Blood Pressure

Published on March 2017 | Categories: Documents | Downloads: 84 | Comments: 0 | Views: 743
of 116
Download PDF   Embed   Report

Comments

Content

 

Spacelabs Medical: BLOOD PRESSURE

N

B L O O D  P R E S S U R E And.ew R .  Nara,  M.D.,  Ph.D.,  F.A.C.C.,  F.C.C.R Assistant  Professor  of  Medicine  Medicine Case  Western  Reserve  University Director,   Cardiac Intensive Cardiac Intensive  Care  Unit Division of Cardiology  Cleveland University Hospitals   of  Cleveland Cleveland Cleve land,, Ohio

Michael   P .  Burns,  R.N.,  B.A.,  B.A., B  B . S.N. Research  Nurse   Cardiology Division of  Cardiology University Hospitals   of  Cleveland   Cleveland Cleveland Cleve land,, Ohio

W . Gregory  Downs,  B.S.E. Research  Biomedical Engineer   Cardiology Division of  Cardiology University Hospitals  of  Cleveland  Cleveland Cleveland,   Ohio

 

This  book  is   part of  the  the SpaceLabsMedical   Biophysical Measurement Book Series for biomedical an  and d clinical professionals.   The series  is  an educational   service  of  SpaceLabs Medical, a leading   provider  of  patient  patient monitoring   and clinical   informatio information n system systems. s. ©  SpaceLabs  Medical,  Inc.,  1993

First Printing,   1990 Second  Printing,   1993 All rights  reserved. No part part of   of  this  book   may may be reproduced  by  an  any y means or transmitted, transmitted, or translated  into   a machine   language without  th  the e written permission   of   th the e publisher.

All brands  an  and d product  names  are   trademarks  of the their ir respective owners. respective  owners.

Published by SpaceLabs  Medical,  Inc., Redmond, Washington,   U.S.A.  the e United  States. Printed   in  th

ISBN   0-9627449-0-5

 

Spacelabs Medical: BLOOD PRESSURE

T ABLE OF  CONTENTS Page

INTRODUCTION

3.2   Fluid-filled   Systems

tO  ARTERIAL  PRESSURE

PULSES

 

3

1.1   Anatomy  and Physiology   of the    Circulatory Syst~ein   the Heart 1.1.1   Anatomy   of  the 1.1.2   Arterial System   11.3   Venous   System   1.2   Cardiac  Cycle 1.2.1   Ventricular Cycle Ventricular  Cycle 1.2,2   Atrial  Cycle

3 3 7  9

 

 

11 13 17

   

1.3   Standard   Pressure  Definitions

 

19

2.0   PRESSURE  

21

 

21

TRANSMISSION

2.1   Harmonic  Analysis of   Blood  Blo od Pres Pressure sure Wa Wavefo veforms rms

2.2   Fundamentals   of  Hydrau  Hyd rau lic licss   2.2.1   Laminar  and  Turbulent  Flow 2.2.2   Poiseuffle’s   Law  

 

25 27 29

2.3   Vascular   Impedance  Concepts   2.3.1   Measurement   (Calculation)   2.3.2   Physiological Importance  

29 29 31

2.4   Mean Mean Blood  Blood Pressure Transmission:  DC Analogy

31

 

2.5   Systolic   and   Diastolic Pressure Pressure Tnrnsmission:   AC Analogy 37   2.5.1   Damping  of High  Frequencies..   .   .38   38 2.5.2   Tapered Tube Tapered  Tube  Effect 2.5.3   Frequency Dispersion   38 2.5.4   Pressure   Wave  Reflection   39

3.0  INVASIVE   (DIRECT) MEASUREMENT TECHNIQUES

 

3.1   Pressure  Mecisurement Sites   of  Clinical   Clinical  interest  3.1.1   Peripheral   Arterial  Pressure 3.1.2   Central  Venous   and Pulmonary  Artery  Pressures 3.1.3   Left Ventricular Left  Ventricular   and  Aortic Pressures  

41 41 43

   

48 52

 

3.2.1   Determination  and Optimization of   Frequency Response   3.2.2   Constant  Infusion  System 3.3   Intravascular   (Catheter-tip) Transducer   Systems

Page 53

53 64

 

 

3.4   Blood Pressure Transducer   Princ iples 3.4.1   Principles   of  Operation  Operation   3.4.2   Considerations   in  Evaluation

6 6  66   66  69

 

3.5   Measurement  Errors,   Errors,   Distortions, and Artifacts   70 3.5.1   End Pressure,   Catheter  Whip, and  Catheter Impact  Artifacts   ...   .70 3.5.2   Respiratory Effects   73 Respiratory  Effects 3.5.3   Transducer Zeroing   76

4.0   NONINVASIVE   (INDIRECT) MEASUREMENT TECHNIQUES  

76

4.1   Auscultatory Measurement    76  4.1.1   Korotkoff  Sounds   78 4.1.2   Limitations   and   Sources  of  Error.   Error.   .81 4.2   Automated   Noninvasive Measurement  Measurement    4.2.1   Auscultatory  Measurement   4.2.2   Oscifiometric  Measurement   Ultrasound und 4.2.3   Doppler Ultraso Measurement   4.2.4   Noninvasive   Continuous   Finger Blood  Pressure Monitoring  

86 86 86 87 91

4.3   Correlation   Between  Direct  and   a nd   Indirec  Ind irec t   Measurement   

91

5.00   REFERENCES 5. ILLUS T RAT ION   CREDITS 6.0   ILLUS IBLIOGRAPHY OGRAPHY   7.0  B IBLI   8.0   G L O S S A R Y INDEX  

  .

  .95 96 104 107

 

SpacelabsMedical: BLOOD PRESS PRESSURE URE

INTRODUCTION This  publication  presents  the  principles  of  hemodynamic This publication   hemodynamic  pressure  measurements   of   the  human   cardiovascular system cardiovascular  system  and  discusses  the interpretation of   the  results of  current   current blo  blood od pressu pressure re measurement techniques.   The information contained within this monograph  provides  the  technician,   clinical engineer and  biomedical   engineer with a  working knowledge  of cardiovascular   human physiology  and  the   various various technolo technologies gies related to the  assessment   of  human the assessment blood pressure. a  quick  and The Th e  circulatory syste system m pro provid vides es   the  mechanism for a quick   and con of all all   the cells which must  occur to  provide nutrients  and tinuous  revitalization of  remove  waste products from the entire  entire body.  body.  The heart, the major power comtwo o  pumps  connected  in  series  with the ponent   of  the  the   circulation,   works  as   tw  left ventricle  ventricle pushes right ventricle forcing bloo  blood d throu through gh  the lu lung ngss  while   the left blood   throughout   the   remainder   of  the  the  body. Blood exits   the heart’s ventricles into the arteries.  Production  of art arteri erial al blood pre blood pressu ssure re  comprises   a  complex  interaction of  many   many  variables in  the  the   circulatory system.   With  the  heart serving   as a  pulsatile pump,   a  given  volume of blood blood enters  the  arteries  with each heart beat and  produces pressure pulses  system. em. These   pressure  pulses   subsequently   travel  down   the in  the   arterial  syst arterial  tree in  the form   of a  pressure   wave,   which  changes   in configuration as   it   moves  away  from   the  heart. The  propagated   pressure  wave  produces arterial pulsations that can be felt  a  att severa  severall locat locations ions  throughout the bod body y su such ch as the radial artery in the wrist  and the carotidartery in the neck. neck. Arterial  Arterial blood pressure   is   the  quantitative   measurement   of  the   the observed pulsation. A thorough  examination of   the  quality of  the  systemic arterial  pulsa- the  systemic  arterial pulsa

 any  cardiac  assessment.  Blood   pressure  measurelions  is   an  integral  part   of  any ments   are   obtained  clinically   by   both  invasive   and   noninvasive   methods. Invasive, or Invasive,  or direct,   blood pressure  monitoring  requires  gaining  access to  the  requires gaining circulatory  system by  means  of a  catheter   and   recording  the   pressure   of   the  vessel directly blood within  the  vessel  directly using   a pressure  transducer.   Noninvasive,   or indirect,  blo  blood od pressur pressure e measurement measurement involves the  detection of blood pressure without puncturing  the  skin,  usually  by   employing an  occluding  occluding cuff.  cuff.   PhysPhysiological  distortion and measurement errors  can  cause inaccuracy in both the invasive   and  noninvasive  techniques  for  assessing  blood pressure. Such   distortions and  errors could adversely affect affect the  the  diagnosis and/or treatment of the varipatient. Therefore,  one  must become skilled in interpreting the results   of variouss  blood ou  blood pressure  pressure measurement  measurement  techniques.

1

 

 Medical:   BLOOD PRESSURE Spacelabs Spacelabs Medical:

1.00   ARTERIAL  P R E S S U R E   P U L S E S 1. 1 . 1   Anatom y and  Physiology    Physiology  of 

the Circulatory System 

The card cardiova iovascu scular lar system con consists sists of  of a se sett of tubes, tubes,  known as blood vessels,   through w  which hich blood flows  arid a pump, the heart,  that provides the  energy  necessary  to propel  the  blood. The   entire  system forms   a  closed  circuit with   the blood  continuously  pumped out  of  the heart the  heart through   one   set   of  vessels   vessels  (arteries)   and  returned   to   the heart via  a  different  vessel  group  (veins).  This  circulatory system is  two  distinct  circuits:   the pulmonary  circulation to  the composed   of  two lungs   and the the systemic  systemic  circulation to  the rem remain ainder der of the body. Both circuits begin  and  end  at the heart,  heart, which  which   is  divided  longitudinally into two functional  halves.   The pulmonary  circulation receives  deof  the oxygenated blood  pumped  the  right  side  the  heart, is  oxygenated, is oxygenated,   it to   to  the  lungs and  returns transports   it venous where  it  from the left side of  th the e hea heart. rt. The systemic  circulation receives oxygenated blood  pumped  from   the  left   side   of  the  the   heart   and  delivers  delivers   it   to  a  all ll the  tissues   of  the  the  body,  including the  bronchial  circulation,  returnir-ing in g th the e  deoxygenated blood to   the right side of the heart.   In both cir vesselss carry carrying ing blood away from  the he cuits, the cuits,  the vessel hear artt are called  arteries veins  (Figure  1.1). and tho those se retu returni rning ng blo blood od to  the heart  are  called veins (Figure

 off the Heart 1.1.1   Anatomy o The Th e  heart  is   a muscular organ located  in  th  the e chest   (thoracic)   cavity slightly to the known  left  le ft of the  Itsm.  walls of a surfaces sternum.  composed special muscle   as my  myocardiu ocardium. Theare ized muscle ized  outer   and  inner are called are  called   epicardium   and  endocardium, respectively   A  thin  layer of  cells,   cells,   the   endothelium,  lines the  heart’s  inner surface  that  comes  covered by  by a  fibrous in contact  with the  blood. The   entire heart  is  covered sac,   the  pericardium.

3

 

Spacelabs Med Medicah icah BLOOD PRESSURE

The heart  functions   as a   dual, two-stage pump.  Each half   of  the  heart contains tw two o  chambers,   an  atrium  and  a ventricle,   which  atrium and are separated ver  verticall tically y by  an  interatriall   and interventricular  septum, respectively.   (Figure  1.2).  1.2).   The The atria  atria function principally as collecting  They also  also  aid in the final chambers for  blood returning to the heart.  They ventricles   by   their   weak   pumping   action.   The   atrial fifing   of   the   ventricles  is small  small   in the  normal  unstressed contribution  to  ventricular filling   is  forms   of  heart heart but can be  very  significant  in various  forms   heart  disease. The Th e ventricles supply the  e  energy nergy necessa necessary ry to  propel blood bloodthrou through gh either the  pulmonary or the   systemic  (peripheral) vessel   circuits. Between the chambers  of the atrium and  the  ventricle are the atrioventric atrio ventricular ular valves (A-V  valves), which  are present on both sides of  the The e  A - V  valves (the tricuspid  on the  right  side and  the   the heart.   Th tricuspid on  the right mitral on  the  left  side)  prevent backflow,   or  regurgitation, of th the e blo blood od  ventricl icles es to   the atria  during ventr from the ventr ventricu icular lar con contract traction ion (systole)

(Figure 1.3).   The aortic  and pu  the heart pulmo lmonar nary y semilunar valves of  the prevent  regurgitation from the great vessels,   the  aorta  a  and nd the   pal(dia-monary artery to  the   ventricles  during  ventricular relaxation (dia stole). All these  valves close  and  open  passively:  that   is,   they  close when   a backward (retrograde) pressure gradient  develops and  open when   the forward  (antegrade) pressure  exceeds  the  retrograde pressure. The semilunar valves  open  during ventricular systole   and  close close during  during systole and open during diastole,  whereas the A -V  valves close during  diastole. In a normal  resting adult,  cardiac  output  (the rate of blood flow from fro m each ven ventrid tride) e) is  approximately five  liters/minute.  During heavy

work   or  exercise,   cardiac   output   may  increase   to as   much   as   25 liters/minute.

5

 

Spacelabs Medic Medical: al: BLOOD PRESSURE

1.1.2   Arterial  System The  arterial system transports blood from  the  ventricles to the  capilThe lary networks.   In the  process  of  transport,   transport, the high-pressure,   intermittent blood flow produced by by ventricular  ventricular ejection  ejection is   converted into a  relatively  constant  flow at  the   level   of  the  the  capifiaries.  Under  resting conditions  the blood  generally travels from the   left ventricle to the  peripheral   tissues  in  less  than ten  seconds. During  very  heavy two o  to three exercise, blood reaches the body’s extremities in as little  as tw seconds. Serving  as a high pressu pressure re reservoii~ reservoii~the large elastic systemic arteries   stretch radially as   the  stroke  volume  of  blood  blood enters the arterial  tree from the ventricles. These  arteries  then decrease  in size  as blood flows out into  the veins  between heartbeats.  Arterial compliance prevents ance  prevents the pre pressu ssure re fm fmm m rising extremelyhigh when th the e blo blood od is pumped  into the a  arteri rterial al tree by  ventricular contraction.  This also  the  heart.  the  arterreduces the  work  requirement  of  the  heart. Resifience  Resifience   of  the  a high arterial pressure between heartbeats heartbeats so  so that blood ies  maintains  maintains a can  continue   to  flow through  the   tissues  without   interruption. leftt sid sidee of th In the systemic  circulation, blood leaves the lef the e he hear artt through   a single  large  artery,   the   aorta. From   the  aorta,   branching  These arteries arteries conduct bl bloo ood d to the organs  and tissues. These  arteries subdivide into progressively  smaller branches  with the majority branching   within   the   specific  organ   or  tissue.   As  blood  leaves  the   small arteries, it flows through the arterioles,  which  are the smallest  arterial  smallest arterial branches measuring only a  few millimeters in length  with diameters of   act as  valves Arterioles   control Each  which   8   tois  5released 0   microns.   through  into arteriole blood the capfflary network. branches  muscu-many times   and  supplies ten   to to 1  1 0 0  capifiaries.   The strong  muscu completely obstruct lar wall of  the  the  arteriole   can  either completely  obstruct  the  vessel   or allow it to  dilate  to  several times  its  its original  original diameter,  enabling  it  to greatl gr eatly y alt alter er blood flow to the capillaries.   Capillaryflow is  also controlled by by changes  changes  in the precapifiary sphincter, which  are small ring ringss of  muscular   muscular tissue   at   the   junction   of  the  the   arterioles   and  capifiaries (Figure   1.4).

7

 

Spacelabs Medical: BLOOD D PRESSURE Medical: BLOO

Approximately   tw two o  bfflion   capifiaries  channel   through the peripheral   tissues.   The total   capfflary   area  produces   an   effective surface of  surface  of  more   more than   500  square meters.  Capillaries,  which  are  thin and  permeable   to  small  molecular substances,   function   in  the   e x — change  of  fluid, nutrients,  fluid,  nutrients,  electrolytes, waste products  products  electrolytes, hormones,  hormones, and waste (for examp example, le, carbon  carbon  dioxide   [C0 2 ])  betweenthe blood and interstitial spaces.  The velocity of blood blood flow is  at  i its ts  minimum  at the  capfflary level,   which   maximizes   the   potential   for metabolic  exchange. structural turally ly similar similar to the systemic The pulmonary circulation is   struc circuit.  Blo  Blood od lea leaves ves the rig right ht sid side e of the heart throug ugh h the  singlelarge the heart thro pulmonary artery~ artery~w which branches   into  left   and   right  pulmonary arteries. Withi Within n the lungs, the  arteries  continue  to  subdivide,  forming  arterioles   and   ultimately  capifiaries.   In these  pulmonary  capillanes,   CO 2 is  is exchanged  exchanged for oxy oxygen gen,,  which  bthds to   the hemoglobin of  the  the   red blood blood   cells.

1.1.3  VenousSystem Blood from   the capifiaries   enters the venules,  which  in  turn gradu which in ally   converge   into pro ally progre gressiv ssively ely larger  larger veins.  veins.   In the  systemic  circulation, veins lation,  veins from different organs  and tissues unite   to form two large veins:   the inferior vena  cava from the lower portion  o  of  f the  body and the   superior vena   cava  from the   upper part   of   the  body. The veins  primarily provide   a  conduit  for   the  transportation of blood from  the tissues tissues ba  back ck to  the heart.  The venous walls  are  are both thin arid muscular, which contributes to   the veins’  abifity to alter their degree. Increased capacitance by contracting or expanding to a limited degree.  Increased capacitance  can  provide a  reservoir for for storage  storage of   of blood,   depending upon   the  needs   of  the  the  body. systemic   circulation,   blood  with   low oxygen  content In   the   systemic   the  heart  by   way   of  the  the  venae cavae. returns   to  the  right  atrium of  the In the  pulmonary circulation,  oxygen-rich blood leaves the lungs by way   of  the  the  pulmonary  veins  that  empty  into  the  left   atrium of   the heart.

9

 

Spacelabs Medical:  BLOOD PRESSURE Spacelabs Medical:

The pressure  in the The the systemic  systemic venous  venous  system is  low,  maintained by unidirectional valves  that allow  heart allow blood  blood to flow only toward the the heart were re not for these regulatory valves,  hydrostatic  pres  pres-(Figure  1.5).  If  it we sure (the pressure   at  any  any level  level   in   a  fluid  at rest  due to the  weight  of 

the  fluid  above   it)   would  produce   a  venous  venous pressure  pressure   in  the  feet of  a  standing adult  of  about  mm m Hg  every  time the  legs   about   90  m Hg..  However,  However, every move,   the   muscles   contract   and  compress   the   veins  either   in   the muscles   or in adj adjacen acentt tissu tissues, es, propelling th  the e blo blood od forward through the  veins.   This pumping  system,  known   as  the venous  pump,   acts so  efficiently that  under ordinary circumstances  the veno venous us press pressur ure e in   the  feet of a  walking   adult remains  below   2 5   mm   Hg Hg..  When   a person  stands perfectly still, perfectly  still,   the  venous  pump does   not  work  and the venous pressures   in the lower part of  the  the  leg  can in incre crease ase to   the full hydrostatic full  hydrostatic value  value   of  90  90   mm  Hg in  about  3 0   seconds.  When  this occurs,   the hydrostatic pressure within the  capillaries  capillaries also  also  increases fluid id fro from m the vascular systeminto the tissue spaces. rapidly,  forcing flu As a  result, the  legs  may swell  and the circulating blood volume  may be  lost from the vascular vascular system  system within the first  1 5  minutes of  standing   standing  circulating blood  volume   and absolutely  stifi.  This potential loss   of  circulating its  effects  become  minimized   by numerous  compensatory mechanisms  found  throughout   the  circulatory system.

  Cycle  1.2 1. 2   Cardiac  Cycle  The period  from the   end  of   one heart  contraction to   the   end  of  the  the next   is  called  the  cardiac cycle.   Each cycle  begins with a  spontaneous  of an electrical  ac  action tion poten potential tial  in the sinoatrial (S-A)  node, generation of  generation a small  mass  mass of   of specialized myocardial cells embedded in the posterior wall of the right  atriu  the  superior vena  vena cava.  cava.  atrium m near the opening   of  the  S-A -A  node  serves as the normal pacemaker for  the entire heart. The S  the   normal pacemaker The action potential travels rapidly through both atria to the atrioventricular (A-V) tricular  (A-V)  node, which  lies between the right atrium and the right ventricle, triggering ventricle,  triggering atrial  atrial contraction  contraction a few milliseconds later (Figure 1.6).   Th The e action  potential   is  delayed in the the A  A -V  node for approximately 1 0 0  milliseconds   to allow  the  atria to contract  and empty their   con into the ve  ventri ntricles cles befo before re ventric ventricular ular contraction.  Therefore,   the tents into tents atria ac actt   as primer pumps  for the ventricles.  The ventricles then pro source of   of  power  the   vasvide the major  source   power for moving blood through through the cular system.

11

 

 _ _ _ _ _ 

 

Spacelabs Medical:  BLOOD PRESSURE

1.2.1   Ventricular Cycle  of a  period of ventricu The cardiac The  cardiac cycle  cycle consists  consists of ventricular lar relaxation called diastole,  followed by  an  interval of ventricu ventricular lar contraction known   as systole. The systole.  The systolic  systolic phase of the ventricular cyde indudes  isovoluniic contraction,   rapid  ejection,   and   protodiastole  (reduced   ejection). Isovolumic contraction,   an  increase in muscle tension in the absence of  fiber   fiber  shortening,  begins   with   the  closure   of   the  atrioventricular valve   and  ends with   the  opening   of  the  the  semilunar valve.  I  Imm mmediately  after ventricu ventricular lar contractio contraction nbegins,   the ventricular pressure rises abruptly   as  shown  shown   in  Figure  1.7.   This  pressure   increase  causes  the A - V   valves   to close,   which  produces  produces   the  first  heart sound   (S 1 ).   An additional   20   to   30   milliseconds   is   required   for   each   ventricle   to generate   a  pressure that  exceeds   the   pressure in  each  great  vessel (aorta or pulmonary  artery)   to open the semilunar  valves   and iriitiate   ventricular  ejection’ The Th e ejection  period includes the  interv  interval al fro from m the  opening of  the semilunar valve   to the beginning of  protodiastole,  protodiastole, when the  slow  the   ventricular  pressure   pulse  gives   way to   a  rapid downslope of  the valves are  are  forced downslope. As shown in Figure  L Z   the  semilunar valves  when the open when open  the  left ventricular  pressure   increases   to slightly above 8 0   mm  Hg  and  the right ventricular pressure  rises  to  to sligh  slightly tly abo above ve 8   mm  Hg. As the   valves open, blood is  ejected fr from om th the e   ventricles with about   7 0%   of  the  the   emptying occurring  during  the  first third  of  the   ejection period  (rapid ejection)  and   the  remaining  30%  during  ejection  or protodiastole).  Protodiastole ends the next two  thirds  thirds (slow  (slow ejection when the  rapidly declining  ventricular pressure  falls   below that   of   declining ventricular the corresponding great vessel,  the aorta or pulmonary  artery~arid  valvee clo closes, ses,   producing the second heart  sound (S2 ). the semilunar  valv

13

 

Spacelabs Medical:  BLOOD PRESSURE

The  diastolic phase of the ventricular cycle  consists of isovolumic The diastolic relaxation, rapid ventricular filling,  slow ventricular filling (diastasis), and  atrial systole (atrial kick).  Ventricular relaxation begins  sudden  sudden-ly at the end of systole with the closure of the semilunar valve,  allowing the pressures to  to  fall  rapidly.  rapidly.   The ventricular muscle  the intraventricular  intraventricular pressures continues   to relax for  another 30  to 6 0  milliseconds although no further  change   in  ventricular volume  occurs,   giving rise   to  the  period of  isovolumic  (or isometric) intra  isovolumic   (or  isometric) relaxation.  During  this  time,   the   intraventricular pressure falls rapidly to a lo low w diastolic value, the A - V  valves  ventricular  filling  begins  when   the   atrial open, and   a   new cycle   of  ventricular pressure   exceeds   the  ventricular  diastolic  pressure. The A - V   valves open  and  allow blood to flow  rapidly into the indicated ed by the increase in the ventricu ventricles,  as indicat ventricular lar volu volume me curve rapid  filling lasts for  about the  first  third in Figure  1.7.   This period   of rapid of  diastole   diastole and  primarily moves blood  stored in the atria during vena  small  amount of  tricular  systole.  Duri  During ng th the e  next  third  of diastole, a small blood normally normallyflows flows fiDm the veins, through the atria, and immediately into the   ventricles.   This  middle third   of  diastole   diastole   is   called  diastasis. During the last third  of diastole,  the  atria contract  and  deliver an  additional volume   of  blood  blood  into  the   ventricles,  which  accounts for approximately for  approximately 2 0   to 30 30% %  of the filling filling of   of the ventricles during each  just st cardiac cycle.  The volume  and pre pressu ssure re of bl bloo ood d in the ventricle  ventricle ju as end-diastolic  end-diastolic volume and  end-diastolic prior to systole are known   as pressure,   respectively.

15

 

Spacelabs Medical: BLOOD  PRESSURE

1.2.2  Atrial Cycle  cardiac cycle During Durin g th the e  cardiac  cycle   thr three ee ma majo jorr pre pressu ssure re  waves, called  a, c,   and v,   occur   in   the   atria  (Figure   1.7). wave ve emanates from  the atrial contraction.   The right atrial The a wa  rises 4 pressure usually usually rises  4 to  to 6   mm Hg  during  during atrial  atrial  contraction,  contraction, whereas  whereas  8   mm  Hg   at   this  time. the  left atrial  pressure  increases  about   7   to to 8 The   c   wave  begins   when   the   ventricles start   to   contract.   It  slight backflow results in part from the  slight  backflow of blood into the  atria  at the onset  of ventricular contraction but is  primarily caused by  the retrograde bulging of the the A  A -V  valves toward the atria secondary to incr increas easing ventricular  pressure. The v  wave  wave occurs  occurs  toward  toward the  the   end  of  the  the  ventricular contraction tio n and rises from  the  slow  accumulation of  blood in the atria while the   A - V   valves remain closed  during ventricular contraction.  When ventricular contraction  e  end nds, s, the   A - V   valves  open   and  allow  blood  ventricles (rapid  (rapid inflow phase),  which  causes to flow rapidly into the  ventricles  wave   to to   disappear. the   v  wave The volume  of blood contribu contributed ted to ventricular fifing by atrial  varies inversely contraction varies  inversely  with   the   duration   of  the  the   previous   diastole   and   directly  w  with ith the   vigor   of   the   atrial   contraction.   Blood normally flows  continually from  the  great veins into  the atria.   A t  slow heart rates,  the  long  diastolic  diastolic interval  interval permits  major ventricular fif ing to  take  place  even before the  atria contract. Thus,  when  diastole conditions), tions),   the becomes prolonged (as under resting condi the   contribution of atrial  contraction may be  minor.   Th The e heart   can continue   to operate quite  satisfactorily  under  normal resting conditions  even without  30% 0%  filling   of the ventricles caused by atnial  kick. the additional 2  200  to  3   atrial  ‘kick’  becomes extremely imporThe volume   contribution   of  atrial tant  during  rapid heart  rates,  such   as those seen  with  exercise,   and  setting of   of impaired/reduced myocardial contractility,   as in conin the setting gestive  heart  failure.

17

 

Spacelabs Medic Medical: al: BLOOD PRESSURE

1.3 1. 3   Standard  Standard Pressure  Pressure  Defini   De finitions  tions  Although the  term  “systolic  pressure”  technically implies   the  pressure  at any instant during systole,   it is   conventionally used to  denote the peak  pressure  pressure during  a  cardiac  cycle.   Similarly,   the term “diastolic  to signify  signify the minimum pressure  during a  cardiac pressure” is  used  to cycle.   Pulse pressure  is  the  difference between systolic  and  diastolic pressure. Mean pressure   is the  average  pressure during   a  cardiac cycle. It  can  be derived  by  integrating  the  blood pressu pressure re  over time,   or by use  of a low  pass   filter   (coCUtoff   ~   0.05   Hz).   if   systolic   and  diastolic pressures   are  known,  known,   the mean pre pressu ssure re can be  approximated using the   following  formula  (Figure  1.8): Pulse Pressure

Mean Pressure

  =

 Diastolic  Pressure   +

 

3

It  should be   recognized  that   the  above  equation  may,   at  times, be

extremely inaccurate.

2.0   P R E S S U R E  TRANSMISSION The blood pressure  waveform  changes   in morphology  and   ampl ampli the systemic  systemic  vascular circuit.   In the large tude   as  it  proceeds through  the systemic arteries, systemic  arteries,   the peak  systolic   systolic  pressure  increases while  diastolic  and mean  pressures  remain relatively unchanged in  comparison The e pressure  begins  to  drop dramatto aortic  pressures  pressures (Figure  (Figure  2.1).   Th

ically   in the  arterioles   and  continues   to fall   in  the  capifiaries so   the mean   pressure   that   began   at   about   1 0 0   mm   Hg   in   the   aorta   has decreased   to  about   1 0   mm  Hg   at  the   end   of  the  the  capillary network. The pressure  continues  to  decrease   to a low of  nearly  nearly 0   mm Hg   in the inferior and sup superior erior vena cava.  The pres pressu sure re in  the thoracic venae cavae  and  the right atrium is  known as central venous pressure (CVP).

19

 

Spacelabs Medical: BLOOD PRESSURE \_ _ _ _ _ _ _ _ _ _  

The pressures   in the   pu~lmonaryvascular  circuit  change   in   a pres-way similar to   the systemic  pressures  with the greatest  drop   in pres sure occurring   in the   capillary  network.   The pressures   in   the   pulmonary   circuit,   however,   are   normally   much   lower  than   in the systemic  circuit,   beginning  at a  mean pulmonary  artery pressure of  about   1 0   to 1 5   mm  Hg  and  reaching 0   to 5   mm  Hg at  the  left  atrium (Figure   2.1).

2.1   Harmonic Harm onic Analysis   of    Waveforms  Blood  Pressure   Pressure  Waveforms  In  any signal  processing application,   one should understand  the frequency spectrums   of  the  the  signal and  of   the noise.   A blood pressure waveform,   like   any   periodic   waveform,   can   be  represented   by   a  series,  which is a  series of  weighted  shifted sine Fourier series, Fourier   weighted   and  shifted  sine  waves (Figure 2.2.).   The weighting   of  each   each sinusoidal frequency refers   to  amplitude   or modulus. The shif shiftt in time of each  frequency the wave’s  amplitude component   with  respect   to   the   other  compo  components nents repres represents ents   the angle.   A  complete discussion of the Fourier  transform wave’s  phase angle. is beyond beyond the  the scope of this  monograph,  b  bu ut can be  found in numer2 ouss  texts. ou The components of the  human  blood pressu  waveform are  are pressure re waveform expected to to fall  fall below 2 0   Hz since a  heart rate of 1 2 0  beats per minute (bpm)   is  well above  the normal  resting rate   and   1 0   times  this   fundamental frequency is is 2  200   Hz Hz,,   a result  verified  verified by  by  using Fast  Fourier  analysis. Figure  Figure 2. 2.33  shows the  amplitude  of the FF Transform (FFT) analysis.  FFT T for single for  single  and  multiple  beat  radial arterial waveforms.   In each case, all   of  the   the major frequ frequency ency components   are   below below th the e   20   Hz  limit.  FFT T  (Figure  (Figure 2.3A),  2.3A),   96 %  of  the For the  single beat beat FF  the  energy  i iss  less  than 93% %   of  the  the  energy   is 2 0   Hz. For  the  5-beat  sequence   (Figure   2.3B),   93 less   than   20   Hz Hz..  Although  aortic  and pulmonary  artery pressures frequency ency comp componen onents, ts, they   are   also  well contain   more   high   frequ represented  by  components below 20   Hz~

21

 

 —

Figure 2.3A   Single radial arterial  blood pressu Figure 2.3A  beat pressure re beat and the  magnitude  of its Fast Fourier Fast  Fourier Transform  showthe magnitude ing frequency components below20  Hz  (inset shows  plot shows plot outto 25 0   Hz,  confirming the lack o f  high   high frequency harmonics).

110100-

 

0

0.2

 

0.4

0.8

0.6

Time  (seconds)

35.

30-30

25-25

:

C

20

Q) ~

15 

 L ~ 0

40

 

 

80

 

12 0

I

160

 

2 00

240

Frequency   H, H,))

10-

5.

2

 

4

 

6

 

  10   12 Frequency  (Hz)

8

 

14

 

1 .6

 

18 18

20

22

 

SpaceLabs  Medical:  BLOOD PRESSURE

ulics  2.2   Fundamentals   of Hydra ulics   aree sim simila ilar. r.   The The  basic  concepts   of  hydraulics   hydraulics   and   electricity  ar hydrauli hydr aulic c analogu analogues es of  electrical   electrical voltage and  current are  pressure and flow,   respectively.   Th The e   concepts  of  resistance   and   capacitance   correspond to  each other in both  systems.   Electrical inductance  is  analogous to  the inertial density density of   of the fluid in hydrauli hydraulics. cs. Therefore, Ohm’s Law  applies   to  both  systems. Since

 

~V=IR,

where

 

A V

I R

  —

  =

 

V1

voltage   gradient   current,   and   resistance,

  =

R  

V2

  V 1 -V 2 ,

hydraulic  analogy  requires   that the   hydraulic analogy AP=QR

where

 

~ P

Q

R

  =

 

=   =

 

  pressure  gradient   flow,   and   resistance.

~iQ   Q~   =

  P2

  P 1 -P 2 ,

each case,  case,  R is  actually no In each nott simple resistance but impedance,  resistance, capacitan capacitance, ce,   and  inductance. which   is   a  function   of  resistance,

23

 

23B B   — Series  of five   radial radial arteri arterial al blood pressure Figure 23 beats   and th the e magnitude of its  Fast   Fourier   Transform, showing show ing freq frequency uency components components below 20   Hz   (inset shows plot  out  to  25 0  Hi o f hig high h   fr fre e Hi,,   confirming th the e lack of quency harmonics). quency  harmonics).

x Q)

Time (seconds)

-~ cn

0

Frequency   (Hz)

24

 

Spacelabs Medical: BLOOD PRESSURE

2.2.1   Laminar  and Turbul Turbulent ent Flow The flow of a  fluid through  a  cylindrical tube can be  either laminar ion nor turbulent.  Fully developed laminar flow i iss  characterized by a io gitudinal.   a  smooth,  wave  which front.  Thevelocity fluid   in profile the  center  center    of  the  with  parabolic the highest ye  exhibits the  tube  flows locity  and   the  fluid  at  the  vessel walls actually  does   not flow at   all (Figure  2.4).  Turbulent  flow  i iss  characterized by   disorganized flow   in many  directions,  with  many eddies  (Figure 2.4).   The dimensionless parameter  known  as Reynolds’ Number  (Re)  predicts  whether flow wifi be laminar  or turbulent through   a   cylindrical  tube. Re—

 

VdQ

  fluid  (cm/second) where   ~   =   mean  velocity   of  fluid d   =  diameter  of  tube  (cm) =   density   of  fluid   fluid  (gm/cm 3  ) r j   =   viscosity  of  fluid (Poise).  fluid  (Poise). If   Re   exceeds   200,   turbulent   flow   begins   at   the   points points where fri  i  tubes.   If   R e  exceeds   2000,  flow will be   turbulent branches occur   fr even   in  smooth,   straight  tubes.   The  viscosity  o   blood is   generally  of  f  blood about 0.03  Poise   and the density of  of blood, blood, about  1.05  (since it  is mostly water) In   the the   normal  human  circulatory system  the  primary  sites for turbu’ent flow are  the  aortic arch  and the pulmonary artery   Dur ejection   of blood from   the ventricles,   the high  velocity  velocity of   of  ing rapid  ejection blood and  the transient increase  in diameter of these vessels contribute ut e  to  raising R e   to  several thousand  units, causing  turbulent  flow. In   the   large  arteries,   R e  normally reaches  several  hundred  units   at major branches,  leading to some turbulence   at these  sites also.   Certain cardiovascular cardiovascular conditio conditions ns may  produce   turbulent blood  flow which,   in turn,   increases the  workrequ requirement irement and  energy expendthe work  the   heart. iture   of  the .~

25

 

SpacelabsMedical: BLOOD PRESSURE

Viscosity represents  represents   the resistance to flow due to the  internal the internal  of the fluid. Newtonian fluids  are  those  whose viscosity refriction of  friction mains   unaffected by flow  rate while  nonNewtonian fluids exhibit a viscosity  which   is a   function   of   flow  conditions.   Since   blood   is essentially a essentially  a  suspension  of  particles  particles  (blood  cells)  in  a  watery  liquid (plasma),   the viscosity of blood depends on flow ow  on several  several factors:   1 )  as fl  viscosity increases decreases,  viscosity  increases (that i is, s,  blood is  a nonNewtonian fluid); hematocrit (percent  of blood volume  composed of red blood 2)  as  the hematocrit  (percent of  cells)  increases, visco viscosity sity incr increases; eases; 3  3)) when the blood blood reach reaches es arterioles of  about   about   1   mm  in  diameter,   the  blood cells,   which   are   saucer shaped,  seem  to align   along  the  direction  of  laminar  laminar flow,  thereby reducing viscosity;  and  4  4))  in  the  capillaries,   the blood cells  squeeze  single file  file   order,  increasing  the   apparent  viscosity. through in  single

2.2.2   Poiseuille’s   Law An expansion   of  the  the  hydraulic analog  of Ohm’s Law   is   Poiseuille’s Law for  steady laminar flow of a  Newtonian  fluid through cylindricall  tubes. ca Law   (hydraulic analogy): (hydraulic  analogy): Ohm’s   Law

where

  Q

  Q

  =

  A~P

  flow, A   P   =   pressure  gradient,   P 1  P 2 , R   =   resistance.   =

  -

Poiseuille s  Law:

 

Q ..

where

  Q

  =

APrrr4   8 ~ L

 R   =   resistance   =   8riL

  flow, A   P   =   pressure  gradient,   P 1 r   =   radius   of  tube   tube   (cm), =   viscosity  of  fluid  fluid (Poise)  (Poise) L   =  length   of  tube   tube   (cm).   =

  -

27

 

Figure  2.5A

  —  Determination   of   vascular impedance. Pressure and  flow  pulses  have been resolved into  mean Pressure values  and   a   series of  harmonic   harmonic sine waves.

Pressure Pre ssure pulse

Flow  pulse

MEAN  PRESSURE

MEAN FLOW

+  Harmonic

/  /   /   /   /   /   /  ‘

 

~ ‘

~

2

 

I  ‘I  

I’   S ~

 

  /  

3

I    ~

~I

 



 



 /    ‘ I    ~



,

/    

 

 /  ‘  / 

“I

 / 

 

~I  

-,

-

,‘

‘s_I   

  \

 

-‘

,‘ /

 

 

~

,‘

‘   F  ~_

.%

% I%    ~

 

F % l~ I    

VV\JVV

28

 

Spacelabs Medical: BLOOD PRESSURE

Poiseuffle’s law is based upon three ass  assumptio umptions ns  that  do  not  strictly apply  to bl bloo ood d flow: flow   is   not entirely  laminar   in  a  all ll   parts   of  the  the circulation (See circulation  (See Section  2.2.1);  blood is  not  a Newtonian fluid, since  Section 2.2.1); viscosity sity chan changes ges with flo flow w rat rate; e;   and  blood flow is  not  steady,  bu its   visco  butt How wever,   the   relationship pulsatile,   in   most   of   the   arterial tree. Ho described does  does apply  apply  in a  qualitative manner and  i iss  projected  to  be very accurate   in  the   small arterioles   and  capillaries.

2.3 2. 3   Vascular Impedance  I mpedance  Concepts    Concepts  Blood   pressure,   flow,   and   vascular  impedance   are   closely  related. Given   any   tw two o   of  these   these three   measurements, the  third   can be   calculated.

2.3.1   Measurement (Calculation) Calculation of vascular of  vascular  a complex acquisition task  for tw two o  of  reasons, reaso ns, impedance  i iss Clinically, one   clinical  and  acquisition  one  mathematical. simul taneous pressure and flow measurements  at the same anatomic  site is   not   a   simple   task.   Mathematically,   the  pulsatile   nature   of  hemodynamics produces an produces an impedance that  i iss  not  a single value but a frequency dependent  spectrum of  amplitudes   amplitudes  (moduli)  arid phase angles.   T o   calculate  im  imped pedance ance,, the  measured   pressu pressure re and  flow waves must be sorted  into  their frequency  components by by Fourier  Fourier analysis (Figure analysis  (Figure 2.5A).  Then impedance is  determined for  each corOhm’s  Law.   The impedance   amplitude  at responding  frequency by Ohm’s Law. each frequency frequency represents the relationship between the  magnitude of  at   that  angle at  angle  at wave   Th The e  phase  each  and   pressure  pressure and  and  flow  that frequency frequency time frequency  delay between  represents   the the   pressure the  flow wave.  Mean vascu vascular lar resistance is  the most frequently used mean n fl flow ow are   most   easily parameter  because  mean pressure and   mea measured.   The mean resistance (terminal impedance) value has   an amplitude, but no  phase angle  angle since  since mean pressure and flow are DC values.

29

 

Figure 2.5B   —   Vascular impedance  in th the e femoràl artery of the of  thedog dog under control conditions (left);  during   vasodi-

lation   (middle);   and durin during g   vasoconstriction   (right) Closed  circles  representdata obtained  from Fourier analysis of  one  one pair  of  pressure   and flow waves.

VASCULAR IMPEDANCE

60

 

Control

Vasoconstriction

Vasoclilation

~I) > ~

40

x

20

4

Hz

-0.5 -1.0

 

8

 

Hz

112

 

16

I

4

I

8

 

I

12

  16

30

 

SpacelabsMedical: BLOOD PRESSURE

Measurement  of   of vascular vascular  impedance is further  complicated by  vasoconstrictive state  state of the the fact that it  constantly changes  as  the  vasoconstrictive vessels changes. blood vessels  changes.  Figure  2.5B   shows   an  impedance  spectrum for   the   same   animal   in  nor  (low   resistance),   and  normal, mal, vaso vasodila dilated ted  (low vasoconstr vasoc onstricted icted (high resistance) states. resistance) states.

2.3.2   Physiological  Importance The impe The impedanc dance e spectrum contains  much irifomrntion abo abou ut th the e physical  state of the vascular  system.  First,  First,   an increase in the characteristic  impedance  average   of  moduli   moduli   >2 Hz represents  represents a  a sign sign of reduced reduced  larger arteries.  A  shift   in the  frequency at  which compliance  of  the  the  larger  arteries. A  hi  i  either minima  and  maxima  appear  signals a  change  h   either wave veloci sites.   An impedance spectrum   can ty or  in the  dominant reflection  reflection sites. or in demonstrate circulatory  abnormalities  such as  those fou found nd in patients  systemic vascular vascu larons disease. with hypertension due to osci  size of  the  oscillati llations of imAn increase in or thepulmonary  the frequency-dependent pedance  suggests  increased reflection  originating in   the   distal  part of   the   arterial  tree or   in the  microcirculation.   Additional  findings would inc  inclu lude de an increased terminal and  perhaps  characteristic imdue e  to increased mean vascular resistance   and reduced pedance value du compliance,   respectively.

2.44   Mean  Blood  2.   Blood Pressure Transmission:  DC   D C  Analogy   Analogy  This section presents  how the the direct  direct current  current (DC)  (DC)  component of blood

pressure  generated in the left ventricle changes  as it travels  through the   hydraulic  circuit of   the   systemic   circulation.   Pulmonary mean discussed  briefly. pressure  wifi   also be   discussed briefly. Mean arterial pressure  i iss  chiefly maintained by   the capacitive effect   of   the  aorta.   If  the  the  systemic  vasculature  were  noncompliant,  leftt ventr ventricle icle would the very high pulsatile pressure  generated by the lef be tran transmi smitted tted directly to the the capifiary  capifiary beds  and pressu pressure re in the aorta would drop  to  near  zero between contractions of th the e hea heart. rt. However, since   the aorta  can  stretch,   it it stores  stores  some   of  pressure  the   initial   pressure   of  the pulse,   which  is  released  after the  aortic  aortic valve  valve closes.  The release of   occur urss as blood flows   out through through the pressure  occ  the periphery during yentricular diastole. tricular  diastole.   This effect is  very similar to  that  of a  capacitor in a half  wave   wave   rectifier circuit  (Figure  2.6).

31

 

Figure 2.6  — Comparison   of left ventricular function and its electricalanalog, its  electricalanalog,  the capacitor~coupledhalf-wave rectifier.  N mimics cs ventric ventricular ular pressure  Note ote that th  the e voltage V   mimi 1 and V  mimics aortic  pressure.  The diode D in  th recti- the e recti 0 fier circuit represents   the aortic valve  an  and d th the e RC   load  circulation.  the  th e represents peripheral

+t

 

D P1

Capacitor-coupled half-w half-wave ave   rectifier

Aortic  valve closes  (incisura)

E Aortic   pressure

E

C-,

Left ventricular   pressure

32

 

Spacelabs Medical:  BLOOD PRESSURE

Transmission   of   mean pressure   depends   primarily   on   the Figure re 2.7  2.7 resistance   of   the   vascular   bed and   not   on   compliance. Figu shows   the  progressive  decline   of  mean   mean pressure  from   the the   aorta   to  vena cava.   The major pressure  drop  occurs in the arterioles arterioles   since the vena the  pressure drop  than other  the  system. they have  higher  resistance  than  other  components  of  the  drop minimizes  the   pressure at  the  capillary level   and This pressure pressure drop thus  promotes   a  minimum  flow velocity for  optimum  exchange  of  oxygen,   nutrients, arterioles les also have nutrients, and   waste   products.   The   arterio “precapifiary  sphincters” that   can   contract   or  relax  and   selectively to various change the  amount of blood flowing to  various parts of th the e bo body dy (See Figure   1.4).   For   example, follow following ing   a   meal,   the   sphincters   to   the capillary beds of  the   the stomach  and  intestines relax,  which  increases blood  flow and  aids digestion. Several factors  contribute greatly to  the  resistance  properties of  the  the   vascular  system.   First,   as  arteries  branch   and  become more narrow.. Since  resistance varies numerous,   they  also  become more   narrow inversely with the fou fourth rth pow power er of the vessel radius  (See Poiseuille’s greatly ly incr increase ease vascuLaw,  Section  2.2.2),   this  narrowing tends to great lar resistance. However,   the arteries also imdergo extensive branching as  they However, narrow,   thereby  increasing  the  total cross-sectional  area   in relation to the preceding vessels.  The area inaeases  at a rel relati ativel vely y steady rate through the  aorta,  large  arteries,   and   arterioles, but increases  more rapidly in the  capifiary beds   (Figure  2.7).  Blood  flow is   significantly  capfflar fflary y level since since velocity  velocity  i iss  inversely proportional reduced at  the  cap to   the  cross-sectional  area. The  same  same effect  effect   occurs  when   a  rapidly flowing  stream  encounters   a  sudden   widening  and/or  deepening, slowhig   the  flow of  water  water  dramatically.

33

 

presentation   of  changes  changes  in  th  the e Figure   2.7   — A   graphic presentation cross-sectional  area of th the e vascularbed, th  the e average flow velocity,   and th the e meanpressure   in various segments  of  the   circulation.

Ct~

 

C-

 

 

CO

-~

.2

5-

5-

 

cC

a)

Ct CO

 

5-

0

CO

 

= •6~ ft

U

ft

a)

C -) CCC

0 a)

>

C a)

>

ft

C a)

>

.40

600

500 50 0

•30

Ct

a) 5-

C~ ) C )) CO

400

E

E

C)

ft

a)

0 C)

300

U

20

Ct

U 200

10 100

0

a) >

34

 

~~Spacelabs   Medical: Medical: BLOO BLOOD D   PRESSURE

vascular ar resist resistance ance and mean pres The thi The third rd factor  operating in vascul pres-sure  transmission is  the   law for  total resistance   of parallel resistors. Parallel hyd hydrauli raulic c resistance is  calculated in the  same w  way ay as parallel electrical   resistance:

  _ _   

1 D

 

“total

where

 

R

  =

=

  1)

1

1

1

  +   fl   +   T)   +  

1\3

 

  T) 

JX

 

+

4

  resistance.

Since capifiaries exist in parallel, these  these vessels’  vessels’  very high indiare essentially  essentially  negated and  the  total resistance  of  vidual vidu al resistances   are the capillary beds remains  very low,   which accounts for the very small mean pressure   drop   across  them.

the venous  venous  system drops  very gradually to Mean pressure in the nearly zero in the right atrium.  The res resist istanc ancee of the venules and veins must mu st ther therefo efore re be  very   low   to  allow  blood  flow propelled   by   the 1 0   mm Hg pressure  gradient between the  end  of  the  the  capillaries   and of about about  9 0  mm Hg. the right atrium compared to the  arterial gradient of  Mean pressure  in the pulmonary circulation undergoes analogous  changes  b  bu ut of a  lower magnitude  because   the pressure in the pulmonary  circulation   is   much lower than   in   the   systemic  circulation.  Since  blood  flow through   the  aortic  and  pu]rnonary  valves   is identical, resistance  must   be   much lower in  the  pulmonary  circuit with  Ohm’s Law   applying  in  this   case  also. Resistance  through  the blood  vessels   is  controlled primarily by   constriction   and   dilation  of  the  the  vessels   at   the   sites  of  resistance  resistance leading   to  the  capifiary networks.  Since it  cannot  be  directly measured,   resistance  is  calculated from measurements   of blood flow and example, if   if  the pressure differpressure  difference in the vessel.  Fo  Forr example, ence between tw  two o points  in   a blood vessel  i iss   1   mm Hg and  the  flow rate   is   1   milliliter/second,   the   resistance equals   one   ( 1 )   peripheral resistance  unit (PRU) in  mm Hg/milliliters/second.  Other measures of  vascular   vascular resistance  that   are   sometimes  used  include   the   “Wood unit”   (mm Hg/liter/minute)   and  the  vascular resistance  unit  (VRU) (dynes   x   second/cm5 )  (See  (See Table  Table  2.1).   The VRU is   the measurement of  vascular resistance   vascular  resistance  most commonly  used   in   the the   clinical  setting.

35

 

At  rest,   the  rate  of blood  flow through  the  circulatory  system measures  nearly 1 1 0 0   milliiterslsecond. The pressure   difference from the  systemic  systemic arteries Hg..  arteries  to the systemic  veins equals  about  1 0 0  mm Hg resistance  (systemic  vascular resistance) peripheral Therefore,   the 1 total approximates  some physiologic  physiologic conditions  conditions  PRU.  in which  a ll   the   In some  body become very  constricted  constricted (for  (for exblood vessels throughout  the  the body ample,  shock),   the total peripheral  resistance increases to as high  as 4   PRU.   When   the   vessels  become  greatly   dilated,   total  peripheral resistance can  fall  to  a low of  0.2  0. 2  PRU.   Systemic vascular resistance calculated  as   follows: (SVR)   is   calculated as SVR SV R   (dynes   sec/cm5 )

where   MAP CVP

Co 79.92

  =   =

  =   =

  =

MAP-CVP   Co  

x   79.92

  mean  arterial  pressure   central  venous  pressure (mean  right  atrial  pressure)   cardiac  output  (liters/minute)  conversion factor  conversion  factor (Wood Units (Wood  Units to  to  VRU).

In the  pulmonary system,   the mean  arterial  pressure averages 1 6   mm  Hg  and  the  mean   left atrial pressure   averages 2   mm  Hg  for a net pressure difference  of   of 11 4 mm Hg. The total puJmonary  resistance at  rest approximates  0.14  PRU.  This can increase  under  certain   disease conditions  to as hi phys-high as   1   PRU  and  can  fall  during  some phys iologic states,   such   as  exercise,  to as   low   as  0.04  PRU.   Pulmonary vascular resistance  (PVR)   can be  calculated   as   follows:

P V R   (dynes   sec/cm5 )

where   M P A PCWP

Co 79.92

  =

  =

  =

  =

  =

M P A   -   PCWP   co  

x   79.92

 mean pulmonary  artery   pressure  pulmonary  capillary  wedge pressure (mean left atrial  pressure)   cardiac  output  (liters/minute)   conversion factor conversion factor (Wood Units (Wood Units   to  VRU).

36

 

Spacelabs Medical: BLOOD PRESSURE

TABLE   2 .1   Correlation   of  measures   measures  of  vascular resistance.

Unit 1VRU (dyne  sec/cm5 ) 1   Wood  Unit

 

VRU

 

1

 

0.0125

 

Wood  Unit

80

 

1

 

PRU 1333.33

 

16.67

(mm (m m Hg/i/mm)

1   PRU (mm   Hg/ml/sec)

7.5 x   10~

 

0.06

 

1

 Diastoli Pressure    a n d  Diastolic 2.55   Systolic  2. Transmission:   A C  Anal  AC   Ancalogy  ogy  When the  blood pressure  wave   reaches  the  capillary  level,   it   has essentially lost essentially  lost its  alternating  current  (AC)  components and only a  alternating current mean pre pressu ssure re remains.  The transformation from the large A  AC C  pressure  component with a DC  offset in the aorta to  DC on only ly in the capillanes   is not  a  simple  attenuation  (Figure  2.1).  Systolic  pressure   ris e s  as   the pressure wave moves tow  toward ard the periphery then it  falls  along with mean and  diastolic pressures. T  This his increase in systolic pressure appears   as  the most  visible  result   of a  large  number   of  changes   changes   in pressure  waveform  morphology  as it  traverses   the  arterial tree. Arteriosclerosis,   which   commonly   occurs   in   older people,  the  arteries  and thereby greatly reduces reduces the  compliance  of  the their  ability   to  store  pressure.   This This resu results lts   in more  direct transmission of the high pressu pressure re of ventricular ejection to the periphery and consequently higher pulse pressure  than   is  normal. The distinction  between pressure and  flow and  the  propagation   of  each   each  is  important   in  the  transmission of   the   A C  portion   of  wave travels  travels  down the  arterial tree the blood pressure. The pressure wave much  more quickly  than the flow wave.  This occurs in fluid dynamics in  general.   The  visible  part  of a wave   in   a  lake   or ocean   is  actually  wave travels  travels  much  more the   pressure  wave,  while the water  in the  wave slowly  An object floating in the water moves with the water.  As waves pass  underneath   the   object, it  appears  almost   stationary.

37

 

2.5.1   Damping   o f High  Frequencies  aortic valve  valve closure  closure   is  p The incisura  caused  by  aortic  pres resent ent only only in blo blood od pressure  waveforms  measured in   the   upper aorta.  This  occurs because   the   capacitive  nature   of  the  the   arteries   and   the  inertia   of  blood   blood tend   to dampen the  high frequency components of blood pressure. Since   the  incisura   is  composed   of  high   high frequency harmonics  c  co ompared to  the  rest   of  the  the  waveform,   it  disappears   alter a  rather  short  journey  jou rney  down   the  arterial  arterial tree.  tree.   This  damping  also  also slightly  slightly  reduces systolic  pressure  because   the very  steep  slope dur  during ing rapi rapid d ejection consists  of  high freq frequency uency harmo harmonics. nics. The filtering  effect  is  of minimal  factors rs affec affectt  systolic   pressure importance,   however,  because  other facto to a  much  greater  extent.

  Tapered  Tube  Effect

2.5.2

wave travels  travels  down  a  progressively narrowing tube,   it becomes As a wave amplified du  due e to the  concentration  of  its  its  energy into a  smaller  area. effect occurs  occurs when an ocean wave travels  into an  inlet or when This effect sound passes  through  an old  style  earhorn.   In   the   circulatory system,   the tapered  effect of  smaller  smaller  blood  vessels would  seem to   explain the   systolic   pressure   amplification   in   the   periphery,   but   its contribution is  thought  to be  minimal due to the   extensive branching of  blood  blood  vessels.

2.5.3   Frequency Dispersion is  that well-known occurring Another phenomenon in the circuhtion   wave  velocity   is   directly   to   frequency. the   pressure  proportional   waves trav travel el fast faster er than lower freHigher frequency components of  waves quency components.   For  example,  example,   if a  stone   is   dropped  into  a  stifi ripples will  will disperse as they move away from the pond,  the  resulting ripples splash   site   into  faster   moving  high   frequency   ripples   and   slower moving low frequency ripples.   Similarly, the   high high freq frequenc uency y harmonics   of a   blood   pressure  waveform  wifi  propagate  somewhat  more quickly thar~ quickly  thar~ the low   frequ frequency ency harmoni harmonics, cs, resulting in distortion  of  the  waveform   as it travels away  from  the heart.

38 

 

Spacelabs Medic Medical: al: BLOODPRESSURE BLOOD PRESSURE

2.5.4   Pressure  W av avee  R efl eflecti ection on An   impedance  mismatch,   such  as that seen  at   the   junction   of  the  the arteries   and  smaller arterioles,  results in  the  retrograde reflection of  a  portion  of the  antegrade pressure  wave.  When  the blood pressure the antegrade waveform  is  measured upstream  from a  a reflection  reflection site,  site, a  hump appears,   superimposed   on the   original  transmitted  pulse  wave.   This reflection is the  pri primar mary y mech mechanism anism for amplification of the peripheral systolic   pressure.   Figure  Figure   2. 2.88  shows   a   series of  series  of  pressure  tracings   as recorded from  a  dog’s  aortic valve to the  femoral  artery using a  high fidelity fid elity cathete catheter-tip r-tip measurement system.  Note  the early disappearance  of  the  appearance  of  two  two refl reflected ected waves,   one  the  incisura  and  the  the appearance early and  one relatively late. late. Three  Three   or more reflectance waves are not uncommon, depending upon  the  measurement  site  and  the  condition   of   the the   subject’s  vascular  bed.   A   large  reflectance   hump is   frequently misidentified  as the incisura, even though the mechanisms of their production are are completely  completely different.  The fo  foot ot of a ref reflec lectan tance ce hump (dicrotic  oscifiation)  should be  referred  to as a dicrotic  notch semilu ilunar nar valve  dosure. Early researchwhereas the  incisura  denotes sem valve dosure. ers  believed that  the  major reflection occurred at  the  bifurcations or branches of the arteries, but more recent  studies have supported   the hypothesis that the  majority of the  reflection is  du  due e to vas vasoco oconst nstri ric c  small arter arteries, ies, arter arteriole ioles, s,   and precapfflary  sphincters   and  the tion of  small resulting  impedance  mismatches~

39

 

Spacelabs Medical:  BLOOD PRESSURE

3 . 0   I NVA SIVE ( DIRE CT) M E A S U R E M E N T  TECHNI  TECHNIQU QU ES As   the  name  implies,  implies, invasive  invasive   measurement   of  blood pressure  blood  pressure involves  gaining  access to  the vascular system by  inserting   a  catheter into an  artery or vein.   The catheter is  usually coupled via a fluid-filled tube tu be to   a  pressure   transducer   outside the   body.   The   fluid-filled catheter-tubing-transducer  system  possesses unique   characteristics that   mu must be considered when int interpre erpreting ting the pressure waveforms. Catheter-tip  transducers  that  are  introduced directly into the circulatory system are  also  available.  However, because  o  of  f their their fragility  fragility and expense  they   are  generally  used  only  in  research.  only in

3 . 1   Pressure  Measurement Sites    Measurement Sites  of Clinical  Interest   Interest 

There  a  are  re   two two basic  basic methods for  inserting a  catheter into a blood vesThree variations sel:   percutaneous and  surgical cutdown. Three sel:  variations on th the e percutaneous  technique   are   ifiustrated in  Figure  3.1. Vessel cutdown is   a su~ica1technique used to insert  a  catheter into a  blood vessel   in  cases  in which percutaneous  insertion   is  not practical. A practical.  A  small  incision is  made in the  skin, exposing the underlying vessel.  The catheter  i iss  then  introduced  through another small  introduced through incision  in   the  vessel. Catheters  used  for  direct blood  pressure  monitoring  fall into  central two general  peripher  perip heral al or   Catheters   on forwhether   arterial pressure   is   categories monitored. depending   peripheral  pressure  of teflo teflon-coate n-coated d plastic and monitoring   are  constructed of   and measure  measure 3   to 1 3   cm in  length.  length. These  These catheters have   an   end  hole   and  a single   l u — men   for  measuring pressure and   for withdrawing blood   samples. for central  central pressure  monitoring  are used to measure presCatheters for sures on  on   the  right side   or on  on   the  left side   of  the   the heart.  Pulmonary catheters, also  also known as  as Swan  Swan  G an z T M or right heart catheters, artery catheters, are  multi-lu  multi-lumen men mod models els that have an   end  hole, multiple  side ports, an inflatable balloon on th the e tip tip to aid  in positioning,   a  thermistor for measuring blood temperature at the tip,  and,  sometimes,  optical fibers for of  for pacblood ing measurement the   heart.   are  electrodes   used   to   measure heart. Pu Pulmo lmonary naryoxygen artery arter y saturation catheter cath eterss and

41

 

Spacelabs Medic Medical: al: BLOOD PRESSURE

central  venous,   puilmonary  artery and pulmonary  capfflary  wedge pressures an calculate cardiac  cardiac  output by  measuring temperature  and d to calculate changes   of  flowing   flowing  blood   (thermodilution   principle).   Left  heart a single   lumen cath catheters eters to general gen erally ly have multiple side ports  C with   and are  used  to measure  pressures in the  left  ventricle  and  aorta. en measure tral  pressure  catheters  range  from  3 0   to   1 0 0   cm   in  length. Catheter  diameters   are  designated by   one   of   tw two o  scales,   the Stubbs  gauge  sca].e   or the French  ( F )  scale  (Table  3.1).  Adults usually require a 4F to 5F catheter for  peripheral  blood pressure  monitoring  5F F   to 8F  catheter  for  central  pressure  monitoring  and  cardiac and   a  5 catheterization.

3.1.1   Peripheral A rterial erial  P ressur Peripheral A rt ressuree Peripheral  (systemic)   arterial blood pressure   is   the  standard meas of hemodynamic  status used in intensive care  care units  units and dururement  of  ing surgery   Th The e most com common mon site for  continuous  measurement arterial pressure in adults  is  the radial artery located in the wrist.  This site   is  the first choice because  of its  easy access both for catheter placement   and   for  subsequent  catheter  manipulations.   In  addition,   the radial artery parallels  the  ulnar artery on the  other side of  the  the wrist, which   continues   to  supply  blood   to   the   hand   if   the radial artery  as a result result of   of the should become temporarily or permanently blocked blocked as catheter cathe ter placemen placementt  (Figure  3.2).  Other sit sites es for placement  of  peripheral  arterial  catheters include  the  brachial,  axillary,  femoral,   and and   dor (Figures 3.3A  3.3A   and  3.3B,   respectively). salis  pedis  arteries  (Figures Arterial  pressare  monitoring   in children  is  done   at  the  same sites  as   in  adults.   In  newborn  infants,   the  umbilical  artery   is  used In newborn for   pressure   monitoring  and blood  sampling.

43

 

3.11   Common   Hypodermic  Needle Sizes   and TABLE   3. Intravascular Catheter   Dimensions

Catheter  Sizes French   Outside Scale   Diameter   (mm)

     

Needle  Sizes Stubbs   Outside Gauge   Diameter  (mm)

3F

 

1.00

 

20   Ga

 

0.9

4F

 

1.33

 

1 8   Ga

 

1.25

1.67

 

1 6   Ga

 

1.65

5F 6F

 

2.00

 

1 4   Ga

 

2.1

7F

 

2.33

 

1 3   Ga

 

2.4

8F

 

2.67

 

1 2   Ga

 

2.75

Adapted  from Geddes L A :   Cardiovascular Devices  and  Their  Applications.  New York: John Wiley and Sons,   1984,   p.  43.

44

 

3.1.2   Central Venous and Pulmonary  Artery  Artery P  P ressur ressures es In   pediatric   and   adult   intensive care  units,   it   sometimes  becomes more com complet plete e   picture   of   the   patient’s necessary   to  have   a   more hemodynamic status than is  provided by  the peripheral arterial pressure  alone.   In such cases, cases,   the pressures  in the right atrium,  right ventricle,   and  pulmonary   artery   must   be  measured   directly.   These  pulmo-pressures   are  continuously   monitored monitored usin using g  a  multi-lumen,  pulmo nary artery (P A )  catheter  (Figure  3.4)   inserted  into  a  lar  large ge vei vein n  such subclavian  vein   in  the  shoulder or  the internal jugular  vein as   the   subclavian vein in  the neck. The  catheter has  a  balloon  on  i its ts   tip that  can be  inflated to act   as   a   “sail”   to  allow   the  flow  of  blood to   direct   the  catheter through the right atrium and ri  righ gh t  ventricle  and  into the pulmonary artery.   T he  catheter  is  positioned  so  that,  when the  balloon  i iss  intermittently inflated,   the  catheter t tip  the  small ip   will  “wedge” in  one   of  the pulmonary  arteries   to to measure  measure   the  pulmonary  capifiary  pressure (Figure  3.5).   The The ballo balloon on is  then  deflated and   the pulmonary  artery pressure  i iss  monitored continuously  through the same  lumen at  the tip  of  the  pressures   obtained through   the  pulmonary  the  catheter.  The  pressures artery catheter  include   the  following: Venous us Pressure 1)   Central Veno  Pressure (CVP)  (CVP)

Also referred   to   as  right   atrial  pressure   (RAP),   the   CV P   is monitored  through   a side hole that  lies in the right atrium or  pulmo-superior vena  cava,   about   3 0   cm from the  the   tip  of  the  the  pulmo nary  artery   (PA)   catheter.   The The   CV CVP P   can   also   be   measured  a single  single lumen through a  lumen   end hole catheter  inserted  specifical measurement serves ly for  that purpose.  This blood pressure  measurement  serves as  an indicator of the efficiency of  the   the right ventricle’s ventricle’s pump  pumpCVP P   is  usually elevated in coning action.  Fo  Forr  example,   the   CV ventricle icle is   unable to pump gestive heart gestive  heart failure when  the right ventr out of  the  the  heart the  total  amount of blood returning  through The C  CV V P   does   not normally exhibit  exhibit a  a  large pulsa pulsa-the  veins.   The tile variation and is usually reported as a  mean value.  Normal 0-88   mm  Hg. mean   C\TP   is  approximately 0-

48

 

Spacelabs Medical:  BLOOD PRESSURE

TABLE   3. 3.22   Adult   Cardiovascular Pressures Normal  Values  

Pressure Systemic  Arterial Systolic Diastolic Mean

Pulmonary  Artery Systolic Diastolic Mean

       

 

 

Pulmonary  Capifiary Wedge Pressure* Wedge  Pressure*

 

Right  Atrial* Central  Venous*

 

Right  Ventricle Systolic End Diastolic

 

Left Ventricle Systolic End Diastolic

 

 

 

Abbreviation .

SP DP MAP

   

PA S PA D M PA

 

 

Normal Value (mm Hg Hg) )

 

9 0   140 60   90 7 0   105

   

1 5   30 4   -   1 .2 9-   1 6

  -

  -

  -

  -

 

PCWP

 

RAP,   CVP*~ RVSP RVEDP

 

LVSP

 

LVEDP

1

  -

10

0-   8

 

1 5   -   30 0   8

 

90  1 4 0 5   12

  -

  -

 their mean *pQi\TJ)   RAP,   and CVP are  listed   as  their  mean  values. ~RAP   and CVP refer   to to the  the   same  measurement  and   are  used   interchangeably.

  -

51

 

Right  Ventricular  Pressure  (RVP) 2)   Right Ventricular Right ventricular pressure  is  measured   via the distal  end  hole while   the   pulmonary   artery   catheter   is  being   advanced through the   ventricle  and  i iss  usually  not  monitored continuously.  Normal right ventricular pressures  a  are re  listed   in Table 3.2. 3)   Pulmonary  Artery  Pressure  (PAP)

Pulmonary artery pressure  is  measu  measured red throu through gh the   end hole of  the  the   PA  catheter.   Systolic,  diastolic,  and mean P A P  aid the clinician   in developing   a   total  hemodynamic   profi profile le of   the patient  (See  Table   3.2). 4)   Pulmonary  Capifiary  Wedge  Pressure   (PCWP)

pulmo-positioned ned pulmo When the balloon on the  ti  tipp  of a properly positio nary  artery  catheter   is  inflated,   the   blood  flow pushes   the balloon into   a   “wedged”   position   in   one   of  the  the  pulmonary artery branches.  The balloon stops al stops alll blood flow in the artery branches. The arteriole and  capifiaries,  therefore no  pressure  gradient exists between betw een the catheter tip  and the distal distal pulmonary  pulmonary veins. Since  left atrial  atrial pressure  i iss  ne the  difference between PCWP and  left  neg gligible,   the PCWP serves as the  clinical  equivalent  equivalent of  of lef leftt atrial atrial pressure.  The PCWF~like   the   CVP,   is  usually  reported   as a ranging ing fro from m 1   to to 1  1 0   mm Hg Hg.. mean  value  with normal  PCWP rang

tricular cular a ressures es 3.1.3   Left Ven tri  ann d  Aortic  P ressur The left ventricular   and  aortic pressures   are  measured during  a left heart  catheterization.   A  single-lumen catheter  i iss  advanced with the aid   of  of fluoroscopy fluoroscopy against  th or  femoral  the e blo blood od flow from the brachial or femoral artery into the aorta and through the  aortic valve  into the left ventricle.   The measured pressures provide  information  about the pumpcle. ing ability of the left ventricle and  the  functioning  of the aortic valve.  than This   is   a  brief, diagnostic  procedure  that  carries   a  higher  risk  than either peripheral  arterial or central  venous pressure  monitoring and is   only  performed  by a  specially  trained  cardiologist.

52

 

Spacelabs Medical: BLOOD  BLOOD PRESSURE  PRESSURE

3.2 3. 2   Fluid-filled  Systems  Systems 3.2.1   Determination   a n d   Optimization   o f esponse esp onse Frequency  Rdynamic Knowledge   of   the dynam ic  response   of a  direct  measurement   system ensures accurate accurate interpretation  interpretation of  the  the obtained readings. The frequency  response of   a measurement systemcan  generally be defined by  the  determination  of  two  two  parameters, the  damping  ratio   (j3)   and  the determination  value of   of  either the natural frequency (c o 0 ).).   If  the  the  value   either of  these   these parameters falls  outside of acceptable  ranges,  distortion of the measurement  may result. The freq frequency uency response of  a  system can be mea measu sured red by forced oscifiation   or   free  oscillation P  Forced  oscifiation   involves  using   a  waveforms   of  known sinusoidal  pressure   wave  generator   to   input  waveforms   known frequency and   amplitude  into  the   measurement  system  of  interest  interest and  assessing the  ratio of  output  output   amplitude  to  input  amplitude.   B y varying  the input  frequency  over the  range   of inter interest est (tha (thatt is,   0   to 1 0 0  Hz),   the complete  frequency response profile can be  determined. This method  provides   a  more accurate and  complete  assessment   of  the frequency characteristics   of  the  the   system than   the  free  oscillation technique,  b  bu ut it   is  only  applicable   in   the  laboratory  setting. The free oscifiation  method  consists of using the  time domain response of a  system to  a  step input to determine the natural frequency   and and damping  damping  ratio.   This method   is   more practical for  measuring the frequency response than the forced oscifiation approach for  severit works  works  in eit  setting,   it does al  reasons:   it either herthe the laboratory or clinical  setting, not require a  sinusoidal pressure  generator or a reference transducer,  available materials. and   it   can   be  performed  using readily  available  materials.

53

 

~SpaceLabs   Medical: BLOOD  PRESSURE

Figure   3.7  T he   transient  oscillatory  response   of a application of  a  a  pressure catheter transducer system on application square wave.   — 

x2 x4

~

 

To   determ determine ine the ratio of   x~ 1x  ,   use an 1 1 ratios s average   of   the ratio for   th the e  first several peaks.

=

 /

2   in (x~ + Ix~) 2 1 +  in (x~ + Ix~) 1

 

=

 

1

T ~ i~ 1 3 2



 

-

55

 

Figure Figure   3.8   —  Frequency response   curves   of a  pressure measurement system,   illustrating the importance of optiinal  damping.

0 0 (t

a)

-u

0

0-

E

.cC .c C

0

 

20

40

60

80

 

100

 

120

140

Input frequency  as   percent   of   natural frequenc frequency y

160

180

 

200

56

 

Spacelabs Medic Medical: al: BLOODPRESSURE BLOOD PRESSURE

 requires a  a  simple In the  laboratory   the free oscillation method  requires arrangement   of   the   type  shown   in Figure  3.6.   The   end   of a  large syringe   is  cut  o  off  ff  and the tip of the catheter  i iss  inserted into the syringe barrel through   a rubber stopper. A balloon  i iss  sealed around the the open  open end  of the syringe  with  an 0 ring or or ru rubber bber band  and  inflated using a   sphygmomanometer  bulb.   When the  balloon  is ruptured ruptured (prefer  (preferably  using   a  flame to avoid  the   transient transient pressu pressure re   increase associated with needle   puncture),   a  step decrease  in pre pressu ssure re   is   applied  to  (ass the measurement  system.  Assuming the system is  underdamped  (a are  most  catheter-transducer  systems),   the response  resembles that The e  damping  ratio  and  natural frequency are shown in  Figure  3.7.   Th determined  as shown in  this  same  same Figure.  Figure. When  applying this technique, however,   one should remember that these  calculations are  based on th the e   assu assumpti mption on that the dynamic  behavior of   the   catheter-manometer  system is   characterized by a  second order differential  equation. While this approximation this  approximation has been shown  to   be  adequate for  most catheter-manometer  systems, one mu  must st be  alert for possible deviations fr  from om secon second d order behavior. Ideally,   co~sh should ould be  above  2 0   Hz  and  / /33  near  0.7.  These  values ensu ens ure tha thatt  the ratio of output to  input (amplitude ratio) remains near 1 (± 5 %) %) fr  from om DC to to 2  200   Hz Hz..   A  decrease in / 3  (underdamping)  results in amplification of  the components of  the  the input signal near the natural natur-frequency and attenuation of   frequ frequency ency components above the natur  cause a  a false  increase   in the al  frequency (Figure  3.8).  Th  This is ma may y  cause the   systolic blood pressure  reading because   the high frequency portions of  pressure reading

the  blood pre pressu ssure re  waveform contribute primarily  to  systolic  pressure and the low  frequency com compon ponent entss to diastolic pressure.   Since  signal, it  it is unmean pressure  represents the   DC component   of the  signal, affected by   changes   in damping. An increase   in  / 3   (overdamping) causes   attenuation   of   the  signal  components  beginning below the natural frequency,  leading  leading t too underestimation   of  systolic   systolic blood pres overestimation of   of diastolic  blood pressure. sure  and, insevere  cases,  overestimation Figure   3.9   shows   the  frequency   response,   step   response,   and  waveforms for  for  ideally   damped, underdamped,   and representative waveforms overdamped   systems.

57

 

Figure   3.9   —   The   representation   of   the frequency response, step response,   and representative waveforms for   ideally   damped, under underdam damped, ped,   and   overdamped blood pressure measurement systems.

Ideally Damped

 

Unde nderdamped rdamped

Frequency response

Step response

~

Representative waveform

 

Overda mp e d

58

 

Spacelabs Medical: BLOOD PRESSURE

The frequency response   of a  catheter-transducer system can be  optimized  in the the   clinical  settin  setting. g. The approximat approximate e equivalent circuit for a catheter-transducer pressure  pressure   measurement system is  shown

in  Figure   3.10? It   can be  found  from  this   circuit  that:  from this

1

VLCc

and

T o  a large extent large  extent the physical   of  with the system  characteristics   A  transducer   a stiff itself  determine the frequency response.   diacapacitance nce,,   meaning that registration registration of  of a  change phragm has a low capacita  the   diaphragm in pressure  requires  only  minimal displacement   of  the  movement of  the and  therefore only minimal minimal movement  the fluid through  the  high resistance  catheter.   Th The e  use   of a  large  diameter,   short,   stiff  catheter  catheter with as little tubing and as few stopcocks  as possible between  catheter will optimize by decreasing  decreasing L  L 0   and R~. and  transducer will  optimize both   / 3   and  co~by  these factors   are   usually predetermined by  pracAlthough some  of  these of patient care care (for tical  constraints of patient  (for ~amp1e,   stopcocks   for blood drawing),   some   can   be   controlled.   For   example,   several   commercially  a var variab  resistance that to produced  insert  damping between the  catheter   and the devices increase  iable thele resistance  coefficient  transducer to  transducer  damping  simple screw  screw without lowering the natural frequency are available.   A  simple clamp   that   partially   crimps   the   tubing   can   also   be   used   for   this purpose.

59

 

Figure   3.10

 The  representation   of   the  approximate  The circuit for for   the optimization   of   a   catheterequivalent   circuit   — 

transducer  system.

Vi’

V~ =  blood  pressure   waveform = inertance of   catheter   and tubing = resist resistance ance of   catheter  an  and d tubing = capacitance   of  transducer V   =  output   waveform 0

illustration of  Figure 3.11  of  th  the e case of  an  an air bubble An illustration present in  th  the e cath catheter eter or tubing   in which the air  bubble acts like  another capacitor in   the equivalent circuit.   — 

Vi

V~= blood   pressure waveform L~= inertance  of  catheter   and tubing =   resistance of   catheter   and tubing = capacitance   of  transducer   transducer V   = output  waveform 0 = capacitance   of   bubble

60

 

Spacelabs Medical: BLOOD PRESSURE

A  discrete air bubble   or  multiple  microbubbles,  when present in the catheter  or  tubing,  acts as  another capacitor in the  equivalent circuit (Figure  (Figure 3.11).  3.11).   This  value of   of  C,~, This increases the  value   C,~,thereby thereby lowering cot,   and raising / /33  (Figure 3.12).   T he  resulting waveform may be drastically  overdamped and and lack  lack some of th the e high frequency components of th thee original signal (Figure  3.9,   overdamped).   In cases in whic hich h the monitored waveform naturally lacks  the  high frequency components, an air bubble  may not  result   in any appreciable  degradation   of  the  the signal. Since signal.  Since most peripheral  arterial pressure waveforms waveforms are  are gener  gener-ally lacking ally  lacking in  in high frequency components,   as discussed   in Section 2.5.1, small 2.5.1,  small air bubbles  usually have little  effect thee  effect on  on the  quality of th waveform.  The damping effects   of  air  a ir  bubb  bubbles les becom becomee  more evident in central  arterial pressure waveforms  that contain relatively more high frequency components. dampingof a pressure  measurement system may Clinically, the dampingof a pressure measurement be determined by means of a  “snap test’~which provides  a reasonable   approximation of the  step  response.  A  bag of fluid  under about to a  a fast flush valve that opens  the 3000 mm H g pressure  is  connected to 30 the e transducer   to   th the e 30 0   mm   Hg and   then suddenly then  suddenly tubing  near   th closes, close s, there thereby by   approximating   a   pressure   step   (Figure   3.14).   The  signal   is  the  same  general  form as  the response   of   th the e  transducer  signal previously discussed bal balloo loon n tes testt  response, but is but  is  superimposed on the blo blood od pressure  waveform (Figure  313).  313). By  By performing a  snap  test the e damping ratio can and  adjusting  the  the variable  variable  resistance device,   th be optimized.   The pressure  bag and valve   are  standard components of hospital  pressure   monitoring   systems.

61

 

Figu Figure re 3.1 3.12—A 2—A representation  of th the e frequency response of  asystem  with  an air bubble  in  th  the ecath catheter eter or tubing. Such  a bubble  wifi increase  th  the e value of th the e capacitance of  the  the transducer (Cr),  thereby lowering th the e natural fre and d raising  the damping  ratio  (j3). quency  (coo)  an

  91   Hz

W

/ 30=   0.033

10

  —

W~=22   Hz  / /33 =   0.137

1.0  



-u a

No bubble

0.1  



0.01  



Bubbi

I

0.01.

I

I

0.02   0. 0.04 04 0.06 0.06   0.1 

I

 

I

0.22   0.4   0.6

Relative  Frequency

I

1

(-~)

I

 

2

 

I

 

III

4   6810

62

 

ystem m 3.2.2   Constant Infusion  S yste A  constant infusion catheter infusion catheter  flush device is  commonly  used when

monitoring  direct bloo blood d pressu pressures res for several hours  such   as during and  after surgery or for several  days as in the intensive care  unit (ICU). Such   a  device maintains  continued  catheter  patency by preventing coagulation  of  blood in the indwelling catheter.   A  typical  constantflow device includes   a  fluid  source under pressure,   a  valve  that allows infusion of  approximately  fluid   per hour,   and   a   approximately  3   milliliters  of  fluid dome fo forr  attachment   of a   strain gauge  transducer  (Figure 3.14).  This arrangement  connects to th thee previously introduced  catheter by by rigid rigidwalled clear  tubing. one e   to T he   flush  solution (usually   0.9%   saline   solution with on two tw o  unit  unitss of aqueou aqueouss hep hepari arin n per milliliter  of fl flui uid d added to  prevent is pressurized  pressurized   approximately  3 0 0   mm Hg by  using coagulation)   is a   standard   intravenous  fluid   pressure   ba bag. The   continuous  flush action   is  achieved   by employing the large   resistance  in the constant flush valve   to  convert   the   pressure  source  into   a   flow   source.   The  also incorporates  fast-flush feature constant flush  valve  also  incorporates   a  fast-flush  feature that   can be used to  fill  the  transducer  dome  and  tubing  o  orr  t too   clear  blood from the system.  The fast  flush is  commonly activated  by either pressing a   spring-loaded   lever   or   pulling an  elastic   cord  (depending  upon device), which open openss  a  valve  in the flush device. When the lever o  orr cord  is released, the  valve  snaps back  t too   the  closed position  to prevent  inadvertent  infusion of  large   large   volumes  of  fluid.   fluid.   The fast   flush  

. ~

forr   dynamic  testing valve   may  also  be  used  to input square  waves   fo of the  catheter  system (See Section 3.2.1).

64

 

3 .3   Intravascular(Catheter-tip)  Transducer Systems  S ystems  The problems   inherent  in the  combination of  a  a  fluid-filled  catheter and an exter externally nally locat located ed transd transduce ucerr can be  avoi  avoided ded by plac placing ing a sma small ll  The potential transducer  near the tip of the catheter. The  potential distortive effects of   the   fluid  column   and and tubing  tubing between   the   pressure   source   and By locating  locating  the  transducer in a  side transducer   are  thus  eliminated. By port configuration in the catheter, kinetic  energy distortion  does not occur.   The   frequency response   of  such   such an  intravascular  transducer system is   essentially  the frequency response of  the  the  transducer itself. Drawbacks to current  catheter-tip transducers  inclu include de pro prohibit hibitive ive cost  Mikro-Tip trans and fragility   Figure 3.15 Figure  3.15  presents a  diagram of a Millar  Mikro-Tip  transducer   (Mifiar  Instruments,   Inc.,  Houston,   Texas),   the   most   well range of   of  freque uency ncy range known of the   catheter-tip transducers.   The rated freq this device is   0   to 20,000  Hz  and  it  is  available  with one  or more sensors   in  sizes as   small  small   as   3   French.

3 . 4   Blood  Pressure   Pressure  Transducers    Transducers  Principles   Principles  3.4.1   Principles   o f O perat peration ion The Wheatstone  bridge   is   the  basic  basic circuit  circuit  employed   in  most pressure   transducers  (Figure  3.16).   If   the   values   of  all  al l  four resistors   are exactly equal, exactly  equal, the   output  voltage   is  zero.   If   the  resistance  of any of 

the arms  of  the  the bridge changes,   the bridge becomes  unbalanced and an output  voltage   is  generated proportional to the change in resistance and   the  excitation voltage.

66

 

Spacelabs Medical: BLOOD PRESSURE

Nearly   all   commonly  used   pressure   transducers   are   strain gauges,  which operate on the principle that   the resistance  of   of certain certain range   of  applied materia mat erials ls chan changes ges linear linearly ly ove overr a  certain range    applied strain.   In  metal tal stra strain in gau gauge ge arran  arrangeme gement, nt, one or more of the resisthe  classic  me five  arms  of a  Wheatstone  bridge   is  composed   of a  metal  strand or foil  that   is  either stretched or released from   a  pre-stretched  state by applied  pressure   on a  diaphragm  (Figure  3.17).  Metal strain  gauges have  been widely used   in   a  variety of  applications   applications  for   decades.  R  Re ecently,  however,  semiconductor materials such as  sificon have become  gauge factor  factor  (change   in  resistmore common,   du due e   to  their  higher  gauge ance/change   in length) and  potential  for miniaturization.   Figure 3.18 shows   an  arrangement in which the positive-doped the  positive-doped   (p-doped)   silicon elements con  elements of  a Wheatstone bridge are  diffused directly onto a base of  negative-doped (n-doped) silicon  (for  a  discussion of doping and semiconductor  theory   see references   8   to to 10).  10).   Although  semiconductor strain  gauges are  very sensitive   to variations in temperature, the  inclusion  of eight  elements   to form   all  four  resistive  arms   of a bridge  eliminates  this problem by   exposing a ll   of the elements to the same temperatures.

valuation on 3.4.2   Considerations   in  E valuati evaluating   a  transducer  include freSome factors  to consider when evaluating quency qu ency response,   drift  with  time   and  temperature,   and   durability. The Th e relative importance of each factor depends  upon   the transducer’s

application.   Most  commercial  transducers  meet the   basic  requirements   in   terms   of drift   and   frequency  response.   For  most  arterial blood bloo d press pressu ure monitoring, the frequency response of the transducer is   not   as  important   as  might be  thought,   since the  response   of  the  the total system is determined lar largel gely y by the characteristics   of the catheter and tubing rather than   by   those   of   the   transducer.

69

 

The issue  o  durabifity has become more co more compl mplex ex as as t tradition raditional al  of  f  durabifity reusable reusa ble transdu transducers cers   are  challenged  by  disposable transducers.   Re for a  is lifetime of several usable  transducers  designed to  designed  to  operate years   and   are are   quite quite  are expensive. Damage, Dam age,   which  common in   the equipment-hostile   setting   of  the  the  ICU,   can  reduce the  lifetime   and accuracy   of   reusuable reusuable transdu transducers, cers,   thus   increasing   their   cost   per patient.   Disposable   transducers,   recently   introduced   by   several manufacturers,  are  designed for single-patient  use in a hospital,  after which   they   are  discarded   along   with   the   tubing,   stopcocks,   and catheter.

3.5   Measurement Erro  Errors, rs,

Distortions,   a n d  Artifacts   Artifacts  3.5.1   E n d  P ressur ressure, e,  C at atheter heter W  W hi hip, p,  Catheter Impact  Arti rtifacts facts a n d  Catheter  Impact A When pressure  i iss  measured in the pulmonary artery,  the aorta and measurement nt  can occur   du due e the ventricles, certain  distortions of the measureme  locations.  Catheter whip  arises  arises frequently  frequently tohigh blood flow in those those locations. in the pulmonary  artery.   Acceleration   of the  fluid  in the  catheter by the th e whipping mot motion ion of the catheter  t  tip ip  in the high velocity  stream 1 0   mm   Hg (Figure   3.19). can   result   in   superimposed  waves   of  ± tip p   of the   catheter   is Catheter  impact,   which happens which  happens   when   the   ti propelled into  the  rapidly  moving valve leaflets   or   th the e vessel walls, to occur  occur   in the  waveform.   Both causes   high  frequency transients   to catheter  whip   and catheter impa impact ct  are difficult  to prevent  and, to  a certain certai n extent,  must be  accepted  in the   clinical situation. clinical  situation.

70

 

SpaceLabs  Medical: BLOOD   PRESSURE

Figui~e3.18 3 .18

  — 

Illustrations of diff diffused usedp-type p-type strain gau gauge. ge.

Clamp



n-type  Si plane

Silicon

P

1

— (c)

T  2

Q2

Si

 

R

2

P

2

71

 

Spacelabs Med Medical: ical: BLOOD PRESSURE

another type   of  transducer  distortion, End pressure  artifact,   another type results   from  placing   an   end-hole   catheter  facing  into   a   high  flow occurs left stream. This  measuring pressures the partially aortaally c  when   inthat and ventricle. Flowing  bloo  bl ood d posse possesses sses kinetic  energy  ener gy parti  co onverts   to  pressure  when  the  blood suddenly  comes   to  a stop. Since any measu measured red bloo blood d pressure  (total pressure) represents the   sum of  the hydrostatic, kinetic and  lateral components,  placing  an end-hole catheter facing upstream leads to   an elevated pressure  measurement.  this rea reason son,,  catheters intended  for pressure  measurement   in the For this For aorta and  left ventricle are manufactured with multiple side ports instead of   an  end  hole. This configuration ne  negat gates es th the e  kinetic  energy component   and   measures  measures   the  lateral   and  hydrostatic  pressures.

 E ff ffects ects

The e changes  in intrathoracic pressure associated  with breathing affect Respiratory 3.5.2   Th

both  central  and peripheral peripheral blood pressu pressure re  measurements.   In central pressure   measurement measurements, s,  especially pulmonary artery measurements,   both   systolic   and   diastolic  pressures   vary  phasically  with  expiration   as a  direct  result  of  the   pressure changes inspiration   and  expiration to move  move   air  into  and   out of  the  the  lungs  (Figure in   the chest  required   to 3.20).   Th The e least biased estimate of  pulmonary  pulmonary  artery and  other central pressures  occurs  occurs at  at  end  expiration,  when  intrathoracic pressure approximates atmospheric pressure. This is  true for both normal  and mechanical  positive   pressure  ventilation. is   not arteries,  peripheral  blood pressu ssure re variation  due directlyIntothe changes chest pre  but rather to rather  to  the  pressure in the cavity,  effects of those  changes   on left ventricular  stroke  volume as dictated by   the venous return.  Normal,  spontaneous  respiration augments venous return  during   inspiration,  whereas  mechanical,  controlled positive pressure  ventilation reduces venous  return during  inspiration.  This large variations may produce large  variations  in peak  systolic   systolic pressure  while  d iastoli iastolicc peak-to-to-peak  peak varpressure  changes little (Figure 3.21).  Normally,  this peak iation should be less  than  1 0   mm Hg.   In some  disease states  this varHg..   In   the   peripheral   arteries, iation   may   be   as   high   as   5 5   mm   Hg therefore, the best estimate of true pressure i s the average of a ll beats

therefore,   the best  estimate  estimate of   of true pressure  i iss  the  average of  a  a ll  beats 11 over  a  representative   respiratory  cycle.

73

 

Figure   3.20 The effect of  airway   airway  pressure  on   pulmopulmonary artery nary  artery pressure.   — 

a)   The effect  of normal, spontaneous spontaneous respirations respirations on the th e pulmonary artery pressure  waveform. b)   The effe  effect ct of  positive   positive pressure,   mechanical ventilation  on  th  the e pulmonary pulmonary artery  pressure waveform.  artery pressure

See  text  for  discussion.

Pulmonary artery pressure

(a)

Alveolar pressure (estimate)

Pulmonary artery pressure

(b)

Alveolar

pressure (estimate)

74

 

~~SpaceLabs

Figure 3.21— Figure  3.21— The effect of airway of airway pressu  pressure re on peripher peripher-al   arterial  pressure. a)   The effect of normal, spontaneo spontaneous us respira respirations tions on the peripheral  arterial  pressure   waveform. b)   The effect of positive pressure, pressure, mechan mechanical ical ventilation  on  th  the e peripheral  arterial pressure waveform.

See  text for  discussion.

Systemic (a)   arterial

pressure

Systemic (b )   arterial pressure

 

Medical: BLOOD  PRESSURE

75

 

3.5.3   Transducer Zeroing T o   ensure   accurate  measurements,   the  transducer  must be  zeroed before  any  pressure   monitoring.  T o   zero  the transducer, the  monitor must   measure  atmospheric   pressure  by   opening   a  stopcock  or  or “zero  port”~T o  avoid  avoid errors  errors   du to hydrostatic  hydrostatic   pressure,  it is essen is  essen-due e   to  same  horizontal  level as   the   tip tial to  position the  zero  port   at   the the same of  the  the  catheter  (reference level).  It  is  not  necessary to have the trans reference level  level since  since  modern  pressure  amplifiducer exactly ducer  exactly  at   the  reference ers  incorporate a  zeroing system which  can bal balanc ance e  out a significant  offset.   As long as the relationship  between the amount  o  of  f transducer  offset. reference  level  level arid  arid the transducer  transducer remains  after er zeroi zeroing, ng,   the  remains constant aft pressures  will be  registered  accurately Consequently,  registered accurately  Consequently,   if the zero  port is  below the  reference  level  (that  i is, s,   the  catheter  tip)  when   zeroing  level moves  moves up  after zeroing,   the  measured presor if the  reference  level sure  will   be   2   mm  Hg  high   for  each inch  of offset  (the  weight   of a 1  inch  column  of  saline   saline  solution).  Conversely,  the pressures  will be 2   mm Hg low for  each inch  that   the zero  port  i iss  above  the  reference level.  This  offset is   not   of  great  great co conc ncern ern when  monitoring  systemic arterial pressures   of  8  8 0   to 20 2000   mm  Hg,  bu  butt becomes  highly  significant when  measuring central  pressures  such  as  pulmonary capfflary  (Figure 3.22).  3.22).  Ideally, wedge  pressure  that averages  about  5   mm Hg (Figure  pressure that a ll   blood  blood   pressure   measuremen measurements ts shou should ld be perfo performe rmed d   with   the  (phie-catheter tip   and  zero port  positioned   at  the   level   of  the  the   atria  (phie bostatic  axis).

4 .0   NO NI NINVA NVA SIVE ( I ND I RE CT)  TECHNIQU QU ES M E A S U R E M E N T  TECHNI 4 .1   AuscultatoryMeasurement  The noninvasive,   or indirect,  measurement  is the most indirect, blood  blood pressure pressure measurement common  method for  assessing a  person’s pressure  status.   The au  aus scultatory technique  employs   the familiar pressure  cuff,  hand  pump, manometer,   and   stethesco stethescope. pe. Th The e com complete plete   device,   known   as a

sphygmomanometer,  uses  a pneumatic cuff  enciimling   enciimling the upper arm,

  indicate and   pressure  gauge   pressure in  the cuff.   aManometers  are  (manometer) of   tw   is two o   types:  to aneroid, aneroid ,  in the which pressure measured by a  mechanical transducer transducer   and  displayed on  a dial,   and mercury mercu ry in which pressure pressure elevates a  column  of  mercury  mercury   in  a   cali-

76

 

brated  glass   tube.  Since   an  anero  aneroid id mano manometer meter  is   a  spring-loaded mechanical device, mechanical  device,   it m  may ay beco become me inaccurate  with frequent use and therefore  must be  regularly  calibrated  with   a   mercury manometer. In practice, practice,   the pneumatic  cuff is  applied to the upper arm and pumped up   to a   pressure  greater  than   the   systolic blood  blood pressure  pressure in the   underlying lar  large ge brac brachial hial   artery.   Th The e  cuff  pressure   pressure  collapses the artery  a  and nd  stops  blood flow   to  the lower  arm.   The pressure in the  cuff is   gradually released through the  valve  in the  hand  pump. When   the   cuff  pressure   pressure  drops   slightly   below systolic   arterial  pressure  blood begins begins to  to  spurt through the  partially compr compressed essed segment of   the  brachial  artery  producing  arterial   sounds  (Figure  (Figure 4JA).  4JA).

4.1.1   Korotkoff Sounds The  spurting blood from  the  compressed brachial  artery produces The turbulence   and   vibrations   within the   vessel   which   create   noises known   as Korotkoff  sounds.   sounds.   The stethoscope,  when  placed on  the  just st distal  to  the  cuff,   detects these Korotarm over the brachial  artery ju koff  sounds.   sounds.   As   the  cuff  pressure   pressure  decreases,   the  Korotkoff  sounds   sounds finally  disappear  with  restoration   of   laminar  flow   of  blood   blood   in the brachial  artery  (Figure  4.1B). Five phases  of Korot Korotkoff  koff sounds   are  commonly heard  during cuff   deflation  (Table   4.1).   While  the onset   of   the  Korotkoff  sounds   sounds (phase I) is  the  accepted point  for systolic systolic pressure,  pressure,  the  d iastoli iastolicc  pres  pres- the d sure  endpoint  has been  subject to controversy over  the years.  In  1967,  Association (AHA)  (AHA)  advised that  the   pressure the   American  Heart  Association at  muffling  o  the  sounds (phase  (phase 1  1 V ) be  considered the the d  d iastoli iastolicc pres pres- of  f  the sure~In   its   latest   recommendations   published in  1 9 8 1 ,   the the   Al-IA specified the use of the point of cessation  cessation   of Korotkoff  Korotkoff  sounds   sounds (phase diastolic olic   pressure   except  in those   individuals   in  whom the V)   as diast sounds continue  to   0   mm Hg Hg,,  in whi hich ch case  phase IV should  be in2 terpreted as diastolic  pressur& The lack  of   phase V is  associated  with  o f  phase certain  diseases and  i iss  also a naturally  occurring phenomenon   during vigorous  exercise.   The AHA’s  reasoning  for  this revised specifi-

cation is  that   the  absence of  sound  less subjective   sound  (phase  V  V))   is  less  subjective  than  (phase IV the muffling of sound (phase  IV ) and therefore  should provide more consistent   data   for  epidemiological  purposes.

78

 

Medical: BLOOD PRESSURE

T A B L E

  4 .1   The Five   Phases   of Korotkoff  Sounds   Sounds   in Indirect Blood  Pressure   Measurement

Phase   I .

 

Phase   II.

-

  -

Phase  ifi.

  -

Phase   IV .

Phase   V .

 

 

-

-

  The The first sounds  detectable when  the falling cuff  cuff pres pres-sure   is   slightly  below the   systolic   pressure.   These sounds   are  soft at  the  start,  then  they rapidly increase in  intensity.  They  are   detected over  a  range   of   1 0   to 1 5  mm Hg as  the  cuff  is  is  deflated.   Systolic pressure  i iss  be the Korotk otkoff  off  considered  to  be  the  level   at which phase I Kor are initially  initially  heard. sounds   are   This phase begins when  a  murmur-like  sound occurs. These sounds  may  quickly  fade  and occasionally may transiently und undetectable etectable   as   the   cuff  pressure be   transiently   creating may  gap peridecreases, an ‘auscultatory an  ‘auscultatory silent is or  cuff  od.. The examiner od miss this gap if  the   the  i speri  notsufficiently inflated to  obliterate  obliterate the pulses. This  This could  the pulses. The e result  in  a falsely low  systolic  pressure  reading.   Th  phase  II  Korotkoff  sounds   is   1 5   to pressure  range   of  phase 20   mm  Hg.   The Korotkoff  sounds   sounds  take   on   a   ‘thumping’  quality and   are at  their loudest.   The pitch and intensity  of the sounds change abrupt occurs   at ly ,   taking on a  muffled tone. This typically typically occurs a   slightly  higher  arterial  pressure than true  diastolic

pressure.   As thee cuff  th  cuff pressu pressure re continu continues es to  decrease,  decrease, the  the sounds disappear completely.   The point of disappearance  of  the sounds is  phase V ,   which usually occurs at  a  level slightly  below true   intravascular  diastolic  pressure.

79

 

ources ces   o f E rr rror or 4.1.2   Limitations   a n d  S our is simple  simple The auscultatory technique  for  measuring blood pressure   is  is   sub  equipment.  However,   this42 and  uses   a  minimum   of  equipment.  method 421 1  ject to a number  of   of limitations limitations  and  sources  of error.’ Obtaining an accurate  auscultatory blood  pressure is  difficult   in  a   noisy environThe e   operator must  acuity   for   low frement.   Th operator must possess   good  hearing acuity  also often  often fails quency sounds  (2  (200  to  30  3000  Hz).   Auscultatory technique also to give  give   accurate  pressures   for for infants  infants   and  hypotensive patients  (for example,  those   experiencing  shock). auscultato ltatory ry method method,, altho althoug ugh h   less  technologically The   auscu  monitoring, requires demanding  than  invasive blood pressure  monitoring,  requires  attention to  details   of  technique    technique   (Figure   4.2).   The  correct size of  the  the   oc accurate bloo clusive  cuff is  crucial to obtain  accurate  blood d pressur pressure e readings  (Table 4.2).   Use of  an 4.2).  an  incorrect  cuff size   can produce  a falsely  high  or  low reading (Figure 4.3).  In  general,  undersized  undersized or  or loosely  applied cuffs wifi  overestimate,   and   oversized  cuffs  underestimate  underestimate   the   true  true   auscultatory blood pressure.   The AH AHA A has recom  recommend mended ed that the width of  the   the air bladder  inside  the  cuff  equal   equal 4 0%   of  the  the  circumference  circumference   of  the limb   on which it is  placed and  the  length   of   the bladder be   approximately proxim ately tw twice ice the  recommended  width  (that   is,  bladder  bladder length  length equal   to   80 equal 80% %   of   arm  circumference). TABLE   4 .2   Recommended   Sphygmomanometer Cuff   Sizes

Arm Circumference (mid-arm) (cm)

Cuff  Name   Name Newborn

 

5   7. 7.55   -

Infant

 

7.55   1 3 7.

Child

 

13-20

Small  Adult

 

  -

 

1 7  2 6   -

 

Bladder Width (cm)

Bladder Length (cm)

3

5

5

8

8

13

11

17

Adult Large   Adult Thigh

24  2 6

   

  -

 

32   -

42

42-50

 

13

   

17 20

 

24

 

32 42

Adapted  from:   American Heart Association. Association.   Recommendations  for human blood pressure determination by   sphygmomanometers.   Stroke   12:555A-564A,   1981.

81

 

Figure   4.2 A  schematic of the sources  of  error   in auscultatory blood pressure measurement.   — 

Measurement errors

Observer

Causing

Instrument

systematic

Causing random

errors

errors

•   Prejudice  fo  for r “normal”   readings •   Round-off   error

•   Inaccurate   Sphygmomanometer (eg.,  zero  error  error,, tilting tilting,, dirty   tube, etc.) •   Cuff  width   and length

•   Mental   concentration •   Hearing  acuity Confusion of   auditory  an  and d

visual cues visual Interpretation  of sounds High  ambient   noise  level •   Rates  of inflation   and

deflation

True   variations   in  blood   pressure

Unknown factors

Known   factors

•  Recent physical activity

Emotional state  and d arm •   Position   of  subject   subject  an

82

 

Failure to pro proper perly ly place the  head  of  the   the stethoscope  directly  cause Korotkoff   Korotkoff sounds of low intensity, low  intensity, over the brachial  artery can  cause

leading to erroneous   pressure  readings.  Also, excessive  application persistance of   of Korotkoff  pressure  may produce a persistance Korotkoff sounds, sounds, which may result in a gross  underestimate of diastolic pressure.  The AH  AHA A recom the   stethoscope  rather  than  the more   commends  that   the  bell of  the monly   employed   diaphragm   be   used to measure blood pressure (Figure  4.4). Another potential problem with the auscultatory  method is  the phenomenon   of the auscultatory gap.  This period of  silence   silence during the  second  phase   of  the  the  Korotkoff sounds   may cause the  observer to   underestimate   the  systolic   pressure  by as  much   as   1 0 0   mm  Hg. the systolic Such  an  error  error   can be  avoided by  ensuring that  the  occluding  cuff  is  is quickly  inflated  to  a  point approximately  2  200   mm  Hg  above   the the   obeither the the brachial  brachial  or  radi literation  of either  radial al pu pulse lse  as determined by   palpation  of  the radial  radial or  or brachial artery.  The auscu auscultatory ltatory gap  generally occurs   in hypertensive patients and can result in failure to to detect  detect severe  hypertension in  some individuals.  of the  auscultatory technique relates  to the limitation of  Another limitation fact that this method  does not provide a measurement  of me mean an blo blood od pressure.  Mean pressu pressure re may be  estimated using the  formula  given in  Section  1.3,   though  the   accuracy and  precision   of this estimate is subject  to  many  potential  variables. Despite its  limitations,   the auscultatory  technique can provide accurate and  repeatable blood pressure  measurements   in the hands of a  skilled  operator.  operator.   Du Due e  to  the naturally occurring minute by minute variations  in blood   pressure,   several  auscultatory  measurements should be taken  to  obtain   an  accurate  accurate profile  profile of  the  the  patient’s  blood pressure.

84

 

 Non invasive  ve  Measurement   Measurement  4.2   Automated  Noninvasi easurement ement 4.2.1   Auscultatory  M easur

Noninvasive   blood  pressure   measurement   can   be   automated   by replacing  the  hand  pump with an  automatic  pump that   is  activated for a single  measurement   or   set to inflate   the  cuff  periodically   periodically   at   a predetermined interval.   The blood pressure is  measured by   the auscultatory  method,   using   a  small   microphone   placed   in   the  cuff   to detect   the  Korotkoff  sounds.   sounds.   A  computerized program  then   deterdetermines the blood pressure measurement. With  this  instrumentation, the  user  must   exercise  care   in  applying the   cuff so  that   the   microphone  lies directly over the brachial artery to  ensure  accurate sound detection.

easurement ement 4.2.2   Oscillometric  M easur The automated  oscifiometric method of noninvasive blo blood od pre pressu ssure re  distinc istinctt advan advantages tages over the auscultatory method. measurement has  d Since  sound  i iss   not used   to   measure measure blood pressu pressure re in  the   oscillometric technique, metric  technique, high environmental environmental noise  noise levels  such as tho those se fou found nd clinic   or or emergency  emergency room do   no in a busy clinic nott hamper the measurement. In  addition,  because this  technique does  not require   a  microphone or transducer in the   cuff,   placement   of  the  the   cuff is   not   as critical as it   is   with   the auscu auscultatory ltatory or Doppler  methods.   The  oscifiometric method works without   a significant loss in accuracy even when  the cuff is  placed  placed over  can  over a light shirt sleeve.   The appropriate sized cuff  can be  used on  on   the  forearm,   thigh,   or calf,  as well  as in   the   traditional  oscillometric method  method location  of  the upper arm. A disadvantage of the oscillometric  that excessive  excessive  movement or vibration during the meas is  that measu ureme rement nt can cause inaccurate  readings   or failure to  obtain   any reading  at   all,   as is  true   of  the  the   auscultatory  method  as well.

86

 

Spacelabs Medic Medical: al: BLOOD PRESSURE

The oscifiometric  technique  technique operates  on the  operates on  the principle  that  as an  occluding  cuff  deflates   deflates  from  a level above   systolic  systolic   pressure, pressure, the artery walls begin to to vibrate  vibrate or oscillate   as the blood flows  turbulently vibrations will  will through   the partially  occlu  occluded ded arter artery y   and  that  these vibrations be  sensed  in the transdu transducer cer  system monitoring cuff pressure.   As the pressure in the  cuff  further   further  decreases,   the  oscifiations   increase   to a  fully deflates maximum  amplitude   and then  decrease  until the  cuff  fully  the e po poin intt of  and  blood  flow returns   to  normal. The  cuff  pressure   pressure  at  th maximum oscifiations  usually corresponds to the mean arterial pressure. The point above mean pressure at  which the  oscifiations begin to  rapidly  increase   in  amplitude  correlates  correlates   to   the  systolic  pressure; and  the point below the   maximum  at   which  the  oscifiations  begin to  rapidly  decrease   in  amplitude   correlates  with  diastolic  pressure (Figure  4.5)  ~224   These correlations   have  been  derived   and  proven empirically but are   not yet  well   explained by any physiologic physiologic theory.  theory. The actual  determination of bloodpressu blood pressure re  by an oscillometric  device is  performed by a proprietary algorithm developed by   the manufacturer   of  the  the   device.

easurement ement 4.2.3   Doppler  Ultrasound  M easur The Dopp two o  piezoelectric  crystals Doppler ler ul ultrasou trasound nd method employs tw  of  the located between the  occluding cuff  and  and  the  surface  surface of   the  arm.   One crystal  generates ultrasonic  waves  (about   8   MHz)  that   are   directed 5 at the arm  surface over the brachial artery~ The other crystal receives  reflected by  by   the art the waves  reflected artery ery  and surrounding   tissues.   if   the reflecting surfaces are  are stationary,  stationary,  then  the signal  i iss  reflected without change   in frequency. However,  i if f  the   the artery  wall is  in motion  when it reflects  reflects   the ultrasonic  waves,   the  signal  returning  to the  receiving crystal shifts crystal  shifts  in frequency according to the Doppler effect.  Th  This is shi shift ft in frequency (Af)   can be  amplified and heard by  an observer  o  orr see seen n on  a display.

87

 

~~~Spacelabs   Medical: BLOOD PRESSURE

In   the  normal,   uncompressed  brachial   artery   laminar  flow produces little or no movement  of the  artery wall. In  the  completely compressed artery  no  movement of the wall occurs.  However, when the occluding cuff  is  is  inflated to a  level between systolic  and  diastolic pressures,   blood spurts blood  spurts  through the  artery  when  arterial  pressure exceeds cuff  pressure.   pressure. As the artery  opens and  closes,   the   moving arterial arter ial wall wall causes  causes a  a  Doppler shift of the incident ultrasound signal. Therefore, as the cuff is  deflated from above systolic to below diastolic pressure,  clicking  sounds  will  appear then  disappear in  a  fashion similar  to  the auscultatory  method  (Figure  4.6). Due Du e   to the extreme  dependence   of Doppler ultrasound  meas  meas-precise se placement  placement of the urement of blood pressure on preci the cuff and transducer,   it is  generally   used  only   in cases   where   the   auscultatory method fails.   Such   circumst circumstances ances  indude an extremely noisy environment   such as  in a helicopter during transport,   and for  measurements on ir~fantsarid arid persons in shock.   Th The e Doppler ultraso ultrasound und technique can   be   used   in more   noisy environments   than the   auscultatory method because method  200 00   Hz Hz,,  because the  change   in frequency  i iss   usually  above  2 Hz,,   a  range   to whereas the  Korotkoff sounds   are  mostly  below 20 2000   Hz  human   ear   is  less   sensitive~ which   the the human

89

 

Spacelabs Medical: BLOOD PRESSURE

4.2.4  Non i nvasive  C onti ontinuous nuous  Finger onitoring ing Blood  Pressure  M onitor A  recently  developed  developed variation  variation of  the  the  oscifiometric method  employs small ll fin finger ger cuff  cuff that  detects a   photoplethysmograph  located inside  a sma changes   in  blood  volume  under the  cuff  based   based   on   changes   in   the amount   of  light   light  transmitted   through   the   finger.   When   the  cuff is inflated   to a   point  near mean   arterial   pressure, pressure, the   output   of   the plethysmograph varies plethysmograph  varies directly  with changes  in blood volume, which directly   relates   to   the desi desired red   parameter,   blood  pressure.   In   the servo  control  system controls controls cuff   cuff  method first proposed by  Penaz, a servo control pressure to  mainta  maintain in con constan stantt blood volume  in the finger  (Figure 4.7). The Th e  servo  system is  driven by a  feedback  circuit  from the  output   of  plethysmograph. Provided  servo system  servo  system  rapidly  thatthe react the the pressure to  track arteriall  cuff   be enough  pressure, in thecan   should  should the same   at   a ll   times   as   the  pressure in  the   finger  artery.2 6 ’ 2 7 This method  provides  accurate results in resting  and anesthetized patients, but,   du due e   to a very  high   sensitivity to  movement   and  vasoconstrictive state  state   of  the finger, transient  changes   in  the  vasoconstrictive  the  finger,   its   usefulness   in the   ICU   or ambulatory  setting  has not been  established.

4.3   Correlation Between  D  Dir iree c t 

a n d  Indirect   Indirect Measurements 

Clinicians have long noted that  direct blood pressure  measurements do   no measurements. ents. This  This should not nott  always correlate with indirect  measurem be su surprisi rprising ng   because   of   the   different different principles   underlying   the various methods.  The direct method  measures  blood pressure, while indirect   techniques   correlate   pressure   in   an   occlusive   cuff   with phenomena  related  to bl bloo ood d  flow.  Since flow is  only one   of   many  blood pressure,   it  follows  that   the   direct measuredeterminants   of  blood ment   may respond   to  factors   independent   of  blood   blood  flow   and  thus two o methods even  when proper produce  a  discrepancy betw between een the   tw technique is used and equipment is well maintained. One can usually

technique  is used  and equipment is  well  One can usually predict   the   direction,   but not the amount,   of  such predict   such   a  discrepancy.

91

 

~_~~pacelabs   Medical: BLOOD PRESSURE

Generally,   indirect methods   of  blood   blood pressure  measurement pressure measurement underestimate  direct systolic systolic pressure  pressure by  0   to 5 0   mm  Hg.  This inconsistency   is   du sistency due e  partially   to the normal  physiologic  pulse  wave   distortionmechanisms tortion mechanisms discussed discussed in Section 2.5.  With respect to diastolic  accuracy of   of  indirect   indirect methods  will  var pressure, the  accuracy  vary y depe dependi nding ng   on  technique  and  algorithm us the technique the used. ed. Using Using the  standard auscultatory method   (Korotkoff  method),   method),   phase   IV slightly   overestimates   and direct  diastolic  measurement. phase  V slightly  underestimates   the   direct diastolic to mimic  mimic Most automated   indirect  blood pressure  devices  attempt   to the auscultatory method and   correlate their  diastolic  measurement with auscultatory phase V ,  which may underestimate  direct diastolic  pressure. These differences between direct and  indirect blood pressure individuals. Certain  Certain normeasurements  are to be  expected in normal individuals. mal   and  abnormal physiologic  conditions can increase the variation. For   example,  in persons  with  extreme   hypotension   and  increased peripheral  resistance  (shock),   indirect  methods,  especially the   auscultatory  technique,   can  fail   completely   due due to   the   profoundly decreased  blood flow, which  occurs   in  such  circumstances.  In   contrast,   the high flow rate and decreased peripheral resistance  seen dur  sounds   to ing   exercise   and in   some diseases   can  cause  Korotkoff  sounds ing Hg,,  confounding  confounding those continue to 0  mm Hg  those  indirect methods that use phase V   as the  diastolic  endpoint.  It  should be  emphasized  th  that at an any y auscultatory  estimate   of blood bloodpressu pressure re  may overestimate  or underestimate  the corresponding  direct  direct (invasive)  (invasive) value  value   depending  upon   a multitude  of factors,  many   of  which   which  are  poorly understood or   not recognized.  the indirect methods in use today,  only the oscffloFinally,   of  the metric methods give a  tru  true e measu measurement rement of  mean  mean arterial pressure. The other other indirect  indirect methods rely on  a ca calc lcul ulat ated ed es esti tima mate te of mean pres pres-sure which can be  as  much   as 3 0   mm Hg from the  true mean  arterial   pressure.

93

 

5.0 5. 0   REFERENCES 1.   Guyton   AC :   Textbook of  Medical   Medical   Physiology. Seventh   Edition.   Philadelphia:   WB  Saunders Company,   1986.  Transform. 2.  Brigham  FO:   The Fast  Fast Fourier  Fourier Transform. Englewood  Cliffs,  New Jersey: Prentice-Hall, Inc.,   1974. 3.   Krovetz  U,   Goldbloom  S :   Frequency content  of  intravascular   and intraca intracardiac rdiac pressur pressures es   and IEEE  Trans Biomed their  time   derivatives.   IEEE Trans  Biomed   Eng BME-21:498-501,   1974. 4.   Milnor W 4. Milnor  W R:   Principles   of  Hemodynamics.  Hemodynamics.   In: Mountcastle   VB   (Ed):  Medical   Physiology. Twelfth  Edition.   S t .   Louis:   C . V .   Mosby Company,   1968. 5.   O’Rourke M F,   Yaginuma  T :   Wave reflections Wave  reflections and the th e arterial   pulse.  Arch m t   Med  144:366-371,

17 .   Roberts LN,   Smiley  JR .   Manning   GW:   A  of  direct  direct and indirect   blood comparison  of 

6.   Yang1984.   SS,   Bentivoglio  Bentivoglio   LG,   Maranhao   V ,   et al.:   From Cardiac Catheterization  Data  Data t too   Hemodynamic Parameters.   Third  Edition. Philadelphia:   F.A. Davis Comp Company, any,   1988. 7 .   Webster JG Webster  JG (Ed):   Medical Instrumentation: Application  an  and d Design.  Boston:  Houghton Mifflin   Company,   1978. 8.   Senturia   SD,  Wedlock   BD :  Electronic Circuits   and Applications.   New York: York: John  John Wile Wiley y   and Sons, 1975 . 9.   Miiman   J:   Microelectronics:   Digital   and Analog Circuits  an  and d Systems.   New York:   McGraw-Hill,  1979. Inc., 1979. Inc., 10 .   Boylestad   R ,   Nashelsky   L :  Electronic Devices  an  and d Circuit Theory. Circuit  Theory.   Third  Edition.  Englewood  Englewood Cliffs,  Cliffs, New  Jersey: Prentice-Hall,  Inc.,   1982. 11 .   Ellis DM:   interpretation   of  beat   beat  to  beat  blood

 arterial measuring  blood pressure,   part   III.   Med   1981. Inst   15:182-188, 22.   Mauck  G  G W,   Smith   CR CR,,   Geddes   LA ,   et  al.:   The   maximum  oscillations meaning   of  the  the point  of  maximum in cuff  pressure   pressure   in   the indirect  measurement  of  blood  pressure,   Part  I I.   Trans  ASME   J   Biomech Eng   102:28-33,   1980 . 23.   Geddes   LA ,   Voelz   M,   Combs  C, et al.: Characterization   of  the  the oscillometric method   for measuring  indirect  blood  pressure. Ann Biomed   Eng 10:271-280,  10:271-280, 1982.  1982. 24.  Geddes   LA :   Cardiovascular  Devices  an  and d Their Applications.   New York:  John  Wiley and Sons, Inc.,  1984. 25 .   Stegall  H F,   Kardon M Kardon M B ,   Kemmerer   WT:   Indirect  of    arterial  blood  pressure  by measurement of   blood pressure ultrasonic sphygmomanometry.   J   Appi Doppler   ultrasonic Physiol  25:793-798,   1968. 26 .  Yamakoshi K, K,   Kamiya   A,  Shimazu   H, et al.: Noninvasive  automatic   monitoring   of  instantaneous arterial   blood pressure  the e blood  pressure using  th vascular unloading  technique.   Med Biol   Eng Comput  21:557-565,   1983. 2 7.   Wesseling  Wesseling   KH,   Settels  I I,   DeWit B :  The measurement of  continuous  finger arterial pressure noninvasively   in   stationary   subjects. In:  Schmidt  TH,   Dembroski   TM,   Blumchen   G (Eds). Biological   and Physical Physical Factors  Factors in  Cardiovascular   Disease. Berlin: Disease.  Berlin:   Springer Verlag,   1986.

  ventilatory pressure values   in   the presence   of  ventilatory changes.  J   Clin   Monit   1:65-70,   1985 . 12.   American  Heart Association:   Recommendations for  human blood pressure blood  pressure determination  determination   by sphygmomanometers.   Circulation   36:980,   1967. 13 .   American   Heart Association:   Recommendations for  human blood pressure determination  by sphygmomanometers.   Stroke   12:555A-564A, 1981. 14 .   Hamilton   WF,   Woodbury  RA,  Harper  H T: Physiologic  relationships between relationships  between   intrathoracic, intraspinal and arterial   pressures.   JAMA 107:853-856,   1936.

pressure  determinations.  Circulation   8:232-242, 1953. 18 .   Van Van Bergen  Bergen  FH, Weatherhead   S .   Treloar AE, Treloar  AE, et   al.: Comparison   of   indirect  an  and d direct  methods   of  measuring  arterial   blood pressure.  Circulation 10:481-490,   1954. 10:481-490,  1 19 .   Holland W N ,   Humerfelt S Humerfelt  S :  Measurement  of  blood   blood   Comparison pressure:   of   intra-arterial   and cuff  values.   Br  Med  J   2:1241-1243,   1964. 2 0 .   Raftery EF ,   Ward AP :   The indirect method   of  recording blood pressure.  Cardiovas  Cardiovas Res  Res 2 : 2 1 0 - 2 1 8 ,   1 9 68 .

Bruner JMIR,   Krenis  L I,   Kunsman,   JM ,   et   al.: 21.   Bruner JMIR, Comparison   of   direct and indirect  methods   of 

15 .   Ragan  C ,   Bordley J:   The accuracy of clinical measurements   of  arterial   arterial   blood   pressure, wi with th   a note   on   th the e auscultatory gap. Bull Johns Bull  Johns Hopkins Hosp 69:504-528,  1941. 16 .   Steele T Steele  T M :   Comparison  indirect   of   simultaneous (intra-arterial) (auscultatory) an  and d direct   arterial  pressure   in  man. measurements   of  arterial Mount  Sinai  Hosp 8:1042-1050,   1941.

94

 

Spac Spacelab elabss Med Medical: ical: BLO BLOOD OD PRESSURE

6.0   ILLUSTRATION  CREDITS Figure   1.7 of Medical Medical PhysiolAdapted from Guyton   AC :   Textbook   of  ogy;   Seventh Editi Edition. on. Philadelphia, Philadelphia, W B   Saunders Company,  1986. Figure   2.1 WR::   Cardiovascular System. In  Mountcastle VB Minor WR (Ed.):   Textbook of  (Ed.): of Medical Physiology;  Seventh Edition. St. Louis,   The C . V.   Mosby Co., Mosby  Co.,   1986.

Figure  2.2 Mendel D:   A  Practice of  of Cardiac Cardiac Catheterization; Second Edition.  Oxford,   England,   Blackwell Scientific   Publications,   1974. Figure   2,4 Little RC: Physiology Physiologyof  of the Heart rtand and Circulation;  Third Edition.  Chicago,  Year Book  Medical  Medical Publishers Inc., Inc., 1985  1985 . Figure   2,SA Figure  O’Rourke ME ,  TaylorMG:  TaylorMG: Vascular  Vascular Impedance.  Circulation Res   18:126-139,   1966. Figure   2.5B Figure  Adapted Adapt ed from O’Rourke M F,  Avolio AP:   Ascending Aortic Impedance  as   th the e Load Presented  to   th the e Left Ventricle: Effects of  Effects  of  Change in  Mean Pressure,  Arter Arterial ial Com Complian pliance ce and Peripheral Resistence.   In: Baumann  D (Ed.): Les Alpha Bloquants.  Paris,   Masson  S.A.,   1981.

Figure   3.12 Webster JG (Ed.):  (Ed.): Medical  Medical   Instrumentation:   Application and Design Design.. Boston Boston,,  Houghton  Mifflin Co.,  1 9 7 8 . Figure   3.17 Strong   P:   Biophysical  Measurements;   First  Edition. Beaverton,  Oregon,   Tektronix,  Inc.,  1970 .

Figure   3.18 Cobbold  RSC:  Transducers  for  Medical  Measurement: Wiley  and Application   and   Design. New York,   John   Wiley an d Sons,  Inc.,   1974. Figure   3.19  and d Adapted  from Geddes   LA: Cardiovascular Devices  an Their Applications. New York, York, John  John Wiley and Sons, Inc., 1984. Figure   3.22 Shulze  SE :  Pressure  Monitoring Instruments  for   Critical Care: Theory  an  and d Applications.  Chatsworth,   Califomia, SpaceLebs  Inc.,  1976.  Inc., 1976.

Figure   4.2 from: Rose  Rose GA,  Holland WW  Crowley EA: A Adapted from: Epidemiologists. ists. London, The Sphygmomanometer for Epidemiolog Lancet  1:296-300 1:296-300,, 1964.

Figure  2  2.7 .7 Little R C:  Physiology of  the Heart artand andCirculation;  Third  the He Edition.   Chicago,   Year   Book   Medical Publishers, Medical  Publishers,   Inc., 1985.

Figure   4.3A Errorin Geddes  LA ,  Whistler S J:   The Error in Indirect Blood Pressure Measurement sure   Cuff. Am  Measurement  with   the Incorrect Size of  Cuff. Heart J   96:4-8,   1978.

Figure   3.1 Textbook   of   Advanced American   Heart  Association:   Textbook  

Figure   4.3B Rushmer RE :   Cardiovascular Dynamics;  Fo  Fourth urth Edition Edition..

Cardiac Life Support.   Dallas,   American  Heart Association,   1987.

Philadelphia,   WB   Saunders  Company,   1976.

Figure   3.5 Shulze  S E:   Pressure  Monitoring Instruments for Critical Care:  Theory and Applications.  Chatsworth,   Califomia, SpaceLabs  Inc.,  Inc.,   1976. Figure  3 .6 Yang  S5, Bentivoglio  L G,  Maranhao V ,  et al.: Yang S5, al.: From Cardiac   Catheterization   Data   to  Hemodynamic   Parameters; Third   Edition. Philadelphia,   FA  Davis Company,   12 78. Figure   3.8

Figure   4.5 Figure  Geddes  LA:  Cardiovascu  Cardiovascular lar Devices and Their Application.   New York,  John  Wiley and Sons,  Inc.,   1984. Figure   4.6 Figure  Stegall  H F,   Kardon MB ,   Kemmerer WT:   Indirect Measurement  of   of Arterial ArterialBlood Blood Pressure  Pressure by  by  Doppler  DopplerUlltrasonic Ulltrasonic Sphygomanometry.   J   Appl   Physiol   25:793-798, Sphygomanometry. 25:793-798, 1968.

Figure   4.7 Schmidt   TH,   Dembroski   TM,   Blumchen  G :   Biological

Grossman W (Ed.):  (Ed.):   Card Cardiac iac Cathete Catheterizatio rization n and Angiography;   Third Edition. Philadelphia,  Lea  &  Febiger,  1986.

and Physical Physical Factors  Factors in  Cardiovascular   Disease. Disease. Berlin, Springer  Verlag,   1986.

95

 

7 . 0   BIBLIOGRAPHY The following bibliography  offers a  chronological listing of  citations  citations  pertinent to  the  study and  determination   of  blood pressure  blood  pressure   measurement. VASCULAR  

IMPEDANCE,   PULSE   W A V E PROPOGATION,   AND  BLOOD   FLOW

Hamilton WE  Dow P :   An experimental study of   th the e standing  waves   in   th the e pulse propagated  through th the e aorta.   Am J  Physiol 125:48-59,   1939. Peterson  L H:   Th e   dynamics  of   pulsatile blood flow. Circulation flow.  Circulation   Res  2:127-139,   1954.  of  f  simul   simulKroeker  E J ,   Wood   EH :   Comparison  o taneously recorded central and   peripheral arterial   pressure   pulses   during rest,   exercise and tilted   position   in man.   Circulation   Res 3:623-632,  1955. Wiggers C: Wiggers  C:  Dynamic  reactions induced   by by   compression of  an Res   6:4-7,  an  artery.   Circulation   Res 1956. Van  der Tweel  L H :   Some physi physical cal aspects of  blood  pressure,  pulse  wave,   and blood blood   pressure  measurements.   Am Heart  J   53:4-17, 1957. Landowne M: A  method using induced   waves to study   pressure propagation   in  human   arteries.   Circulation   Res   5:594-601,   1957. Landowne  M:   Characteristics  of impact and pulse  wave propagation in   brachial and radial   arteries.   J  Appl Physiol   12:91-9Z   1958. Levy MN: Re lati lative ve  influence  of variations in arterial  and   venous  pressures   on resistance to flow. Am flow.  Am J  Physiol  192:164-170,  1958. Bergel DH DH,,  Milnor   WR :   Pulmonary  vascular impedance   in in the  the dog.   Circulation   Res 16:401-415,   1965. O’Rourke ME  Taylor   MG:  Vascular  impedance of  the  the femoral bed.   Circulation   Res 18:126-139,   1966. DH,,  Bargainer  Bargainer J  J D:  Hydraul  Hydraul-Milnor   WR ,   Bergel DH ic  power associated with  pulmonary  blood flow   and its  relatio  relation n to heart  rate.   Circulation Res  19:467-480, 1966. Taylor   MG: MG: Use  Use of   of  random excitation   and spec-

O’Rourke  M F,  Blazek JV .  Morreels   CL,   Krovetz U:   Pressure wave  transmission along  the U: human  aorta—changes with  age and in ar degenerative  disease. Circu Circulation lation Res terial degenerative terial 23:567-579,  1968. Roweil  L B,  Brengleman  G L,   Blackmon JR, Bruce RA ,   Murray TA :   Disparities  between aortic  and peripheral pulse  pressures induced by upright   exercise  an  and d vasomotor  Circulation 37:954-964,  37:954-964, changes in  man.  Circulation 1968. Remington  JW  O’Brien  U:   Construction   of  aor pressure pulse. tic   flow pulse from  pressure  pulse.   Am J Physiol   218:437-44Z  1970 .  Influence uence of   ventricular  ejection O’Rourke M F:  Infl on the relationship  between central aortic and  brachial  pressure pulse in   men.  Cardi  Cardi-ovasc Res  4:291-300,  1970. Milnor WR :  Pulsatile  blood flow.   N EngI J Med 287:27-34,   1972. Westerhof N:  Pressure  an  and d flow Elzinga   G,   Westerhof N: generatedby t  the he  left ventricle against  different impedances. Circulation  R es  32:178-186, 1973. C o x   RH :   Determinants   of  systemic   systemic hydraulic power  in unanesthetized   dogs.   Am J  J Physiol  Physiol 226:579-58Z  1974.  cannula-Kim  J  JM M ,  Arakawa  K,  Bliss  J :  Arterial  cannula  factors in tion:  factors  in  t he   development  of   of ocdu ocdusion. Anesth   Analg 54:836-841,  1975 . Westerhof N, V an   den Bos GC, Westerhof  N,   Elzinga   C, Sipkema   F:   Reflection in Reflection  in  t  the he   systemic arterial syst al  system: em: effect effectss of  aortic   aortic   and carotid occlusion.  Cardiovasc  Cardiovasc Res  Res  10:565-573,   1976. Arts  T ,  Kruger  T I,  V a n   Gerven  W,   et al.:   Propagation velocity and reflection  of pressure waves  i n   the   canine  coronary  artery.   Am J Physiol  237:H469-H474,   192 9. Laskin JL, Paulus   D,  Bethea 1-IL:  Pseudohypertension due to  medial  calcific  sclerosis.  J   Am Dent Assoc   100:384-385,   1980.

tral   analysis in the in  the  study  of frequency dependent  parameters of  the  the  cardiovascular system.   Circulation   Res Res   18:585-595,  1966. Dick DE,  Kendrick JE JE,,   Matson GL,   Rideout V Rideout  V C :  the he  arterial Measurement o f  nonlinearity  nonlinearity   in  t system   of  the  the dog by a  new method.   Circulation Res 22:101-111,   1968.

Murgo JP,  Westerhof  N,  N,  Giolma JP  JP,, Altobelli SA :   Aortic input impedance   in normal man: relationship  t o  pressure  wave forms.  Circulation  62:105-116, 1980. Murgo JP Murgo  JP ,  Westerhof  N,  N,  Giolma JP ,  Altobeffi SA :   Manipulation  of  ascending aortic  presressure  an  and d flow wave reflections  with  t he   vatsalva  maneuver:  maneuver:   relationship  to  input impedance.  Circulation  63:122-131, 1981.

96

 

Spacelabs Medical: BLOOD PRESSURE

\,

Stettler  JC,  Niederer   P .   Anliker   M: Stettler JC, M: Theoretical  Theoretical analysis of  arterial   arterial   hemodynamics including the th e influence of  bifurcations   bifurcations Part  I I::   Mat athe he- and d prediction  of  normal matical   model  an pulse patterns. Ann  Biomed   Eng  9:145-164, 1981. Stettler JC, Stettler  JC,  Niederer   P ,   Anliker  M,   Casty  M: Theoretical analysis of   arterial   hemodynamics   including  th  the e influence   of bifurcations Critical  evaluation   of  theoretical Part I I:   Critical evaluation   theoretical model   and comparison  with  noninvasive  with noninvasive measurements of  flow patterns  in   normal and pathological  cases.   Ann   Biomed Eng Biomed  Eng 9:165-175,   1981. Finkelstein S M,   Collins  V R:   Vascular hemodynamic impedance measurement. Prog   Cardiovasc Dis Cardiovasc  Dis   24:401-418, 1982. Nichols WW  Pepine   C J:   Left   ventricular afterload   and aortic  input impedance:  implications   of  pulsatile   pulsatile blood  flow.  Prog Cardiovasc Dis Cardiovasc  Dis  2 4:293-30 4:293-306, 6,   1982. Pepine  CJ,  Nichols WW:  Aortic  input  impedance  in  cardiovascular disease.   Prog Cardiovasc Dis Cardiovasc  Dis  24:307-318,  1982. O’Rourke MF: O’Rourke  MF: Vascular  Vascular   impedance   in  studies   of  arterial  an  and d cardiac function.   Physiol Rev Physiol  Rev 62:570-623,  1982. Wave reflections O’Rourke ME  Yaginuma   T :   Wave reflections and   the arterial pulse  pulse.. Arch m t   Med 144:366-371, 1984.  Westerhof    N,   Sipkema  P ,   et al.: Latham  R D,  Westerhof  Regional  wave travel  an  and d reflections  along aorta:   a   study with   six  simulthe th e human aorta: taneous  micromanometric   pressures.   Circulation   72:1257-1269 72:1257-1269,,   1985 . Little   R C:   Hemodynamics.   in  Physiology   of  the  the Circulation Year  Book  Medical Heart He art and Circulation  Year Book   Medical Publishers, mc,   Chicago:224-246,   1985 . P .   Creenwald  SE,   DL,   Sipkema Newman Westerhoff   characteristics  N:   High  frequency  N: system.   J Biomechanics of  the  the arterial system.  19:817-824, 1986. Berne  R M,  Levy MN:  T he   arterial  system.   In CV Mosby  Mosby Co.,  Co., Cardiovascular  Physiology,   CV St.   Louis,   1986,  pp.   124-135. Asmar  RG,   Brunel   PC,   Pannier   BM ,   et al.: Arterial distensibility Arterial  and d ambulatory blood  distensibility  an pressure   monitoring in  essential hyperten hyperten-sion. Am J   Cardiol   61:1066-1070,   198&

Chobanian  A M   Chairman   1988  Joint  National Chobanian A Committee:   The 1988  report  of  th  the e  join  jointt national   committee on   detection,   evaluation,   and treatment of  high   high   blood pressure. Arch m t  Med   148:1023-1038,   1988.

B .   Auscultatory Mudd  SC,   White PD:   The auscultatory  gap  in sphygmomanometry.  Arch m t Med 41:249-256, 1928. Berry MR: Berry  MR:  The   mechanism and prevention   of  impairment  of  auscultatory sounds   dining determination  of  blood pressure   blood  pressure standing  patients. Staff Meetings Meetings   of  the  the Mayo Clinic  9-702,   Oct 30,   1940. Nuessle  W  WF: F:   The importance   of  a tight blood pressure cuff. Am Heart J   52:905-907, 195 6. Rodbard 5,  Chiesielski  J :   Duration  of  arterial   arterial Cardiol  20:18-21,   1961. sounds. Am  Am   J   Cardiol 20:18-21, Wilcox  J :   Observer  factors in  th  the e measurement of    blood pressure. Nursing   Res 10:4-IZ 1961. Rose   CA,  Holland  W W,   Crowley EA: A   sphygmomanometer   for  epidemiologists.   [ancet  1:296-300,   Feb  8,1964. Rose C:   Standardisation of  observers  in   bloodpressure measurement. pressure  measurement.   Lancet  1:673-674, 1965 . Ceddes   LA,   Hoff HE,   and Badger  A  AS: S:   Introduction   of the auscu auscultatory ltatory method   of  measuring blood  pressure—including a translation  of  Korotkoff’s  Korotkoff’s   original paper. Cardiovas Res Cardiovas  Res   Ctr Bull   5 :5 :5 7-74, 7-74, 1966. McCutcheon  E P,  Rushmer RF:   Korotkoff  sounds:   an  experimental critique.  Circulation  Res  20:149-161,   1967 Rodbard 5,   Robbins   AS :   The  components   of  sounds. ds. Am Heart J the Korotkoff  soun 74:278-282,   1967. Eilersten E,  Hummerfelt   5:   The observer variation  in   th the e measurement of  blood  blood   pressure.   Acta  Med   Scand   184:145-157,   1968. Wright   BM ,   Dore  CF:   A random-zero   sphygmomanometer  Lancet   1:337-338,   1970 . Perlman  L V ,   Chiang  BN, Keller  J ,  Blackburn   H: Accuracy of  Accuracy  of   sphygmomanometers   in hospital  practice.  Arch  T nt  Med 125:1000-1003,   1970 . IJr A,   Cordon   M:   Origin  of  Korotkoff   Korotkoff  sounds.  sounds. Am J   Physiol   218:524-529,   1970 .

IL

BLOOD  PRESSUR  PRESSURE E MEASUREMENT

measurePanfiov B K :  Auscultatory   drop   during   measureNS Korotkoff’s  Korotkoff’s ment   of  blood pressure   blood  pressure  by   NS method   in  patients with hypertension. Sovietskaia  Meditsina   36(2):141-142,   1973. Burch  CE, Shewey  L :   Sphygmomanometric

A.  General Geddes  LA:   The Direct  an  and d Indirect Measurement  of Blood   Pressure. Year   Book  Medical Publishers,  Inc.,   Chicago,   1970.   JE :   Pressure   for Shulzecritical  monitoring  instruments  care.   SpaceLabs,  Inc.,   Redmond, Washington,   1976. Washington,

and blood pressure cuff   recordings.   size JAMA   1973.   225:1215-1218, Steinfeld  L,  Alexander   H,   Cohen   M:   Updating sphygmomanometry. Am J   Cardiol 33:107-110,   1974.

97

 

 gap p in  sphygmoAskey JM :   The auscultatory  ga manometry.  Ann   Int  Med  80:94-97   1974. Taguchi  J T ,   Suwangool   P:  “Pipe-stem”   brachial arteries:  a cause of   pseudohy pseudohypertension. pertension. JAMA   228:733,   1974. Maurer AH,   Noodergraaf  A  A :   Korotkoff  sound filtering  for   automated three-phase   measmeasurement   of  blood   blood  pressure.   Am Heart  J 91:584-591,   1976. Geddes   U A ,   Whistler   SJ :   The error  in   indirect  pressure measurement  with   the inblood pressure blood correct   size of cuff.   Am Heart J   96:4-8, 1978. Raftery EB :   The methodology   of  blood pressure   blood  pressure recording.   Br  J   Clin  Pharm   6:193-201, 1978. Sacks AH: Sacks  AH:   Indirect  blood  pressure   measurements:   a matter   of  interpretation.   interpretation.  Angiology  30:683-695,   1979. Kirkendall   WM, Kirkendall WM,   Feinleib  M Freis   WD,   Mark   M,,   Freis 

AL:   Recommendations pressure determination pressure by   human  determination  for sphyg-  blood momanometers.   Stroke   12:555A-564A, 1981. Burke MJ  Fitzgerald MJ,,   Towers HM HM,,   O’Malley K, K, Fitzgerald DJ,  O’Brien   ET :   Sphygmomanometers   in family practice: hospital   and family  practice:  problems and recommendations.   Br  Med 285:468-471,   1982. Kristensen  B O,   and Kornerup   HJ:   Which arm to   measure   th the e blood  pressure?  Acta   Med Scand  (Suppl)   670:69-73, 1982. Prineas   RJ ,   Jacobs D:   Quality  of   of  Korotkoff   Korotkoff  sounds:   Bell   vs  diaphragm,   cubital fossa cubital  fossa v s   brachial  artery.  Prey Med   12:715-7l9, 1983. Schrager BR ,   Ellestad  M:  The impor importance tance   of  blood pressure measurement  during   exerCardiovas  Rev   &   Rep cise   testing. Cardiovas Rev 4:381-394,   1983. Londe   5,  Klitzner  T S:  Auscultatory  blood   pressure  measurement:   effect of  pressure  pressure  on  head  of  th the head the  the e stethescope.  Western Med   141:193-195,   1984. Med Gould  B A,  Hornung RS ,   Kieso  HA, et   al.:   Is  pressure the blood pressure blood  the same  in   both  arms? Clin  Cardiol  Cardiol 8:423-426,  8:423-426,   1985 .  pressure  measureConstant   J :   Accurate  blood  blood pressure ment.   Postgrad Med  81:73-86,   1987. Yong  PC,  Geddes  U A:   The effect of  cuff    cuff  pres-

Blank   SC, West  JE ,   Muller F Muller  F B ,   et al.:   Wideband external  pulse recording  during  cuff  deflation:   a  new technique   for for evaluation  evaluation of   the   arterial  pressure pulse   and meas meas-urement  of  blood pressure.  Circulation 77:1297-1305,   1988. C. Inv Invasi asive ve Wood EH, Wood  EH,   Fuller  I,  Clagett   OT :   Intraluminal pressures recorded   simultaneously from simultaneously  from different  arteries   in   man  (abstract).   Am J Physiol   167:838-839, 1951. Bevan A T,   Honour  A J,   Stott   FH:   Direct   arterial pressure recording  in   unrestricted   man. Chin Sci Chin  Sci   36:329-344,   1969. Stern  DH,   Gerson JI Gerson JI ,   Allen  F B ,   Parker   PB :   Can we  trust   the direct  radial artery pressure artery  pressure immediately  following  cardiopulmonary bypass?  (Abstract)   Anesthesiology 57:A174,  1982. Abrams  J :   Arterial  pulse   and blood pressure. Cardiovas   Rev  &   Rep  6:1055-1073,   1985. Cardiovas Gallagher   JD ,   Moore RA,  McNicholas K W ,   Jose   radial   and femoral arAB :   Comparison   of  radial terial  blood  pressures   in  children after cardiopulmonary  bypass.  bypass.   J   C hi n   Monit 1:168-171,   1985. Wesseling  RI-I,   Smith   NT:   Availability Availability of  intra intraarterial  pressure  waveforms   from catheter-manometer  systems during   surgery.  J   Clin  Monit  Monit 1:11-16,  1:11-16,   1985 . Bazaral MG,   Nacht  A,  Petre   J ,   et al.:   Radial arsubclavian vian tery pressures  compared with subcla  pressure   during   coronary artery artery pressure artery surgery.   Cleve C hi n   J   Med 55:4-48-457   1988.

D.   Automated Moskowitz   R :   Spotlight   on   blood pressure blood  pressure monitors—manual,   automatic,   and in  be-

tween.   Rx  Home  Care   April,  1982. Moser  M :  Guide  Guide   to   home blood  pressure monitoring.  Diagnosis   10(8):61-64, 1988. E .   Miscellaneous   Topics  in Pressure Measurement Anliker M,  Histand   MB :   Dispersion   of  small   small artificial  pressure  waves   in  th  the e canine  aorta. Circulation   Res Circulation Res 2  2 3:5393:539-551, 551,   1968. Nakayama  R ,   Kobayashi   T ,   Kimura   K ,   Azuma T:   A   theoretical   approach  to   the  volume pulse  wave.   Am Heart  J   86:96-106,   1973.

sure  deflation  rate on   accuracy in   indirect measurement   of  blood pressure   blood  pressure  with   the auscultatory method.  J   Clin   Monit 31:155-159,   1987. Mariotti C,   Alli   C ,   Avanzani   F ,   et al.:   Arm   positi tion on as a source a  source   of  error  in  blood  error   pressure   Clin   Cardiol measurement.   10:591-593, 1987 Fedder DO ,   Frohlich   ED ,   Zweifler A Zweifler  A J:   Sphygmomanometers:   which  to   choose? Patient choose?  Patient Care 21:67-70,   April 30,   1987.

Newman   DL Greenwald   SE:   Analysis  of  fo for r waves  by a ward  an  and d backward pressure   waves by total-occlusion   method. Med  Biol   Eng Comput   18:241-245, 1980. Murgo JP Murgo  JP ,   Giolma J Giolma  J P,   Altobelhi   SA :  Physiologic signal acquisition   and processing  for   hu in a clinical man hemodynamic  research hemodynamic research cardiac-catheterization  laboratory.   Proc IEEE 65:696-702,  1977.

98

 

Spac Spacelab elabss Me Medica dical: l: BLO BLOOD OD PRESSURE  \ 

Association   for  th Association   the e Advancement  of  Medical  Medical Instrumentation:   Standard   for for electronic  electronic   or automated   sphygrnoma automated sphygrnomanometers nometers (pro-

Henscheh   A,   de  h a   Vega F ,  Taylor HL:   Simultaneous   direct   and indirect  blood pressure measurements sure  measurements   in  man  at  atre rest st an and d

 the e Advancement posed). Associati Association on   for  th of  Medical  Medical  Instrumentation,  Arlington, Virginia,   March,  1985. Ellis   DM :   Interpretation   of  beat-to-beat Ellis  beat-to-beat blood pressure values   in   th the e presence   of  ye yen ntilatory  changes.   J  Chin  Monit 5-70,  1985. Ream  AK:  Mean blood pressure   algorithms.  J Chin   Monit   1:138-144,   1985. Association for Association  for   the Advancement  of   of  Medical  Medical Instrumentation:   Standard  for  electronic   or automated   sphygmomanometers.  Association for  th  the e Advancement  of  Medical  Medical Instrumentation,   Arlington,  Virginia, March,   1987. March, Smith  NT:   Computer Schwid HA,   Taylor LA,   Smith NT: model analysis  of  th  the e radial   artery pres artery  pressure wavefo waveform. rm.  J  Clin  Monit 3:220-228, 1987. Marmor   Al   Blondheim  DS,   Cozlan  E,  et al.: Method  for   noninvasive  measurement  of  central   aortic  systolic pressure.   Chin Cardiol  10:215-221,   1987.

ApphPhysiol  6:506-508,   1954. work.  J   ApphPhysiol 6:506-508, Berliner  K, Fujiy  H,   Ho Lee D, et al.:   Th e   accuracy of  blood pressure   blood  pressure   determinations: a comparison of   of    direct and indirect  meas  meas-urements.  Cardiologia   37:118-128,1960. Harrison  EC, Roth CM,   Hines  EA: Bilate Bilateral ral indirect   and direct arterial   pressures.   Circulation   23:419436,   1960 . lation Berliner K, Berliner  K, Fujiy H,   Ho Lee   D ,   et al.:   Blood pressure measurements pressure  measurements   in   obese persons: comparison  of   intra-arterial and auscultatory  measurements.   Am J   Cardiol 2 0 :10 -17, 1961. Coldstein   5, Killip  T :   Comparison   of  direct   direct   and indirect  arterial   pressures   in   aortic regurgitation.   N EngI  J   Me d   267:11214124,  1962. Holland  W W,  Humerfeht  Humerfeht S:  S:   Measurement of   intrablood pressure: comparison   of  intraarterial   and cuff  values.  values.   Br   Med J 2:1241-1243,   1964. Nagle   FJ,  Naughton  J ,  Balke  B :   Comparisons  of  direct   and indirect blood pressure-flow dynamics  during  exercise.  Am   J   Physiol 21:317-320, 1966. JN: Bloo Blood d  pressure measurement   in Cohn   JN: shock—mechanism of   inaccuracy in   auscultatory and palpatory methods.   JAMA 199:972-976,   1967 London  S B ,   London R London R E:   Comparison   of  in indirect   pressure measurements  (Korotkoff) with   simultaneous  direct  brachial  artery distal  to  the  cuff.   Adv Int  Med pressure   distal to 13:127-142,   1967 Raftery  E B ,   Ward  A P:   The indirect method  of  method of  recording  blood pressure.  Cardiovas  Cardiovas Res  Res

III.   COMPARISON STUDIES A.   Indirect versus Direct  Blood  Pressure Measurement Warfield  L M:   Studies  in  auscult  auscultatory atory blood pressure phenomena.  Arch   Tnt  Med 10:258,   1912. Hamilton   WF,   Woodbury  RA,  Harper HT: Physiologic relationships between   intrathoracic,  intraspinal and arterial   pressures.   JAMA   107:853-856, 1936. Ragan C,   Bordley J :   Th e   accuracy   of  clinical   clinical   arterial  blood pressure, measurements   of  arterial with   a  note   on   the auscultatory  gap.  Bull Johns  Hopkins  Hosp  69:504-528,   1941. Steele JM :   Comparison   of  simultaneous   simultaneous  indirect  and d direct (intra-arterial) (auscultatory) an measurements  of  arterial  arterial  pressure  in man. J  Mount  Sinai Hosp 8:1042-1050,  1941. Kotte JH, Ighauer  A,   McCuire J J::   Measurements of   arterial  blood  pressure  in   th the e arm and  blood pressure leg:   comparison   of  sphygmomanometric   sphygmomanometric and   direct  intra-arterial  pressures,  with special  attention  to   their relationship  in

2:210-218,   1968. Freis  E D,   Sappington F Sappington  F :   Dynamic reactions produced by   deflating   a  blood   pressure cuff.   Circulation  38:1085-1096, 1968. of    perYoungberg   JA ,   Mifier  E D:   Evaluation   of  of   the dorsalis cutaneous   cannulations of   Anesthesiology  44:80-83, pedis  artery.   Anesthesiology 44:80-83, 1976. Harrington   D P :  Disparities  between  direct and indirect  arterial  systolic   blood-pressure measurements.  CV P   Aug/Sept:40-44,  1978. Hunyor SN, Hunyor  SN,  Flynn   3M ,  Cochineas  C:   Compari-

aortic  regurgitation.  regurgitation. Am  Am   Heart J 28:476-490,   1944. Roberts  LN,  Smiley  JR .  Manning   CW:   A   comparison of   direct   and indirect blood pressure   determinations.  Circulation 8:232-242,   1953.  A E, Van  Bergen 5, Trehoar 5,  Trehoar   of  FH, Dobkin  A B,Weatherhead  Buckley J J :    Comparison indirect and   direct  methods  of  measuring arterial  blood pressure.  Circulation 10:481-490,   1954.

son of performance  of  various   various   sphygmomanometers momano meters with   intra-arteriah blood-pressure  readings.   Br  Med  J 2:159-162,   1978. Bruner JMR,  Krenis  U,   Kunsman  3 M ,   Sherman AP:   Comparison of  direct   direct   and   indirect methods   of  measuring  measuring  arterial  blood pressure, part T .   Me Med d lnstr lnstr 15:11-21,  15:11-21,   1981.

99

 

Bruner JMR,   Krenis   U,   Kunsman  JM,   Sherman direct   and indirect AP :   Comparison   of  of direct methods   of  measuring   measuring   arterial blood pressure,   part  I I.  Med   Instr  Instr   15:97-101, 1981. Bruner JMR,   Krenis   U,   Kunsman   JM,  Sherman of  direct  direct and indirect AP :   Comparison   of    measuring   arterial   blood methods   of  measuring pressure,   part III.  Med Instr   15:182-188, 1981. O’Callaghan WC,   Fitzgerald   DJ ,   O’Malley K, et al.:   Accuracy  Accuracy   of  indirect   indirect  blood  pressure  blood pressure the e elderly.   Br   Med measurements   in   th 286:1545-1546, 1983.  Lersen   B ,   Hoisten   F ,   Poulsen  HL: Nielsen   PE, PE, Lersen Accuracy of  ausculta  pressure  auscultatory tory blood blood pressure  and d obese measurements   in   hypertensive  an patients.   Hypertension  Hypertension   5:122-127,   1983. Nielsen FE :   The The accuracy  accuracy of   auscuhtatory blood pressure   measurement   in   the pressure  elderly the elderly

Ceddes   LA ,   Combs  W,   Denton   W,   et   ah.:   Indirect   mean   arterial  pressure  in   the anesthetized   dog. Am dog.  Am J J   Physiol 238 (Heart Circ Physiol   7):  H664-H666,   1980. Mauck  CW,  CW ,  Smith   CR,   Ceddes   LA,   Bourhand JD:   The meaning of  the   the point  of maximum oscillations   in  cuff  pressure   pressure   in   the indirect measurement of  blood pressure—part II pressure—part II . ASME  J   Biomech  Eng  102:28-33,   1980 . Silas JH, Barker JH,  Barker   A T,   Ramsey LE LE::  Clinical  evaluation   of  Dinamap   Dinamap  8 45   automated blood pressure   recorder.   Br  Heart 1   43:202-205, 1980 . Friesen   RH,   Lichtor  J JU: U:   Indirect  measurement of  blood pressure   blood  pressure  in   neonates   and infants utilizing  an  automatic   noninvasive  oscilhometric  monitor   Anesth   Analg 60:742-745, Analg  60:742-745, 1981. Kimble   K J,   Darnall RA, Yehderman M,  Ariagno RU ,   Ream   AK:   An automated  oscillometautomated oscillomet

Acta  Med  Med Scand  Scand  fSuppj   676:39-44,   198R Vardan   5,   Mookherjee   5,  Warner  R ,  Smulyan H: Syst Systolic olic hypertension:  Direct   and  pressure measurements. indirect blood blood pressure  measurements. Arch  Int  Med   143:935-938, 143:935-938, 1983. Rasmussen  PH,  Staats   BA ,   Driscoll   DJ,   et al.: Direct   and indirect   blood pressure blood  pressure  during exercize.   Chest 87:743-748, Chest  87:743-748,   1985. Hha  1 C M ,   Feussner JR :   Screening for   pseudohypertension:   a quantative, noninvasive approach. Arch  Int  Med  148:673-676,   1988.

 for   estimating  mean   arterial nc technique pressure  in  critically  il l  newborns. Anesthesiology  54:423-425,   1981. Paulus   DA :   Noninvasive  blood  pressure  meas  meas-urement.  Med Instr   15:91-94,   1981. Borow KM,  Newburger esti Newburger 3  3 W :   Noninvasiye   estimation   of  central   central   aortic  pressure  pressure using  using the th e oscillometric method   for   analyzing systemic   artery pulsatile  blood   flow.   Am Heart J   103:879-886, 1982. Ceddes   LA ,   Voelz   M,   Combs  C,   Reiner  D , Babbs   CF:  Characterization   of  the  the oscillometric method   for  measuring   indirect blood  pressure.   Ann   Biomed   Eng 10:271-280, 1982. Cohan   SD ,  Fujii   A, A,   Borrow KM, Borrow  KM, et   al.:   Noninvasive   determination  of systolic,  diastolic and end-systolic blood   pressure  in  neo and d young children:  Co nates,   infants  an  Com mparison  with   central  aortic  pressure measurements.   Am   J   Cardiol   52:867-870, 1983. F:   A Cloyna   DF,  Huber  F ,   Abston   F ,   Arens  J JF: comparison  of  blood pressure  measurement   techniques  in  th  the e hypotensive   patient  (abstract).   Anesth Analg 63:222, 1984. Finnie KJC, Finnie  KJC,   Watts  DC,   Armstrong PW  PW::   Biases in  th  of  arterial  arterial  pressure.  the e measurement  of 

B .   Doppler Devices  versus  References Stegall  H F,   Kardon M B,  Kemmerer   WT:   Indirect measurement   of   arterial  blood pressure by   Doppler  ultrasonic   sphygmomanome AppI Physiol try.   J  AppI  Physiol  25:793-798,   1968. McLaughlin   CW, CW, Kirby  Kirby  R R,   Kemmerer  W T , deLemos  R A:   Indirect  measurement   of   pressure   in   infants  utilizing   Dopblood pressure blood Pediatr  79:300-303,   1971. pler  ultrasound.   J   Pediatr 79:300-303, Sheppard  L C,   Johnson   33, Kirklin   JW:   Controlled  study   of  brachial   brachial  artery blood pressure   measured  by a   new indirect pressure method.   J   AAMI 5:297-301,   1971. CM, Remington  Remington   RD : Labarthe   DR, Hawkins   CM, Evaluation of  selected   selected devices   for for measur  measur-ing blood   pressu pressure. re. Am Am J J   Cardiol 32:546-553,   1973.

C.   Oscillometric  Devices  Devices   versus References Fosey  JA ,  Ceddes   LA ,   Williams   H, Moore   AC:   maximum The meaning   of  the  the point   of  maximum oscillations   in cuff  pressure  in   th the e indirect measurement   of  blood   blood pressure  Part   I. Cardioyasc Res Cardioyasc  Res   Ctr   Bull 8:15-25,   1 9 6 9 . Ramsey M:   Noninvasive  automatic   determination of   mean  arterial   pressure.   Med   Biol Eng Comput  17:11-18,   1979. Yelderman M,   Ream  A K:   Indirect measurement of mean mean blood  blood pressure in the anesthetized patient.   Anesthesiology  50:253-256,   1979.

Cdt Care Care Me Med d  12:965-968,  1984. Davis  R F:   Clinical   comparison   of  automated   automated  and d auscultatory and oscillometric an catheter-transducer measurements   of  arterial  pressure.   J   C hi n   Monit   1:114-119, 1985 .  U ,   E   Bennet  R ,    Couture Nystrom Nystrom E  E ,   Reid monds   HU :KH,   A  comparison of  two  two auto auto- dmated  indirect  arterial   blood pressure blood  pressure meters:   with with recordings from  a  radial   arterial   catheter   in  anesthetized   surgical  patients.   Anesthesiology  62:526-530,   1985 .

100

 

Spacelabs Medical: BLOOD PRESSURE  \‘

Venus B ,   Mathru  M,   Smith RA,   Pham  CG: Direct   versus indirect blood pressure measurements   in in critically  critically ill patients. Heart &   Lung 14:228-231,  1985. Loubser PC: PC: Comparison   of  intra-arterial   intra-arterial   and automated autom ated oscillomeft oscillomeftic ic  blood pressure measurement methods   in   postoperative hypertensive  patients.   Med  Instr 20:255-259,   1986. Cullen  PM,   Dye J ,   Hughes  DC:  Clinical  Clinical assess  assess-ment  of  th  the e neonatal Dinamap   847  during  and d infants.   J   din anesthesia in   neonates  an Monit  3:229-234,   1987 Shimazu H,  Kobayashi  H  H,, Ito H,   et aL:  Indirect measurement of  arterial  pressure in   the limbs   of babies   and children   by  th  the e  oscillometric method.   J   Gin Eng volume oscillometric volume 12:297-303,   1987. Whalen  P ,   Ream  A K:   A   quantitative evaluation of    the Hewlett-Packard 78354A  noninva of   noninva-  blood pressure meter. J  Clin  Monit sive 4 : 21 - 30 , 1 9 88 .

YamakoshiK, Rolfe YamakoshiK,  Rolfe F ,   Murphy   C: Current   developments   in  non-invasive  measurement of  arterial   arterial blood pressu pressure. re. J   Biomed Eng 10:130-137,   1988. Santucci  S ,   Steiner  M,   Zimbler M,   et at:   Validation   study of   th the e SpaceLabs models 90202   and 5200  ambulatory bloodpressure  monitors.  J  Ambulatory Monk  1:211-216,   1988.

IV.   FREQUENCY CHARACTERISTICS   FO FOR R INVASIVE BLOOD   PRESSURE MEASUREMENT Wood EH:   Study  of   of  minimal  minimal   dynamic  response characteristics   of  manometer   manometer   systems   required  for   adequate recording   of  peripheral arterial  pressure   pulses   in  man (abstract).   Am J   Physiol  Physiol   163:762,  195 0 . Wood EH: EH:   Physical  response  response requirements  requirements   of  pressure transducers  fo r   the reproduction of  physiological  physiological  phenomena.   AWE AWE Trans  Trans Part 1 :   Communications  &   Electronics 75:32-40,  1956. Fry   DL:   Physiologic recording   by by modem  modem instruments strume nts with particular  reference to pressure recording.   Physiol Rev

Latimer KE ,   Latimer   R D :   Measurements   of  pressure-wave  transmission  in   liquidfified  tubes used for used  for  intravascular  blood pressure  recording. Med   Biol Eng 7:143-168,   1969. Melbin J ,   Spohr   M:   Evaluation   an and d correction of  manometer   manometer   systems with two t wo degrees of  freedom.  freedom.   J   Appl  Physiol  27:749-755, 1969.

 HR, Toronto  Toronto   A Y ,  Gaisford Gardner  RM,   Warner HR, WD:   Catheter flush syste system m  for   contirtuous   monitoring  of central arterial  pulse waveform.  J   Appl Physiol   29:911-913,  1970 . McCutcheon  H’  H’,,   Evans  ifi   Stanifer NP  NP::  Direct blood pressure measu measuremen rement: t: gadg gadgets ets

versus progress. Anesth Anaig 51:746-758, Anaig  51:746-758, 1972. LaPointe  AC ,  Roberge   FA :   Mechanical  damping of    the manometric  system used in   the of  pressure gradient  technique.  IEEE   Trans

Biomed   En g   BME-21:76-78,  Ackerman E,   Leonard A:  1974. Klee  C,   Computer detection of distortion in  arterial  pressure signals. IEEE signals.  IEEE Trans  Trans  Biomed Eng BME-21:73-75,   1974. Krovetz  U,  Coldbloom  S :  Frequency  content   of  intravascular   and  intracardiac  pressures and   theft time   derivatives.   IEEE   Trans BiEng   BMIE-21:498-501,   1974. omed Eng LimiKrovetz   U, Jennings   RB ,  Goldbloom  SD:   Limitation of  correction   correction   of  frequency   frequency dependent   artefact in  pressure recordings   using harmonic analysis.   Circulation   50:992-997, 1974. Hök  B :   Dynamic calibration   of  manometer   manometer systems.  Med Biol  Eng  14:193  14:193-198, -198, 1976. Harf A,  Lorino H, Atlan  C,   Laurent Proulx   P A ,   Harf D:  Dynamic characteristics  of  air-fified  air-fified

differential pressure transducers.  J   Appi Physiol   46:608-614,   1979. Glantz B Glantz  B A ,   Tyberg J V :   Determination  of  frequency qu ency response from step response:   application to   fluid-fified  fluid-fified   catheters.   Am J Physiol 2 Physiol Circ  Physiol   5):  2 36   (Heart   Circ Physiol H376-H378,   1 9 7 9 . Shinozaki T ,  Deane  R S,   Mazuzan JE:   T he   dy of   liquid-filled  catheter namic responses responses of  systems   for  direct  measurements  o f  blood  blood pressure.   Anesthesiology  53:498-504,

40:753 788, 1960. 788,  1960.   JIM, Rosen AL,  McDonald NM, Yanof  JIM,  of  the  the McDonald DA :   A   critical  study  of  response  of  manometers  to forced   oscillaoscillations. Phys   Me Med d Bioh   8:407-422,   1963. Vierhout  R R,  Vendrik  JH:  J H:   On   pressure generators for   testing  catheter  manometer sys-

1980.  Direct bhood  bhood  pressure measure measure-Gardner N  NM: M:  Direct ment: dynamic  response   requirements. Anesthesiology  54:227L 236,   1981.

V.   INDICATIONS FOR/EFFICACY  OF AMBULATORY BLOOD PRESSURE

tems. Phys Med   Biol   10:403-406,  1965. Stegall HF: A   simple, inexpensive,   sinusoidal pressure generator.   J   Appi  Physiol 22:591-592,   1967.

MONITORING Ayman D,   Goldshine  AD:   Blood  pressure determinations by   patients  with   essential hypertension.   Am J  Med S d   200:465-474, 1940.

1 01

 

Sokolow Sokolow M,  M,  Werdegar  1),  Kain  1-1 K ,   Hinman A T:   Relationship  between  level of  blood   blood

Mancia   C,   Bertiriieri C, Bertiriieri  C,   Grassi G,   et al.: Effects of blood-pressure  measurement  by   th blood-pressure measurement the e

 and d by   porta  casually pressure pressure measured  measured   and severity severity    of  an   complica  complica ble recorders tions   in   essential hypertension. essential hypertension. Circulation 34:279-298, Circulation  34:279-298,  1966. J u l i u s   S ,   E l l i s   CN,  P a s c u a l   A M   et al.:   Home blood pressure   determination.   JAMA 229:663-666,   1974. L i t t l e r   WA,  Honour  A J ,   Pugsley  D J,   Sleight   DJ: Continuous   recording   o f   direct  arterial pressure itt  unrestricted  patients;   its role in   th the e diagnosis   and management   of high blood pressure.   Circulation   51:11014106, 1975 . Gordon T Gordon  T ,   Sorlie  P ,   Kannel  W B:  Problems  in the th e assessment of  blood   blood pressure:   The Framingham  study.  T nt   J  Epidemiol 5:327-334,   1976. Millar-Craig MW  Hawes   D ,   Whittington J :   New

  and doctor  on  patient’s  blood pressure  blood  pressure  Lancet  ii:695-698, heart rate.   1983. Devereux RB ,   Pickering TC, Harshfield  GA,   et at: t: Left  Left ventricular  hypertrophy in   patients with wit h hypertension: hypertension: impor importance tance of  blood pressure respons response e   to  regularly recurring stress.  Circulation  68:470-476,   1983. Des Combes  B J,  Porchet MD,   Waeber B ,   BrunBrunner  H R:   Ambulatory blood pressure recordings:  reproducibility   and unpredictability.  Hypertension 6 Hypertension  6 :C 11O -C 115,   1984. Gould   BA, Hornung RS ,   Kieso HA,   et al.: Evaluation of   the Remler Remler M2000  M2000  blood pressure recorder:  comparison  with   intraintraarterial   blood pressure blood  pressure recordings  recordings both   at  and nd at home.   Hypertension hospital  a 6:209-215, 1984. Sleight P: Sleight  P:   Ambulatory blood pressure  monitor-

system for   recording  ambulatory blood pressure   in  man.   Med  Biol  Eng Comput 16:727-731,   1978. Perloff D, Sokolow D,  Sokolow   M:   The representative   blood   office,   basal, pressure: usefulness   of  office, home,   and ambulatory readings.   Cardiovasc Med  Med   655-668;  June,   1978. Floras JS, Floras  JS, Jones  Jones Jlv   Hassan MO,   et at:   Cuff  and ambulatory blood pressure  in   subjects with   essential hypertension.  Lancet 11: 10 7- 10 9 ,   1981. Sheps   SC,   Elveback  L R,   Close  E  EL, L,   et at:   Evaluation of  ation  of  th  the e Del  Mar Avionics automatic ambulatory blood   pressure-recording device. Mayo Curt Mayo  Curt Proc  56:740-743,   1981. Fitzgerald D J,   O’Callaghan WG,  McQuaid  R ,   et al.:   Accuracy and reliability reliability   of  two  two   indirect   ambu  pressure record record-ambulatoryblood latoryblood pressure ers:   Reniler M2000 Reniler M2000   and Cardiodyne Sphygmolog.   Br  Heart J  48:572-579,   1982. Home  readings  of  Andersen AR,   Nielsen  P  PE: E:   Home readings  pressure  in  evaluation  of   of  hyperten blood pressure blood  hyperten-sive   subjects using   a new self reco recordi rding ng manometer   Ada Med  Scand   (suppi) 670:97-104,   1982. Weber MA, Drayer JIM, Wyle  FA ,   Brewer DD: A   representative  value   for  whole-day BP monitoring.   JAMA   248:1626-1628, 1982.

ing.   Hypertension 7:163-164, Hypertension  7:163-164,   1985. Parati C, Parati  C,  Pomidossi  G,   Casadei R Casadei  R ,   Mancia   C:   alerting  reactions   to   intermittent Lack of  alerting reactions cuff  inflations   inflations  during  noninvasive   blood pressure  monitoring.   Hypertension 7:597-601,   1985 . Creevy PC,   Burns  J JF, F,  Mroczek WJ:   Phlebitis associated sociate d with noni noninvasive nvasive 24-hou 24-hourr ambulatory bulato ry blood pressure monitot   JAMA 254:2411,   1985 . Hunt   JC,  Frohuich  E D,   Moser M,   et  al.:  Devices used   for   self-measurement of  blood   blood pres Revised statement  of  th sure: Revised sure:  the e National High Blood High  Blood   Pressure  Education  Education Program.  Program. Arch m t  Med   145:2231-2234,   1985. White WB :  The Rumpel-Leede sign associated with   a nonirivasive  ambulatory blood pressure  monitor.   JAMA  253:1724,   1985. Drayer JIM, JIM, Weber  Weber MA, Hoeger  WJ :   Whole-day BP  monitoring   in   ambulatory normotertsive  men.  Arch   T n t   Med  145:271-274,   1985. Weber  MA,  Drayer JTM,   Brewer DD: Brewer  DD:  Automated  MA, Drayer blood pressure measurements in   th the e diagnosis   of  mild agnosis  Cardi-  mild  hypertension.  J  Cardi opuim Rehabil  6:125-130, 6:125-130, 1986. Frohlich ED: Frohlich  ED:  Ambulatory blood  pressure moni blood pressure toring:   what is   known   and not known  in 1 9 8 6 .   Learning   Center  Highlights,  Highlights, Ameri  Ameri--

Perloff D ,   Sokolow M, Sokolow M,   Cowan  R:   The prognos  prognos-tic  value   of  ambulatory   ambulatory blood pressures. JAMA  249:2792-2798,   1983. Drayer  JIM,  Weber  MA,   DeYoung JL,  Brewer  JIM, Weber  Long-term  BP   monitoring   in  th DD: Long-term DD:  the e evaluation   of   antihypertensive   therapy evaluation Arch m t  Med  143:898-901,   1983.

cal  College of  Cardiology    Cardiology   1:14,   1986. Health  an  and d Public  Policy   Committee,   American College of  College  of  Physicians:  Automated  ambu  ambu-latory lato ry bloo blood d  pressure  monitoring.   Ann m t   Med 104:275-278,   1986. National  Health Services   and Practice Patterns Survey  Report   on Fully  Automated   Am-

Rowlands  D B,   Stallard ‘fl,   Littler WA Littler  WA :   Comparison   of  ambulatory   ambulatory blood pressure   and cardiovascular reflexes cardiovascular  hyper- reflexes in  elderly  hyper tensives,  elderly  norntotensives  an  and d young hypertensives.  J   Hypertension 1   (suppi   2)11-73, 1983.

 Blood  Monitoring:   Cur Monitoring: bulatory Applications rent and Future  Pressure  National Academy of  Academy  of  Sciences,  Sciences,  Washington,   DC; March  5 ,   1986. Baker  LH:   Episodic   hypertension White WB ,   Baker LH: secondary to  panic   disordet   Arch Tn t Med 146:1129-1130,   1986.

102

 

Spacelabs Medical: BLOOD PRESSURE

 \,  \ ,

 automatic   blood presKay J ,  Neal M: Effect of  automatic sure   devices on  vigilance  of  anesthesia  J residents.   Clin  Monit TG,   Harshfield  GA,  2:148-150,   Blank  S, et al.: Pickering  S ,    1986. Behavioral   determinants   of  24-hour  24-hour blood pressure patterns pressure  patterns   in   borderline  hypertension.   J  Cardiovas   Pharm 8   (suppl  5):S89-S92, 1986. Pickering  TG:   Strategies   for  th  the e evaluation   and treatment   of   hypertension   and some   implications   of  blood pressure   blood  pressure   variability. Circulation  76(suppl  I ):177-182,  1987. Pagny JY~ Pagny  JY~Chatellier Chatellier C,  C,   Devries   C ,   et al.:   Evaluation   of  the  the SpaceLabs ambu’atory  blood pressure recorder:  comparison  with   the  M2000.   Cardiovas   Rev &   Rep Remler M2000. Remler April  1987. Krakoff  L  L R,   Phfflips   RA :   Ambulatory blood pressure monitoring   in   management   of  hypertension. Primary  Cardiol   16-26, April,  1987. Celoria   C,   Dawson JA Celoria JA,,   Teres D:   Compartment syndrome  in a  patient monitored with   an automated blood pressure blood  pressure  cuff.  J  Clin Monit  3:139-141,   1987. Mancia  C,   Parati G, Parati  G,   Poniidossi  G,   et al.:  Alert  Alert-ing reaction and rise  in  blood pressure during measurement by   physician  an  and d nurse. Hypertensio Hypertension n  9:209-215,   1 9 8 7 . Baker  LH:  Ambulatory blood presWhite  W B,   Baker LH: sure  monitoring  in   patients with   panic disorder.   Arch T nt   Med  147:1973-1975,   1987. Fortmann   SP ,   Haskell  WL ,   Wood PD ,   et al.:   Ef fects  of  weight   loss  on   clinic and ambulatory  blood  pressure  in   normotensive  blood pressure men.   Am  J   Cardiol  62:89-93,  1 9 8 8 . Pickering TG,   James  G D,   Boddie C, Boddie  C,   et aL:  How

Caliva  FS,   Napodano  R  RJ, J,  Lyons  RI-I:   Digital hemodynamics  in  th  the e normoterisive  an  and d

hite e coat   is  whit hypertension hyperte nsion? ? common JAMA   259:225-228,   1988. Weber MA, Weber  MA,   Cheung  DC,   Graettinger  WF, Lipson   JL:  Characterization   of  antihyper   antihypertensive  therapy  by  whole-day blood pressure monitoring.   J  Am   Med  Assoc 259:3281-3285, 1988. White WB ,  Morganroth  J :  Usefulness   of  ambulatory monitoring   of  blood pressure   blood  pressure   in assessing  antihperten antihpertensive sive   therapy. (Editorial)  Am  3   Cardiol  63:94-98,   1989.

 and d simultaneously   measured methods  an direct  intra-arterial  pressure.   Br  J   Anaesth 57:434,   1985. Wesseling KH, Wesseling  KH,   Settels  J J ,  De Wit   B :   The measurement  of   continuous continuous finger fin ger  arterial pressure  noninvasively in  stationary su sub b jects.  In   Biological   and Psychological Factors   in in   Cardiovascular Disease.  Schmidt TI-I,  Dembroski   TM,   and Blumchen  C, (Eds.),   Springer-Verlag (Eds.), Springer-Verlag,,   Berlin,  1986,

 states.   II .    1963. Venomotor  tone. hypertensive Circulation  28:421-426,

B .   Continuous Measurement Measurement YamakoshiK,   Shimazu H, Shimazu H,   Togawa T :   Indirect measurement of  instantaneous  arterial  pressure   in  th  the e rat. Am  J  Physiol blood pressure blood 237:H632-H637,   1979. YamakoshiK, Yamakoshi K,   Kamiya   A,  Shimazu   H, et al.: al.: of i inNoninvasive  automatic  monitoring   of  stantaneous arterial  blood pressure using the vascular unloading  technique.   Med Biol   Eng Comput   21:557-565, 1983. Wesseling  KH,   Settels JJM, Settels  JJM,   et al.: Moihoek  CF.  CF.   Wesseling KH, Evaluation   of  the  the Penaz  servo-plethysmothe e continuous, manometer   for   th continuous,   non  finger  blood invasive  measurement  of  finger pressure.  Basic Res  Cardiol 79:598,   1984. Dorlas JC,  Nijboer JA JA,,   Butija W Butija  W T,   et al.: Effects of  peripheral  peripheral   vasoconstriction  on   th the e blood pressure   in   the  finger,   measured continuously  by a new  noninvasive method   (the Finapres).   Anesthesiology 62:342-345,   1985 . Gravenstein   JS,  Paulus   DA ,  Feldman J ,   and Mc[.aughlin   C:  Tissue  hypoxia  distal   to a Penaz  finger   blood pressure blood  pressure  cuff.  J   din Monit   1:120-125,   1985. Smith   NT,  Wesseling  KR,  de Wit   B :   Evaluation of  two   two prototype   devices  producing noninvasive, palsatile,   calibrated  blood pressure measurement pressure  measurement  from  from   a finger. J Cliri  Monit  Monit 1:17-29,  1:17-29,   1985. Van Egmond  J ,   Hasenbos   M,   Cml  J F:   Invasive vs  noninvasive  measurement   of  arterial   arterial pressure   Comparison  of   tw two o  automatic

VI.. VI

pp.   355 375.  real-time, noninva  noninva-Boehmer RD :   Continuous,  real-time, sive   monitor  of  blood  blood pressure: Penaz methodology methodo logy applied  to  th  the e finger.  J   Gun Monit   3:282-287,   1987. Kurki  T ,   Smith   N T,   Head  N,   et al.:   Noninvasive continuous blood pressure blood  pressure measurement from the finger: optimal  measurement  and d factors affecting  reliability. conditions  an J   Clin Monit   3:6-13,   1987.

FING FI NGER ER BLOOD PRESSURE A.   Digital Hemodynamics Mendlowitz  M,   Torosdag  SM,   Sharney   L :   Force and work  of   of digital   arteriolar smooth muscle contraction   fr frii   hypertension.   J Appi   Physiol  10:436-446,   1957. Caliva  FS,   Napodano  R  RJ, J,   Stafford   RM,   J~oftus W,  Lyons  RH: Digital   hemodynamics   in the normotensive  an  and d hypertensive states. I. Digita’  mean arterial  an  and d venous pressures, blood  flow,   and vascular resistance.  Circulation   28:415-420, 1963.

1 03

 

 H,  Kobayashi  H, Ito Ito H,  Yamakoshi  K: Shimazu Shimazu H, Indirect measurement   of   arterial  pressure in  th  the e limbs   of  babies  the e  babies and children   by  th volume  oscifiometric  method.   J  Cliii Monit   12:297-303,  1987. C. Inter Intermitten mittentt   Measurement Lassen  NA  NA,,  Krahenb.hl  B ,   Hirai M: Hirai  M:   Occlusion cuff  for   routin routine e measu measuremen rementt  of  digital blood pressure and  blood flow.   Am J Physiol   232:H338-H340,   1977 Yamakoshi K,   Kawarada A, Kawarada  A,   Kamiya A, Kamiya  A,   et  al.: Long-term  ambulatory  monitoring   of   indirect   arterial  blood pressure using a direct volume-oscifiometric method.   Med  Biol Eng Comput  23:459-465,   1985. Shimaz Shi mazu u H, Ito H,   Yamakoshi   K:   Noninvasive method   for   estimating  th  the e mean  capillary pressure   and pre-  an  and d postcapfflary resistance ratio resistance  ratio in  human fingers.   Med Biol  Eng Comput   24:585-590,  1986.

VII.   NONINVASIVE  MEASUREMENT   OF ARTERIAL  COMPLIANCE Nakayama  R ,  Azuma  Azuma T  T :   Noninvasive   measurements of digital   arterial  pressure  and compliance  in   man.   Am J  Physiol 233:H168-H179, 1977. 233:H168-H179,  1977. Yamakoshi  K,   Shimazu H, Shimazu H,  Togawa T ,  Ito  H: Admittance plethysmography for  accurate measurement of  human   human  limb  blood flow. Am J   Physiol  235:H821-H829,   1978. Simon  AC,   Safar ME,  Levenson  JA ,   et al.:   An evaluation  of  large arteries compliance  in man. Am  J  Physiol   237:H550-H554,   1979. ZhangShang-da C,  Xue-han N,  Chao-nien  Chao-nien C  C ,   Zhangming  C:   Noninvasive   determination   of   arterial   compliance. Med   Biol  Eng Comput 21:424-429,   1983. Bell   L B ,   Zuperku   EJ ,   Kampine JF:   Technique for Technique  for  measurement   of  compliance   compliance continuous measurement continuous in  isolated vascular   Physvascular segments. segments. Am I  Physiol   250:R142-R149,  1986.

8 . 0   GL O SSA R Y Action  potential  The  The electrical   activity  developed   in a  muscle  or nerve cell   during activity. Algorithm  — A procedure   for   solving  a   mathematical problem in a finite  number of  steps   steps  that frequently  involves   repetition  of   an   operation.  Moving  or  extending  extending forward; Antegrade  Moving  forward;   also called  anterograde. Aorta T he   great   trunk  artery that  carries blood from  the he hear artt for  distribution   by  th  the e branch arteries  throughout   th the e body.   — 

  — 

  — 

Of or or   pertaining  to  the  aorta. Aortic  — Of  Arrhythmia An alteration of  either   either   time or force of  the th e rhythm   of  the  the heartbeat.   One of  the Arteriole  One  the  small  endings   of  an   an artery that  becomes   the capillaries. Arteriosclerosis A group of  diseases   diseases characteriz characterized ed by thickening and loss of elasticity of elasticity of arter arterial ial wall walls. s. Artery   — A vessel  or  tube-like  structure  through which   the blood passes  away from the from  the heart to the various the  various  parts  of   of    the body.   — 

  — 

  — 

Atrium   — A   chamber;  used   in   anatomical nomenclature   to  designate  a  chamber   allowing  or  organ;  organ; usually entrance  to  another  structure  structure or  usually used   alone   to  designate  a  chamber   of  the  the heart. chamber(s) (s)  of  the he Auricle   — The chamber heart art that  receives blood from the veins  and   forces it  into  the ventricle(s).   Used most  commonly in reference to   nonhuman anatomy. Auscultate  —  T o   examine by  listening, usually   to to the  the sounds of  sounds  of  the  the  thoracic  or abdominal visce viscera ra with  or without   a  stethoscope. Auscultation  The  act  of  listening  f or   sounds  within the body,   chiefly for ascertaining  the condition of  the  the heart  o r   other  organs.  Of or or pertaining pertaining to  auscultation;   a Auscultatory  —  Of  noninvasive method  of  blood  pressure measurement. A-V  valves  —  See  atrioventricular  valves. Having   tw Bisferious two o  beats; usually  refers  to   a widely   notched  arterial  pulse   that   is   sometimes   — 

  — 

Artifact Any structure  or  feature   that   is not normal or  natural;  distortio  distortions, ns, abberati abberations, ons,   and inaccuracies   of  the  the normal blood  pressure waveform. Atria  Plural  Plural   for  atrium   (See  definition  below). Atrial kick  —  Same   as   atrial   systole   (See definition   — 

  — 

below). systole Phase  of   of    the  cycle that Atrialcorresponds to   the atrialatrial  contraction. Atrioventricular valves Valves located  between  the cavities of  the  the  atrium  and ventricle in each  half  of    the heart;   these  valves permit  blood to   flow of  from the   atrium   to to the  the ventricle bu  butt   not from the ventricle to the to  the  atrium.

palpable. Bronchial  or   more bronchi. Pertaining  to  one  one or Bronchus   (p1.  bronchi)   Any of  the  the  larger  air an outer passages  of  th  the e lungs,   having   an  outer  fibrous coat with irreg irregularly ularly placed  plates of hyalin hyalinee cartilage,   an  interlacing   of  smooth   smooth  muscle,   and a mucous membrane  of  columnar  columnar epithelial cells.   — 

  — 

  — 

  — 

  — 

Capacitance Any  See   compliance. Capillaries of th the e smallest   vessels   of  the  the  system vascular  that connects   an  arteriole with a venule  to  complete the formation   of blood vessel networks  throughout the body. Pertaining  to  the heart. Cardiac   — 

  — 

104

 

 \ 

Spacelabs Medical:  BLOOD PRESSURE

Cardiac  cycle   — The period   from the   end of  one  one the e end of   the next heart contraction  t too   th

 the e size  of  French   scale   — A  scale used   for   denoting  th catheters, sounds,   and other tubular tubular instruments  instruments

 the  th e cardiac cardiac cycle  cycle   of a  b contraction;  consists relaxation n called period   of  of relaxatio  diastole followed  byy   a period   of  of contra contraction ction called called systole.  systole. Cardiac  output   —  The volume   of  blood  blood   pumped by each  ventriche   per minute; minute; cardiac output   is  expressed  as liters   per per   minute. Cardiac usually expressed usually output   is   determined   by   multiplying   the he heart art rate   and th  ejected   by  each the e volume   of  blood   blood  ejected ventricle  during   each   heart beat   (stroke  volume) stroke  volume}. [Cardiac  output   =   heart rate   X   stroke volume}. Catheter   — A   tubular   medical medical device device for  for  inserting into   canals, vessels,  passageways, or   body c a v i t i e s   t o   permit  injection  injection   or   withdrawal   of  fluids,   to   keep passages   open,   or to  measure   an fluids, body parameter. internal   body Catheter  whip   — Oscillation   of  the   the tip   of  the  the  catheter in time   with   th the e cardiac  cycle   during   the movements  of   th the e heart. Catheter  whip

 to   0.33 with ineach unit  being roughly rou ghly equivalent  (for   example, mm   diameter  an   18   French measurement  is  is equivalent  equivalent to   adiameter of 6  mm). period-Frequency  —  The  number  of  occurrences  of  a period   time; ic   process  in a  unit  of   of    the  th e number   of  vibrations  made   by a   particle  or ray in   one second;   in   electricity,   the rate  of  oscillation   oscillation  or alternation   in an   alternating current. Frequency response  — The upper   and lower lower frequen  frequen-cies  at   which the which the   amplitude   response  ha  has s fallen to 3   decibles  below the  mid-frequency  value. Heart failure   —  A clinical  syndrome characteriz characterized ed by distinctive   symptoms   and signs   resulting  from disturbances   in   cardiac  output   or   from   increased venou venouss   pressure.  Most often  applied   to myocardial failure myocardial  failure   with increased  pressures   di dis stending   th the e ventricle   (high  end-diastolic  pressure   [EDP])  of   of    the heart   and   a   cardiac  output

produces  artifacts   that   are are superimposed  superimposed upon  upon  pressure  pulses  recorded  during   invasive the pressure the  recorded during b l o o d   pressure measurement. pressure  measurement.   venous   pressure (CVP)   — The venous Central pressure as   measured  at   the right atrium;   also called  right   atrial   pressure  (RAP). Compliance   — A   quality   of  yielding  yielding   to   pressure  or force  w  without ithout disruption, or  an   expression   of  the th e measure   of  the  the ability to do   so,   as   an expression  of   the  distensibility  of   an  air- or fluid-filled organ, eg.,   the  lung   or  urinary bladder,   in   terms  of  unit   of  volume   volume change   per u n i t   o f  pressure  change. Damping   — The process  of  decreasing   the   amplitude of a wave;   th the e ‘shock  absorber’   absorber’  effect of  retarding  free vibrations   in   the catheter monitoring  system. Diastasis   — The middle middle third of   diastole  when the  blood   into   the  ventricles has nearly inflow of  inflow  of  blood stopped;   the rest period   of  the  the cardiac cycle  that occurs   just  just   before systole.  dilatation   of  Diastole   — The dilatation   or period  of  dilatation especially  of  the   ventricles;  diastole the th e heart,   especially of  coincides with   the interval between   th the e second and first   heart  sounds. Diastolic   —  Of or   pertaining   to   diastole. Dicrotic   —  Having  a   double beat; double  beat; related  related  t too   the

inadequate  for   the body’s  needs;  often  subclassified as sified  as   right-  or left-sided heart  failure depending   on   whether  th  the e systemic   or  pulmonary veins are predo predominantly minantly distende distended. d. Hemodynamics   — The study   of  movements   movements   of  the  the  and d of  the  the forces associated with   the blood  an blood  system. Hertz  —  A   unit  of  frequency  equal   to   one  cycle per second; abbreviated Hz. Hydrostatic   —  Pertaining to a   liquid in liquid  in a state of  equilibrium.  pressure   — The pressure   at  any  level   on Hydrostatic pressure Hydrostatic  due e to  th weight   of  the water  (or  blood)   at  rest  du  the e weight  the above  it. water  (or  blood) above it. Hypertension   — Persistantly  high   arterial   blood pressure. Hypertrophic   — Pertaining to or mark marked ed by hypertrophy Hypertrophy   — The enlargement  or   overgrowth  of  an  an organ   or  part   due to  an   increase  in   size of its constituent   cells. Hypotension  —  Abnormally low blood pressure;   seen in   patients   with   shock but  not necessarily indicative  of  this condition. Incisura   — A cut,   notch,   or or incision;  incision;   th the e notch in   the aortic   and pulmonary   arteryblood pressure arteryblood  pressure waveforms which  occurs  when th the e semilunar valves close. valves  close.  The  incisura   is   caused   by a  short

sound  expansion   of  the dur r the artery  that   occurs   du ing th  the e diastole  of   th the e heart. Dilation   —  The  action  action of   of  dilating  dilating   or   stretching. Dilatation   — The condition   of  being  being dilated   or  beyond the stretched beyond stretched  the  normal   dimensions;   the  stretching   an  orifice or   tubular act of  dilating   dilating   or or stretching structure,   for for example.  example. Distal   — Remote;   farther   from any   reference; from  any  point  of  reference; opposed  to   proximal.

End-diastolic  volume   — The amount   of  blood   blood   in  the

ventricle just  prior  to systole. Endothelium   —  The layer  of  epithelial  cells  that lines  cavities   of  the th e cavities of  the   the heart,   the serous  cavities the th e body,   and th the e vessels vessels   of  the  the blood   and lymph   systems.

period   of  backward  backward flow of  blood   blood  immediately prior to  closure  of  th  the e valves. Interstitial   —   Pertaining  to or  situated between parts or in  th  the e interspaces   of a   tissue. Intrapleural space   — The space within   the pleura  definition efinition below below). ). (See d Isometric   —  Maintaining,  or pertaining  to,   the same measure of  length;   length;   of   equal   dimensions;   not isotonic. contraction   —  The first   phase   of  venIsovolumetric tricular  systole;   begins with   th the e closure  of  th  the e atrioventricular  valve   and ends  with   the opening of  the  the semilunar  valve.  Tension   increases in the muscle  bu  butt no   shortening  of   the muscle

fiber occurs.

105

 

Isovolumetric relaxation  —  T phase of  ventric ventric The he   first phase

Resistance  —  Opposition   or counter-acting  force;  an

 the ular   diastole;   begins  with   the closure   of  the semilunar  valve   (See definition  below)  an  and d ends   with the with  the  opening  of  th  the e atrioventricular valve. Mean pressure   — The  average   of  all  all   values values of  pressure  observed   at th the e measurement  site  over a number  of  cardiac cycles. Mitral   valve   — A   cardiac valve  that  consists  of   two triangular flaps and  guards   the orifice  between ventricle; icle; also   called th the left atrium   and ventr the e bicuspid  valve. Myocardium   — The middle   and thick thickest est layer of  the  the   cardiac muscle. heart wall;  composed   of  cardiac Natural frequency   —  T he   frequency at   which  an ob ject or or system  system wifi  wifi  vibrate  if  struck  and  and allowed to  vibrate freely. Oscillation   — A  backward  an  and d forward motion,   like   a fluctupendulum;   also described also  described   as   avibration,   fluctuation,   or  variation. Oscillometer   — An instrument for measuring oscilla measuring  oscillations   of  any  any kind, such  as  changes in  th  the e volume  of  th  the e arteries accompanying   th the e heart beat. Palpation   —  T he   act  of  feeling with   the  hand; the the hand;  the  apfingers w plication  of   th the e fingers  with ith light pressure  to the surface   of  the  the body   to   determine   the co consis nsistence   of  parts   parts  beneath th the e surface in a  physical examination. Percutaneous  —  Through   the skin. Pericardial   —  Pertaining to  th  the e pericardium   (See  (See   definition  below). the e Pericardium   —  The fibroserous   sac   that  surround th roots of   of   the great vessels,  vessels,   comheart and the roots prised  of   an  extemal layer  of  fibrous  fibrous   tissue  an  and d an inner  serous   layer.   The base  of  th  the e pen-

impediment   to  blood  flow in   a vessel.  Going   backward;  retracing   a former Retrograde  —  Going course. S-A  node   —  See  definition  belowfor  sinoatrial   node. Semilunar valve   — A  A valve  valve  having   semilunar   (resembling a crescent  or   half-moon) cusps;   for   example,   th the e aortic valve   and the pulmonic  valve. Septum  —  A  dividing   wall   or  partition. Sinoatrial  node   — A   microscopic collection of  collection  of  atypical   atypical cardiac muscle   fibers  at the superior   end of  the  the sulcus   terminalis   and at the at  the junction  junction of  of    the superior vena  cava   and tight  atrium; also called sinus node.  The   cardiac   rhythm normally  b  be egins   at  the  sinoatrial  node   so that this  node   is of   the heart. also   known   as   the pacemaker of   Snap test   — The   quick  test   used   in a  clinical  situation to   assess the amount   of  damping  damping   of  a pressure measurement  system,  which provides   a reasonable reasonab le estimati estimation on  of   th the e step response   of  this   system. Stroke  volume   — The amount   of  blood   blood   ejected   from  a ventricle   at  each   beat  of  the  the heart. Swan-Gan.z catherter   — A type  of  lklley   lklley  catheter with an   inflatable inflatable balloon located close to  th  the e tip;   th the e balloon expidi expidites tes  passage  of  the  the catheter   blood) through th the e he hear artt (following the flow of  blood) and obtains   the wedge  pressure  reading. Systole   — The contraction,  or period  of  contraction, of   the heart,   especially that  of  th  the e ventricles. Systole   coincides  with  the interval between the first and   second  heart  sound  during   which blood is   forced   into  the  aorta  and   the pulmonary   trunk. Systolic  —  Pertaining to  or produced  by   th the e systole; occuring  along with   the ventricular  systole.

 is   attached to  th  the e central  tendon   of  the  the cardium diaphragm. Peripheral resistance   —  The resistance   to  th  the e passage espeof blood through   the small  blood ve vessels, ssels,   especially the arterioles. Peripheral  resistance  unit  (PRU)   — The  unit used  to measure measur e resistance in a  blood vessel, usua usually lly given in milli millilite liters rs (ml) of  mercury  mercury  per   mffliiter (ml)   per per minute.  minute. Phlebostatic axis   —  The reference  point  point for  human  for human

 —  Relatively rapid   heart action. Tachycardia the e chest. Thoracic   —  Pertaining to   or affecting th converts ts fluid  pressures Transducer   — A  device   that conver to  electrical voltages.  Standardized transducers interchangeable eable  because  they generate  th are   interchang  the e   voltage output   per unit  of  fluid same amount   of  voltage pressure   applied.  The  resting   output  voltage   of  the th e transducer   is  known   as   the offset with   th the e  pressure applied  the e sensing atmospheric pressure atmospheric  applied  to  th membrane,   which   if  often   often  some other  value

blood  pressure measurement; blood pressure  measurement;  located  at  th  the e level of  the  the atria. Pleura   — The  serous membrane investing  an  and d inter inter- and d lining lining of   of  th spersed  throughout   th the e lungs an  the e thoracic  cavity,  completely enclosi enclosing ng   a potential space known   as   the pleural cavity.   T wo   distinct pleurae exist,   tight  an  and d left,   both  of  which are moistened  with   a   serous   secretion that  facili the e movements   of  the  the lungs   in  th  the e chest tates  th cavity. Protodiastole   — Early diastole;   th the e period  of slow  during   th ejection during ejection the e ventricular  cycle. Proximal   — Nearest;   closer to any point of  reference; opposed   to to distal.  distal. Pulse pressure   — T  The he   difference  between the systolic and diastolic pressures.

than  0 volts. Tricuspid   valve  —  The valve  composed   of  three   three flaps reflux of   the e reflux  of  blood   blood  from the right that  prevents  th ventricle  to  th  the e tight  atrium. caliber of  Vasoconstriction   — The lowering  of  th  the e caliber  of   con nblood  vessels,  especially the tightening  or  co striction   of  the  the arterioles leading   to  decreased blood  flow to  that  body   part. Vasodilation   — Dilation   or   opening up opening  up   of  a blood vessel, vesse l, especi especially ally of   of  th  the e arterioles  leading  to  increased blood  flow to  that   body  part. Ventricle   — A chamber of  the  the heart  that receives  from   a corresponding  atrium   and from blood  from which blood which forced  into   th  blood  i iss   forced into the e arteries.

106

 

Spacelabs Medical:  BLOOD PRESSURE

N’

Venae  cava   — The vena  cava  inferior  an  and d superior

Venule   — A   small vein; small  vein;   especially  on  one e of  the  the minute

 below). (See  inferior definitions Vena cava Vena  cava  —  The inferior  vena  cava;   th the e venous   trunk  for   th  and d for the e lower extremities  an the pelvic  an  and d abdominal  viscera; it   begins   at the th e level of  the  the fifth lumbar  vertebra  where   the common  iliac  veins  unite,   passes  upward  on the th e right  of  th  the e aorta,   and empties   into   th the e tight   atrium  of   th the e heart. Vena  cava   superior  — The  superior vena  cava;  th  the e venous   trunk  draini draining ng blood  from the head, neck,  upper   extremeties,   and chest;   it begins where   th the e two brachiocephalic veins  unite, passes  directly downward,   and empties  into   th the e rightt atrium of  the heart. righ

  the capifiary bed with   the veins  veins. larger connecting  systemic veins.  systemic Volumetric compliance   —   The amount   of  volume  volume  increase   per unit of  applied  applied   pressure  in  th  the e catheter pickup  system;  usually   due to to elasticity  elasticity of  components.   components. Wedge  pressure   — Intravascular  pressure   as   measmeasured by a  catheter introdu introduced ced  into   th the e pulmo pulmo- pressure provides nary artery;   the wedge  pressure  provides an indirect  measurement  of  the mean  left  atrial pressure. sys sZeroing   — Adjusting   th the e pressure measurement   sy tem  for a   reading   of  “0”  “0 ”  while applying   atmospheric pressure  to  th  the e sensing membr membrane; ane; some   amplifiers  have automatic,   push-button type  zeroing.

INDEX Aortic pressure measured  by Aortic   semilunar  valve Arterial  pressure mean peripheral, catheters Arterial  system Arteries Arterioles Arteriosclerosis Atrial cycle Atrial kick   (systole) Atrioventricular  (A-V) ‘nodes

 

52 52

   

 

 

         

   

  valves  measurement Auscultatory   gap   Korotkoff   sounds   limitations   sources  of  error   sphygmomanometer   Automated noninvasive  measurement auscultatory auscu ltatory method  

S

31 41,   43 3, 7 3 9 37 17 15,   17

11 S

76, 78,   86 79 78 81 81 76   86 86

invasive measurement method methodss   41-77 (same   as (same as   direct   methods) mean, transmiss transmission ion   31 measurement by fluidf i f i e d   systems   53, 57, 59,   61 noninvasive   measurement methods   76-93 (same   as   i n d i r e c t  methods)

respiratory  effects  on measurement   76 transducers   53, 57, 59, 61, 64, 66,   69 zeroing transducers   76 Capacitance Capillaries Cardiac  cycle

     

9 9 11,   17

 (a,   v)   17 v)   waves pressure Cardiac   output   c,   5 Catheter(s) central  pressure   43,   48 constant infusion  system   61 diameter  (scales)   43,   44 French scale for   43,   44 impact,  pressure measurement  artifact   ..   . . 70,   73 insertion   41

Doppler  method oscillometric method

   

Blood  pressure  measurement auscultatory measurement auscultatory   catheter impact  (artifacts)   catheter whip   (artifacts)   cuff size,  recommended   damping   direct  measurement methods   (same  as  invasive   methods) end   pressure (artifacts)   errors   in  measurement   indirect  measurement metho   methods ds (same   as   noninvasive methods) auscultatory  

intravenous,   dimensions   left heart   percutaneous   pulmonary   artery pulmonary   M right heart  (Swan Gan z’ )   Stubbs  gauge  scale  for   surgical  cut-down   Swan Ganz”  (right heart)   transducers, catheter-tip   whip,   pressure measurement  artifact Cardiovascular  pressure adult normal values   Catheter-tip transducer   Central venous  pressure  (CVP)     measured  by

87 86,   93

76, 78,   86 70 70 81 38 41-77

70 ,   73 70,   73 76-93

44 43 41 41,   48 41 43 41 41 41 70,  7 3

 

51 41,   66 48,   51 48

76, 78,   86

10 7

 

(cardiovascular) system Circulatory (cardiovascular)   anatomy physiology   Compliance   C o n s t a n t   i n f u s i o n   system

 

 

3 3 3 7 64

Damping   (of blood  pressure measurement)   38 blood pressure  measurement) frequency dispersion   38 frequency response   53, 57, 59,   61 of   high frequencies   38 pressure wave reflection   39 ratio   53, 57, 59,   61 tapered tube  effect   38 Diastasis   15 Diastole   15 Diastolic pressure transmission   (A (AC C   analogy)   37,   51 Dicrotic   notch   see Incisura see  Incisura  ultrasound Doppler ultrasound Doppler   87,   89 b l o o d   pressure measurement pressure  measurement

Doppler shift

 

 

End pressure   pressure pressu re measurement   artifact

 

89 87 70 ,   73 70 ,   73

F a s t   F o u r i e r  T r a n s f o r m   (FF1)

analysis   21 Finger  blood  pressure measurement  blood pressure  measurement   91 continuous,   noninvasive   91   91 photoplethysmograph Fluid-filled   systems   53 measurement  of  blood pressure   53 Fourier series   21 French  scale (catheter diameter)   43,   44 Frequency  dispersion   38 Frequency  response   53, 57, 59,   61 air bubbles  an  and d damping   61   fluid-filled system forced forc ed oscill oscillation ation   method   free oscillation  method   intravascular  (catheter-tip)   transducer optimization in   clinic   overdamping   underdamping  

Harmonic Harmo nic analysis

 

53 53 53,   57   66 59 53,   61 57 21

Korotkoff  sounds five  phases

78,   79  (table),   84 78,   79   (table)

   

Laminar flow Left ventricular  pressure measured  by

   

Mean  systolic  pressure definition equation Millar  Mikro Mikro-tip’ tip’~ ~tran transducer sducer

       

Natural frequency of  frequency  frequency  response Newtonian fluids NonNewtonian  fluids Ohm’s  Law Ohm’s Law Oscillation forced free

 

     

 

19 19 19 66 53 53, 57, 59,   61 27 27

23,27,   29

 

 

53 53

Peripheral  arterial   pressure catheters

25 51,   52 52

 

   

in  children   Peripheral Periph eral resistance resistance   unit  (PRU)   Photoplethysmograph   Phlebostatic   axis Phlebostatic   Poiseuille’s   Law   Precapillary sphincters   Pressure transducer(s)   Pressure   transmission    wave reflection Pressure  wave  reflection    waves Pressure   a   wave   c  wave   v   wave  

43, 44, 48,   51 41

43,   44 35, 36,   39 91 76 27,   29 33 41 19,   21 38 17 17 17 17

  13 Protodiastole Pulmonary artery pressure artery  pressure   36, 48, 51,   52 catheter  for   48 mean   36,   51 measured   by   52  wedge  pressure  (PCWP)   .   .36,   51 Pulmonary capillary  capillary wedge measured   by   52   3, 9 Pulmonary circulation mean   35,   51

blood pressure  waveforms Heart   anatomy   functions   Hydraulics   Hydrostatic pressure   vascular system   Impedance vascular

 

29,   31

 

3 8 ,   39

 

Incisura

Intravascular  transducer catheter-tip

21 3 3 3 23 11 11

 

66 66

 

I s o vo l u m i c   c o n t r a c t i o n

 

13

Pulmonary  semilunar   valve Pulmonary  Pulmonary vascular   resistance   (PVR)   equation Resistance,  vascular   Reynolds’  Number   (Re) Right  ventricular  pressure   (RVP) measured by  

5 39 39

 

33,   35 25

 

51,   52

Servo control system   finger  blood pressure measurement Sinoatrial   node   Sphincter(s) precapillary  

 

91 91 11 33

1 08

 

Spacelabs Medical: BLOOD   PRESSURE

 \~

Sphygmomanometer aneroid

 

76 78

 

 size,  recommended cuff  size,   mercury   Strain  gauge transducer   Stubbs  gauge  scale for   catheter diameter catheter  diameter Systemic circulatio circulation n   Systemic  vascular   resistance   (SVR) Systole   Systolic  pressure   amplification,  peripheral definition    pressure equation mean pressure mean  equation transmission   (A (AC C   analogy)

 

81 76 64 64,   66

 

 

     

Tapered   tube  effect   Transducer(s) catheter-tip     disposable distortions   in  measurement     errors   in  measurement Millar Mikro-tip’~   pressure   respiratory  effects   strain-gauge type   zeroing  

43 3, 7,   9 36,   39 5 19,   51 38 19 19 37 38

41,   66 70 70 70 66 41 73 64 73,   76

Vascular   impedance calculation   of  calculation

 

  measurement Vascul Vas cular ar resistan resistance ce   measures   of    peripheral resistance   unit   (PRU) systemic  vascular   resistance   (SVR)   equation Wood  unit   vascular   resistance   unit   (\TRU)   Veins   Venous system Venous  system   Ventricular cycle   isovolumic   contraction   protodiastole   rapid   ejection  

Wood  unit

29 29

 

 

   

31 34,   35 39 39 36 36   35, 39 35,   39 3,9 9 13 13 13 13

35,   39

109

Sponsor Documents

Or use your account on DocShare.tips

Hide

Forgot your password?

Or register your new account on DocShare.tips

Hide

Lost your password? Please enter your email address. You will receive a link to create a new password.

Back to log-in

Close