Bicol College High School

Published on February 2017 | Categories: Documents | Downloads: 35 | Comments: 0 | Views: 258
of 15
Download PDF   Embed   Report

Comments

Content

BICOL COLLEGE HIGH SCHOOL DARAGA, ALBAY S.Y. 2011-2012

PROJECT IN
CHEMISTRY
SUBMITTED BY:

Kristoffer Lawrence Morales
II-AMETHYST

SUBMITTED TO:

MS.ROSE KRISTINE A. LOMERIO
SUBJECT TEACHER

IONIC
COMPOUNDS

EXAMPLES OF IONIC COMPOUNDS

➢ HYDROCHLORIC ACID

Hydrochloric acid- is a solution of hydrogen chloride (HCl) in water, that is a highly corrosive, strong mineral acid with many industrial uses. It is found naturally in gastric acid. Historically called muriatic acid, and spirits of salt, hydrochloric acid was produced from vitriol (sulfuric acid) and common salt. It first appeared during the Renaissance, and then it was used by chemists such as Glauber, Priestley and Davy in their scientific research. With major production starting in the Industrial Revolution, hydrochloric acid is used in the chemical industry as a chemical reagent in the large-scale production of vinyl chloride for PVC plastic, and MDI/TDI for polyurethane. It has numerous smaller-scale applications, including household cleaning, production of gelatin and other food additives, descaling, and leather processing. About 20 million tonnes of hydrochloric acid are produced annually.

➢ SALT/ SODIUM CHLORIDE

SODIUM CHLORIDE- also known as salt, common salt, table salt or halite, is an inorganic compound with the formula NaCl. Sodium chloride is the salt most responsible for the salinity of the ocean and of the extracellular fluid of many multicellular organisms. As the major ingredient in edible salt, it is commonly used as a condiment and food preservative.

➢ MAGNESIUM CHLORIDE

Magnesium fluoride- is an inorganic compound with the formula MgF2. The compound is a white crystalline salt and is transparent over a wide range of wavelengths, with commercial uses in optics.

➢ POTASSIUM NITRATE

Potassium nitrate- is a chemical compound with the formula KNO3. It is an ionic salt of potassium ions K+ and nitrate ions NO3−.

It occurs as a mineral niter and is a natural solid source of nitrogen. Potassium nitrate is one of several nitrogen-containing compounds collectively referred to as Saltpeter. Major uses of potassium nitrate are in fertilizers, food additive, rocket propellants and fireworks; it is one of the constituents of gunpowder.

➢ MANGANESE SULFIDE

Manganese(II) sulfide- is a chemical compound of manganese and sulfur. It occurs in nature as the mineral alabandite.

➢ ALUMINUM CHLORIDE

Aluminium chloride (AlCl3)- is the main compound of aluminium and chlorine. It is white, but samples are often contaminated with iron trichloride, giving it a yellow colour. The solid has a low melting and boiling point. It is mainly produced and consumed in the production of aluminium metal, but large amounts are also used in other areas of chemical industry. The compound is often cited as a Lewis acid. It is an example of an inorganic compound that "cracks" at mild temperature, reversibly changing from a polymer to a molecule.

➢ POTASSIUM CHLORIDE

potassium chloride (KCl)- is a metal halide salt composed of potassium and chlorine. In its pure state, it is odorless and has a white or colorless vitreous crystal appearance, with a crystal structure that cleaves easily in three directions. Potassium chloride crystals are face-centered cubic. Potassium chloride was historically known as "muriate of potash," this name is occasionally still encountered in association with its use as a fertilizer. Potash varies in color from pink or red to white depending on the mining and recovery process used. White potash, sometimes referred to as soluble potash, is usually higher in analysis and is used primarily for making liquid starter fertilizers. KCl is used in medicine, scientific applications, and food processing. It occurs naturally as the mineral sylvite and in combination with sodium chloride as sylvinite.

➢ SODIUM OXIDE

Sodium oxide- (SOX) is a chemical compound with the formula Na2O. It is used in ceramics and glasses, though not in a raw form. Treatment with water affords sodium hydroxide. Na2O + H2O → 2 NaOH

The alkali metal oxides M2O (M = Li, Na, K, Rb) crystallise in the antifluorite structure. In this motif the positions of the anions and cations are reversed relative to their positions in CaF2, with sodium ions tetrahedrally coordinated to 4 oxide ions and oxide cubically coordinated to 8 sodium ions.

➢ CAESIUM CHLORIDE

Caesium chloride- is the inorganic compound with the formula CsCl. This colorless solid is an important source of caesium ions in a variety of applications. Its crystal structure forms a major structural type where each caesium ion is coordinated by 8 chlorine ions. Caesium chloride crystals are thermally stable, but easily dissolve in water and concentrated hydrochloric acid, and therefore gradually disintegrate in the ambient conditions due to moisture. Caesium chloride occurs naturally in mineral waters and as an impurity in carnallite (up to 0.002%), sylvite and kainite. Less than 20 tonnes of CsCl is produced annually worldwide, mostly from a caesium-bearing mineral pollucite.

➢ SODIUM SULFIDE

Sodium sulfide- is the name used to refer to the chemical compound Na2S, but more commonly it refers to the hydrate Na2S·9H2O. Both are colorless water-soluble salts that give strongly alkaline solutions. When exposed to moist air, Na2S and its hydrates emit hydrogen sulfide, which smells much like rotten eggs or flatus. Generally, commercially available sodium sulfide is not a unique chemical entity, but it is

specified as Na 2 S· x H 2 O, where a weight percentage of Na 2 S is specified. Commonly available grades have around 60% Na 2 S by weight, which means that x is around 3. Such technical grades of sodium sulfide have a yellow appearance. These grades of sodium sulfide are marketed as 'sodium sulfide flakes'. Although the solid is yellow, solutions of it are colorless.

COVALENT
COMPOUNDS

EXAMPLES OF COVALENT COMPOUNDS
➢ AMMONIA

Ammonia, as used commercially, is often called anhydrous ammonia. This term emphasizes the absence of water in the material. Because NH3 boils at −33.34 °C (−28.012 °F) at a pressure of 1 atmosphere, the liquid must be stored under high pressure or at low temperature. "Household ammonia" or "ammonium hydroxide" is a solution of NH3 in water. The concentration of such solutions is measured in units of baume (density), with 26 degrees baume (about 30% w/w ammonia at 15.5 °C) being the typical high concentration commercial product. Household ammonia ranges in concentration from 5 to 10 weight percent ammonia.

➢ CARBON TETRACHLORIDE

Carbon tetrachloride- also known by many other names (the most notable being carbon tet in the cleaning industry, and a Halon or Freon in HVAC; see Table for others) is the organic compound with the formula CCl4. It was formerly widely used in fire extinguishers, as a precursor to refrigerants, and as a cleaning agent. It is a colourless liquid with a "sweet" smell that can be detected at low levels. Both carbon tetrachloride and tetrachloromethane are acceptable names under IUPAC nomenclature.

➢ CARBON DIOXIDE

Carbon dioxide (chemical formula CO2) is a naturally occurring chemical compound composed of two oxygen atoms covalently bonded to a single carbon atom. It is a gas at standard temperature and pressure and

exists in Earth's atmosphere in this state, as a trace gas at a concentration of 0.039% by volume. CO2 is an acidic oxide: an aqueous solution turns litmus from blue to pink. It is the anhydride of carbonic acid, an acid which is unstable in aqueous solution, from which it cannot be concentrated. In organisms carbonic acid production is catalysed by the enzyme, carbonic anhydrase. CO2 + H2O H2CO3

CO2 is toxic in higher concentrations: 1% (10,000 ppm) will make some people feel drowsy. Concentrations of 7% to 10% cause dizziness, headache, visual and hearing dysfunction, and unconsciousness within a few minutes to an hour.

➢ NITROGEN DIOXIDE

Nitrogen dioxide- is the chemical compound with the formula NO2 it is one of several nitrogen oxides. NO2 is an intermediate in the industrial synthesis of nitric acid, millions of tons of which are produced each year. This reddish-brown toxic gas has a characteristic sharp, biting odor and is a prominent air pollutant. Nitrogen dioxide is a paramagnetic bent molecule with C2v point group symmetry.

➢ GLYCOGEN

Glycogen- is a molecule that serves as the secondary long-term energy storage in animal and fungal cells, with the primary energy stores being held in adipose tissue. Glycogen is made primarily by the liver and the muscles, but can also be made by glycogenesis within the brain and stomach.

Glycogen is the analogue of starch, a glucose polymer in plants, and is sometimes referred to as animal starch, having a similar structure to amylopectin but more extensively branched and compact than starch. Glycogen is a polymer of α(1→4) glycosidic bonds linked, with α(1→6)-linked branches. Glycogen is found in the form of granules in the cytosol/cytoplasm in many cell types, and plays an important role in the glucose cycle. Glycogen forms an energy reserve that can be quickly mobilized to meet a sudden need for glucose, but one that is less compact than the energy reserves of triglycerides (lipids).

➢ DOPAMINE

Dopamine (sometimes abbreviated DA) is a catecholamine neurotransmitter present in a wide variety of animals, including both vertebrates and invertebrates. In the brain, this substituted phenethylamine functions as a neurotransmitter, activating the five known types of dopamine receptors—D1, D2, D3, D4, and D5— as well as their variants. Dopamine is produced in several areas of the brain, including the substantia nigra and the ventral tegmental area. Dopamine is also a neurohormone released by the hypothalamus. Its main function as a hormone is to inhibit the release of prolactin from the anterior lobe of the pituitary.

➢ OXYGEN

Oxygen- is the element with atomic number 8 and represented by the symbol O. Its name derives from the Greek roots ὀξύς (oxys) ("acid", literally "sharp", referring to the sour taste of acids) and -γενής (-genēs) ("producer", literally "begetter"), because at the time of naming, it was mistakenly

thought that all acids required oxygen in their composition. At standard temperature and pressure, two atoms of the element bind to form dioxygen, a very pale blue, odorless, tasteless diatomic gas with the formula O2.
Oxygen is a member of the chalcogen group on the periodic table and is a highly reactive nonmetallic element that readily forms compounds (notably oxides) with almost all other elements. Oxygen is a strong oxidizing agent and has the second highest electronegativity of all the elements (only fluorine has a higher electronegativity). By mass, oxygen is the third most abundant element in the universe after hydrogen and helium and the most abundant element by mass in the Earth's crust, making up almost half of the crust's mass. Free oxygen is too chemically reactive to appear on Earth without the photosynthetic action of living organisms, which use the energy of sunlight to produce elemental oxygen from water. Elemental O2 only began to accumulate in the atmosphere after the evolutionary appearance of these organisms, roughly 2.5 billion years ago. Diatomic oxygen gas constitutes 20.8% of the volume of air.

➢ SEROTONIN

Serotonin or 5-hydroxytryptamine (5-HT) - is a monoamine neurotransmitter. Biochemically derived from tryptophan, serotonin is primarily found in the gastrointestinal (GI) tract, platelets, and in the central nervous system (CNS) of animals including humans. It is popularly thought to be a contributor to feelings of well-being and happiness. Approximately 90% of the human body's total serotonin is located in the enterochromaffin cells in the gut, where it is used to regulate intestinal movements. The remainder is synthesized in serotonergic neurons of the CNS where it has various functions. These include the regulation of mood, appetite, and sleep. Serotonin also has some cognitive functions, including memory and learning. Modulation of serotonin at synapses is thought to be a major action of several classes of pharmacological antidepressants.

➢ WATER

WATER- A molecule is an aggregation of atomic nuclei and electrons that is sufficiently stable to possess observable properties— and there are few molecules that are more stable and difficult to decompose than H2O. In water, each hydrogen nucleus is bound to the central oxygen atom by a pair of electrons that are shared between them; chemists call this shared electron pair a covalent chemical bond. In H2O, only two of the six outershell electrons of oxygen are used for this purpose, leaving four electrons which are organized into two non-bonding pairs. The four electron pairs surrounding the oxygen tend to arrange themselves as far from each other as possible in order to minimize repulsions between these clouds of negative charge. This would ordinarly result in a tetrahedral geometry in which the angle between electron pairs (and therefore the H-O-H bond angle) is 109.5°. However, because the two non-bonding pairs remain closer to the oxygen atom, these exert a stronger repulsion against the two covalent bonding pairs, effectively pushing the two hydrogen atoms closer together. The result is a distorted tetrahedral arrangement in which the H—O—H angle is 104.5°.

➢ SULFUR OXIDE

Sulfur dioxide (also sulphur dioxide) - is the chemical compound with the formula SO2. It is a poisonous gas that is released by volcanoes and in various industrial processes. Since coal and petroleum often contain sulfur compounds, their combustion generates sulfur dioxide unless the sulfur

compounds are removed before burning the fuel. Further oxidation of SO2, usually in the presence of a catalyst such as NO2, forms H2SO4, and thus acid rain. Sulfur dioxide emissions are also a precursor to particulates in the atmosphere. Both of these impacts are cause for concern over the environmental impact of these fuels.

Sponsor Documents

Or use your account on DocShare.tips

Hide

Forgot your password?

Or register your new account on DocShare.tips

Hide

Lost your password? Please enter your email address. You will receive a link to create a new password.

Back to log-in

Close