cross

Published on March 2017 | Categories: Documents | Downloads: 29 | Comments: 0 | Views: 277
of 9
Download PDF   Embed   Report

Comments

Content


No

Pembebanan

M
V
H

= 0
= 0
= 0

Momen Primer
1 qL2
12
= MBA

MBA =
1

2

MAB

MBA = 1 5 qL2
192
MAB = 11 qL2
192
MBA =

3

1 qa2 (3L- 2a)
6L

MAB = MBA

4

MBA = qaLα2 (4 - α )
12
MAB = 1 qaLα (3α2 - 8α + 6 )
12
α = a/L
MBA =

5

1 qb (3L2- b2)
24L

MAB = MBA
MBA = - (q/L2) [1⁄3L(a23-a13)
- 1⁄4(a24 – a14)]
6

MAB =

(q/L2) [1⁄2L2(a22-a12)
- 2⁄3 L(a23 – a13) + 1⁄4
(a24 – a14)]

7

MBA = 1 qL2
30
MAB = qL2
20

8

MBA = 1 qa3 (5L – 3a)
60L2
MAB = qa2 (3a2 + 10bL )
60L2

9

MBA = 1 qa3 (5L – 4a )
20L2
MAB = qa2(10L2- 5aL+ 8a2)
30L2

MBA = 1 qa (5L2 +4aL - 4a2)
96L
10

MAB = MBA

MBA = 1 5qL2
96
11
MAB = MBA

12

MBA = 1 qL2
32
MAB = MBA
MBA =

1 qa2 (2L- a)
24L

MAB =

MBA

13

MBA =

1 qa2 (4L- 3a)
12L

MAB =

MBA

14

MAB = 1 qL2 [(1 - α2 (2-α )]
12
15
MBA = MAB
α = a/L

16

MBA = 1 L2 ( 2q1 + 3q2 )
60
MAB = L2 ( 3q1 + 2q2 )
60
MBA = 1 qL2 (1 + α + α2- 1,5α3)
30

17

MAB =

qL2(1 + β + β2- 1,5β3)
30
α = a/L ; β = b/L

MBA = 1 qL2
15
18
MAB = MBA

MBA = 1 qL2
15
19
MAB = qL2
20

MBA = 1 PL
8
20
MAB = MBA

MBA =
21

1 Pba2
L2

MAB = Pab2
L2
MBA = 1 Pa (L – a)
L

22
MAB = MBA

MBA =
23

1 PL (n2 + 0,5)
12n

MAB = MBA
n = L/a

MBA =
24

MAB

Ma(3α - 2)
L
=
Mb(3β - 2)
L
α = a/L ; β = b/L

Pada peletakan jepit sendi dalam table ini kami hanya menggambarkan peletakan sendi jepit
seperti :

Yang mana arah MAB sendiri adalah searah dengan arah jarum jam sehingga bertanda positif.
Sehingga seluruh nilai di table ini bernilai positif, untuk itu jika anda menemukan balok dengan
peletakan yang seperti :

Yang mana arah MBA sendiri adalah berlawanan dengan arah jarum jam sehingga bertanda
negatif maka gunakan nilai table di bawah ini dengan nilai negatif . contoh : momen primer no
1 adalah - qL2 ; momen primer no 2 adalah - 9qL2 ,dst
128
8
No

Pembebanan

Momen Primer
MAB =

qL2
16

MAB =

9 qL2
128

MAB =

7 qL2
128

1

2

3

4

MAB = qa2 (3L – 2a )
4L

MAB =
5
α : a/L

qa2 (2- α)2
8

MAB =
6

qb2 (2- β2)
8

β : b/L
MAB =

qb (d2- c2)(2L2- c2- d2)
30

7

8

MAB = 2qL2
30

9

MAB = 7qL2
120

MAB =

qa2 (3a2- 15aL + 20L2)
120L2

10

MAB =
11

qa2 (α2/5- 3α/4 + 2/3)
2

α : a/L
MAB =

qb2 (10L2- 3b2)
120L2

MAB =

qb2 (5L2+ 4aL - 4a2)

12

13

2

MAB =

5qL2
64

MAB =

3qL2
64

14

15

16

MAB = qa2 ( 2L - a )
8L

17

MAB = qa2 ( 4L - 3a )
8L

18

MAB = qL2 (1 – α2)(2 – α)
8
α : a/L

MAB =
19

20

MAB = qL2 (1 + β)(7 – 3β2)
120
α : a/L

MAB =
21

L2 (8q1 + 7q2)
120

qL2
10

MAB =
22

MAB =
23

qL2
12

M (2 - 6α + 3α2)
2

𝛼 =a/L
MAB =

3PL
16

MAB =

Pb (L2 - b2)
2L2

MAB =

3Pa (L - a)
2L

MAB =

PL (n2 - 1)
8n

24

25

26

27

n=

𝐿
𝑎

MAB =
28

n=

𝐿
𝑎

PL (n2 - 1)
8n

MAB =
29

n=

𝐿
𝑎

PL (n2 + 0,5)
8n

Sponsor Documents

Recommended

No recommend documents

Or use your account on DocShare.tips

Hide

Forgot your password?

Or register your new account on DocShare.tips

Hide

Lost your password? Please enter your email address. You will receive a link to create a new password.

Back to log-in

Close