Calculate Resistance

Published on January 2018 | Categories: Documents | Downloads: 20 | Comments: 0 | Views: 294
of 5
Download PDF   Embed   Report

Comments

Content

%calculates Resistance, power and equilibrum angle of ship %original file name: calculateResistance.m % %required: Vs - ship speed opt.: lcg (longtitudal center of gravity, beta %(beam rise) % %returns: Resistance at speed, required power at that speed, equilibrum %trim angle % %Example: calculateResistance(10,1.96,14) %calculates Resistance at 10m/s, lcg=1.96m from transom, 14 deg chine rise % %Note: Tuned to the Stromboot, other ships may need other default %parameters! %Also the appendage resistances % %Author: Simon Egli (smn.egli At gmail Dot Com), 14.04.2012, www.hsr.ch %Feel free to use this script, a shoutout would be great %Copyright: CC-BY function[resistance, power, tau0] = calculateResistance(Vs, lcg, beta) global pmes; %pmes is a structure with all the needed information ignoreBoundaries=0; %Parameter von unserem Boot m=pmes.mes.m; %Boot+3Mann mit Ausrüstung [kg] %lcg=1.966; %von hinterstem Tei aus [m] vcg=pmes.vehicle.vcg; %von unterstem Teil aus [m] b=pmes.vehicle.beam; %beam [m] epsilon=pmes.vehicle.shaft_angle; %schaft winkel [deg] %beta=14; %chine rise [deg] f=vcg; %perpendicular distance of shaftline to centre of gravity (nach Bild ist das bei uns gerade gleich vcg, da aus Mitte rauskommt) %Vs=30; theta=pmes.vehicle.theta; %Angle between the keel (centerline) and the outer edg e of spray area measured in plan of bottom g=9.81; %Gravity-constant [m/s^2] rho=1000; %Dichte von Wasser [kg/m^3] rhoair= 1.2041; %Dichte Luft, Meereshöhe (20°C) Aair=pmes.vehicle.airArea; Askeg=pmes.vehicle.skeg_area; Arudder=pmes.vehicle.rudder_area; Lshaft=pmes.vehicle.shaft_length; Dshaft=pmes.vehicle.shaft_diameter; L=pmes.vehicle.norm_diameters(1); if(nargin==1) lcg=pmes.vehicle.lcg; beta=pmes.vehicle.beta; end if ignoreBoundaries==0 if beta>30||beta<10 %schauen ob Grenzen eingehalten resistance=0; power=0; tau0=0; return end end

%calculate Resistance Dfs=[[]]; Mbh=[[]]; Rbh=[]; Mdf=[]; EPbh=[]; Vstep=0.2; taumin=2; j=0; for tau=taumin:5 %tau: 2<=tau<=24 % if i>2 % tau=taux(i); % end %volumetric Froude: %Fn=Vs/(g*m^(1/3))^0.5; %normal Froude: Fn=Vs/sqrt(g*L); if ignoreBoundaries==0 if Fn>1.5||tau<2||tau>24 %schauen ob Grenzen eingehalten resistance=0; power=0; tau0=0; return end end Cv=Vs/sqrt(g*b); %1 if ignoreBoundaries==0 if Cv>25||Cv<0.6 %schauen ob Grenzen eingehalten resistance=0; power=0; tau0=0; return end end %if Cv<25&&Cv>0.6 %step 2: Clbeta=(m*g)/(0.5*rho*Vs^2*b^2); %2

%step 3: %Clbeta=Cl0-0.0065*beta*Cl0^0.6; %4 syms Cl0 Cl0=solve(Cl0-0.0065*beta*Cl0^(0.6)-Clbeta); Cl0=double(Cl0(1)); %lambda=(d/sind(tau)-b/(2*pi)*tand(beta)/tand(tau))/b;

%step 4, solve for lambda: syms lambda lambda=solve(tau^1.1*(0.012*lambda^0.5+0.0055*lambda^(5/2)/Cv^2)-Cl0 ,lambda); %3

lambda=double(lambda(1)); %wenn mehrere Lösungen, erste nehmen if ignoreBoundaries==0 if lambda>4||lambda<1 %schauen ob Grenzen eingehalten resistance=0; power=0; tau0=0; return end end %if lambda<4 && lambda>1 %step 5: Lm=lambda*b; %step 6: average bottom velocity Vm=(1-(0.012*lambda^0.5*tau^1.1-0.0065*beta*(0.012*lambda^0.5*ta u^1.1)^0.6)/(lambda*cosd(tau)))^0.5*Vs; %11 %step 7: Rn=Vm*b*lambda/1E-6; %10 %viscosity evtl. noch anpassen! %step8: Cf=0.075/(log10(Rn)-2)^2; %log10! %step9: Ca=0.0004; %step10: corrlambda=0.5*(tand(beta)/(pi*tand(tau))-1/(2*tand(theta)))*cos d(theta); %syms corrlambda; %corrlambda=solve((Lm/b * b *b/cosd(beta))/(b^2/cosd(beta))-(lam bda+corrlambda),corrlambda); corrlambda=double(corrlambda(1)); %step11: Df=rho/2*b^2*Vs^2/cosd(beta)*(Cf+Ca)*((Vm/Vs)^2*lambda+corrlambd a); %8 Dair=0.5*rhoair*Vs^2*Aair*0.7;% Luftwiderstand, C=0.7 (acc. incl usion of whisker spray prediction) %appendage Resistances... %skeg Widerstand Dk=rho/2*2*Askeg*Vm^2*Cf*4; %Berechnung siehe Arbeitsheft, 10.4. 2012 %shaft Widerstand Dsh=rho/2*Lshaft*Dshaft*Vs^2*(1.1*sind(epsilon)^3+pi*Cf); %Berec hnung siehe Arbeitsheft, 10.4.2012 %Rudder Widerstand Dr=rho/2*Arudder*Vs^2*0.0015; %Berechnung siehe Arbeitsheft, 10. 4.2012 % Df=rho/2*b^2*Vm^2/cosd(beta)*(Cf+Ca)*(lambda+corrlambda); % lau t savitsky.xls %Df=Cf*0.5*rho*Vs^2*(lambda+corrlambda)*b^2/cosd(beta); %aus pri ncipals of yacht design Dfs(tau)=Df+Dk+Dsh+Dr+Dair; %total Drag = boat drag + app. drag %calculate total resistance %R=(g*m*sind(tau)+Df)*cosd(tau+epsilon)/cosd(epsilon);

%step12: a=(vcg-(b/4)*tand(beta)); %step13: Cp=0.75-1/(5.21*Cv^2/lambda^2+2.39);%5 %step14: Lcp=Cp*lambda*b; %step15: c=lcg-Lcp; %step16: Md=m*g*(c*cosd(tau+epsilon)/cosd(epsilon)-f*sind(tau)/cosd(epsil on)); %step17: Mdf=Df*(a-c*tand(epsilon)-f/cosd(epsilon)); %step18: Mbh(tau)=Md+Mdf; %calculate total moment %Mbh(i,tau) end %calculate equilibrum angle and total Rbh tau1=taumin; tau2=taumin+1; if tau>taumin+1 %if Vs>(Vsmin+Vstep) %erst ab zweitem Wert %step19: tau0=tau1-(Mbh(tau1)*(tau2-tau1)/(Mbh(tau2)-Mbh(tau1))); %taux=tau0; %step20: Df0=Dfs(tau1)+(Dfs(tau2)-Dfs(tau1))/(tau2-tau1)*(tau0-ta u1); %step21: Rbh(1)=cosd(tau0+epsilon)/cosd(epsilon)*(g*m*sind(tau0)+ Df0); %in principles of yacht design eher so, aber ergibt %komische Kurve %Rbh(i,1)=cosd(tau0+epsilon)/cosd(epsilon)*(g*m*sind(tau 0)+Dfs(tau,i)) %Rbh(2)=Vs;

%step22: EPbh=(Rbh*Vs); %effective power in Watts %end end resistance=Rbh; power=EPbh;

end

Sponsor Documents

Or use your account on DocShare.tips

Hide

Forgot your password?

Or register your new account on DocShare.tips

Hide

Lost your password? Please enter your email address. You will receive a link to create a new password.

Back to log-in

Close