Data Mining and Data Warehousing

Published on January 2017 | Categories: Documents | Downloads: 35 | Comments: 0 | Views: 253
of 1
Download PDF   Embed   Report



Unit-I Overview, Motivation(for Data Mining),Data Mining-Definition & Functionalities, Data Processing, Form of Data Preprocessing, Data Cleaning: Missing Values, ois! Data,("inning, Clustering, #egression, Computer an$ %uman inspection),&nconsistent Data, Data &ntegration an$ 'ransformation( Data Reduction:-Data Cu)e *ggregation, Dimensionalit! re$uction, Data Compression, umerosit! #e$uction, Clustering, Discreti+ation an$ Concept ,ierarc,! generation( Unit-II Conce t De!c"i tion:- Definition, Data -enerali+ation, *nal!tical C,aracteri+ation, *nal!sis of attri)ute relevance, Mining Class comparisions, .tatistical measures in large Data)ases( Measuring Central 'en$enc!, Measuring Dispersion of Data, -rap, Displa!s of "asic .tatistical class Description, Mining *ssociation #ules in /arge Data)ases, *ssociation rule mining, mining .ingle-Dimensional "oolean *ssociation rules from 'ransactional Data)ases0 *priori *lgorit,m, Mining Multilevel *ssociation rules from 'ransaction Data)ases an$ Mining Multi-Dimensional *ssociation rules from #elational Data)ases Unit-III C#a!!i$ication and %"ediction!: 1,at is Classification & Pre$iction, &ssues regar$ing Classification an$ pre$iction, Decision tree, "a!esian Classification, Classification )! "ac2 propagation, Multila!er fee$-forwar$ eural etwor2, "ac2 propagation *lgorit,m, Classification met,o$s 3nearest neig,)or classifiers, -enetic *lgorit,m( C#u!te" Ana#&!i!: Data t!pes in cluster anal!sis, Categories of clustering met,o$s, Partitioning met,o$s( %ierarc,ical Clustering- C4#5 an$ C,ameleon( Densit! "ase$ Met,o$s-D".C* , OP'&C.( -ri$ "ase$ Met,o$s- .'& -, C/&645( Mo$el "ase$ Met,o$ 0.tatistical *pproac,, eural etwor2 approac,, Outlier *nal!sis Unit-I' Data Wa"e(ou!in): Overview, Definition, Deliver! Process, Difference )etween Data)ase .!stem an$ Data 1are,ouse, Multi Dimensional Data Mo$el, Data Cu)es, .tars, .now Fla2es, Fact Constellations, Concept ,ierarc,!, Process *rc,itecture, 7 'ier *rc,itecture, Data Marting( Unit-' *ggregation, %istorical information, 6uer! Facilit!, O/*P function an$ 'ools( O/*P .ervers, #O/*P, MO/*P, %O/*P, Data Mining interface, .ecurit!, "ac2up an$ #ecover!, 'uning Data 1are,ouse, 'esting Data 1are,ouse( *oo+!, 8( M(%(Dun,am,9Data Mining:&ntro$uctor! an$ *$vance$ 'opics9 Pearson 5$ucation :( ;iawei %an, Mic,eline 3am)er, 9Data Mining Concepts & 'ec,ni<ues9 5lsevier 7( .am *na,or!, Dennis Murra!, =Data 1are,ousing in t,e #eal 1orl$: * Practical -ui$e for "uil$ing Decision .upport .!stems, 8>e =Pearson 5$ucation ?( Mallac,,9Data 1are,ousing .!stem9,Mc-raw 0%ill

Sponsor Documents


No recommend documents

Or use your account on


Forgot your password?

Or register your new account on


Lost your password? Please enter your email address. You will receive a link to create a new password.

Back to log-in