s

of other

investi-

g a t o r s , p r e v i o u s l y d e s c r i b e d i n s e c t i o n s 2.3.5, 2.3.7.2 and 5.3.4, the p r e d i c t i o n of the p r e c i p i t a t i o n of the Ca-aluminate/ C a - s u l f i d e phases can be pursued a l i t t l e Fe-Al-Ca-0 system i s now

approached by

further.

I f the

superimposing

the

(CaS)

[0]

+

CaO

t

e q u i l i b r i u m to the Fe-Al-Ca-0 system,

+

(21)

[S]

system, as the Fe-Al-Ca-O-S

and care i s taken to c o n s i d e r the phase r u l e , a

diagram r e p r e s e n t i n g the p r e c i p i t a t i o n of

Ca-aluminates

and t h e i r corresponding s u l f i d e phases was c o n s t r u c t e d . The procedure used et a l . (

239

^

was

e q u i v a l e n t to t h a t used by Wilson

and F a u l r i n g e t a l .

efficients

.

The a c t i v i t y

[CaO-Al 0

f o r CaS i n e q u i l i b r i u m w i t h l i q u i d

( l i q u i d ) - C a S ( l i q u i d ) ] and

2

[CaO-CaS]solid were estimated N

(240

from Sharma's and R i c h a r d s o n s s i n v e s t i g a t i o n s (XV).

T h i s diagram based on Henrian a c t i v i t i e s i s

= 0.001,

A l

,

(1550° C) and was developed f o r l e v e l s of A l

isothermal (h

241) '

1

Table

co-

0.01 and 0.1)

i n the range of major i n t e r e s t .

The data generated from these e q u i l i b r i a i s summarized i n Table

(XV). The major r e a c t i o n s are g i v e n i n Appendix ( I ) .

Although the Fe-Al-Ca-O-S system was

exclusively

veloped as a four f o l d component e q u i l i b r i a , the MnS e q u i l i b r i u m with A^O^

• 4- •



n

-A

and the double ••'

u t i o n of Mn by Ca i n the MnS

in

[(Ca,Mn)S] s u l f i d e i s

-,(140,146,210)

i n t r i n s i c a l l y considered

de-

, .

,

.

The g r a d u a l s u b s t i t -

phase i s governed by the

fol-

lowing e q u i l i b r i u m : (MnS)*+ [Ca] t

(CaS)*+

[Mn ]

(25)

The presence of Ca i n s o l u t i o n i n the melt generates s e v e r a l transitions.

I n c i p i e n t amounts of Ca

o r i g i n a t e the

210 t r a n s i t i o n of MnS

I I to

(91

MnS

92

R e l a t i v e l y h i g h e r Ca contents double s u l f i d e s , e.g.

(Ca,Mn)S.

duced i n the melt i s i n c r e a s e d CaS

and MnS

appears' * ^. 4

between the f o r m a t i o n The

144)

i n the melt induce

I f the amount of Ca a m i s c i b i l i t y gap

This t r a n s i t i o n occurs

5

of the C a O ' e A ^ O ^ and

the

the

intro-

between the somewhere

CaO^A^O^.

s u l f i d e phase, as r e p o r t e d by s e v e r a l r e s e a r c h e r s

heterogeneously described)

and

Ca(Al)

is

p r e c i p i t a t e d on the oxide phases ( p r e v i o u s l y i t i s very dependent on the a c t i v i t y of the A l .

In p r e v i o u s d i s c u s s i o n s i t was

CaO

140

acknowledged t h a t as

d e o x i d a t i o n l e v e l i s i n c r e a s e d , the amount of Ca

i n the Ca-aluminate phase i s i n c r e a s e d by r e a c t i o n

and hence the amount of CaS and/or

(26).

The

produce pure CaS

phase i n c r e a s e s by

f a c t t h a t the i n j e c t i o n of CaO i s also considered.

the

as (20)

reactions

(25)

s l a g s do

As Saxena and

not

cowork-

(147 148 214) •' ' have r e p o r t e d , t h i s t r a n s i t i o n w i l l take p l a c e (144 153 a f t e r Ca-aluminates have formed. As s e v e r a l r e s e a r c h e r s ' ' 154,156 .185,197.211) . _ . . . .. . _ _ • • • ' work suggest, the p r e c i p i t a t i o n of pure CaS

ers

i s expected to occur once the Ca-content i n the melt oxygen l e v e l i s approximately

10-40

o s i t i o n i n the double s u l f i d e , to 50.0

wt.

(or the

ppm)

i s such t h a t a comp-

(Mn,Ca)S

i s g r e a t e r than 4 3.0

% (140,146)^

T h i s t r a n s i t i o n i s reached once the (202) CaO-A^O^ s t o i c h i o m e t r i c phase i s formed . O t o t a n i ' s and Kataura's r e s u l t s * ^ c o n f i r m K i e s s l i n g s and Westman s* ^^ 2 1 5

S a l t e r and

1

(140) Pickering's

r e p o r t a "pure" CaS

v /

and

Church's

phase a f t e r the

(159) ' findings.

" A l 0 " content 2

3

14

They

i n the

Ca-aluminates i s reduced by Ca to approximately i s also r e p o r t e d ' ^

t h a t once t h i s p e r c e n t

1

i s reached a sharp increment i n the CaS

40.0%.

of CaO

It

(40.0%)

i s noted.

A schematic r e p r e s e n t a t i o n of the above d e s c r i p t i o n i s shown i n F i g u r e thermal

(87).

(1823K) and

This Figure

prehensive h ^ A

(h

g

= h

A l

manner the h ^ t h ^

= 0.001, 0.01

and

I I - I I I , the Ca-aluminates 2

3

and

0.1)

(88) and

(89). A^O^/ and

5.4.3.1

N u c l e a t i o n , Growth and

Results F l o t a t i o n of

d i f f e r e n c e i n the mean diameter

from l i q u i d p o o l and

(1-3

Inclusions ym)

of i n c l u s i o n s

from i n g o t s i n d i c a t e s t h a t the

mechanism i n the ESR-conditions under which t h i s behavior was

operate.

The

d i s p l a y e d were:

flotation

conditions a) when the

d i f f e r e n c e i n t o t a l oxygen content between the l i q u i d i n g o t s i s g r e a t e r than 20 ppm

g r a d u a l and c l u s i o n s and

the

CaO/CaS e q u i l i b r i a .

D i s c u s s i o n of

and

the

i n a com-

of the

(C•6A,C•2A)/(Mn,Ca)S

5.4.3

The

To

r a t i o s are p l o t t e d a g a i n s t e i t h e r

(88,89) summarize the behavior

CaO-Al 0 (liq)

= 0.1.

f t l

composite phases over

or hg i n l o g a r i t h m i c s c a l e s i n F i g u r e s

These F i g u r e s MnS

i s necessarily iso-

at a f i x e d A l a c t i v i t y , h

r e p r e s e n t the s t a b i l i t y of these ranges of i n t e r e s t

(87)

and

pool

b) Where smooth,

e q u i v a l e n t changes i n the Ca:Al r a t i o s of i n i n the t o t a l oxygen content

l i q u i d p o o l and

i n g o t were observed.

i n samples from

Case (a) was

speci-

212 f i c a l l y observed i n the A l - d e o x i d i z e d and

p a r t i a l l y i n RII-I2.

ference

i n oxygen content

r a t e with A l

was

These two

ingots, i . e .

ingots e x h i b i t t h i s

when the h i g h e s t

applied.

RII-Il dif-

deoxidation

I t i s important to note t h a t

because of the changes i n oxygen a n a l y s i s i n the l i q u i d and

ingot

(RII-I2), a d i f f e r e n c e g r e a t e r than 20

i s observed i n t o t a l oxygen.

T h i s behavior

i n the Ca:Al r a t i o s i n i n c l u s i o n s .

Case

ppm

i s also reflected

(b) i s found i n R I I I -

12 and p a r t i a l l y i n R I I - I l where the d e o x i d a t i o n given by the behavior

sequence,

of the t o t a l oxygen content

A l r a t i o s i n i n c l u s i o n s , Figures

pool

(57,59) and

and

the

Ca:

(43,44), shows

smooth and p a r a l l e l changes. The

s o l i d i f i c a t i o n c o n d i t i o n s i n samples from i n g o t s

(center p a r t )

are l e s s d r a s t i c than i n samples e x t r a c t e d from

l i q u i d pool.

The

secondary d e n d r i t e arm

i n g o t s where the samples were o b t a i n e d

spacing

was

(DAS

about

1 1

, as acknowledged i n the l i t e r a t u r e " '

provides

(

In s p i t e o f . t h i s

ym

A larger '

1 0 3 - 1 0 6

>

more advantageous c o n d i t i o n s f o r the n u c l e a t i o n

growth o f i n c l u s i o n s . extracted

1 0 1

) in

250-300

w h i l s t i n samples from the l i q u i d p o o l 30-50 ym. DAS

1 1

the

and

i n c l u s i o n s i n samples

from the l i q u i d p o o l , under the d e s c r i b e d

conditions,

showed a l a r g e r mean diameter. I t i s a l s o important to note t h a t the d i f f e r e n c e i n i n c l u s i o n mean s i z e was

1 ym,

above

where

the

faceted

(a-A^O^)

al-

213

umina

was

observed.

i r o n aluminates

At lower c o n c e n t r a t i o n s o f aluminum round

(FeO'A^O^) were i d e n t i f i e d whereas at

higher d e o x i d a t i o n r a t e s the aluminates and

some angular

with some c a l c i u m

alumina were i d e n t i f i e d .

These f i n d i n g s (99

s t r o n g l y agree with T u r p i n ' s and E l l i o t ' s and o t h e r s 184) (99) observations.

These r e s e a r c h e r s

who

the n u c l e a t i o n phenomenon under sub-cooled suggested

t h a t the angular

sub^-liquidus temperatures.

'

have s t u d i e d

c o n d i t i o n s , have

alumina phase was

the melt a t e q u i l i b r i u m temperature and

183 '

nucleated i n

i t simply grew at

C o i n c i d e n t a l l y to t h i s

ob-

(99) servation

, i t was

a l s o r e p o r t e d t h a t i n very e a r l y stages

o f s u b - c o o l i n g a scum was Thus,

formed on the s u r f a c e of t h e i r

i n d i c a t i n g t h a t a t the beginning

i n c l u s i o n s simply

melts.

of s u b - c o o l i n g some

f l o a t e d to the s u r f a c e .

To determine the e x t e n t a t which the f l o t a t i o n mechanism i s allowed

i n the E S R - l i q u i d p o o l a more e l a b o r a t e

(SEM

and

EPMA) study, through the e x t r a c t e d samples c o n t a i n i n g e i t h e r RE o r Zr, was

c a r r i e d out.

The p e r i p h e r a l RE and

Zr as o x i -

s u l f i d e s e n c l o s i n g the Ca-aluminates have c l e a r l y r e v e a l e d t h a t the l a t t e r phases were a l r e a d y p r e s e n t i n the pool.

These experiments a l s o suggest

a liquid-solid

state

( 9 2

'

9 4

'

l 2 l )

liquid

t h a t i n c l u s i o n s are i n

, Figures

(80) to

r e s u l t s which are a l s o i n agreement with the

(84).

These

metallography

o b s e r v a t i o n s , show t h a t the f l o t a t i o n of i n c l u s i o n s can

occur

214

i n as much as 7-10% i n the i n g o t . resent

of

the

total

These r e s u l t s , however,

inclusion do

not

content

rep-

the amount o f i n c l u s i o n s removed from the s o l i d i f y i n g

ingot. one

out

I f an a n a l y s i s o f F i g u r e s

(79a) and (79b) i s made

can see t h a t i n o r d e r t o account f o r the d i f f e r e n c e i n

size

(1.0 - 1.5 ym i n diameter) a d i s p l a c e m e n t i n t h e cumul-

a t i v e frequency from 50 t o 70% produces the expected ence.

This

differ-

i n d i c a t e s t h a t an e l i m i n a t i o n o f i n c l u s i o n s o f

a p p r o x i m a t e l y 20% i s c a r r i e d o u t by f l o t a t i o n . A l t h o u g h these experiments do not c l e a r l y r e v e a l the nature of s a t u r a t i o n , the

i t i s believed

three mechanisms' ^ 00

o x i d i z e r s and d u r i n g of d e o x i d a t i o n

t h a t i t i s r e a c h e d by

namely by c o o l i n g ,

solidification.

additions

The h i g h e s t

o f de-

degrees

which r e s u l t from the i n t r o d u c t i o n o f l a r g e

amounts o f A l i n t h e melt e i t h e r from the d e o x i d i z e r o r through r e a c t i o n

(20a-c)

and the h i g h c r y s t a l l i n e c h a r a c t e r

o f the alumina phase l e a d t o the b e l i e f t h a t t h i s phase is uniformly the

n u c l e a t e d i n e a r l y stages o f u n d e r c o o l i n g a t

beginning of s o l i d i f i c a t i o n .

enriched ingot

i n deoxidizers

a l s o suggest t h a t

The presence o f s e g r e g a t e s

i n some samples from l i q u i d p o o l and " l o c a l supersaturation"

(by a d d i t i o n s )

can be a c h i e v e d . It i s i n f e r r e d that

i f growth o f i n c l u s i o n s r e s u l t s from

a mechanism o t h e r than d i f f u s i o n and p r e c i p i t a t i o n , s p e c i f i c a l l y growth due t o c o l l i s i o n c o a l e s c e n c e between i n c l u s i o n s o f d i f f e r e n t s i z e s and t h e r e i s

s u b s t a n t i a l con-

215 v e c t i v e mixing

i n the i n g o t p o o l then t h i s phenomena should

be r e f l e c t e d i n i n c l u s i o n s i n the ESR-ingot.

The

and arrangement of i n c l u s i o n s e x t r a c t e d by the acetate-methanol i n Figures

(91)

s i z e , shape

iodine-methyl

method from A l d e o x i d i z e d i n g o t s i s shown and

(92).

These

that the growth by c o l l i s i o n and

(SEM)

photographs r e v e a l

coalescence

of A^O^

and

CaC"6Al2C>2 i n the l i q u i d p o o l indeed has taken p l a c e . As

4. A u

suggested

i

u

by s e v e r a l r e s e a r c h e r s

(38, 121,242,243) '

,

s i n c e there i s not a complete a s s i m i l a t i o n of i n c l u s i o n s by the s l a g some i n c l u s i o n s are c a r r i e d back i n t o the ingot.

The

type of i n c l u s i o n s , c l u s t e r s of

solidifying

aluminates,

i d e n t i f i e d i n t h i s r e s e a r c h very much resemble those i n conventional mechanically,

,,

cally

..

,

s t i r r e d melts

t h e r m a l l y , or

(38,120,183, 189,193-195) ' ' ' ' .

reported

electromagnetiThus,

. ..

.

although

the growth o f i n c l u s i o n s i n ESR-ingots can be accounted f o r by the simultaneous

d i f f u s i o n - p r e c i p i t a t i o n mechanism, the

d i f f e r e n c e i n s i z e found

i n l i q u i d p o o l and

i n g o t cannot be

e x p l a i n e d by a mechanism other than the f l o t a t i o n . also r e a l i s t i c

to suggest

It i s

t h a t the i n c l u s i o n s i z e d i s t r i b u t i o n

seen by the s o l i d i f y i n g i n t e r f a c e i s not s t r i c t l y simply by buoyance c o n s i d e r a t i o n s but i n s t e a d by

controlled overall

(244 ) bath hydrodynamics as suggested

by Engh and

Lmskog

(245) and L i n d e r

.

From t h i s d i s c u s s i o n , i t i s e v i d e n t t h a t

the i n c l u s i o n f l o t a t i o n mechanism cannot be approached by

216 s t r a i g h t Stokes t h i s equation The that 0.1

1

Law

u n l e s s the a p p r o p r i a t e c o r r e c t i o n s to

(13) are c o n s i d e r e d , Table ( I ) .

second important

c o n c l u s i o n from these r e s u l t s i s

at d e o x i d a t i o n r a t e s which produce an A l content - 0.15

wt.

% i n (ESR)

i n g o t s , i n c l u s i o n s are e x c l u s i v e l y

n u c l e a t e d and grown i n i n t e r d e n d r i t i c spaces d u r i n g fication.

of

solidi-

These f i n d i n g s i n agreement with A l d e o x i d i z e d

4. • 4 . - n 4. i , • (90, 172,183-187) ingots i n conventional steelmakmg p r a c t i c e indicate levels

t h a t the n u c l e a t i o n phenomenon at these

deoxidation

i s c o n t r o l l e d by the formation of the F e O « A l 0 2

c l u s i o n phase, e.g. fication.

l o c a l supersaturation during

Recent s t u d i e s *

i n g o t s d e o x i d i z e d w i t h 0.1

2 4 6

2.0

% Al

in-

solidi-

^ in unidirectionally

and

3

solidified

which c l o s e l y r e -

semble the Al(ESR) d e o x i d i z e d i n g o t s , have shown t h a t the FeO«Al 0 2

3

phase i s p r e c i p i t a t e d at a s o l i d f r a c t i o n of

i n the low A l (0.1%) content and a t 0.89 r e s u l t s suggest

t h a t the F e O « A l 0

phase p r e c i p i t a t e d and searchers

2

3

i n the o t h e r .

i s the i n c l u s i o n

t h e r e f o r e as suggested

( 1 8 3 , 1 8 4 , 1 8 6 _ 1 8 8 )

umina as the s o l i d i f i c a t i o n

These

first

by other r e -

t h i s phase i s transformed proceeds.

0.65

to a l -

217 5.4.3.2

Comparison Between T h e o r e t i c a l and

Experimental

Results The and

t o t a l oxygen content of samples from the l i q u i d

ingot

Figures

pool

under an a p p r o p r i a t e d e o x i d a t i o n sequence,

(41) and

(57), have c l e a r l y shown t h a t there i s a

d i f f e r e n c e between the samples of approximately

20 ppm.

This

(63)

behavior Figure both

i s expected

(10).

The

from an e q u i l i b r i u m s i t u a t i o n i n

average Ca:Al r a t i o s i n i n c l u s i o n s from

types of samples

( l i q u i d p o o l and

ingot) a l s o i n d i c a t e

t h a t under a g r a d u a l d e o x i d a t i o n sequence with e i t h e r

an

A l S i , CaSi o r h y p e r c a l a l l o y the c a l c i u m which remains i n s o l u t i o n p r e c i p i t a t e s on c a l c i u m aluminates fication.

during

solidi-

T h i s , a c t s to r a i s e the Ca:Al r a t i o s by a l l o w i n g

the r e a c t i o n (CaO)*+ [S] X ,

,

(CaS)*+ [0] , ,.

to take p l a c e i n the forward

^.

(18)

(147,148)

direction

'

o r t a n t to emphasize t h a t d e s p i t e the 20 ppm

^ .

.

I t i s imp-

of oxygen i n

s o l u t i o n i n the l i q u i d p o o l , the e q u i l i b r i u m i s achieved i n the d i r e c t i o n i n d i c a t e d by the r e a c t i o n (18). temperature decreases

a-c)

sulfide, i.e.

t r a n s i t i o n of these phases i s presented * where the CaS/CaO

T h i s behavior

the

the c a l c i u m , oxygen and s u l f u r . p r e -

c i p i t a t e as p e r i p h e r a l oxide and The

As

CaS. (92

revealed.

when the l e v e l of "FeO"

i s such t h a t the c a l c i u m aluminates

and

i n Figures

interphase i s c l e a r l y

i s observed

CaO

i n the

are e i t h e r CaO«2Al O_ n

slag

218 or

12CaO«7Al 0_. 2 3

At higher l e v e l s of "FeO"

where the A l 0 _ 2 3

3

o

i s transformed to CaO-GA^O^, the r e a c t i o n which c o n t r o l s the p r e c i p i t a t i o n of s u l f i d e i s : MnS

+

[Ca] t

CaS +

[Mn]

(19)

T h i s r e a c t i o n enables the p r e c i p i t a t i o n of double i.e.

(Ca,Mn)S, F i g u r e s (51) and

sulfides,

(52).

The most important f a c t to p o i n t out i s t h a t the secondary p r e c i p i t a t i o n strictly

which i s heterogeneous

i n nature

c o n t r o l l e d by the Ca:Al r a t i o i n the i n c l u s i o n

The e f f e c t o f the temperature on the p r e c i p i t a t i o n particularly CaO

is phases.

sequence,

i n the Ca:Al r a t i o s where aluminates e n r i c h e d i n

are i n e q u i l i b r i u m

i s e q u i v a l e n t to an increment i n the

aluminum c o n t e n t i n the melt i n the Ca-Al-0 system, F i g u r e

(11)

T h i s b e h a v i o r i s a l s o expected from the Ca0-Al 0.j pseudo 2

b i n a r y e q u i l i b r i u m diagram.

T h i s i n d i c a t e s t h a t as the

CaO

c o n t e n t i n c r e a s e s i n the aluminates t h e i r s t a b i l i t y i n terms of

temperature

decreases and a more s t a b l e compound i s formed.

The completion of the s u l f i d e p r e c i p i t a t i o n r e a c t i o n s and

(19) i s e x p e c t e d ' ^ 4

(18)

to occur a t approximately 1000°C

where the m i s c i b i l i t y gap i n the MnS-CaS b i n a r y diagram appears.

I t i s a l s o important to mention

f i c a t i o n some i r o n or Cr

can

be

in

dis-

that during s o l i d i -

solution

with

the

. (92, 140,159) s u l f i d e phase ' ' Another p o i n t to be c o n s i d e r e d i n t h i s a n a l y s i s i s t h a t where the aluminate phase

(A^O^

or CaO'GA^O^) i s s t a b l e

the s u l f i d e phase i n e q u i l i b r i u m with i t i s o n l y the MnS

in

219 any

of i t s shapes, i . e .

MnS

I, I I or I I I which are

dependent on the chemistry of the melt. h a v i o r of the a l u m i n a t e - s u l f i d e ures

Figure

of "pure" CaS

(87)

also

The o v e r a l l be-

t r a n s i t i o n i s condensed i n F i g -

(88,89) which are an e x t e n s i o n

(87).

also

of r e s u l t s shown i n F i g u r e

indicates

cannot occur unless

that

the

precipitation

lower oxygen p o t e n t i a l s ,

than those r e q u i r e d to p r e c i p i t a t e C a O i A ^ O ^ and

12CaO • 7AI2O.J

are reached. If

these f i n d i n g s are compared a g a i n s t s t u d i e s on

i n j e c t i o n p r o c e s s e s then i t can be ous

seen that the

simultane-

d e o x i d a t i o n - d e s u l f u r i z a t i o n mechanism i s a l s o r e f l e c t e d

• 4.1. ^ 4.i n the d e o x i d a t i o n

J 4. (140,147,148,153,197, 211,214) products ' ' ' ' ' . (14 7

T h i s diagram i n agreement w i t h Saxena et a l . ' s work 148

in

'

214) '

CaO

Ca-

c l e a r l y r e v e a l s t h a t Ca does not d i r e c t l y

i n c l u s i o n s unless

e i t h e r as a C a S i or

as

c o n t r i b u t e to the CaS p r e c i p i t a t e

the alumina i s f i r s t transformed i n t o

Ca-aluminates. While c a l c i u m

aluminates w i t h p e r i p h e r a l Zr or

oxides s u l f i d e s , i n the samples e x t r a c t e d

from the

RE liquid

p o o l by the s i l i c a tube c o n t a i n i n g e i t h e r Zr or mischmetal, were not commonly found, a l l of the i n c l u s i o n s which cont a i n e d these elements

(Zr o r Ce and

La) homogeneously d i s -

t r i b u t e d were p r e f e r e n t i a l l y composed of phases e n r i c h e d calcium.

I n c l u s i o n s g e n e r a l l y show t h a t among the

in

elements

220 t r a c e d by the X-ray spectrum and

S i as o x i d e - s u l f i d e and

of the main c o n s t i t u e n t s taken as one

in iron

contributes reaction

analysis

of these phases.

'

. i s gradually

and

3

hence i t by

(20-C).

Reaction

to 12CaO«7Al 0 . 2

(20-C) and

The

3

sulfide transition, i.e. Figures

(87)

g i v e n i n Tables

and

(XVI)

MnS

(88) and

t h a t the p r e c i p i -

the r e a c t i o n scheme (19)

(21)

above ones

II

MnS

dictate

and

the

(25),

determine

III

the

(Ca,Mn)S

r e v e a l t h i s behavior.

(XVII)

(12-iv),

the gradual t r a n s i t i o n

reactions

which occur s i m u l t a n e o u s l y t o the

CaS.

solu-

( s e c t i o n 5.4.1.4,

established

chemistry o f the oxide phase, i . e . 2

to i t s low

as the s o l i d i f i c a t i o n p r o g r e s s e s .

t a t i o n o f i n c l u s i o n s i s r u l e d by

of A 1 0

one

This f i n d i n g i s

the Ca:Al r a t i o i n i n c l u s i o n s ,

5.4.3.1), i t was

(12-v), and

calcium i s

r e j e c t e d and

In p r e v i o u s d i s c u s s i o n of r e s u l t s 5.4.2

Ca

199)

to i n c r e a s e

(18)

( A l , Zr,

almost pure CaS)

more evidence that c a l c i u m , due (198

bility

(SEM)

-»-

Results

t o a c e r t a i n e x t e n t des-

c r i b e these r e s u l t s . The (XVI)

equilibrium,

isothermal

c a l c u l a t i o n s shown i n

were performed by assuming constant

i n t e r a c t i o n c o e f f i c i e n t s f o r Al-O, used were - 5 . 2 5

( 1 7 5 )

, -62.0

l a s t value f o r the Ca-S the

was

f r e e energy of the CaO

( 1 7 5 )

Ca-0

and

-40

Table

( f i r s t order)

and

Ca-S.

The

respectively.

assumed on the b a s i s t h a t i s approximately 1 1/3

values The since

l a r g e r than

t h a t f o r CaS,

Table

(XV), then the r a t i o of t h e i r

first

order i n t e r a c t i o n parameters c o u l d be e q u i v a l e n t . if

S-analyses

from the 1020

M.S.

the s t a r t i n g p o i n t i n e a r l y

Hence,

e l e c t r o d e are taken

(low) d e o x i d a t i o n stages

and they are compared a g a i n s t those g i v e n i n Table for in

as

(XVI)

the A l 0 - C a O « 6 A l 0 - C a S e q u i l i b r i u m , i t i s noted t h a t 2

3

2

3

terms of s u l f u r , very good agreement i s observed.

these v a l u e s are compared

i n terms of Ca- and S-

and t h e i r r e s p e c t i v e oxide phases

If

contents

a g a i n s t those r e p o r t e d

(144) by H i l t y and Popp

given

agreement i s found.

in

F i g u r e (78),

good

On the o t h e r hand, p r e d i c t e d values f o r

oxygen are overestimated, F i g u r e (72). Since, Gustafsson and M e l b e r g ' ^ ?

suggest the use of

7

v a r i a b l e f i r s t order i n t e r a c t i o n c o e f f i c i e n t s then a set

of c a l c u l a t i o n s was

performed.

r e s u l t s shown i n Table

second

Under these c o n d i t i o n s ,

(XVII) were computed.

The

first

order i n t e r a c t i o n c o e f f i c i e n t s w e r e ; - 5 3 5 " ^ , -400, -350 for

and -200 Ca-S,

CaS,

f o r the Ca-O,

-62.0

( 1 7 5 )

-300,

f o r A l - 0 and -110

( 2 1 1 )

f o r the A l 0 - C a O • 6 A l 0 ~ C a S , C a O • 6 A l 0 ~ C a 0 • 2 A l 0 2

3

2

3

2

3

2

CaO«2Al 0 -CaO«Al 0 -CaS, CaO'Al^-CaO + A l ^ - C a S 2

3

and Ca0^ y - CaO s

Table

(XV).

2

3

+ A l 0 ~ C a S e q u i l i b r i a , Figure

While

2

3

Regarding

and

the Ca, A l and 0 are p r e d i c t a b l e by

lowing t h i s approach the s u l f u r i s underestimated

(87)

(10

6

i s not.

The

sulfur

fol-

content

- 10 ^ wt.%).

the independence of r e a c t i o n

(20-C) on

the

3

222 oxygen p o t e n t i a l

t h i s i s c l e a r l y r e v e a l e d through these

c a l c u l a t i o n s . Table (XVII). ranges between 10-40

ppm

The oxygen content i n the melt

r e g a r d l e s s of the amount of A l

and Ca i n s o l u t i o n . I t i s a l s o important to note t h a t the p r e d i c t i o n s in section ition are

5.3.4

i n terms of the expected i n c l u s i o n compos-

which were based on F a u l r i n g s

also

stated

et a l . ' s ^

2 l 6

^

findings

i n agreement with the r e s u l t s presented i n F i g u r e

(88) . F i n a l l y , two important f a c t s are worthwhile t o mention: First,

the Ca-0

i n t e r a c t i o n parameters are very important i n

the Al-Ca-O-S p r e c i p i t a t i o n and second a c o n f i d e n t

prediction

of the p r e c i p i t a t i o n sequence cannot be f u l l y r e l i a b l e u n l e s s the

interaction

appropriately

( f i r s t and second order) c o e f f i c i e n t s are

determined.

223

CHAPTER VI THE

RADIAL DISTRIBUTION OF

INCLUSIONS IN CaSi AND

Al

DE-

OXIDIZED INGOTS

6.1

Experimental D e t a i l s and The

Techniques

l a s t p a r t of t h i s i n v e s t i g a t i o n was

e l u c i d a t e how

i n c l u s i o n s are d i s t r i b u t e d , i n terms of

t i c a l l y determined s i z e s , i n i n g o t s . s e r i e s of samples from s e v e r a l 1020 ESR

ingots

radially

undertaken to

deoxidized

w i t h A l and

For t h i s purpose a M. S.

and

l e v e l s and

s l i g h t l y etched on four and

f i v e of t h e i r f a c e s .

one

4340

the CaSi a l l o y , were

s l i c e d at known d e o x i d a t i o n

were p o l i s h e d and

statis-

samples

sometimes

P r i o r to performing measurements,

microprobe a n a l y s i s and

X-ray spectrum a n a l y s i s were c a r -

r i e d out to i d e n t i f y the major i n c l u s i o n phases. Measurements of mean diameter ary d e n d r i t e

arm

spacing

of i n c l u s i o n s or second-

were performed almost i n v a r i a b l y

a t every h a l f centimeter on each f a c e . A l deoxidized

i n g o t s were very

small and

Since

inclusions in

complex i n shape

(alumina g a l a x i e s a s s o c i a t e d w i t h manganese s u l f i d e s ) , s e v e r a l approaches to determine the mean s i z e o f i n c l u s i o n s were f o l l o w e d ,

i.e.

normal d i s t r i b u t i o n s and

l a r g e s t i n c l u s i o n s technique."

"the

five

224

6.2

Experimental

Findings

R e s u l t s of t h i s r e s e a r c h are shown i n F i g u r e s

(9 3) t o

(95) and (96) t o (99) f o r secondary d e n d r i t e arm spacing and i n c l u s i o n mean s i z e s r e s p e c t i v e l y . i n g o t s , as p r e v i o u s l y d e s c r i b e d and manganese s u l f i d e .

The A l d e o x i d i z e d

showed alumina g a l a x i e s

Only t r a c e s o f c a l c i u m were found.

The morphology o f i n c l u s i o n s i n the 1020 M.S. A l d e o x i d i z e d i n g o t s v a r i e d from g l o b u l a r s i n g l e and double phase

( s p h e r i c a l aluminates

and manganese s u l f i d e ) a t the

i n g o t core, t o elongated with double phase manganese s u l f i d e ) a t midradius

(aluminates and

and almost e x c l u s i v e l y

s m a l l alumina g a l a x i e s a s s o c i a t e d with manganese

sulfide

at the mould w a l l . The

1020 M.S. CaSi d e o x i d i z e d i n g o t s showed c a l c i u m a l -

uminates and s i n g l e and double c a l c i u m s u l f i d e s , i . e . , CaS and

(Ca,Mn)S.

aluminates

The d e o x i d a t i o n l e v e l was such t h a t c a l c i u m

o f the type C a O « 6 A l 0 2

3

as the p r i n c i p a l i n c l u s i o n phases. c l o s e d the oxide phase. showed v i r t u a l l y

and C a O • 2 A l 0 2

3

were

found

The s u l f i d e phase en-

The 4340 CaSi d e o x i d i z e d i n g o t

the same types o f i n c l u s i o n phases as the

1020 M.S. i n g o t s d e o x i d i z e d with the CaSi a l l o y .

I t i s im-

p o r t a n t t o mention t h a t the amount o f the p e r i p h e r a l CaS phase was p r o p o r t i o n a l t o the Ca:Al r a t i o i n the oxide phase and

i t was not n e c e s s a r i l y dependent on the s i z e of the i n -

clusions.

F i n a l l y , the i n c l u s i o n d e n s i t y

(number o f i n -

e l u s i o n s / p e r u n i t area) i n a l l of the i n g o t s was c o n s i d e r a b l y with

6.3

increased

the r a d i u s .

D i s c u s s i o n of

Results

In the d i s c u s s i o n of the p r e v i o u s

r e s u l t s , i t has

been

emphasized t h a t some f l o t a t i o n of i n c l u s i o n s (about 10-20%) w i l l take p l a c e .

T h i s was

determined to o r i g i n a t e during

s o l i d i f i c a t i o n i n e a r l y stages

of c o o l i n g .

T h i s statement, however, i s t r u e only when the

required

s u p e r s a t u r a t i o n r a t i o f o r the p r e c i p i t a t i o n o f aluminates i s achieved,

i.e.

The

d i s c u s s i o n has

previous

above 0.1

to 0.15

wt.

% A l i n the i n g o t .

also established that i n -

c l u s i o n s i n samples from l i q u i d p o o l were l a r g e r i n d i a meter ingots

(under an a p p r o p r i a t e

deoxidation

sequence) than i n

although the s o l i d i f i c a t i o n c o n d i t i o n s

t h e i r corresponding former samples.

secondary DAS)

by

were more d r a s t i c i n the

Consequently, i t was

i n c l u s i o n growth was

(given

concluded t h a t

the

almost e n t i r e l y c o n t r o l l e d by the

f u s i o n - p r e c i p i t a t i o n of s o l u t e s on p r e n u c l e a t e d On the other hand, r e s u l t s obtained

dif-

phases.

from the r a d i a l i n -

c l u s i o n s i z e d i s t r i b u t i o n s show that- the p r e c i p i t a t i o n i n i n g o t s i s e s s e n t i a l l y c a r r i e d out d u r i n g

solidification.

Hence, i t i s very dependent on the l o c a l thermodynamic ,... (99,100,101,104,10 5,10 6,121,143,184,186,189) conditions ' ' ' ' ' ' • ' ' •

Since the i n c l u s i o n mean s i z e ranges r a d i a l l y from 6.0 5.0

ym i n the i n g o t c e n t r e l i n e t o 3.0

w a l l and the secondary DAS

- 2.0

ym i n the mould

e q u i v a l e n t l y v a r i e s from 20 0-250

to 60-100 ym then the p r e c i p i t a t i o n of i n c l u s i o n s , c u l a r l y i n i n g o t s d e o x i d i z e d w i t h the CaSi a l l o y e n t i r e l y c o n t r o l l e d by the r e j e c t i o n of 121

-

partii s almost

solutes'

0

1

,

1

0

2

-

1

0

6

'

243) '

, e.g.

by the l o c a l thermodynamic

c o n d i t i o n s o f the

i n t e r d e n d r i t i c m i c r o p o o l s formed as the s o l i d i f i c a t i o n p r o ceeds . Thus, although the l o c a l s o l i d i f i c a t i o n time g i v e n DAS

X 1

*

= a t£

= b(GR)"

n

= 707.946 ( G R ) " ' 0

(65 i s very s h o r t , about (1-1.5 cm)

5-30

seconds

1

=

i n locations

close

1 0 0

'

1 0 6

'

up to even

1 1 5

^,

by the

larger

secondary d e n d r i t e arm spacing, i n ym

a and b =

constants

n

=

exponent which ranges from 1/2

t^

=

l o c a l s o l i d i f i c a t i o n time, i n seconds

GR

=

product o f qrowth r a t e by the thermal g r a d i e n t , in

°C/min.

^:

(26)

3 8 2 5

to the ESR-mould w a l l ; t h i s i s s u f f i c i e n t to grow

d i f f u s i o n - p r e c i p i t a t i o n mechanism 1

4 7

225) '

i n c l u s i o n s on p r e n u c l e a t e d p h a s e s ^ " '

* DAS

by'

to

1/3

sizes'

^.

2 1

Thus, the c o n t r o l l i n g steps are e i t h e r the

n u c l e a t i o n of i n c l u s i o n s where the s u p e r s a t u r a t i o n .

-

.

,

-

, .

i s not reached i n e a r l y stages of c o o l i n g the r e j e c t i o n o f s o l u t e s o

^

(oxygen and

ratio

(99,100,101)

d e o x i d i z e r s ) which are

-i • ^ • •

o.u

or

(102-106,

g r a d u a l l y b u i l d i n g up as the s o l i d i f i c a t i o n

progresses

121,185,121,227,243)

I t i s a l s o important

to emphasize t h a t the growth of i n -

c l u s i o n s d u r i n g c o o l i n g i s very dependent on the d e n s i t y andJ

• i, s i•z e of* ^the o r i•g i•n a l-i phases p r e s e n t 4- ( 9 1 , 1 0 1 , 1 2 1 ) . I f

T + T

5

these parameters are 1 0

7

-

10

inclusions/cm

2

i n r a d i u s , as expected i n ESR-melts, o n l y a very should be e x p e c t e d

( 1 0 1

'

1 2 1 , 2 4 3 )

,

Table

1 - 1 0 um

and

s l i g h t growth

(XVIII).

I t can a l s o be e l u c i d a t e d t h a t s i n c e "oxygen

segregation"

does not take p l a c e along r a d i a l d i r e c t i o n s i n i n d u s t r i a l ingots'

4 8

2 5

°)

f

i t i s expected to observe a gradual change i n

the i n c l u s i o n d e n s i t y , a f a c t which agrees with the in t h i s research. should be

size

Hence the i n c l u s i o n r a d i a l s i z e

observations distribution

i n v e r s e l y p r o p o r t i o n a l to the i n c l u s i o n d e n s i t y .

228 CHAPTER V I I * 7.0 7.1

Conclusions I n c l u s i o n s from the e l e c t r o d e a r e p h y s i c a l l y and chemic a l l y transformed i n the e l e c t r o d e t i p by the thermal gradients.

I n c l u s i o n s are c h e m i c a l l y

a l t e r e d by the

presence o f the l i q u i d s l a g a t the l i q u i d f i l m and they are almost e n t i r e l y removed

(by d i s s o l u t i o n -

r e a c t i o n s ) when the d r o p l e t i s completely

formed.

Thus, e l e c t r o d e i n c l u s i o n s only p l a y a r o l e i n the f i n a l ESR i n g o t i n s o f a r as t h e i r s o l u t i o n product e n t e r s i n t o the slag-metal during 7.2

reactions

experienced

processing.

I n c l u s i o n s i n ESR-ingots are more s t r o n g l y i n f l u e n c e d by the d e o x i d a t i o n p r a c t i c e than by the e l e c t r o d e composition SiC^ slags.

and/or the s l a g system used i n low I t i s important t o comment, however,

t h a t under low d e o x i d a t i o n chemistry

r a t e s the i n t r i n s i c

o f the s l a g predominates, i . e .

a t high

s l a g oxygen p o t e n t i a l s . 7.3

As a consequence of the above c o n c l u s i o n , i t has been confirmed t h a t the p r e c i p i t a t i o n o f complex silicate

i n c l u s i o n s i s p r e d i c t a b l e i n high

Al-Casilica

s l a g s where t h e i r o r i g i n i s s t r i c t l y given by the s l a g chemistry,

i.e.

i f wt. % SiO„ > 10.0.

For ease of r e f e r e n c e , the nomenclature o f r e a c t i o n s i n p r e v i o u s t e x t s a r e r e w r i t t e n i n t h i s chapter.

229 7.4

The most a p p r o p r i a t e s l a g system i n which t o perform an e f f i c i e n t d e o x i d a t i o n i s the CaF2~CaO-Al20

3

system a t 50, 30 and 20 wt. % r e s p e c t i v e l y , i . e . the h i g h e s t Ca:Al r a t i o i n i n c l u s i o n s i n the absence of d e o x i d a t i o n . 7.5

The i n c l u s i o n c h e m i s t r y s l a g system

expected, from the most common

(CaF -CaO-Al 0 ) 2

2

used i n the ESR-process,

3

i s c o n t r o l l e d by the f o l l o w i n g 2[A1] + 3(FeO) [Ca] + (FeO) t

t

3

(CaO) + Fe

(7.5.i)

( A ^ O ^ + 3Fe

( A 1 0 ) + 3[Ca] t 2

equilibria:

(7.5.ii)

3(CaO) + 2 [ A l ]

(7.5.iii)

T h i s r e a c t i o n scheme depends on the type and degree of deoxidation.

Hence the p r e c i p i t a t i o n o f i n -

c l u s i o n s i s d i c t a t e d by: mCaO + n ( A l 0 ) J mCaO-nA^O.^ 2

(7.5.iv)

3

or more a p p r o p r i a t e l y by: X[Ca] + Y(Al 0-.) *• i n c l u s i o n o

J

?

'XCaO'(Y - *-) A l 0 _ J

A

J

o

J

+ \ X[A1]

(7.5.v) 7.6

From the above e q u i l i b r i a ,

i t can be seen t h a t i f

an excess o f d e o x i d i z e r i s added t o the s l a g ( i n the forward d i r e c t i o n o f r e a c t i o n s 7 . 5 . i i i or 7.5.v)

230

u n d e s i r a b l e composition high A l c o n t e n t s ,

w i l l r e s u l t i n the i n g o t , i . e .

i n which case

there e x i s t s a

p o t e n t i a l problem of p r e c i p i t a t i n g A l n i t r i d e s or sulfides. 7.7

D e o x i d a t i o n of s l a g s d u r i n g r e f i n i n g by u s i n g C a S i , C a A l S i and CaSiBaAl

a l l o y s i s more e f f i c i e n t

than by u s i n g A l p e l l e t s alone. of the above a l l o y s system

The

silicon in a l l

under the a p p r o p r i a t e

slag

(7.3), a c t s e x c l u s i v e l y as a c a r r i e r of

deoxidant 7.8

AlSi,

the

i n t o the metal l i q u i d p o o l .

A l and A l S i a l l o y are e f f i c i e n t d e o x i d i z e r s , however, they do not c o n t r o l the shape of the d e o x i d a t i o n ucts, i . e . Although aluminate

A l generates

alumina g a l a x i e s and MnS

II.

the A l S i a l l o y does produce s p h e r i c a l Cai n c l u s i o n s i t does not so s t r o n g l y

the p r e c i p i t a t i o n of CaS The

prod-

induce

at the p e r i p h e r y of the

C a S i , C a A l S i and CaSiBaAl

i n c l u s i o n shape c o n t r o l l e r s .

a l l o y s are very

oxides.

strong

At low CaSi or h i g h

A l or A l S i d e o x i d a t i o n r a t e s MnS

I I - I I I or

(Ca,Mn)S

are formed. 7.9

I n c l u s i o n p r e c i p i t a t i o n can be e x p l a i n e d by a d e t a i l e d H e n r i a n - p r e c i p i t a t i o n diagram i n which the r e a c t i o n :

superimposing

231

(CaO)* + [S] t on

the p r e v i o u s l y

reported

(CaS)* + [0]

(7.5.vi)

(Ca-Al-0) diagram and

u s i n g i n t e r a c t i o n c o e f f i c i e n t s from the l i t e r a t u r e a realistic prediction

can be made.

intrinsically

the t r a n s i t i o n s o f s u l f i d e s ,

includes

T h i s diagram

r u l e d by: [Ca] 7.10

+ (MnS)

F l o t a t i o n of inclusions

*

[Mn]

+ (CaS)

to some e x t e n t

o c c u r s i n moderate or h i g h l y

*

(10-20%)

d e o x i d i z e d melts.

At low d e o x i d a t i o n r a t e s , as expected from 7 . 5 . i i and

7.5.v

dendritic 7.11

uniform n u c l e a t i o n

spaces d u r i n g s o l i d i f i c a t i o n takes p l a c e .

I f electrode inclusions, and

of inclusions i n

deoxidation rates

s l a g system, deoxidant

are known, by u s i n g a

s i m p l i f i e d t e r n a r y - Si02, (Ca,M)0

and A^O^-

diagram, the f i n a l i n c l u s i o n composition can be estimated. 7.12

Inclusion function

s i z e , as expected from

(7.10)

o f the l o c a l s o l i d i f i c a t i o n time

hence on the l o c a l ( i n t e r d e n d r i t i c ) conditions.

isa and

thermochemical

232 SUGGESTIONS FOR FUTURE WORK

Based on r e s e a r c h c a r r i e d out i n the p a s t , i n terms of i n c l u s i o n s i n c o n v e n t i o n a l steelmaking and i n ESR and the type o f r e a c t i o n s s t u d i e d i n t h i s r e s e a r c h , s e v e r a l immediate r e s e a r c h p r o p o s a l s a r e suggested: 1.

To determine

with a higher degree o f accuracy the

t r a n s i t i o n p o i n t between r e a c t i o n s which i n v o l v e the oxygen p o t e n t i a l i n the s l a g - l i q u i d metal 2[A1]

+ 3 (FeO) t

such a s :

( A l ^ ) + Fe

and [Ca] + (FeO) 1 (CaO) + Fe and the exchange r e a c t i o n s (between two l i q u i d s ) , 3[Ca] 2. termine

such a s :

+ ( A 1 0 ) X 3(CaO) + 2[A1] 2

3

With e x a c t l y the same purpose as above, t o dethe s e r i e s o f t r a n s i t i o n s i n the s u l f i d e

inclusion

phases: MnS I I

-y

MnS I I I

by d e s i g n i n g s p e c i f i c experiments ials

(Ca,Mn)S

CaS

where v a r i o u s oxygen p o t e n t -

( s e v e r a l amounts o f A l and Ca) i n the melt should be

involved.

233 3.

As an e x t e n s i o n o f the r e s u l t s found through

this

r e s e a r c h , i t i s suggested t o perform experiments w i t h exa c t l y the same techniques and purposes i.e.

t o determine

as i n t h i s work

the p o s s i b l e d e o x i d a t i o n and s l a g b e s t

combination i n terms o f the f o l l o w i n g r e a c t i o n schemes t ( S i 0 ) + Fe

[Si] + 2 (FeO) [Ca] + FeO t

2

(CaO) + Fe

and [Si] + 2(CaO) Z

s

i

0

t

+ 2

C a

l

and [Mn] + (FeO) % MnO + Fe and [Si] + 2(FeO) J S i 0

+ Fe

2

or [Ca] + (FeO) J CaO + Fe and

either [Si] + 2(MnO) t

s

i

0

2

+

2

[

M

n

J

or [Ca] + (MnO) t

2(CaO) + [Mn]

These r e a c t i o n s can be compared t o those a l r e a d y r e p o r t e d for A l 0 / A l / S i / S i 0 2

2

2

and f o r T i 0 / T i 2

.

I t i s worthwhile

to study these r e a c t i o n s s i n c e the excess o f A l i n i n g o t s can cause d e l e t e r i o u s mechanical

properties.

234 4. in point

I t becomes obvious t h a t the t r a n s i t i o n s s p e c i f i e d (1) w i l l be a l s o necessary f o r any other

s e t of

e q u i l i b r i a i n p r o p o s a l (3). 5.

I t a l s o becomes apparent t h a t once these c o n d i t i o n s

are f u l l y c o n t r o l l e d the best s l a g / d e o x i d a t i o n the most a p p r o p r i a t e

mechanical p r o p e r t i e s ,

of the i n g o t and i n c l u s i o n c h e m i s t r i e s

and hence as a r e s u l t

can be s e l e c t e d .

Thus, t h e i r e v a l u a t i o n i n terms o f mechanical and

chemical

r e s i s t a n c e as a f u n c t i o n o f these parameters should be evaluated. 6.

I t i s a l s o very

i n t e r e s t i n g t o note t h a t s i n c e the

Ca and the A l a c t i v i t i e s are c o n t r o l l i n g parameters, i n a Al and eo which have

8

been r e p o r t e d with a g r e a t d e a l o f s c a t t e r should be once and

f o r a l l a p p r o p r i a t e l y determined. 7.

Experimental and t h e o r e t i c a l work along

l i n e s as those proposed i n p o i n t s formed; i n t h i s case,

(1) and (2) c o u l d be per-

i t i s suggested t o use Ce as (RE)

d e o x i d i z e r i n the presence o f a CaO-CaF enriched

slag.

the same

2

(A^O^) o r a RE-

The r e a c t i o n scheme might be as f o l l o w s :

[RE] + (FeO) t

RE-O + Fe

and/or Ca + (FeO) t

(CaO) + Fe

235 L I S T OF REFERENCES

1.

Kay, D.A.R.: Proc. o f the F i r s t I n t e r n a t i o n a l Symposium on ESR and C a s t i n g Technology. P i t t s b u r g h , Pa, 1967, P a r t I I .

2.

Myzetsky, V . L . , e t a l . : Proc. I n t . Symp. on E l e c t r o m e t a l l u r g y , Kiev , 1972, 119.

3.

Klyueb, M.M. and Mironov, June, 1967, 6, 480-483.

4.

K u s l i t s k y , A.B., e t a l . : i b i d . , 85.

5.

Volkov, S.E.: i b i d . , 12.

6.

M i t c h e l l , A., J o s h i S. and Cameron J . : 2, February 1971, 561-567.

7.

E l l i o t , J . F . , and Maulvault, M.A.: P r o c , AIME, 1970, 2%_, 13.

8.

Mendrykowski, J . e t a l . , Met. Trans., ASM-AIME, 1972, 3, 1761.

9.

Tacke, K.H., and Schwerdtfeger, 1981, 52^, 4, 137-142.

M. Yu:

Stal i n English,

Met. Trans.

E l e c t . Furn. Conf.

K.: Arch.

Eisenhuttenwes,

10.

M i t c h e l l , A., and J o s h i J . ; Met. Trans. 1973, 4_, 631.

11.

F r e d r i k s s o n , H. and J a r l e b o r g , 0.: 2_3, 9, 32-40.

12.

Kay, D.A.R. and Pomfret, 962-964.

13.

Chan, J.C.F., e t a l . : IB, 135-141.

Met. Trans. B., March 1976,

14.

Wadier, J.F., e t a l . : 127-136.

T o o l A l l o y S t e e l s , A p r i l 1978,

15.

M i t c h e l l , A.: Ironmaking 1974, 3, 172-179.

16.

H a j r a , J.P. and Ratnam, U.: Trans o f the Indian I n s t , of M e t a l s . 31_, 1, Feb. 1978, 20-23.

J . M e t a l s , 1971,

R.J.: J . I . S . I . , 1971, 209

and Steelmaking

(Quarterly)

236 17.

Medovar, B . I . e t a l . : P r o c . o f t h e 5 t h S o v i e t - J a p a n e s e Symp. o n P h y s i c a l - C h e m i c a l B a s i s o f M e t a l l u r g i c a l P r o c e s s e s , 1975.

18.

M i t c h e l l , A.: P r o c . o f t h e 1 s t I n t . Symp. on ESR, P a r t I I I , M e l l o n I n s t . , P i t t s . , P a . , A u g u s t 1967.

19.

Roshchin, 679-681.

E. e t a l . :

Steel

20.

Roshchin,

E. e t a l . :

ibid.,

21.

B u r e l , B. a n d M i t c h e l l , 2253.

22.

P a t o n , B.E. e t a l . : P r o c . 5 t h I n t . Symp. o n ESR and O t h e r S p e c i a l M e l t i n g T e c h n o l o g i e s , P i t t s b u r g h , Pa., 1974, P a r t I , 433-448.

23.

Z h e n g b a n g , L i , Wenhiu, Z. a n d Y i d a L i ; V o l . 15, No. 1, J a n u a r y 1980, 20-26.

24.

J i e , Fu: Acta M e t a l l u r g i c a S i n i c a , Dec. 1979, 526-539.

25.

Wadier, J . F . , e t a l . : 127-136.

26.

M i t c h e l l , A. and Beynon B.: 3333-3345.

27.

Mitchell, Bulletin

28.

Schwerdtfeger, K.: Proc. M u n i c h , 1976, 133-141.

29.

Beynon, B., Ph.D. t h e s i s , D e p t .

30.

M i t c h e l l , A.: "Electroslag P r o c e s s e s , " t o be p u b l i s h e d m a k i n g , AIME p u b l i c a t i o n .

31.

P e o v e r , M.;

32.

Maximovitch,

i n t h e USSR, D e c . 1978,

F e b . 1980, 80-81.

A.: Met. T r a n s .

Tool Alloy

1970, 3^,

I r o n and S t e e l

V o l . 15, No. 4,

Steels,

Met. T r a n s .

A p r i l 1978,

2L, 1971,

A.: "The E l e c t r o s l a g R e m e l t i n c Process," 669, U.S. B u r e a u o f M i n e s , 1976, 15-19. 5th I n t l .

C o n f . V a c . Met.,

o f M e t . , U.B.C., 1973.

and Vacuum A r c R e m e l t i n g i n E l e c t r i c Furnace S t e e l -

J . I n s t . Met. 1972, 100, 97-106. B.I.;

Avtom.

Svarka,

19 61,

8, 86-88.

237 33.

Hawkins, R.J. e t a l . : Proc. Conf. i n E l e c t r o s l a g R e f i n i n g , S h e f f i e l d , Jan. 1973, 21-34.

34.

Holzgruber, W.: Proc. o f the 1st I n t l . Symp. on ESR M e l l o n I n s t . P i t t s , Pa., August 1967, P a r t I I .

35.

Klyguev, M.M. e t a l . : 168-171.

36.

M i t c h e l l , A.: Proc. 1st I n t l . Symp. on ESR, M e l l o n I n s t . , P i t t s , Pa., Aug. 1967, P a r t I I .

37.

Buzek, Z. and Hlineny, A.: Prob. S p e c i a l E l e c t r o m e t a l l u r g y . Naukova Dumak, Kiev 1972, P a r t I. (Sbornik Vedeck. Prac. Vys. Skol b.v.s. V o l . 11, 3, 1965, 483-487) .

38.

Miska, H. and Wahlster, M.: 44, (1), 1973, 19-25.

39.

T o b i a s , J.B., and Bhat, G.K.: Proc. o f the 1 s t I n t l . Symp. on ESR., M e l l o n I n s t . , P i t t s . , Pa., August, 19 76.

40.

Schwerdtfeger, K. and K l e i n , K.: Proc. o f the 4th I n t l . Symp. on ESR, Tokyo, Iron and S t e e l I n s t i t u t e of Japan, June, 1973, 81-90.

41.

M i t c h e l l , A.: 112.

42.

P o v o l o t s k i i , D.Y., e t a l . : Izv. Vyssh. Zared Chem. M e t a l l . 1977, 2, 40-42.

43.

Zhmoidin, G.I.: 1971, 6, 46-52.

44.

Choudhury, A.: 1012-1018.

45.

M i t c h e l l , A.: 1418.

46.

P a t e i s k y , G.: Prob. S p e c i a l E l e c t r o m e t a l l u r g y , Naukova Dumka, Kiev, 19 72, P a r t I I .

S t a l i n E n g l i s h , Feb.

1969,

Archiv. f u r Eissen,

Can. Met. Quart.,

1981, V o l . 20, 101Ucheban.

Izv. Abad. Nauk. CCCP M e t a l l y , S t a h l und E i s e n , 1980, 100, No. 17,

Trans. Farad. S o c , 1967, 6_3, 1408-

238 47.

P a t e i s k y , G. e t a l . : 1972, 9, 1318-1326.

J o u r n a l of Va. S c i . Technol.

48.

Kay, D.A.R.: Prob. Spec. E l e c t r o m e t a l l u r g y , Naukova Dumka, Kiev, 1972. P a r t I I .

49.

Kopoywuy, B.: Problemy S p e t s i a l ' n a i E l e c t r o m e t a l l u r g y , V o l . 13, 1980, 12-23.

50.

Korousiv, B. Berg-und Htlttenmannische Monatshefte 122, Jahrgang, J u l y 1977, Heft 7, 287-291.

51.

Ko ro usid, B. and Holzgruber, W.: i b i d . , January 1978, Heft 1, 17-22.

52.

K r u c i n s k i , M.:

53.

A l l i b e r t , M. e t a l . : Iron Making and Steelmaking, 1978, No. 5, 211-216.

54.

Wadier, J.F. e t a l . : Mem. S c i . M e t a l l . , Feb. 61-78.

55.

K a j i o k a , H., e t a l . : Proc. o f the 4th I n t . Symp. on ESR, Tokyo, Iron and S t e e l I n s t i t u t e o f Japan, June 1973, 102-114.

56.

F r a s e r , M.E.:

57.

Wei, Chi-ho and M i t c h e l l , A.: Proc. I n t l . Conf. on Process M o d e l l i n g , AIME, P i t t s b u r g h , 1982, t o be published.

58.

Knights, C.F., and P e r k i n s R.: Proc. of a Conference on ESR, S h e f f i e l d , The Iron and S t e e l I n s t . , Jan. 1973, 35-40.

59.

Kusamichi, H. e t a l . : Proc. o f the 1st I n t l . Symp. on ESR, P a r t I I I , M e l l o n I n s t . , P i t t s b u r g h , August, 1967.

60.

K r i c h e v e c , M.I. e t a l . : Prob. S p e c i a l E l e c t r o m e t a l l u r g y , Naukova Dumka, Kiev 1972, P a r t I, 61-72. (Neue Hdtt. Sept.-Oct. 1971, 16, (9-10), 614-618).

61.

P a t c h e t t , B.M. and M i l n e r , D.R.: Welding Research Supplement, (Paper presented a t the AWS 53rd Annual Meeting i n D e t r o i t , A p r i l , 1972), 491-505(s).

123, Jahrgang,

Hutnik, Rok 1974, Nr. 11, 539-548.

1978,

Ph.D. t h e s i s , Dept. o f Met. , U.B.C., 1970.

239

62.

M i t c h e l l , A.: Ironmaking 1974, 3, 172-179.

and Steelmaking

(quarterly)

63.

Boucher, A.: Prob. Spec. E l e c t r o m e t a l . Naukova Dumka, Kiev 1972, P a r t I I , 47-62.

64.

Cooper, C K . e t a l . : Trans. AIME, E l e c t . Furn. Conf. Proceedings, 1970, 26_, 8.

65.

B a l l a n t y n e , A.S.:

66.

M i t c h e l l , A. e t a l . : Proc. o f a Conference i n ESR. S h e f f i e l d , Iron and S t e e l I n s t . , 1973, 3-15.

67.

B a l l a n t y n e , A.S. and M i t c h e l l , A.: Steelmaking, 1977, 4_, 222-239.

68.

Wahlster, M.: Proc. o f the 5th I n t l . Conf. on ESR and Other S p e c i a l M e l t i n g T e c h n o l o g i e s , M e l l o n I n s t . , P i t t s b u r g h , Pa., P a r t I, October 1974, 40-61.

69.

R e t e l s d o r f , J.H., and Winterhager, H.: Prob. Spec. E l e c t r o m e t a l l u r g y , Naukova Dumka, Kiev, 1972, P a r t I I , 122-135.

70.

Pho, P. and E c k s t e i n , F. H.-J.: Sept. 1980, 342-244.

71.

M i t c h e l l , A.: Prob. Spec. E l e c t r o m e t a l l . , Naukova Dumka, K i e v , 1972, P a r t I I , 95-109.

72.

Holzgruber, W. and Peterson, K.: Prob. Spec. E l e c t o m e t a l l . , 1970, Naukova Dumka, Kiev, 4_, 90.

73.

Hozgruber., 6, 190.

74.

Holzgruber, W. : Proc. o f the 1st I n t l . Symp. on ESR and C a s t i n g Technology, M e l l o n I n s t . P i t t s b u r g h , Pa., P a r t I I , 1967.

75.

Rohde, L.E., Choudhury, A.U., Wahlster: 42, 1971, 165-174.

76.

Holzgruber, W. and P l o c k i n g e r , E.: 88, 1968, Nr. 12, 13 J u n i .

Steel

Ph.D. t h e s i s , Dept. o f Met., U.B.C., 1977.

W. and Peterson, K. :

Ironmaking and

Neue Hutte., H e f t 9.

i b i d . , 1973,

Arch.Eisen.

S t a h l und E i s e n ,

240

77.

Kusamichi, H. e t a l . : Proc. of the 1st. I n t l . Symp. on ESR and C a s t i n g Technology, Mellon I n s t . , Aug. 10, 1967, P a r t I I .

78.

Choudhury, A., Jauch, R. und V O l k l i n g e n , F.T.: S t a h l und E i s e n , 100, 1980, Nr. 17, 25 August.

79.

Jager, H. and Kdhnelt, G. : Berg und Htlttenmannische, Monatsheft, V o l . 190, Nr. 9, 1975, 423-429.

80.

Kamardin, V.A. e t a l . : 4, 1974, 59-63.

81.

O p r a v i l , 0.: Proc. Conf. "Metal-Slag-Gas-Reactions," E l e c t r o c h e m i c a l Soc. Toronto, 1975, 923-931.

82.

Kay, D.A.R., M i t c h e l l , A., and Ram, M.: S t e e l I n s t i t u t e , Feb. 1970, 141-146.

83.

Rehak, B. e t a l . : Proc. o f the 5th I n t l . Conf. on Vacuum M e t a l l u r g y and ESR Processes, Munich, Oct. 19 76, 147-152.

84.

Iodkovskiy, S.A. and Panin, V.V.: I z v e s t , Akad. Nauk. SSSR, M e t a l l y , Marz-Apr., (2), 1968, 115-121.

85.

Nakamura, Y. e t a l . : 623-627.

86.

M a r a k h o r s k i i , I.S. e t a l . : S t a l , 1968, 1, 277-279.

87.

Tokumitsu, N., Nakamura, Y., e t a l . : ' Proc. 6th I n t l . Vac. Met. Conf.) on S p e c i a l M e l t i n g , San Diego, Ca. A p r i l 19 79.

88.

S o m e r v i l l e , J . and Kay, D.A.R.: 2, 1727.

89.

C h a i , C.S. and Eagar, T.W.: W i l d i n g Research Supplement of the AWS, 1982, 229-S. (Paper presented a t the 62nd Annual Meeting i n C l e v e l a n d , Ohio, A p r i l 1981.)

90.

Sims, C.E.: The 1959 Howe Memorial l e c t u r e : "The Non-Metallic Constituents of S t e e l , " Trans, o f the Met. Soc. o f AIME, 215, June 1959, 367-393.

Russian M e t a l l u r g y (Metally)

J . Iron and

Trans. I S I J . , V o l . 16,

1976,

F i z . Khim. Osn. P r o i s v o d .

M e t a l l , Trans., 1971,

241

91.

K i e s s l i n g , R. and Lange, N. "Non-Metallic I n c l u s i o n s i n S t e e l , " , 2nd E d i t i o n . P u b l i s h e d by the Metals SocietyLondon, 1978.

92.

P i c k e r i n g , F.B.: " I n c l u s i o n s " , the I n s t i t u t i o n of M e t a l l u r g i s t s , Monograph No. 3, 1979.

93.

" S u l f i d e I n c l u s i o n s i n S t e e l , " Proc. of an I n t l . Symp. Nov. 1974. Port Chester, N.Y. Ed. J . B a r b a d i l l o and E. Snape, ASM, N.6.

94.

"Swedish Symposium on N o n - M e t a l l i c I n c l u s i o n s i n S t e e l " , arranged by Uddeholm Research Found. Swedish I n s t , f o r Met. Research, Apr. 1981.

95.

Van Vlack, L.H.: 1977, 187-228.

96.

S c a n i n j e c t . , I n t l . Conf. on I n j e c t i o n M e t a l l u r g y , Lule.a Sweden. June 9-10, 1977.

97.

S c a n i n j e c t I I . , Second. I n t l . Conf. on I n j e c t i o n M e t a l l u r g y , L u l e a , Sweden, June 12-13, 1980.

98.

Holappa, L.E.K.: "Ladle I n j e c t i o n M e t a l l u r g y , " Metals Reviews, 1982, V o l . 27, No. 2, 53-76.

99.

T u r p i n , M.L.

100.

Forward, G. 1967.

101.

Turkdogan, E.T.:

102.

Sigworth, G.K. and 1973, 105-113.

103.

Malm, S.: 137.

Scand. J o u r n a l of M e t a l l u r g y

5_, 1976,

104.

Malm, S.:

Scand. J o u r n a l of M e t a l l u r g y ,

5, 1976,

105.

Yarwood, J.C., Fleming, M.C. and E l l i o t , Trans., V o l . 2, Sept. 1971, 2573-2581.

106.

E l l i o t , J.F. and J.K. Wright.: 1972, V o l . 11, 574-584.

107.

F r e d r i k s s o n , H. and Hammar, 0.: Sept. 1980, 383-408.

:

and and

I n t e r n a t i o n a l Metals Reviews, Sept.

Elliot, Elliot,

J.F.: J.F.:

J I S I , 204, Elliot,

J I S I , 204,

1966,

J o u r n a l of Metals, 1966,

J.F.:

Intl. 217-225. 54,

914-919. Met.

Can. Met.

Trans 4_,

J.F.:

Jan. 134248-257. Met.

M e t a l l . Quart. Trans. B.,

Vol.

11B,

242 108.

Volmer, N. and Weber, A.: 1926, 277.

Z. Physik Chem. 119,

109.

Becker, R., Doring W.:

110.

Popel, S.I.:

Izv. VUZ Chem. Met 4, 1962, 5-13.

111.

Chipman, J . :

Trans. AIME, 224, 1962, 1288.

112.

McLean, A. and Ward, R.G.: 526.

113.

Kim, C M . and McLean, A.: Proc. Conf. "Metal-Slag-Gas Reactions," E l e c t r o c h e m i c a l S o c , Toronto, 19 75, 284-299.

114.

Von Bodgandy, L. e t a l . : Nr. 7. 1961, 451-460.

115.

Lindon, P.H. and B i l l i n g t o n , J . C : 340-347.

116.

Shewmon, P.G.: Diffusion i n Solids, New York. 1963, 19.

117.

Lindborg, U. and T o r s e l l , K.: 94-102.

118.

Wert, C. and Zener, C. :

119.

M i y a s h i t a , Y. :

120.

T o r s e l l , K. and O l e t t e , M.: 814-822.

121.

Iyengar, R.K.: D. of Ph., Department o f M e t a l l u r g y , C.M.U., P i t t s b u r g h , Pa., 1970.

122.

Mathew, M.P. e t a l . : Arch. Eisenhtlt. , 4_6, J u n i 1975, Nr. 6 ( i b i d . 45_, Sept. 1974 , Nr. 9, 569-573.)

123.

Jacobs, J . E . : Open Heart S t e e l Conf., AIME, Proc. 40, 1957, 315-318.

124.

Hartman, F. :

125.

Kawawa, T. e t a l . :

Ann. Physik., 2£, 1935, 719.

J . o f Metals, 2/7/ 1965,

A r c h i v . E i s s e n h u t . , 32,

J I S I , 207, 1969, McGraw-Hill

Co.,

Trans-TMS, AIME, 1968,

J . Appl. Phys. 21_ , 1950, 5.

Trans. I S I J , 1_, 1967, 1-8. Rev. de Met., Dec. 1969,

S t a h l und E i s e n , 65_, Nr. 3-4, 1945, 29-36. Trans. I S I J , 8, 1968, 203-219.

243 126.

Fuchs, N.A.: N.Y., 1964.

The Mechanics o f A e r o s o l s .

127.

Korber, F. : 1349-1355.

128.

Urban, S.F. and Chipman,J.: 1935, 645-671.

129.

C r a f t s , W. and H i l t y , D.C.: E l e c t r i c Furnace S t e e l Conf. P r o c , AIME, V o l . 11, 1953, 121-145.

130.

Van V l a c k , L.H., e t a l . : Trans o f the Met. Soc. o f AIME, V o l . 221, A p r i l 1961, 220-228.

131.

Weinberg, F.: 219-227.

Met. Trans B,, V o l . 10B, June 1979,

132.

Weinberg, F.:

i b i d . , Dec. 1979, 513-522.

133.

Boldy, N.D., e t a l . : MIT, t e c h n i c a l r e p o r t , Jan. DAAG-46-78-C-32; AMMRC-TR^-81-4.

134.

Sims, C E . and Dahle, F.B.: Ass. 46, 1938, 65-132.

135.

Dahl, W. e t a l . :

136.

F r e d r i k s s o n , H. and H i l l e r t , M.: l u r g y 2, 1973, 125-145.

137.

Mohla, P.P. and Beech, J . : J o u r n a l o f the Iron and S t e e l I n s t i t u t e , Feb. 1969, 177-180.

138.

Takada, H. e t a l . : 573.

139.

I t o , Y. e t a l . :

140.

S a l t e r , W.J.M. and P i c k e r i n g , F.B.: 992-1002.

141.

Wilson, G.W. and McLean A.: " D e s u l f u r i z a t i o n o f Iron and S t e e l and S u l f i d e Shape c o n t r o l , " ISS of AIME, pub. 1980, 1-40.

142.

Baker, T . J . and C h a r l e s , 706.

S t a h l und E i s e n ,

Pergamon

Press.

19 37, V o l . 57, 19 37, Trans, ASM. V o l .

27,

1981.

Trans. Am. Foundrymen s

S t a h l und E i s e n ,

1

1966, 86_, 796. Scand. J . o f M e t a l -

Trans. I S I J , V o l , 18, 1978, 564-

i b i d . , V o l . 21, 1981, 477-573. J I S I , J u l y 1969,

J.A.: J I S I , Sept. 1972, 702-

244 143.

Steinmetz, E. e t a l . : Arch. E i s e n h t l t t . 4_7, Feb. 1976, 71-76 ( i b i d . 47, Sept. 1976, 521-524).

144.

H i l t y , D.C. and Popp, V.T.: AIME E l e c t . Furn. Conf. Proc. 1969, V o l . 7, 1952, 56-66.

145.

T a h t i n e n , K. e t a l . : S c a n i n j e c t Conf. June 1980, paper 24. L u l e a , Sweden, ( r e f . 97).

146.

K i e s s l i n g , R. and Westman, C.: 669-670.

147.

Saxena, S.K. and coworkers: Scand. J . o f M e t a l s , V o l . 5, 1976, 105-112. ( i b i d . , V o l . 4, 1975, 42-48).

148.

Saxena, S.K. e t a l . : Proc. o f a Conf. i n Steelmaking, Chicago, 1978, V o l . 61, 561-573.

149.

Wilson, A.D.:

150.

Kobayashi, 260-269.

151.

Uemura, T. e t a l . : V o l . 59, 457-478.

152.

F O r s t e r , E. e t a l . : S t a h l und E i s e n , 23 Mai, 474-485.

153.

Nashiwa, H. e t a l . : S p e c i a l Rep. I S I J . , 1977, (6th Japan-USSR-Joint Symp. Phys. Chem. M e t a l l . Processes, 81-94.

154.

Takenouchi, T. and Suzuki, K.: 1978, 344-351.

155.

O e l s c h l a g e l , D. e t a l . : Dec. 1981, 332-330.

156.

Folmo, G. e t a l . : 99-104.

Scand. J . o f M e t a l l . , 9, 1980,

157.

Haida, O. e t a l . :

Tsetsu-to-Hagane,

158.

Haida, 0. e t a l . : Proc. o f the 8th, Japan-USSR J o i n t Symp. on Phys. Chem. of M e t a l l u r g i c a l Processes., June 19 81, Tokyo, 56-6 7.

J I S I , J u l y 1970,

Metal P r o g r e s s , A p r i l

S. e t a l . :

Steel

1982, 41-46.

Trans. I S I J . , V o l . 11, 1971,

AIME, Proc. Open Heart Comm., 1976 94, 1974, Nr. 11

Trans. I S I J . V o l . 18,

Iron and S t e e l

International,

1980, 6_6, 3, 48-56.

245 159.

Church, C P . e t a l . : 62-78.

J o u r n a l o f Metals., Jan.

1966,

160.

Eklund, G. : Jerkont A n n a l i , V o l . 154 , 1970, 321-325.

161.

Rosenqvist, T., and Dunicz, B.L.: V o l . 194, 604-608.

162.

Turkdogan, E.T.: 546-563.

163.

H i l t y , D.C and C r a f t s , W.: 1307-1312.

164.

Turkdogan, E.T. e t a l . : 1561-1570.

165.

Kor, G.J.W. and Turkdogan, E.K.: i b i d . , V o l . 2, June 1971, 1571-1578.

166.

Kor, G.J.W. and Turkdogan, E.K.: i b i d . , V o l . 3, May 1972, 1269-1278.

167.

H i l t y , D.C. and C r a f t , W.: 1954, 959-967.

168.

H i l t y , D.C. and F a r r e l l , 17-27.

169.

Silverman, E.N.: Trans, o f the Met. Soc. o f AIME, V o l . 221, June 1961, 512-517.

170.

Hilty, 414 .

17.1.

D'Entremont, J.C. e t a l . : ( i b i d . , 1967, 239^, 123) .

172.

Wentrap, H. e t a l . :

Arch. E i s e n , 13_, 1939, 15.

173.

Gokcen, N.A. e t a l . :

J . o f Metals, 1953, 173.

174.

McLean, H. and B e l l , H.B.:

175.

G u s t a f s s o n , S. and Melberg, P-O.: Scand. J . o f M e t a l l u r g y , V o l . 9, 1980, N. 3, 111-116.

176.

Janke, D. and F i s h e r , W.A. : 195-197.

177.

Fruehan, R.I.:

Trans AIME, 1952,

Trans. TMS-AIME, 1961, V o l .

221,

J . o f M e t a l s , Dec.

1952,

Met. Trans., V o l . 2, June 1971,

Journal o f Metals,

J.W.:

D.C. and C r a f t s , W.:

Sept.

I . and S.M., May 1975,

Trans. AIME, 188,

1950,

Trans. AIME, 1963, 227,

14

J I S I , 203, 123.

Arch. E i s e n 4_7, 1976,

Met. Trans. 1, 1970, 3403-3410.

246

178.

Rohde, L.W. p. 1966.

et a l . :

179.

Ototani,

180.

M i y a s h i t a , Y. e t a l . : 1969-1975.

181.

Kobayashi, S. e t a l :

182.

Kusakawa, R. e t a l : 1976, paper 21.

183.

Watanabe, S. e t a l . : 683-688.

184.

Steinmetz, E. e t a l . : Arch. E i s e n . 4_7, 1976, Nr. 4, A p r i l , ( i b i d . , Arch. E i s e n 4_8, 1977, Nr. 11, November 569-574.

185.

H i l t y , D.C. and F a r r e l , J.W.: 13th Annual Conf. of M e t a l l u r g y , Toronto. Aug. 27, 19 74.

186.

Hammar, 0.: "Progress Through Research Sandvik." S t e e l Research Centre Lab. Sandviken-Sweden.

187.

Waudby, P.E. and S a l t e r , W.J.M.: 518-522.

188.

Morgan, E.L. e t a l :

189.

Cremer, P. and D r i o l e , J . : Met. Trans. B., 13B., March 1982, 45-51.

190.

P l o c k i n g e r , E.: S t a h l E i s e n , 1956, 76, 810 1957, 7 7 / 701, i b i d . , 1960, 8_0, 656).

191.

Straube, H. e t a l . : Arch. Eisenhtlt. J u l y 1967, 509 ( i b i d . , 1967/ 38, 607).

192.

Sloman, H.A.

193.

Braun, T.B., E l l i o t , J.F. and Flemings, M.C.: Trans. B.,1979, V o l . 10B., 171-184.

194.

Okohira, K. e t a l . : 102-109.

195.

O o i , H. e t a l . :

T. e t a l . :

A f d . E i s e n h i i t t . , £2, 1971, Trans. I S I J . 16, 1976, 275-282. Tetsu-to-Hagane',

5_7, 1971,

Trans. I S I J . , 11, 1971, 260-269. Japan S c i . Assn. 19th Committee, Trans I S I J . , V o l . 19_, 1979,

J I S I , J u l y 1971,

J I S I , 1968, 206, 987.

and Evans, E.L.:

(ibid.,

J I S I , 165, 1950, 81. Metall..

Trans. I S I J . , V o l . 14, 1974,

Trans. I S I J . , V o l . 15, 1975, 371-379.

247

19 6.

Waudby, P.E. a n d W i l s o n , F.G.: P r o c . I n t l . Symp. C h e m i c a l M e t a l l u r g y o f I r o n and S t e e l , S h e f f i e l d , J u l y 1971, 195-197.

197.

Gatellier, 275-283.

198.

S p o n s e l l e r , D.L. 1964, 876.

199.

Shurmann, E.B. e t a l . : J u l i 1974, 433-436.

C. e t a l . :

ABM.

3_3 , No.

and F l i n n , R . A . :

Arch.

ibid.,

46, N r .

10, O k t o b e r

ibid.,

46, N r .

8, A u g u s t

ibid.,

4_5, N r . 6, J u n i

ibid.,

46, N r .

Trans.

Eisenhtltt.

1975,

1975,

1974 ,

234 , M a i o ,

AIME,

1977,

230,

45_, N r .

7,

619-622.

473-476.

336-371.

12, D e z . 1975,

767-771.

200.

K e p k a , M. : 645-652,

Neue H t l t t e , V o l . 2 1 ( 1 1 ) ,

201.

L i n d o n , P.H. 340-347.

202.

J a e g e r , H. and H o l z g r u b e r , W. : P r o c . I n t l . Symp. C h e m i c a l M e t a l l u r g y o f I r o n and S t e e l , S h e f f i e l d , J u l y 1971, 195-197.

203.

Boris, M.J. : 28, 89.

204.

Dunn,

205.

K o c h , W.:

206.

P i c k e r i n g , F.B.: P r o d u c t i o n and A p p l i c a t i o n C l e a n S t e e l , 1972, L o n d o n , 75-95.

207.

B r u c h , J..: M i k r o c h i m . A c t a , S u p l . 5., J a n . 1974, S p r i n g e r V e r l a g , 137-146. ( B r u c h , J . e t a l . : A r c h i v . E i s e n h t l t t , H e l f t 11, Nov. 1965, 799-807) .

208.

L i n d o n , P.H. 340-347.

E.J.:

and B i l l i n g t o n ,

AIME, E l e c .

ibid.,

Stahl

1971,

J.C

Furn.

29,

1976,

JISI,

March

Steel

Conf.

1969,

Proc,

1970,

117.

und E i s e n , 8 1 ,

and B i l l i n g t o n ,

:

Nov.

1961,

J.C:

1592.

JISI,

of

March

1969,

248

209.

F a u l r i n g , G.M. e t a l . : 14-20.

210.

Holappa, L.E.K.

211.

Sanbongi, K.:

Iron and S t e e l Maker, 1980,

( r e f . 94), 19-34. Trans. I S I J . , V o l . 19, 1979, 1-10.

(Emi, T., Sanbongi, K., e t a l . : 1978, 64 (10), 1538-1547) .

Tetsu-to-Hagane,

(Kobayashi, S., Sanbongi, K., e t a l . : 1961, 198, 260-269.)

Trans.

ISIJ.

212.

R i k a t a l l i o , P.:

Paper 13, Ref. 97, S c a n i n j e c t I .

213.

U s u i , T.:

214.

Saxena, S.K.: Ironmaking and Steelmaking, 1982, V o l . 9, No. 2, 50-57.

215.

O t o t a n i , T. and Kataura, Y.: 1972, 334-342.

216.

F a u l r i n g , G.M. and Ramalingam, S.: 11B, March 1980, 125-130.

Met. Trans. B.

217.

F a u l r i n g , G.M. and Ramalingam, S.: 10A, Nov. 1979, 1781-1787.

Met. Trans. A.

218.

B e l l , M.M.: M.A. Sc. t h e s i s , Department o f M e t a l l u r g y , U.B.C., 1971.

219.

M i t c h e l l , A. and B e l l , M.M. : 1972, 363-369.

220.

B u r e l , B.: M.A. Sc. t h e s i s , Department o f M e t a l l u r g y , U.B.C., 1969.

221.

V a c c a r i , J.A.:

222.

Viswanathan, R. and Beck, G.: Nov. 1975, 1997-2003.

Met. Trans. A., 6A,

223.

R a t l i f f , J . L . and Brown, R.M.: V. 60, 176.

Trans. ASM. 1967,

224.

K e l l y , T.N. e t a l . , Proc. o f the 3rd I n t l . Conf. on ESR and o t h e r Spec. M e l t i n g , Techs., M e l l o n I n s t . P i t t s burgh, Pa., June 1971* 125-140.

Paper 12, Ref. 98, S c a n i n j e c t I I .

Trans. I S I J , V o l . 12,

Can. Met. Quart.

2,

Design Engineer, May 1980, 57-60.

249

225.

B a l l a n t y n e , A.S. and M i t c h e l l , A.: Proc. of an I n t l . Conf. on S o l i d i f i c a t i o n . S h e f f i e l d M e t a l l , and E g. Assn. and U. of S h e f f i e l d . J u l y 1977, 363-370.

226.

E t i e n n e , M.: Ph.D. t h e s i s , Dept. of M e t a l l u r g y , U.B.C., 1971.

227.

S i d l a , G. and M i t c h e l l , A.: "The Design, C o n s t r u c t i o n and O p e r a t i o n of an ESR Furnace I n s t a l l a t i o n , " Special Report to DREP/DSS, June 1980.

228.

R i d a l , K.A. e t a l . :

229.

Malm, S.:

230.

Colby, J.W.: Company r e p o r t , B e l l Telephone Inc., Allentown, Penn. 1971.

231.

Rooney, T.E. and S t a p l e t o n , A.G.: 1935, 249-254.

232.

Y u l e , J.W. and Swanson, G.A.: l e t t e r , 8, 1969, 30.

233.

Ingamels, C O . :

234.

Rein, R.H. and Chipman, J . : Trans, o f the Met. Soc. of AIME, V o l . 233, Feb. 19 65, 418.

235.

K l i s i e w i c s , Z.. e t a l . :

Hutnik 1980, 47 (2), 56-60.

236 .

Kuo C-K. and Yen T-S. : 381.

A c t a Chim. S i n i c a ,

237.

Nakai, Y. e t a l . : 410.

238.

B e r c i k , P., Hutnicke, L i s t y , : 867-872.

239.

Wilson, W.G., Kay, D.A.R. and Va hed A.; J . of Metals, 1974, 26, 14-23.

240.

Sharma, R.A. and Richardson, F.D.: 386-390.

241.

Sharma, R.A. and Richardson, F.D.: Trans, of the Met. Soc. of AIME, Aug. 1965, V o l . 233, 1586-1592.

J I S I , Oct. 1965, 995-1003.

Scand. J . o f M e t a l l u r g y , 4_, 1975, 231-237. Labs.

J I S I , V o l . 131.

A t . A b s o r p t i o n News-

A n a l . Chim. Acta' 5_2, 1970, 323.

30_, 1964,

Trans. I S I J . , V o l . 19, 1979, 401V o l . 31, No. 12, 1976,

J I S I , Aug. 1961,

250

242.

Iyengar, R.K. and P h i l b r o o k , W.O.: J u l y 1972, 1823-1830.

243.

Lindskog, L. and Sanberg, H.: 1973, 2, 71-78.

244.

Engh, T.A.

245.

L i n d e r , S.:

246.

A r i t o m i , N. and Gungi, K.: Trans of the Japan I n s t , of M e t a l s , V o l . 22, No. 1, 1981, 43-56.

247.

Suzuki, A. e t a l . : Nippon Kinzoku Gakkai Shuho, 32, 1968. (see Brutcher T r a n s l . 7804 (1969).

248.

Choudhury A. e t a l . : S t a h l u. E i s e n 96, 946-951.

249.

Mochizuki, T. e t a l . : 4th I n t l . Symp. on ESR, I S I J , Tokyo, Japan, 260.

250.

Kadose, M. e t a l . : i b i d .

and Lindskog, N.: ibid.,

1974,

Met.

Trans. V o l . 3

Scand. J . M e t a l l u r g y , ibid.

1975,

4, 49-58.

5, 137-150.

246.

1976,

Nr. June

20, 1973

251

F i g u r e ( 1 ) - S c h e m a t i c i l l u s t r a t i o n o f an ESR

system.

252

Axial length (cm)

Figure

(2) - P r e d i c t e d and measured temperature p r o f i l e s f o r a 1018 M.S. e l e c t r o d e , 25 mm i n diameter.

253

Figure

(3) - Manganese content of the metal f o r u n i v a r i a n t e q u i l i b r i u m gamma i r o n + "MnO" + "MnS" + l i q u i d (1) f o r the Fe-Mn-S-0 system and u n i v a r i a n t e q u i l i b r i u m gamma iron + "MnS" + l i q u i d s u l f i d e f o r Fe-Mn-S system.

800

1000

1200

Temperature

Figure

(4)

1400

1600

(°C)

U n i v a r i a n t e q u i l i b r i a i n Fe-Mn-S-0 system the presence o f gamma i r o n and Mn(Fe) 0 (164) phases

255

>i

•P > •H

4 > O

<



CD CO

|Fe-Mn-0

CD (0 CO .£ CD ft

c

C i—I (0 O S co

ToFe-5-0'S> 1100

1300

1500

1700

Temperature (°C) —•>•

actual conditions

(cooling)

equilibrium conditions starting ~ —

(cooling)

composition

heating conditions f 16 6> )

F i g u r e (5) - U n i v a r i a n t e q u i l i b r i a i n v o l v i n g s o l i d metal and Mn(Fe)0 i n Fe-Mn-S-0 system bonded w i t h t e r n a r y Fe-Mn-0 and Fe-S-0 terminal-phase f i e l d s ; (e) 6, 'O', 1 ; (p) f S , l , 1 ; (f) 6, 'o', ; (n) 6, ' o \ 1 , 1 ; (g) 6, y, 'o'; 1 ^ 2

1

2

(h) # Y

1

'o'; 'MnS', 1

1

.

2

2

256

MiS

.MO-&0,

(a) MiS

MnO

Figure

(7)*

1 6 6

)-

E q u i l i b r i u m phases i n three planes o f the FeO-MnO-MnS-Si0 s y s t e m , a) MnS-FeO-2MnSiOj 2

b)

MnS-2FeO'Si0 -2MnO«Si0 2

2

and c)

MnS-FeO-MnO,

257

(95) Figure

(8)

a) MnO-Si0 b i n a r y phase d i a g r (T-Mn_SiO. and R-MnSiO-.) 2

b) Schematic i l l u s t r a t i o n of l i q u i d versus Mn/Si/O r a t i o s .

compositions

(b) i s a s e c t i o n of the Fe-Mn-Si-S-0 system. ABC are s i m p l i f i e d l i q u i d compositions. A'B'C* are l i q u i d compositions s a t u r a t e d with s o l i d s u l f i d e a t 1315°C.

258

gure

(9) - Schematic i l l u s t r a t i o n o f changes i n i n c l u s i o n composition (enriched i n S i and Mn) i n a 1020 MS electrode.

260

Figure

(11) - I s o t h e r m a l . activities)

Fe-Al-Ca-0 p r e c i p i t a t i o n diagram' *^. 1

(Henrian

to

263

Figure

(14) - Schematic i l l u s t r a t i o n of the ESR used i n t h i s i n v e s t i g a t i o n .

arrangement

I

II & 01

IV

Figure (15) - Schematic illustration of the "inclusion extractor".

265

Figure

(16) -

I n c l u s i o n s from 1 0 2 0 - s t e e l used as l i g h t microscope. 4 30 X. Spectrum X-ray a n a l y s i s are a i v e n 17 (a-b) .

electrode i n Figure

X-ray energy

Figure

(17)

Deformed i n c l u s i o n (a) S p e c t r u m X - r a y (b) S p e c t r u m X - r a y

(KeV)

i n a 1020 M.S. a n a l y s e s of dark phase. a n a l y s e s o f l i g h t phase.

267

Figure

(18) - M a c r o s t r u c t u r e o f a 1 0 2 0 - e l e c t r o d e t i p . (a) u n e t c h e d s u r f a c e (125X). (b) m a c r o s t r u c t u r e where l i q u i d f i l m , s e m i l i q u i d r e g i o n and y - g r a i n g r o w t h , a r e a s a r e shown.

268

(c) Figure

(d)

(19) - M a c r o s t r u c t u r e s from a 4340-electrode t i p . (a), ( c ) , and (d) show the l i q u i d f i l m , p a r t i a l l y l i q u i d r e g i o n and the f u l l y and p a r t i a l l y a u s t e n i t i z e d zones( b ) , (c) and (e) 30X. (a) shows a d r o p l e t i n process o f forming (b) 6.6 X.

269

270

Figure

(21)

S c h e m a t i c i l l u s t r a t i o n o f a 1020 e l e c t r o d e t i p s u b j e c t e d t o ESR t h e r m a l g r a d i e n t s .

271

Figure

(22)

- M u l t i p h a s e ( r e l a t i v e l y grown) i n c l u s i o n s i n a 1 0 2 0 e l e c t r o d e . 400 X.

272

Figure

( 2 3 ) - S i n g l e phase i n c l u s i o n s i n p a r t i a l l y and f u l l y molten r e g i o n s i n a 10 20 e l e c t r o d e t i p . (a) 45 X and (b) 400 X.

Figure

(24)

-

C o m p l e x ( C a , A l , S i , Mn) i n c l u s i o n s f o u n d in t h e l i q u i d f i l m a n d d r o p l e t s o f 1020 e l e c t r o d e s (a), (c), ( d ) - 1 . 8 x 1 0 X a n d (b) 3 . 6 x 1 0 X. 2

2

274

X-ray energy (KeV)

Figure

(25) -

(a) T y p i c a l in

complex

the l i q u i d

film

(2.4 x 1 0 X ) (b) S p e c t r u m X - r a y

(Ca, A l , S i , Mn) and d r o p l e t

3

analysis.

inclusion

o f 1020

electrodes

275

Composition i n a t . %

Figure

(26) - Changes i n i n c l u s i o n chemical composition i n a 4340(1) e l e c t r o d e t i p s u b j e c t e d to (ESR) thermal g r a d i e n t s .

276

Figure

(27)

- Changes i n i n c l u s i o n chemical composition i n a 4340 e l e c t r o d e t i p with strong r e c r y s t a l l i z a t i o n .

277

• A! ACa

E

o & • Mn

12000 •H

fr,

spherodization of sulfide inclusions

•a

cr •rl

8000

£ O 4-1

CD U

•f 4000

C

solidus

fO

w

•H

— i 20

40

Composition

Figure

" -|- 285Cym

Liquid-solid region

4J

Q

5500iim

Incipient heat affected zone

60

$- 350Mm

80

liqiidus

( a t . % x)

(28) - B e h a v i o r o f o x i d e i n c l u s i o n s i n an e l e c t r o d e t i p of a r o t o r s t e e l s u b j e c t e d t o ESR-thermal g r a d i ents.

Figure

(29) - A l - s i l i c a t e i n c l u s i o n s i n a 4340 ESR i n g o t , 75 mm i n d i a m e t e r . Deep e t c h e d sample by i o d i n e m e t h y l a c e t a t e m e t h a n o l ( I n g o t 3) (a) 1000 X and (b) 2000 X.

279

RIII-W

20

40

60

T o t a l Oxygen Content

Figure

80 (ppm)

(30) - I n f l u e n c e o f C a S i and FeO i n t e r m i t t e n t a d d i t i o n s on the oxygen c o n t e n t i n a 1020 M.S.

100

280

RII-W

25

Ca,

20

g

3

15

FeO, 2 nd add. 'Ca', 1st add.

4->

2

2ndaddJ

io

o Ul c

FeO,

1st add.

40

60 Total

Figure

Oxygen C o n t e n t

80

100

(ppm)

(31) - Changes i n t o t a l o x y g e n c o n t e n t r e s u l t i n g i n C a S i and FeO i n t e r m i t t e n t a d d i t i o n s d u r i n g r e f i n i n g o f a 1020 M s t e e l .

281

Figure

(32) - Changes i n s l a g chemical composition i n a 1020 (RIII-W) s t e e l r e s u l t i n g from CaSi and FeO i n t e r m i t t e n t a d d i t i o n s .

282

RII-W

01 0

1

1 0.2

(wt.% Mn)

Figure

1

U 0.4

I 2

| 3

(wt.% Fe X 10

| 4

)

(33a) - Changes i n s l a g chemical composition as a r e s u l t of i n t e r m i t t e n t a d d i t i o n s of CaSi and FeO i n s l a g d u r i n g r e f i n i n g .

L 5

283

RII-W

Slag Chemical Composition

Figure

(wt.%)

(33 b) - Changes i n S i , A l and Ca as a r e s u l t of d i s c r e t e a d d i t i o n s of CaSi and FeO i n the s l a g during r e f i n i n g .

284

RIII-W

1

i—i—i—i—I

06

I—i—i—i—I

0 . 7 5 0 B 5 0.1 02 Ingot

Figure

i—I—I

Chemical

I—I—i—i—I—r

I

i

i

i

i

i

|

I



.

.

001 0.03 0 0 5 0 0 7 0 2 0 0 2 4 Composition

.

I

0.28

(wt.%)

( 3 4 ) - Changes i n i n g o t c h e m i c a l c o m p o s i t i o n a s a r e s u l t o f C a S i and FeO a d d i t i o n s i n s l a g .

285

Figure

(35) - E f f e c t of CaSi and FeO a d d i t i o n s i n the s l a g on the chemical composition of a 1020 MS ESR-ingot.

286

RIII-W

~i

i

1

r

1

o inclusion size x 10>m

251

power off

20 15

2nd Ca-addition 2nd FeO addition

+J

x:

Cn •H

10

(1)

BC JJ O Cn C

5h

20

40

60

80

a t . % Ca at.% A l

Figure

(36) a,b

100

1 n X

1

120

140

160

4

0

- Changes i n i n c l u s i o n c o m p o s i t i o n (a) and mean s i z e (b) i n a 1020 MS i n g o t as a r e s u l t o f i n t e r m i t t e n t o x i d a t i o n and d e o x i d a t i o n o f t h e s l a g .

287

Figure

(37)

- Chemical a n a l y s i s of s l a g samples i n

RI-H

288

0.1

0.2

0.1

Ingot Composition

Figure

0.6

0.2

(wt.

0.7

0.8

%)

(38) - Ingot chemical a n a l y s i s i n R l - I l . as a r e f e r e n c e ) .

(Ingot used

289

RII-Il

Slag Composition

Figure

(39) - Slag chemical a n a l y s i s

(wt. %)

(wt.%) i n R I I - I l .

290

4-> tn •H cu

K 4-1

o Cn c

H

0.2

0.6

1.0

28

30

Slag Composition

Figure

(40) - Slag chemical a n a l y s i s

(wt. % X)

(wt.%) i n RII-I2.

291

RII-Il

i—I—r

i—r

30h

\

V

25h

o i l i I i o

1 —



Solid

O

Liquid

20

o I t

15

o

V

10

A J

P

2 3 4 5 6 7 8 9

I n c l u s i o n Mean (ym)

(41) -

Diameter

60 Total

st add. i I00

80 Oxygen C o n t e n t

I n c l u s i o n mean d i a m e t e r and t o t a l content i n R I I - I l .

3rd add. 2nd add.J

L

I

Figure

1

4th add.

(ppm)

oxygen

292

30

1

T

r

T

r

()

25

5 th odd

-i 20 x: tn

•H

4th add

oi:

4-»

15

~o—-~

0)

3rd odd

K

4->

o

tn CJ

10 r

V

o Liquid pool •Solid / ingot I

2Qd.Qq!d

\ Ca

addition

*

\

o

r

2

j

/

4 6 8

30

I n c l u s i o n Mean Diameter (ym)

Figure

(4 2)

1 *A

40

L

50

\

° Liquid pool

1

• Solid ingot 1st add. * Calculated total oxygen content from extracted inclusions 70 80 90 100 t

60

T o t a l Oxygen Content (ppm)

- T o t a l oxygen content and i n c l u s i o n mean d i a meter i n RII-I2.

293

T

,* 10

1

1

20 20

1

40 30

40

1

1

, 6 0 50

60

,at.% Ca, 'at.% A1

1

1

,89 70

1

r

liguidpod, 80

ingot

1 Q 2

J

Figure

(4 3) - I n c l u s i o n chemical composition (at.%) as a f u n c t i o n of c o n t i n u o u s l y i n c r e a s i n g deoxida t i o n r a t e s (ingot height) i n i n g o t R I I - I l .

294

30

—3»0

25

o-=^-~

r-

/

20 o e

£ 15

/

o'

4-1

Cn

i

10

4-1

o in H

5

^

Ca addition

^

/

o u

g j_ ^ /

«/

.

, 50

Figure

(44)



solid ingot

°

liquid pool

, 100

I n c l u s i o n chemical composition as a f u n c t i o n of the i n g o t h e i g h t (or c o n t i n u o u s l y i n c r e a s i n g d e o x i d a t i o n r a t e s ) i n RII-I2.

295

RII-Il

Ingot Chemical Composition

Figure

(wt.%)

(45) - Ingot chemical composition a g a i n s t i n g o t h e i g h t (or d e o x i d a t i o n r a t e ) .

296

Ingot Composition

Figure

(46)

(wt.%)

- Ingot chemical composition v s . i n g o t h e i g h t (or d e o x i d a t i o n r a t e ) i n R I I - I 2 .

2 9 7

298

(c)

Figure

(d)

(4 8) - "Alumina g a l a x i e s * a s s o c i a t e d w i t h MnS I I i n an A l d e o x i d i z e d i n g o t , ( R I I - I l ) . 2000 X. (a) BE photograph, (b) A l (c) Mn and (d) S maps.

299

X-ray

Figure

(49)

- a-Al^O^

(corundum)

Energy

inclusions

in

(KeV)

Al

deoxidized

ingots. (a) u n e t c h e d s u r f a c e , ^ 1 0 0 0 X; (b) a n d ( c ) a r e d e e p ( i o d i n e m e t h y l a c e t a t e ) e t c h e d s a m p l e s , * 3 0 0 0 X; (d) s p e c t r u m a n a l y s i s o f (a) a n d (b) r e s p e c t i v e l y ; •v 2 0 0 0 counts.

300

(c) Figure

(d)

(50) - Calcium-aluminate i n c l u s i o n from a h e a v i l y A l deoxidized ingot. (a) b a c k s c a t t e r e d e l e c t r o n photograph taken a t 4000 X. Reverse p o l a r i t y . (b) , ( c ) , and (d) are A l , Ca and S maps. RIIII2-S8-SLD.

301 RII-Il

1-••

1

—"1

1

o o

S - Stoichiometry Ratio

8

6h

X

to u < 0\° 0\°

• -p

f0

/ /

•/

s



/

/

/

/

// —

4

c

+J

/

/

'

/

/

/

/«»





/ /

/

/

r

/*! ' 0.4

i

0.6

i

i i

i

0.8

1.0

1.2

.at. at.

Mn"

L

Figure

(51) - C o m p o s i t i o n dependence Ca-aluminate i n c l u s i o n

1.4

1.6

o f s u l f i d e p h a s e s on t h e phases i n R I I - I l .

Figure

(52) - Composition dependence o f s u l f i d e phases the Ca-aluminate i n c l u s i o n phases i n RII

'igure

(a)

(b)

(c)

(d)

(53)

- Segregated m a t e r i a l i n an A l - d e o x i d i z e d ingot, (a), (b) , (c) and (d) are A l , Ca, S i and Mn maps. -v 1 0 0 0 X.

3 0 4

Figure

(54) - Dependence of "FeO"

content

on the

r a t i o i n slag i n a continuously mgot, (RII-H). y

(—^3, CaO Al-deoxidized ueoxiaizea

305

u

1.3

1.2 A

Figure

(55)

1

1.1

2°3

Al 0 - Dependence of the "FeO" on the ( — - ) ratio , CsO i n s l a g i n a c o n t i n u o u s l y A l - d e o x i d i z e d incrot. (RII-I2).

y

'

306

RIII-Il

Figure

(56) - T o t a l oxygen content and i n c l u s i o n mean diameter i n a CaSi-deoxidized ingot (RIII-Il) .

307

RIII-I2

T—i—i—i—I

0

4

8

|

1

30

40

Inclusion Mean Diameter (ym)

Figure

'

1

60

1

1

80

T o t a l Oxygen Content

(57) - I n c l u s i o n mean diameter content i n RIII-I2.

r

(ppm)

and t o t a l oxygen

308

025

0.5

r a.t • L

Figure

(58)

at.

0.75

% Ca i % A1 J

- I n c l u s i o n chemical composition (at. % ) , as a f u n c t i o n o f d e o x i d a t i o n r a t e s i n RIII-Il.

309

Figure

(59) - I n c l u s i o n chemical composition as a f u n c t i o n of d e o x i d a t i o n r a t e s i n R I I I - I 2 .

310 RIII-Il

Figure

(60)

- Changes i n t h e s l a g c o m p o s i t i o n i n a c o n t i n u ously Ca-Si deoxidized ingot ( R I I I - I l ) .

RIII-I2

r

1

T

1

r

1

30 ^ 25 •

J

6 th addition

r

\ "

t t

20

-P

si

tn

•H

CD

15

-P O

tn

C

H

10

\

c/3rd

add..

/ \

2nd

add. Fe J



/

0.2

^

\

<

J

I

0.6

o Si \ 1st add.

I

'

I

1.0

A

Al\

L

1.4

II

13 15

Slag Composition

Figure

(wt. %)

(61) - Changes i n s l a g composition i n a c o n t i n u o u s l y (CaSi) d e o x i d i z e d i n g o t , (RIII-I2)

312

Figure

(62)

- Changes i n A l and S i i n ingot deoxidation i s increased.

( R I I I - I l ) as CaSi

313

RIII-I2

r~o—i

T

o Si

r

1

7 I _i/

r

6th addition 5 th addition

4th

add.

3rd

add.

2nd

add.

1st

add.

_o

1

6 0.2

0.6

0.7

0.8

)

i 1

i

i

i

2

3

4

Wt.% X (Al,Mn,Si) i n i n g o t

Figure

(63) - Changes i n chemical composition i n a c o n t i n u o u s l y CaSi d e o x i d i z e d i n g o t , ( R I I I - I 2 ) .

314

RIII-Il

Figure

(64) - Dependence of "FeO" contents i n the s l a g on deoxidation rates i n R I I I - I l .

the

315

R HI 0.8

I

2.5

1 2

,

3.0

3.5

Wt. % Co ] . s l a g Wt. % Al

Figure

(65) - Dependence of "FeO" contents i n the the d e o x i d a t i o n r a t e i n RIII-I2.

slag

316

RIII-Il

Figure

(66) - S u l f u r content i n i n c l u s i o n s as a f u n c t i o n of the Ca:Al r a t i o i n the Ca-aluminate phases (RIII-Il).

317

R1I-I2 (Ca-Si ~i

deoxidized ingot) r-

r~w

1

( A t % S ).

,

.

inclusion

Figure

(67) - I n c l u s i o n composition i n samples from liquid p o o l and i n g o t as d e o x i d a t i o n r a t e i s i n c r e a s e d .

0

Ingot

Height

(cm)

ro

ro cn

o

o -I—

cn ro O H

C

P-

3

\

o

3 rt

n

0) I

0 3

01

O

OJ

ro

o

ao i- g c t> go H-

'

cn

*

o

OD

zr

a.

a a.

a.

a

o a. a.

o a. a.

Q.

a. a.

o.



V

2

_1_

O

01

~~ 01

Q

o

• 1 —

cr

— 3

01

At. At.

m Ul

» c H (-• M M I M

% Ca % Al

1

0

0

i

n

s

a

m

p i e s

from

liquid

pool

oo

cn

ro

rr

ort\

1

>>.

& (t O X H"

01

>

r

r

*\ \

a

a



01 3

a

0

^

\ *s

o

R

\

— \ \

\

\

cn x

0)

ro

o

8T£

1

1

J

\ X

\

-v. —1

319

Figure

(69)

- Segregate enriched (c) S i and (d) Mn.

i n (a) A l , * 5000 X.

(b)

Ca,

320 R-4340(1)

35

30 25

~

20

^7t

F

T—r

5. L

/

I.. ...

/

...

4J

15

fI

10

M 5h o

Fe Mn J

0

Si

A

L

01 02 03

-I

I

1

I

u

0.7 OS 11 13 15 17

%

Slag Composition

Figure

(70)

16

(wt.

38

AO

%)

- Slag chemical a n a l y s i s of a 4340 i n g o t c o n t i n u o u s l y d e o x i d i z e d with a CaSi a l l o y ([R-4340 ( 1 ) ] .

321

Figure

(71) - Ingot chemical composition of a 4340-ingot c o n t i n u o u s l y d e o x i d i z e d with a CaSi a l l o y . [R-4340 ( 1 ) ] .

322

Figure

(72) a - V a r i a t i o n i n mean i n c l u s i o n

size.

b - Oxygen a n a l y s i s i n a 4340-ingot c o n t i n u o u s l y d e o x i d i z e d with a CaSi a l l o y , [R-4340(1)].

323

0.1

25

26 (

Figure

2.7

2.8

wt.

% Al

29 }

S l a

3.0

3.1

^

(73) - Changes i n s l a g composition as a r e s u l t of c o n t i n u o u s l y i n c r e a s i n g CaSi d e o x i d a t i o n r a t e s , R-4340 (1).

324

Figure

(74)

- I n c l u s i o n chemical composition, i n (a) i n g o t and (b) l i q u i d p o o l , as a r e s u l t of c o n t i n u o u s l y i n c r e a s i n g CaSi d e o x i d a t i o n r a t e s i n a 4340 ingot R-4340(1).

325

R-4340 liquid pool

140

120

100

|At.%Caxl00 At.% Al

80

ingot

1-700 600

h500 /

400 /

60

(I)

300

40

/ / / 200 /

20

.00//

/

/

/

/

o'

,o

/

/

p

/

/

/

/

/

/

/ /

10

o

LIQUID POOL



SOLID

20

(At. % S )

Figure

(75) - I n c l u s i o n composition i n terms o f the Ca:Al r a t i o and s u l f u r content (as CaS) i n R-4340(1).

326

0.8 10

c o

CO r—I

u c

0.6

•H CO

U

-P cd

0.4

0.2



(§)

Ca-Si, solid and liquid

*

®

Hypercal,

(§)

Al-Si,

2.0

4.0

6.0



»»

80

»«

10.0

12.0

S u l f u r Composition i n I n c l u s i o n s

Figure

(76)

(at.

S)

- I n c l u s i o n chemical composition (oxide and s u l f i d e phases) i n a r o t o r s t e e l d e o x i d i z e d with three d e o x i d i z e r s ; R-RS-I, R-RS-II and R-RS-III.

327

(c)

Figure

(77)

-

(d)

S e g r e g a t e e n r i c h e d i n A l (40 a t . % ) , C a (41 a t . %), S i (17 a t . % ) a n d Mn ( b a l a n c e ) i n t h e r o t o r steel deoxidized w i t h Al-65 wt. % S i . (a) A l , (b) C a , ( c ) S i a n d (d) M n , 250 X. t

328

401—i—i—i—i—i—i—i—i—r—r

Calcium conlent of steel ppm

Figure

(78)

- I n c l u s i o n " p r e c i p i t a t i o n sequence"in a s t e e l c o n t a i n i n g two l e v e l s of s u l f u r .

329

Figure

(79)

S t a t i s t i c a l determination of the mean i n c l u s i o n diameter (ym). (a) sample from an i n g o t , (b) sample from l i q u i d p o o l .

330

Ca

Al

Ce

Figure

(80) - A l , Ca and Ce d i s t r i b u t i o n i n an i n c l u s i o n o f a sample e x t r a c t e d from the l i q u i d p o o l by a q u a r t z tube c o n t a i n i n g a RE-wire. (a) BE photograph, 4000 X (b) A l , Ca and Ce d i s t r i b u t i o n a c r o s s the inclusion.

331

Figure

(81) - (a) - BE photograph = 6COO X, and A l , Ca, Ce and La d i s t r i b u t i o n s i n a l i q u i d p o o l CaSi d e o x i d i z e d . La and Ce come from a RE-wire p r e v i o u s l y l o c a t e d i n the s i l i c a t e tube.

332

Figure

(82)

-

(a) - BE photograph, 4000 X and A l Ca and Zr d i s t r i b u t i o n s i n an i n c l u s i o n of a sample e x t r a c t e d from a l i q u i d p o o l d e o x i d i z e d with "hypercal". The Zr was p r e v i o u s l y l o c a t e d i n the s i l i c a tube.

333

Figure

(83)

- Composition p r o f i l e s and maps of an

inclusion

i n a sample e x t r a c t e d from a

(ESR)

d e o x i d i z e d with

"hypercal".

(b), ( c ) , (d)

(e) are A l , Ca,

S, and

Zr.

liquid

pool and

334

(e) Figure

(84)

(f)

- BE photograph (a) * 4000 X and composition maps from an i n c l u s i o n e x t r a c t e d from a l i q u i d p o o l d e o x i d i z e d with " h y p e r c a l " ; (b) Ca, (c) A l , (d) S, (e) S i and (f) Zr.

335

Figure

(85) - I n c l u s i o n d i s t r i b u t i o n i n a d e n d r i t i c s t r u c t u r e o f 1 0 2 0 - s t e e l samples t a k e n from l i q u i d p o o l during r e f i n i n g . ( a ) , (b) and (c) show commonly f o u n d i n c l u s i o n s i n a n A l - d e o x i d i z e d ingot. (a) 50 X, (b) and (c) 170 X.

336

337

Figure

(87) - Isothermal (1823°K) p r e c i p i t a t i o n (Fe-Al-Ca-O-S) diagram at 0.1 a c t i v i t y of aluminum.

338

Figure

(88, - E f f e c t o f the a c t i v i t y o f A l (h

=

0.001

Symbols: A

- A1 0

S C-6A

- MnS (11,111) - CaO-6Al 0

C-2A

I ?a"2A? 0 ^ " ' "2 3

C-A

- CaO.Al 0

C

- CaO

A

(l)

2

3

2

2

-

A 1



( 1 3

)

3

3

(

C

a

'

M

n

)

S

°

r

C

a

S

339

Figure

(89)

- E f f e c t of the a c t i v i t y of S (h

= 0.1,

0.01

0.001) on the " p r e c i p i t a t i o n sequence" of c a l c i u m aluminates. Symbols are d e f i n e d i n F i g u r e

(88).

and

340

(b) Figure

(90) - I n c l u s i o n s e x t r a c t e d from a C a - S i - d e o x i d i z e d i n g o t by the Iodine-Methyl Acetate-methyl a l c o h o l method. (RIII-Il-Sl-SLD). Photographs were taken a t : (a) 3000; ( a ) and (b) 8000 X. 1

341

(a)

(b)

(c) Figure

(91) - I n c l u s i o n s e x t r a c t e d from a C a - S i - d e o x i d i z e d i n g o t by the Iodine-methyl a c e t a t e - m e t h y l alcohol"method. (RIII-I1-S3-SLD). (a) and (b) 4000 X and (c) ^ 1000 X. (calcium aluminates)

342

Figure

(92a)

- Calcium aluminate/calcium s u l f i d e i n t e r f a c e s of inclusions i n CaSi deoxidized ingots, (a) and (b) a r e SEM and EPMA p h o t o g r a p h s 1.2 x 1 0 and 6.0 x 1 0 X. (b) a l s o includes Ca and S a n a l y s i s . (c) a r e t y p i c a l compo s i t i o n s o f c o r e and p e r i p h e r y o f i n c l u s i o n s , respectively. 3

3

343

Figure

(92b) :

S p h e r i c a l c a l c i u m aluminate (core) v/ith ( p e r i p h e r a l ) s u l f i d e phases i n CaSi d e o x i d i z e d i n g o t s (a) and (b) EPMA photographs. ( c ) , (d) and (e) are A l , Ca and S maps, r e s p e c t i v e l y .

344

RII-I2

Figure ( 9 3 )

- Secondary d e n d r i t e arm spacing i n a round 1 0 2 0 MS — ESR i n g o t .

345

RIII-Il

ingot

Figure

(94) - S e c o n d a r y in

radius

dendrite

d i a m e t e r ) ESR

arm

ingot.

(cm)

spacing 1020

m

°

U

l

d

W

a

l

1

i n a round MS.

(200

346

R-4340 (1)

wall

Ingot Radius (cm)'

(95) - Secondary d e n d r i t e arm spacing i n a round i n diameter) ESR-ingot (4340)'.

(200mm

347

RII-I2

8 Ingot r a d i u s

Figure

9

mold wall

(cm)

(96) - R a d i a l s i z e d i s t r i b u t i o n of i n c l u s i o n s i n an A l deoxidized ingot.

348

RIII-Il

u

cn

-u

0)

e

3

o o R

(0 •H Q C O

•H tfi i H CJ

c

o o

o o

o

o

o o

o

o o

8 §

o o

8

A 3 measurements same points • average large dia. inclusions measurements o average value from one picture 1

I

i

i

i

4

i

'

5

6

Ingot Radius

Figure (97) - Radial i n c l u s i o n deoxidized ingot

(cm)

-I

8

I

9 mould w a l l

s i z e d i s t r i b u t i o n i n a low Ca(1020 MS).

349

RIII-Il

Figure

(98)

- Radial inclusion size distribution ESR i n g o t . ('5-biggest i n c l u s i o n s

i n a 200 mm technique')

350

R 4340

->

(1)

r

5.0

CD

4.0

+J

CD

E nJ

•H

Q

3.0

C O -H

CO

H U C

CD tn rd S-i CD >

2.0

1.0

8 Ingot

Figure

Radius

mold wall

(cm)

(99) - R a d i a l i n c l u s i o n s i z e d i s t r i b u t i o n i n a 4340 i n g o t (200 mm i n d i a m e t e r ) d e o x i d i z e d w i t h Ca-65% S i A l l o y .

351

TABLE Modification

Ideal

to Stokes'

condition

Correction wall

due

Law

I for Deviation

U

to

crucible

=

2

no

9



u = u

Ideality

2

9

(1

s t

from

=

r

U

s t

bJL)

+

distance of p a r t i c l e from w a l l b

Presence

of

other

particles

s 0. 5 t o

U = U

2

. / (1 + st

K*

/,) 3

* = concentration by v o l u m e K =

Inertial

effect

U = U Re

Liquid

particle

Presence agents

of on

1.3

s t

to

/(1

surface active liquid particle

^ st

+

I

particle-fluid

3

number

+

2-j

v

+

u'

st

2u

+

3p

Br + of

particle

3p'

of

coeff.

E

of

viscosity

. st

D

particles

Re)

= retardation

S l i p at the interface

of

1.9

= Reynolds

U = 0

center

liquid

particle

+ 1

Y +

n

3y.

coefficient

2L

;

sliding

friction

• st<li-H' U

= =

6 ' ( e x p ' a ' S (W slip

factor

k

- K

)/kT)-l)

Non-spherical

particles

9 r ^

X

v

= equivalent

g

X = dynamic

R

eq

r

=

, 7

X

radius

shape

factor

J sed

R

, = sedimentation sea

radius

x = f(x ) B

X

Slightly

deformed

inclusion

v

= coef.

S

=

of

2 Ap_ 3 u

sphericity

g r g

;

1 3

( 3 + | Re + j i -

We)

2rp Re = R e y n o l d s number 2rp,U We = Weber number * o r

= inclusion

radius

= density

of l i q u i d

o = surface

tension

U

J

metal

TABLE I I - A Data f o r I n v a r i a n t

Equilibria

i n Fe-S-0 System

-RT Invariant

Equilibria

pO^i

atm

P S 2 / atm

I.

560°C

Iron, wustite magnetite, p y r r h o t i t e , gas

4.8

X 10~

2 7

II.

915°C

Iron, wustite pyrrhotite, l i q u i d ( 1 ) , gas

3.2 X 1 0 ~

1 7

III.

942°C

Wustite, magnetite, pyrrhotite, l i q u i d (1), gas

1.1 X l o " " *

Composition of

a t 915°C:

C o m p o s i t i o n of l j a t 942°C:

5.5

N^ N

e

F e

-

1

2.2 X l o "

8

5.4

1

X lO

"

X 10~ * 6

in p0 kcal

2

-RT i n p kcal 2 g

100.3

50.5

89.6

41.6

77.6

29.3

= 0.50,

N

Q

= 0.19,

N

g

=

0.31.

= 0.49,

N

Q

= 0.19,

N

g

=

0.32.

a

Fe =

0.09.

LO

354

TABLE I I - B Estimated

Data

f o r Invariant Equilibria

Fe-Mn-S

a n d Mn-S-0 T e r n a r y

Fe-Mn-0 t e r n a r y

1527°C

Solid Liquid

system

800

iron:

a

oxide: oxide:

a

=0.65

FeO

FeO

- ° -

ternary

= 0.35

o

3

0.27 MnO

Solid

(Fe) s u l f i d e :

a

FeS

Solid

(Mn) s u l f i d e :

a

MnS

sulfide:

Solid

oxide:

Solid

sulfide:

Liquid

oxysulfide:

ppm S

1

°'

3

7

= 30 w t . p e t . S

= 1.0 X 10~ atm 7

system

Traces *MnO

o f S and 0 ° -

S

>MnS ~'

9

8

° '

9

8

3 0 % Mn, s 3 5 % S , s 351 0

E

p„

Gas:

£

2 1 w t . p e t . Mn p„

manganese:

83

15 ppm Mn

Mn-S-0 t e r n a r y

1230°C

MnO

system

iron:

Gas :

B

7

a

9

Gamma

Liquid

ppm 0

1130

1.2 X 10 ~ atm

Fe-Mn-S

Liquid

52 ppm 0

ppm Mn

Gas :

980°C

Systems

5 80 ppm Mn

6-iron: Liquid

i n Fe-Mn-0,

= 7.6 X

10

_ 2 0

atm

p_ b

"2

= 1.5 X 10" 2

atm Solid Liquid 1225°C

manganese: manganese:

Traces

o f S and O

Traces

o f S and 0

Solid

oxide:

MnO

Solid

sulfide:

MnS

s 0.98 = 0.98

= 5.8 X 1 0

Gas: w

2

atm

_ 2 0

atm,

p

= 1.2 X 10

_i

2

TABLE I I I E s t i m a t e d Data f o r I n v a r i a n t E q u i l i b r i a i n Fe-Mn-S-0 Q u a t e r n a r y System y-iron Solid =900°C

Solid

= 10 ppm. (Mn) s u l f i d e :

a

(Fe) s u l f i d e :

MnS FeS

= 0.4

M

s

1

g 0.5

a

a ^

Liquid

s 26 p e t . FeO, 54 p e t . FeS, 15 p e t . MnS and 5 p e t . MnO by w e i g h t

Solid

(1) o x y s u l f i d e :

p0

Fe/Mn:

"MnS" =1225°C

> 1 ppm. 0

Fe(Mn)0 o x i d e :

Gas:

II.

a

Mn

"MnO" Liquid (1): Liquid (2):

2

s 3.8 X 1 0

F

_ 1 8

atm,

pS

2

= 1.4 X 1 0 "

8

g

0

= 0.5

atm

90 p e t . Mn MnS MnO

s 1 = 1

s 0.1 p e t . FeO, 0.3 p e t . FeS, 65.2 p e t . Mns and 34.4 p e t . MnO by w e i g h t (pet.

O/pct. S) f o r 1

2

(metallic)

< ( p e t . O/pct. S) f o r l j ( o x y s u l f i d e )

Ul

356

TABLE Calculated for

and

Fe-O-Ca-Al

Published Free

Energy

System

K

Equation

Ca(g)

=

Al(l)

1/2

2 Al + C a +

372

1/2

2 Al + Ca

%)

0 , ( g ) = 0 ( 1 wt.

0

0

2

=

%)

-1

2°3

2°3

CaO = CaO-Al 0

CaO

+ Al °

3

CaO

+

2

M

2

CaO

+

6

A1 0

2

2

0 2

3

3

Data

(1550°c/

2 1 6

Atom

'

Ref.

50 (-39

574 .68 481 . 52 +

49.4T)

-114 (-63

137 . 1 220 .68

27.93T)

-122 (- 1 1 7

= CaO

2

3 0 = Al

+ 0 =

A 1

a t 1823

J/kg

C a ( l w t . %)

= A l (1 w t .

IV

Sigworth"''

Sigworth''' -

498 .9 230 .4 -•

Elliott

085

230 . 1

JANAF

3

-437

996, .22

JANAF

3

-489

480. .46

-366

081. .65

-45

845 ..46

3

= Ca0'2

A1 0

3

-50

869 .,62

Kireev^

3

= CaO-6

A1 0

3

-60

708. ,60

Taylor

CaO-Al 0

3

-901

407 .,57

-1

395

9 1 2 . 20

-3

363

6 7 3 . 03

Ca

+ 2 Al + 4 0 =

Ca

+ 4 Al +

Ca

+

12 A l + :19 0

Ca

+

S =

2

2

2

7 0 = CaO-2

A1 0 2

= CaO-6

3

A1 0 2

3

CaS

-257

1.

G.K.

Sigworth

and J . F . E l l i o t t :

2.

J . F . E l l i o t t a n d M. A d d i s o n - W e s l e y Pub.

3.

JANAF T h e r m o c h e m i c a l E d i t i o n , 1971.

4.

V.A. K i r e e v : p p 3-18.

5.

J . Taylor:

Sb. T r . Mosk.

Proc.

Brit.

Met•

S c i . , 1 9 7 4 , v o l . 8, p p .

Inzh-Stroit,

Soc,

298-310.

f o r Steelmaking,

2nd e d . , N a t i o n a l S t a n d a r d

Ceram.

5

659 . 0

Gleiser: Thermochemistry Co., 1960. Tables,

2

2.89T)

Inst.,

Ref.

1971, v o l . 69,

1 9 6 7 , v o l . 8, p p .

115-23.

TABLE V E q u i l i b r i u m Constants

Compound

A c t i v i t y Product

CaO

1

2

l / ( h 3

CaO-2 A 1 0

3

CaO-6 A 1 0

3

2

2

2

(

h C

CaO-Al 0

A1 0

/

1

1

h

/(

h

1 / ( h 3

Ca

/(

X

h

0

X

h

Al

a

C

a

C

a

Al

(216) Reactions

f o r Deoxidation

)

X

X

h

Al

X

X

h

Al

X

X

h

0

K (1823 K)

)

X

h

0

h

0

)

^

>

}

6

,

3

-

0 5

X

4

6

X

1

l o l

q

2

°

5

9.46 X 1 0 )

2

'

1 3

1

'

X

0 4

1

X

q

1

9

q

3 9

6

1

4

TABLE Equations

of Lines

Al 0 -CaO-6Al 0 2

3

2

C

X h

a

A l

3

X

2

/ h

3

2

h

C

h

2

3

3

X

C

=

O

h

=

3

X h

a

h• , { Al

2 / 3

2

3

a

X

h„

Q

Y h X h„ 0 h

/h { 2

3

CaO-Al 0 (solid)^030(42 3

h

h

h

CaO

10~

X

10"

1 3

5

8

2

1.59

,

0

1

X

X

1

0

10"

"

1 2

5

=

7.90

X

10"

=

2.24

X

10"

=

1.90

X

10

=

1.18

X

10"

8

-OaO-Al^ h

2

2.13

X

= 2.82 X l O "

Q

/h {

a

6.01

3

2

C

=

3

X h

a

A l

h

CaO-2Al 0

O

h

CaO-6Al 0 -CaO-2Al 0

=

Q

Ca l(

h

the I n d i c a t e d Phases

3

h

h

Between

VI

C

A l

h

h

3

X

/h {

a

A l

3

X

h

/h { 2

c

a

=

pet.) + A 1 0 2

0 3

1.89

=

=

7

X

10 10"

(liquid)

1 2

5

X lO"

7

(42.6 p e t . )

3

5

X

1.20

=

Q

5

(58 p e t . )

3

2.27

=

3

X h

a

=

Q

(57.4

C

2

0

h

2

C

( s o l i d ) -CaO h

X h

a

pet.) + A 1 0

1 2

3.29

-

7

7

X

5.70

X

1

0

10

~

-

1

6

X lO"

6

(liquid) 1

TABLE

VII

Chemical A n a l y s i s of E l e c t r o d e s Electrode 1020 M S t e e l (1)

Used i n t h i s

Research:

Chemical Composition i n wt.% Rotor S t e e l

4340 -

Steels

(1)

(2)

(1)

(2)

c

0 . 19

0 . 415

0.422

0.213

0 . 202

p

0 . 099

0 . 014

0.014

0 . 007

0.007

s

0.026

0.016

0.015

0.005

0 .006

Mn

0 . 709

0.697

0.696

0.673

0 . 673

Cu

-

0.094

0.091

0 .049

0.048

Ni

-

1.882

0 . 184

0 .357

0.0362

Cr

-

0 . 873

0. 867

1. 151

1.1150

Si

0 . 25

0.357

0.353

0 . 246

0 . 244

V

-

0. 005

0 .005

0 . 246

0 . 244

Mo

-

0. 189

0.188

0.940*

0.940*

Al

-

0 . 029

0.029

0.006

0 .006

0.005

0 .005

0.005**

0.005*

Sn

where and

(*) stands f o r more than 0.940 wt.%

(**) i n d i c a t e s l e s s than 0.005 wt.%.

TABLE V I I I

Run No.

1

Type o f Electrode

4340(I)

2

•'

3

••

Electrode D i a m e t e r (mm)

5

••

8

••

3

2

30

20

-

55

15

15

15

40

20

20

20

40

22

23

5

55

15

22

8

31

0

46

23

50

30

20

-

"

55

15

15

15

50

30

20

-

55

15

15

114.3

49

16

17

76. 2

70

0

30

114 ,3

70

15

15

"

70

0

30

••

50

20

30

76 . 2

50

30

20

9

4340(II)

44 .75

10

4340 ( I I )

"

11

rotor

steel

2

50

6 7

2

"

»

List

I n i t i a l Slag Composition CaF /Al O /CaO/SiO /Mg0

31.75

4

-

of

Type o f Deoxidizer

-

Nil

-

Al

-

Experiments

No.

of Additions Rates

-

-

Al

along

remelting

Type o f A d d i t i o n (deox.)

Deoxidation (kg t o n

-

- 1

rates )

2.3

constant

kg t o n

_i

"

-

Ca-Si

15

-

Ca-Si

12

6

Al

"

-

Al

"

-

Al

-

Al

Ca-Si

2

-

Ca-Si

2

Nil

-

Al

4

Al

5

constant

^

0.0 2 k g t o n

M.S.

76.2

70

30

-

M.S.

76.2

50

30

20

-

50

30

20

-

-

»

50

30

20

-

-

••

60

36

4

-

-

Ca-Si

4. 5

'•

50

30

20

-

-

Ca-Si

6

5.61,11.23,16.83,2; 28.05 and 56.10 .

88.9

50

30

20

-

-

Ca-Si

6

4.17,8.35,12.5,16. 20.85,41.7, and 20

114 . 3

50

30

20

R-RSII

50

30

20

-

R-RSI 11

50

30

20

-

12

1020

13

rotor

M.S. steel

14 15 RII-W RIII-W RI-Il

" 1020 1020 1020

M.S.

RII-Il RII-I2 RIII-Il

"

RIII-I2 R-4340

4340

R-RSI

rotor

steel

-

Al

Ca-Si Al-Si Hyperca1

" "

II

II

"

"

a long remelting

intermittent

continuously increasing

50 g r a m s

(each)

50 g r a m s

(each)

-

3.63, 6.1 a n d 3 7.6 k g t o n 1.21, 2.42, 3.6' 4.85,6.06 and 12.1/

"

constant

5.61,11.23,16.83,2; and p a r t i a l l y 28.0J

36.0 kg t o n

constant

33.0

constant

36.0

- 1

oo

o

361

TABLE Chemical

IX

Composition

of Deoxidizers

Calcium-Silicon

Hypercal

Al-Si

Calcium

29 .. 50

10,.50

-

Silicon

6 2 . . 50

39,.00

65

Iron

4 ,. 50

18,.00

-

Barium

0. . 50

1 0 , . 30

-

Aluminum

1.. 20

20 ,. 00

35

Manganese

0 ,. 2 5

0 .. 30

Carbon

0 .. 55

0 ,. 50

Chromium

0 .. 10

0 ,. 0 3

Copper

0 ,. 0 1

0 .. 03

Nitrogen

0 .. 0 3

0 ,. 0 5

Nickel

0 .. 0 1

0 ,. 0 2

Oxygen

0 .. 50

0 ,. 7 0

Phosphorous

0 .. 0 1

0 ,. 0 2

Sulfur

o ,. 0 5 5

0 ,. 12

Titanium

0 ,. 0 8

0 ,. 06

Bulk

Density

110 l b . / c u .

f t . 95 l b . / c u . f t .

TABLE X Inclusion

Chemical

Deoxidizer

a

No.

)

Inclusion

Nominal

CaF

2

Slag

A1 0 2

3

i n 4340

Chemical

System

CaO

Composition

1

50

30

20

-

2

55

15

15

3-

40

20

4

40

5

6

Atom

Al

2

diameter)

Composition

(wt.%)

Si0

(small

as a F u n c t i o n o f S l a g and ESR

Ingots

as a F u n c t i o n of Slag

Percent

Ca

Types

System

of Inclusions

Si

96.1

3.733

15

75.86

1.8470

22.28

20

20

85.33

2.470

13.160

22

33

5

99.20

0.19

0.60

"Alumina", sulfides

55

15

22

8

96.27

3.462

0.265

"Alumina" and Caaluminates, "Fayalite"

31

0

46

23

84.88

4.38

b)

Slag-Deoxidant

wt. %

Effect

(X)

0.170

10.74

on F i n a l

at. %

Calcium aluminates, Manganese s u l f i d e s Alumino-Silicates, Manganese s u l f i d e s , and "Fayalite."* Calcium, Aluminums i l i c a t e s , Manganese s u l f i d e s and " F a y a l i t e " * Manganese

Calcium-alumino silicates. Manganese s u l f i d e s and "fayalite".*

Inclusion

Chemistry

(X)

+ No.

CaF

CaO

Si0

7

50

30

20

-

Al

92.42

7.11

0.170

Calcium Calcium

8

55

15

15

15

Al

89.20

7.85

2.940

Aluminates, Calcium Aluminum s i l i c a t e s and "Fayalite".*

9

50

30

20

- Ca-Si (*)

91.00

7.20

1-80

Calcium aluminates, Manganese s u l f i d e s

10

55

15

15

15 C a - S i (*)

2

A1 0 2

3

2

Deox.

Al

Ca

76.217 2.143

Si

21.64

aluminatessulfides

Aluminum c a l c i u m s i l i c a t e s , f a y a l i t e * and Manganese sulfides

c)

Inclusion

Chemistry

E l e c t r o d e s f o r 1 t o 8 (31.75 im)

Al 89.00

E l e c t r o d e s ! * ) f o r 9 and 10 (44.75 nm)

81.08

of Electrodes

Ca Si 10.00 balance 5.237

Calcium Aluminates calcium sulfides 13.685 A l u m i n u m C a l c i u m silicates and

Remarks:

1. 3.

Manganese

sulfides

Melting rates 1.2 - 1.5 Kg m i n . , 2. d e o x i d a t i o n r a t e " ^ 2 . 3 Kg t o n F a y a l i t e * was not always observed t o f o l l o w the t h e o r e t i c a l s t o i c h i o m e t r y . - 1

- 1

TABLE Chemical

Effect

of

(Extension

Slag of

and

R e s u l t s Found 1020

Ingot

Electrode

Type

Nominal

CaF

2

CaO

Electrode

A 1

Steels

Slag

2°3

XI

S u r f a c e P r e p a r a t i o n on

i n 4340

to a

Small

Cr-V-Mo

Rotor

Composition

s

i

0

2

M

g

and

Large

Inclusion

Composition

ESR-ingots,

and

Steel*

Inclusion

Type

and

Shape

0

* 11

rotor

steel

49

16

17

12

12

rotor

steel

70

15

15

-

6

A l - C a s i l i c a t e s and a l u m i n a t e s . Semiround types; they were o c c a s i o n a l l y seen w i t h p e r i p h e r a l MnS. Mg t r a c e s w e r e a l s o d e tected . -

Aluminates A1 0 . 2

and

3

of

the

Round,

clusters

type

Fe0-Al 0

elongated

and

angular

2

and

3

(FeO-Al 0 ) 2

3

A1 0 . 2

3

* 13

rotor

steel

14

rotor

steel

70

30

-

-

A l u m i n a t e s , s i n g l e r o u n d and c l u s t e r s . I r o n o x i d e s a n d some i r o n s u l f i d e s w e r e also observed.

*

15

1020

50

20

30

-

70

-

30

-

-

A l u m i n a t e s , s i n g l e r o u n d and c l u s t e r s a minor amount o f r o u n d C a - a l u m i n a t e s MnS I I . -

Aluminates

generally

as

clusters

and

and and

MnS

II.

Remarks 1. 2. 3.

T h e s e E S R - i n g o t s w e r e s l i g h t l y d e o x i d i z e d w i t h A l a t a c o n s t a n t r a t e , 0.02 Kg t o n ^. E l e c t r o d e s 11, 12, 13 a n d 14 w e r e s u r f a c e g r o u n d a n d c o a t e d w i t h a n A l - M g s p i n e l p a i n t i n g p r e v e n t s c a l e ("FeO") o x i d e f o r m a t i o n d u r i n g r e m e l t i n g . E l e c t r o d e and E S R - i n g o t c o m p o s i t i o n a r e g i v e n i n T a b l e s ( V I I ) and (VIII).

4.

Refining 1 Kg

min

conditions

were

equivalent

f o r a l l experiment,

Ar-atmosphere

and

melting rates

to

about

TABLE Slag

Chemical

Analysis

from

XII

(Ni-Cr-Mo) R o t o r

Deoxidized with CaSi, A l S i

and CaF

Nominal

(initial)

Hypercal*

slag

CaO

A1 0 2

3

Si0

"FeO"

2

20

30

CaSi**

47.33

20.15

32.2

0.175

AlSi

43.32

18.27

38.11

0.141

43.51

18.19

37.88

0.25

Si alloy)

(wt.%)

2

50

(Ca, A l , Ba,

composition

ESR-ingots * Ca-Al-Ba-Si Alloys

0.14 .

0.147 0.165

* * Remarks:

D e o x i d a t i o n r a t e u s e d i n t h i s e x p e r i m e n t was s l i g h t l y l o w e r t h a n i n t h e o t h e r two e x p e r i m e n t s , i . e . ^ 33 grams/min and ^ 36 grams/min respectively. R e m e l t i n g c o n d i t i o n s were a p p r o x i m a t e l y c o n s t a n t f o r t h e a b o v e r u n s , i . e . , m e l t i n g r a t e s were ^ Kg/min. E x p e r i m e n t s were c a r r i e d o u t u n d e r a p r o t e c t i v e atmosphere (argon).

cn

TABLE XIII - A Chemical

A n a l y s i s (wt.%) o f a Cr-Mo-Mn-Ni-V-Steel Deoxidized

w i t h Al-65.0 wt. % S i

C

P

s

1

0, . 261

0 .008 .

0 .003

0 .707 .

0.,050

0 ., 353

1. 176

0 ,594 .

2

0 . 252

0 .007 .

0.,003

0., 700

0..051

0,. 369

1. 165

3

0 . 255

0..007

0..003

0 .695 .

0 .050 .

0 . 350

4

0.. 253

0..007

0..003

0..695

0.,050

5

0.. 251 '

0 .007 .

0..003

.0.,689

6

0 .249

0..007

0..003

7

0 . 255

0,.007

8

0 . 250

9 10

Mn

Cu

Ni

Cr

Si

V

Mo

Al

0 .239

.94 +0 ,

+ 0 .250

-0 .005

0., 536

0 .246

+ 0,.94

+ 0,.250

-0 .005

1., 160

0., 532

0 .242

+ 0 .94

+ 0 .250

-0.005

0 . 348

1. 160

0.. 536

0. 242

+0 .94

+ 0 .250

-0.005

0..051

0 . 362

1.. 147

0 . 536

0 .245

+ 0 .94

+ 0 .250

-0 .005

0,.691

0..049

0 . 355

1.. 155

0 .534 ,

0 .241

+ 0 .94

+ 0 .250

-0.005

0,.003

0 .693

0,.051

0 . 354

1.. 155

1 0 ., 538

0 .243

+ 0 .94

+ 0 .250

-0.005

0 .007

0 .003

0 .695

0,.051

0 . 359

1.. 160

0 . 538

0 .243

+ 0 .94

+ 0 .250

-.0.05

0 . 260

0 .008

0 .003

0 .701

0,.052

0 . 361

1,. 161

0 . 539

0. 245

+ 0 .94

+ 0 .250

-0 .005

0 .254

0 .007

0 .003

0 . 694

0 .052

0 .361

1 . 154

• 0 . 543

0 .246

+ 0 .94

+ 0 .250

-0 .005

Sn

TABLE Chemical

Analysis

(wt.%)

Deoxidized C

P

c

1

0 . 262

0 .007

0..002

2

0 .271

0..007

3

0 .242

4

pie

No.

Mn

XIII

- B

o f a Cr-Mo-Mn-Hi-V

with

a Ca-Si

Steel

Alloy

Cu

Ni

Cr

Si

0,.691

0 .049

0 .337

1.103

0 .627

0 . 247

+0 .94

0.. 157

-0 .005

0 .002

0 .696

0 .048

0 . 334

1. 116

0 .674

0 . 236

+ 0,.94

0.. 150

-0 .005

0 .007

0 .002

0,. 673

0 .046

0 . 321

1.091

0 .646

0 . 235

+ 0..94

0.. 147

-0 .005

0 . 258

0,.007

0,.002

0,.688

0 .045

0 . 324

1.118

0 .650

0 .235

+0,.94

0 .117 .

-0 .005

5

0 .266

0..007

0..002

0..691

0 .04 8

0 . 343

1.115

0 .648

0 .244

+ 0..94

0 . .126

-0 .005

6

0 . 226

0,.007

0..002

0..690

0 .047

0 . 340

1. 119

0 .654

0 . 242

+0..94

0 . 126

-0 .005

7

0 . 273

0..007

0..002

0 . 687

0 .047

0 .341

1. 116

0 .652

0 .652

+ 0..94

0 . .125

-0 .005

8

0 .264

0..007

0..002

0.. 680

0 .046

0 . 337

1. 1031

0 . 645

0 . 240

+ 0..94

, 121 0 .

-0 .005

9

0 . 273

0.,007

0 .002 .

0.. 685

0 .048

0 .351

1. 114

0 .660

0 . 246

+ 0 .94 .

0., 121

-0 .005

10

0 . 276

0..007

0..002

0., 687

0 .047

0 .332

1. 118

0 . 652

0 . 241

+ 0..94

0 ., 119

-0 .005

11

0 . 228

0..007

0..002

0., 700

0 .049

0 . 355

1. 125

0 . 665

0 . 245

+ 0..94

, 122 0 .

-0 .005

(+) - m o r e

than

a certain

calibration

(-)

than

a certain

calibration

- less

V

Mo

Al

Sn

cn

TABLE

XIII-C

Chemical A n a l y s i s of a

Cr-Mo-Mn-Ni-V-Steel

Deoxidized with a Ca-Si-Al-Ba

%C

9

p

%s

%Mn

%Cu

? Ni

%Cr

Alloy

Si

V

%Mo

%Al

Sn

1

0 . 253 0 008

0. 004

0.706

0.056

0 366

1. 126

0 815

0 229

+0 .94

+ 0 .250

-0 005

2

0. 255

0 007

0. 003

0.702

0.053

0 366

1. 146

0 772

0 241

+ 0 94

+ 0 250

-0 005

3

0. 253

0 008

0. 004

0. 704

0.051

0 34 7

1. 160

0 757

0 234

+ 0 94

+ 0 250

-0 005

4

0. 267

0 008

0. 004

0.718

0.052

0 356

1. 174

0 774

0 236

+ 0 25

+ 0 250

-0 005

5

0.263

0 008

0. 003

0.714

0. 056

0 382

1. 164

0 793

0. 248

+ 0 94

+ 0 250

-0 005

Ul CTi

TABLE

Example

Sample No.

of inclusion

Inclusion No.

size

XIV-A

distribution

Shape

i n Rlll-Il-LQD-Sample

Florescence under the e l e c t r o n beam

1.

Diameter i n pm

1

round

blue

4. 5

2

elongated

blue

5.0

3

semiround

blue

6.0

4

elongated

blue

7.0

5

round

blue

4.5

6

S-shape

blue

6.0

7

round

blue-green

6.0

8

angular

blue

4. 5

9

duplex-round

2-blue

5.0

10

round

blue

4.0

11

triangle

blue

5.5

12

duplex

blue

8.5

13

elongated

blue

5.5

14

elongated

blue

5.5

15

triangle

blue

5.5

16

angular

blue

4.5

17

elongated

blue

6.5

18

round

light-blue

8.0

19

duplex

2-blue

8.0

20

irregular

blue

6 . 0

21

round

blue

8.0

22

round

blue

6.0

369

TABLE Example

Sample No.

of

Inclusion

Lusion No.

Size

XIV-B

Distribution

Shape

i n RIII-Il-SLD-Sl

Fluorescence

Diameter i n ym

1

semi-round

blue

4.0

2

elongated

blue

6.0

3

round

violet

5.5

4

elongated

blue

4 . 5

5

round

blue

4. 5

6

irregular

blue

5.5

7

elongated

blue

5.5

8

round

blue^

8.0

9

irregular

blue

6.0

10

elongated

blue

5.0

11

round

blue

6.0

12

in a clusterround

blue-green

5.5

13

in a clusterround

blue

6.5

14

elongated

blue

5.0

15

round

blue

5.0

16

half-moon shape

blue

7.5

17

elongatedirregular

blue

5 .0

18

elongated

blue

5.0

19

elongated

blue

4 .0

20

elongated

blue

5 .0

TABLE Data

of Plot

Equilibria

V

Al 0 /CaO-6Al 0 /CaS 2

3

2

1.4155

3

6Al 0 -CaO/CaO-2Al 0 /CaS 2

3

2

1.995

3

CaO-2Al O /Ca0-Al 0 /CaS 2

3

2

3

+ CaO-Al 0 /(CaO)* 2

+

+

C

*

s o l i d

0

t +

+

a

+

Slag 3

a

CaS CaS

CaS

+

3

/

(

C

a

0

)

t

( A l ^ W C a S

(Al 0 ) /Cas

+

compositions = ° =

0

3

" ,

*

°- *8 9

~

3

according A

l

2

-1.0,

o

a

A

l

Ca

x 10'

x 10~

0.758 x 10 -3

3.360

x 10

4 x 10~

6.87

3

1.35 x 10"

a, CaO

^

suggest

a

0.8

CaO

(238,239) f r o m Sharma a n d R i c h a r d s o n @

Y

This

i s also

/ J

an average v a l u e

=

Y

x

1.4228

7.85

- !

2.5 -8

^

h

x 10

x 10~

1.2457

9

1.35 x 10

4

x 10

x 10"

-4

-3

K

h

x

10

!-567

x

10"

1-0

-3

@ 1650°C

X

CaS

0

568 '

Y

x

9-61

%

X = 1 x 6.3

x

10 10

3

x

(1550°C)

- 2 x 10~ . 3

and

a

v r

CaS(1650°C)

=

'

l

x lo"

65

CaS(solid)

-5

2-014

1.2156

3

3.84 x 10

Al O

- 0.9 = 0

a

and

C a S ( l ii q u i d )

since

x 10~

9

S

0.0625

0.1,

v /< CaS(solid)

Al

p s e u d o - b i n a r y d i a g r a m a t 1827°

C

They

S

x 10 -10

2.3155

x 10"

U

a

(87 - 8 9 )

S

to the C a O - A l ^ 2 3

0.7,

3

Figures

1.83

^

+

2

h

XV

l^fifl i

b

6

B

0

-

5

5

5

10~

6

371

TABLE

and

e

e^

=-5.25,

A 1

a

XVI

= -62,

%Ca Equilibrium (invariant)

«? = -

%0

(1)

1 x

10"

(2)

2.5

(3)

.5 x

(4)

8 x

10"

(5)

1 x

10"

x

and

2.65

3

10~ 10~

3

2.6

x x

%A1 10~ 10~

2

2

%S

2.35

x

5 x

10~

2

5.35

x

10

10~

2

3.95

x

10

2.75

x

10

1.56

x

10'

2.35

x

10~

2

1 x

3

2.27

x

10"

2

1.2

2

2.15

x

10"

2

1.89

3

4 0

x

10"

10~ x

3

2

10"

2

7.4

x

10" 2 2 -2 2

TABLE XVII Computed Compositions by Using Data i n Table XV

Interaction Parameter e£ Equilibrium (invariant)

Composition

a

Ca

Al

(ppm) 0

(i)

-535

10

15

20

(2)

-400

25

38

32

(3)

-300

65

97

34

ti

(4)

-250

80

120

36

ii

(5)

-200

100

150

42

II

The i n t e r a c t i o n parameter f o r the C a - 0 was assumed v a r i a b l e and the A l - 0 and Ca-S were: e = -62 A l

and -110

TABLE

Effect

of Initial

Growth

During

XVIII

Number

Cooling

of Inclusions of Liquid

on

Metal

Number o f Inclusions Initially

Initial Radius

Final Radius

10 /cc

1 ym

40

72

2

40

72

268. 0

5

40

75

238 . 9

9

40

87

208 . 3

10

40

92

201. 7

1

18

90

5 7 . 37

2

18

91

5 2 . 79

5

19

02

4 2 . 40

"

9

19

56

32. 87

"

10

19

79

30. 98

1

8 78

1 1 . 23

2

8 81

9 .58

5

9 28

6 .38

3

»

10 /cc 4

10 /cc 5

10 /cc 6

"

Growth Time (Lowe r Limi

um

279. 5

9

11

2

4 .15

10

11

88

3. 79

1

4 09

2. 02

2

4 23

1. 5

5

5 77

0. 76

9

9 27

0 .44

22

0. 39

10

10

10 /cc

1

1 98

0. 31

It

2

2 45

0. 19

9

9 03

0. 04

7

"

10

10

02

sees

0. 0 3 9 7

374

APPENDIX Thermodynamic faces

relationships

of s t a b i l i t y

1(1):

(I):

2°3

6 A 1

AG°

l f

2

2

1

4

7

'

1

4

'

8

2

2

C

a

3

0

1

'

6

2

+

o

G

^

[

+

6Al 0 -CaO

a

(

2

3

2

'

2

3

8

'

2

3

9

data

>.

S

]

3

6 A l 0 - C a O + CaS + [0]

=

2

A

the sur-

Al 0 /CaO/6Al 0 -CaO/CaS

+

=

to generate

f o r t h e Fe-Ca-Al-O-S system, u s i n g

from the l i t e r a t u r e

Equilibria

developed

G

O

A

B

=

S

~ "CaS"

3

A

G

-

~ Al 0

a

3

7.082 X 10

A

3

a

~ CaO

a

2

2 A G °

-

^

~

a

3

= RTlnK

Q

I ( 1 )

1

0 = -RT l n [ ^ ] S h

h

l

n

h

1(2):

I(l)

K

1

-

9

5

5

= 1.4155 X 1 0

Q

6 A 1

"

=

2°3

+

2

f

C

a

^

K

h

_ 1

+

i ( l )

h

=

4

-

6

3

2

7

x

h

Ca O S

=

7

'

5

9

4

2

x

h

h

C a

h

h

s

1

0

iO"

= 2.316 X 1 0 "

t

h

2 1

/

1 0

h

O

S

= 6 A l 0 - C a O + CaS 2

]

3

= -1.6781 X 1 0

5

Ca O S h

h

1

I(2)

-1 = —•

10

A - I (1)

[S]

+

x

g

= -RT l n [ - 5 - ^

-RT InK

l n K

i^iss

=

u

s

b

Y

K

i(2)

=

1

-

?n 3

1

substituting

6

8

x

1

0

A-I(l)

A-I(2)

375

1(3):

12 [ A l ] + 18[0] + CaO +

-7.8183 X 1 0

5

[S] = 6 A l 0 « C a O 2

= -RT l n K

-> l n K

l ( 3 )

+ CaS

3

I ( 3 )

= 2.158 X 1 0

2

93 K

I(3)

=

h

Al O

=

h

Equilibria

11(1):

5.46657 X 10

2

'

0

(II):

1

4

X

1

0

and by

AG°

=

6Al 0 •CaO/CaO/2Al 0 «CaO/CaS 2

3

2

3

AG°

AG°

+

[S] = 2 A l 0 « C a O 2

- |(AG°

A S

3

)

A 0

±

f

a

CaS

- |(AG

D

a

CA

"

0

a

CaO

"

a

CA

2

K

0 yh s

I I

II(D

^ j

= 1.4257 X 1 0

1

=

1

'

c

"

1

O

9

5

3

h

thus

) =

I I ( 1 )

"

-RTlnK

+ CaS + [0]

3

2 -RTknK

A-I(2)

A-I(3)

5

| ( 6 A 1 0 - C a O ) + y(CaO) + 2

substituting

= 1.953 X 10

X

-2

1

0

~

4

+ l n K ^ ^ j

=

- 3.9359

3

A-II(I)

11(2):

j(6Al 0 -CaO) 2

2A1 0 2

+ |[Ca] + |[0] +

3

[S] =

«CaO + CaS

3

-RTlnK

3.629

= 1. 3146 X 1 0

I l ( 2 )

X

10

-»• l n K

5

by

II(2)

=

substituting

h

11(3):

Ca S h

£

1

,

1

1

6

0

8

2

x

X

h

Equilbria

2

Al O h

1

q

1

*

5

2

)

2

ca O S h

h

=

-

2

3

1

9

5

x

iO"

1

6

1

0

=

8

~

A-IK2)

9

[Ca] +

[S] = 2Al <D -CaO 2

'

6

0

8

X

l

o

1

5

•* n ( 3 ) K

3

+ CaS

-+

=

2

- 324 4

X

10

3 7

A-II(1)

=

1

(III):

-

7

0

4

X

1

0

~

3

A-IK3)

5

2Al 0 -CaO/CaO/Al 0 •CaO/CaS 2

3

1 3 ( 2 A 1 0 - C a O ) + j CaO + 2

h

= - 3.11824 X 1 0

( l I ( 3 )

II(3)

substituting

III(l):

3

4[A1] + 6 [ 0 ] +

l n K

(

A-II(l)

-RTlnK

by

-

4

l

1

5 K

I

2

3

[S] = A l ^ - C a O

+ CaS +

[O]

377 AG°

=

AG°

-RTlnK

l

f

a

=

S

| ( A G °

~~ C A

a

A

2

~

a

= 1.67697

I I l ( 1 )

= 9.758

-

)

§(AG°

a 0

)

=

X 1 0 " h

2

X 1 0

a

4

CaO

+

L

N

"

1

= -4.63

K I

I

I

(

1

)

A-III(l)

3

g

y ( 2 A l 0 - C a O ) + |(CaO) + [Ca] + [S] = A l ^ - C a O + CaS 2

3

-RTlnK

by s u b s t i t u t i n g

h

Ca S h

=

= 7.0675 X 1 0

I I l ( 2 )

1.95111 X 1 0

111(3):

a

" CaS

3

Q

C

I I I ( 1 )

= RTlnK

h

AG

+

Al 0 .CaO 2

111(2):

A

-»• K

1

I I I ( 2

)

lnK

4

=

I I l ( 2 )

= 2.97546 X 1 0

8

A-III(l)

3

,

3

6

X

1 0

~

A-IIK2)

9

2[A1] + 3[0] + [Ca] +

[ s ] + CaO = A l ^ - C a O + CaS 5

-RTlnK

I I I ( 3 )

5.346 X 1 0

1

= -1.9366 X 10

K I I I (

3)

^

lnK

= 1-6568 X 1 0

I I l ( 3 )

2 3

=

378

by s u b s t i t u t i n g

A-III

(2)

2 h

Al O h

i -

=

Equilibria (IV)

2

1

5

6

!0~

x

A-III

5

:

A 1 0 - C a O / C a O ( 4 2 .0 wt.%) + A1 C> 2

(3)

3

2

58.0 wt. %

3

(liquid)/CaS

IV(1):

2CaO + A l 0 2

-RTlnK

l n K

u

a

0

CaO

=

a

CaO

a.

then

h

2

9

5

8

+

6

K I V

->

4

(1)

=

"5.18915 X 1 0 ~

2

a

S

f

" -

+ CaS + [0]

2

h~

l

=

[S] = C a O - A l ^

= 1.06873 x 1 0

I V ( 1 )

IV(l)

+

3

Q

C a S

CaS

a

A

1

X 5.18915 X l O

0

2

0.0355

= 4.0 X 1 0 ~

2

3

- 0.0625(

=

-

3

2 1 6

'

( 2 3 8

h

2 3 2

'

g

),

2 3 3

a

5

- 0.7

( 2 3 2 )

and

>

A - I V (1)

IV(2):

2 [ C a ] + 2[A1] + 4 [0] +

-RTlnK

K

by

IV(2)

[S] = C a O - A l ^

= -2.8111 X 1 0

=

5

'

0

5

3

3

a

substituting

4

x

1

q

3

+ CaS

->

5

3

= 0.0355

(

2

3

8

'

2 3 9

^

and

A - I V (1)

(-3 O

h

IV(3):

Al O h

f

1

X

1

0

5

A

CaO + 2 [ A l ] + 3 [ 0 ] +

AG

i

=

a

t° =

CaO

=

A G

A l

K ,,>

CA

+

2°3

A G

=

CaS

"

A G

[Ca] +

CaO

-

= 1.65287 X 1 0 —

substituting

-

a

, a L3b

h

Ca S h

=

6

,

8

7

R T l n K

( )

V

[S] = C a O - A l ^

2 3

=

C

X

a

2

+ CaS

IV(3)

[

S

-

a

by

I

1

"

IV(3)

TT7

=

_

CaO

i

.3. T~Al O Ca S 2

h

h

h

h

and A - I V (2) (_,civj

1

0

_

9

A

-

I

V

(

3

)

E q u i l i b r i a (V): CaO

/

C

a

S

( s )

/CaO(57.4

(s)

wt.%)

+ A

l

^ (42.6 wt.%)

(liquid)

380

±

f

a

CaS

0.988 - 1 . 0

B

and a _ s 0.8 CaO n

h

C a

h

s

h

Al O

h

Ca O

h

h

h

S

0

( 2 3 8

.9

s

1.35 X 10

=

9.6 X 10

3.29 X 10

= 2.35 X 10" h

s

2 3 9 )

( 2 1 6

'

,

a

A l O ,

,

=

0.1

( 2 3 2 )

2 3 2 )

A-V (1)

A-V (2)

6

3

Q

8

'

1

1

A-V (3)

A-V (4)

Sponsor Documents

Recommended

No recommend documents

Or use your account on DocShare.tips

Hide

Forgot your password?

Or register your new account on DocShare.tips

Hide

Lost your password? Please enter your email address. You will receive a link to create a new password.

Back to log-in

Close