National Emission Standards for Hazardous Air Pollutants for Source Categoriesn Standards for Hazardous Air Pollutants for Source Categories

Published on July 2020 | Categories: Full description | Downloads: 81 | Comments: 0 | Views: 486
of 120
Download PDF   Embed   Report

Comments

Content

 

nited States Environmental Protection Agency

Office o f Air Qua1ib' Planning and Standards Research TriangletP.ark:NC 27711

Aprll 997

EPA-4531R-94..079a

Air

National Emission Standards for Hazardous Hazar dous Air Pollutants Pollutant s for · Source Categories: Categories: Oil ,a ,and nd Natu Na tura rall Gas Production and Natural Gas · Transmission and t o r ~ g e Background Backgro und Informat Info rmation ion ·for Proposed Standards Standards

  EP A

: I M

I

;J

' r I -\ ;

;

I

\I

It

l;

j

j

~

''

i

I I

Il--..._

I

J

ll l

I•\

I I.

I

I

i___j

< =J ~

___

- -,

'\ -----

.

__

j

I

: . _ _

rsl I

'

I

lru LiU lfl

I Ii Il I I

i

LJ

: t i ~

 

TECHNIC

L REPORT

DATA

Please read Instructions on reverse before completing) 1. REPORT NO.

EPA-453/R-94-079a

2.

3. RECIPIENT S ACCESSION NO.

4. TITLE AND SUBTITLE

National Emission Standards for Hazardous Air Pollutants for National Source Categories: Oil and Natural Gas Production Pr oduction and Natural Gas Transmission and Storage - Background Information for Proposed Standards

S. REPORT DATE

Apri11 Apri11997 997

6. PERFORMING ORGANIZATION CODE

7. AUTHOR S)

8. PERFORMING ORGANIZATION REPORT NO.

9. PERFORMING ORGANIZATION NAME AND ADDRESS

10. PROGRAM ELEMENT NO.

U.S. Environmental Protection Agency Office o f Air Qualit Quality y Planning and Standards Research Triangle Par Park, k, NC 27711

.

11. CONTRACT/GRANT NO.

68D60008

13. TYPE OF REPORT AND PERIOD COVERED

12. SPONSORING AGENCY NAME AND ADDRESS

Director Office of Air Quality Planning and Standards Office o f ir and Radiation U.S. Environmental Protection Agency Research Triangle Par Park, k, NC 277 27711 11

14. SPONSORING AGENCY CODE

EPA/200/04

15. SUPPLEMENTARY NOTES

16. ABSTRACT

This background information document provides the basic information which was :used as background in the development of the two standards 1) National Emission Standards for Hazardous Air Pollutants from· Oil and Natural Gas Production Facilities and 2) National Emission Standards for Hazardous Air Pollutants Pollutan ts from Natural Gas Transmission and St Storage orage Facili Facilities. ties. A description o f the industries, control technologies available, cost of controls, modeling used in the estimation o f national emission emiss ion estimate estimatess and costs are included. KEY WORDS AND DOCUMENT ANALYSIS

17.

a.

DESCRIPTORS

NESHAP, MACT, Oil and Natural Gas Production, Natural Gas Transmission and Storage. 18. DISTRIBUTION STATEMENT

Release Unlimited .

.

EPA Form 2220-1 (Rev. 4-77

b. IDENTIFIERS/OPEN ENDED TERMS

. Air Pollution control

19. SECURITY CLASS Report)

Unclassified

20

SECURITY CLASS Page)

Unclassified PREVIOUS EDITION IS OBSOLETE

c. COSATI Field/Group

21. NO. OF PAGES

124

22. PRICE

 

EPA-453/R-94-079a

Emissions Standards f o r Hazardous A i r P o l l u t a n t s f o r S o u r c e C a t e g o r i e s O i l a n d N a t u r a l Gas P r o d u c t i o n a n d N a t u r a l Gas T r a n s m i s s i o n a n d S t o r a g e Background Information f o r Proposed S ta nda r ds

National

Emission Standards Division

Environmental P r o t e c t i o n Agency O ffic e of Air and Ra dia tion O f f i c e o f A i r Q u a l i t y P l a n n i n g .and S t a n d a r d s Research Triangle Park North Carolina 27711 A p r i l 1997 U.S.

 

DISCLAIMER

This r e p o r t has been reviewed by the Emission Standards Division U.S. Environmental O f f i c e o f A i r Q u a l i t y Planning and Standards P r o t e c t i o n Agency a n d a p p r o v e d f o r p u b l i c a t i o n . ~ i n t i o n of trade nam es o r c o m m e r c i a l p r o d u c t s i s n o t i n t e n d e d t o c o n s t i t u t e Copies o f t h i s r e p o r t a r e endorsement o r recommendation f o r u s e . available through the Library Services Office MD-·35), U . S . E n v i r o n m e n t a l P r o t e c t i o n Agency R e se a r c h T r i a n g l ~ P a rk N o rt h o r from t h e N at i o n al Te c hnic a l Inj:ormation C a rol i na 27711 Services

5 2 8 5 P o r t R o y a l R oad

Springfield

V i r g i n i a 22161.

 

T BLE OF

1.0

2.0

CONTENTS

1 1 1 1 1 1

INTRODUCTION PURPOSE OF DOCUMENT ST TUTORY BASIS OF RULE SCOPE OF THE SOURCE CATEGORIES DOCUMENT CONTENTS DOCKET REFERENCE REFERENCES

1.1 1.2 1.3 1.4 1.5 1.6

1-5

THE OIL ND N TUR L G S PRODUCTION ND N TUR L G S TRANSMISSION ND STOR GE SOURCE CATEGORIES INTRODUCTION 2.1 SOURCE C TEGORY CHARACTERIZATION 2.2

2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6

Production Wells Dehydration Units

Tank B a t t e r i e s N a t u r a l Gas P r o c e s s i n g P l a n t s

Offshore Production Platforms N a t u r a l Gas T r a n s m i s s i o n a n d S t o r a g e

Facilities

2.3

EXTR

2.4

H P Constituents DESCRIPTION OF INDUSTRY COMPONENTS

2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.4.1

2.4.2

2.4.3

CTED

STRE

MS

ND

RECOVERED

PRODUCTS

Crude O i l Condensates N a t u r a l Gas Produced Water Othe r Recovered Hydrocarbons

Production Wells 2.4.1.1 We l l h e a d A s s e m b l y 2.4.1.2 P r o d u c t i o n Methods 2 . 4 . 1 . 2 .·1 Primary Recovery 2.4.1.2.2 Secondary Recovery 2.4.1.2.3

Tertiary

Enhanced)

Dehydration Glycol Dehydration S o l i d Desiccant Dehydration

2.4.2.1 2.4.2.2

Tank B a t t e r i e s

2.4.3.1 2.4.3.2 2.4.3.3

Separators

Dehydration Heater Treaters iv

1 1 1 2 3 3

2 1 2 1

2-2 2-2 2-3 2-3 2-4 2 4 2 2 2 2 2 2 2 2

5 5 5 6 6 7 7 7

2 2 8 8 2 8

2-10

2 10

Recovery

2-10 2-10 2-10 2-11

2 12 2 12 2 14

2-14

2 14

 

TABLE OF CONTENTS

Continued)

2.4.3.4 2.4.3.5 2.4.3.6 2.4.3.7

2-14 2-15 2-15 2-16 2-16 2-17

e sosnedsi t i o n i n g P r o c e s s e s 2.4.4P . 3r o cC 2.4.4.4 Fractionation 2.4.4.5 P r o d u c t T r a n s f e r and M e t e r i n g

2 2 -1 -17 7 2 -1 8 2-18 2-18 2-19 2 -1 9 2-20 2-20 2-20 2-20 2-22 2-23 2-23 2-23

F r e e W a t e r K n o c k o u t s FWKOs) Gun B a r r e l S e p a r a t i o n Tanks S t o r a g e Tanks a n d O t h e r V e s s e l s Custody T r a n s f e r 2.4.4 N a t u r a l Gas P r o c e s s i n g P l a n t s 2.4.4.1 Dehydration 2.4.4.2 S w e e t e n i n g and S u l f u r R e c o v e r y

2.5

2.6 2.7 3.0

2.4.5 2.4.6 2.4.7 2.4.8

Offshore Production Platforms

Compressor S t a t i o n s Underground S t o r a g e Other Processes and Operations

HAP EMISSION POINTS 2.5.1 HAP E m i s s i o n P o i n t s 2.5.1.1 Process Vents 2.5.1.2 Storage Vessels 2.5.1.3 Equipm ent Leaks

BASELINE EMISSION ESTIMATES 2.6.1 Bas i c Methodology 2.6.2 F a c i l i t y Em i s s i o n E s t i m a t e s REFERENCES

CONTROL OPTIONS AND PERFORMANCE OF CONTROLS 3.1

3.2

3.3 3.4

INTRODUCTION PROCESS VENTS

Vapor Recovery 3.2.1 3.2.2 Combustion 3.2.3 Pollution Prevention STORAGE VESSELS EQUIPMENT LEAKS 3.4.1 L e a k D e t e c t i o n and R e p a i r 3.4.1.1 Summary o f C o n t r o l Te c h n i q u e s

Guideline

3.4.1.2

3-1 3-1 3-1 3-1 3 -3 3-3 3 -4 3-5 3-5 3-6

3-6 Summary o f Equipm ent Leak R e q u i re m e n t s Under t h e H a z a r d o u s O r g a n i c 3-6 NESHAP R e g u l a t o r y N e g o t i a t i o n 3 -7 3.4.2 Equipment M o d i f i c a t i o n 3-7 Valves 3.4.2.1 3-7 3.4.2.3 Pumps a n d C o m p r e s s o r s 3 -7 3.4.2.3 Sampling Connections 3-8 3.4.2.4 Pressure R elie eff D e v i c e s 3 -8 3.4.2.5 Open-Ended L i n e s 3-8 3.4.2.6 C o n n e c t o rs Flanges) 3 -8 CONTROL OPTIONS AND HAP EMISSION POINTS 3-10 REFEREN REFERENCES CES

Standards 3.4.1.3

3.5 3 6

Summary o f New S o u rc e P e rfo rm a n c e

2 2 -2 -35 1

 

T

4.0

MODEL

4.1 4.2

4

5.0

3

OF

PLANTS INTRODUCTION DESCRIPTIONS OF

Continued)

CONTENTS

PLANTS

MODEL

Glycol Dehydration Units 4. 2 .1.1 Glycol Dehydration Units 4.2.1.2 D i s t r i b u t l o n o f Model U n i t Populations 4.2.1.3 N a t u r a l Gas L i f e C y c l e 4.2.2 Condensate Tank B a t t e r i e s 4.2.3 N a t u r a l Gas P r o c e s s i n g P l a n t s 4.2.4 Offshore Production Platforms in S t a t e Waters · 4.2.5 N a t u r a l Gas T r a n s m i s s i o n a n d S t o r a g e

REFERENCES

5.4



OF

CONTROL

4-2



4-3 4-6 4-7 4-7 4-9

4-.12

4-12

·

ENVIRONMENT L ND ENERGY IMPACTS 5.1 INTRODUCTION AIR POLLUT NT IMPACTS 5.2

5.3

4-1 4-1 4-2 4-2



4.2.1

5.2.1 5.2.2

6.0

BLE

5-1 5-1 5-2 5-2 5-6 5-6

OPTIONS

Primary Air Pollutant Impacts Secondary A i r Pollutant Impacts

ND SOLID W STE W TER ENERGY IMPACTS

IMPACTS

5-8

6-1 6-1 6-1 6-1 6-2 6-2

COSTS OF CONTROL OPTIONS INTRODUCTION 6.1 SUMM RY OF COST METHODOLOGY 6.2

Ge ne ra l Approach M o n i t o r i n g Equipment Product Recovery Monitoring, Inspection Recordkeeping, Reporting 6.2.5 Costs o f H P Emission Control Options 6.2.5.1 Process Vents 6.2.5.2 S t o r a g e Tanks 6.2.5.3 Equipment Leaks 6.2.1 6.2.2 6.2.3 6.2.4

6.3

MODEL

6.3.1 6.3.2 6.3.3 6.4 6.5

PL

NT

B

SED

CONTROL

and

6-3 6-3

6-3 6-4

6-4 6-4

COSTS

Glycol Dehydration Units C onde ns a t e Tank B a t t e r i e s N a t u r a l Gas P r o c e s s i n g P l a n t s

6-5 6-5 6-5 6-5

EX MPLE REFERENCES

APPENDIX A. EVOLUTION OF DOCUMENT

6-12 THE

B

CKGROUND

NATIONAL IMPACTS METHODOLOGY APPENDIX B . B.1 INTRODUCTION OVERVIEW OF METHODOLOGY B.2 B.3 MODEL PL NT DEVELOPMENT

vi

INFORMATION



·

A

1

B

1

B-1 B-1 B-1

 

Continued)

TABLE OF CONTENTS

B.4 B.S

B.6 B.7

CONTROL OPTIONS . . MODEL PL NT IMPACTS

B.S.1 B.S.2 B.S.3

Emissions Costs Other Impacts

.

.

.

.

NATIONAL IMPACTS ESTIMA NATIONAL ESTIMATE TE . REFERENCES REFERENC ES . . . . . . . .

APPENDIX C . MONITORING INSPECTION REPORTING COST METHODOLOGY . . C. 1 INTRODUCTION INTRODUCTION . . . . . . C 2

C.2.1

C.2.3 C.2.4 C.2.5

. .

RECORDKEEPING . . . . . . . . . . . . . .

Exam pl e C o s t s o r M a j o r S o u r c e MIRR Number o M a j o r S o u r c e s . . Exam pl e C o s t s o r A r e a S o u r c e MIRR Number o A r e a S o u r c e s Continuous Monitoring

BASIS OF METHODOLOGY REFERENCES

.

vii

B -3 B -4 . B -4 B- 4 B-5 . B-6 B- 6

.

.

OST METHODOLOGY

C. 2 . 2

C.3 C.4

. .

. .

ND

.

.

.

.

C- 1 C- 1 C-2 C-2 . C-2 C -8 C-8 C -8 C-11 C-11

. . .

 

LIST

OF TABLES

2 1

AVERAGE HAP COMPOSITION OF EXTRACTED STREAMS AND RECOVERED PRODUCTS . . . . . . . . . . . . . . . . . . . . . . . . 2 9

2 2

BASIC FACILITY TYPES AND ASSOCIATED HAP EMISSION POINTS . . . . . . . . . . . . . . . . . . . . .

2 21

2 3

BASELINE NATIONAL EMISSION ESTIMATES FOR ALL IDENTIFIED HAP EMISSION SOURCES I N THE OIL AND NATURAL GAS PRODUCTION 2 24 SOURCE CATEGORY MAJOR AND AREA HAP SOURCES) . . . . .

2 4

BASELINE NATIONAL EMISSION ESTIMATES FOR IDENTIFIED MAJOR HAP EMISSION SOURCES I N THE OIL AND NATURAL GAS PRODUCTION 2 26 SOURCE CATEGORY . . . . . . . . . . . . . . . . . . .

2 5

BASELINE NATIONAL EMISSION ESTIMATES FOR IDENTIFIED AREA HAP EMISSION SOURCES I N THE OIL AND NATURAL GAS PRODUCTION . . . . . . . . . . . . . . . . . . . SOURCE CATEGORY 2 27

2 6

BASELINE NATIONAL EMISSION ESTIMATES FOR ALL IDENTIFIED HAP EMISSION SOURCES IN THE NATURAL GAS TRANSMISSION AND STORAGE 2 28 SOURCE CATEGORY {MAJOR AND AREA HAP SOURCES) . . . . .

2 7

BASELINE NATIONAL EMISSION ESTIMATES FOR IDENTIFIED MAJOR HAP EMISSION SOURCES I N THE NATURAL GAS TRANSMISSION AND . . . . . . . . . . . . . . . 2 STORAGE SOURCE CATEGORY

2 8

IDENTIFIED

HAP BASELINE ESTIMATES FOR EMISSION NATIONAL SOURCES INEMISSION THE NATURAL STORAGE GAS TRANSMISSION AND AREA SOURCE CATEGORY . . . . . . . . . . . . . 2 30

3 1

SUMMARY OF CONTROL OPTIONS PER HAP EMISSION POINT

4 1

MODEL TRIETHYLENE GLYCOL

4 2

MODEL ETHYLENE GLYCOL

4

MODEL CONDENSATE TANK BATTERIES.

3

4 4

29

{TEG)) {TEG

EG)

DEHY DEHYDRA DRATIO TION N UN IT S

DEHYDRATION UNITS

MODEL NATURAL GAS PROCESSING PLANTS

viii

.

3

9

4 4

4 5 4 8 4 10

 

L IS T OF TABLES

Continued)

4-5

MODEL OFFSHORE PRODUCTION PLATFORMS

5-1

EXAMPLE NATIONAL PRIMARY AIR POLLUTANT IMPACTS FOR MAJOR SOURCES I N THE OIL AND NATURAL GAS P R O D U T I O ~ J SOURCE CATEGORY . . . . . . . . . . . . . . . . . . . . . . . . 5 - 3

S-2

EXAMPLE NATIONAL PRIMARY AIR POLLUTANT I M P A C J ~ S FOR MAJOR SOURCES I N THE NATURAL GAS TRANSMISSION AND STORAGE SOURCE CATEGORY . . . . . . . . . . . . . . . . . . . . . . . . 5 - 4

5-3

EXAMPLE NATIONAL PRIMARY AIR POLLUTANT IMPACTS FOR AREA SOURCE GLYCOL DEHYDRATION UNITS IN THE OIL AliT NATURAL GAS PRODUCTION SOURCE CATEGORY . . . . . . . . . . . . . . . S- 5

5-4

EXAMPLE NATIONAL SECONDARY AIR POLLUTANT I M P l ~ T S DUE TO FLARING FOR MAJOR AND AREA SOURCES IN THE OII s AND NATURAL . . 5-7 GAS PRODUCTION SOURCE CATEGORY . . .

5-5

EXAMPLE NATIONAL ENERGY REQUIREMENTS

6-1

EXAMPLE CONDENSER CAPITAL COSTS FOR MODEL GLYCOL DEHYDRATION

UNI T TEG-C

6-2

.

.

.

.

.

.

.

.

.

.

4-11

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

5-9

.

.

.

.

6-7 EXAMPLE CONDENSER ANNUAL COSTS FOR MODEL GLYCOL DEHYDRATION UNI T TEG-C . . . . . . . . . . . . . . . . . . . . . 6-8

6-3

EXAMPLE CLOSED VENT SYSTEM CAPITAL COSTS FOR MODEL CONDENSATE TANK BATTERY TB- G . . . . . . . . . . .

6-4

EXAMPLE CLOSED VENT SYSTEM ANNUAL COSTS FOR MODEL CONDENSATE . . . . . . . . . . 6-10 TANK BATTERY TB- G

6-5

EXAMPLE MODEL PLANT COST IMPACTS

A-1

EVOLUTION OF

C-1

EXAMPLE ANNUAL MIRR COSTS PER GLYCOL DEHYDRATION UNIT DESIGNATED AS OR LOCATED AT A MAJOR HAP EMISSION SOURCE . . . . . . . . . . . . . . . . . . . . . . . .

.

.

.

.

.

.

.

.

6-9

6-11

.

THE BACKGROUND INFORMATION DOCUMENT

.

.

A-2

C-4

C-2

EXAMPLE ANNUAL MIRR COSTS PER STORAGE VESSEL OR CONTAINER LOCATED AT A MAJOR HAP EMISSION SOURCE . . . . . . . . . C-5

C-3

EXAMPLE ANNUAL MIRR COSTS PER LEAK DETECTION AND REPAIR LOCATED AT A MAJOR HAP EMISSION SOURCE . . . . . . . . .

C-4

TOTAL ESTIMATED EXAMPLE MIRR COSTS FOR MAJOR HAP EMISSION SOURCES I N THE OIL AND NATURAL GAS PRODUCTION SOURCE CATEGORY . . . . . . . . . . . . . . . . . . . C-7 ·

x

C-6

 

LIST OF TABLES

Continued)

C-5

NNU L MIRR COSTS PER GLYCOL DEHYDR EX MPLE S N H P EMISSION SOURCE DESIGNATED RE

C-6

TOT L ESTIMATED MIRR COSTS FOR GLYCOL DEHYDR TION UNITS THE OIL ND N TUR L G S PRODUCTION SOURCE C TEGORY DESIGNATED S RE SOURCES

TION UNIT ·

C-9 IN

C -1 0

 

LIST O

FIGURES

1 1

O i l a n d N a t u r a l Gas I n d u s t r y

2 1

Flow D i a g r a m o f B a s i c G l y c o l D e h y d r a t i o n U n i t

1 4

2 13

 

INTRODUCTION

1.0

1.1

PURPOSE OF DOCUMENT National emission standards

NESHAP)

for hazardous a i r pol l ut a nt s

are being developed for the o i l

and n a t u r a l gas

produc tion source c a te gory and the n a t u r a l gas transmission and

s t o r a g e s o u rce c a t e g o r y by t h e U.S.

Agency

EPA) .

Environmental P r o t e c t i o n

T h i s b a c k g r o u n d i n f o r m a t i o n docum ent

BID)

information and a na lyse s supporting

describes technical

d e v e l o p m e n t o f t h e NESHAPs f o r p r o p o s a l i n t h e F e d e r a l R e g i s t e r . 1.2

STATUTORY BASIS OF RULE

· The NESHAPs f o r t h e o i l a n d n a t u r a l g a s a n d n a t u r a l g a s t r a n s m i s s i o n and s t o r a g e source c a t e g o r i e s a r e being developed

u n d e r t h e a u t h o r i t y o f § 1 1 2 d ) of. t h e C l e a n A i r A c t a s am ended i n 1990 CAA) . 1 S e c t i o n 1 1 2 d ) o f t h e CAA d i r e c t s t h e EPA Administrator

air pollutant

to promulgate regulations establishing hazardous

emission standards for each category of.major

HAP)

a n d a r e a s o u r c e s o f HAP t h a t h a s b e e n l i s t e d b y t h e EPA f o r regulation under § 112 c).

The 1 8 8 p o l l u t a n t s

that

r ~

designated

a s HAP a r e l i s t e d i n § 1 1 2 b ) . A major source i s defined as a s t a t i ona r y source o r group of s t a t i ona r y sources

l o c a t e d w i t h i n a contiguous a r e a and u n d e r

common c o n t r o l t h a t e m i t s , considering controls

o r has t h e p o t e n t i a l - t o - e m i t

10 t o n s p e r y e a r

tpy)

PTE)

o r g r e a t e r o f any

o n e HAP o r 2 5 t p y o r g r e a t e r o f a n y c o m b i n a t i o n o f HAP.

n

s o u r c e i s any s t a t i o n a r y source t h a t i s not a major s o u rc e . Special provisions

in §112 n)

4)

f o r . o i l and gas wells and

p i p e l i n e c o m p r e s s o r a n d pump s t a t i o n f a c i l i t i e s

a f f e c t major

source de te rmina tions f o r these f a c i l i t i e s and a l s o i n d i c a t e 1-1

area

 

u n d e r what c i r c u m s t a n c e s

t h e EPA may r e g u l a t e o i l

and n a t u ra l gas

p r o d u c t i o n w e l ls ls a s a n a r e a s o u r c e c a t e g o r y .

T h e CAA p r e s c r i b e s t h e minimum d e g r e e o f e m i s s i o n r e d u c t i o n t h a t must be r e q u i r e d by s t an d ard s developed under §112 d)

for

S t a n d a r d s 1:or e x i s t i n g

e x i s t i n g a n d new m a j o r s o u r c e s o f HAP.

m a j o r s o u r c e s may n o t b e l e s s s t r i n g e n t t h a n t h e a v e r a g e e m i s s i o n l i m i t a t i o n a c h i e v e d b y t h e b e s t p e r f o r m i n g 12 p e r c e n t o f t h e e x i s t i n g sources f o r which t h e Administrator has ernissions information.

Standards that

are e s t a b l i s h e d f o r major sources

technology

a r e r e f e r r e d t o a s maximum a c h i e v a b l e c o n t r o l standards.

Standards

MACT)

f o r new m a j o r s o u r c e s m u s t r e f l e c t t h e

maximum d e g r e e o f e m i s s i o n r e d u c t i o n a c h i e v e d i n p r a c t i c e b y t h e

best controlled similar source

best

of

the best) .

F o r s o u r c e c a t e g o r i e s w i t h f e w e r t h a n 30 s o u r c e s ,

standards

may n o t b e l e s s s t r i n g e n t t h a n t h e a v e r a g e e m i s s i o n l i m i t a t i o n achieved by the b e s t performing

five

sources.

Standards

for

e x i s t i n g m a j o r s o u r c e s may b e m o r e s t r i n g e n t t h a n t h e s e minimums, b u t must c o n s i d e r co s t, impacts,

n o n - a i r q u a l i t y h e a l t h and environmental

and energy requirements.

T h e CAA g i v e s d i s c r e t i o n t o t h e A d m i n i s t r a t o r when s e t t i n g s t a n d a r d s under §112 d)

f o r a r e a s o u r c e s o f HAP.

a r e a s o u r c e s may e i t h e r b e b a s e d o n MACT,

o r on g e n e r a l l y a v a i l a b l e c o n t r o l 1.3

as

Standards for

for major sources,

technology

GACT) .

SCOPE OF THE SOURCE CATEGORIES The o i l and n a t u r a l g a s p r o d u c t i o n s o u r c e c a t e g o r y i n c l u d e s

t h e p r o c e s s i n g and upgrading o f crude o i l p r i o r to custody t r a n s f e r and n a t u r a l gas p r i o r to

the point

of

entering· the p i p e l i n e

systems a s s o c i a t e d w i t h t h e n a t u r a l gas transmission and s t o r a g e source category.

Included in t h i s

p r o d u c t i o n p la l a t fo fo r m s

source category are offshore

located in State waters.

handle hydrocarbon liquids

Facilities that

from t h e p o i n t o f c u s t o d y t r a n s f e r a r e

in the organic liquids distribution

non-gasoline)

source

category.

For natural gas streams,

the n atu r al gas

transmission and

storage source category includes the pipeline transport,

1-2

storage,

 

and processing of n a t u r a l gas p r i o r to e n t e r i n g the f i n a l p i p e l i n e o f t h e l o c a l d i s t r i b u t i o n com pany natural gas to the fin a l

that delivers

The s c o p e s o f t h e s e s o u r c e

i l l u s t r a t e d in Figure 1-1.

categories are 1.4

end us e r .

LDC)

CONTENTS

DOCUMENT

T h i s BID i s i n t e n d e d t o p r o v i d e

ba s i c information on t he

1)

process o p e r a t i o n s and H P emission p o i n t s a s s o c i a t e d with o i l

and n a t u r a l gas p r o d u c t i o n and n a t u r a l gas t r a n sm i ssi o n and s t o r a g e and

2)

i n f o r m a t i o n o n c o n t r o l s a n d t h e i m p a c t s of.

c o n t r o l s a v a i l a b l e to reduce H P emissions

emission points.

from i d e n t i f i e d H P

The d e s c r i p t i o n a n d a n a l y s i s o f r e g u l a t o r y

a l t e r n a t i v e s w i l l b e p r e s e n t e d i n o t h e r EPA d o c u m e n t s .

Chapter 2.0 p r e s e n t s an overview o f th e source c a t e g o r i e s . C h a p t e r 3 . 0 i d e n t i f i e s c o n t r o l o p t i o n s f o r HAPs t h a t a r e id e n tif ie d H P emission points in the source

applicable to

categories.

C h a p t e r 4 . 0 p r e s e n t s t h e model p l a n t s d e v e l o p e d f o r

use i n estimating the impacts of applying the c o n t r o l options. Chapter 5.0 addresses t h e environmental and o t h e r impacts r e s u l t i n g from ap p l y i n g c o n t r o l o p t i o n s to

identified H P

emission points in the source categories.

Chapter 6.0 p r e s e n t s

the costs

and c o s t - e f f e c t i v e n e s s of the cont rol opt i ons.

Additional information i s presented in three appendices to

t h i s document.

The a p p e n d i c e s i n c l u d e

o f t h e BID,

Appendix B - National

3)

2)

Appendix C - Monitoring,

1)

Appendix A - Ev o lu tio n

Impacts Methodology,

Inspections

Recordkeeping,

and

and

Rep o rt i n g Cost Methodology. 1.5

DOCKET

REFERENCE

The d o c k e t f o r t h e s e r e g u l a to to r y a c t i o n s i s d e s i g n a t e d a s

D o c k e t No. A - 9 4 - 0 4 . of the

The d o c k e t i s a n o r g a n i z e d a n d c o m p l e t e f i l e

information submitted to o r otherwise

considered by the

EPA i n t h e d e v e l o p m e n t o f t h i s p r o p o s e d r u l e m a k i n g . p r i n ci p al purposes of the docket are

1)

The

to allow in te r e s te d

p a r t i e s a m eans t o i d e n t i f y a n d l o c a t e d o c u m e n t s s o t h a t e f f e c t iv e l y p a r t i c i p a t e i n t h e rulemaking proc·ess and

1-3

2)

they can

to

 

i }

d Natural

Tank BaHery

Gas

t

Gas Plant

Local

~ ~ = =

d

d

p

N TUR L G S TR NSMISSION ND STOR GE SOURCE C TEGORY

I I I

Distribution Comoan Como an

I

I I I I I

®

I I I

HydroCJirbon Uquads

_

}

ustody l _ _ r ~ ~ ~ ~ ~ ~

~ ~

f 1

I

Tank BaHery

l-lydrOCJirbon Uquads

I I I

: I I

HydrOC Irbon Liquids

~

~

OIL

Custody Transfer

II

\

\:>UUt1\ JI::

vi

r \.

LEGEND

d

* ® W

r \,1

1::\:lUn T

Land

Offshore State Waters

Figure 1 1.

O i l a n d N a t u r a l Gas

the record in case of

j u d i c i a l review

Dehydration Dehydrati on Uni Unitt OiiWell GasWell Offshore Production Platform

ndustry

 

serve as

interagency review materials

(§307(d) (7) A)

(except for

o f t h e CAA).

The d o c k e t i s a v a i l a b l e f o r p u b l i c i n s p e c t i o n a n d c o p y i n g

between 8 : 3 0 a . m .

and 4 : 3 0 p . m . ,

EPA s A i r and R a d i a t i o n Docket, P r o t e c t i o n Agency, ·401 M S t r e e t ,

Monday t h r o u g h F r i d a y , Room M1500,

SW,

U.S.

Washington,

at the

Environmental DC

2046.0.

A

r e a s o n a b l e f e e may b e c h a . r g e d f o r c o p y i n g .

1.6

REFERENCES

1.

U n i t e d S t a t e s C o n g r e s s . C l e a n A i r A c t a s am ended Novem ber U.S. 1 9 9 0 . 42 U . S . C . 7401, e t s e q . W a s h i n g t o n , DC Governm ent P r i n t i n g O f f i c e .

I

----------

ND N TUR L G S

PRODUCTION Trn r-   I

efine~

November 1 9 9 0 .

1-5

 

2.0 N TUR L

2.1

THE

G S

INTRODUCTION

OIL

ND N

TRANSMISSION

TUR ND

L

G S

PRODUCTION

STOR GE SOURCE

ND

CATEGORIES

The o i l a n d n a t u r a l g a s p r o d u c t i o n a n d n a t u r a l g a s transmission and storage source categories

separation,

upgrading,

storage,

primarily hydrocarbons

wells.1

and t r a n s f e r o f e x t r a c t e d st reams

t h a t a r e recovered from p r o d u c t i o n

T h i s c h a p t e r i n c l u d e s a summary c h a r a c t e r i z a t i o n o f

source categories,

these

include the

along with descriptions o f e x t r a c t e d

st reams and recovered products, and t h e b a s i c processes and operations involved with o il

and n a t u r a l gas p r o d u c t i o n and

This chapter also presents

n a t u r a l gas t r a n s m i s s i o n and s t o r a g e . descriptions

i d e n t i f i e d hazardous a i r p o l l u t a n t

of

points associated with the processing, handling of

these materials

and general

storing,

and p r o d u c t s .

The e x t r a c t e d s t r e a m s a n d r e c o v e r e d p r o d u c t s f o r

source categories include crude o i l , produced water.

emission

HAP)

condensate,

t h ~ s

natural gas,

and

The t y p e s o f p r o c e s s e s a n d o p e r a t i o n s i n t h e s e

source categories include production wells,

dehydration units,

natural gas processing plants,

tank batteries,

production platforms,

offshore

and p i p e l i n e t r a n s m i s s i o n f a c i l i t i e s ,

including underground storage operations.

The p r i m a r y H P

emission points associated with these source categories that are

being evaluated include process vents,

storage vessels,

and

equipment l e a k s . E x t r a c t e d st reams and r e c o v e r e d . p r o d u c t s , operations,

and

H

P

processes and

emi ssi on p o i n t s are described below.

This

c h a p t e r a l s o a d d r e s s e s HAPs a s s o c i a t e d w i t h t h e s e s t r e a m s a n d

2-1

 

products, H

P

2.2

facilities,

and emission p o i n t s ,

and inc lude s b a s e l i n e

emission estimates. SOURCE

C

TEGORY

CHARACTERIZATION

The o i l a n d n a t u r a l g a s p r o d u c t i o n s o u r c e

c a t E ~ g o r y

t h e p r o c e s s i n g and upgrading o f crude o i l p r i o r to custody t r a n s f e r and n a t u r a l

includes

the point of

gas p ri o r to entering the pipeline

systems a s s o c i a t e d w ith t h e n a t u r a l gas t r a n s m i s s i o n and s t o r a g e source category.

This source c a t e g o r y inc lude s ofj:shore

production platforms located in State waters. handle hydrocarbon liquids

Facilities that

a f t e r the point of custody t r a n s f e r

non

are included as part of the organic liquids di s t r i but i on gasoline

source category.

For natural gas streams,

the natural

gas t r a n s m i s s i o n and s t o r a g e source c a te gory inc lude s t h e pipeline transport,

and proc e ssing of n a t u r a l gas p r i o r

storage,

t o e n t e r i n g t h e f i n a l p i p e l i n e o f t h e l o c a l d i s t r i b u t i o n com pany t h at delivers natural gas to the f i na l

LDC)

of these source categories are

end us er.

The s c o p e

i l l u s t r a t e d in F igure 1-1 o f

C h a p t e r 1 . 0 o f t h i s b a c k g r o u n d i n f o r m a t i o n documen1:

BI D) .

Production Wells

2.2.1

I n 1992, t h e r e were an e s t i m a t e d 590,000 c ru d e o i l and condensate production wells in the U.S., with a t o t a l annual production o f over 2.6 b i l l i o n barrels

and approxitnately 3

t r i l l i o n cubic f e e t o f co-produced n a t u r a l ga s. decrease of 3 percent

T h i s w as a

i n b o t h t h e number o f w e l l s and i n c r ude

o i l p r o d u c t i o n a s compared w i t h 1991 l e v e l s . 2 t o t a l num ber o f c r u d e o i l a n d c o n d e n s a t e p r o d u c t i o n

Of t h i s wells,

o v e r 70 p e r c e n t

are classified as stripper

are production wells t ha t are production rate of less

1)

~ ~ e l l s

nearing depletion or

t h a n 10 b a r r e l s

o f o i l p e r day

which 2)

have a

BOPD) .

S t r i p p e r w e l l p r o d u c t i o n a c c o u n t s f o r a p p r o x i m a t e l : t 14 p e r c e n t o f

t o t a l domestic crude o i l production. In addition,

f o r 1992,

t h e r e were an e stima te d 280,000

n a t u ra l gas production wells in the U.S.,

with a

total estimated

a n n u a l p r o d u c t i o n o f o v e r 18 t r i l l i o n c u b i c f e e t . represents

This estimate

a 3 p e r c e n t i n c r e a s e i n t h e num ber o f w e l l s a n d 1

2-2

 

percent

increase

i n n a t u r a l g a s p r o d u c t i o n a s c o m p a r e d w i t h 1991

levels.3 2.2.2

Dehydration Units Once t h e n a t u r a l g a s h a s b e e n s e p a r a t e d from a n y l i q u i d

materials o r products residual

crude o i l ,

ent rai ned water vapor i s

dehydration.

form h y d r a te s, corrosion or

condensate,

o r produced water ,

removed from t h e n a t u r a l g a s b y

D e h y d r a t i o n i s n e c e s s a r y b e c a u s e w a t e r v a p o r may that are ice-like structures, 2)

t h a t can

1)

cause

there

are

pl ug equipment l i n e s .

The Gas R e s e a r c h I n s t i t u t e

GRI)

estimates that

o v er 44,000 d e h y d r a t i o n u n i t s i n t h e U.S. TEG)

Triethylene glycol

account f o r most o f t h i s e s t i m a t e d

dehydration units

with ethylene glycol

population of dehydration units,

EG),

DEG) , a n d s o l i d d e s i c c a n t d e h y d r a t i o n u n i t s

diethylene glycol

accounting for the remaining port i on.4 TEG d e h y d r a t i o n u n i t s may b e

stand-alone units

1)

that

d e h y d r a t e n a t u r a l g as from an i n d i v i d u a l w e l l o r s e v e r a l w e l l s o r 2)

one of various processing u n i t s a t

natural

gas processing plants,

transmission facilities, Available

c o n d e ~ s

tank bat t er i es,

t e

offshore production platforms,

and

including underground storage s i t e s .

information indicates

that,

on average,

there

i s one

TEG d e h y d r a t i o n u n i t p e r c o n d e n s a t e t a n k b a t t e r y 5 a n d two t o f o u r

TEG,

dehydration units

processing plant,

EG,

o r solid desiccant

per natural

gas

depending upon throughput c a p a c i t y and t y p e o f

processing configuration.6

2.2.3

Tank B a t t e r i e s

A tank b a t t e r y r e f e r s to t h e c o l l e c t i o n of process equipment

used to separate,

treat,

store,

condensate, natural gas,

and t r a n s f e r crude o i l ,

and produced water.

t y p i c a l l y handle crude o i l ,

condensate,

These f a c i l i t i e s

or naturalogas prior to

t r a n s f e r to a r e f i n e r y o r natural gas processing p l a n t .

B a s e d o n a n a n a l y s i s o f two s t u d i e s c o n d u c t e d f o r t h e American Petroleum I n s t i t u t e P r o t e c t i o n Agency

EPA)

API),

t h e U.S.

Environmental

e s t i m a t e s t h a t t h e r e were approxi m at el y

94,000 tank b a t t e r i e s in 1989.7,8,9

Over 8 S · p e r c e n t o f t a n k

2-3

 

b a t t e r i e s 1 0 o r an es t i m at ed 81,000 f a c i l i t i e s black oil little

if

tank batteries.

any,

are classified as

Black o i l r e f e r s to crude o i l t h a t has

associated gas production.

The r e m a i n d e r ,

o r an estimated 13,000 tank b a t t e r i e s

c l a s s i f i e d as condensate tank b a t t e r i e s . referred to as retrograde gas

Condensate,

Gas P r o c e s s i n g P l a n t s

are

but: become l i q u i d

in e i t h e r the wellbore o r the production process. Natural

also

consists of hydrocarbons t h at

i n a gaseous s t a t e under r e s e r v o i r conditions 2.2.4

are

1)

The m a i n f u n c t i o n s o f n a t u r a l g a s p r o c e s s i n g p l a n t s i n c l u d e conditioning the gas by separation of na t ura l gas liquids

from f i e l d gas and

NGL)

f r a c t i o n a t i o n o f NGL i n t o s e p a r a t e

2)

As o f J a n u a r y 1 ,

components.

1993,

t h e r e w e r e a p p r o x i m a t e l y 700

natural gas processing plants.11

Offshore Production Platforms

2.2.5

Offshore production platforms are used to produce, and s e p a r a t e crude o i l

condensate,

water from production f i e l d s

and produced

natural gas

Processes and

in offshore areas.

operations a t offshore production platforms are

treat

similar to those

l ocat ed a t onshore f a c i l i t i e s except t h a t 1) t h e r e i s g e n e r a l l y little o r no s t o r a g e c a p a c i t y a t o f f s h o r e p l a t f o r m s and 2) t h e s e

f a c i l i t i e s have l i m i t e d a v a i l a b l e space. I n 1993,

t h e U.S.

Management S e r v i c e

Department o f I n t e r i o r • s M in erals

MMS)

estimated that

there w

n ~

approximately

3,800 o f f s h o r e p r o d u c t i o n p l a t f o r m s and o t h e r s t r u c t u r e s i n The m a j o r i t y o f t h e s e o f f s h o r e p r o d u c t i o n

Federal waters.12

p l a t f o r m s and o t h e r s t r u c t u r e s

are located in the Central

and

W e s t e r n G u l f o f M e x i c o , w i t h a l i m i t e d n u mb e r l o c a t e d i n o t h e r Federal waters.

The o f f s h o r e f a c i l i t i e s

waters are under the

l o c a t e d :in F e d e r a l

j u r i s d i c t i o n o f t h e MMS f o r i3.ir e m i s s i o n s

r e g u l a t i o n a n d n o t t h e EPA.13

There a r e an e s t i m a t e d 300

o f f s h o r e p r o d u c t i o n p l a t f o r m s i n S t a t e w a t e r s tha·t a r e u n d er t h e

EPA s

j u r i s d i c t i o n f o r a i r e m i s s i o n s . r e g u l a t i o n 1·4 w i t h t h e

majority of these facilities o f Texas,

Louisiana

located in the State waters offshore

a n d Alabama. 2-4

 

2.2.6

N a t u r a l Gas T r a n s m i s s i o n a n d S t o r a g e F a c i l i t i e s

The n a t u r a l g a s t r a n s m i s s i o n a n d s t o r a g e s o u r c e c a t e g o r y consists of gathering lines,

compressor s t a t i o n s ,

pressure transmission pipeline.

and high

I t is estimated that there are

approximately 1,900 compressor s t a t i o n s and over 480,000 kilometers

300,000 miles)

pipeline.15,16

of high-pressure transmission

In addition,

t h i s s e c t o r i n c l u d e s o v e r 300

underground st ora ge s i t e s . 1 7 , 1 8 as temporary storage f a c i l i t i e s

These s i t e s a r e t y p i c a l l y u s e d t o m e e t p e a k dem and p e r i o d s ,

p a r t i c u l a r l y d u r i n g c o l d e r weather months; Processes and o p e r a t i o n s t h a t may o c c u r a t f a c i l i t i e s i n t h i s s o u r c e c a t e g o r y include dehydration,

2.3

EXTR CTED

and p i p e l i n e pigging a c t i v i t i e s .

storage,

STRE MS

ND

PRODUCTS

RECOVERED

The e x t r a c t e d s t r e a m s a n d r e c o v e r e d p r o d u c t s f r o m p r o d u c t i o n wells

have d i f f e r i n g c h a r a c t e r i s t i c s t h a t can i n f l u e n c e t h e l e v e l

o f H P emissions g e n e r a t e d by t h e e m i s s i o n p o i n t s

natural

in the o i l and

ga s p r o d u c t i o n and n a t u r a l gap t r a n s m i s s i o n and s t o r a g e

source categories.

Section 2.3)

This section

describes the

primary e x t r a c t e d streams and recovered products a s s o c i a t e d w i t h t h e t wo s o u r c e c a t e g o r i e s .

2.3.1

Crude O i l

E a c h p r o d u c i n g c r u d e o i l a n d n a t u r a l g a s f i e l d h a s i t s own

unique properties,

in that

the composition of

t h e a t t e n d a n t n a t u r a l gas and r e s e r v o i r are different

the crude o i l and

field)

characteristics

from t h a t o f any o t h e r f i e l d . 1 9

Crude o i l can be broadly c l a s s i f i e d as p a r a f f i n i c ,

naphthenic

or asphalt-based),

or intermediate.

Generally,

p a r a f f i n i c crudes are used in the manufacture of lube o i l s

k ero s en e and have

and

high concentration of str a ig h t chain

h y d r o c a r b o n s a n d a r e r e l a t i v e l y low i n s u l f u r com pounds. Naphthenic crudes a r e g e n e r a l l y used i n t h e manufacture o f

h i g h c o n c e n t r a t i o n o f o l e f i n and

g a s o l i n e s and a s p h a l t and have

a r o m a t i c h y d r o c a r b o n s a n d may c o n t a i n s u l f u r com pounds.

high concentration of

Intermediate crudes are

those that are not

c l a s s i f i e d i n e i t h e r o f t h e above c a t e g o r i e s . 2 0

2-5

 

Another c l a s s i f i c a t i o n measure o f crude o i l

h y d r o c a r b o n s i s b y API g r a v i t y .

API g r a v i t y i s

a nd o t h e r a

weight per u n i t

volume measure o f a hydrocarbon l i q u i d a s determined b y a method re c o mme n d e d b y t h e A P I . 2 1

A

h e a v y o r p a r a f f i n i c cirude o i l

t y p i c a l l y o n e w i t h a n API g r a v i t y o f 2 0 ° o r l e s s , o r naphthenic crude o i l ,

atmospheric conditions,

while

a

is light

which t y p i c a l l y flows f r e e l y a t u s u a l l y h a s a n API g r a v i t y · i n t h e r a n g e

o f t h e h i g h 3 0 s t o t h e low 4 0 s . 2 2

Crude o i l s recovered in the production phase o f the

p e t r o l e u m i n d u s t r y may b e r e f e r r e d t o a s l i v e c r u d e s . Live c r u d e s c o n t a i n e n t r a i n e d o r d i s s o l v e d g a s e s w h i c h may b e r e l e a s e d

during

processing o r storage,

whereas dead cru d es ar e those t h a t

have gone t h ro u g h v a r i o u s s e p a r a t i o n and st o r a g e phases and c o n t a i n little

any,

if

entrained or dissolved gases.23

Condensates

2.3.2

Condensates

by s t a n d a r d i n d u s t r y d e f i n i t i o n )

hydrocarbons t h a t are in conditions,

a

are

gaseous s t a t e under r e s e r v o i r

b u t become l i q u i d i n e i t h e r t h e w e l l b o r e o r t h e

production process.24

Condensates,

including volatile

oils,

t y p i c a l l y h a v e a n API g r a v i t y i n t h e 4 0 o r g r e a t e r d e g r e e range.25 I n a d d i t i o n , c o n d e n s a t e s may i n c l u d e h y d r o c a r b o n l i q u i d s r e c o v e r e d from ga se ous s tream s

from v a r i o u s o i l and

n a t u r a l ga s product i on o r n a t u r a l gas t rans m i s s i on and s t o r a g e processes and operations.

2.3.3

Natural Natural

G as

gas i s

a

mixture o f hydrocarbons and varyi ng

q u a n t i t i e s o f non-hydrocarbons t hat e x ists

in a gaseous phase o r

in s o l u t i o n with crude o i l o r ot her hydrocarbon l i q u i d s i n N a t u r a l g a s may c o n t a i n

nat ur al underground re s e rvoi rs .

c onta m ina nts, such a s hydrogen s u l f i d e C02), m ercap tan s, and e n t r a i n e d s o l i d s . Natural gas H2 S a r e

2S),

carbon dioxide

s t r e a m s t h a t c o n t a i n t h r e s h o l d c o n c e n t r a t io io n s o f

c l a s s i f i e d as sour gases and_those with tl1reshold

c o n c e n t r a t i o n s o f co 2 a r e c l a s s i f i e d a s a c i d g a s e s . The p r o c e s s e s b y w h i c h t h e s e two c o n t a m i n a n t s a r e removed f r o m t h e

2-6

 

natural gas stream i s c a l l e d sweetening.

The m o s t common

s w e e t e n i n g m e t h o d i s am ine t r e a t i n g . S o u r g a s c o n t a i n s a H2 S c o n c e n t r a t i o n o f g r e a t e r t h a n 0 . 2 5 g r a i n p e r 100 s t a n d a r d c u b i c f e e t , a l o n g w i t h t h e p r e s e n c e o f

C o n c e n t r a t i o n s o f H2S a n d C02, a l o n g w i t h o r g a n i c s u l f u r 2. O v e r 75 p e r c e n t o f com pounds, v a r y w i d e l y among s o u r g a s e s . t o t a l onshore n a t u r a l gas p r o d u c t i o n and n e a r l y a l l o f o f f s h o r e natural gas production i s c l a s s i f i e d as sweet.26 N a t u r a l g a s may b e c l a s s i f i e d a s w e t g a s o r d r y g a s .

Wet

gas i s unprocessed o r p a r t i a l l y processed-natural gas produced from a r e s e r v o i r t h a t c o n t a i n s condensable hydr oc a r bons. 27 Dry gas i s

1)

n a t u r a l g a s whose w a t e r c o n t e n t h a s b e e n r e d u c e d

through dehydration o r

natural gas t h a t contains

2)

o r no

littl

recoverable l i q u i d hydrocarbons.28

Produced Water

2.3.4

Produced w a t e r i s t h e w at er reco v ered from a p r o d u c t i o n , Produced water i s s e p a r a t e d from t h e e x t r a c t e d

well.29

hydrocarbon streams i n t h e v a r i o u s p r o d u c t i o n p r o c e sse s and operations described in this

2.3.5

chapter.

Other Recovered Hydrocarbons V a r i o u s h y d r o c a r b o n s may b e r e c o v e r e d t h r o u g h t h e p r o c e s s i n g

o f t h e e x t r a c t e d hydrocarbon streams.

m i x e d NGL, n a t u r a l g a s o l i n e ,

petroleum gas

These hydrocarbons

propane,

butane,

include

and l i q u e f i e d

Definitions f or these hydrocarbons can be

LPG) .

found i n Reference 27. 2.3.6

H

P

Constituents

The p r i m a r y i d e n t i f i e d

constituents associated with o i l

H P

and nat ur al gas production f a c i l i t i e s e t h y l benzene, BTEX),

and mixed x y l en es

and n-hexane.30

include benzene,

toluene,

c o l l e c t iv iv e l y r e f e r r e d t o a s

In addition,

r e f e r e n c e h a s b e e n made t o

the presence of 2,2,4-trimethylpentane

iso-octane),

g e n e r a l r e f e r e n c e to the presence of formaldehyde,

along with

acetaldehyde,

and e t h y l e n e g l y c o l i n c e r t a i n p r o c e s s and emission streams a s s o c i a t e d with o i l and n a t u r a l gas production.31

cs 2 ) ,

carbon d isu lfid e

and c a r bonyl s u l f i d e

COS)

Also,

BTEX,

may b e p r e s e n t

2-7

 

in the

tail

g a s s t r e a m s a s s o c i a t e d w i t h amine t r e a · t i n g u n i t s and (SRUs) . 3 2 , 3 3

su lfu r recovery units

Table 2-1

lists

H

P

c o n s t i t u e n t s and c o n c e n t r a t i o n s f o r

e x t r a c t e d s t r e a m s a n d r e c o v e r e d p r o d u c t s f o r t h e two s o u r c e categories. of the

listed

The p r i m a r y s o u r c e s o f d a t a u s e d i n t h e d e v e l o p m e n t H

P

c o n c e n t r a t i o n e s t i m a t e s were

(1)

a summary o f

t h e i n d u s t r y r e s p o n s e s t o t h e EPA s A i r Emissipn Survey Questionnaires,34

(2)

a data base,

p r o v i d e d b y GRI, o f n a t u r a l

g a s a n a l y s e s from v a r i o u s s o u r c e c a t e g o r y o p e r a t i o n s , 3 5 and

(3)

a

d a t a ba se pr ovide d by API.36 2.4 DESCRIPTION OF INDUSTRY COMPONENTS 2.4.1

P r oduc tion Wells

A well,

a s d e f i n e d b y API a n d u s e d i n t h i s BID,

is

h o l e - i n - t h e - g r o u n d d r i l l e d from t h e p o i n t o f e n t r y a t

depth of the hole

surface to

the total

crude o i l ,

condensate,

e a r t h s surface.37

the

the e a r t h s

for the recovery of

and n a t u r a l g as from fo rm atio n s below t h e

The r e c o v e r e d p r o d u c t s a n d e x t r a c t e d s t r e a m s

f r o m p r o d u c t io io n w e l l s a r e n a t u r a l l y o r a r t i f i c i a l l y b r o u g h t t o the

s u r f a c e where t h e hydrocarbon p r o d u c t s

(crude o i l ,

condensate, and n a t u r a l gas) a r e s e p a r a t e d from produced w a t e r and o t h e r i m p u r i t i e s , such as sand. Depending on t h e p r o d u c t i o n and t h e recovery r a t e s f o r crude

c h a r a c te r is tic s of the well,

oil,

condensate, and nat ural gas,

a w e l l may o r may n o t b e p u t

into production. 2.4.1.1

Wellhead Assembly.

s u r f a c e equipment used to co n tr o l maintain production pressure.

the casinghead,

gauges.38

The w e l l h e a d a s s e m b l y i s the production

f:rom a w e l l a n d

The w e l l h e a d a s s e m l , l y c o n s i s t s o f

Christmas t r e e ,

t ubi ng head,

the

and p r e s s u r e

These components a r e d e s c r i b e d below.

The c a s i n g h e a d i s t h e c o l l e c t i o n o f f i t t i n g s

and hold the casing in place. for the tubing.

that

support

The t u b i n g h e a d p r o v i d e s s u p p o r t

The t u b i n g h e a d a l s o s e a l s o f f p r e s s u r e b e t w e e n

the casing and tubing,

and pr ovide s c onne c tions f o r c o n t r o l l i n g

the flow of produced fluids

from t h e w e l l .

The C h r i s t m a s t r e e

2-8

 

TABLE 2 - 1 . AVERAGE HAP COMPOSITION OF EXTRACTED STREAMS AND RECOVERED PRODUCTS HAP c o m p o s i t i o n o f e x t r a c t e d s t r e a m o r r e c o v e r e d p r o d u c t

Natural gas

(ppmv)b,c

HAP

Crude o i l ( W eight )

Benzene

0.25

Condensate ( W eight )

0.99

Produced water ppmw) a 10

Direct

from

Wet

Otherd

88

5

wells

104

is

Toluene

0.48

3.50

6

56

44

6

Ethyl

0.12

0.48

6

6

4

l

0.55

4.90

13

34

20

n-Hexane

1.50

2.80

4

420

410

66

BTEXe

1.40

9.90

35

200

160

13

BTEX a n d n-Hexane

2.90

13.00

39

620

570

79

benzene Mixed xylenes

a -

Pa rt s p e r mi l l i o n weight.

b -

Based on a r e vie w o f t h e d a t a c o l l e c t e d i n t h e EPA s A i r Em issions S u r v e y Q u e s t i o n n a i r e s a n d o t h e r r e f e r e n c e s , t h e HAP c o n t e n t o f t h e primary f r a c t i ona t e d products recovered i n na t ur a l gas p r o ces s in g i n c l u d i n g p r o p a n e , b u t a n e , a n d l i q u i f i e d p e t r o l e u m ga s} operations been i dent i fi ed as i nsi gni fi cant .

c -

P a r t s p e r m i l l i o n volume.

d -

Natural

e -

Benzene,

Note:

T o t a l BTEX a n d BTEX a n d n - h e x a n e v a l u e s h a v e b e e n r o u n d e d .

has

gas p r o ces s ed and s t o r e d a t n a t u r a l gas t r a n s m i s s i o n f a c i l i t i e s and underground s to r ag e f a c i l i t i e s . toluene,

e t h y l benzene,

and mixed x y len es .

2-9

 

th e c o l l e c t i o n o f valves and f i t t i n g s

mounted on t h e c a s i n g h e a d

and t u b i n g he a d t h a t c o n t r o l s t h e flow o f p r o d u c t from t h e w e l l .

P r o d u c t i o n Me th o d s

2.4.1.2

2.4.1.2.1

P r i m a r y Recovery.

Primary recover}r o f

h y d ro carb o n streams and produced w at er from o c c u r s due t o

reservoir.

the natural pressures

A f t e r some p e r i o d ,

a

production well

that exist in a production

the natural

p r

s s u r

~ s

within a

r e s e r v o i r w i l l u s u a l l y d e c l i n e t o a p o i n t where o t h e r seco n d ary o r enhanced r e c o v e r y methods must be employed t o m a i n t a i n a

w e l l s production. Secondary Recovery. 2.4.1.2.2 reservoir is not sufficient

within a

r e c o v e r y methods o r a r t i f i c i a l

pumping u n i t s ,

gas

for production,

o r s u b s u r f a c e p u mp in g )

lift

s u c k e r r o d pumping,

enhanced,

Enhanced)

Tertiary

are applied to

Waterflooding,

pressure

a n d g a s l i f t a r e common m e t h o d s

o f secondary recovery and a r t i f i c i a l

2.4.1.2.3

secondary

such as s u r f a c e

lift methods

increase the y i e l d of recovered product.

maintenance,

natural pressure

When t h e

lift.39 Recovery.

Tertiary,

or

supplement :natural

r e c o v e r y methods a r e used to

r e s e r v o i r f o r c e s when p r i m a r y a n d s e c o n d a r y r e c o v e r y o f t h e

i s no l o n g e r economical.

product

These methods i n c l u d e chemical

and t h e r m a l methods and gas i n j e c t i o n .

Dehydration40,41

2.4.2

As s t a t e d a b o v e ,

once the n a t u r a l gas has been s e p a r a t e d

from l i q u i d m a t e r i a l s and p r o d u c t s ,

residual

entrained water

v a p o r i s removed from t h e n a t u r a l g as s t r e a m by d e h y d r a t i o n i n 1)

order to

meet c o n t r a c t s a l e s

formation,

hydrate

or

specifications,

2)

limit

improve f u e l h e a t i n g v a l u e s .

3)

T he f o r m a t i o n o f h y d r a t e s w i t h i n a n a t u r a l g a s s t r e a m i s

p r o mo ted by n a t u r a l gas a t o r below l i qui d water present. temperature,

dew p o i n t ,

with

Temperatures below the hydrate formation

high velocity or agitation

high operating pressures,

through p i p i n g , o r equipment,

and p res en ce o f

hydrate,

its w a t e r

w at er tha n hydrocarbons)

presence o f

H  s o r

a

small seed c r ys t a l of

w h i c h are· mo re s o l u b l e i n

also influence

the

formation of hydrates

2-10

 

in natural gas pipelines.42

In addition

hydrate

formation i s

m or e o f t e n e n c o u n t e r e d d u r i n g e x t e n d e d p e r i o d s o f c o l d w e a t h e r .

D e h y d r a t i o n o f n a t u r a l g a s may o c c u r s e v e r a l t i m e s p r i o r t o delivery to o

~ u r

3)

the final

include

1)

consumer.

the production well

the natural gas processing plant

underground s torage f a c i l i t i e s stations 7)

L o c a t i o n s w h e r e d e h y d r a t i o n may

6)

5)

site 4)

2)

the tank battery

removal from

trans mis s ion compressor

i n d u s t r i a l and u t i l i t y customer meter s t a t i o n s

and

a t o r a f t e r the transmission to d i st ri b u t i o n custody t r a n s f e r

which i s t h e p o i n t where n a t u r a l gas t y p i c a l l y changes

stations

ownership from

company

t r a n s m i s s i o n com pany t o a d i s t r i b u t i o n

a

fo r d e l i v e ry to the

This f i n a l point o f custody

consumer.

final

typically referred to as the c i t y gate.

transfer is

Prior to the dehydration process in selected cases

f a c i l i t i e s may p r e v e n t h y d r a t e f o r m a t i o n b y i n j e c t i n g e t h y l e n e g ly co l o r methanol i n t o the n a t u ra l gas stream,

heaters

to heat

2.4.2.1

o r using l i n e

the process stream.

The m o s t w i d e l y u s e d n a t u r a l

Glycol Dehydration.

gas dehydration process i s the glycol dehydration process. Glycol d e h y d r a t i o n i s an a b s o r p t i o n p r o c e s s i n which absorbent

a

liquid

a

d i r e c t l y contacts the natural gas stream,

glycol

w h i c h i s c i r c u l a t e d c o u n t e r c u r r e n t t o t h e g l y c o l fl o w ,

absorbs water vapor in

 

c o n t a c t tower o r a b s o r p t i o n column.

which has absorbed w a t e r va por from t h e

The r i c h g l y c o l natural gas stream

a

and

l e a v e s t h e bottom o f t h e a b s o r p t i o n column

and i s d i r e c t e d e i t h e r t o

1)

a

gas condensate glycol s e p a r a t o r

and then a r e b o i l e r o r

GCG s e p a r a t o r o r f l a s h t a n k )

2)

directly

t o a r e b o i l e r where t h e w at er i s b o i l e d o f f o f t h e r i c h g l y c o l .

I f the system includes a flash tank, rich glycol is typically either

system,

2)

used for fuel

or

1) 3)

t h e ga s s e p a r a t e d from t h e recycled to

used as

a

h y d r o c a r b o n s t h a t c o n d e n s e c a n b e rem oved a s

the header

stripping gas. a

Any

separate stream

from t h e g l y c o l . The r e g e n e r a t e d o r l e a n g l y c o l i n t o the abs orption tower.

is recirculated

b y pump,

The v a p o r g e n e r a t e d i n t h e r e b o i l e r

2-11

 

i s directed to the reboiler stack. glycol dehydration unit

2.4.2.2

A flow diagram o f a b as ic

i s p r e s e n t e d i n F i g u r e 2-JL.

Solid Desiccant Dehydration.

dehydration uses adsorption to

rem ove w a t e r .

Solid desiccant

Adsorption r e f e r s

t o t h e s u r f a c e phenom ena i n w h i c h a g a s o r l i q u i d i s a t t r a c t e d t o the surface of a

solid.

S o l i d d e s i c c a n t dehydrat:Lon i s g e n e r a l 1 y

u s e d w hen l a r g e d e w - p o i n t d e p r e s s i o n s a r e r e q u i r e d o r when a n extremely dry gas

i s desired.43

Common s o l i d d e s i c c a n t s u s e d f o r n a t u r a l g a s d e h y d r a t i o n

include s i l i c a - ba s e beads activated alumina silica-gel alumina-gel b a l l s activated bauxite and molecular s i e v e s . 4 4 Desiccant

l i f e ra nge s from one t o f i v e y e a r s b e f o r e t h e d e s i c c a n t

must b e r e p l a c e d . Solid desiccant dehydration requires

tw o o r m ore a d s o r p t i o n

towers f or continuous operation because the s ol i d desiccant within a reached.

t o w e r m u s t b e r e g e n e r a t e d when d e s i c c a n t s a t u r a t i o n i s when o n e t o w e r i s u n d e r g o i n g r e g e n e r a t i o n

Therefore

the other is

switched i n t o operation.

R e g e n e r a t i o n may b e

accomplished by lowering the p r e s s u r e

o r i n c r e a s i n g t h e temperature of the tower o r both. regeneration gas i s

Hot

t y p i c a l l y c i r c u l a t e d through the towers

then cooled through a heat exchanger t h a t

and

condenses w a t e r removed

from t h e tower packing. The condensed w a t e r p ro c e e d s t h ro u g h a s c r u b b e r t o r e c o v e r

hydrocarbons. with the

The r e m a i n i n g g a s s t r e a m i s r e c y c l e d a n d m i x e d

incoming wet n a t u r a l gas stream.45

Tank B a t t e r i e s 4 6 4 7

2.4.3

A t a n k b a t t e r y r e f e r s to the c o l l e c t i o n of proc e ss equipment used to

gas

separate

treat

and produced water.

and s t o r e crude o i l

condensate

natural

from p r o d u c t i o n

The e x t r a c t e d p r o d u c t s

tank b a t t e r y through the production header

wells enter the

which

may c o l l e c t p r o d u c t f r o m many w e l l s .

P r o c e s s e q u i p m e n t a t a t a n k b a t t e r y may i n c l u d e s e p a r a t o r s dehydrators

heater treaters

f r ee water knockouts

FWKOs),

2-12

 

------------,

~

I I I

c

HOT RICH

0

I I

N T A

I

HOT lEAN

c T

RY

Gf\8 T

8AlES

REBOILEA

VENT

M I S S I O N S

gun

COOL RICH Gl. ICOL

1\. I

FLASH TANK

w

I

I I

L WET

Gf\8 IN

~ C O N O E N S I \ l E

-----------I ACCUMULATOR

Glycol

KEY

0

Figure 2 1.

~

G

a

s

Heal Exchanger

Flow Diagram o f Basic Glycol Dehydration Unit

 

barrel separation tanks

custody t ra n sfe r

(LACT)

storage tanks

units.

and l e a s e automatic

Each p i e c e o f e q u i p m e n t i s

addressed below.

2.4.3.1

Separators.

The s e p a r a t i o n o f h y d r o c a r b o n p r o d u c t s

from b a s i c sediment and w a t e r production separators.

sediment

(BS W)

i s accomplished by

Basic sediment r e f e r s to the ga s

sand

and o t h e r i m p u r i t i e s mixed w i t h t h e o i l .

Depending on p r o d u c t c h a r a c t e r i s t i c s

production separators

may b e t w o - p h a s e o r t h r e e - p h a s e s e p a r a t o r s . separate the product stream contains

Two-phas e s e p a r a t o r s

i n t o l i q u i d and g as st reams.

crude o i l and produced water.

The l i q u i d

Three-phase

s e p a r a t o r s s e p a r a t e t h e pr oduc t i n t o crude o i l o r condensate

n a t u r a l g a s and o t h e r g as st reams Multi-well

and produced wat er.

f a c i l i t i e s may a l s o i n c l u d e t e s t s e p a r a t o r s

which operate i n p a r a l l e l to product i on s e p a r a t o r s the production rate

composition

quality

to determine

and p r o d u c t i o n

charact eri st i cs of individua l wells. 2.4.3.2

Dehydration.

The d e h y d r a t i o n p r o c e s s e s t h a t may

o c c u r a t t a n k b a t t e r i e s a r e t h e same a s t h o s e d i s c u s s e d i n d e t a i l i n S e c t i o n 2 . 4 . 2 o f t h i s BID. 2.4.3.3

Heater Treaters.

Heater t r e a t e r s are pressure

v e s s e l s u s e d t o b r e a k t i g h t e m u l s i o n s a n d remove w a t e r a n d g a s e s

from crude o i l .

A h e a t e r t r e a t e r i s a combination o f a h e a t e r

f r e e water knockout

and an o i l and g as s e p a r a t o r

The i n l e t e m u l s i o n e n t e r s t h e h e a t e r t r e a t e r a t t h e t o p

a

which al l ows t h e r e l e a s e o f gas e n t r a i n e d i n the l i q u i d to t r a v e l t o t h e v a p o r s p a c e a t t h e t o p o f t h e column.

The e m u l s i o n f l o w s

t o t h e b o t t o m o f t h e v e s s e l t h r o u g h a downcomer p i p e . a p p l i e d t o t h e emulsion a t the bottom o f the v e s s e l .

Heat i s

Some

f a c i l i t i e s a d d a c h e m i c a l d e m u l s i f i e r t o t h e procE: SS s t r e a m t o assist

in the breaking of emulsions.

2.4.3.4

F r e e Water Knockouts

(FWKOs).

I f l a r g e amounts o f

water are produced with the crude o i l a d d i t i o n a l s e p a r a t i o n may b e a c c o m p l i s h e d b y u s e o f a FWKO. Removing t h e f r e e w a t e r e a r l y

2-14

 

i n t h e s e p a r a t i o n process reduces t h e heating requirements and design throughput WKOs

requirements of the subsequent f i e l d equipment.

may i n c o r p o r a t e t w o - p h a s e

crude o i l / w a t e r / g a s ) applied to the

separation.

liquid/gas}

or three-phase

H e a t o r c h e m i c a l s may b e

incoming stream p r i o r t o t h e

to a s s i s t

WKO

in the

separation process. Gun B a r r e l S e p a r a t i o n T a n k s .

2.4.3.5 tanks,

o r wash t a n k s ,

Gun b a r r e l s e p a r a t i o n

are cylindrical vessels operating a t

atmospheric pressure t h a t separate the production stream emulsion i n t o crude and produced water.

Gun b a r r e l s may b e u s e d f o r

u n s t a b l e e mulsions t h a t w i l l n a t u r a l l y s e p a r a t e due t o g r a v i t y ,

adequate s e t t l i n g time i s provided.

i

St o rag e Tanks and Oth er V e s s e l s .

2.4.3.6 the

separation processes is

or other storage vessels)

Crude o i l from

typically directed to storage tanks

temporary storage.

for

The l a r g e

m a j o r i t y o f s t o r a g e tanks used a t crude o i l production f a c i l i t i e s are fixed-roof

storage

tanks.

the storage tanks used a t

In addition,

t a n k b a t t e r i e s r a n g e i n s i z e f r o m 200

to 1,000 b a rre l capacities.48 tanks

o v e r 95 p e r c e n t o f

Vapor l o s s e s from t h e s t o r a g e

are e i t h e r vented to the atmosphere o r captured by

vapor

recovery device. St orage t anks ar e a l s o used f o r temporary s t o r a g e o f produced water and slop o i l . disposed of

Produced w at er i s t y p i c a l l y where w at er i s i n j e c t e d b a c k i n t o

in injection wells,

the producing

formation f o r enhanced recovery appl i cat i ons ,

t r a n s f e r r e d o f f - s i t e f o r treatment and d i s p o s a l , l i m i t ed cases)

or

in v ery

used for b en ef i ci al purposes.

S l o p o i l i s o i l t h a t does n o t meet q u a l i t y s p e c i f i c a t i o n s .

This o i l i s e i t h e r process o r

2)

1)

r e c y c l e d i n t o t h e s e p a r a t i o n and t r e a t m e n t

s o l d t o an o i l

reclamation f a c i l i t y

for treatment

and r e c o v e r y o f r e s i d u a l crude o i l p r o d u c t . T a n k b a t t e r i e s may h a v e v a r i o u s t y p e s o f s u r f a c e p i t s a n d sumps) l o c a t e d o n - s i t e . im poundm ents These p i t s an d sum ps a r e t y p i c a l l y c l a s s i f i e d a s e m e r g e n c y o r p r o d u c t i o n . Most

2-15

 

p i t s a n d sum ps a r e c l a s s i f i e d a s e m e r g e n c y p i t s / s u m p s a n d a r e only used during process upset

However ,

production p i t s

separation processes a t

situations.49

a n d sumps may a l s o b e u s e d f o r

tank bat t eri es.

M ost o f p r o d u c t i o n

s u r f a c e i m poundm ent s a r e l o c a t e d i n s e l e c t e d h e a v y c r u d e o i l production areas of

2.4.3.7

California.SO

Custody Tra nsfe r.

LACT u n i t

i s usually used to

m e t e r t h e am ount o f c r u d e o i l o r c o n d e n s a t e p r o d u c · e d a t battery.

LACT u n i t

tank

a

i s an automated device t h a t decreases th e

need fo r the presence of personnel to handle the t r a n s f e r of

crude o i l o r condensate.

The u n i t r e c o r d s t h e a m o u n t o f p r o d u c t

Automatic sampling can be

t r a n s f e r r e d and product temperature. i n c o r p o r a t e d i n t o t h e LACT u n i t

to determine product

q u a l i t y . 51, 52,53 Transfer of e x t r a c t e d streams o r recovered products i s

u s u a l l y accomplished i n p i p e l i n e s . involve

loading crude o i l

tank trucks

railcars

l o a d i n g o r submerged

2.4.4

H ow ever,

condensate,

t r a n s f e r may a l s o

o r produced water into

and barges through the use o f s p l a s h ill

techniques.

N a t u r a l Gas P r o c e s s i n g P l a n t s Natural

g as produc e d from t h e w el l i s s e p a r a t e d from

hydrocarbon products

crude o i l and condensate)

b a t t e r i e s and the n t r a n s f e r r e d processing plant.

via pipeline

and

BS W

a t tank

to a natural

gas

Typical p ro ces s es and o p e r a t i o n s a t n a t u r a l

ga s p r o c e s s i n g p l a n t s a r e de sc ribe d below.

Detailed descriptions

o f p r o c e s s e s and o p e r a t i o n s a t n a t u r a l gas proc e ssing p l a n t s a r e presented in References

As s t a t e d a b o v e , processing plant

41 a n d 4 2 .

the primary functions of a natural

1)

include

c onditioning the n a t u r a l gas by

s e p a r a t i o n o f NGL f r o m t h e f i e l d g a s a n d

i n t o s e p a r a t e components.

propane,

butanes

gas

NGL

2)

f r a c t i o n a t i o n o f NGL

may b e f r a c t i o n a t e d i n t o e t h a n e

and n a t u r a l g a s o l i n e produc ts.

These p r o d u c t s

are then transported p r i m a r i l y i n p:j.peline systems, r e f i n e r i e s and o th er p o in ts of t r a n s f e r o r s a le .

to

2-16

 

2.4.4.1

Dehydration.

Generally

na tura l gas i s dehydrated

p r i o r to the other processes a t a natural gas processing p l a n t . The n a t u r a l g a s d e h y d r a t i o n p r o c e s s t h a t may o c c u r a t a n a t u r a l

g a s p r o c e s s i n g p l a n t i s t h e same a s n a t u r a l g a s d e h y d r a t i o n p r o c e s s e s t h a t may o c c u r a t o t h e r l o c a t i o n s . processes are discussed in Section 2.4.2

2.4.4.2

o f t h i s BID.

Sweetening and S u l f u r Recovery P r o c e s s e s .

sour o r acid gases.

As

some p r o d u c t i o n f i e l d s p r o d u c e

st at ed ear l i er in Section 2.3.3

Sour gas i s n a t u r a l gas t h a t c o n t a i n s

t h r e s h o l d c o n c e n t r a t i o n s o f H2 s . corrosive

Dehydration

Hydrogen s u l f i d e i s a t o x i c

s u b s t a n c e w h i c h i s u s u a l l y removed b y s w e e t e n i n g

o p e r a t i o n s t h a t occur immediately a f t e r t h e n a t u r a l gas has been s e p a r a t e d and dehydrat ed.

Acid gases are those t h a t co n tain

t h r e s h o l d c o n c e n t r a t i o n s o f co2   The m o s t w i d e l y u s e d m e t h o d o f s w e e t e n i n g t h e s e g a s e s

amine t r e a t i n g .

is

Amine t r e a t i n g u s e s a n a m i n e / w a t e r s o l u t i o n t o

a n d co 2 f r o m t h e n a t u r a l g a s s t r e a m . The r i c h a m i n e s o l u t i o n i s t h e n r e g e n e r a t e d b y s t e a m s t r i p p i n g t o remove

absorb the

H2 s

the sour gas.

The l e a n amine i s r e c i r c u l a t e d t o t h e a b s o r b e r .

The s y s t e m i s s i m i l a r i n d e s i g n t o a g l y c o l d e h y d r a t i o n u n i t .

N a t u r a l g a s f i e l d s may p r o d u c e enough beneficial to recover sulfur.

H2 s

so t h a t

t

is

S u l f u r r e c o v e r y may b e u s e d a t

n a t u r a l gas p r o c e s s i n g f a c i l i t i e s and o f f s h o r e p r o d u c t i o n platforms. A f t e r t h e H2 s i s removed from t h e n a t u r a l g a s s t r e a m

in the sweetening process

the gas

i s introduced i nt o a S U f or

At th e s u l f u r recovery p l a n t

further processing. t h e H2 s i s

converted to elemental sul fur.

the s u l f u r in

The r e c o v e r e d s u l f u r

Any co2 contained in the gas stream w i l l pass through the S U unaltered

can be e i t h e r so l d commercially o r disposed o f properly. and v e n t e d w i t h t h e t a i l g as.

C o n c e n t r a t e d co2 s t r e a m s from t h e

s w e e t e n i n g p r o c e s s may b e v e n t e d o r f l a r e d t o d e s t r o y a n y re sidua l hydrocarbons. 2.4.4.3 Conditioning Processes. Na tural gas processing p l a n t s may b e c h a r a c t e r i z e d b y t h e t y p e o f c o n d i t i o n i n g p r o c e s s

used a t the p l a n t .

The c o n d i t i o n i n g p r o c e s s e s m o s t o f t e n u s e d

2-17

 

f or separation in natural gas processing plants

cryogenic-expansion

refrigeration

cryogenic-Joule-Thomson

absorption

include

refrigerated absorption adsorption

and compression.

E a c h c o n d i t i o n i n g p r o c e s s r e c o v e r s t h e NGLs f o r f u r t h e r M e t h a n e a n d o t h e r g a s e s a r e rem oved f r o m t h e

treatment.

stream p r i o r to

2.4.4.4

N L

the fractionation process.

Fraction ation.

A f t e r s e p a r a t i n g t h e N L from t h e

t h e N L a re sep arated i n t o i n d i v i d u a l components

field gas

desired products

or

by a process called fractionation.

Fractionation uses the difference in v o l a t i l i t y of the individual

components t o s e p a r a t e t h e mi x t u re. Depending on t h e composition o f th e

N L

mixtu.re

depropanizer

f r a c t i o n a t i o n s y s t e m may i n c l u d e a d e e t h a n i z e r in series.

debutanizer

the

and

T h e s e u n i t s a r e named a c c o r d i n g t o t h e

d e s i r e d p r o d u c t com ing o f f t h e t o p o f e a c h f r a c t i o n a t i o n u n i t .

Primary products include ethane

propane

butane

LPG

m i x e d NGL

and n a t u r a l gasoline. 2.4.4.5

Pro d u ct T r a n s f e r and Metering.

The p r i m a r y m e t h o d

u s e d f o r t r a n s f e r o f g a s e o u s a n d l i q u i d p r o d u c t s f:rom n a t u r a l g a s processing p l a n t s i s by pi pel i nes .

However

loading of condensate o r natural gasoline

railcars

t r a n s f e r may i n c l u d e

into tank trucks

and barges through the use of sp la sh loading o r ill

techniques. submerged The m o s t common d e v i c e u s e d f o r m e a s u r i n g n a 1 : u r a l g a s i s t h e

o r i f i c e meter.

A p r o p e r l y i n s t a l l e d and maintainE:d o r i f i c e me te r

w i l l have an o v e r a l l accuracy o f p l u s o r minus 2 p e r c e n t . 5 4

Offshore Production Platforms55 56

2.4.5

The p r o c e s s e s a n d e q u i p m e n t a t o f f s h o r e p r o d u c t i o n p l a t f o r m s t h a t are used to produce gas

and s e p a r a t e crude o i l

treat

natural

and produced water in offshore areas are b a s i c a l l y i d e n t i c a l

to those a t f a c i l i t i e s operations

except th a t these

located onshore

take place within a

confined space.57

Offshore

p r o d u c t i o n p l a tf tf o r m s a r e c o n s t r u c t e d . j u s t l a r g e e n o u g h t o accom m odate t h e n e c e s s a r y e q u i p m e n t a n d s u p p o r t f a c i l i t i e s

s a f e l y accomplish t h e i r t asks.

to

T h i s i s done b e c a u s e t h e o f f s h o r e 2-18

 

p r o d u c t i o n p l a t f o r m s a r e s u b s t a n t i a l l y more e x p e n s i v e t o

construct than onshore f a c i l i t i e s .

Most o f f s h o r e p r o d u c t i o n

p l a t f o r m s have m u l t i p l e deck a r e a s s t a c k e d on t o p o f each o t h e r

t o i n c r e a s e t h e am ount o f wor k s p a c e . processes and operations

Detailed descriptions

of

a t offshore production platforms are

p r e s e n t e d i n R e f e r e n c e s 47 a n d 5 5 .

O f f s h o r e p r o d u c t i o n p l a t f o r m s may b e b o t t o m s u p p o r t e d , floating

o r semi-submersible structures.

They c a n b e c l a s s i f i e d

as ei t her gathering platforms or central production platforms. Gathering p l a t f o r m s r e c e i v e p r o d u c t i o n from w e l l s p r o d u c t i o n i n t o l i q u i d and gas streams,

streams by p i p e l i n e t o

a

and then t r a n s f e r t h e s e

At c e n t r a l production p latf o r ms

t h e l i q u i d and gas streams undergo t r e a t m e n t storage.

the

c e n t r a l p r o d u c t i o n p l a t f o r m o r an

onshore production f a c i l i t y . sometimes)

separate

separation

and

Gas t r e a t m e n t may i n c l u d e d e h y d r a t i o n p r i o r

to t r a n s f e r to an onshore f a c i l i t y .

Produced w at er t h a t i s reco v ered from t h e p r o d u c t i o n s t r e a m s may b e d i s p o s e d o f o v e r b o a r d

i

it

meets o r i s below c e r t a i n

c r i t e r i a o f t o t a l o i l and grease concentrations. may a l s o b e r e i n j e c t e d i n t o

a

In addition

pr oduc ing zone w i t h i n

a

it

reservoir

f o r p r e s s u r e maintenance and enhanced recovery o p e r a t i o n s . 2.4.6

Compressor S t a t i o n s Compressor s t a t i o n s a r e f a c i l i t i e s t h a t s u p p l y e ne r gy,

t h e form o f i n c r e a s e d p r e s s u r e

in

t o move n a t u r a l g a s i n

t r a n s m i s s i o n p i p e l i n e s o r i n t o u n d e rg ro u n d s t o r a g e . 5 8

Typically

compressor s t a t i o n s a r e l o c a t e d a t i n t e r v a l s along

a

transmission

pi pel i ne t o maintain desired pressure for natural gas tra n sp o rt.

These s t a t i o n s w i l l use e i t h e r l a r g e i n t e r n a l combustion

IC)

e n g i n e s o r g a s t u r b i n e s a s p r i m e m overs t o p r o v i d e t h e n e c e s s a r y horsepower to mai nt ai n system pre ssure . 2.4.7

Underground Storage

Undergrou?d s t o r a g e f a c i l i t i e s

are subsurface f a c i l i t i e s

t h

~

u t i l i z e d for storing natural gas ha s been t r a n s f e r r e d from its o r i g i n a l l o c a t i o n f o r t h e p r i m a r y p u rp o s e o f l o a d b a l a n c i n g . Load b a l a n c i n g i s t h e p r o c e s s o f e q u a l i z i n g t h e r e c e i p t a n d 2-19

 

P r o c e s s e s a n d o p e r a t i o n s t h a t may b e

delivery of natural gas.59

located a t underground storage f a c i l i t i e s limited to,

include,

but

are not

compression and dehydration.

Other Processes and Operations

2.4.8

o p e r a t i o n t h a t may o c c u r t h r o u g h o u t t h e s e s o u r c e

n

categories i s pipeline pigging.

inserting a pig, that

disks

Pipeline pigging involves

w h i c h i s a c y l i n d r i c a l d e v i c e made w i t h p l i a b l e

the i n t e r n a l diameter of a pipeline ,

it

p i p e l i n e f o r the purpose of cleaning the l i n e .

moves t h e p i g t h r o u g h t h e l i n e . liquids,

such as condensate,

p i p e l i n e flow,

thus,

into a

Pipeline pressure

Water vapor and hydrocarbon

may c o n d e n s e a n d r e s t r i c t o r b l o c k

leading to the necessity of pigging.

As t h e p i g a p p r o a c h e s t h e r e c e i v i n g s t a t i o n o f a p i p e l i n e , collected fluids

including hydrocarbon liquids)

sump o r o t h e r s t o r a g e v e s s e l t h a t slug catcher.60

are drained to a

is usually referred to as a

P i g g i n g o f p i p e l i n e s i s a common p r a c t i c e f o r

p i p e l i n e s from o f f s h o r e p r o d u c t i o n p l a t f o r m s be c a use o f t h e low

seabed t em p erat u res en co u n tered by t h e o f f s h o r e p i p e l i n e s , causes

which

Pigging of pi pel i nes a t onshore

l i q u i d s t o condense.

f a c i l i t i e s may b e u t i l i z e d d u r i n g s e a s o n s w i t h lm• rer a m b i e n t temperatures,

2.5

2.5.1

H

such a s f a l l and w i n t e r .

P

EMISSION POINTS

H

P

Emission P oi nt s

The t h r e e i d e n t i f i e d

associated with o i l

H

P

e m i s s i o n p o i n t s t h a t may b e

and na t ura l gas production and na t ura l gas

t r a n sm i ssi o n and storage

vessels,

and

(3)

include

(1)

equipment l e a k s .

process vents,

process unit

Process Vents.

storage

Table 2-2 p r e s e n t s t h e b a s i c

f a c i l i t i e s d e s c r i b e d above along w i t h t h e i d e n t i f i e d points. 2.5.1.1

(2)

A process vent

H

P

emission

i s a v e n t from a

t h a t di s charges a gas stream i n t o th e atmosphere

during operation.

Gas s t r e a m s f r o m p r o c e s s v e n t s may b e

d i s c h a r g e d d i r e c t l y t o t h e atmosphere o r dischargred t h r o u g h a product recovery device.

2-20

 

T

BLE 2 2 . B SIC F CILITY TYPES ND SSOCI TED H P EMISSION POINTS

Facility type

H

P

emission points

Stand alone glycol dehydration uni t

Glycol dehydration u n i t r e b o i l e r v e n t and f l a s h t a n k v e n t

Condensate tan k b a t t e r y

Glycol de hydr a tion u n i t r e b o i l e r v e n t and f l a s h t a n k v e n t

Storage

Natural gas proces s ing p la n t

v ~ s s

l s

Glycol d eh y d r atio n u n i t r e b o i l e r v en t and f l a s h t a n k v e n t

Storage vessels Equipment l e a k s

Offshore production platform in State waters

Glycol d eh y d r atio n u n i t r e b o i l e r ve nt and f la s h tan k v en t

gas t r a n s m i s s i o n and underground storage

Glycol d eh y d r atio n u n i t r e b o i l e r v en t and f l a s h tan k v e n t

Natural

2 21

 

The g l y c o l d e h y d r a t i o n u n i t r e b o i l e r v e n t i s a s o u r c e o f H P g l y c o l no1: o n l y a b s o r b s

In the glycol contact tower,

emissions.

water but a l s o absorbs sel ect ed hydrocarbons,

n-hexane.

i n c l

BTEX a n d

~ d i n g

The w a t e r a n d h y d r o c a r b o n s a r e b o i l e d - o : E f i n t h e unless a control device is present,

r e b o i l e r and,

· ~ e n t e d

to the

atmosphere. The

GCG

separator or flash tank i s also a potential H P

process vent emission point.

glycol dehydration unit

H

P

includes a

emissions w i l l occur

the

i

f l a s h tank in the system

des i gn and any s e p a r a t e d ga se s a r e vent ed to t h e atmosphere,

instead of being e i t h e r

used for fuel,

or

recycl ed to t h e h ead er system,

1)

2)

used as a s t r i p p i n g gas.

3)

A process vent associated with nat ural gas sweetening operations is

the acid gas vent.

T h i s s t r e a m may c o n t a i n h i g h

c o n c e n t r a t i o n s o f hydrogen s u l f i d e and carbon d i o x i d e .

addition,

BTEX,

cs 2 ,

high concentrations

and

COS

may b e p r e s e n t i n t h i s

o f H2 s a r e p r e s e n t ,

In

stream.

If

a sulfur recovery plant

i s i n s t a l l e d to produce elemental sulfur.

Otherwise,

the

stream

is flared. R e c e n t r e s e a r c h c o n d u c t e d b y GRI i n d i c a t e s t h e p o t e n t i a l f o r significant H P emissions

sweetening processes.61,62

p r i m a r i l y BTEX

The EPA i s

from arrtine-based g as

conducting followup to

t h i s r esear ch in an e f f o r t to determine emission l e v e l s of t h i s p o t e n t i a l H P process vent emission point. 2.5.1.2

Storage

Crude o i l and co n d en s ate a r e

Vessels.

typically stored in fixed-roof

r e s u l t o f working,

breathing,

storage

Emissions are a

tanks.

and f l a s h l o s s e s .

Working l o s s e s o c c u r due t o t h e emptying and f i l l i n g o f storage tanks.

Breathing losses

are the release of gas

associated with daily temperature fluctuations

and ot he r

equilibrium effects. F l a s h l o s s e s o c c u r when a

liquid with entrained gases is h i g h e ~

pressure to a vessel with t r a n s f e r r e d from a v e s s e l w i t h lower pressure, thus allowing entrained gases o r a por t i on of the

liquid to vaporize o r flash.

In the o i l

and na t ura l gas

2-22

 

production source category,

f l a s h i n g o c c u r s when l i v e c r u d e o i l s

o r c o n d e n s a t e s flow i n t o a s t o r a g e t a n k from a p r o c e s s i n g v e s s e l

a higher pressure.

operated ~

pressure drop,

Typically,

the larger the

t h e more f l a s h i n g e m i s s i o n s w i l l o c c u r i n t h e

storage stage.63

T e m p e r a t u r e o f t h e l i q u i d may a l s o i n f l u e n c e

t h e amount o f f l a s h em i s s i ons .

In addition,

liquids,

HAP e m i s s i o n s may o c c u r when h y d r o c a r b o n

c o l l e c t e d by sl u g catchers64

cleaning) vessels.65

operations,

during p i p e l i n e pigging

are transferred to storage tanks o r other

HAP e m i s s i o n s may o c c u r w i t h t h e f l a s h i n g o f t h e s e

h y d ro carb o n l i q u i d s due t o a r e d u c t i o n i n p r e s s u r e a s c o l l e c t e d fluids

a r e d r a i n e d t o a sump o r o t h e r s t o r a g e v e s s e l .

2.5.1.3 fugitive Equipment Leaks. Equipment l e a k s a r e e m i s s i o n s e m a n a t i n g f r o m v a l v e s , pump s e a l s ,

emissions) flanges,

lines,

compressor s e a l s ,

pressure

open-ended

r e l i e f valves,

and o t h e r p r o c e s s and o p e r a t i o n components.

The amount o f

HAP e m i s s i o n s f r o m e q u i p m e n t l e a k s i s p r o p o r t i o n a l

t y p e a n d number o f e q u i p m e n t c o m p o n e n t s a n d o f HAP c o n s t i t u e n t s

2)

to

the

1)

the

concentration

o f th e stream i n th e components.

Since tank b a t t e r i e s are usual l y small f a c i l i t i e s as compared w i t h o t h e r i n d u s t r i a l o p e r a t i o n s ,

they are generally

c h a r a c t e r i z e d b y a s m a l l e r number o f c o m p o n e n t s .

Natural gas

pr.ocessing p l a n t s , e s p e c i a l l y t hos e us i ng r e f r i g e r a t e d a b s o r p t i o n , t e n d t o h a v e a l a r g e number o f c o m p o n e n t s .

BASELINE EMISSION ESTIMATES

2.6

B a sic Methodology

2.6.1

Based on a v a i l a b l e information, HAP, v o l a t i l e o r g a n i c compound

VOC),

e s t i m a t e s were d ev elo p ed f o r

and methane66 emissions

f r o m i d e n t i f i e d HAP e m i s s i o n p o i n t s i n t h e o i l a n d n a t u r a l g a s p r o d u ctio n and n a t u r a l gas tr an smissio n and st ora ge

categories.

source

Estimates of emissions before the implementation o f

a nat i onal emissions standard for hazardous a i r p o l l u t a n t s are referred to as baseline.emission estimates.

NESHAP)

T a b l e 2 - 3 p r e s e n t s b a s e l i n e HAP, VOC

and methane n a t i o n a l

emission e s t i m a t e s f o r each f a c i l i t y t y p e i n t h e o i l and n a t u r a l 2-23

 

BASELINE NATIONAL EMISSION S T I ~ ~ T S ALL IDENTIFIED HAP EMISSION SOURCES I N THE

TABLE 2 - 3 .

FOR

OIL AND NATURAL GAS PRODUCTION SOURCE CATH:GORY MAJOR AND AREA HAP SOURCES) B a s e l i n e e m i ssi o n e s t i m a t e s

Megagrams p e r y e a r

Facility type

voc

Methane

55,000

130,000

16,000

6,300

20,000

11,000

N a t u r a l gas processing plantsb

3,200

10,000

7,000

Total

65,000

160,000

34,000

H

G ly co l dehydration

P

unitsa

 

Storage tanks a t c o n d e n sa t e t a n k batteries

a -

I n c l u d e s e s t i m a t e d em is s io n s from a l l g l y c o l d e h y d r a t i o n u n i t s i n c l u d i n g s t a n d a l o n e u n i t s and t h o s e l o c a t e d a t co n d en s ate t a n k batteries n a t u r a l gas p r o c e s s i n g p l a n t s , and o f f s h o r e p r o d u c t i o n p l a t f o r m s i n S t a t e w a te r s . Does n o t i n c l u d e t h o s e uni1:s i n t h e n a t u r a l g a s t r a n s m i s s i o n and s t o r a g e s o u r ce c a t e g o r y .

b -

Only i n c l u d e s em is s io n s from s t o r a g e t a n k s and equipment l e a k s .

~

Numbers may v a r y due t o r o u n d in g .

2-24

 

gas production source category.

These

e s t i m

are based on

t ~ s

m odel p l a n t p a r a m e t e r s t h a t h a v e b e e n d e v e l o p e d f o r t h e v a r i o u s types of

f a c i l i t i e s in t h i s source category

t h i s BID).

see Chapter 4.0 o f

Ta ble s 2-4 and 2-5 p r e s e n t a breakdown o f t h e s e

e m i s s i o n s b a s e d o n p o t e n t i a l m a j o r v e r s u s a r e a s o u r c e HAP emission designations f o r the o i l and

n

t u r

~

gas production

source category. T a b l e 2 - 6 p r e s e n t s b a s e l i n e HAP

VOC

and methane n a t i o n a l

emission estimates for each basic f a c i l i t y type in the n a t u r a l gas t r a n s m i s s i o n and s t o r a g e source c a t e g o r y .

These e s t i m a t e s

a r e b a s e d o n m odel TEG d e h y d r a t i o n u n i t p a r a m e t e r s

t h a t have been

developed for various f a c i l i t y types in t h i s source category

see

C ha pte r 4 . 0 o f t h i s BID). Tables 2-7 and 2-8 p r e s e n t a breakdown o f t h e s e emi s s i o n s ba se d on p o t e n t i a l major v e r s u s a r e a s o u r c e HAP e m i s s i o n d e s i g n a t i o n s

for the nat ur al gas tr a n sm issio n and

storage source category.

T h e s e e s t i m a t e s w e r e d e v e l o p e d u s i n g a m odel p l a n t a p p r o a c h . In t h i s

approach,

e m i s s i o n s w e r e f i r s t e s t i m a t e d f o r m odel p l a n t s

s e l e c t e d t o charac.terize th e range o f f a c i l i t i e s categories.

in the source

N a t i o n a l e s t i m a t e s were developed by e x t r a p o l a t i n g

f r o m m odel p l a n t e s t i m a t e s .

The m e t h o d o l o g y f o r d e v e l o p i n g

nationwide emission estimates i s further described in Chapter 5.0 a n d A p p e n d i x B o f t h i s BID. F a c i l i t y Emission Estimates 2.6.2

For glycol dehydration u n i t s g e n e r a t e d f r o m GRI-GLYCalc

emissions are based on r e s u l t s

Version 3.0) .67

This is a personal

c o m p u t e r - b a s e d s c r e e n i n g p r o g r a m d e v e l o p e d b y GRI f o r e v a l u a t i n g HAP a n d VOC e m i s s i o n s f r o m TEG a n d EG d e h y d r a t i o n u n i t s . VOC e m i s s i o n s f r o m p r o d u c t i o n s t o r a g e t a n k s h a v e b e e n e v a l u a t e d p r e v i o u sl y and t h e se f a c t o r s have been a p p l i e d t o t h e estimated populations of these tanks

in these source categories

a n d u s e d a s t h e b a s i s f o r e s t i m a t i n g HAP a n d m e t h a n e e m i s s i o n s from s t o r a g e t a n k s . 6 8

Fugitive emissions

from components a r e

2-25

 

T

BASELINE NATIONAL EMISSION ESTIMATES FOR IDENTIFIED M JOR H P EMISSION SOURCES IN THE OIL ND N TUR L G S PRODUCTION SOURCE C TEGORY

BLE

2-4.

B a s e l i n e e m i ssi o n e s t i m a t e s Facility type

G ly co l dehydration

Megagrams p e r y e a r

H P

voc

Methane

36,000

85,000

6,200

1,800

5,900

3,200

770

2,500

1,800

39,000

94,000

11,000

unitsa

Storage tanks a t c o n d e n sa t e t a n k batteries

N a t u r a l g as processing plantsb

11

Total

a -

I n c l u d e s e s t i m a t e d em is s io n s from a l l g l y c o l dehydrat.ion u n i t s i n c l u d i n g s t a n d a l o n e u n i t s and t h o s e l o c a t e d a t co n d en s ate t a n k batteries n a t u r a l g as p r o c e s s i n g p l a n t s , and o f f s h o r e p r o d u c t i o n p l a t f o r m s i n S t a t e w a t e r s d e s i g n a t e d a s o r l o c a t e d at: major s o u r c e s o f H P emissions. Does n o t i n c l u d e t h o s e u n i t s i n t h e n a t u r a l gas t r a n s m i s s i o n and s t o r a g e so u r c e c a t e g o r y .

b -

Only i n c l u d e s em is s io n s from s t o r a g e t a n k s and equipment l e a k s .

~

Numbers may v a r y due t o r o u n d in g .

2-26

 

T

BLE

2-5.

BASELINE NATIONAL EMISSION ESTIMATES

IDENTIFIED RE H P EMISSION SOURCES I N THE OIL ND N TUR L G S PRODUCTION SOURCE C TEGORY

F a c i l i t y type

Baseline emission estimates

Megagrams p e r y e a r )

voc

M e t ha ne

19,000

43,000

9,600

4,500

14,0.00

8,100

2,400

7,800

5,000

26,000

65,000

23,000

H

Glycol

FOR

P

dehydration unitsa

Storage tanks a t condensate tank

batteries Natural gas processing plantsb

Total

a

I n c l u d e s e s t i m a t e d e m i s s i o n s from a l l g l y c o l d e h y d r a t i o n u n i t s i n c l u d i n g s t a n d a l o n e u n i t s and th o s e l o c a t e d a t co n d en s at e tan k

n a tu ra l gas processing p la n ts and o f f sh o r e p r o d u c t i o n platforms in S ta te waters t hat a r e not designated as p o t e n t i a l major sources of H P emissions. Does n o t i n c l u d e t h o s e u n i t s i n t h e n a t u r a l gas t r a n s m i s s i o n and s to r ag e s o u rce categ o r y .

batteries

b

O n l y i n c l u d e s e m i s s i o n s from s t o r a g e t a n k s a n d e q u i p m e n t l e a k s .

N o t e : Numbers may v a r y d u e t o r o u n d i n g .

2-27

 

TABLE 2 - 6 . BASELINE NATIONAL EMISSION S T I ~ ~ T S FOR ALL IDENTIFIED HAP EMISSION SOURCES IN THE NATURAL GAS TRANSMISSION AND STORAGE SOURCE CATEGORY MAJOR AND AREA HAP SOURCES) B a s e l i n e em i ssi o n e s t i m a t e s

Megagr.ams p e r y ear

acility type

 

G l yc ol d e h y d ra tio n

HAP

voc

Methane

320

4,200

170

unitsa -

a -

~

I n c l u d e s e s t i m a t e d e m i s s i ons from a l l g l y c o l d eh y d r at i o n u n i t s i n t h e n a t u r a l ga s t r a n s m i s s i o n and s t o r a g e so u r ce c a te g o ry .

Numbers may v a r y due t o r oundi ng.

2-28

 

T

BLE

2-7.

BASELINE N TION L

EMISSION ESTIMATES

IDENTIFIED M JOR H P EMISSION SOURCES I N THE

N TUR L

G S

TRANSMISSION

ND

STOR

GE

aseline emission estimates

SOURCE

FOR

C TEGORY

Megagrams p e r y e a r )

F a c i l i t y type

Glycol

H P

voc

M e t ha ne

120

1,500

59

dehydration unitsa

a

Includes es tim ated emissions from a l l g l y c o l de hydr a tion u n i t s i n t h e n a t u r a l gas t r a n s m i s s i o n and st o r a g e s o u rce categ o r y d es ig n ated as o r

l o c a t e d a t major sources of H P emissions.

~

Numbers may v a r y d u e t o r o u n d i n g .

2-29

 

TABLE 2 8 .

BASELINE NATIONAL EMISSION ESTIMATES FOR IDENTIFIED AREA HAP EMISSION SOURCES IN THE NATURAL GAS TRANSMISSION AND STORAGE SOURCE CATEGORY  

Facility type

Ba s e lin e e m i s s i on e s t i m a t e s H

Gl yc ol dehydration

P

200

Megagrc:Lms p e r y ear

voc

Methane

2,700

110

unitsa

a

~

I n c l u d e s e s t i m a t e d e m i s s i ons from a l l g l y c o l d e h y d r t i • ~ n u n i t s i n t h e n a t u r a l ga s t r a n s m i s s i o n and s t o r a g e s our c e c a t e g o r y t h a t a r e n o t d e s i g n a t e d a s p o t e n t i a l major s o u r ces o f HAP em i s s i o n s .

Numbers may v a r y due t o r oundi ng.

2-30

 

based on

1)

s t a n d a r d equipment l e a k e m i s s i o n f a c t o r s 6 9

and

2)

e s t i m a t e d com ponent c o u n t d i s t r i b u t i o n s . HAP

emissions associated with pipeline pigging operations

were n o t e s t i m a t e d due t o t h e l a c k o f d a t a on

procedure occurs in t h i s industry and

1)

how o f t e n t h i s

the quantity of

2)

hydrocarbons t r a n s f e r r e d from s l u g r e c e i v e r s t o f i x e d - r o o f storage tanks or other storage vessels.

p i p e l i n e p i g g i n g w i l l o c c u r more o f t e n o p er atio n s and

2)

As s t a t e d e a r l i e r 1)

a t offshore production·

d u r i n g t h e w i n t e r months.

2.7

REFERENCES

1.

U.S. Environmental P r o t e c t i o n Agency. Documentation f o r Developing the I n i t i a l Source Category L i s t EPA 4 5 0 / 3 - 9 1 0 3 0 ) . R e s e a r c h T r i a n g l e P a r k , NC. J a n u a r y 1 9 9 2 .

2.

World O i l . TX.

3.

Reference 2.

4.

G as R e s e a r c h I n s t i t u t e . N a t u r a l Gas D e h y d r a t i o n : Trends. F inal Report GRI-94/0099). Chicago, IL.

F e b r u a r y 1 9 9 3 . G u l f P u b l i s h i n g Company, H o u s t o n ,

1994.

5.

6.

Status and

January

Memorandum f r o m A k i n , T . to Smith, M.E., EC/R I n c o r p o r a t e d EPA/CPB. J u l y 3 0 , 1 9 9 3 . R e v i s e d p r e l i m i n a r y e s t i m a t e o f t h e num ber a n d s i z e r a n g e s o f t a n k b a t t e r i e s o n a n a t i o n a l basis. Memorandum f r o m V i c o n o v i c , G . , EC/R I n c o r p o r a t e d to Smith, EPA/CPB. A p r i l 8 1 9 9 3 . Summary o f m e e t i n g w i t h t h e

M.E.,

 

G as R e s e a r c h I n s t i t u t e .

7.

Gruy E n g i n e e r i n g C o r p o r a t i o n . E s t i m a t e s o f RCRA R e a u t h o r i z a t i o n Economic I m p a c t s o n t h e P e t r o l e u m E x t r a c t i o n Industry. Dallas TX. J u l y 20, 1 9 9 1 .

8.

E n t r o p y L i m i t e d . Aboveground S t o r a g e Tank S u r v e y . L i n c o l n , MA A p r i l 1989.

9.

Reference 5.

10.

Memorandum f r o m A k i n , T . a n d G. V i c o n o v i c , EC/R Incorporated t o S m i t h , M.E., EPA/CPB. A p r i l 2 1 , 1 9 9 3 . Summary o f t h e o i l a n d n a t u r a l . g a s p r o d u c t i o n r o u n d t a b l e

workshop.

2-31

 

11.

O i l a n d G as J o u r n a l . Company, T u l s a , OK.

12.

U.S.

J u l y 12,

1993.

PennWell P u b l i s h i n g

D e p a r t m e n t o f t h e I n t e r i o r / M i n e r a l s Management S e r v i c e . F e d e r a l O f f s h o r e S t a t i s t i c s : 1993 OCS R e p o r t MMS 9 4 - 0 0 6 0 ) .

H e r n d o n , VA. 1 9 9 4 .

13.

U . S . E n v i r o n m e n t a l P r o t e c t i o n Agency. R e g u l a t o r y I m p a c t A n a l y s i s and R e g u l a t o r y F l e x i b i l i t y Act Screening f o r Outer Con tine nta l She lf A ir Regulations. Research Tria ngle Park, NC. A p r i l 1 9 9 2 .

14.

U . S . E n v i r o n m e n t a l P r o t e c t i o n A g e n c y / O f f i c e o f Wa t e r . D e v e l o p m e n t Document f o r E f f l u e n t L i m i t a t i o n s G u i d e l i n e s a n d New S o u r c e P e r f o r m a n c e S t a n d a r d s f o r t h e O f f s h o r e S u b c a t e g o r y o f t h e O i l a n d Gas E x t r a c t i o n P o i n t S o u r c e C a t e g o r y : F i n a l EPA 8 2 1 - R - 9 3 - 0 0 3 ) . W a s h i n g t o n , DC. J a n u a r y 1993.

15.

Gas R e s e a r c h I n s t i t u t e . P r e l i m i n a r y A s s e s s m e n t o f A i r T o x i c E m i s s i o n s i n t h e N a t u r a l Gas I n d u s t r y : P h a s e I GRI-940268). Chicago, IL. A p r i l 1994.

16.

Gas R e s e a r c h I n s t i t u t e . The V i t a l Li n k : Moving N a t u r a l Gas f r o m We l l h e a d t o B u r n e r T i p . C h i c a g o , I L . F a l l 1990 GRID Reprint) .

17.

A m e r i c a n Gas A s s o c i a t i o n . S u r v e y o f U n d e r g r o u n d Gas S t o r a g e F a c i l i t i e s i n t h e U n i t e d S t a t e s a n d C a n a d a . C a t a l o g No. XU9307. A r l i n g t o n , VA. 1 9 9 3 .

18.

U.S. Department o f Energy/Energy In fo rmat i o n A d m i n i s t r a t i o n . N a t u r a l Gas A n n u a l 1990, Volume 1 DOE/EIA-0131 90)/1). Wa s h i n g t o n ,

DC. December 1 9 9 1 .

19.

S p e i g h t , J . G . The C h e m i s t r y a n d T e c h n o l o g y oJ: P e t r o l e u m S e c o n d E d i t i o n , R e v i s e d a n d E x p a n d e d ) . New York, NY, M a r c e l Dekker, I n c o r p o r a t e d . 1991.

20.

E n v i r o n m e n t a l P r o t e c t i o n Agency. O i l F i e l d E m i s s i o n s o f V o l a t i l e O r g a n i c Compounds EPA 4 5 0 / 2 - 8 9 - 0 0 7 ) . R e s e a r c h T r i a n g l e P a r k , NC. A p r i l 1 9 8 9 .

21.

Langenkam p,

22.

Reference 21.

23.

Reference 21.

U.S.

The I l l u s t r a t e d P e t r o l e u m R e f e r e n c e T h i r d E d i t i o n ) . T u l s a , OK, PennWell P u b l i s h i n g

R.

Dictionary Company. 1 9 8 5 .

ed.).

2-32

 

24.

American Petro leu m I n s t i t u t e . Gl o s s ary o f O i l f i e l d P r o d u c t i o n Terminology F i r s t E d i t i o n ) . Wa s h i n g t o n , J a n u a r y 1, 1988.

25.

McCai n,

26.

U . S . E n v i r o n m e n t a l P r o t e c t i o n A g e n c y . so 2 E m i s s i o n s i n N a t u r a l Gas P r o d u c t i o n I n d u s t r y - B a c k g r o u n d I n f o r m a t i o n f o r P r o p o s e d S t a n d a r d s EPA 4 5 0 / 3 - 8 2 - 0 2 3 a ) . R e s e a r c h T r i a n g l e P a r k , NC. N ovem ber 1 9 8 3 .

27.

A m e r i c a n Gas A s s o c i a t i o n .

28.

Reference 27.

29 .

R. J.P. Ray·, d. ) . Produced Water: n egnetlahla r Idsts. u e e T e c h n o l o g,i c aan l /dE nFv. i r o nEm s a n d S o l u t i o n s . New Y o r k , NY Plenum P r e s s . 1 9 9 0 .

30.

Gas R e s e a r c h I n s t i t u t e . P r o c e e d i n g s o f t h e 1992 Gas R e s e a r c h I n s t i t u t e Glycol Dehydrator Air Emissions Conference. Chicago, IL. September 1992.

31.

O i l a n d Gas J o u r n a l . May 1 7 , Company, T u l s a , OK.

32. 33.

DC.

W.D. Heavy Com ponent s C o n t r o l R e s e r v o i r F l u i d Behavior. J o u r n a l o f Petroleum Technology (Richardson, September 1994.

TX) .

G l o s s a r y f o r t h e Gas I n d u s t r y F i f t h E d i t i o n ) . A r l i n g t o n , VA. 1 9 9 0 .

Kohl,

A.L.

Edition).

1993.

PennWell P u b l i s h i n g

a n d F . C . R i e s e n f e l d . Gas P u r i f i c a t i o n ( T h i r d H o u s t o n , TX, G u l f P u b l i s h i n g Company. 1 9 8 7 .

A m e r i c a n P e t r o l e u m I n s t i t u t e . Review o f A i r T o x i c s E m i s s i o n s C a l c u l a t i o n s from S to r a g e Tanks (Phase I) and A i r Toxic E m i s s i o n s C a l c u l a t i o n V a l i d a ttii o n P r o g r a m : A n a l y s i s o f C r u d e

O i l . a n d R e f i n e d P r o d u c t Sam ples a n d C o m p a r i s o n o f V a p o r C o n c e n t r a t i o n t o Model P r e d i c t i o n s ( P h a s e I I ) (API P u b l i c a t i o n 2 5 2 5 ) . W a s h i n g t o n , DC. Decem ber 1 9 9 2 . 34.

R e s p o n s e s t o t h e U.S. E n v i r o n m e n t a l P r o t e c t i o n A g e n c y s A i r E m i s s i o n s S u r v e y Q u e s t i o n n a i r e s f o r t h e O i l a n d N a t u r a l Gas P r o d u c t i o n S o u r c e C a t e g o r y EPA A i r D o c k e t A - 9 4 - 0 4 , I t e m s II-D -1 t h ro u g h I I - D - 2 5 ) . 1993.

35.

L e t t e r a n d a t t a c h m e n t f r o m E v a n s , J . M . , Gas R e s e a r c h I n s t i t u t e , t o V i c o n o v i c , G . , EC/R I n c o r p o r a t e d . A p r i l 1 9 , 1 9 9 5 . N a t u r a l g a s BTEX c o n t e n t .

36.

American Petroleum I n s t i t u t e . Trieth y len e Glycol Dehydrator O p e r a t i n g P a r a m e t e r s f o r E s t i m a t i n g BTEX E m i s s i o n s P r e p u b l i c a t i o n D r a f t ) . W a s h i n g t o n , DC. F e b r u a r y 1 9 9 6 . 2-33

 

37.

Reference 24.

38.

Reference 24.

39.

American Petroleum I n s t i t u t e . I n t r o d u c t i o n to Oil P r o d u c t i o n F o u r t h E d i t i o n . W a s h i n g t o n , DC. 1983 R e a f f i r m e d , May 1988) .

40.

H o w e l l T r a i n i n g Company. G l y c o l D e h y d r a t i o n . A m e r i c a n P e t r o l e u m I n s t i t u t e PROFIT S e r i e s . D e v e l o p e d a n d d i s t r i b u t e d f o r A m e r i c a n P e t r o l e u m I n s t i t u t e . H o u s t o n , TX. 1 9 8 7 .

41.

Gas P r o c e s s o r s S u p p l i e r s A s s o c i a t i o n i n c o o p e r a t i o n w i t h t h e Gas P r o c e s s o r s A s s o c i a t i o n . E n g i n e e r i n g D a t a :Book .- Vol um es I and I I R e v i s e d T e n t h E d i t i o n . T u l s a , OK 1 9 9 4 .

42.

Ik o k u , C.U. N a t u r a l Gas P r o d u c t i o n E n g i n e e r i n g . New Y o r k , NY, J o h n W i l e y Sons. 1984.

43.

Reference 32.

44.

Reference 32.

45.

The U n i v e r s i t y o f Texas a t A u s t i n , Petro leu m Exte nsion S e r v i c e . F i e l d H a n d l i n g o f N a t u r a l Gas Third Ed i t i o n . A u s t i n , TX. 1 9 7 7 .

46.

Arnold,

47.

B r a d l e y , H.R. P e t r o l e u m E n g i n e e r i n g Handbook. R i c h a r d s o n , TX, S o c i e t y o f P e t r o l e u m E n g i n e e r s . 1 9 8 7 .

K. a n d M Volume 1 - D e s i g n Volume 2 - D e s i g n H o u s t o n , TX, G u l f

Gas

Stewart. Surface Production Operations. o f O il- H a ndling Systems and F a c i l i t i e s and o f Gas-Handling Systems and F a c i l i t i e s . P u b l i s h i n g Company. 1 9 8 6 .

48.

U . S . E n v i r o n m e n t a l P r o t e c t i o n Agency. Ev a l u a t . i o n o f Em is s io n s from Onshore D r i l l i n g , Producing, and S t o r i n g o f O i l a n d Gas (EPA 4 5 0 / 3 - 7 8 - 0 4 7 ) . R e s e a r c h T r i a n g l e P a r k , NC. August 1978.

49.

American Petroleum I n s t i t u t e . Environmental Guidance Docum ent. O n s h o r e S o l i d Waste Management i n B x p l o r a t i o n a n d P r o d u c t i o n O p e r a t i o n s . W a s h i n g t o n , DC. J a n u a r y 1 5 , 1 9 8 9 .

50.

C a l i f o r n i a A ir Resources Boa rd/Sta tiona ry Source D ivis ion. T e c h n i c a l S u p p o r t Document f o r S u g g e s t e d Cont:rol M e a s u r e f o r t h e C o n t r o l o f O r g a n i c Compound E m i s s i o n s frQm Sumps u s e d i n O i l P r o d u c t i o n O p e r a t i o n s . S a c r a m e n t o , CA. A u g u s t 1 1 , 1 9 8 8 .

51.

Reference 24.

52.

Reference 47. 2-34

 

53.

Standards o f Performance f o r V o l a t i l e Organic Liquid Storage Vessels including Petroleum Liquid Storage Vessels) f o r Which C o n s t r u c t i o n , R e c o n s t r u c t i o n , o r M o d i f i c a t i o n Commenced a f t e r J u l y 2 3 , 1 9 8 4 . Code o f F e d e r a l R e g u l a t i o n s , T i t l e 4 0 , P a r t 6 0 , S u b p a r t Kb. A p r i l 8 , 1 9 8 7 . U . S . Governm ent P r i n t i n g O f f i c e , Wa s h i n g t o n , DC.

54.

Reference 41.

55.

Petroleum Extension Service. A Primer o f Offshore Operations Second E d i t i o n . A u s t i n , TX. 1985.

56.

Reference 47.

57.

Reference 39.

58.

Reference 27.

59.

Reference 27.

60.

Reference 21.

61.

Gas R e s e a r c h I n s t i t u t e . TEX a n d O t h e r VOC E m i s s i o n s f r o m a N a t u r a l Gas Amine T r e a t e r G R I - 9 6 / 0 0 4 8 ) . C h i c a g o , I L . F e br ua r y 1996.

62.

Gas R e s e a r c h I n s t i t u t e . Amine- Based Gas S w e e t e n i n g a n d S u l f u r Recovery Pro ces s Chemistry and Waste S t re a m S u rv e y G R I - 9 5 / 0 1 8 7 ) . C h i c a g o , IL. Decem ber 1 9 9 5 .

63.

C a n a d i a n P e t r o l e u m A s s o c i a t i o n . A D e t a i l e d I n v e n t o r y o f CH 4 a n d VOC E m i s s i o n s From U p s t r e a m O i l a n d Gas O p e r a t i o n s i n A l b e r t a . Volumes I t h r o u g h I I I . A l b e r t a , C a n a d a . March 1992

The U n i v e r s i t y o f T e x a s a t A u s t i n ,

64.

Reference 21.

65.

Memorandum f rom A k i n , T . a n d G. V i c o n o v i c , EC/R I n c o r p o r a t e d , t o S m i t h , M . E . , EPA/CPB. May 2 7 , 1 9 9 4 . Summary o f m e e t i n g w i t h U . S . E n e r t e k , I n c o r p o r a t e d o n May 2 3 r d ,

1994.

Departmen t o f Energy. Emissions o f Greenhouse Gases i n t h e U n i t e d S t a t e s 1985 1990 DOE/EIA-0573). W a s h i n g t o n , DC. S e p t e m b e r 1 9 9 3 .

66.

U.S.

67.

Gas R e s e a r c h I n s t i t u t e . T e c h n i c a l R e f e r e n c e Manual f o r GRI GLYCalc™: A P r o g r a m f o r E s t i m a t i n g E m i s s i o n s f r o m G l y c o l GRI-96/0091}. D e h y d r a t i o n o f N a t u r a l Gas, V e r s i o n 3 . 0 C h i c a g o , I L . Mar ch 1 9 9 6 .

68.

Reference 48. 2-35

 

69.

S ta nda r ds o f Performance f o r Equipment Leaks o f

VOC f r o m O n s h o r e N a t u r a l Gas P r o c e s s i n g P l a n t s . Code o f F e d e r a l Regulations S u b p a r t KKK J u l y 1 1 9 9 2 . T i t l e 40 P a r t 60

U.S.

Government P r i n t i n g O f f i c e

Washington

DC

2-36

 

3.0

3.1

CONTROL OPTIONS AND PERFORMANCE OF CONTROLS

INTRODUCTION

This chapter addresses control options applicable to i d e n t i f i e d hazardous a i r pollutant

HAP)

emission points in the

o i l and n a t u r a l g as p r o d u c t i o n and n a t u r a l gas t r a n s m i s s i o n and storage source categories. As d i s c u s s e d i n C h a p t e r 2 . 0 , HAP e m i s s i o n p o i n t s i n t h e s e s o u r c e c a t e g o r i e s i n c l u d e 1} p r o c e s s

vents,

2)

storage vessels,

and

3)

equipment l e a k s .

o p t i o n s t h a t may b e a p p l i c a b l e t o e a c h o f t h e s e

Control

i d e n t i f i e d HAP

e m i ssi on p o i n t s are de sc ribe d below. In addition,

performance

measured a s c o n t r o l e f f i c i e n c y

of

e a c h c o n t r o l o p t i o n was e s t i m a t e d b a s e d o n b e s t e n g i n e e r i n g judgement and r e f e r e n c e d l i t e r a t u r e .

Referenced control

e f f i c i e n c i e s o f c o n t r o l o p t i o n s f o r v o l a t i l e o r g a n i c compounds

VOC)

e m i s s i o n p o i n t s w e r e deemed a p p l i c a b l e f o r t h e s e HAP

e m i s s i o n p o i n t s b e c a u s e o f s i m i l a r c h e m i c a l p r o p e r t i e s o f t h e HAP

c o n s t i t u e n t s and VOC.

These c o n t r o l e f f i c i e n c i e s a r e c o n s i s t e n t

with those demonstrated for

3.2

similar applications.

PROCESS VENTS As d i s c u s s e d i n C h a p t e r 2 . 0 ,

reboiler vent is

the glycol dehydration unit

t h e p r i m a r y i d e n t i f i e d p r o c e s s v e n t HAP e m i s s i o n

in these source categories.

point

Several control techniques can

be u s e d t o red u ce emi ssi ons from t h i s p r o c e s s v e n t e m i s s i o n point.

These include vapor recovery

condensation),

combustion.

and p o l l u t i o n prevention. 3.2.1

Vapor Recovery

C o n d e n s a t i o n i s t h e mos t common v a p o r r e c o v e r y c o n t r o l

technique used f o r glycol dehydration u n i t r e b o i l e r vents. 3-1

 

Condensers c o n v e r t c o n d e n s a b l e components i n t h e v a p o r p h a s e t o t h e l i q u i d phase by reducing the temperature

of

process vent

t h ~

Condensers n o t o n l y reduce emissions, b u t a l s o reco v er c o n d e n s a b l e h y d r o c a r b o n v a p o r s t h a t may i n c r e a s e h y d r o c a r b o n

stream.

l i q u i d production. In addition,

t h e d ry non-condensable o f f - g a s

c o n d e n s e r may b e u s e d a s f u e l . fuel,

t

1

from t h e

I f the off-gas i s not used as

may b e r e c y c l e d i n t o t h e p r o d u c t i o n p r o c e s s o r d i r e c t e d

to a flare,

incinerator,

or other combustion device.

Since

c o m b u s t i o n d e v i c e s a r e s e n s i t i v e t o t h e am ount o f w a t e r c o n t e n t in t h e process stream,

c o n d e n s e r s a r e t y p i c a l l y i n s t a l le le d p r i o r

to combustion p r o c e s s e s .

T h e HAP e m i s s i o n r e d u c t i o n e f f i c i e n c y o f c o n d e n s e r s v a r i e s depending upon a p p l i c a t i o n . 2 Some g l y c o l d e h y d r a t i o n u n i t s u s e

gas condensate glycol separators

GCG s e p a r a t o r s o r f l a s h t a n k s

pri or t o the reboiler to separate entrained gases,

methane and et h an e,

from t h e g l y c o l .

are t y p i c a l l y recovered as fuel production header.

H ow ever,

primarily

The f l a s h t a.nk o f f - g a s e s

o r recycled to

the natural

gas

t h i s p r o c e s s v e n t may a l s o b e v e n t e d

d i r e c t l y to the atmosphere. Fla sh t an k s t y p i c a l l y enhance a

condenser s emission

r e d u c t i o n e f f i c i e n c y by reducing t h e c o n c e n t r a t i o n o f non

condensable gases present in the stream introduced to the

condenser.

Thus,

condensers applied to those uni t s with f l a s h

t y p i c a l l y achieve higher emission reduction e f f i c i e n c i e s as

tanks

compared t o co n d en s ers u s ed a t g l y c o l d e h y d r a t i o n u n i t s t h a t do not

incorporate fl a sh tanks

Condensers,

in t h e i r system design.

u s e d i n c o n j u n c t i o n w i th th f l a s h t a n k s

incorporated into the glycol

c ir c ula tion loop,

9 5 p e r c e n t HAP/VOC e m i s s i o n r e d u c t i o n . 3 glycol dehydration units without flash

t ~ ~ i c

achieve

l l y

Condensers used on tanks

inco:rporated i n t o

t h e g l y c o l c i r c u l a t i o n l o o p may h a v e HAP/VOC r e d u c t i o n

efficiencies

as

low a s 50 p e r c e n t . 4

3-2

 

Combustion

3.2.2

D e s t r u c t i o n o f t h e H P c o m p o n e n t s i n a p r o c e s s s t r e a m may b e

accomplished by combustion. flares

thermal incinerators

Combustion equipment i n c l u d e s industrial boilers

and p ro c e s s

heaters. Flares are a

common

combustion device found a t o i l and

n a t u r a l gas p ro d u c t i o n f a c i l i t i e s and a t transmission

operations.

A flare

some n a t u r a l g a s

i s an open combustion d e v i c e

where t h e a i r around t h e flame p r o v i d e s t h e n e c e s s a r y oxygen f o r The f l a r e c o m b u s t i o n e f f i c i e n c y d e p e n d s o n v e n t g a s

combustion.

flammability

auto-ignition temperature

heating value

and mixing o f t h e components i n t h e combustion z o n e . s

density

Facilities

t h a t t r e a t s o u r ga s sometimes use f l a r e s to d e s t r o y hydrogen The h y d r o g e n s u l f i d e i s o x i d i z e d t o f o r m s u l f u r sulfide. dioxide

a

l e s s t o x i c com pound.

F l a r e s were e v a l u a t e d as a c o n t r o l o p t i o n f o r g l y c o l dehydration unit

reboiler vents.

are usually present

stream

Because l a r g e amounts o f w a t e r

in the glycol dehydration unit reboiler vent

p r o b l e m s w i t h i n c o m p l e t e c o m b u s t i o n may o c c u r .

Flares

a r e m o s t s u i t a b l e when u s e d i n c o m b i n a t i o n w i t h c o n d e n s e r s t o

combust t h e n o n -co n d en s ab le str e a m

o r when v a p o r c o l l e c t e d

s t o r a g e t a n k s must be d e s t r o y e d .

F l a r e s may a c h i e v e g r e a t e r t h a n a 98 p e r c e n t HAP VOC

from

reduction efficiency.6 of

Based on an e m i s s i o n r e d u c t i o n e f f i c i e n c y 98 p e r c e n t e m i s s i o n r e d u c t i o n

f o r a condenser and a

95 p e r c e n t

e f f i c i e n c y f o r the combustion device

d i r e c t i n g t h e non

condensable stream through

a

closed-vent

system to

a

combustion

device in conjunction with

a

condenser can achieve

a

H

reduction of

P

emission

99 p e r c e n t o r g r e a t e r .

Pollution Prevention

3.2.3

System optimization i s a p o l l u t i o n prevention technique t h a t may b e a n a p p l i c a b l e c o n t r o l o p t i o n f o r some g l y c o l d e h y d r a t i o n

units.

System o p t i m i z a t i o n i n v o l v es.t h e adjustment o f g l y c o l

dehydration unit process variables

to reduce emissions.

3-3

 

F o r example, glycol than is

g l y c o l d e h y d r a t i o n u n i t s may c i r c u l a t e m ore

n e c e s s a r y t o meet c o n t r a c t

specifications.

C i r c u l a t i o n r a t e s o f 2.0 t o 3 . 0 g a llo n s o f g l y c o l p e r pound o f w a t e r r e m o v e d a r e recom m ended r a t e s t h a t a r e u s u a l l y a d e q u a t e t o

meet t y p i c a l c ont r a c t pi pe l i ne s p e c i f i c a t i o n s f or water content in the n a t u r a l gas stream. 7 Based on a r e c e n t r e p o r t from t h e American Petroleum I n s t i t u t e

(API) ,

the national

c ir c u la tio n r a te for triethylene glycol

TEG)

at ver age g l y c o l

deh}rdration u n i t s

i s 5 . 9 g a l l o n s o f g l y c o l p e r pound o f w a t e r r em oved.B

This c o n tr o l o p t i o n can be ap p l i ed t6 glycol dehydration u n i t s t o i m p r o v e p r o c e s s p e r f o r m a n c e a n d r e d u c e a s s o c i a t e d HAP emissions

from g l y c o l d e h y d r a t i o n u n i t r e b o i l e r

High

V E ~ n t s

g l y c o l c i r c u l a t i o n r a t e s i n c r e a s e t h e amount o f benzene, t o l u e n e , e t h y l benzene, and mixed x y le n e s ( c o l l e c ti v e l y r e f e r r e d t o a s

BTEX)

and n-hexane ab so rb ed from t h e n a t u r a l gas stream.

Therefore,

m o r e BTEX a n d n - h e x a n e a r e r e l e a s e d f r o m t h e g l y c o l

dehydration unit

r e b o i l e r vent during regeneration of the glycol

from t h e s e u n i t s t h a t over c i r c u l a t e g l y c o l .

Thu:s,

optimizing

the glycol dehydration process by adjusting the glycol

c i r c u l a t io i o n r a t e may r e d u c e a s s o c i a t e d HAP e m i s s i o n s . 9 3.3

STORAGE VESSELS The m a j o r i t y o f

source categories are

st orage ta nks and v e s s e l s used in th ese

fixed-roof

storage

tanks.

Most o f t h e

s t o r a g e t a n k s u s e d i n t h e o i l p r o d u c t i o n segment percent)

( o v e r 95

h a v e s h e l l c a p a c i t i e s i n t h e r a n g e o f 200 t o 1 , 0 0 0

barrels.1° I n t e r n a l f l o a t i n g r o o f s t y p i c a l l y cannot be r e t r o f i t t e d to these tanks because i nt er nal

f r i c t i o n between the i n t e r i o r o f

these small diameter tanks will

floating roof.

inhibit proper operation of the

the small quant i t i es of

In addition,

liquid

s t o r e d i n t h e s e t a n k s do not provide s u f f i c i e n t buoyancy t o support floating roofs.ll

E m i s s i o n s f r o m f i x e d - r o o f s t o r a g e t a n k s may b e r e d u c e d b y using a vapor recovery unit

VRU)

to capt ure escaping hydrocarbon

O nce t h e v a p o r f r o m t h e t a n k s i s c a p t u r e d ,

vapors.

t

may b e

3-4

 

returned to

the natural

gas l i n e for processing o r be routed to a

control device. Natural

storage tanks

gas

typically

use

pressurized

to s t o r e l i g h t natural gas l i q u i d s

propane, butane) losses.12

processing plants

ethane,

and n a t u r a l g a s o l i n e and t o s u p p r e s s e v a p o r a t i v e

However,

hydrocarbons,

including those collected in

slug receivers during pipeline pigging operations,

transferred to non-pressurized fixed-roof 3.4

may b e

storage vessels.13

EQUIPMENT LEAKS The p r i m a r y c o n t r o l o p t i o n u s e d t o r e d u c e e m i s s i o n s from

equipment l e a k s i s a l e a k d e t e c t i o n and r e p a i r LDAR p r o g r a m i n c l u d e s e q u i p m e n t m o n i t o r i n g

LDAR)

program.

(usually with a

A

leak

d e t e c t i o n i nst rument ) on a p r e s c r i b e d s c h e d u l e and t h e r e p a i r i n g o f equipment i n i n s t a n c e s where a l e a k i s d e t e c t e d . Aspects of a

LDAR p r o g r a m a r e d i s c u s s e d b e l o w .

An a l t e r n a t i v e c o n t r o l o p t i o n t o a LDAR p r o g r a m i s m o d i f y i n g o r r e p l a c i n g e x i s t i n g equipment t o red u ce em i s s i o n s .

This option

i s a l s o d iscu ssed below. 3.4.1

Leak D e t e c t i o n and Re pa i r LDAR p r o g r a m s i n v o l v e r e g u l a r l y s c h e d u l e d i n s t r u m e n t

m oni t or i ng o f equipment to determine th e pr e se nc e o f l e a ks. a leak is detected, prescri bed schedule.

t h e equipment

i s tagged and r e p a i r e d on a

On c e

T h e m a j o r f a c t o r s a f f e c t i n g t h e c o n t r o l e f f i c i e n c y o f a LDAR

program are

1)

the

freq u en cy o f equipment i n s p e c t i o n and

leak d e f i n i t i o n t h a t t r i g g e r s r e p a i r requirements.

i m p o r t a n t c o m p o n e n t o f a LDAR p r o g r a m i s t h a t a c c u r a t e r e c o r d s be k e p t on l e a k f r e q u e n c i e s

it

2)

the

Another that

provides

and r e p a i r s .

LDAR p r o g r a m s may i n c l u d e p e r f o r m a n c e s p e c i f i c a t i o n s f o r

An e x a m p l e p e r f o r m a n c e s p e c i f i c a t i o n

i n d i v i d u a l equipment ty p es.

might s t a t e

that

···

if

p e r c e n t o r more o f t h e v a l v e s

in light

l i q u i d s e r v i c e l e a k mo re t h a n 1 0 , 0 0 0 p a r t s p e r m i l l i o n b y v o l u m e ppmv)

o f VOC,

t h e n mo re f r e q u e n t

inspection is

required.

T h r e e d i f f e r e n t l e v e l s o f LDAR w e r e e v a l u a t e d a s o p t i o n s f o r the oi l

and n a t u r a l gas production source category.

The t h r e e

3-5

 

c o n t r o l o p t i o n s a r e summarized below.

Detailed descriptions

of

t h e LDAR p r o g r a m s a r e p r o v i d e d i n R e f e r e n c e s 1 4 t h r o u g h 1 7 . Summary o f C o n t r o l T e c h n i q u e s G u i d e l i n e . The C o n t r o l T e c h n i q u e s G u i d e l i n e CTG) d o c u m e n t C o n t r o l o f V o l a t i l e

3.4.1.1

O r g a n i c Compound E q u i p m e n t L e a k s f r o m N a t u r a l G a s / G a s o l i n e P r o ces s i n g P l a n t s 14 p r o v i d es guidance fo r l e a k d e t e c t i o n and r e p a i r a t p l a n t s l o c a t e d in ozone non-a tta inm e nt a r e a s . guideline valves

The

includes quarterly monitoring of pressure r e l i e f

valves in light

liquid service

l i q u i d and vapor s e r v i c e

and compressors.

Pumps i n l i g h t

a r e t o be v i s u a l l y i n s p e c t e d on a weekly b a s i s .

i n s t a l l e d o n o p e n - e n d e d l i n e s when n o t i n u s e .

pumps i n l i g h t liquid service

Caps a r e t o b e

Equipment

s e r v i c i n g p r o c e s s s t r e a m s w i t h a VOC c o n c e n t r a t i o n o f 1 . 0 p e r c e n t

b y w e i g h t o r g r e a t e r a r e s u b j e c t t o t h e r e q u i r e m e n t s o f t h e CTG. 3.4.1.2

Summary o f New S o u r c e P e r f o r m a n c e S t a n d a r d s .

New S o u r c e P e r f o r m a n c e S t a n d a r d

NSPS)

The

f o r Equipment L e a k s o f VOC

f r o m O n s h o r e N a t u r a l Gas P r o c e s s i n g P l a n t s 1 5 a p p l i e s t o s u c h p l a n t s w i t h a f f e c t e d equipment cons tructed o r modified a f t e r

January 20

1984.

The NSPS l e a k d e t e c t i o n a n d r e p a i r . p r o g r a m

r e q u i r e s monthly monitoring of pressure r e l i e f v a l v e s

l i g h t l i q u i d and vapor s e r v i c e service.

valves

in

a n d pumps i n l i g h t l i q u i d

Valves i n gas/vapor s e r v i c e and l i g h t l i q u i d s e r v i c e

f o r which a

leak is

n o t d e t e c t e d f o r two c o n s e c u t i v e m o n t h s may

be monitored q u a rt e rl y . Weekl y v i s u a l

i n s p e c t i o n o f pumps i n l i g h t

liquid service is

In ad d itio n to capping open-ended l i n e s

also required.

capture

and v e n t systems a r e to be i n s t a l l e d on compressor s e a l s . E q u i p m e n t s e r v i c i n g p r o c e s s s t r e a m s w i t h a VOC c o n c e n t r a t i o n o f 10 p e r c e n t b y wei g h t o r g r e a t e r a r e s u b j e c t t o t h e r e q u i r e m e n t s o f t h e NSPS. Summary o f Equipment L e a k R e q u i r e m e n t s U n d e r t h e

3.4.1.3

H a z a r d o u s O r g a n i c NESHAP R e g u l a t o r y N e g o t i a t i o n .

O r g a n i c NESHAP

HON)

The Ha z a r d o u s

R e g u l a t o r y N e g o t i a t i o n 1 6 was d e v e l o p e d f o r

t h e s y n t h e t i c organic chemical manufacturing industry.

The

p r o v i s i o n s o f t h i s r e g u l a t i o n i ncl ude monthly monitoring o f

3-6

 

valves

i n l i g h t l i q u i d a n d v a p o r s e r v i c e a n d pumps i n l i g h t

liquid service.

Pumps i n l i g h t

liquid service are to be vi sual l y

i n s p e c t e d on a weekly b a s i s .

The

HON

R e g u l a t o r y N e g o t i a t i o n a l s o p h a s e s - i n more s t r i n g e n t

r e q u i r e m e n t s f o r v a l v e s a n d pumps b y u s i n g programs and performance l e v e l s .

a

combination of

LD

R

In a d d i t i o n to capping open

ended l i n e s and v e n t systems on compressor s e a l s

1

pressure relief

v alv es ar e to be equipped with r u p tu r e d is k assemblies

and

sampling l i n e s a r e to be equipped with closed-purge systems. Equipment s e r v i c i n g p r o c e s s str e a ms w i t h

H

P

concentration

g r e a t e r t h a n 5.0 percent by weight a r e s u b j e c t to t h e

requirements of the 3.4.2

An

HON

Regulatory Negotiation.

Equipment M o d i f i c a t i o n equipment m o d i f i c a t i o n f o r reducing equipment l e a k

e m i s s i o n s may i n c l u d e t h e i n s t a l l a t i o n o f a d d i t i o n a l e q u i p m e n t o r t h e replacement o f e x i s t i n g equipment.

i s an a l t e r n a t i v e to equipment l e a k s .

LD R

Equipment m o d i f i c a t i o n

programs f o r red u ci n g emi s s i o n s from

Examples o f equipment m o d i f i c a t i o n o r

r e pla c e me nt a r e d e s c r i b e d below. from t h e EPA's

Control e f f i c i e n c i e s are c i t e d

P r o t o c o l f o r Equipm ent L e a k E m i s s i o n

Estimates.n17 3.4.2.1

1

Valves.

Emissions from v a l v e s can be re duc e d by

r e p l a c i n g o l d va lve s with bellows va lve s and diaphragm valves

sealless valves)

The c o n t r o l e f f i c i e n c y f o r s e a l l e s s v a l v e s i s

estimated to be 100-percent.

3.4.2.2

Pumps a n d C o m p r e s s o r s .

c o m p r e s s o r s may b e c o l l e c t e d b y to a control

device.

E m i s s i o n s f r o m pumps a n d

closed-vent

a

system and r o u ted

The c o n t r o l e f f i c i e n c y o f t h i s s y s t e m

depends on t h e percentage o f vapors c o l l e c t e d and t h e e f f i c i e n c y of

the control device.

Pumps a n d c o m p r e s s o r s may a l s o b e

equipped with dual mechanical s e a l s with b a r r i e r f l u i d a t h i g h e r p r e s s u r e than .the process stream. of

the dual mechanical

3.4.2.3

seal

a

The c o n t r o l e f f i c i e n c y

system i s approximately 1 0 0 -p e r c e n t .

Sampling Connections.

Emissions from sa mpling

connections can be reduced by i n s t a l l i n g

a

closed-loop

system

1

3-7

 

which has an estimated c ont rol e f f i c i e n c y o f 100-percent . clo sed - lo o p sampling system c o l l e c t s th e purged proces s

f l u i d and

t back i n t o the t to a control device o r directs transfers process stream. Pressure-Relief Devices. To r e d u c e e m i s s i o n s f r o m 3.4.2.4

pressure-relief devices

r u p t u r e d i s k s may b e i n s t a l l e d .

Rupture

d i s k s y s t e m s a r e e s t i m a t e d t o h a v e a 100 p e r c e n t c o n t r o l efficiency.

E m i s s i o n s f r o m p r e s s u r e - r e l i e f d e v i c e s may a l s o b e

c o l l e c t e d by a c l o s e d - v e n t syst e m and r o u t e d to a c o n t r o l d e v i c e .

T he c o n t r o l e f f i c i e n c y o f t h i s o p t i o n i s d e p e n d e n t o n t h e p e r c e n t a g e o f vapors c o l l e c t e d and th e e f f i c i e n c y o f t h e c o n t r o l device.

Open-E nded L i n e s . E m i s s i o n s from o p e n - e n d e d l i n e s c a n b e r e d u c e d 100 p e r c e n t b y i n s t a l l i n g a p l u g , c a p , o r s e c o n d 3.4.2.5

v alv e on t h e open end.

3.4.2.6

Connectors

Flanges).

If allowable in the process

c o n n e c t o r s may b e w e l d e d t o g e t h e r t o o b t a i n

a

100-·percent c o n t r o l

efficiency. 3.5

CONTROL OPTIONS

ND

H P

EMISSION POINTS

summary o f c o n t r o l o p t i o n s a p p l i c a b l e t o tl1e i d e n t i f i e d H

P

emission points a t f a c i l i t i e s

i n t h e o i l and n a t u r a l gas

p r o d u c t i o n and n a t u r a l g as t r a n s m i s s i o n and s t o r a 9 e source

categories are

i d e n t i f i e d i n Table 3-1.

This t ab l e includes

estimated emission reduction e f f i c i e n c i e s for each applicable

These r e d u c t i o n e f f i c i e n c i e s a r e b ased on t h e

control option. control

l e v e l a c h i e v e d t h r o u g h r e d u c t i o n o f VOC e t n i s s i o n s ,

otherwise specified.

3-8

 

T

BLE

3-1.

H P

SUMM RY

OF

emission point

CONTROL

OPTIONS

PER H P

Control options

EMISSION POINT

Estimated control efficiency ( )a

Glycol r e b o i l e r vent

Condenser, w i t h flash tank in dehydration system design

95

Condenser w i t h o u t

s

Combustion

98

flash tank

System o p t i m i z a t i o n

Open-top s t o r a g e tank

Cover p l u s va por c olle .c tion and

Variable

99

redirect

Fixed roof

storage

tank

Vapor c o l l e c t i o n and r e d i r e c t

Equipment l e a k s

a

Estima te s based on re fe re nc e d l i t e r a t u r e

judgement.

6

70 88

and engineering

unless

b

Vapor r e d i r e c t e d t o a c o n t r o l de vic e o p e r a t i n g a t a

c

E s t i mat ed l e v e l o f c o n t r o l ba se d on Reference 13.

d

E s t i mat ed l e v e l o f c o n t r o l ba se d on Reference 14.

e

Estimated l e v e l o f c o n t r o l based on Reference 15.

percent

control efficiency.

3-9

95

 

3.6

REFERENCES

1.

Gas R e s e a r c h I n s t i t u t e .

P r o c e e d i n g s o f t h e 1992 Gas R e s e a r c h

I nhsi ct a i tgu G.l yS co l t eDmeb heyrd r1a9t 9 o2 r . Air Emissions Conference. C o t, e I L ep

2.

U.S. Environmental P r o t e c t i o n Agency. A l t e r n a t i v e C o n t r o l Te c h n o l o g y Document - O r g a n i c Waste P r o c e s s V e n t s EPA 4 5 0 / 3 - 9 1 - 0 0 7 ) . R e s e a r c h T r i a n g l e P a r k , NC. Decem ber 1 9 9 0 .

3.

Gas R e s e a r c h I n s t i t u t e .

4.

U.S.

5.

U . S . E n v i r o n m e n t a l P r o t e c t i o n Agency. OAQPS C o n t r o l C o s t Manual ( F o u r t h E d i t i o n , EPA 4 5 0 / 3 - 9 0 - 0 0 6 ) . R e s e a r c h T r i a n g l e P a r k , NC. J a n u a r y 1 9 9 0 .

6.

Reference 2.

7.

American P e tr ole um I n s t i t u t e . S p e c i f i c a t i o n f o r Gly co l-Ty p e Gas D e h y d r a t i o n U n i t s API S p e c i f i c a t i o n 12GDU, F i r s t DC. Decem ber 1 5 , 1 9 9 0 . E d i t i o n ) . Wa s h i n g t o n ,

8.

American Petroleum I n s t i t u t e . T r i e t h y l e n e Glycol De hydr a tor O p e r a t i n g P a r a m e t e r s f o r E s t i m a t i n g BTEX E m i s s i o n s P r e p u b l i c a t i o n D r a f t ) . Wa s h i n g t o n , DC. F e b r u a r y 1 9 9 6 .

Glycol Dehydration Operations, E n v i r o n m e n t a l R e g u l a t i o n s , a n d W a s t e S t r e a m S u r v e y (GRI96/0049). Chicago, IL. June 1996.

Environmental P r o t e c t i o n g e n c y ~ Condensation Systems f o r Glycol D e hydr a tor Emissions Modeling and Design (Revised D r a f t R e p o r t , C o n t r a c t No. 6 8 -0 1 -0 0 3 1 , Work A s s i g n m e n t 0 6 7 ) . R e s e a r c h T r i a n g l e P a r k , NC. A u g u s t 3 1 , 1 9 9 4 .

9.

Gas R e s e a r c h I n s t i t u t e . G l y c o l D e h y d r a t o r E m i s s i o n s : S a m p l i n g a n d A n a l y t i c a l Methods a n d E s t i m a t i o n T e c h n i q u e s . Volume I ( G R I - 9 4 / 0 3 2 4 ) . C h i c a g o , IL. Mar ch 1995.

10.

E n t r o p y L i m i t e d . Aboveground S t o r a g e T a n k S u r v e y R e p o r t ) . L i n c o l n , MA A p r i l 1 9 8 9 .

11.

Memorandum f r o m V i c o n o v i c , G . , EC/R I n c o r p o r a t e d , t o P r o j e c t F i l e s . March 6 , 1992. Summary o f c o n v e r s a t i o n w i t h Rob F e r r y , Conservatek I n d u s t r i e s , on p r o d u c t i o n t a n k e m i s s i o n cont rol systems.

12.

Responses t o t h e U.S. Environmental P r o t e c t i o n Age nc y s A i r E m i s s i o n s S u r v e y Q u e s t i o n n a i r e s f o r t h e O i l a n d N a t u r a l Gas

Final

C-a2t 5 eg EPA A i r D o c k e t A - 9 4 - 0 4 , P orno uSgohu r IcIe- D I Ir-oDd-u1c t ti h ) .o r y 1993. 13.

Memorandum f r o m V i c o n o v i c , G . , EPA:WCPG. J u l y 1 0 , 1 9 9 6 .

M.E.,

Items

EC/R I n c o r p o r a t e d , t o S m i t h , Site v isit r e p o r t -

3-10

 

T r a n s c o n t i n e n t a l Gas P i p e L i n e C o r p o r a t i o n , C o m p r e s s o r Station D i s t r i c t 160, R e i d s v i l l e North Carolina.

14.

U.S. Environmental P r o t e c t i o n Agency. C o n tr o l o f V o l a t i l e O r g a n i c Compound Equipm ent L e a k s f r o m N a t u r a l G a s / G a s o l i n e Research Triangle Processing Plants EPA-450/3-83-007) P a r k , NC Decem ber 1 9 8 3 .

15.

S t a n d a r d s o f P e r f o r m a n c e f o r Equipm ent L e a k s o f VOC F r o m O n s h o r e N a t u r a l Gas P r o c e s s i n g P l a n t s . Code o f F e d e r a l Regulations T i t l e 4 0 , P a r t 6 0 , S u b p a r t KKK J u l y 1 , 1 9 9 2 . U . S . Gover nm ent P r i n t i n g O f f i c e W a s h i n g t o n , DC

16.

N a tiona l Emission Standards f o r Hazardous A ir P o l l u t a n t s ; Announcem ent o f N e g o t i a t e d R e g u l a t i o n f o r E q u i p m e n t L e a k s . V o l . 5 6 , No. 4 4 , p p . 9 3 1 5 - 9 3 3 9 . Mar ch 6 , Federal Register 1 9 9 1 . O f f i c e o f t h e F e d e r a l R e g i s t e r W ashing:ton, DC

17.

U.S. Environmental P r o t e c t i o n Agency. P r o t o c o l f o r Equipment EPA-453/R-93-026). R es earch Leak Emission Estimates T r i a n g l e P a r k , NC J u n e 1 9 9 3 .

3-11

 

4.0 4.1

MODEL

PL

NTS

INTRODUCTION Due t o

t h e l a r g e number o f f a c i l i t i e s

in t h e o i l and n a t u r a l

g a s p r o d u c t i o n and n a t u r a l g as t r a n s m i s s i o n and s t o r a g e s o u r c e categories

and t h e time and r e s o u r c e s

i n f o r m a t i o n on each f a c i l i t y

t

t

would t a k e t o g a t h e r

was n o t p o s s i b l e t o s i m u l a t e t h e

e f f e c t s o f applying control options a t a l l p o t e n t i a l l y impacted

f a c i l i t i e s in these source categories.

Therefore, an a l t e r n a t i v e

a p p r o a c h i n v o l v i n g t h e u s e o f model p l a n t s was t a k e n t o e s t i m a t e plant-level

and nationwide impacts o f c o n t r o l o p t i o n s .

The m o d e l

p l a n t s developed for these source categories are described in

th is chapter.

A model p l a n t d o e s n o t r e p r e s e n t a n y s i n g l e a c t u a l but

rather

t

represents a range of

characteristics

facility

facilities with similar

t h a t may b e i m p a c t e d b y a s t a n d a r d .

Each model

p l a n t . i s c h a ra c t e ri z e d i n terms o f f a c i l i t y type,

size

and o t h e r

parameters that affect estimates of emissions, control costs secondary environmental impacts.

and

Impacts o f c o n t r o l o p t i o n s a r e

and t h e n e x t r a p o l a t e d t o e s t i m a t e

e s t i m a t e d f o r e a c h model p l a n t

impacts on a nationwide l e v e l . To s p a n t h e r a n g e o f t y p e s

source categories

and s i z e s o f f a c i l i t i e s

a number o f model p l a n t s w e r e d e v e l o p e d .

dehydration units

{2)

natural gas processing p l a n t s

and

Model p l a n t s w e r e d e v e l o p e d f o r

condensate tank b a t t e r i e s 4)

in these

3)

1)

glycol

offshore production platforms in State waters.

T h e s e model p l a n t s w e r e d e v e l o p e d b a s e d o n a v a i l a b l e i n f o r m a t i o n c o l l e c t e d on p r o c e s s e s

pollutant

HAP)

operations

and hazardous a i r

e m i s s i o n p o i n t s i n t h e o i l and n a t u r a l g a s 4-1

 

p r o d u c t i o n and n a t u r a l gas

transmission and storage

The i n f o r m a t i o n c o n s i d e r e d i n c l u d e

categories.

(1)

source d a t a from

i n d u s t r y responses to t h e U.S. Environmental P r o t e c t i o n Agency s (E PA s) A i r E m i s s i o n s S u r v e y Q u e s t i o n n a i r e s , 1 (2) o b s e r v a t i o n s

made d u r i n g f o u r s e r i e s o f s i t e v i s i t s t o o i l a n d n a t u r a l g a s p r o d u c t i o n and n a t u r a l

gas transmission and storage f a c i l i t i e s

t h a t were designed to c o l l e c t information on processes and o p e r a t i o n s a n d HAP e m i s s i o n p o i n t s , 2

(3)

recommendations and

c o mme n ts r e c e i v e d f r o m members o f t h e A m e r i c a n P e t r o l e u m

Institute CAIG) , 3

(API) (4)

and

ts

a s s o c i a t e d Clean A ir

I s s u e s Gro u p

a data base o f natural gas analyses for various

i n d u s t r y o p e r a t i o n s p r o v i d e d b y t h e Gas R e s e a r c h I n s t i t u t e (GRI) , 4 a n d 4.2

4.2.1

data provided by API.s

DESCRIPTIONS OF MODEL PLANTS

Glycol Dehydration Units 4.2.1.1

unit

5)

Glycol Dehydration Units.

The g l y c o l d e h y d r a t i o n

r e b o i l e r v e n t has been i d e n t i f i e d a s a signii:icant source o f

HAP e m i s s i o n s i n t h e o i l a n d n a t u r a l g a s p r o d u c t i o n a n d n a t u r a l

gas t ra n s m i s s i o n and s t o ra g e source categ o r ies . d e h y d r a t i o n u n i t s may b e dehydrate natural

(1)

stand-alone

Glycol

facilities

that

g as s tream s from an i n d i v i d u a l o r s e r i e s o f

production wells or

(2)

part of the overall production process

l o c a t e d a t condensate tank b a t t e r i e s ,

natural gas processing

plants,

offshore production platforms

in S t a t e and Federal

waters,

and throughout the n a t u ra l gas transmission source

category,

including underground s t o r a g e f a c i l i t i e i 3 .

of glycol dehydration units, diethylene glycol

d e h y d r a t i o n u n i t s account f o r most

TEG)

Triethylene glycol

EG)

with ethylene glycol

and

dehydration units accounting for

DEG)

the

remaining estimated population of glycol dehydration uni t s . B a s e d o n i n f o r m a t i o n r e c e i v e d f r o m A P I S CAIG a n d GRI, e s t a b l i s h e d a n a v e r a g e n u mb e r o f

(1)

t h e EPA

o n e TEG d e h y d r a t i o n u n i t p e r

c o n d e n s a t e t a n k b a t t e r y 6 , 7 and o f f s h o r e p r o d u c t i o n p l a t f o r m and 2}

two t o fo u r de hydr a tion u n i t s

TEG,

EG, o r s o l i d d e s i c c a n t

4-2

 

depending upon t h r o u g h p u t c a p a c i t y and t y p e o f p ro c e s s i n g c o n f i g u r a t i o n . 8

per natural gas processing plant,

F i v e s e p a r a t e m odel TEG d e h y d r a t i o n u n i t s t h a t r e p r e s e n t t h e s i z e range f o r t h e s e u n i t s within the o i l and n a t u r a l gas produc t i on and n a t u ra l

gas tra nsmission and s t o r a g e source

categories

based on n a t u r a l gas d e s i g n and throughput

capacities)

were developed.

The n a t u r a l g a s t h r o u g h p u t c a p a c i t y

r a n g e s o f t h e f i v e m odel TEG d e h y d r a t i o n u n i t s a r e s t a n d a r d cubic f e e t p e r day >20 t o

5 0 MMSCF/D,

In addition, represent

4)

MMSCF/D),

2)

500 MMSCF/D;

>50 t o

1)

million

~

>5 t o 2 0 MMSCF/D,

and

{5)

3}

> 500 MMSCF/D.

f o u r s e p a r a t e m odel EG d e h y d r a t i o n u n i t s t h a t

the s i z e range of these uni t s within the o i l

natural gas production source category

design and throughput capacities)

and

based on n a t u r a l gas

were developed.

The n a t u r a l

g a s t h r o u g h p u t c a p a c i t y r a n g e s o f t h e f o u r m odel EG d e h y d r a t i o n units are

MMSCF/D,

1)

and

<20 MMSCF/D, 4)

2)

2 0 t o 1 0 0 MMSCF/D,

3)

> 100 t o

500

>500 MMSCF/D.

T a b l e 4 - 1 p r e s e n t s p a r a m e t e r s f o r t h e f i v e m odel TEG dehydration units

and Table 4-2 p r e s e n t s parameters f o r the four

m odel ·EG d e h y d r a t i o n u n i t s .

The p a r a m e t e r s i n t h i s t a b l e a r e t h e

b a s i c i n p u t s u s e d i n GRI-GLYCalc™

Version 3. 0) , 9 a personal

c o m p u t e r - b a s e d e m i s s i o n s s c r e e n i n g p r o g r a m d e v e l o p e d b y GRI f o r

e v a l u a t i n g HAP a n d v o l a t i l e o r g a n i c compound

VOC)

emissions from

TEG a n d EG d e h y d r a t i o n u n i t s . 4.2.1.2

Tables 4-1

D i s t r i b u t i o n o f Model U n i t P o p u l a t i o n s .

a n d 4 - 2 i n c l u d e t h e e s t i m a t e d num ber o f g l y c o l d e h y d r a t i o n u n i t s

based on a p p l i c a t i o n

stand-alone,

natural gas processing plants, natural

condensate tank b a t t e r i e s ,

offshore production platforms,

gas transmission and storage) .

num ber o f d e h y d r a t i o n u n i t s i n t h e U.S.

and

Estimates o f the t o t a l r a n g e .from 2 0 , 0 o o 1 0 t o

recent projections of over 44,000.11,12

The EPA s t a n d a r d i z e d t h e a n a l y s i s f o r d e h y d r a t i o n u n i t s i n .this r e g u l a t o r y development p r o c e s s by u s i n g a

total national

estimated dehydration unit population of approximately 40,000,

which r e p r e s e n t s a l l d eh y d rat i o n u n i t s i n e v e r y s e c t o r o f 4-3

 

MODEL TRIETHYLENE GLYCOL

TABLE 4 - 1

TEG)

DEHYDRATION UNITS

Model TEG u n i t s

Parameter A

B

c

D

E

.s.5

>5 t o 20

>20 t o 50

>50 t o 500

>500

0.28

10

35

100

500

90

90

90

90

90

700

700

700

700

700

7

7

7

7

7

Percent with fla sh tank in system design

10

40

55

100

100

Glycol c i r c u l a t i o n r a t e Gallons of glycol p e r l b s

5.9

5.9

5.9

5.9

5.9

Stand alone

24,000

200

25

20

---

Condensate t a n k b a t t e r y

12,000

500

100

70

- --

-- -

66

110

54

---

Natural gas

Capacity

MMSCF/D) MMSCF/D)

Throughput Temperature Pressure :

DF)

psig)

Dry g a s w a t e r c o n t e n t Pounds o f w a t e r p e r MMSCF/D)

o f w a t e r r em oved)

Estimated population d i s t r i b u t i o n o f TEG u n i t s

Natural gas processing

pl anta

Offshore production

---

260

40

-- -

---

Natural gas transmission

200

125

25

10

10

platform in State waters

and underground storage MMSCF/D - M i l l i o n o f s t a n d a r d c u b i c f e e t p e r d a y Pounds p e r s q u a r e i n c h g a u g e

psig -

a

-

B a s e d o n o n e o f tw o p a r a l l e l p r o c e s s i n g l i n e s o n l i n e a t a n y o n e t i m e f o r t h e s m a l l n a t u r a l g a s p r o c e s s i n g p l a n t a n d tw o o f t h r e e o n l i n e f o r t h e l a r g e r m ode l n a t u r a l g a s p r o c e s s i n g p l a n t s .

4-4

 

T BLE

4-2.

MODEL

ETHYLENE

GLYCOL

EG)

DEHYDR TION

UNITS

Model EG u n i t s

Parameter A

c

D

Natural gas Capacity

{MMSCF/D)

Throughput

{MMSCF/D)

I n l e t Temperature

°F)

Contactor Temperature

Pressure

°F)

psig)

Dry gas water content w a t e r p e r MMSCF/D) Percent with fla sh

P ounds o f

tank in

system

<20

20 t o 100

>100 t o 500

>500

10

35

100

500

75

75

75

75

0

0

0

0

1,000

1,000

1,000

1,000

5

5

5

5

100

100

100

100

0.5

0.5

0.5

0.5

66

110

54

30

design

Glycol c i r c u l a t i o n r a t e Gallons o f g l y c o l p e r l b s o f w a t e r re m o v e d )

Estimated population di s t r i but i on o f EG

units Natural

gas processing p l a n t a

rd c u b i c f e e t p e r d a y MMSCF/D - M i l l i o n o f s t a n d a rd

psig -

a -

Pounds p e r s q u a r e i n c h gauge

B a s e d o n o n e o f tw o p a r a l l e l p r o c e s s i n g l i n e s o n l i n e a t a n y o n e t i m e f o r t h e s m a l l n a t u r a l g a s p r o c e s s i n g p l a n t a n d tw o o f t h r e e o n l i n e f o r t h e l a r g e r model n a t u r a l gas p r o c e s s i n g p l a n t s .

4-5

 

both source categories,

Of t h i s ,

including the offshore production sector.

approximately 38,000 are glycol dehydration u n i t s

( p r i m a r i l y TEG a n d

G

dehydration units)

and 2,000 are s o l i d

desiccant dehydration units.

T h e model g l y c o l d e h y d r a t i o n u n i t d i s t r i b u t i o n f o r n a t u r a l

g a s p r o c e s s i n g p l a n t s r e f l e c t s comments r e c e i v e d f r o m members o f API s

T h e s e comments i n d i c a t e t h a t t h e m a j o r i t y o f n a t u r a l

CAIG.

g a s p r o c e s s i n g p l a n t s p r i m a r i l y employ n o n - g l y c o l d e h y d r a t i o n units

(some f o r m o f s o l i d d e s i c c a n t s y s t e m )

processing stream,

within. t h e i r

with the remaining natural

plants using e ith e r T G o r

gas processing

dehydration units

G

within their

o v e r a l l p r o c e s s i n g system d esig n .l3 4.2.1.3

Natural

G as L i f e C y c l e .

The n u mb e r o f t i m e s t h a t

n a t u r a l ga s i s d eh y d rated by gl ycol de hydr a tion u n i t s dur ing

l i f e cycle

( l i f e c y c l e b e i n g d e f i n e d a s from t h e p o i n t o f

production of natural

gas a t

a

processing and storage stages,

t h e end user)

i n i t i a l analyses,

t h e EP

of times th a t natural

in

ts

well,

through

ts

various

t o t h e t i m e when it: i s consumed b y

i s one o f t h e components i n t h e o v e r a l l methodology

o f d e t e r m i n i n g model p l a n t

units

ts

and nationwide impacts. s e l e c t e d two t i m e s

(2x)

In

ts

a s t h e number

gas i s dehydrated by glycol dehydration

l i f e cycle.

T h i s was b a s e d o n

i n f o r n ~

t i o n

f r o m GRI,

which s t a t e d

a

l o w e r l i m i t o f o v e r l x a n d a n unknown u p p e r

estimate t h a t n a t u r a l gas i s

systems in

ts

The EP

dehydrated several times with glycol

l i f e cycle.l4

revised

ts

e s t i m a t e to approximatel)r 1 . 6 x f o r

n a t u r a l gas dehydrated through a l l

located at all

(including solid desiccant units)

s e c t o r s throughout

the oil

forms o f d e h y d r a t i o n u n i t s operational

and n a t u r a l gas product i on and n a t u r a l

ga s tr an smissio n and s t o r a g e s o u rce c a t e g o r i e s .

~ r

i s

revision

wa s b a s e d o n comments r e c e i v e d f r o m members o f A P I s C IG a n d

t h r o u g h s t u d i e s c o n d u c t e d by· t h i s g r o u p . l 5 , 1 6 , 1 7 estimated l i f e dehydration

cycle factor includes.accounting

(approximately 0.2x)

emissions regulatory

This t o t a l for offshore

i s not under t h e EPA s a i r

that

jurisdiction.

4-6

 

A r e c e n t GRI r e p o r t e s t i m a t e d t h e n a t u r a l g a s l i f e c y c l e a t This report s t a t e s

between 2x and 3x.

· ..

In our di scussi ons·

with the industry, t was s t a t e d t h a t n a t u r a l g a s i s f r e q u e n t l y dried multiple times, usually during production, before gas

processing,

4.2.2

and i n t h e t r a n s f e r from underground s t o r a g e . n 1 8

C o n d e n s a t e Tank B a t t e r i e s F o u r s e p a r a t e m odel c o n d e n s a t e t a n k b a t t e r i e s t h a t r e p r e s e n t

the s i z e range o f condensate tank b a t t e r i e s

(based on condensate

and n a t u r a l gas d e s i g n and throughput c a p a c i t i e s )

were developed.

The n a t u r a l g a s t h r o u g h p u t c a p a c i t y r a n g e s o f t h e f o u r c o n d e n s a t e

m odel b a t t e r i e s a r e t o 5 0 MMSCF/D

and

(1) (4)

~

MMSCF/D

(2)

>5 t o 2 0 MMSCF/D

(3)

>20

>50 MMSCF/D.

Condensate t a n k b a t t e r i e s g e n e r a l l y have a g l y c o l dehydration unit design of

as a process unit within the overall system

the tank battery.19

dehydration units

However ,

because glycol

a r e a d d r e s s e d a s s e p a r a t e m odel p l a n t s ,

parameters for glycol dehydration uni t s are not included with the m odel c o n d e n s a t e t a n k b a t t e r y p a r a m e t e r s . than glycol

dehydration u n i t parameters)

tank batteries

The p a r a m e t e r s

other

f o r t h e m odel c o n d e n s a t e

are presented in Table 4-3.

A p p r o x i m a t e l y 15 p e r c e n t o f a l l t a n k b a t t e r i e s , e s t i m a t e d 13,000 t a n k b a t t e r i e s ,

o r an

are classified as condensate

A f u r t h e r b r e a k d o w n o f t h e num ber o f

tank batteries.20

c o n d e n s a t e t a n k b a t t e r i e s i n e a c h m odel c o n d e n s a t e t a n k b a t t e r y show n i n T a b l e 4 - 3 .

s iz e range i s

dehydration units

P a r a m e t e r s f o r m odel g l y c o l

are presented in Section 4.2.1

and Tables 4-1

a n d 4 - 2 o f t h i s BID. 4.2.3

N a t u r a l G as P r o c e s s i n g P l a n t s

T h r e e s e p a r a t e m odel n a t u r a l g a s p r o c e s s i n g p l a n t s t h a t size ranges of natural gas processing pl ant s

represent different

(based on n a t u r a l gas des i gn and throughput c a p a c i t i e s )

developed.

The n a t u r a l g a s t h r o u g h p u t c a p a c i t y r a n g e s o f t h e

t h r e e m odel p r o c e s s i n g p l a n t s a r e

MMSCF/D

were

and

(3)

(1)

<20 MMSCF/p

(2)

2 0 t o 100

>100 MMSCF/D.

4-7

 

MODEL CONDENSATE TANK BATTERIES

TABLE 4 - 3

Model c onde nsa t e

tank bat t er y

Parameter

F

G

H

>5 t o

>20 t o

>50

20

50

0.28

10

35

100

15

100

1,000

5,000

4

2

E

N atur al gas s_

C a p a c i t y (MMSCF/D) Throughput '

(MMSCF/D)

Condensate throughput Fixed-roof product

(BOPD)

storage tanks

210 b a r r e l c a p a c i t y

2

500 b a r r e l c a p a c i t y 1 000 barrel

capacity

2 2

4

Com ponents

Valves

Gas/vapor

30

60

90

150

Light l i qui d

30

60

90

150

H eavy l i q u i d

20

20

40

60

Light l i qui d

2

4

6

10

H eavy l i q u i d

2

2

4

6

Pump s e a l s

Compressor s e a l s

2

4

6

10

Pressure r e l i e f valves

6

10

16

26

170

290

460

750

Sampling connections

2

4

6

10

Open-ended l i n e s

4

8

12

20

270

460

730

1 200

12,000

500

100

70

Flanges and connections

To t al components

Estimated population

MMSCF/D - M i l l i o n o f s t a n d a r d c u b i c f e e t p e r d a y BOPD- B a r r e l s o f o i l p e r day

4-8

 

P a r a m e t e r s f o r t h e m odel n a t u r a l g a s p r o c e s s i n g p l a n t s a r e presented in Table 4-4.

As w i t h t h e m odel c o n d e n s a t e t a n k

batteries p a r a m e t e r s f o r m odel g l y c o l d e h y d r a t i o n u n i t s a t natural gas processing plants are not presented in Table 4-5.

P a r a m e t e r s f o r m odel g l y c o l d e h y d r a t i o n u n i t s a r e p r e s e n t e d i n S e c t i o n 4 . 2 . 1 and Tables 4-1 and 4-2.

As o f J a n u a r y 1

1993

t h e r e w e r e a p p r o x i m a t e l y 700 d o m e s t i c

n at u r al gas processing plants.21

The c i t e d r e f e r e n c e

includes a

l i s t i n g o f th e se nat ur al gas processing p l a n t s by S t a t e w i t h d e si g n c a p a c i t i e s and e st i m a t e d 1992.throughputs.

t h i s annual survey

estimates of

t h e num ber o f n a t u r a l

p r o c e s s i n g p l a n t s c o r r e s p o n d i n g t o e a c h m odel p l a n t

along Based on

gas

size range

w e r e made a n d a r e i n c l u d e d i n T a b l e 4 - 4 . 4.2.4

Offshore Production Platforms in S t a t e Waters Two m odel

offshore production platforms designed to be

r e p r e s e n t a t i v e o f a s m a l l a n d a medium o f f s h o r e p r o d u c t i o n platform that are

were developed.

typical of those located in State water areas

The p a r a m e t e r s a n d v a l u e s s e l e c t e d t o

c h a r a c t e r i z e t h e s e m odel o f f s h o r e p r o d u c t i o n p l a t f o r m s a r e p r e s e n t e d i n Table 4-5.

As w i t h t h e m odel c o n d e n s a t e t a n k b a t t e r i e s processing plants

and n a t u r a l gas

p a r a m e t e r s f o r m odel g l y c o l d e h y d r a t i o n u n i t s

a t offshore production platforms are not presented in t h i s ta b le .

P a r a m e t e r s f o r m odel g l y c o l d e h y d r a t i o n u n i t s a r e p r e s e n t e d i n Section 4.2.1

a n d T a b l e s 4 - 1 a n d 4 - 2 o f t h i s BID.

T h e r e a r e a p p r o x i m a t e l y 300 o f f s h o r e p r o d u c t i o n p l a t f o r m s i n S t a t e w a t e r s t h a t a r e u n d e r t h e EPA   s j u r i s d i c t i o n f o r a i r e m i s s i o n s r e g u l a t i o n . 22 To c h a r a c t e r i z e t h i s s e g m e n t o f t h e o i l

and n a t u r a l gas p r o d u c t i o n source c a t e g o r y

t h e EPA r e q u e s t e d

t e c h n i c a l d a t a f r o m members o f A P I • s CAIG t o a s s i s t

in developing

m odel o f f s h o r e p r o d u c t i o n p l a t f o r m s t h a t w o u l d b e r e p r e s e n t a t i v e of those

located in State waters.23

4-9

 

TABLE 4 - 4

MODEL N

TUR L

G S

PROCESSING PLANTS Model n a t u r a l g a s

Parameter

processing plant

A

B

c

<20

20 t o 100

>100

10

35

200

4

4

4

300

750

-1 800

Light l i qui d

60

150

360

H eavy l i q u i d

20

40

60

Light l i qui d

4

10

24

H eavy l i q u i d

2

4

6

4

10

24

10

24

54

1 200

3 200

12 000

N atur al gas I

I

C a p a c i t y (MMSCF/D) Throughput

(MMSCF/D)

Fixed-roof product s torage tanks 1 000 barrel capacity

Com ponents

Valves

Gas/vapor

Pump s e a l s

Compressor s e a l s Pressure r e l i e f valves

Flanges and co n n ect i o n s

4

10

24

8

1()

48

1 600

4 200

14 000

260

300

140

Sampling co n n ect i o n s Open-ended l i n e s Total

components

Estimated population

MMSCF/D - M i l l i o n o f s t a n d a r d c u b i c f e e t p e r d a y a -

P r i m a r y p r o d u c t s l o a d e d a r e n a t u r a l g a s o l i n e an d c o n d e n s a t e .

4-10

 

TABLE

4-5.

MODEL OFFSHORE

Parameter

PRODUCTION

PLATFORMS

Small

Medium

Number o f w e l l s l o t s

2

18

Production wells

1

8

1 000

5 000

200

2 000

10

20

5

10

Gas/vapor Light liquid

60 15

540 120

H eavy l i q u i d

2

8

Light l i q u i d

1

1

H eavy l i q u i d

1

Crude o i l c a p a c i t y

BOPD)

Crude o i l pr oduction

BOPD)

Natural gas capacity

MMSCF/D)

Natural gas production

MMSCF/D)

Com ponents

Valves

Pump s e a l s

7

Compressor s e a l s Pressure r e l i e f valves

Flanges and connections

2

16

500

4 000

Sampling connections

1

3

Open-ended l i n e s

2

2

T o t a l components

590

4 700

Estimated population

260

40

BOPD

- B a r r e l s o f o i l p e r day

MMSCF D

- M illio n o f s tan d ar d cu b i c f e e t p e r day

4-11

 

as o f t h e d a t e o f t h i s background inj:ormation

Ho we v e r,

document

{BID),

the requested technical

d a t a on S t a t e w a te r

o f f s h o r e p r o d u c t i o n p l a t f o r m s have not been r e c e i v e d from A P I s

CAIG.

Due t o t h i s ,

t h e EPA d e v e l o p e d i t s

characterization of

o f f s h o r e product i on pl at form s lo cated i n S t a t e wa te r s and e s t i m a t e d model p a r a m e t e r s b a s e d o n d a t a a p p e a r i n g i n a n U . S .

D e p a r t m e n t o f I n t e r i o r s M i n e r a l s Management S e r v i c e

MMS)

report

on F ederal o f f sh o r e s t a t i s t i c s . 2 4 4.2.5

N a t u r a l Gas T r a n s m i s s i o n a n d S t o r a g e

T h e o n l y HAP e m i s s i o n p o i n t o f c o n c e r n f o r t h e n a t i o n a l

emission standards for hazardous a i r pol l ut ant s n a t u r a l gas t r an s m i s s i o n and st o r a g e f a c i l i t i e s vent associ at ed with a glycol dehydration unit

facilities.

NESHAP)

i s any proces s at

these

According to i n d u s t r y r e p r e s e n t a t i v e s ,

dehydration u n i t s used in the natural

80 p e r c e n t o f

gas t rans m i s s i on and

s t o r a g e s o u r c e c a t e g o r y a r e TEG d e h y d r a t i o n u n i t s , desiccant

for

with solid

systems accounting f o r most o f t h e rem ain in g u n i t s . 2 5

T h e r e a r e few,

i

any,

EG d e h y d r a t i o n u n i t s

in t h i s

source

category.26,27

Thus,

a s w i t h t h e model c o n d e n s a t e t a n k b a t t e r i e s ,

gas processing plants,

natural

and o f f sh o r e product i on pl at form s l o c a t e d

in State waters,

p a r a m e t e r s f o r model TEG d e h y d r a t i o n u n i t s a t

n a t u r a l gas t r an s m i s s i o n and st o r a g e f a c i l i t i e s in this

s e c t i o n o f t h e BID.

dehydration units

are not presented

The p a r a m e t e r s f o r model TEG

a r e p r e s e n t e d in S ect i o n 4 . 2 . 1 and Table 4-1 o f

t h i s BID. 4.3 1.

REFERENCES Responses t o t h e U.S. Environmental P r o t e c t i o n Age nc y s A i r E m i s s i o n s S u r v e y Q u e s t i o n n a i r e s f o r t h e O i l a n d N a t u r a l Gas P r o d u c t i o n S o u r c e C a t e g o r y EPA A i r D o c k e t A-·94-04, I t e m s I I - D - 1 thr ough I I - D - 2 5 ) . 1993.

2.

S i t e V i s i t T r i p R e p o r t S e r i e s from V i c o n o v i c , G . , I n c o r p o r a t e d , t o S m i t h , M . E . , EPA/CPB EPA/WCPG). 1993, and 1996.

3.

Memorandum f r o m A k i n , T . , a n d G. V i c o n o v i c , EC/R I n c o r p o r a t e d , t o S m i t h , M . E . , EPA/CPB. A p r i l 2 1 , 1 9 9 3 .

EC/R

1992,

4-12

 

Summary o f t h e o i l a n d n a t u r a l g a s p r o d u c t i o n r o u n d t a b l e

workshop.

4.

L e t t e r . a n d a t t a c h m e n t from E v a n s , J . M . , Gas R e s e a r c h I n s t i t u t e , t o V i c o n o v i c , G . , EC/R I n c o r p o r a t e d . A p r i l 1 9 , TEX c o n t e n t . 1995. N a t u r a l gas

5.

American P etro leu m I n s t i t u t e . T r i e t h y l e n e Glycol D e hydr a tor O p e r a t i n g P a r a m e t e r s f o r E s t i m a t i n g TEX E m i s s i o n s ( P r e p u b l i c a t i o n D r a f t ) . W a s h i n g t o n , DC. F e b r u a r y 1 9 9 6 .

6.

Memorandum f r o m A k i n , T . , EC/R I n c o r p o r a t e d , t o S m i t h , M . E . , EPA/CPB. J u l y 3 0 , 1 9 9 3 . R e v i s e d p r e l i m i n a r y e s t i m a t e o f t h e num ber a n d s i z e r a n g e s o f t a n k b a t t e r i e s o n a n a t i o n a l basis.

7.

Reference 3.

8.

Memorandum from V i c o n o v i c , G . , EC/R I n c o r p o r a t e d , t o S m i t h , M . E . , EPA/CPB. A p r i l 8 , 1 9 9 3 . Summary o f m e e t i n g w i t h t h e G as R e s e a r c h I n s t i t u t e .

9.

Gas R e s e a r c h I n s t i t u t e . T e c h n i c a l R e f e r e n c e Manual f o r GRI GLYCalc™: A P r o g r a m f o r E s t i m a t i n g E m i s s i o n s from G l y c o l D e h y d r a t i o n o f N a t u r a l Gas, V e r s i o n 3 . 0 GRI-96/0091). C h i c a g o , I L . March 1 9 9 6 .

10.

GRID: Gas R e s e a r c h I n s t i t u t e D i g e s t Research I n s t i t u t e , Chicago, IL.

Summer 1 9 9 3 ) . G as

11.

C h e m i c a l E n g i n e e r i n g . Decem ber 1 9 9 3 . Company, H i g h t s t o w n , NJ.

McGraw H i l l P u b l i s h i n g

12.

Gas R e s e a r c h I n s t i t u t e . N a t u r a l Gas D e h y d r a t i o n : S t a t u s a n d Trends. F inal Report GRI-94/0099). Chicago, IL. J a n u a r y 1994.

13.

Memorandum from A k i n , T . , a n d G. V i c o n o v i c , EC/R I n c o r p o r a t e d , t o S m i t h , M.E., EPA/CPB. J u n e 2 3 , 1 9 9 4 . Summary o f t h e m e e t i n g w i t h t h e A m e r i c a n P e t r o l e u m I n s t i t u t e s C l e a n A i r I s s u e s Group o n May 1 7 t h , 1 9 9 4 .

14.

Reference 8.

15.

Reference 13.

16.

Memorandum a n d a t t a c h m e n t s from V i c o n o v i c , G . , EC/R I n c o r p o r a t e d , t o S m i t h , M.E., EPA/WCPG. J u n e 26, 1 9 9 5 . Summary o f t h e A p r i l 2 6 t h , 1995,. t e l e c o n f e r e n c e w i t h r e p r e s e n t a t i v e s o f t h e American Petroleum I n s t i t u t e .

17.

Reference 5. 4-13

 

18.

Refere nce 12.

19. 20.

Reference 1 . Reference 1.

21.

O i l a n d Gas J o u r n a l . Company, T u l s a , OK.

22.

U.S. Environmental P r o t e c t i o n Agency/Office o f Water. D e v e l o p m e n t Document f o r E f f l u e n t L i m i t a t i o n s G u i d e l i n e s a n d New S o u r c e P e r f o r m a n c e S t a n d a r d s f o r t h e O f f s h o r e S u b c a t e g o r y o f t h e O i l a n d Gas E x t r a c t i o n P o i n t S o u r c e Category: F inal EPA 8 2 1 - R - 9 3 - 0 0 3 . W a s h i n g t o n , DC. J a n u a r y 1993.

23.

Memorandum from A k i n ,

J u ly 12,

T.,

1993.

PennWel l P u b l i s h i n g

a n d G. V i c o n o v i c ,

EC/R

I n c o r p o ro a ft e M d , e ettoi n g EPA/CPB. S mwi tiht h , M , m 9 9t 4 Summary e r i c a n P eF n4s,t i 1 tu e. s t h.eE . A t reobl reuuamr y I 1 C l e a n A i r I s s u e s Group.

24.

D e p a r t m e n t o f t h e I n t e r i o r / M i n e r a l s Management S e r v i c e . F e d e r a l O f f s h o r e S t a t i s t i c s : 1993 OCS R eport. MMS 9 4 - 0 0 6 0 .

U.S.

Herndon,

VA.

1994.

25.

Memorandum from V i c o n o v i c , G . , EC/R I n c o r p o r a t e d , t o S m i t h , M . E . , EPA/WCPG. J u l y 1 0 , 1 9 9 6 . S i t e v i s i t r e p o r t T r a n s c o n t i n e n t a l Gas P i p e L i n e C o r p o r a t i o n , C o m p r e s s o r S t a t i o n , D i s t r i c t 160, R e i d s v i l l e , No r t h Ca rolina .

26.

R eferen ce 25.

27.

Memorandum from V i c o n o v i c , G . , EC/R I n c o r p o r a t e d , t o S m i t h , M . E . , EPA/WCPG. D ecem ber 7 , 1 9 9 5 . Summary o f November 9 t h , 1995, m eetin g w i t h r e p r e s e n t a t i v e s o f t h e n a t u r a l g as transmission industry.

4-14

 

5.0

5.1

ENVIRONMENTAL AND ENERGY IMPACTS OF CONTROL OPTIONS

INTRODUCTION

This chapter provides a d i sc u ssi o n of the environmental and energy impacts a s s o c i a t e d with the control options t h a t have been i d e n t i f i e d a s applicable to t h e i d e n t i f i e d hazardous a i r

HAP)

pollutant

emission p o i n t s in the o i l and n a t u r a l gas

p r o d u c t i o n and n a t u r a l gas t r a n sm i ssi o n and s t or a ge

categories.

source

The c o n t r o l o p t i o n s u n d e r e v a l u a t i o n f o r HAP

emission points i d e n t i f i e d in these source categories are l i s t e d in Table 3-1 of Chapter 3.0 of t h i s background information

document

BID) .

The c o n t r o l o p t i o n s a p p l i c a b l e t o t h e i d e n t i f i e d HAP

emission points include a variety of emission reduction techniques.

The c o n t r o l o p t i o n s i n c l u d e

1)

the.use of emissions

c o n t r o l equipment

for tanks) glycol

and

(e.g.,

i n s t a l l a t i o n of a cover o r fixed-roof

work s t a n d a r d s

2)

dehydration units

(e.g.,

system optimization f o r

and l e a k d e t e c t i o n and r e p a i r

LDAR)

programs for f u g i t i v e emission points) . Two c o n t r o l o p t i o n s b e i n g e v a l u a t e d f o r HAP e m i s s i o n p o i n t s i n t h e s e s o u r c e c a t e g o r i e s may h a v e s e c o n d a r y e n v i r o n m e n t a l

impacts o r energy-use impacts. use of

1)

a combustion system

f a c i l i t i e s and fixed-roof

These c o n t r o l o p t i o n s i n c l u d e t h e (flare)

for remotely located

a vapor c o l l e c t i o n and r e d i r e c t system f o r

2)

storage tanks.

The i m p a c t a n a l y s e s c o n s i d e r a f a c i l i t y s a b i l i t y t o h a n d l e collected vapors. Some r e m o t e l y l o c a t e d f a c i l i t i e s may n o t b e able to use co l l ect ed vapor for

fuel

or recycle

t

back in to the

5-1

 

process.

In addition

some f a c i l i t i e s

t

may n o t b e t e c h n i c a l ly ly f e a s i b l e

to utilize

for

the non-condensable vapor streams

condenser systems as an al t er n at i v e fuel source safely. o p t i o n f o r t h e s e f a c i l i t i e s i s t o com bust t h e s e v a p o r s b y

from

n

flaring.

These concerns a r e r e f l e c t e d i n t h e analyses conducted by t h e EPA. of all

In

ts

analyses

t h e EPA e s t i m a t e d t h a t

1)

45 p e r c e n t

impacted f a c i l i t i e s w i l l be able to use c o l l e c t e d vapors

as an alternative fuel

source f o r an o n - s i t e combustion device

such as a process he a t e r or the glycol dehydration uni t firebox 2)

4 5 p e r c e n t w i l l b e a b l e r e c y c l e c o l l e c t e d v a p o r s i n t o a low

p r e s s u r e header system f o r combination with o t h e r hydrocarbon streams handled a t

the facility

and

3)

10 p e r c e n t w i l l d i r e c t

a l l c o l l e c t e d vapor to an o n - s i t e f l a r e . 5.2

AIR POLLUTANT IMPACTS

Primary Air Po l l u t a n t Impacts

5.2.1

The p r ima r y a i r p o l l u t a n t impacts a r e b a s e d on t h e e s t i m a t e d c o n t r o l e f f i c i e n c y o f t h e c o n t r o l o p t i o n s l i s t e d :Ln T a b l e

S-1.

Emission reductions for control of the glycol

unit

r e b o i l e r vent a r e based on t h e a p p l i c a t i o n o f with a

flash tank in the design of the glycol

d e h ~ r d r

1)

t i o n

a condenser

d e ~ r d r

t i o n

system

or

2)

a n e q u i v a l e n t HAP c o n t r o l s y s t e m .

T h e c o n t r o l o p t i o n s t h a t a r e b e i n g e v a l u a t e d f o r HAP emission points

i n t h e s e s o u r c e c a t e g o r i e s a r e al:so e f f e c t i v e

t h e c o n t r o l o f v o l a t i l e o r g a n i c compound

VOC)

and methane

e m i s s i o n s f r o m t h e same i d e n t i f i e d e m i s s i o n p o i n t s .

Thus,

primary a i r pol l ut ant impacts associated with control emission points

emissions.

include reductions

VOC

the

o f HAP

i n a s s o c i a t e d VOC a n d m e t h a n e

The p ri m a ry n a t i o n w i d e a i r p o l l u t a n t imp a c ts ,

a r e r e d u c t i o n s i n HAP

which

and methane a i r e missio n s a s s o c i a t e d

w i t h m a j o r HAP e m i s s i o n p o i n t s i n t h e s e s o u r c e c a t e g o r i e s

p r e s e n t e d in Tables 5-1 and S-2.

pollutant

impacts associated with area source glycol dehydration

S-2

 

5 l.

NATIONAL PRIMARY AIR POLLUTANT IMPACTS MAJOR SOURCES I N THE OIL AND NATURAL GAS PRODUCTION SOURCE CATEGORY EXAMPLE

Emissions Emission point

Megagrams p e r y e a r )

HAP

voc

M e t ha ne

36,000

85,000

6,200

Storage vessels

2,100

6,900

3,900

Equipment l e a k s

470

1,500

1,100

39,000

94, o·oo

11,000

28,000

55,000

3,800

Storage vessels

1,500

4,800

2,700

Equipment leak s

230

730

540

30,000

61,000

7,000

8,000

30,000

2,400

Storage vessels

640

2,100

1,200

Equipment leak s

240

770

560

Baseline

Process v e n t s

Total baseline

Reduction

Process vents

Total

reduction

Controlleda

Process vents

are

The p r i m a r y . n a t i o n w i d e a i r

u n i t s a r e presented in Table 5-3.

TABLE

in

FOR

8,900

Total controlled a

4,200

33,000

Based on following c o n t r o l o p t i o n s :

Glycol dehydration uni t Condenser w i t h f l a s h t a n k i n d e s i g n Storage tanks V e n t t o 95 control device Equipment l e a k s 70 level of control

5-3

 

TABLE 5 - 2 .

EX MPLE

NATIONAL M

N

TUR

L

G

S

JOR

PRIM RY AIR POLLUT NT IMPACTS SOURCES I N THE ND STOR GE SOURCE C TEGORY

TRANSMISSION

Emissions

Emission p o i n t

(Megagrams p e r yE ar)

H P

voc

Methane

120

1,500

59

110

1,400

54

10

100

5

Baseline

 

Process vents Reduction

P r o c e ss v e n t s

Controlleda '

Process vents

a - Based on f o l l o w i n g c o n t r o l o p t i o n s : G ly co l d e h y d r a t i o n

un t

- Condenser w i t h f l a s h t a n k

n

design

FOR

5-4

 

T

BLE

EX MPLE N TION L PRIM RY AIR POLLUT NT IMPACTS RE SOURCE GLYCOL DEHYDR TION UNITS I N THE OIL ND N TUR L G S PRODUCTION SOURCE C TEGORY

5-3.

Emissions Emission poi nt

Megagrams p e r y e a r )

voc

M e t ha ne

19,000

43,000

9,600

3,300

7,200

1,500

16,000

36,000

8,100

H

P

FOR

Baseline

Process vents Reduction

Process vents Controlleda

Process vents a

Based on t h e a p p l i c a t i o n o f a condenser w i t h f l a s h t a n k i n d e s i g n t o a re a source glycol dehydration u n i t s . Of t h e e s t i m a t e d t o t a l p o p u l a t i o n o f approximately 37,000 area source g l y c o l d eh y d ratio n u n i t s a p p r o x i m a t e l y 520 u n i t s woul d b e r e q u i r e d t o i n s t a l l c o n t r o l s .

5-5

 

Secondary Air P o l l u t a n t Impacts

5.2.2

Secondary e m i s s i o n s o f a i r p o l l u t a n t s r e s u l t from t h e operation o f c e r ta in control devices

b e u s e d t o com ply w i t h a s t a n d a r d . estimated that

such as a f l a r e

t h a t may

For condenser systems,

it

is

45 p e r c e n t o f i m p a c t e d g l y c o l d e h y d r a t i o n u n i t s

w i l l use t h e non-condensable p o r t i o n o f th e e mission stream as a

supplemental fuel source for the glycol reboiler. no n e t change

n

Thus,

there

is

energy use associated with the application of

t hi s control option for those f aci l i t i es

that incorporate this

d e s i g n and no n e t change i n co mb u s t i o n -rel at ed

A p o r t i o n o f impacted f a c i l i t i e s

emissions.

10 p e r c e n t )

judged to

are

be remotely located or technically unable to u t i l i z e collected These f a c i l i t i e s f l a r e c o l l e c t e d e mission s t reams .

vapors.

Thus,

oxide

there w ill be an increase in s ul f ur dioxide

NOx) , a n d c a r b o n m onoxide

combustion.

CO)

5.3

e missions from t h i s

The e s t i m a t e d n a t i o n a l a n n u a l

i ncrease in secondary a i r emissions

Mg)

nitrogen

Table 5-4 pre se nt s th e secondary a i r p o l l u t a n t

impa c ts on a n a t i o n a l b a s i s . m egagr am

SOx),

o f SOx,

7 Mg o f NOx,

from f l a r i n g

~ i l l

b e <1

a n d 1 Mg o f CO.

WATER AND SOLID WASTE IMPACTS The c o n d e n s e d w a t e r c o l l e c t e d w i t h t h e h y d r o c a r b o n

condensate can be d i r e c t e d back i n t o the system f o r reprocessing w i t h t h e hydrocarbon· condensate o r ,

i f separated,

produced water for disposal by r e i n j e c t i o n .

combined w i t h

Thus,

the water

impact associated with i n s t a l l a t i o n of a condenser system for a g l y c o l d e h y d r a t i o n u n i t r e b o i l e r v e n t would b e m i n i m a l .

W a t e r v a p o r may b e c o l l e c t e d a l o n g w i t h h y d r o c a r b o n v a p o r s n

t h e vapor c o l l e c t i o n and r e d i r e c t system f o r fixed-roof

storage tanks.

systems.

The w a t e r v a p o r may c o n d e n s e i n t h e c o n t r o l

A knockout designed i n t o t h e system w i l l c o l l e c t any

condensable product

w a t e r a n d h y d ro c a rb o n s ) .

As w i t h t h e

c onde nse r system, t h i s wa te r can be d i r e c t e d back i n t o t h e s y s tem f o r rep r o cessin g wi t h t h e hydrocarbon condensate o r, separated,

i

combined w i t h produced w a te r f o r d i s p o s a l by 5-6

 

T

BLE

5-4.

EX MPLE NATIONAL SECOND RY AIR POLLUT NT IMPACTS FLARING FOR M JOR ND RE SOURCES IN THE OIL ND N TUR L G S PRODUCTION SOURCE C TEGORYa

DUE

TO

Model p l a n t a n d emission point

E s t i m a t e d num ber installing flare

Estimated emissions p e r flareb Kilograms per year)

Total

Megagrams

per year)

SOx

NOx

co

SOx

NOx

co

<1

48 48 48 52

10 10 10

<1

2

<1

2

<1 <1

<1 <1 <1

Stand alone glycol units B

52 34

c

4

D

2

<1 <1 <1

A

Tank b a t t e r y

<1 <1 <1

6

<1

<1 <1

<1

H

2

<1 <1

10 10 11

<1

4

48 48 52

<1

G

<1

<1

<1 <1

1

<1

48

10

<1

<1

<1

<1

7

1

Natural gas processing plants A

Total

a

No

major so u r c e s i n t h e n a t u r a l gas tr an s m is s io n and st o r a g e s our c e

category are anticipated to use b

SOx NOx

co

flares

Sulfur dioxide

Nitrogen oxides C a r b o n m onoxi de

5-7

 

reinjection.

Thus,

t h e water impact a sso c ia te d with i n s t a l l a t i o n

o f v a p o r c o n t r o l sy st e m s would be minimal.

There a r e no i d e n t i f i e d s o l i d was t es t h a t would be g e n e r a t e d

by i n s t a l l a t i o n of dehydration unit

1)

a condenser system f o r t h e 9 l y c o l

reboiler vent o r

r e d i r e c t system for fixed-roof

a vapor

2)

storage tanks.

o l l ~ ~

Thui3

t i o n

and

no s o l i d

waste impacts are a nt i c i pa t e d with the i n s t a l l a t i o n o f these

systems.

5.4

N RGY

IMPACTS

I f vapor c o l l e c t i o n and r e d i r e c t systems i s used f o r t h e c o n t r o l o f e m i s s i o n s from a f i x e d - r o o f

storage tank,

it

would

r e q u i r e e l e c t r i c i t y f o r o p e r a t i o n o f t h e p ri m a ry components o f t h e vapor c o l l e c t i o n / r e c o v e r y system. fans

These components i n c l u d e

and blowers f o r proper o p e r a t i o n o f t h e system. The a n n u a l e s t i m a t e d e n e rg y r e q u ir e me n ts

collection/recovery system i s hr/yr

.

t

for each vapor

300 k i l o w a t t h o u rs p e r y e a r

kw -

i s e s t i m a t e d t h a t a p p r o x i m a t e l y 125 f a c i l i t i e s w o u l d

i n s t a l l one o r more o f t h e s e c o n t r o i o p t i o n s . T h e n a t i o n a l e n e r g y demand i m p a c t i s p r e s e n t e d i n T a b l e 5 - 5 .

The e s t i m a t e d n a t i o n a l e l e c t r i c a l the operation of all

control

demand t h a t w o u l d r e s u l t

options

i s 38,000 kw-hr/yr.

from

5-8

 

T

BLE

S-5.

Emission point a n d m ode l p l a n t

EX

MPLE

NATIONAL

ENERGY

REQUIREMENTSE

E s t i m a t e d num ber

Energy

installing

requirement kw-hr/yr)

kw-hr/yr)

100

300

30,000

25

300

7,500

control

option

Total

Storage tanks Condensate t a n k batteries Natural gas processing

plants·

38,000

Total kw hr/yr

Kilowatt hours p er year

5-9

 

6.0 6.1

COSTS OF CONTROL OPTIONS

INTRODUCTION

This ch ap ter p r e s e n t s th e approach used to e s t i m a t e t h e c o s t impacts of the control options presented in Chapter 3.0 to i d e n t i f i e d hazardous a i r polluta nt

HAP)

emission points in the

o i l and n a t u r a l g as p r o d u c t i o n and n a t u r a l g as t r a n s m i s s i o n and storage source categories.

C o s t i m p a c t s a r e b a s e d o n t h e model

p l a n t s presented in Chapter 4.0.

The model p l a n t c o s t i m p a c t s w e r e e x t r a p o l a t e d t o e s t i m a t e the cost

and c o s t - e f f e c t i v e n e s s of the c o n t r o l options on a

national basis.

The m e t h o d o l o g y u s e d t o e s t i m a t e t h e c o s t

i m p a c t s o f a p p l y i n g c o n t r o l o p t i o n s 1 t o i d e n t i f i e d HAP e m i s s i o n points

in these source categories

i s d e s c r i b e d i n A ppendix B.

A d e t a i l e d e x a m p l e i s p r o v i d e d i n t h i s BID t o d e m o n s t r a t e

the methodology as the

a p p l i e d o n a model p l a n t b a s i s .

control options used in t h i s

The c o s t s o f

example c a s e a r e p r e s e n t e d i n

Reference 1.

6.2

SUMMARY OF COST METHODOLOGY

Gen eral Approach

6.2.1

Cost e s t i m a t e s were developed f o r t h e fol l owi ng c o n t r o l options

condenser systems,

1)

of a gas condensate glycol

tank)

w i t h and w i t h o u t t h e i n s t a l l a t i o n

separator

GCG s e p a r a t o r o r f l a s h

i n glycol dehydration system design,

systems f o r fixed-roof s torage ta nks

2)

and

3)

vapor c o l l e c t i o n a leak detection

LDAR) p r o g r a m f o r f u g i t i v e e m i s s i o n s . c o s t s w e r e u p d a t e d t o J u l y 1993 d o l l a r s u s i n g c o s t

and r e p a i r All

i n d i c e s o b t a i n e d from Chemical E n g i n e e r i n g . 2

In selected cases

6-1

 

s e p a r a t e c o s t s were e s t i m a t e d f o r applying c o n t r o l opt i ons

to

e x i s t i n g a n d new f a c i l i t i e s .

The d i f f e r e n c e i n c o s t s b e t w e e n a n e x i s t i n g f a c i l i t y a n d

a

new f a c i l i t y f o r t h e same c o n t r o l o p t i o n i s a r e t r o f i t f a c t o r t h a t accounts f o r space l i m i t a t i o n s and a ddi t i ona l engineering requirements.

of control

The r e t r o f i t f a c t o r i s a p p l i e d t o t h e c a p i t a l c o s t

options

installed at existing facilities.

The

r e t r o f i t cost adjustment factor i s estimated to be 1.15 that

was j u d g e d t h a t

t

t

will cost

(on a v e r a g e )

me a n in g

1 5 p e r c e n t mo r e

t o i n s t a l l a c o n t r o l o p t i o n a t a n e x i s t i n g f a c i l i t y a s c o mp a r e d w i t h i n s t a l l a t i o n o f t h e same c o n t r o l

option a t

a

similar size

new f a c i l i t y . 6.2.2

M o n i t o r i n g E q u i p me n t Cost e s t i m a t e s f o r monitoring equipment a s s o c i a t e d with

co n d en ser systems and v a p o r c o l l e c t i o n d e v i c e s were i n c l u d e d i n the capital cost estimates.

costs of

In addition

t h e m o n i t o r i n g equipment were

the annualized capital

included in the

annual

costs of these control options.

The c o s t o f mo n ito r in g equipment c o n s i s t s o f t h e i n s t a l l a t i o n of instrumentation to monitor the control device.

For purposes of t h i s analysis

o p e ~ r

t i o n

the cost

of

of

the

m o n i t o r i n g was e s t i m a t e d t o b e

instrumentation factor

equal to the c a p i t a l cost

for each control

option.

Product Recovery

6.2.3

Product recovery i s presented as an annual c r e d i t in each cost

table

Product r e c ove ry c r e d i t s were

where a p p l i c a b l e .

c a l c u l a t e d b y m u l t i p l y i n g t h e mass o f p r o d u c t r e c o v e r e d b y t h e product value for each control

option.

Recovered condensate and o t h e r l i q u i d hydrocarbons were assigned a value of

for crude o i l . 3

18.00 p e r b a r r e l

t h e a v e ra g ' e c u r r e n t p r i c e

For recovered gaseous products

different values

w e r e a s s i g n e d d e p e n d i n g o n how t h e r e c o v e r e d g a s a r e u s e d . Recovered gaseous hydrocarbons recycl ed f o r processi ng were assigned a value of

(mscf)

4

2.00 p e r thousand standard cubic fe e t

By a s s i g n i n g a v a l u e o f 1 , 0 0 0 B r i t i s h t h e r m a l u n i t s

6 -2

 

(BTUs}/mscf, fuel

recovered gaseous hydrocarbons used as supplemental

were va lue d a t

1.30/mscf.

 

Gaseous h y d r o c a r b o n s d i r e c t e d

t o a n i n c i n e r a t o r o r f l a r e h av e n o v a l u e f o r p r o d u c t r e c o v e r y . 6.2.4 M o n i t o r i n g . I n s p e c t i o n . R e c o r d k e e p i n g . an d R e p o r t i n g

The a n n u a l c o s t s a s s o c i a t e d w i t h m o n i t o r i n g ,

recordkeeping,

an d r e p o r t i n g

MIRR}

inspection,

w e re i n c l u d e d i n t h e t o t a l

a n n u a l c o s t s , b u t a r e p r e s e n t e d s e p a r a t e l y fro m t h e c o n t r o l option costs.

Appendix

C presents

t h e met h o d o l o g y an d e s t i m a t e d

e x a mp le

MIRR c o s t s

f o r e a c h m a j o r HAP e m i s s i o n p o i n t .

ex amp l e

MIRR c o s t s

a r e a l s o p r e s e n t e d i n A p p e n d ix C f o r g l y c o l

dehydration units

Estimated

that are classified as area sources.

C o s t s o f HAP E m i s s i o n C o n t r o l O p t i o n s

6.2.5

6.2.5.1

Process Vents.

The g l y c o l d e h y d r a t i o n u n i t

r e b o i l e r v e n t h a s b e e n i d e n t i f i e d i n t h i s BID a s t h e p r i m a r y HAP

e m i s s i o n p r o c e s s v e n t i n t h e o i l an d n a t u r a l g a s p r o d u c t i o n a n d natural

gas t r a n s m i s s i o n and s t o r a g e s o u rce c a t e g o r i e s .

effective control option identified for.reducing

the

The m o s t

level of

H

emis s io n s from t h e g l y c o l d eh y d ratio n u n i t r e b o i l e r v e n t i s a condenser operated in conjunction with

a

flash tank in a glycol

de hydra tion u n i t s system design. Additional control

can be achieved by re c yc l i ng t he non

P

c o n d e n s a b l e g a s s t r e a m i n t o t h e i n co mi n g n a t u r a l g a s l i n e . n o n - c o n d e n s a b l e g a s s t r e a m may a l s o b e d i r e c t e d t o i n c i n e r a t o r o r used as a supplemental fuel

flare or

a

source.

The

A

condenser

may b e o p e r a t e d a t a h i g h e n o u g h e f f i c i e n c y s u c h t h a t t h e r e s i d u a l n o n - c o n d e n s a b l e g a s s t r e a m may b e v e n t e d t o t h e

atmosphere.

with

a

C os t e s t i m a t e s w e re d e v e l o p e d f o r

condenser system

a

95 p e r c e n t HAP e m i s s i o n r e d u c t i o n e f f i c i e n c y .

n e c e s s a r y eq u i p men t

The

f o r a condenser system in clu d es a

condenser,

c o n d e n s a t e s t o r a g e v e s s e l , an d p i p i n g . S y st em o p t i m i z a t i o n i s a n o t h e r c o n t r o l o p t i o n t h a t may

be

a p p l i c a b l e t o t h i s HAP e m i s s i o n p o i n t . Costs for system o p t i m i z a t i o n a r e n o t p r e s e n t e d due t o · t h e v a r i a b i l i t y o f e f f o r t a s s o c i a t e d with implementing t h i s

In·addition,

option.

t h e HAP

6-3

 

r e d u c t i o n a n d t h e c o s t s o f i m p l e m e n t i n g t h i s o p t i o n may v a r y

s u b s t a n t i a l l y among f a c i l i t i e s b a s e d o n s i t e - s p e c i f i c

Storage Tanks.

6.2.5.2

Crude o i l and co n d en s ate a r e

typically stored in fixed-roof these tanks are too small to the control options

factors.

storage tanks.

Sin. ce m o s t o f

i n s t a l l an i n t e r n a l f loating ro o f

evaluated for

stora.ge tanks

fixed-roof

require col l ect i ng the vapor emitted with a closed-vent

system.

T h e v a p o r c o l l e c t e d b y t h e c l o s e d - v e n t s y s t e n l may b e processed for sale device.

used for fuel

For t h i s analysis

t

o r be d i r e c t e d t o a c o n t r o l

was e s t i m a t e d t h a t 4 5 p e r c e n t o f

a l l f a c i l i t i e s i m p l e m e n t i n g c o n t r o l s f o r s t o r a g e t : anks w i l l process the recovered gas recovered gas

for

fuel

for

o r fuel

sale

45 p e r c e n t w i l l u s e t h e

substitute

a n d 10 p e r c e n t w i l l

i n s t a l l f l a r e s to destroy the col l ect ed gas stream. The c a p i t a l c o s t f o r e a c h c l o s e d - v e n t s y s t e m i n c l u d e s t h e cost of a

fan

designed to

flame a r r e s t o r

and piping.

r e c o v e r v ap o r from four

storage

The e q u i p m e n t w as tanks.

Total

c o s t w as e s t i m a t e d t o b e t h e same f o r a l l m odel p l a n t configurations utilizing this

control

option.

C osts were a l s o e s t i m a t e d f o r f l a r e s .

Based on t h e

capital

recovered volumes o f gas

from t h e s t o r a g e t a n k s

w e r e d e v e l o p e d f o r tw o s i z e f l a r e s . include the costs

f o r a k n o c k o u t drum

costs

for

flares

and p i p i n g .

a flare

Control option costs for

Equipment Leaks.

6.2.5.3

Capital

costs estimates

equipment l e a k s a t n a t u r a l gas p ro ces s i n g p l a n t s a r e based on t h e m o d e l p l a n t com ponent c o u n t s f o r t h e f a c i l i t i e s presented in Chapter 4.0

that

are

a n d t h e u s e o f a LDAR p r o g r a m .

Cost

e s t i m a t e s w e r e t a b u l a t e d f o r a m o n t h l y LDAR p r o g r a m b a s e d o n t h e

New S o u r c e P e r f o r m a n c e S t a n d a r d s

NSPS)

f o r Equipment Leaks o f

VOC f r o m O n s h o r e N a t u r a l Gas P r o c e s s i n g P l a n t s

4:0 CFR,

Part

60

S u b p a r t KKK . 6 6.3

MODEL PLANT BASED CONTROL COSTS T h i s s e c t i o n p r o v i d e s a g e n e r a l d i s c u s s i o n o f how c o n t r o l

o p t i o n c o s t s w e r e e s t i m a t e d f o r t h e m odel p l a n t s . .

More d e t a i l e d

6-4

 

i n f o r m a t i o n o n t h e m e t h o d o l o g y a n d t h e a l g o r i t h m s u s e d may b e

found in Reference 1 . 6.3.1

Glycol Dehydration Units The c o s t s o f a p p l y i n g a c o n d e n s e r t o t h e r e b o i l e r v e n t o f

e a c h m odel g l y c o l d e h y d r a t i o n u n i t d e s c r i b e d i n C h a p t e r 4 . 0 w e r e estimated.

For t h i s a n a l y s i s

m odel t r i e t h y l e n e g l y c o l

t

was e s t i m a t e d t h a t a l l . e x i s t i n g

TEG}-D a n d TEG-E d e h y d r a t i o n u n i t s h a v e

f l a s h tanks in t h e i r system designs

see Chapter 2.0 for

I t was a l s o e s t i m a t e d t h a t 90

d i s c u s s i o n o f f l a s h t a n k use} .

p e r c e n t o f t h e m odel TEG-A d e h y d r a t i o n u n i t s

TEG-B d e h y d r a t i o n u n i t s dehydration units

designs.

60 p e r c e n t o f m odel

a n d 4 5 p e r c e n t o f m odel TEG-C

do n o t have f l a s h t a n k s i n t h e i r s y s t e m

T h e r e f o r e , c o s t s f o r f l a s h t an k s were added t o t h e

c o n d e n s e r c o s t e s t i m a t e s f o r t h o s e e x i s t i n g m odel g l y c o l dehydration units

6.3.2

not having flash tanks in the system design.

C o n d e n s a t e Tank B a t t e r i e s

F o r c o n d e n s a t e m odel t a n k b a t t e r i e s

control option costs

w e r e e s t i m a t e d f o r VRUs f o r f i x e d - r o o f s t o r a g e t a n k s . 6.3.3

N a t u r a l Gas P r o c e s s i n g

Plants

C o n t r o l o p t i o n c o s t s f o r m odel n a t u r a l g a s p r o c e s s i n g p l a n t s

w e r e d e v e l o p e d f o r VRUs f o r f i x e d - r o o f

monthly 6.4 EX

LD

R

MPLE

s t o r a g e t a n k s and a

program f o r c o n t r o l o f equipment l e a k s .

The f o l l o w i n g e x a m p l e i l l u s t r a t e s t h e a p p r o a c h u s e d t o estimate the cost

i m p a c t s o f c o n t r o l o p t i o n s o n a m odel p l a n t .

The m odel p l a n t s e l e c t e d f o r t h i s e x a m p l e i s m odel c o n d e n s a t e t a n k b a t t e r y G t h a t h a s a m odel TEG-C u n i t

battery.

co-located at

the tank

The m odel p l a n t c h a r a c t e r i s t i c s o f t h e s e f a c i l i t i e s

are

p r e s e n t e d i n Tables 4-1 and 4-3 o f Chapter 4 . 0 .

The a p p l i c a b l e c o n t r o l o p t i o n s f o r t h i s m odel p l a n t

combination include

1)

a condenser f o r the glycol dehydration

2) a c l o s e d - v e n t s y s t e m f o r t h e s t o r a g e u n i t r e b o i l e r v e n t and tanks. T h i s e x a m p l e m odel p l a n t c o m b i n a t i o n h a s a n o n - s i t e

combustion device required for

so i n s t a l l a t i o n o f a control device i s not

t h e va por c o l l e c t e d from s t o r a g e

tanks.

6-5

 

The s i z e o f t h e c onde ns e r i s d ep en d en t on t h e flow r a t e o f the glycol dehydration unit reboiler vent, stream to

the condenser.

which i s the i n l e t

The f l o w r a t e a n d

H

t h e g l y c o l d e h y d r a t i o n u n i t r e b o i l e r v e n t was parameters presented in Table 4-1

GRI-GLYCalcTM ( V e r s i o n 3 . 0 ) . 7

n

P

concentration of

e s t i n ~

t e d

using the

C h a p t e r 4 . 0 oj: t h i s BID a n d

The r e d u c t i o n o f

H

achieved by

P

t h e condenser i s b as ed on a H P em i s s i o n r e d u c t i o n e f f i c i e n c y o f

9 5 p e r c e n t a n d a n a v e r a g e i n l e t c o n c e n t r a t i o n o f 200 p a r t s p e r m i l l i o n b y v o l u me

mixed x y l en es

ppmv) b e n z e n e ,

toluene,

e t h y l benzene,

c o l l e c t i v e l y r e f e r r e d t o a s BTEX)

and

in the wet

n a t u r a l gas e n t e r i n g the glyc ol dehydration proces:s.

The d e s i g n c r i t e r i a and c o s t o f t h e c onde ns e r s ys t e m a r e presented

n

Table 6-1 and Table 6-2.

As shown,

t o t a l c a p i t a l investment of the condenser i s t o t a l net annual cost

s

the

estimated

11,000, while th e

( 940) .

A closed-vent system i s the control option applied to the fixed-roof

storage tanks

at this facility.

Emissions from t h e

s t o r a g e t a n k s a r e based on st a ndi ng and working l o s s e s .

p u r p o s e s o f t h i s e x a mp le , As shown

n

Table 6-3,

f l a s h e m i s s i o n s w e re n o t

the t o t a l

c a p i t a l investment

For

calculated.

is estimated

as

The v a p o r c o l l e c t e d i s d i r e c t e d t o the: o n - s i t e

3,600.

recovery

flare) . credit combustion device T h e r e f o r e , no p r o d u c t i s c l a i m e d n t h e t o t a l n e t a n n u a l c o s t shown i n T a b l e 6 - 4 .

T h e t o t a l e s t i m a t e d a n n u a l c o s t s f o r MIRR are; a p p r o x i m a t e l y The c o s t s a r e a d d e d t o t h e a n n u a l

5 , 7 0 0 f o r t h i s mo d e l p l a n t .

c o s t s f o r t h e c o n t r o l o p t i o n s f o r t h i s model p l a n t .

summation o f t h e s e annual c o s t s divide d by the annual emission reduction is

The H

P

equal to the cost e f f e c t i v e n e s s for

c o n t ro l l i n g the combination of H P emission points a t

t h i s mo d e l

plant.

The c o s t i m p a c t s o f i m p l e m e n t i n g t h e s e c o n t r o l o p t i o n s t o t h i s mo d e l p l a n t c o m b i n a t i o n a r e s u mma r i z e d i n T a b l e 6 - 5 . shown, t h e t o t a l c a p i t a l i n v e s t m e n t f o r t h i s model p l a n t

combination i s

14,600.

Total

net annual cost

As

i n c u r r e d by t h e

6-6

 

TABLE 6 1 .

EXAMPLE CONDENSER CAPITAL COSTSa FOR MODEL GLYCOL DEHYDRATION UNIT TEG-C

Equipment

Condenserl'

Description

Size

Condenser and

Factor/

Reference Ref.

All

8

Cost 6,800

piping

C o n d e n sa t e

s

gallons

storage tank Flash tank

125 p s i g

Low p r e s s u r e

2.72{V)+1,960 Ref. 9

R ef. 10

2,100 N.A.

separator

Purchased equipment c o st s

Enhanced m o n i t o r i n g equipment Total capital

cost

{TCC

8,900

{PEC) {EM

for existing unite

0.10*PE C 1.1S*{PEC+EM)

a -

J u l y 1993 d o l l a r s .

b -

Includes di r ect

c

R e t r o f i t facto r of 1.15x fo r ex istin g u n i t s .

-

N.A.

890

11,000

and i n d i r e c t c o s ts .

- Not a p p l i c a b l e t o u n i t s w i t h f l a s h t a n k i n e x i s t i n g s y s t e m d e s i g n .

N o t e : Numbers may v a r y d u e t o r o u n d i n g .

6-7

 

T

BLE

6-2.

EX MPLE

CONDENSER NNU L COST:Sa TION UNIT TEG C

FOR

MODEL GLYCOL DEHYDR

Cost category

Factor

Cost

Direct annual cost

Operating labor

(0.5 hr/8 hr)*(2,080 hr/yr)*(

1,700

13.20/hr)

Supervising labor

0.15*(0perating labor)

Operating materials

None r e q u i r e d

260 0

Maintenance Labor

(0.5 hr/8 hr)*(2,080 hr/yr)*(

Material

Utilities

1,900

14.50/hr)

0.5*(Maintenance labor) None r e q u i r e d

950 0

I n d i r e c t annual costs

2,300

OVerhead

0.60*(Maintenance t o t a l )

Administrative

0.02*(TCC)

230

Property taxes

0.01*(TCC)

110

Insurance

0.01*(TCC)

110

Capital recoveryh

0.1098*(T CC)

Recovery c r e d i t c /

1,500

condensate

(555 b b l / y r ) * (

(10,000)

18.00/bbl)

Total annual cost

( 940)

a

J u l y 1993 d o l l a r s .

b

B a s e d o n a n e q u i p m e n t l i f e o f 1 5 y e a r s and a n i n t e r e s t r a t e o f o v e r t h e l i f e o f t h e equipment.

c

Number i n p a r e n t h e s e s i n d i c a t e a s a v i n g s .

~

7 percent

Numbers may v a r y d u e t o r o u n d i n g .

6-8

 

TABLE 6 - 3 .

EXAMPLE CLOSED VENT SYSTEM CAPITAL COSTSa FOR MODEL CONDENSATE TANK BATTERY TB-G

Equipment Fan

FRP,

Motor

w/Belt

Piping

2

Galv. s t e e l

Fl ame arrestor

2

dia.

Equipment c os t s

centrifugal

starter

Purchased equipment c o s t

(PEC)

Direct installation cost

DC)

-

dia.

42.3*(D)1. 2 Ref. 11

capital cost

Cost $750

7 . 5 hp

235*(hp)0.256 Ref. 11

410

200 f t

R e f . 12

830

Ref.

110

12

$2,100

Indirect installation cost

a

10.5

Factor/

Reference

(EC)

Enhanced m o n i t o r i n g equipment

Total

Size

Description

EM)

(IC)

(TCC)

J u l y 1993 d o l l a r s .

N o t e : Numbers may v a r y d u e t o r o u n d i n g .

0.10*(EC) 1.08*(EC+EM)

Ref.

12

0 . 20* (PEC) (PEC+DC+IC)

210

2,500 580 500

$3,600

6 9

 

T

BLE

6-4.

EX MPLE CLOSED VENT SYSTEM NNU L MODEL CONDENS TE T NK B TTERY TB-G Factor

Cost category

COSTSa FOR Cost

D i r ect annual co st

Maintenance Labozl>

(1 h r / y r ) * (

Material

1.0*(Maintenance labor)

14.50/hr)

0.0509/kW-hr

Utilities

15 15 20

In d ire c t annual costs

OVerhead

0.60*(Maintenance t ot al )

18

Administrative

0.02*(TCC)

72

Property taxes

0.01*(TCC)

36

Insurance

0 . 01* TCC)

36

Capital r e c o v e ~

c

T ot a l annual co st

a

-

0.1098*(TCC)

400 610

J u l y 1993 d o l l a r s .

b -

Reference 12.

c

B a s e d on a n equipment l i f e o f 15 y e a r s and a n i n t e r e s t r a t e o f 7 p e r c e n t

-

over t h e l i f e o f the equipment.

N.A.

- Not a p p l i c a b l e .

~

Numbers may v a r y due t o r o u n d i n g .

6-10

 

T

BLE

6-5.

EX MPLE

MODEL

PL

NT

COST

IMPACTSa

H P

H

emission point

P

Glycol r e b o i l e r vent

Storage tanks

Control

reduction

Total

option

(Megagrams

capital cost

p e r year)

Condenser

60

Closed vent system

0.2

annual cost

11,000

3,600

( 940)b 610

5,700

MIRR c o s t s c Total

Total net

60

14,600

5,370

a

-

e x i s t ignl g fa l ihtyyd rraetp T hn e sdee ncsoa st et ti a mnpka cbt sa t at ep rpyl yGt oand a n model b y model co yco l cdi e un ntiet d TEG-C. i or en s e

b

-

Pa r e n t h e se s r e p r e se n t a c o s t s av i n g s due to product recovery.

c -

M o n i t o r i n g , i n s p e c t i o n r e c o r d k e e p i n g , a n d r e p o r t i n g MIRR) c o s t s includes 3,400 f o r g l y c o l d e h y d r a t i o n u n i t and 2,300 f o r s t o r a g e tanks.

6-11

 

mo d e l p l a n t c o m b i n a t i o n i s MIRR.

Total

annual reduction of hazardous a i r p o l l u t a n t s i s

megagrams p e r y e a r these control

megagram

Mg)

5,370, which includes the c o s t o f

(Mg/yr) .

options

Therefore,

the cost effectiveness of

on t h i s model p l a n t co mb i n at i o n i s

90 p e r

o f HAP r e d u c e d .

References

used i n th e development of the t a b l e s in t h i s

chapterB,9,10,11,12,13

are l i s t e d in Section 6.5 of t h i s

chapter.

6.5

REFERENCES

1.

U . s . En v i r o n men t al P r o t e c t i o n Agency Economic Impact A n a l y s i s o f t h e P r o p o s e d O i l a n d N a t u r a l Gas NESHAPs. F i n a l R e p o r t ( E P A - 4 5 3 / R - 9 6 - 0 1 6 ) . R e s e a r c h T r i a n g l e P a r k , NC.

November 1 9 9 6 .

2.

Chemical Engineering. P u b l i s h i n g . New York,

3.

O i l a n d Gas J o u r n a l . S t a t i s t i c s . P u b l i s h i n g Company. T u l s a , OK.

4.

Reference 3.

5.

Gas R e s e a r c h I n s t i t u t e . P r o c e e d i n g s o f t h e 1992 Gas R e s e a r c h I n s t i t u t e Glycol Dehydrator Air Emissions Conference. Chicago, IL. September 1992.

E q u i p me n t I n d i c e s . M c G r a w - H i l l NY. V a r i o u s I s s u e s .

June 21,

19:93.

PennWell

6.

S t a n d a r d s o f P e r f o r m a n c e f o r E q u i p me n t L e a k s o f VOC f r o m O n s h o r e N a t u r a l Gas P r o c e s s i n g P l a n t s . Code o f F e d e r a l R e g u l a t i o n s , T i t l e 40, P a r t 60, S u b p a r t KKK J u l y 1 , 1 9 9 2 . U . S . G o v e r n me n t P r i n t i n g O f f i c e , W a s h in g to n , DC.

7.

G a s R e s e a r c h I n s t i t u t e . T e c h n i c a l R e f e r e n c e Manual f o r GRI GLYCalc™: A P r o g r a m f o r E s t i m a t i n g E m i s s i o n s f r o m G l y c o l D e h y d r a t i o n o f N a t u r a l Gas, V e r s i o n 3 . 0 ( G R I - 9 6 / 0 0 9 1 ) . Chicago, IL. March 1996

B.

California). Ventura County A i r P o l l u t i o n C ontrol D i s t r i c t Rule 71.5, Glycol Dehydrators (Draft S t a f f Report). E x e c u t i v e Summary. V e n t u r a , CA. A u g u s t 8 , 1 9 9 4 .

9.

U . S . E n v i r o n m e n t a l P r o t e c t i o n Agency. OAQPS C o n t r o l C o s t Manual ( F o u r t h E d i t i o n , EPA 4 5 0 / 3 - 9 0 - 0 0 6 ) . R e s e a r c h T r i a n g l e P a r k , NC. J a n u a r y 1 9 9 0 .

10.

Owens, A . S . BTEX E m i s s i o n s f r o m G a s / G l y c o l D e h y d r a t o r s : A i r · Q u a l i t y C a s e H i s t o r i e s . P r o c e e d i n g s o f t h e 1994 GRI G l y c o l D e h y d r a t o r / G a s P r o c e s s i n g A i r T o x i c s Conferl:mce (J u n e 1 9 9 4 ) . Gas R e s e a r c h I n s t i t u t e , Chicago, IL .

.6 - 1 2

 

11.

12.

13.

E n v i r o n m e n t a l P r o t e c t i o n Agency. C o n t r o l T e c h n o l o g i e s f o r Hazardous A i r P o l l u t a n t s EPA 6 2 5 / 6 - 9 1 / 0 1 4 . W a s h i n g t o n ,

U.S.

DC. J u n e 1 9 9 1 . U . S . E n v i r o n m e n t a l P r o t e c t i o n Agency. H a z a r d o u s W a s t e T S D F  B a c k g r o u n d I n f o r m a t i o n f o r P r o p o s e d RCRA A i r E m i s s i o n S t a n d a r d s - Volume I I I EPA 4 5 0 / 3 - 8 9 - 0 2 3 c . R e s e a r c h T r i a n g l e P a r k , NC. J u n e 1 9 9 1 . N a t i o n a l Emissions S ta nda r ds f o r Hazardous A i r P o l l u t a n t s ; Announcem ent o f N e g o t i a t e d R e g u l a t i o n s f o r E q u i p m e n t L e a k s F e d e r a l R e g i s t e r V o l . 5 6 , No. 4 4 , p p . 9 3 1 5 - 9 3 3 9 . Mar ch 6 , 1 9 9 1 . O f f i c e o f t h e F e d e r a l R e g i s t e r Wa s h i n g t o n , DC.

6-13

 

APPENDIX A. EVOLUTION

OF

THE

B

CKGROUND

INFORMATION

The p r i m a r y o b j e c t i v e o f t h i s p r o j e c t for

DOCUMENT

i s to develop a b a s i s

supporting proposed nat i onal emissions standards f o r

h a z a r d o u s a i r p o l l u t a n t s NESHAP) f o r t h e o i l a n d n a t u r a l g a s production and n a t u r a l gas transmission and s t o r a g e source categories.

To a c c o m p l i s h t h i s o b j e c t i v e ,

acq u ir ed on th e

1)

technical

d a t a were

f o l l o w i n g a s p e c t s o f t h e s e two s o u r c e c a t e g o r i e s

p r o c e s s o p e r a t i o n s and equipment,

e x t r a c t e d and recovered products,

3)

2)

the characteristics of

identified potential

em i ssi on p o i n t s where h azard o u s a i r p o l l u t a n t s

HAP)

are released

i n c l u d i n g t h e magnitude and co mp o sitio n o f H P e m i s s i o n s ) ,

and

4)

t h e t y p e s and c o s t s o f c o n t r o l

o p t i o n s t h a t may b e a p p l i e d t o

identified potential H P emissions. The b u l k o f t h e i n f o r m a t i o n was g a t h e r e d f r o m t h e f o l l o w i n g sources 1.

Technical l i t e r a t u r e ,

2.

Federal,

Regional,

State,

and l o c a l r e g u l a t o r y

agencies, 3.

Site visits,

4.

Industry representatives,

5.

Equipment ve ndor s.

and

Significant events relating to the evolution of the

b a c k g r o u n d i n f o r m a t i o n document

BID)

f o r t h e o i l and n a t u r a l gas

p r o d u c t i o n a n d n a t u r a l g a s t r a n s m i s s i o n a n d s t o r a g e NESHAPs a r e i t em i zed i n Table A-1.

A-1

 

TABLE

A-1.

EVOLUTION OF

Date

Company

06/22/92

U.S.

~ 0

0 7

9 2

THE

BACKGROUND

INFORMATION DOCUMENT

or agency/location

consultant

E n v ir o n m en tal P r o t e c t i o n Agency and

industry representatives/RTP

Nature o f a c t i o n I n d u s·t.r y m e e t i n g

NC

Amoco P r o d u c t i o n Co.

S e c t i • o n 114

Gas Co. Chevron U.S.A. I n c . Ex x o n Company U . S . A .

l e t t e r for plant visits

ARCO

i n f o ~ m

Oil

t i o n

request

Conoco Inc. Texaco E xpl or a t i on and Producing Inc Mobil E x p l o r a t i o n P r o d u c i n g u.s. I n c . ~ 0

1 2

9 2

Amoco P r o d u c t i o n C o .

Zachary

LA

Plant v i s i t

to gather

b ack g ·r o u n d

i n f o r m a t i o n on t h e methcds used to p ro d u . c e o i l a n d natur al gas

10/12/92

ARCO

Oil

Gas C o .

Lafayette

LA

Plant v i s i t

to gather

b ack sr r o u n d

on the methe>ds u s e d t o produce o i l and natur al gas i n f o i ~

t i o n

1 0

~ 3

9 2

Chevron

U.S.A.

Inc.

Thompson

TX

Plant v i s i t

to gather

backHround information on the methods u s e d t o produce o i l and natuJral gas

10/13/92

Ex x o n Company

U.S.A.

Katy

Plant v i s i t

TX

to gather

back9round information on the

methods u s e d t o p r o d ·u ce o i l a n d n a t u r a l gas

10/14/92

Conoco

Inc.

Benavides

Plant v i s i t

TX

to gather

background on the methods u s e d t o produce o i l and . na tur a l gas i n f o ~

t i o n

A 2

 

T

BLE

A-1.

EVOLUTION

OF

THE

B CKGROUND

Continued)

consultant, o r agency/location

Date

Company

10/15/92

Texaco E x p l o r a t i o n and Producing I n c . Midland, TX

03/17/93

04/06/93 04/07/93 04/29/93

05/27/93

INFORMATION

u.s. Environmental P r o t e c t i o n Agency·and Gas Res ear ch I n s t i t u t e / R T P ,

DOCUMENT

N atu r e o f a c t i o n

Plant v i s i t to gather

background inf or m a tion on t h e methods u s e d t o p r o d u ce o i l and n a t u r a l gas

I n d u s t r y m eetin g

NC

U.S. Environmental P r o t e c t i o n Agency and i n d u s t r y r e pr e s e nta tive s /R TP, NC

I n d u s t r y m eetin g

U.S. Environmental P r o t e c t i o n Agency/RTP, NC and Washington,

Work group m eetin g

Marathon O i l Co. Oxy US I n c . S h e l l O i l Co. Lomack P etr o leu m , I n c . Maxus Energy Corp.

DC

A i r e m i ssi o n s su r v e y questionnaires mailout

M i t c h e l l Energy Co. P h i l l i p s P etr o leu m Co.

Amerada Hess Corp.

Amoco P r o d u c t i o n Co. Conoco, I nc . Oryx Energy Co. Texaco, I nc . Unoc Uno cal Mesa P etr o leu m Union P a c i f i c Environmental S e r v i c e s Enron Corp.

A t l a n t i c R i c h f i e l d Co. BP E x p l o r a t i o n A las k a, I n c . Chevron US P r o d u c t i o n Co. Exxon US P r o d u c t i o n Dept. Mobil O i l Corp. Kerr McGee Pogo P r o d u c t i o n Co. Arch P etr o leu m

A 3

 

TABLE A - 1 .

EVOLUTION OF THE B CKGROUND I N F O R M

(Continued)

Date

Company,

07/27/93

Ex x o n Company U . S . A . Chevron U.S .A., I nc. Shell western E P Inc.

consultant,

or agency/location

N a,tur e o f a c t i o n

i n f o i ~ a t i o n

request

lettE r for p l a n t

visit:s

08/03/93

Texaco E x p l o r a t i o n and Pro d u ct i o n I n c . , O f f s h o r e o f S a n t a B a r b a r a C o u n t y , CA

08/04/93

Mobil E x p l o r a t i o n and Producing Goleta,

DOCUMENT

S e c t i o n 114

T e x a c o US

Inc.,

~ r i O N

u.s.

CA

Plant: v i s i t t o g a t h e r back9round infoJ::1llation o n t h e methods use d t o produce o i l and natu:r :al g a s Plan·t v i s i t to g a t h e r back ::Jround inf or ma tion on t h e

methods use d to produce o i l and n at u r al gas

08/04/93

Ex x o n Company,

B arb ara County,

U.S.A., Offshore of Santa CA

Plant v i s i t

to g ath er

background information on the

methods use d to

\

produce o i l and n at u r al gas

08/03/93

Chevron U.S.A. I n c . , O f f s h o r e o f S a n t a B a r b a r a C o u n t y a n d V e n t u r a C o u n t y , CA

08/05/93

08/09/93

Plant v i s i t s to g ath er background inf or ma tion on t h e

methods use d to produce o i l and n at u r al gas S t a t e o f Kansas,

Various s i t e s

through

08/ll/93

Plant v i s i t s to g ath er background infc,rmation on th e

methods use d t o produce o i l and n a t ~ r a l gas

A 4

 

TABLE

A-1.

EVOLUTION OF THE BACKGROUND INFORMATION DOCUMENT Continued)

Date

Company,

08/10/93

Wallace Energy,

consultant

o r agency/location

Inc.

Plainville

KS

Nature o f action Plant v i s i t

to gather

background information on the

methods u s ed to produce o i l and n a t u r a l gas

08/10/93

O i l R e c l a i m i n g Company,

Limited,

Seward,

Plant v i s i t

to gather

background

KS

information on the

methods u s ed to produce o i l and n a tu r a l gas

08/10/93

H W

Oil

Company,

Ha ys,

KS

Plant v i s i t to gather background inf or ma tion on t h e methods u s ed to produce o i l and n a t u r a l gas

08/11/93

T r i d e n t NGL

Inc.

Cheney,

Plant v i s i t to gather background i n f o r m a t i o n on t h e

KS

methods u s ed t o produce o i l and n a t u r a l gas

Transmission Corp.

Air emissions survey questionnaire mailout

09/15/93

CNG

02/01/94

U . S . E n v i r o n m e n t a l P r o t e c t i o n A gency a n d industry representatives/RTP

I ndus tr y meeting

NC

02/01/94

D i s t r i b u t i o n o f d r a f t BID C h a p t e r s 2 . 0 3.0 and 4. 0 to i n d u s t r y

BID c h a p t e r distribution

04/12/94

u.s.

Work g r o u p m e e t i n g

04/26/94

Environmental P r o t e c t i o n A gency/RTP , NC a n d w a s h i n g t o n , U.S.

DC

E n v i r o n m e n t a l P r o t e c t i o n A gency a n d

industry representatives/RTP

I ndus tr y meeting

NC

A 5

 

T BLE

A-1.

EVOLUTION OF

THE

B

CKGROUND

{Continued)

INFORM TION DOCUMENT

Nature o f a c t i o n

Date

Company,

04/26/94

D i s t r i b u t i o n o f d r a f t BID C h a p t e r s 2 . 0 3.0 and 4.0 t o i n d u s t r y

BID c h a p t e r distribution

05/17/94

u.s.

Industry meeting

consultant

or agency/location

E n v iro n m en tal P r o t e c t i o n Agency and

indus try representatives/RTP

05/23/94

u.s.

E n v iro n m en tal P r o t e c t i o n Agency and

indus try representatives/RTP

08/26/94

NC

Industry meeting

NC

D i s t r i b u t i o n o f complete preliminary

BID d i s t r i b u t i o n

d r a f t BID t o i n t e r e s t e d p a r t i e s

u.s.

E n v iro n m en tal P r o t e c t i o n Agency and indus try representatives/RTP NC

Industry

12/08/94

u.s.

E n v iro n m en tal P r o t e c t i o n Agency and indus try representatives/RTP NC

Indu ;try meeting

04/26/95

u.s.

Indu1;try tele1::onference

10/13/94

E n v iro n m en tal P r o t e c t i o n Agency and

indus try representatives/RTP

NC

telec:onference

05/08/95

u.s.

E n v iro n m en tal P r o t e c t i o n Agency and indus try representatives/RTP NC

I ndus t r y meeting

05/25/95

u.s.

Industry teleconference

11/02/95

U.S.

E n v iro n m en tal P r o t e c t i o n Agency and NC industry representatives/RTP E n v i r o n m e n t a l P r o t e c t i o n A g e n c y a nd

indus try representatives/RTP

11/09/95

u.s.

NC

E n v iro n m en tal P r o t e c t i o n Agency and

indus try representatives/RTP

Industry meeting

Industry meeting

NC

12/14/95

u.s.

E n v iro n m en tal P r o t e c t i o n Agency and indus try representatives/RTP NC

Industry meeting

03/21/96

u.s.

Industry meeting

E n v iro n m en tal P r o t e c t i o n Agency and industry representatives/RTP NC

A 6

 

T

BLE

A-1.

EVOLUTION OF

THE

B

CKGROUND

Continued)

Date

Company,

04/04/96

T r a n s c o n t i n e n t a l Gas P i p e L i n e corporation Reidsville NC

consultant

INFORM TION DOCUMENT

or agency/location

Nature of a c tion Plant v i s i t

to gather

background information on the

methods u s e d i n n a t u r a l gas transmission 05/09/96

u.s.

E n v i r o n m e n t a l P r o t e c t i o n A g en cy . a nd

industry representatives/RTP

07/30/96

u.s.

08/28/96

10/17/96

10/31/96

NC

E n v i r o n m e n t a l P r o t e c t i o n A g en cy a n d

industry representatives/RTP

NC

u.s.

Environmental P r o t e c t i o n Agency/RTP, NC a n d W a s h i n g t o n ,

DC

u.s. E n v i r o n m e n t a l P r o t e c t i o n Agency/RTP, NC a n d W a s h i n g t o n ,

DC

Industry teleconference Work g r o u p m e e t i n g

Work g r o u p m e e t i n g

u.s.

Environmental P r o t e c t i o n Agency/RTP, NC a n d W a s h i n g t o n ,

In d u st ry meeting

Work g r o u p m e e t i n g DC

11/07/96

u.s.

E n v i r o n m e n t a l P r o t e c t i o n A g en cy a n d industry representatives/RTP NC

A

7

I n d u s t r y meeting and teleconference

 

APPENDIX B . N

B.1

TION

L

IMPACTS

METHODOLOGY

INTRODUCTION

This appendix d e s c r i b e s t h e g e n e ra l methodology u s e d t o e s t i m a t e t h e nationwide impacts o f the proposed n a t i o n a l emission standards f o r hazardous a i r p o l l u t a n t s NESHAP) t h a t a r e b e i n g

developed f o r t h e o i l and n a t u r a l gas p ro d u c t i o n and n a t u r a l gas transmission and storage source c a t e g o r i e s .

results

in

1)

estimates of baseline

i m p l e m e n t a t i o n o f NESHAP) HAP)

emissions and

estimated

2)

i.e.,

This methodology before

the

and c o n t r o l l e d hazardous a i r p o l l u t a n t

the

impacts of control options.

include H P emission reduction,

Impacts

t o t a l c a p i t a l and n e t

annual c o s t s , B.2

and se c onda r y e nvir onme nta l and e ne r gy i mp act s .

OVERVIEW OF

METHODOLOGY

The b a s i c e l e m e n t s o f t h e m e t h o d o l o g y u s e d i n e s t i m a t i n g impacts f o r the o i l and n a t u r a l gas produc tion and n a t u r a l g as t r a n s m i s s i o n a n d s t o r a g e NESHAPs a r e a s

follows

1)

development

o f m odel p l a n t s ,

2)

i d e n t i f i c a t i o n o f H P emission p o i n t s and

control options,

3)

application of H P emission control options

to

identified emission points,

impacts,

and

national

impacts.

B.3

MODEL

5)

4)

e s t i m a t i o n o f m odel p l a n t

e x t r a p o l a t i o n f r o m m odel p l a n t

impacts to

Each o f t h e above e le me n ts i s d i s c u s s e d below.

PL NT DEVELOPMENT

Due t o t h e l a r g e num ber o f f a c i l i t i e s

in these source

c a t e g o r i e s and t h e tim e and r e s o u r c e s t h a t would have b een required, standards

t

was n o t f e a s i b l e

to simulate the impacts o f

on each a c t u a l impacted f a c i l i t y .

Instead,

a m odel

p l a n t a p p r o a c h was u s e d .

B- 1

 

First, identified

d i s t i n c t s e c t o r s o f t h e s o u r c e c a t e g o r i e s were n

terms of operation,

equipment,

and emissions.

Then

a s u f f i c i e n t n u mb e r o f mo d e l p l a n t s w e r e d e v e l o p e d t o r e p r e s e n t

each indus try sector.

The s e c t o r s i d e n t i f i e d i n c l u d e

dehydration units,

(2)

condensate tank b a t t e r i e s ,

processing plants,

(4)

offshore production p l

waters,

and

5)

(3)

t f o ~ m s

glycol

natural gas n

ie S , n a t u r a l g a s t r a n s m i s s i o n f a c i l i t ie

underground storage operations.

(1)

State

including

Since the primary i d e n t i f i e d

emission point o f concern a t n a t u r a l gas

H

transmission f a c i l i t i e s

i s t h e c o - l o c a t i o n o f any t r i e t h y l e n e g l y c o l

TEG)

dehydration

unit a t these fa c ilitie s ,

s e p a r a t e mo d e l p l a n t s w e r e n o t

developed f o r f a c i l i t i e s gas industry.

n

t h i s s e c t o r of the o i l and n a t u r a l

The p r i m a r y i n f o r m a t i o n s o u r c e s u s e d t o d e v e 1 o p t h e model p l a n t s a n d model p l a n t p a r a m e t e r s i n c l u d e d

U.S.

Environmental P r o t e c t i o n Agency s

Survey Questionnaires,1 {3)

discussions

representatives,

(2)

(1)

(E P A s)

re1:1ponses t o

the

A ir Emissions

s i t e vi s i t s to operating facilities,

and meetings with i n d u s t r y and t r a d e a s s o c i a t i o n and

(4)

available

literature.

P

In addition,

a d a t a b a s e f r o m t h e Gas R e s e a r c h I n s t i t u t e

c o n t a i n i n g n a t u r a l gas an aly s es 2 and a d a t a b as e provided

(GRI)

b y t h e A m e r i c a n P e t r o l e u m I n s t i t u t e (API) 3 w e r e u s e d , i n conjunction with industry survey responses, to develop n a t u r a l gas compositions. H

P

Composition o f p ro ces s streams,

i s a k e y p a r a m e t e r i n t h e mo d e l p l a n t a n a l y s i s .

constituents,

The c o n c e n t r a t i o n o f direct

H

constituents in ~ h e s e

P

i m p a c t o n e s t i m a t e d mo d e l p l a n t

The p r i m a r y

particularly

H

P

H

P

streams has a

emissions.

constituents of the process streams

a s s o c i a t e d w i t h t h e o i l and n a t u r a l gas p ro d u ct i o n and n a t u r a l

ga s t r a n s m i s s i o n and stora ge s o u rce c a t e g o r i e s inc lude benzene toluene,

e t h y l benzene,

and mixed x y l e n e s

(collectively referred

t o a s BTEX), a n d n - h e x a n e . Process stream c onc e ntra tions of t h e s e H P a r e l i s t e d i n T a b l e 2 - 1 o f C h a p t e r 2 . 0 o f t h i s BID. As i n d i c a t e d i n T abl e 2 - 1 ,

t h e EPA e s t i m a t e d t h r e e n a t i o n a l

a v e r a g e BTEX c o n c e n t r a t i o n s f o r n a t u r a l g a s o f 2 0 0 ,

160,

a n d 13

B-2

 

p a r t s p e r m i l l i o n volum e

ppmv) .

These v a l u e s a r e r e f l e c t i v e o f

t h e t h r e e s e c t o r s i n t h e s e s o u r c e c a t e g o r i e s o f (1) p r o d u c t i o n , (2) p r o c e s s i n g , a n d (3) t r a n s m i s s i o n a n d u n d e r g r o u n d s t o r a g e ,

which h an d l e n a t u r a l ga s s t reams .

The EPA h a s a n a l y z e d BTEX

values within ranges of e i t h e r side of these average values

in an

e f f o r t t o b e t t e r d e t e r m i n e t h e i m p a c t s o f t h e p r o p o s e d NESHAPs.

Initially,

t h e EPA e s t i m a t e d a p r o d u c t i o n BTEX c o n c e n t r a t i o n

o f 550 ppmv b a s e d o n t h e d a t a r e c e i v e d i n com pany r e s p o n s e s t o t h e A i r Emissions Survey Qu es t i o n n ai res

( R e f e r e n c e 1) .

The EPA

r e v i s e d t h i s e s t i m a t e t o 440 ppmv b y i n c o r p o r a t i n g BTEX d a t a s u p p l i e d b y GRI

(Reference 2 ).

The EPA r e v i s e d i t s e s t i m a t e

May 1996)

t o 200 ppmv a f t e r i n c o r p o r a t i n g a d d i t i o n a l new BTEX d a t a s u p p l i e d b y API ( R e f e r e n c e 3 ) . again

The p r o d u c t i o n e s t i m a t e i n f l u e n c e s t h e c a l c u l a t i o n o f HAP concentrations for the processing sector in th e .o il

gas production source category. concentration for

The r e v i s i o n o f t h e HAP

t h e production s e c t or has

r e d u c t i o n in the EPA s i n i t i a l

and n a t u r a l

c a u s e d a 75 p e r c e n t

(December 1993)

estimate of

n a t i o n w i d e HAP e m i s s i o n s f r o m g l y c o l d e h y d r a t i o n u n i t s ,

the

p r i m a r y i d e n t i f i e d HAP e m i s s i o n p o i n t i n t h e s e s o u r c e c a t e g o r i e s . E a c h m odel p l a n t was c h a r a c t e r i z e d b a s e d o n t h e s p e c i f i c

parameters necessary to calculate impacts. (1)

product and o t h e r throughputs, i.e.,

vessels

storage tanks),

com ponent e q u i p m e n t

i.e.,

and

Parameters include

(2)

num ber a n d t y p e o f p r o c e s s

(3)

num ber a n d t y p e o f p r o c e s s

C h a p t e r 4 . 0 o f t h i s BID

valves).

p r o v i d e s d e t a i l e d d e s c r i p t i o n s o f t h e m odel p l a n t s .

B.4

CONTROL OPTIONS

C o n t r o l o p t i o n s w e r e i d e n t i f i e d t h a t r e d u c e HAP e m i s s i o n s f r o m HAP e m i s s i o n p o i n t s i n t h e o i l a n d n a t u r a l g a s p r o d u c t i o n These c o n t r o l o p t i o n s a r e d i s c u s s e d i n d e t a i l i n

industry.

C h a p t e r 3 . 0 o f t h i s BID.

C o n t r o l o p t i o n s t h a t a r e a p p l i c a b l e t o HAP e m i s s i o n p o i n t s in t h e o i l and n a t u r a l gas production i n d u s t r y w i l l a l s o a c hie ve c o - c o n t r o l o f v o l a t i l e o r g a n i c compound

emissions.

Due t o

VOC)

and methane

in the emission c h a r a c t e r i s t i c s

similarities

B -3

 

o f HAP, VOC,

and methane from t h e em is s io n p o i n t s i n t h i s H

P

control options for industry were j udge d to be e q u a l l y in terms of emission reduction efficiency f o r HAP, effective

and methane.

VOC,

The e f f i c i e n c i e s u s e d i n t h e a n a l y s i s f o r e a c h

c o n t r o l o p t i o n c a n b e f o u n d i n T a b l e 3 - 1 o f t h i s BID.

B.S

MODEL

PLANT IMPACTS

Impa c t s o f t h e c o n t r o l o p t i o n s were pl ant s using available information.

(1)

H

P

c a l c u l a t E ~ d

Model p l a n t

e m i s s i o n r e d u c t i o n p e r mo d e l p l a n t

(2)

f o r model

impacts include t o t a l c a p i t a l and

n e t a n n u a l c o s t s a n d c o s t - e f f e c t i v e n e s s p e r megagram o f a n n u a l H

P

emission reduction

and

3)

secondary environmental impacts

and energy requirements. B.S.l Emissions

E mi ssi ons were e s t i m a t e d u s i n g emissio n f a c t o r s and e m i s s i o n estimation tools.

Emissions from g l y c o l d e h y d r a t i o n u n i t s were

e s t i m a t e d u s i n g GRI-GLYCalc™

(Version 3 . 0 ) .4

Emissions from

s t o r a g e t a n k s r e s u l t i n g from s t a n d i n g and working l o s s e s were e s t i m a t e d u s i n g t h e E P A s T NKS p r o g r a m . s s t o r a g e t a n k s were e s t i m a t e d u s i n g a

Flash emissions

separate algorithm

from

s p e c i f i c a l l y d e v e l o p e d b y t h e EPA f o r e s t i m a t i n g . f l a s h e m i s s i o n s

from s t o r a g e tanks i n t h e o i l and n a t u r a l gas production industry.6 Emissions from components were e s t i m a t e d u s i n g e m i s s i o n f a c t o r s d e v e l o p e d f o r equipment l e a k s . ?

E m i s s i o n s b a s e d o n t h e mo d e l p l a n t s w e r e f i r s t baseline.

B a s e l i n e was e s t a b l i s h e d b y a s s i g n i n g

l e v e l o f c o n t r o l t o e a c h mo d e l p l a n t c a t e g o r y .

estimated a t

an es t i m at ed Therefore

b a s e l i n e e s t i m a t e s have taken i n t o account those emission p o i n t s already controlled.

E m i s s i o n s w e r e t h e n e s t i m a t e d f o r e a c h mo d e l p l a n t w i t h t h e or a f t e r implementation of

application of controls

difference of these estimates

is the emissions

N E S H

P ~

The

impact

r e ~ d u c t i o n

t h a t t h e NESHAP w o u l d h a v e o n e a c h mo d e l p l a n t . B.5.2

CoS tS C a p i t a l c o s t s and n e t annual

control option.

Capital costs

c o s t s were c a l c u l a t e d f o r e a c h

include the cost of the B

control

4

 

equipment and t h e c o s t s a s s o c i a t e d with i n s t a l l i n g t h e equipment. Net a nnua l c o s t s account f o r t h e o p e r a t i o n and m ain ten an ce c o s t s

and monitoring,

i n s p e c t i o n , .recordkeeping,

and re c o rd i n g

MIRR)

costs.

Where a v a i l a b l e ,

s t

n d

~ d i z e d

costing methodologies,

p r e s e n t e d i n t h e O QPS C o n t r o l C o s t M a n u a l ,

such as

were use d t o e s t i m a t e

A p r o d u c t r e c o v e r y c r e d i t was

c a p i t a l and annual costs.B

included in the annual costs,

where judged a p p r o p r i a t e .

Exam pl e

m odel p l a n t c o n t r o l o p t i o n c o s t s a r e d i s c u s s e d i n C h a p t e r 6 . 0 a n d

e x a m p l e MIRR c o s t s a r e d i s c u s s e d i n A p p e n d i x C o f t h i s BID. The i m p a c t a n a l y s e s c o n s i d e r a f a c i l i t y s

a b i l i t y to handle

collected vapors. Some r e m o t e l y l o c a t e d f a c i l i t i e s may n o t b e able to use c o l l e c t e d vapor f o r f u e l o r recycle it back i n t o t h e process.

In addition ,

some f a c i l i t i e s

it

may n o t b e t e c h n i c a l l y f e a s i b l e

for

to u t i l i z e t h e non-condensable va por s t r e a m s from

condenser systems as an a l t e r n a t i v e fuel source s a f e l y. option for these f aci l i t i es

n

i s t o com bust t h e s e v a p o r s b y

flaring.

These c onc e r ns a r e r e f l e c t e d i n t h e a n a l y s e s c onduc te d by

Sponsor Documents

Recommended


View All
Or use your account on DocShare.tips

Hide

Forgot your password?

Or register your new account on DocShare.tips

Hide

Lost your password? Please enter your email address. You will receive a link to create a new password.

Back to log-in

Close