Col

Published on December 2016 | Categories: Documents | Downloads: 76 | Comments: 0 | Views: 1109
of 36
Download PDF   Embed   Report

Comments

Content

The Color Eye.
Part 1: Human color vision

Human color vision, KIG/Macbeth, G. Rösler 643

Page 1

Object colors
4. "Color" 1. Illumination 3. Observer

2. Sample

Human color vision, KIG/Macbeth, G. Rösler 643

Page 2

Illumination


Sunlight: The fundamental reason for vision on earth


Electromagnetic spectrum: Visible range is very small
Gamma radiation Ultraviolet radiation visible radiation Infrared radiation Radar, TV Radio Audio Frequencies Energy distribution X-Rays

Kosmic radiation

1pm

1nm

1um

1mm

1m

1km

1Mm

1Gm

Wavelength

380nm

730nm

Human color vision, KIG/Macbeth, G. Rösler 643

Page 3



Natural and artifical lights: D65, A, TL 84

CIE Standard Illuminants
D65 (Daylight) A (Tungsten) F11 (Fluorescent)

Rel. Intensity
300

400

500

600

700

800

Wavelength (nm)
Human color vision, KIG/Macbeth, G. Rösler 643 Page 4

Objects
Reflection: What we see with our eyes  Absorption: That is what colorants do.  Transmission, opacity, hiding power: Sometimes important


Human color vision, KIG/Macbeth, G. Rösler 643

Page 5

Eye


Functional description
Our "camera" design  Spatial resolution  Color resolution


Eye Ball Lens

Retina with 120.000.000 receptors

Light

800.000 nerves to the brain

Human color vision, KIG/Macbeth, G. Rösler 643

Page 6



Sensitivity


Two types of sensors Low light levels: Rods (120 Million) High density all over the retina, but no reds in the center, grey vision Normal light levels: 3 types of Cones (6 Million) Low density all over the retina, but very high density in the center, color vision Color vision deficiencies : Missing cone signals
Page 7







Human color vision, KIG/Macbeth, G. Rösler 643

Human color vision, KIG/Macbeth, G. Rösler 643

Page 8

Human color vision, KIG/Macbeth, G. Rösler 643

Page 9

Human color vision, KIG/Macbeth, G. Rösler 643

Page 10

Human color vision, KIG/Macbeth, G. Rösler 643

Page 11

Cone spectral responses
 

Standard observer x,y,z, Field of view 2°, 10°

Standard observer 2° field of view
2,5

2

Standard observer 10° field of view
2,5

rel. sensitivity

1,5

1

2

rel. sensitivity
300 400 500 600 700

0,5

1,5

0

1

Wavelength (nm)

0,5

0 300 400 500 600 700

Wavelength (nm)

Human color vision, KIG/Macbeth, G. Rösler 643

Page 12

Brain
The color sensation is generated in the brain  Complex vision processing is happening  More research necessary in order to understand the information processing and to develop better mathemetical models for instrumental color metrics.


Human color vision, KIG/Macbeth, G. Rösler 643

Page 13

How are colors seen


Context


Surround, contrast


(Center colour is the same, only surround is different)

Human color vision, KIG/Macbeth, G. Rösler 643

Page 14

Perceived colors are influenced by
Size  Adaptation  Natural scenes  Artificial scenes  Structure  Expectation  Experience  Discipline

Human color vision, KIG/Macbeth, G. Rösler 643 Page 15

Color names
Verbal names  Color collections



e.g. RAL Munsell
Artist, uniform color space  Basis of CIE Lab




Modern color order systems


Human color vision, KIG/Macbeth, G. Rösler 643

Page 16

Visual comparison of colors


What is possible?
What we see is what counts  How many colors can be differentiated? Several Million colors !!!!!




What is necessary?
Standardised illumination  Standardised viewing geometries


Human color vision, KIG/Macbeth, G. Rösler 643

Page 17

Visual comparison of colors


What is not possible?


Limitations
Side by side necessary  Memory not accurate enough


Human color vision, KIG/Macbeth, G. Rösler 643

Page 18

Surprises


Metamerism
Daylight Tungsten or some other illumination Sample 1

Sample 1

similar

Sample 2 Metamerism

different

Sample 2

Human color vision, KIG/Macbeth, G. Rösler 643

Page 19

Human color vision, KIG/Macbeth, G. Rösler 643

Page 20

Human color vision, KIG/Macbeth, G. Rösler 643

Page 21

Human color vision, KIG/Macbeth, G. Rösler 643

Page 22

Human color vision, KIG/Macbeth, G. Rösler 643

Page 23

Human color vision, KIG/Macbeth, G. Rösler 643

Page 24

Surprises


Directionality
A B A

B



Structures
B A B A

Human color vision, KIG/Macbeth, G. Rösler 643

Page 25

Surprises


Effect colors
Metallic effect  Interference effect
  

Multiple viewing geometries are necessary Directed viewing and directed illumination give best result
Page 26

Human color vision, KIG/Macbeth, G. Rösler 643

Surprises


Fluorescence
Optical brightner Popular in paper and textiles Adds "blue" to the yellowish substrate for "white" appearance. Only works with illumination containing UV light  Daylight fluorescence e.g. red, green. Looks lighter and has higher chroma than other objects with the same illumination.


Human color vision, KIG/Macbeth, G. Rösler 643

Page 27

Color identification




The "address" is valid for a certain illuminant (D65 or A or TL84 or others) and for a certain observer (2° or 10°) and for a certain geometry (d/8°, 45°/0° or others) ! Changing illuminant and/or observer and/or geometry in most cases will result in a different "address" in color space for the same sample

Human color vision, KIG/Macbeth, G. Rösler 643

Page 28

Color identification


Color order system, color space
  

CIE L*a*b* 1976 Based on the Munsell system L* a* b* are the primary coordinates L*: Lightness direction a*: red - green direction b*: yellow - blue direction



CIE Lab system is industry standard

Human color vision, KIG/Macbeth, G. Rösler 643

Page 29



L* Lightness

L*= 100 white

L*= 50 grey

L*= 0 black

Human color vision, KIG/Macbeth, G. Rösler 643

Page 30



a* red - green b* yellow - blue

b*= + xx yellow

a*= - xx green

a*= + xx red

b*= + xx blue
Human color vision, KIG/Macbeth, G. Rösler 643 Page 31

CIE Lab system version 2



 

C*, h: Same facts, different description polar coordinates instead of kartesian coordinates Chroma (independent of hue) C*= (a*2 + b*2) 1/2 Hue angle (independent of chroma) h= arctan (b* / a*)


counterclockwise, starting at positive a* axis with h = 0°

Human color vision, KIG/Macbeth, G. Rösler 643

Page 32

h=90°



C* Chroma h hue angle

h=180°

h=0°

C* = + x low chroma

h=270°
Human color vision, KIG/Macbeth, G. Rösler 643

C* = + xx high chroma

Page 33

Color difference description






Most important for industrial use Color difference is the distance in color space between two "addresses", e.g. between the "address" of a standard and the "address" of a trial. The color difference has 3 components: Lightness difference dL*=L*trial - L*standard red-green difference da*=a*trial - a*standard yellow-blue difference db*=b*trial - b*standard
Page 34

Human color vision, KIG/Macbeth, G. Rösler 643

Total color difference dE* is calculated from the 3 components: dE*= (dL*2 + da*2 + db*2) 1/2  Same facts, different description dE*= (dL*2 + dC*2 + dH*2) 1/2 Chroma difference dC* = C*trial - C*standard Hue difference dH*= (da*2 + db*2 - dC*2) 1/2



sign dH*: positive if a*trial b*standard - a*standard b*trial R0 else negative.


Attention: dH* is a distance in color space and not the differenec of the hue angles htrial - hstandard !!! But the computer has no problem with the slightly complicated calculation

Human color vision, KIG/Macbeth, G. Rösler 643

Page 35

Communications


Physical standards
Generating standards  Stability of standards  Regular comparison of standards


Human color vision, KIG/Macbeth, G. Rösler 643

Page 36

Sponsor Documents

Or use your account on DocShare.tips

Hide

Forgot your password?

Or register your new account on DocShare.tips

Hide

Lost your password? Please enter your email address. You will receive a link to create a new password.

Back to log-in

Close