MBA Top Schools in India

Published on May 2016 | Categories: Types, Presentations | Downloads: 36 | Comments: 0 | Views: 311
of 24
Download PDF   Embed   Report

On this website people get all information of schools

Comments

Content

Top school in India

By:
school.edhole.com

Laplace Transform

BIOE 4200

school.edhole.com

Why use Laplace Transforms?
Find solution to differential equation
using algebra
 Relationship to Fourier Transform
allows easy way to characterize
systems
 No need for convolution of input and
differential equation solution
 Useful with multiple processes in
system


school.edhole.com

How to use Laplace
Find differential equations that describe
system
 Obtain Laplace transform
 Perform algebra to solve for output or
variable of interest
 Apply inverse transform to find solution


school.edhole.com

What are Laplace transforms?


F(s)  L{f ( t )}   f ( t )e st dt
0
  j

1
1
st
f ( t )  L {F(s)} 
F
(
s
)
e
ds

2j  j


t is real, s is complex!
 Inverse requires complex analysis to solve
 Note “transform”: f(t)  F(s), where t is integrated
and s is variable
 Conversely F(s)  f(t), t is variable and s is
integrated
 Assumes f(t) = 0 for all t < 0
school.edhole.com

Evaluating F(s) = L{f(t)}

let

Hard Way – do the integral
f (t)  1


1
1
F(s)   e st dt   (0  1) 
s
s
0

let

f ( t )  e at




0

0

F(s)   e at e st dt   e (s  a ) t dt 

let

1
sa

f ( t )  sin t


F(s)   e st sin( t )dt

0
school.edhole.com

Integrate by parts

Evaluating F(s)=L{f(t)}- Hard Way
 udv  uv   vdu

remember
let

u  e st , du  se st dt
dv  sin( t )dt, v   cos( t ) 


st
st
  e sin( t )dt  [e cos( t ) ]  s  e st cos( t )dt 
0

0

0


 e (1)  s  e st cos( t )dt
st



 se



0

[school.edhole.com
e sin( t ) ]  s  e sin( t )dt  e
0

0

0

st
e
 sin( t )dt 

0
st

st
e
 sin( t )dt 

0

  e st cos( t )dt 


sin( t )dt  1  s

(1  s 2 )  e st sin( t )dt 1






2



u  e st , du  se st dt
dv  cos( t )dt, v  sin( t )

st

st

0

0

let

Substituting, we get:

st



(0)  s  e sin( t )dt
0

st

1
1  s2

It only gets worse…

Evaluating F(s) = L{f(t)}
This is the easy way ...
 Recognize a few different transforms
 See table 2.3 on page 42 in textbook
 Or see handout ....
 Learn a few different properties
 Do a little math


school.edhole.com

Table of selected Laplace
Transforms
1
f ( t )  u ( t )  F(s) 
s
1
f ( t )  e u ( t )  F(s) 
sa
 at

s
f ( t )  cos( t )u ( t )  F(s)  2
s 1
1
f ( t )  sin( t )u ( t )  F(s)  2
s 1

school.edhole.com

More transforms
n!
f ( t )  t u ( t )  F(s)  n 1
s
n

0! 1
n  0, f ( t )  u ( t )  F(s)  1 
s s
1!
n  1, f ( t )  tu ( t )  F(s)  2
s
5! 120
n  5, f ( t )  t 5 u ( t )  F(s)  6  6
s
s

f ( t )  ( t )  F(s)  1
school.edhole.com

Note on step functions in Laplace


Unit step function definition:
u ( t )  1, t  0
u ( t )  0, t  0



Used in conjunction with f(t)  f(t)u(t)
because of Laplace integral limits:


L{f ( t )}   f ( t )e dt
0

school.edhole.com

st

Properties of Laplace Transforms
Linearity
 Scaling in time
 Time shift
 “frequency” or s-plane shift
 Multiplication by tn
 Integration
 Differentiation


school.edhole.com

Properties: Linearity

L{c1f1 (t )  c2f 2 (t )}  c1F1 (s)  c2 F2 (s)
Example : L{sinh( t )} 

Proof :

1 t 1 t
y{ e  e } 
2
2
1
1
L{e t }  L{e  t } 
2
2
1 1
1
(

)
2 s 1 s 1
1 (s  1)  (s  1)
1
(
)

2
s2 1
s2 1

school.edhole.com

L{c1f1 ( t )  c 2 f 2 ( t )} 


st
[
c
f
(
t
)

c
f
(
t
)]
e
dt 
2 2
 11
0




0

0

c1  f1 ( t )e st dt  c 2  f 2 ( t )e st dt 
c1F1 (s)  c 2 F2 (s)

Properties: Scaling in Time
1 s
L{f (at )}  F( )
a a
Example : L{sin( t )}
1
1
(
 1) 
2
s
 ( )

1
2
( 2
)
2
 s 

s 2  2

school.edhole.com

Proof :

L{f (at )} 


st
f
(
at
)
e
dt 

0

let

u  at , t 

a

u
1
, dt  du
a
a
s

( ) u
1
f (u )e a du 

a0

1 s
F( )
a a

Properties: Time Shift

L{f ( t  t 0 )u ( t  t 0 )}  e
 a ( t 10)
u ( t  10)} 
Example : L{e
e 10s
sa

Proof :

 st 0

F(s)

L{f ( t  t 0 )u ( t  t 0 )} 


st
f
(
t

t
)
u
(
t

t
)
e
dt 
0
0

0


st
f
(
t

t
)
e
dt 
0


t0

let

u  t  t0, t  u  t0
t0

s ( u  t 0 )
f
(
u
)
e
du 

0

school.edhole.com

e

st 0



st 0
su
f
(
u
)
e
du

e
F(s)

0

Properties: S-plane (frequency)
shift
 at

L{e f (t )}  F(s  a )
Example : L{e  at sin( t )} 

(s  a ) 2  2

Proof :

L{e  at f ( t )} 


 at
st
e
f
(
t
)
e
dt 

0



( s  a ) t
f
(
t
)
e
dt 

0

F(s  a )

school.edhole.com

Properties: Multiplication by tn
n
n
n d
L{t f ( t )}  (1)
F
(
s
)
n
ds
Example :

Proof :

L{t n u ( t )} 
(1) n



L{t n f ( t )}   t n f ( t )e st dt 
0

n

d 1
( )
n
ds s

n!
s n 1



n st
f
(
t
)
t
e dt 

0


n

(1) n  f ( t ) n e st dt 
s
0


n
n
st
n 
(1)
f ( t )e dt (1)
F(s)
n 
n
s 0
s
n

school.edhole.com

The “D” Operator
1.

2.

Differentiation shorthand

Integration shorthand
t

if

g( t )   f ( t )dt


then

Dg ( t )  f ( t )

school.edhole.com

df ( t )
Df ( t ) 
dt
d2
2
D f (t)  2 f (t)
dt

t

if g( t )   f ( t )dt
a
1
then g( t )  D a f ( t )

Properties: Integrals

F(s)
L{D f ( t )} 
s
1
0

Proof :

g ( t )  D 01f ( t )


L{sin( t )}   g ( t )e st dt

Example : L{D 01 cos( t )} 

0

let u  g( t ), du  f ( t )dt

1
s
1
( )( 2 )  2
s s 1 s 1
L{sin( t )}

1
dv  e st dt , v   e st
s
1
1
F(s)
st 
st
 [ g( t )e ]0   f ( t )e dt 
s
s
s
t

g( t )   f ( t )dt If t=0, g(t)=0
0



school.edhole.com


0



for (t  )   f (t )e  st dt   so
0
f (t )dt  g (t )   slower than e st  0

Properties: Derivatives
(this is the big one)


L{Df (t )}  sF(s)  f (0 )
Example : L{D cos( t )} 
s2


f
(
0
)
2
s 1
s2
1 
2
s 1
s 2  (s 2  1)
s2  1
1
 L{ sin( t )}
2
s 1

school.edhole.com

Proof :

let



d
f ( t )e st dt
dt
0

L{Df ( t )}  

u  e st , du  se st
d
dv  f ( t )dt , v  f ( t )
dt


[e st f ( t )]0  s  f ( t )e st dt 
0

 f (0  )  sF(s)





Difference in f (0 ), f (0 ) & f (0)
The values are only different if f(t) is not
continuous @ t=0
 Example of discontinuous function: u(t)


f (0  )  lim u ( t )  0
t 0

f (0  )  lim u ( t )  1
t 0

f (0)  u (0)  1

school.edhole.com

Properties: Nth order derivatives

L{D f ( t )}  ?
2

let

g( t )  Df ( t ), g(0)  Df (0)  f ' (0)
 L{D 2 g( t )}  sG (s)  g(0)  sL{Df ( t )}  f ' (0)
 s(sF(s)  f (0))  f ' (0)  s 2 F(s)  sF(0)  f ' (0)

L{Dn f (t )}  s n F(s)  s( n 1) f (0)  s( n 2) f ' (0)    sf ( n 2)' (0)  f ( n 1)' (0)

NOTE: to take L{D n f ( t )}
you need the value @ t=0 for
Dn 1f (t ), Dn 2f (t ),...Df (t ), f (t )  called initial conditions!

We will use this to solve differential equations!
school.edhole.com

Properties: Nth order derivatives
Start with L{Df (t )}  sF(s)  f (0)
Now apply again L{D2f (t )}
let g( t )  Df ( t ) and Dg ( t )  D 2f ( t )
then L{Dg ( t )}  sG (s)  g(0)
remember g( t )  Df ( t )
 g(0)  f ' (0)
G (s)  L{g( t )}  L{Df ( t )}  sF(s)  f (0)

 L{Dg (t )}  sG(s)  g(0)  s[sF(s)  f (0)]  f ' (0)  s 2 F(s)  sf (0)  f ' (0)

Can repeat for D3f (t ), D4f (t ), etc.
L{Dn f (t )}  s n F(s)  s( n 1) f (0)  s( n 2) f ' (0)    sf ( n 2)' (0)  f ( n 1)' (0)

school.edhole.com

Relevant Book Sections
Modeling - 2.2
 Linear Systems - 2.3, page 38 only
 Laplace - 2.4
 Transfer functions – 2.5 thru ex 2.4


school.edhole.com

Sponsor Documents

Or use your account on DocShare.tips

Hide

Forgot your password?

Or register your new account on DocShare.tips

Hide

Lost your password? Please enter your email address. You will receive a link to create a new password.

Back to log-in

Close