Low Back Pain

Published on January 2017 | Categories: Documents | Downloads: 30 | Comments: 0 | Views: 397
of 53
Download PDF   Embed   Report

Comments

Content

Diagnosing Low Back Pain
Eden Wheeler, M.D.
Physical Medicine and Rehabilitation Rockhill Orthopaedics, P.C.

1

I. History:

2

• Mechanism of injury • Associated symptoms:
• • • • Bladder / bowel function Fevers / chills Sleep disturbance Numbness / tingling

• • • •

Prior injuries, treatment and outcomes Medications Family history Social history:
• • • • Vocational Education Tobacco / ETOH / Illicit drugs Function: ADLs & Mobility
3

• Litigation

Pain Specifics:
• •

Quality: sharp, dull, shooting, burning, etc. Location / Distribution:
• Radicular: Dermatomal distribution, dysesthesias • Radiating: Nondermatomal



Onset:
• Gradual: DDD • Acute: Disc abnormality, strain, compression fractures

• • • • •

Severity / Intensity Frequency: Constant vs. Intermittent Duration Exacerbating and Alleviating Factors Time of Day: If nocturnal, consider malignancy

4

• • • •

Significant trauma history, or minor in older adults Nocturnal pain in supine position with history of cancer Bladder or bowel incontinence or dysfunction Constitutional symptoms:
• Fever / chills • Weight loss • Lymph node enlargement

Red Flags:

• Risk factors for spinal infection
• Recent infection • IV drug use • Immunosuppression

• Major motor weakness

5

II. Examination:

6

A. Physical:
• Posture:
• Splinting • Body language

• Gait:
• Antalgia • Heel / Toe pattern • Trendelenberg

• Musculoskeletal:
• • • • ROM Leg length Vascular Atrophy
7

• Abdomen:
• Presence of masses

• Back:
• • • • Inspection Palpation ROM Scoliosis

• Neurological:
• Sensation • Motor • DTRs

• Rectal if indicated:
• Evaluation of sphincter tone
8

B. Symptom Magnification Examination:
• Waddell signs: Presence of nonorganic signs suggesting symptom magnification and psychological distress
– – – – – Superficial or nonanatomic distribution of tenderness Nonanatomic or regional disturbance of motor or sensory impairment Inconsistency on positional SLR Inappropriate/excessive verbalization of pain or gesturing Pain with axial loading or rotation of spine

• Give-away weakness: Inconsistent effort on manual motor testing with “ratcheting” rather than smooth resistance

9

C. Pathological Examination:
• Spurling’s maneuver: Lateral rotation and extension of spine resulting
in neuroforaminal narrowing and nerve root encroachment, clinically reproducing extremity pain, usually in dermatomal distribution

• Straight-leg raise (SLR): Elevation of lower extremity, seated or

standing, resulting in neural tension at S1 nerve root with extremity pain

• Patrick’s maneuver: Crossed leg with unilateral pain indicative of
sacro-iliac (SI) joint dysfunction

• Femoral stretch: Hip extension stretch with heel pushed to buttock in
lateral supine or prone position resulting in anterior thigh pain

10

III. Low Back Pain:

11

• Incidence of LBP: • 60-90 % lifetime incidence • 5 % annual incidence • 90 % of cases of LBP resolve without treatment within 6-12 weeks • 40-50 % LBP cases resolve without treatment in 1 week • 75 % of cases with nerve root involvement can resolve in 6 months • LBP and lumbar surgery are: • 2nd and 3rd highest reasons for physician visits • 5th leading cause for hospitalization • 3rd leading cause for surgery 12

A. Epidemiology:

B. Disability:
• Age and LBP:
• Leading cause of disability of adults < 45 years old • Third cause of disability in those > 45 years old

• Prevalence rate:
• Increased 140 % from 1970 to 1981 with only 125 % population growth • Nearly 5 million people in the U.S. are on disability for LBP
13

C. Lifetime Return to Work:
• Success of less than 50 % if off work greater than 6 months • 25 % success rate if off work greater than 1 year • Nearly 0 % success if return to work has not occurred in 2 years

14

D. Occupational Risk Factors:
• • • • • • Low job satisfaction Monotonous or repetitious work Educational level Adverse employer-employee relations Recent employment Frequent lifting
• Especially exceeding 25 pounds • Utilization of poor body mechanics in technique
15

E. Differential Diagnoses:
• Lumbar strain • Disc bulge / protrusion / extrusion producing radiculopathy • Degenerative disc disease • Spinal stenosis • Spondyloarthropathy • Spondylosis • Spondylolisthesis • Sacro-iliac dysfunction
16

F. Diagnostic Tools:
• 1. Laboratory:


Performed primarily to screen for other disease etiologies
• Infection • Cancer • Spondyloarthropathies

• No evidence to support value in first 7 weeks unless with red flags • Specifics:
• WBC • ESR or CRP • HLA-B27 • Tumor markers:
Kidney Breast Lung Thyroid Prostate
17

• 2. Radiographs:
• Pre-existing DJD is most common diagnosis • Usually 3 views adequate with obliques only if equivocal findings • Indications:
• History of trauma with continued pain • Less than 20 years or greater than 55 years with severe or persistent pain • Noted spinal deformity on exam • Signs / symptoms suggestive of spondyloarthropathy • Suspicion for infection or tumor

18

• 3. EMG / NCV ( Electrodiagnostics):
• Can demonstrate radiculopathy or peripheral nerve entrapment, but may not be positive in the extremities for the first 3-6 weeks and paraspinals for the first 2 weeks • Would not be appropriate in clinically obvious radiculopathy

• 4. Bone scan:
• Very sensitive but nonspecific • Useful for:
• Malignancy screening • Detection for early infection • Detection for early or occult fracture
19

• 5. Myelogram:
• Procedure of injecting contrast material into the spinal canal with imaging via plain radiographs versus CT • In past, considered the gold standard for evaluation of the spinal canal and neurological compression • With potential complications, as well as advent of MRI and CT, is less utilized:
• More common: Headache, nausea / vomiting • Less common: Seizure, pain, neurological change, anaphylaxis

• Myelogram alone is rarely indicated • Hitselberger study 1968 Journal of Neurosurgery:
• 24 % of asymptomatic subjects with defects
20

• 6. CT with myelogram:
• Can demonstrate much better anatomical detail than myelogram alone • Utilized for:
• Demonstrating anatomical detail in multi-level disease in preoperative state • Determining nerve root compression etiology of disc versus osteophyte • Surgical screening tool if equivocal MRI or CT

21

• 7. CT:
• Best for bony changes of spinal or foraminal stenosis • Also best for bony detail to determine:
• Fracture • DJD • Malignancy

• SW Wiesel study 1984 Spine:
• 36 % of asymptomatic subjects had “HNP” at L4-L5 and L5-S1 levels

22

• 8. Discography (Diagnostic disc injection):
• Less utilized as initial diagnostic tool due to high incidence of false positives as well as advent of MRI • Utilizations:
• Diagnose internal disc derangement with normal MRI / myelo • Determine symptomatic level in multi-level disease

• Criteria for response:
• Volume of contrast material accepted by the disc, with normals of 0.5 to 1.5 cc • Resistance of disc to injection • Production of pain---MOST SIGNIFICANT

• Usually followed by CT to evaluate internal architecture, but also may utilize MRI • As outcome predictor (Coulhoun study 1988 JBJS):
• 89 % of those with pain response received benefit from surgery • 52 % of those with structural change received surgical benefit
23

• 9. MRI:
• Best diagnostic tool for: • Soft tissue abnormalities:
• Infection • Bone marrow changes • Spinal canal and neural foraminal contents

• Emergent screening:
• • • • Cauda equina syndrome Spinal cored injury Vascular occlusion Radiculopathy

• Benign vs. malignant compression fractures • Osteomyelitis evaluation • Evaluation with prior spinal surgery

24

• Has essentially replaced CT and myelograms for initial evaluations • Boden study 1990 JBJS: • 20 % of asymptomatic population less than 60 years with “HNP” • 36 % of asymptomatic population of 60 years • Jensen study 1995 NEJM: • 52 % of asymptomatic patients with disc bulge at one or more levels • 27 % of asymptomatic patients with disc protrusion • 1 % of asymptomatic patients with disc extrusion
25

• MRI with Gadolinium contrast:
• Gadolinium is contrast material allowing enhancement of intrathecal nerve roots • Utilization:
• Assessment of post-operative spine---most frequent use • Identifying tumors / infection within / surrounding spinal cord • Diagnosis of radiculitis

• Post-operatively can take 2-6 months for reduction of mass effect on posterior disc and anterior epidural soft tissues which can resemble pre-operative studies • Only indications in immediate post-operative period:
• Hemorrhage • Disc infection
26

• 10. Psychological tools:
• Utilized in case scenarios where psychological or emotional overlay of pain is suspected
• Symptom magnification • Grossly abnormal pain drawing • Non-responsive to conservative interventions but with essentially normal diagnostic studies

• Includes:
• Pain Assessment Report, which combines: • McGill Pain Questionnaire • Mooney Pain Drawing Test • MMPI • Middlesex Hospital Questionnaire • Cornell Medical Index • Eysenck Personality Inventory

27

MRI Nomenclature:
• Anular fissure:
transverse distribution

(PER NASS)

Focal disruption of anular fibers in concentric, radial or

• Disc bulge:

Circumferential, diffuse, symmetric extension of anulus beyond the adjacent vertebral end plates by 3 or more mm, usually due to weakened or lax anular fibers Focal, asymmetric extension of disc segment beyond margin of vertebral end plates into the spinal canal with most of anular fibers intact

• Disc protrusion: • Disc extrusion:

Focal, asymmetric extension of disc segment and / or nucleus pulposis through the anular containment into the epidural space with migration into the canal

• Disc sequestration: Extruded disc segment that is detached from original • Disc degeneration:
Irreversible structural and histiological changes in nucleus seen on MRI T2WI images (commonly associated with bulge)

28

Specificity / Sensitivity
Diagnosis
Disc “Herniation”

Test
CT MRI CT Myelo

Sensitivity
0.90 0.90 0.90 0.90 0.90 0.77

Specificity
0.70 0.70 0.70 0.80-0.95 0.75-0.95 0.70

Spinal Stenosis

CT MRI Myelogram

29

G. Treatment
• Medications
• NSAIDS • Membrane stabilizers
• TCA / Neurontin • re-establish sleep pain • reduce radicular dysesthesias

• Muscle relaxers:
• re-establish sleep patterns • more useful in myofascial/muscular pain

• Narcotics: rarely indicated • Steroids: more useful for radiculitis • Non-narcotic analgesics: Ultram

30

• Physical therapy
• • • • • • • • Modalities electrical stimulation/TENS Postural education / body mechanics Massage / mobilization / myofascial release Stretching / body work Exercise / strengthening Traction Pre-conditioning / work-conditioning Epidural blocks Facet blocks Trigger point SNRB SI joint

• Injections
• • • • •

31

• Surgery:
• • • • Laminectomy Fusion Discectomy Percutaneous Lumbar Discectomy
– Success rate variable 50 -85 % – Low rate of complications:
• Infection • Peripheral nerve injury

– Benefits:
• • • • • Outpatient procedure Minimal to no epidural scarring No general anesthesia Spine stability preservation Decreased cost
32

• Chemonucleolysis • IDET: Intradiscal Electrotherapy or Spine CATH • Alternative:
• Chiropractic:
• Clinical studies show benefit only in first 3 weeks of symptoms

• Acupuncture • Biofeedback

33

IV. Specific Disorder Considerations

34

• History:
• • • •

A. Sacroiliitis:

Trauma is very common Repetitive LS motion--lumbar rotation or axial loading No specific correlation with exacerbating activities Commonly have leg length discrepancy or condition contributing

• Biomechanics:
• Movement of the SIJ is involuntary, usually from muscle imbalances • Can occur at multiple levels: lower extremities, hip, LS spine • Motion is complex and not single-axis based
35

• Differential Diagnosis:
a. Fracture
• Traumatic • Insufficiency stress fractures: elderly patient with osteoporosis
without history of trauma

• Fatigue stress fractures: usually athletes / soldiers

b. Infection
• Hematogenous spread with predisposing history • Usually unilateral symptoms present

c. d. e.

Degenerative joint disease Metabolic disease Referred pain

36

f. Seronegative spondyloarthropathies
• RA--usually not until late in course of disease • Ankylosing spondylitis • Psoriatic arthritis

g. Primary SI tumor
• Rare and usually synovial villoadenomas

h. Iatrogenic instability
• Via pelvic tumor resection or bone graft site

i. Osteitis condensans ilii
• Prevalence of 2.2 %, primarily in multiparous women • Usually self-limiting and bilateral

j. Reactive disease as sequellae of PID

37

• Diagnostic Tools:
• X-rays: Up to 25 % of asymptomatic adults over 50 years
can have abnormalities

• MRI / CT: Only if looking for tumor • Bone scan: Good for fractures but less favorable for inflammation

• Treatment:
• Medications: NSAIDS • Physical therapy • Correct limb discrepancy • Injection: Fluoroscopy-guided vs. local • Surgical fusion: Few figures for efficacy
38

B. Cauda Equina Syndrome:
• History:
• Sudden, partial or complete loss of voluntary bladder function due to massive disc impingement on spinal nerves • Can include loss of sensation as well as sphincter tone

• Treatment:
• Urgent decompression is mandatory for prevention of irreparable / irreversible bladder damage • 12 hours is the maximum time prior to irreversible changes

39

C. DDD and Spondylosis:
• Clinical:
• Up to 75 % of involvement of the spine occurs at 2 levels: L5-S1 and L4-L5 • Possible factors that contribute to development:
– Changes with maturation in:
• Nutrition • Disc chemistry • Hormones

– Occupational forces

• Progression of disc narrowing leads to degenerative changes of bony structures, especially posterior components, leading to spondylosis
40

• Treatment:
• Medications • Physical therapy • Lifestyle changes:
• Smoking cessation • Weight loss • Vocational changes

• Injections:
• Less helpful if pain is limited to central low back only

• Surgery:
• Laminectomy • Fusion
41

D. Spinal Stenosis:
• Clinical:
• Results from narrowing of spinal canal and / or neural foramina (CONGENITAL OR DEGENERATIVE) • Most common complaint is leg pain limiting walking • Neurogenic / Pseudoclaudication = pain in lower extremities with gait • Relief can occur with:
– stopping activity – sitting, stooping or bending forward

• Common are complaints of weakness and numbness of extremities • Usually becomes symptomatic in 6th decade

42

• Diagnosis:
• CT and MRI may yield false-positive results, therefore EMG / NCV can be helpful to confirm diagnosis • Myelography also can be confirmatory and pre-surgical screening tool

• Treatment:
• • • • • Medications Physical therapy TENS Epidural injections Surgical decompression laminectomy
43

E. “HNP”:
• Clinical:
• Low back pain wit associated leg symptoms • Positions can induce radicular symptoms • Posterolateral disc pathology most common:
• Area where anular fibers least protected by PLL • Greatest shear forces occur with forward or lateral bend

• Central disc pathology:
• Usually with LBP only without radicular symptoms, unless a large defect is present

44

• Treatment:
• Conservative treatment: – Saul and Saul study 1989 Spine:
• > 90 % success rate of symptom resolution with non-operative management

– Bozzao study 1992 Radiology:
• 69 patients with “HNP” studied longitudinally with MRI • 63 % with >30 % reduction with 48 % > 70 % reduction over time

• • • •

Medications Physical therapy Injections Surgery

45

F. Pars Interarticularis Defects:
• Spondylolysis:
• • • • Anatomic defect in the bony pars interarticularis within the lamina May uni- or bilateral Can be congenital or induced Usually without clinical symptoms with incidental findings on radiographs

46

• Spondylolisthesis
• Progression of spondylolysis with separation
• Grades assigned I-IV for level of translation • Most common levels are L5-S1 (70 %) and L4-L5 (25 %)

• May be asymptomatic, but can result in
• Spondylosis • DDD • Radiculopathy

• Treatment:
• • • • Medication Physical Therapy Injections Surgery
47

V. Chronic Pain Issues

48

A. Pain Reinforcing Factors:
• Secondary gain: Support system allows passive / inactive role for
patient via catering to needs and hence fostering dependency professional community

• Environmental: Inadequate opportunity or skills to compete in the • Physician knowledge deficit: In areas of diagnosis and appropriate
treatment, can prolong symptoms and validate pain behavior

• Worker’s compensation: Laws have become counterproductive--

financial compensation or open claim may discourage desire for return work and impede recovery behavior and develop into learned pain behavior

• Litigation: Anticipation of large financial settlement can reinforce pain
49

B. Risk Factors for Delayed Recovery:
Occupational
Job availability Patient perception of work load Job dissatisfaction Time off of work
50

Psychosocial
Anger with “system” Disabled spouse Poor English proficiency

Medical
History of narcotic or substance abuse Poor fitness History of prior injury

C. Discouraging Chronic Pain:
• Requiring employer to accommodate restrictions to allow continued working during treatment and recovery • Rapid abjudication of disability and compensation claims • Physician education re: appropriate treatments and limiting use of potentially addictive medications • Ergonomic work environments • Patient education re: disease process and treatment options

51

• Physical therapy is initially usually one of modalities with progression into more active exercise • Pre-conditioning therapy is more functional with transition into Work Conditioning (Work Hardening) program • Always consider return to work, whether modified duty with restrictions or limiting hours worked • If patients poorly tolerate standard therapy, consider pool therapy intervention which allows elimination of gravity effects • Functional Capacity Evaluations utilized if patients are not progressing through therapy or if have reached a plateau and abilities as well as restrictions need to be assessed • Job site evaluations appropriate if concerns re: ergonomics
52

D. Considerations of PM & R Treatment:

E. Final Thoughts:
• It is the patient, not the diagnostic test, that is treated • 80 % of patients will recover from acute low back pain within 3 days to 3 weeks, with or without treatment, with up to 90 % resolved in 6-12 weeks
53

Sponsor Documents

Or use your account on DocShare.tips

Hide

Forgot your password?

Or register your new account on DocShare.tips

Hide

Lost your password? Please enter your email address. You will receive a link to create a new password.

Back to log-in

Close