Calculate Resistance

Published on January 2018 | Categories: Documents | Downloads: 20 | Comments: 0 | Views: 294
of 5
Download PDF   Embed   Report



%calculates Resistance, power and equilibrum angle of ship %original file name: calculateResistance.m % %required: Vs - ship speed opt.: lcg (longtitudal center of gravity, beta %(beam rise) % %returns: Resistance at speed, required power at that speed, equilibrum %trim angle % %Example: calculateResistance(10,1.96,14) %calculates Resistance at 10m/s, lcg=1.96m from transom, 14 deg chine rise % %Note: Tuned to the Stromboot, other ships may need other default %parameters! %Also the appendage resistances % %Author: Simon Egli (smn.egli At gmail Dot Com), 14.04.2012, %Feel free to use this script, a shoutout would be great %Copyright: CC-BY function[resistance, power, tau0] = calculateResistance(Vs, lcg, beta) global pmes; %pmes is a structure with all the needed information ignoreBoundaries=0; %Parameter von unserem Boot m=pmes.mes.m; %Boot+3Mann mit Ausrüstung [kg] %lcg=1.966; %von hinterstem Tei aus [m] vcg=pmes.vehicle.vcg; %von unterstem Teil aus [m] b=pmes.vehicle.beam; %beam [m] epsilon=pmes.vehicle.shaft_angle; %schaft winkel [deg] %beta=14; %chine rise [deg] f=vcg; %perpendicular distance of shaftline to centre of gravity (nach Bild ist das bei uns gerade gleich vcg, da aus Mitte rauskommt) %Vs=30; theta=pmes.vehicle.theta; %Angle between the keel (centerline) and the outer edg e of spray area measured in plan of bottom g=9.81; %Gravity-constant [m/s^2] rho=1000; %Dichte von Wasser [kg/m^3] rhoair= 1.2041; %Dichte Luft, Meereshöhe (20°C) Aair=pmes.vehicle.airArea; Askeg=pmes.vehicle.skeg_area; Arudder=pmes.vehicle.rudder_area; Lshaft=pmes.vehicle.shaft_length; Dshaft=pmes.vehicle.shaft_diameter; L=pmes.vehicle.norm_diameters(1); if(nargin==1) lcg=pmes.vehicle.lcg; beta=pmes.vehicle.beta; end if ignoreBoundaries==0 if beta>30||beta<10 %schauen ob Grenzen eingehalten resistance=0; power=0; tau0=0; return end end

%calculate Resistance Dfs=[[]]; Mbh=[[]]; Rbh=[]; Mdf=[]; EPbh=[]; Vstep=0.2; taumin=2; j=0; for tau=taumin:5 %tau: 2<=tau<=24 % if i>2 % tau=taux(i); % end %volumetric Froude: %Fn=Vs/(g*m^(1/3))^0.5; %normal Froude: Fn=Vs/sqrt(g*L); if ignoreBoundaries==0 if Fn>1.5||tau<2||tau>24 %schauen ob Grenzen eingehalten resistance=0; power=0; tau0=0; return end end Cv=Vs/sqrt(g*b); %1 if ignoreBoundaries==0 if Cv>25||Cv<0.6 %schauen ob Grenzen eingehalten resistance=0; power=0; tau0=0; return end end %if Cv<25&&Cv>0.6 %step 2: Clbeta=(m*g)/(0.5*rho*Vs^2*b^2); %2

%step 3: %Clbeta=Cl0-0.0065*beta*Cl0^0.6; %4 syms Cl0 Cl0=solve(Cl0-0.0065*beta*Cl0^(0.6)-Clbeta); Cl0=double(Cl0(1)); %lambda=(d/sind(tau)-b/(2*pi)*tand(beta)/tand(tau))/b;

%step 4, solve for lambda: syms lambda lambda=solve(tau^1.1*(0.012*lambda^0.5+0.0055*lambda^(5/2)/Cv^2)-Cl0 ,lambda); %3

lambda=double(lambda(1)); %wenn mehrere Lösungen, erste nehmen if ignoreBoundaries==0 if lambda>4||lambda<1 %schauen ob Grenzen eingehalten resistance=0; power=0; tau0=0; return end end %if lambda<4 && lambda>1 %step 5: Lm=lambda*b; %step 6: average bottom velocity Vm=(1-(0.012*lambda^0.5*tau^1.1-0.0065*beta*(0.012*lambda^0.5*ta u^1.1)^0.6)/(lambda*cosd(tau)))^0.5*Vs; %11 %step 7: Rn=Vm*b*lambda/1E-6; %10 %viscosity evtl. noch anpassen! %step8: Cf=0.075/(log10(Rn)-2)^2; %log10! %step9: Ca=0.0004; %step10: corrlambda=0.5*(tand(beta)/(pi*tand(tau))-1/(2*tand(theta)))*cos d(theta); %syms corrlambda; %corrlambda=solve((Lm/b * b *b/cosd(beta))/(b^2/cosd(beta))-(lam bda+corrlambda),corrlambda); corrlambda=double(corrlambda(1)); %step11: Df=rho/2*b^2*Vs^2/cosd(beta)*(Cf+Ca)*((Vm/Vs)^2*lambda+corrlambd a); %8 Dair=0.5*rhoair*Vs^2*Aair*0.7;% Luftwiderstand, C=0.7 (acc. incl usion of whisker spray prediction) %appendage Resistances... %skeg Widerstand Dk=rho/2*2*Askeg*Vm^2*Cf*4; %Berechnung siehe Arbeitsheft, 10.4. 2012 %shaft Widerstand Dsh=rho/2*Lshaft*Dshaft*Vs^2*(1.1*sind(epsilon)^3+pi*Cf); %Berec hnung siehe Arbeitsheft, 10.4.2012 %Rudder Widerstand Dr=rho/2*Arudder*Vs^2*0.0015; %Berechnung siehe Arbeitsheft, 10. 4.2012 % Df=rho/2*b^2*Vm^2/cosd(beta)*(Cf+Ca)*(lambda+corrlambda); % lau t savitsky.xls %Df=Cf*0.5*rho*Vs^2*(lambda+corrlambda)*b^2/cosd(beta); %aus pri ncipals of yacht design Dfs(tau)=Df+Dk+Dsh+Dr+Dair; %total Drag = boat drag + app. drag %calculate total resistance %R=(g*m*sind(tau)+Df)*cosd(tau+epsilon)/cosd(epsilon);

%step12: a=(vcg-(b/4)*tand(beta)); %step13: Cp=0.75-1/(5.21*Cv^2/lambda^2+2.39);%5 %step14: Lcp=Cp*lambda*b; %step15: c=lcg-Lcp; %step16: Md=m*g*(c*cosd(tau+epsilon)/cosd(epsilon)-f*sind(tau)/cosd(epsil on)); %step17: Mdf=Df*(a-c*tand(epsilon)-f/cosd(epsilon)); %step18: Mbh(tau)=Md+Mdf; %calculate total moment %Mbh(i,tau) end %calculate equilibrum angle and total Rbh tau1=taumin; tau2=taumin+1; if tau>taumin+1 %if Vs>(Vsmin+Vstep) %erst ab zweitem Wert %step19: tau0=tau1-(Mbh(tau1)*(tau2-tau1)/(Mbh(tau2)-Mbh(tau1))); %taux=tau0; %step20: Df0=Dfs(tau1)+(Dfs(tau2)-Dfs(tau1))/(tau2-tau1)*(tau0-ta u1); %step21: Rbh(1)=cosd(tau0+epsilon)/cosd(epsilon)*(g*m*sind(tau0)+ Df0); %in principles of yacht design eher so, aber ergibt %komische Kurve %Rbh(i,1)=cosd(tau0+epsilon)/cosd(epsilon)*(g*m*sind(tau 0)+Dfs(tau,i)) %Rbh(2)=Vs;

%step22: EPbh=(Rbh*Vs); %effective power in Watts %end end resistance=Rbh; power=EPbh;


Sponsor Documents

Or use your account on


Forgot your password?

Or register your new account on


Lost your password? Please enter your email address. You will receive a link to create a new password.

Back to log-in