NYC Readiness Plan

Published on May 2016 | Categories: Types, Instruction manuals | Downloads: 23 | Comments: 0 | Views: 156
of 185
Download PDF   Embed   Report

Comments

Content


 
 
 
 












 

Elect
U
The
tric Ve
nlock
e New
ehicle
king U
w Yor
e Rea
Urban
rk Cit
adine
n Dem
ty
ess Pl
mand
lan:
 
 
 
 
 
   
 
 
 
   
 
 


 
 
 
 
 
 
 
   

 
 
   
     
   
   
   
 
  
   
     
 
 
   
     
    
   
   
     
 
   
   
     
     
 
     
     
   

 
 
     
     
     
     
   
   
 
     
     
 
   
 
   
     
   
 
   
 
   
    
   
   
     
 
   
     
       
   
     
     
   
     
   
   
     
 
 
   
 
 
     
   
 
     
   
 
 
 
 
  
   
   
 
   
   
 
   
   
   
 
 
   
 
 
 
 
MISSIO ONELECT TRIC–
TheNew wYorkCit yElectricV VehicleRe eadinessPllan:UnlockkingUrbannDemand
Thismater rialisbasedup ponworksuppo ortedbytheD epartmentofEEnergyunderAAwardNumbe erDE‐EE00055662.
Thisreport twasprepared dasanaccoun tofworkspon nsoredbyanaggencyoftheUnitedStatesGovernment.
Neitherthe eUnitedState sGovernment tnoranyagenc cythereof,norranyoftheireemployees,makesanywarranty,
expressorimplied,orass sumesanylega alliabilityorre esponsibilityfoortheaccuracyy,completenesss,orusefulnessof
anyinform mation,apparat tus,product,o orprocessdiscl osed,orrepreesentsthatitsuusewouldnotinfringeprivattely
ownedrigh hts. Reference ehereintoany yspecificcomm mercialproductt,process,orsservicebytradename,trademark,
manufactu urer,orotherw wisedoesnotn necessarilycon stituteorimpl lyitsendorsemment,recommeendation,or
favoringby ytheUnitedSt tatesGovernm mentoranyage encythereof. TTheviewsandopinionsofauuthorsexpressed
hereindon notnecessarily ystateorrefle ctthoseofthe eUnitedStatessGovernmentoranyagencythereof.
AcademicCitation:TheN NewYorkCityE ElectricVehicle eReadinessPlaan:UnlockingUUrbanDemandd,December20012
byAriKahn nandChristina aFicicchia.Em pireCleanCitie esandtheMayyor’sOfficeofLong‐TermPlaanningand
Sustainabi lity,NewYork2012
 
 
   
 
   
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
   
   
   
 
   
   
   
   
 
 
 
   
     
   
   
   
 
   
   
   
   
     
   
 
     
 
   
   
 
   

   
   
   
   
   
   
   
 
   
 
   
     
   
   
   
 
   
       
   
 
 
   
   
   
   
   
 
 
 
 
 
 
 
   
   
     
   
 
   
   
     
     
   
 
  
   
   
   
 
   
   
   
 
 
 
   
     
 
   
 
     
 
 
   
   
   
     
     
   
     
 
   
 
   
   
   
 
 
   
 
 
 
     
   
     
   
 
   
   
   
   
   
    
 
     
     
     
     
     
   
 
   
   
   
   
 
     
   
   
   
   
 
 
   
 
     
   
   
 
   
   
 
 
   
     
   
   
 
   
   
 
   
   
     
   
     
 
     
   
   
     
   
     
     
     
   
     
   
   
 
   
   
     
   
   
 
   
 
 
 
  
 
 
 
 
    
 
 
 
 
 
 
 
Acknow wledgeme ents
TheNew wYorkCit yElectricV VehicleRe eadinessPllan:UnlockkingUrbannDemand
TheNewY YorkCityElec ctricVehicleR ReadinessPla an:UnlockingUrbanDemaandisaDeparrtmentofEneergy
(DOE)gra ntfundedpro ojectthathas scoordinated dtheinputoffstakeholderssandpartnerrstoformulattea
planfore lectricvehicle echargingan ndinfrastructu uredeploymeentinNYC.ThhisawardwasgrantedtoNew
YorkCityandLowerHu udsonValleyCleanComm unities,Inc.,ddbaEmpireCCleanCities,aaDOEdesignaated
CleanCiti escoalitiond designedtore educepetrole eumconsumpptioninthetrransportationnsector. Empire
CleanCiti esifcommitt tedtopromot tinggreenfle eetsforasusttainableNYCandlowerHuudsonValley.
Thisproje ectwascollab boratedbetweenthefollow wingsubconttractedorgannizations:
EmpireCl eanCitiesan dtheMayor’ sOfficeofLo ong‐TermPlannningandSusstainabilitywwouldliketothank
thefollow wingfortheirvaluableassi stanceinpro oducingthisreeportandconntributingtoitsfindings:
EmpireCl eanCitiesme embersands takeholdersf fortheirdedicationtoreducingpetroleeumand
promoting ggreenfleets sforasustain nableNYCand dlowerHudssonValley,ArriKahnforhissdiligencein
draftingt hisreportand ddedicationt toEVdeploym mentinNYC,JulieMigliacciandChristinaFicicchiaffor
theirvitalcontribution nsanddedicat tiontocleantransportatioon, RachelSzzakmaryattheCityofBostton
Departme entofTranspo ortationandSarahWuint theCityofPhhiladelphiaMMayor’sOfficefortheir
dedicatio ntointer‐City ycooperation nandpartner rshipovertheelastthreeyeears;SamiAbbbayandJD
CapuanoatClosedLoo opAdvisors;J ohnShipman nandSherryLLoginattheCConEdisonCoompanyofNeew
York;Mal colmShielda attheCityofV Vancouver; M MichaelScarppinoattheUSSDepartmenntofEnergyfoorhis
guidance, ,JohnAshishGeorgeforh isresearchan ndanalysisonnvehicletoggridtechnologgy;Michael
Fowles,C alvinPeters,A AileenRodrig guezandCha rlesHayward datDuaneReeade;LarryMcAuliffeatthe
NewYork kMetropolitanTransportat tionCouncil,Stroock&Strroock&Lavan,LLPforproo‐bonolegal‐wwork,
NYCMedi ia;NYC&Com mpanyforpro o‐bonoMissio onElectricaddvertising;FraankHebbertaatOpenPlanss;
NathanPi insley,Stepha anieLeppand dnumerouso othersatPurppose;andAsaafSelinger,w whosesocialmmedia
savvyand dstronginitia tivehelpedm makeMissionElectricsucceessful;vitalcontributorsfromtheCityof
NewYork kincludeMar kSimon,Susa anMcSherry,SandraRothbard,StaceyHodge,JeffCChenforcreatting
thecarsh harematching galgorithm,J onathanElls,CharlotteHaall,ArtieRollinns,SteveWeir,MounirWassef,
CarolynnJohnsonandLaurenSinge er.
 
     
         
       
 
               
     
             
                 
         
     
             
               
                     
     
       
       
 
  
           
               
           
                   
           
           
           
               
                     
TableofContents
1 ExecutiveSummary......................................................................................................................1
2 Introduction....................................................................................................................................5
Outreach
3 MissionElectric&PublicEngagement..................................................................................7
IncreasingChargerAccess
4 ElectricVehicleBuildingCodes..............................................................................................20
5 CurbsideCharginginNewYorkCity.....................................................................................23
6 FastCharging................................................................................................................................28
ImprovingVehicleEconomics
7 ElectricVehicleCarShare........................................................................................................41
8 TimeofUseEVMetering...........................................................................................................50
9 VehicletoGrid/VehicletoBuildingTechnology............................................................57
Conclusion&Appendices
10 Conclusion.................................................................................................................................67
11 Appendices................................................................................................................................69
Appendices
Appendix A TableofFigures.......................................................................................................70
Appendix B ClosedLoopAdvisorsFoodVendorAnalysis.................................................71
Appendix C MissionElectricResources..................................................................................93
Appendix D NewYorkCityNewBuildParkingAttributes.............................................133
Appendix E FastChargingAnalysis........................................................................................135
Appendix F CurbsideChargingResources..........................................................................141
Appendix G CarShareAnalytics..............................................................................................143
Appendix H BeamChargingGarageTrainingManual.....................................................146
Appendix I VehicletoGrid/VehicletoBuildingBackground....................................174
 
   
 
                               
                                       
                                   
                               
                   
                             
                                   
                                 
                                 
                 
                             
                               
                                     
                               
                               
                                     
                           
                               
     
                                   
                               
                           
                             
                          
     
         
      
                                     
                                 
                 
                                                           
   
                               
 
1 ExecutiveSummary
NewYorkhasconsistentlyembracednewtransportationtechnologytomakeitselfabettercity.TheCity
wentfromhavingnosubwaysin1904tooneoftheworld’slargestsystemsinlessthanadecade.It
embracedefficiencyandimprovedpublichealthbymovingfromthehorseandbuggyeratotheageof
theautomobile.ItrevolutionizedhowAmerican’sdrivebycreatingtheParkway,anditgrewcleaneras
itscarsandtruckstransitionedfromleadedtolead‐freegasoline.
Electricvehicles(EVs)presentasimilaropportunitytomakeourcitycleanerandmorecompetitive.
ThoughNewYorkhasthelowestper‐capitavehiclemilestravelledofanymajorU.S.city,itsoverallsize
anddensitymeanitsroadsaresomeofthecountry’smostcongested.
1
Over2.5millionvehiclesdrive
intoandoutofManhattaneveryday.ElectrifyingthosevehicleswouldhelpNewYorkmeetitsair
qualitygoalsandreduceitsgreenhousegas(GHG)emissions.
TobetterunderstandEV’spotential,inJanuary2010theCityreleasedanelectricvehicleconsumer
adoptionstudy(EVstudy).
2
ThatstudylookedattheCity’sgrid,EVtechnology,drivingpatterns,and
consumerpreferencestoseehowEVscanworkinNewYork.Thestudyfoundthatover20%ofNew
YorkersarepotentialearlyEVadopters.Theyhavededicatedparking,aninterestinthetechnologyand
awillingnesstoconsiderthevehicle’stotalcostofownershipalongwiththepotentiallyhigherupfront
cost.Thestudyalsoexaminedthecity’spowersystemandfoundthatitissuitedtoEVadoption.New
YorkCityhasextraoff‐hourdistributioncapacityandlow‐carbongenerationthatincreasestheclimate
changebenefits.Bothbecauseofmarketpotentialandenvironmentalgains,EVsareagoodmatchfor
NewYorkCity.
TheCityhasanactiveroletoplayinspurringEVadoptionthroughitspurchasingpower,abilityto
educatethepublic,andfocusonmakingchargingaccessible.Overthelasttwoyears,ithas
implementedthetoptworecommendationsfromitsEVstudy,increasingaccesstochargingand
increasinginformationandawarenessaboutelectricvehicles.Ithasalsogreeneditsownfleetand
supportedlocalbusinessesdoingthesame.Itsactionsfallintothreebroadcategories:
1. conductingpublicoutreach
2. increasingaccesstocharging,and
3. improvingvehicleeconomics
Inthefallof2011,theCityandEmpireCleanCitiesreceivedoneofseveralgrantsfromtheDepartment
ofEnergytofurtherplanforandsupportelectricvehicleadoption.ThisgranthashelpedadvanceEV
understandingandimplementationpotentialacrossthosethreetopicareas.
1
http://www.nyc.gov/html/dot/downloads/pdf/nyc_greendividend_april2010.pdf
2
ExploringElectricVehicleAdoptioninNewYorkCity.Mayor’sOfficeofLong‐termPlanning&Sustainability,
1/2010
1
 
   
                               
                         
                               
                           
                                   
                             
                                   
                                 
                           
                               
                               
                           
                          
                                       
                               
                           
                             
                           
     
     
                             
                           
             
                                 
                                       
                               
                   
                               
                             
                             
                                   
       
                             
                             
                                 
                             
                                   
                                       
PublicOutreach
ToraiseelectricvehicleawarenesstheCityandEmpireCleanCitiescreatedanewonlinecommunication
toolathttp://missionelectric.org.MissionElectrichelpsexplainthevalueandattributesofelectric
vehiclestoNewYorkers,BostoniansandPhiladelphians.MissionElectricisbuiltonthreeinsights,twoof
whichwerederivedfromtheCity’sconsumerresearchstudyandonefromexperiencecollaborating
withthelocalgarageindustry.Thefirstinsightisthattherearemanypotentialearlyadopterswhostill
lackabasicunderstandingofelectricvehicles.Simplyraisingawarenessofelectricvehicleswillpush
thesepotentialearlyadopterstowardsapurchase.Thesecondisthatearlyadopterswanttobepartof
agroup.MissionElectric,anonlinesocialengagementtoolthatallowsresidentstovoteonthelocation
andcompositionofEVprograms,helpsfosterthatcommunity.Becausesitinginfrastructureonahyper‐
localscaleisdifficult,crowd‐sourcingalsohasthebenefitofhelpingidentifydemand.Thethirdinsight,
learnedfromthegarageindustry’sresponsetoaMayoraleventannouncingchargingingarages,isthat
theprivatesectorwantsrecognition.Theimprimaturofimpartialgovernmentandnon‐profitpartieshas
theabilitytogainthemmoregreencreditthantheywouldotherwisereceive.
TodatethesitehasrunfourengagingconsumerprojectsinNewYorkCityandBostonandhashadover
2,500visitsandanactiveFacebookpagenearly500followers.Inthemostsuccessfulpromotion,a
public‐privatepartnershipwiththeNewYorkdrugstorechainDuaneReade,overthreehundredNew
Yorkersvotedonwhichstoresthecompany’snewelectrictrucksshouldserve.DuaneReadereceived
greaterpublicawarenessofitsgreeninvestmentsandNewYorkersparticipatedinimprovinglocal
qualityoflife.
AccesstoCharging
ToincreasechargingaccesstheCityhaspursuedthreegoals:determiningwhethernewparkingfacilities
canbedesigned“EVready”,findingapathwayforeconomicallysustainablecurbsidecharging,and
reducingtheelectricitycostsofovernightcharging.
BuildingnewparkingwithEVreadinessmayallowtheCitytovastlyincreaseaccesstocharging.An
averageof10,000newparkingspotsarebuiltayearinthecity,andfewtononearecurrentlybeing
builtwithelectricvehiclesinmind.AccommodatingEVchargingatthesespotsinthefuturecould
necessitateexpensiveretrofitsandcreatecoordinationproblemsbetweengaragemanagers,
developers,buildingowners,andEVdrivers.Requiringthatacertainportionofnewparkingspacesbe
developed“EVready”bylayingconduitandreservingelectricpanelcapacity,ascitieslikeVancouver
andLondondo,wouldreducetheincrementalcostofprovidingcharging.Thiscanbeaccomplished
throughamendmentstothebuildingcode,whichtheCityisconsideringasaresultoftheresearchmade
possiblebythisgrant.
Providingelectricitytofoodcartsandtrucksmaycreateaneconomicandoperationalpathwayfor
supplyingcurbsidechargingforNewYorkerswhodonotparkingarages.Othermunicipalitieshave
installedpilotcurbsidechargersandrunintoproblemsofhighercosts—theyareuptofivetimeshigher
thangarageinstallations—andlimiteddemand.However,40percentofNewYorkersparkonthecurb,
soprovidingchargingwilleventuallybecomeanecessityiftheEVmarketgrowstoscale.NewYorkCity
isconsideringapilotfor2013thatwouldallowfoodcartsandtruckstoplugintosmartoutletssimilarto
2
 
                                 
                                 
                             
                             
               
                             
                             
                             
                                   
                                       
                             
         
     
                                   
                               
                             
                               
                                   
                           
                                   
                                     
                               
                                         
                                       
                                 
                               
              
                                           
                             
                 
                                 
                               
                           
                               
                                       
                       
                                                           
                             
curbsidechargers.TheywillhelpNewYorklearnhowtoprovidechargingwhilealsoservingusers,the
foodvendors,thatprovidehighutilizationandrevenue.NewYorkhasdoneanextensivecanvasofthe
industry,identifyingover61percentofvendorsasusinggeneratorsthatarenoisy,expensiveto
operate,andpolluting.Servingfoodtrucksandcartsnowmakeseconomicandenvironmentalsenseand
allowstheCitytoserveelectricvehicleslater.
Identifyingthegeographicpotentialandeconomicchallengesoffastchargingisthelastinitiativeto
improvechargeraccess.TheCityandotherstakeholderslookedatspecificlocationsandzonesalong
localtravelroutestodeterminetheircompatibilitywithfastcharging.TheCityfoundnearly500
propertiesitownswithin½mileofmajorhighwayexitsthatcouldbeharnessedforfastcharging.As
partofitsworkonanelectrictaxipilot,theCityalsoanalyzedthesourcesofhighcostsassociatedwith
fastchargingandhowenergymanagementtechniquessuchasloadsheddingcouldmakefastcharging
moreaffordableandtherebyaccessible.
ElectricVehicleEconomics
WhenlookingathowtoimprovetheeconomicsofEVadoptiontheCitystudiedproblemsthatithad
eitheralreadyencounteredorthoughtthatitmaybeuniquelypositionedtosolve.Thefirstis
incorporatingelectricvehiclesintocarsharebysimulatinghowEVswouldperformusingtheCity’s
actualcarsharedata.Carsharevehicleshavehighutilization,whichimprovesthefinancialviabilityof
EVs.Asanelectricvehicleisusedmore,itsloweroperatingcostsreduceitsper‐miletotalcostof
ownership.However,thereareconcernsaboutwhetherelectricvehiclesareagoodoperationalmatch
forcarshare.Rangeanxiety,theconcernthatanemptybatterywillcauseavehicletobecomestranded,
isanevenlargerissueforcommunalvehicles,eitherthoseincarshareorafleet,sincebusinessdepends
onthecertaintyofoperations.Thevehicleshavefrequentdailytripsbypotentiallydifferentdriverswho
thereforearelessabletoknowifavehiclewillhavesufficientchargeforhisorherneeds.NewYorkCity
useddatafromits2010pilotasafleetcustomerofthecarsharecompanyZipcartosimulatehowEVs
wouldperformusingactualtripdata.Asequentialmatchingalgorithmshowedthat577outof582trips,
or99percent,wouldbepossiblewithcurrentbatteryelectricvehicles.Inthiscase,concernsabout
electricvehiclesinsufficientrangearenotgrounded.
ThistoolcanbeusednotonlybyNewYorktoadvocateformoreEVsinitscarsharecontractsbutby
othercitiesandfleetsaswell.Itrequiresminimaldata,easilyobtainablethroughon‐boarddiagnostics
orthroughanalyticssuchasZipcar’sFastFleetprogram.
Electricitypricesarethesecondlargestdriverofavehicle’stotalcostofownership.Tohelpreduce
thosetheCityandConEdisonhaveworkedtogethertoallowconsumerstoaccesscheaperovernight
andoff‐peakelectricity.TheCity’sfirststepsincludedprovidingawaiverfromregulationsthat
preventedahomeownerfrominstallinga2
nd
electricmeter.Usingtwometersahomeownercancharge
hisorherEVusingtimeofuse(ToU)ratesthatareupto92percentcheaperthanthestandard
residentialflatrate.
3
Thesecondinitiative,spearheadedbyConEd,allowscost‐effectivesub‐metering,
3
Withatimeofuserate,electricitypricesvarydependingontimeofday.
3
 
                                 
     
                               
                             
                                   
                                 
                             
                               
                             
 
 
                             
                                 
                               
                  
                               
                           
                             
                           
                                     
                             
                         
         
                                 
                               
                                   
                           
                                   
       
providingthebenefitsofa2
nd
meter(andadditionalsmartgridfeatures)withlessadditionalwiringand
lowerupfrontcosts.
Finally,theCityextensivelyresearchedthepotentialofvehicletogrid/vehicletobuildingtechnology
(V2G/V2B).V2G/V2B,whichharnessesavehicle’sbatterytosupplyelectricity,hasthepotentialtonot
justreducethecostofoperatinganEV,butalsohelpitgeneraterevenueoravoidotherelectricity
expenses.BecauseNewYorkCity’sEVfleetincludesover100vehiclesandisgrowing,ithasthe
opportunitytohelpmakethemarketforthistechnology.Thoughthetechnologyisnotyet
commercializedtheCitycantakestepsnowtomakeitselffuture‐proof,namelybywiringitschargers
withlargerdiameterconduit.Thislow‐costmeasurewillmakeitcheapertoupgradewhenV2G/V2B
matures.
Conclusion
ElectricvehiclesalreadytravelNewYork’sstreetsforpersonal,Cityagency,andcommercialtrips.As
theygrowinnumbertheycouldhelpNewYorkbetterweatherfuelshortageslikethosethatoccurred
duringHurricaneSandy.Throughdiversifyingvehiclefueluse,therewillbelesspressureonourgasoline
infrastructureandmoreabilitytousealternativelyfueledtransportation.
NewYork’selectricvehicleinitiativesarepossiblebecausePlaNYCanditsgoalshavebecomeabeacon
forCityagencies.TheHealthDepartment,whichoverseesfoodsafetyformobilefoodvendors,
understandshowprovidinggridpowertoreplacegeneratorshasairqualityandclimatebenefits.The
DepartmentofBuildings,alreadyhavingpassedpioneeringenergyefficiencycodes,isabletomodify
rulessothatEVownerscaninstallasecondmetertoaccesscheapertimeofuserates.TheDepartment
ofCitywideAdministrationhasbuiltthenation’slargestmunicipalelectricvehiclefleetinthenation.
TheDepartmentofTransportationadministersa$30millionfederally‐fundedprogramtoincentivizethe
purchaseofalternativefuelvehicles.
ElectricvehiclesareapriorityforNewYorkbecauseofthesignificantclimateandairqualitybenefits
theycreate.ConEd,TheNewYorkCityMayor’sOffice,consultingfirmPikeResearchandothershave
identifiedtheareaasonethat’sagoodfitforEVsbecauseofitsdensity,hybridownership,and
consumerprofiles.Adoptionisnotpreordainedoreasy,butthroughcontinuedplanningandtailored
solutionsNewYorkcanmeetitspotentialforhighEVpenetration,andinturnimprovetheoverallair
qualityforitsresidents.
4
 
 
 
                             
                               
                               
                               
                                
                               
                     
                               
                                   
                             
                                   
                                 
                                 
                                   
                                   
                            
                             
                       
                               
                             
                             
                                       
                     
                        
                                 
                                 
                                 
                                 
                             
                               
                                   
 
                                                           
   
   
2 Introduction
In2007,theCityreleasedPlaNYC,itscomprehensivesustainabilityblueprint.PlaNYCisaguideto
preparethecityforonemillionmoreresidentswhileimprovingthecity’sinfrastructure,cleaningtheair,
adaptingtoachangingclimate,andreducinggreenhousegasemissions30percentby2030.Theplan,
availableinJapaneseandChinese,created127initiativesandbroughttogetherover25Cityagenciesto
accomplishthosegoals.
4
PlaNYChasmadesustainabilityapartoftheCitygovernment’sfabric.Ithas
createdinter‐departmentalpathwaysofcooperationthatdidnotexistbefore.ItismakingNewYorka
greenergreatercitynow,andalsoenablingfuturewavesofinnovation.
SomesignatureprojectsinPlaNYCincludetheconstructionofthenew2
nd
avenuesubway,theMillion
Treesinitiative(whichis637,000treestowardsitsgoal),andthepassageofalandmarksuiteofenergy
efficiencylawsknownastheGreenerGreaterBuildingPlan.Thelastinitiativeisparticularlyimportant
sincebuildingsaccountforover75percentofthecity’stotalGHGemissions.Thelawsrequirethatthe
largest2percentofbuildings,whichareresponsiblefornearly45percentofallGHGemissions,measure
andpublishtheirenergyusageannuallyandtuneuptheirbuildingsonaperiodicbasis.TheGreener
GreaterBuildingsPlanisexpectedtosave$7billionovertenyearswhilecreatingover17,800jobs.
5
The
CityisalsousingitsownbuildingstoleadbyexampleandhascommittedtoreducingGHGemissions
fromgovernmentoperationsby30percentinanacceleratedtimelineofjusttenyears.
ElectricvehiclesareintegratedintoPlaNYCaspartofthetransportationportfolio.OfPlaNYC’s127
initiatives,15percentaretransportationrelated.TheCity’sbalancedtransportationstrategyincludes
cleaningvehicleswhilealsoreducingtrafficandincreasingbicycle,ferry,andtransituse.TheCityhas
madeitstransportationfootprintsmallerandlessimpactfultotheenvironmentbyshrinkingitsfleet,
usingbiodiesel,andpurchasingover6,000alternativefuelvehiclesand110highwayreadyelectriccars.
andtransitusage.Inatimeofscarceresources,itistemptingtopitoneoftheseinitiativesagainstthe
other.However,they’renotnecessarilymutuallyexclusive.Bicyclistsappreciatevehicleswithout
tailpipesandelectricvehiclesundeniablyhelpmeetthePlaNYCGHGreductiongoal.
ToevaluatethepotentialforelectricvehiclesinNewYork,theCityreleasedanelectricvehicleconsumer
adoptionstudyinJanuaryof2010.ThestudylookedattheCity’selectricgrid,EVtechnology,driving
patterns,andconsumerpreferencestoseehowEVscanworkinNewYork.Approximately40percentof
NewYorkCity’selectricityisgeneratedfromcleanenergysourcesmakingourpowermixwellsuitedto
electricvehicles.Withaheavyrelianceonnuclear,gasandhydroelectricpower,andalmostnocoal‐
firedpowerplants,EVsdriveninthecityare40‐90percentcleanerthanconventionalandhybrid
vehicles.EV’salsoimproveairqualitybyreducingtheNOxandPM2.5pollutionthatcausesasthmaand
cancer.
4
NYC.gov/PlaNYC
5
http://www.nyc.gov/html/gbee/html/plan/plan.shtml
5
 
 
                         
                           
                             
                           
                                   
                                 
                         
                                 
         
 
                           
 
                                     
                                   
                           
                               
                         
                                                           
                                 
                                 
Figure1:EmissionsbyVehicleTypefrompreviousNYCMayor’sOfficeEVStudy
ConEdison,thelocalpowerprovider,examinedcurrentandpotentialfuturedemandlevelsto
determineourgrid’sEVreadiness.AccordingtoConEd,today’spowergridhasenoughcapacityto
chargeupto230,000vehicleswithoutanymajorupgrades,providedmostchargingoccursoff‐peak.
NewYorkCity’spowerconsumptionishighlyvariableandwhilethegridisfullyutilizedonhotsummer
daysithassparecapacityatnightandintheearlymornings.Encouragingcharginginthoseoff‐peak
hourswillallowthecompanytominimizenetworkupgradecostsforitsratepayers.
Ontheconsumerside,theCitysurveyednearly1,400NewYorkers.
6
21percentofthosesurveyedare
potentialearlyadopters(Figure2).
Figure2:AttitudinalSegmentationofNYCEVBuyersfrompreviousNYCMayor’sOfficeEV
Study
TheCitycanaddressmanyofthebarrierstheyface,includingalackofinformationandlimitedaccessto
charging.Indeed,thestudyplacedtheactionsattheCity’sdisposalonacostcurveandfoundthat
financialincentivesarenotnecessarilymoreeffectivethanfarcheaperactions,suchasimproving
zoninglawsandcreatedeasilyaccessibleonlineinformation.Manyoftheactionstakeninthisreport,
includingcreatingMissionElectricandincreasingchargeraccess,arebuiltonthosefindings.
6
Thoughthestudyfocusedonconsumers,commercialvehiclesarealsoanexcellentfitforelectrification.Theper‐
vehiclebenefitsaregreater,andunlikepersonaltrips,deliveriescannotbeeasilyshiftedtobicycleortransit.
6
 
 
             
  
                                   
                         
                               
                               
                                     
                           
                          
                             
                           
                           
                           
                               
                                   
                                 
                             
                                     
                                 
                                     
        
             
           
           
             
             
                 
   
                 
                 
                   
                 
                                                           
           
   
               
3 OutreachthroughMissionElectric&PublicEngagement
3.1Overview
AccordingtotheCity’sEVStudy,outreachisoneofthetwomostmeaningfulwaystoincreaseelectric
vehicleadoption.Outreachservestwopurposes,educationandvisibility.Fortypercentofpotential
earlyadoptersaremorelikelytobuyanelectricvehicleoncetheybetterunderstandthetechnology.
Evenamongstpotentialearlyadoptersforwhomelectricvehiclesholdthemostappeal,67percentstill
havelimitedknowledgeofhowtheyperform.
7
21percentweremorelikelytobuyanEViftheyhad
moreinformationaboutcharging,vehicletypesandavailability.
8
Asneutral3
rd
partieswithlocal
expertise,theCityandlocalnon‐profitsaretherightagentstoraiseawareness.
Inthesummerof2011theCitylaunchedabasicelectricvehiclewebsite,NYC.gov/driveelectric.It
providesinformationaboutthetechnology,linkstochargingmaps,andadescriptionofthe
requirementstoinstallahomecharger.TheDriveElectricsitealsoclarifiesseveralcommon
misunderstandings.Forexample,prospectivebuyersoftendonotfullyunderstandthevarietyinEV
modelsandtechnology.Thedistinctionsbetweenplug‐inhybridsandfullbatteryelectricscanbelost,as
wellasthefactthatEVsincreasinglycomeinmanyshapesandsizes,includingminivansandSUVs.Drive
ElectricusesthecharacterstudiesfromtheCity’sconsumerresearchstudytoshowthevarietyoftypes
andhowelectricvehiclesdoanddonotworkfortypicalNewYorkers(AppendixC‐3).
However,thesitedoesnotaddresssomekeygoalsidentifiedintheEVstudy.Forexample,thesitedoes
notpromotevisibilityandrecognition,whichareimportanttoEVearlyadopterssincetheyaremakinga
choicetobeonthecuttingedge.Theywanttobesupportedintheirdecisiontoreduceclimatechange
andforeignoildependence.
TheCity’soutreachservestomakebasic
informationavailableandaccelerateadoptionof
electricvehicles.Earlyadopterssupportelectric
vehicleinvestmentlocallyandnationally,andalso
leadbyexampleindemonstratingelectricvehicle
viability,therebypavingthewayforthenextwave
ofadoption.
Forthosepotentialearlyadoptersthatdonothave
deepfamiliaritywithEVs,theCityandEmpireClean
Citieshavemadeitpossibleforthemtoseethe
carsinpersonandliterallykickthetires.Empire
Figure3:ElectricVehicleSigninCentralPark
7
PlaNYCEVStudy.January,2010.
8
Ibid.
7
 
                               
                             
             
             
           
               
           
                 
             
             
         
           
         
       
           
           
         
             
                                   
                              
                               
                             
                                 
                           
                                 
                                         
          
                             
                                 
                                 
                             
                                   
                               
                                   
 
                           
                             
                               
                                 
                               
     
 
           
               
             
 
             
 
           
         
        
         
               
           
       
             
CleanCitiesandtheCityhavespearheadedorparticipatedinnearlyadozenshowcasesofelectric
vehicles.Someoftheseeventsweregearedtowardsenthusiasts,suchasNationalPlug‐inDay,which
theCityco‐sponsoredin2011and2012,
orthenon‐festivalworldpremiereofthe EVOutreachEvents
2011
documentaryRevengeoftheElectricCar
1. FleetDayinFlushingMeadows(May)
attheCentralParkbandshell.Thatevent
2. ScreeningofRevengeoftheElectricCar(July)
drewover500peopleandshowcased
3. QueensChamberofCommerceFair,CitiField
someoftheelectriccarsintheCityfleet.
(September)
OtheroutreacheffortsbroughtEVstothe
4. NationalPlug‐InDayatPier54(October)
people,suchasSummerStageand 2012
CentralPark’sAdventuresNYCoutdoor
5. FleetDayinFlushingMeadows(May)
6. CentralPark’sAdventuresNYC(June)
festival.IneventswithCityvehicles,
7. MissionElectricDayat
driversfromtheDepartmentsof
StatenIslandYankeesGame(July)
Transportation,Sanitation,andParks
8. SummerStageConcertinCrotonaPark,Bronx(July)
reassuredNewYorkersthatevenafter
9. TourdeQueensBicyclingEvent(July)
thousandsofmilesthesevehicleswork
10. HarlemAutoShow(August)
well.Throughsimpleexposure,thousands 11. NationalPlug‐InDayinTimesSquare(September)
ofNewYorkersarenowmorefamiliar
withelectriccars.AnadditionalexampleofthisisinCentralParkwhereseveraloftheCity’svehicles
parkandcharge.AccordingtotheParksDepartmentthishasbecomeaminortouristattraction.
Tobettersatisfytheneedforcommunity,NewYorkandEmpireCleanCitiescollaboratedwithBoston,
PhiladelphiatocreateMissionElectric.org,amap‐basedsocialtoolthatallowsNewYorkerstohavea
voiceinelectricvehicleinfrastructure.ThegoalofMissionElectricistogetpublicfeedbackandcreate
communityaroundEVs.Potentialelectricvehicleearlyadopterswanttoberecognizedandsupported
forbeingonthecuttingedge.MissionElectric,throughitswebsiteandthroughsocialmediasuchas
TwitterandFacebook,isawayforthemandotherNewYorkerstobepartofateamthathelpsshape
NewYork’selectricvehicleinfrastructure.
PurposeLLCandOpenPlans,respectiveleadersinmassdigitalparticipationandopensourcemapping,
helpedcreateMissionElectric.TheMissionElectricsiteenablesuserstovoteonthelocationofEV
focusedeventsandprograms.Thefirstvote,doneinbothBostonandNewYork,allowedresidentsto
choosewhicheventsMissionElectricwouldattend.Italsoallowedusersubmission,sothatpeople
couldsuggestabirthdaypartyandhavetheirfriendsvotetohaveMissionElectricbringanEV.These
electrifiedeventswerea“softlaunch”,intendedtotestthewebsiteandraisevisibilitybyattending
physicalevents.MissionElectricwenttofiveoftheevents,includingallthetopvote‐gettersaswellas
others.
ThesecondhigherprofileinitiativeinvolvedacollaborationwiththelargeNewYork‐baseddrugstore
chainDuaneReade,whichhadcommittedtoincorporateelectricvehiclesintoitsfleet.Thecampaign
allowedNewYorkerstoselectwhichDuaneReadestoresthecompanywouldserveonlywithelectric
trucks.Toincreaseawarenessaboutthecampaign,theCityworkedwithNYC&Co,whichprovidedthe
pro‐bonospacetoplacephysicaladsonover100busshelters(AppendixC‐1).Thecampaignalso
8
 
                         
                               
                                 
                           
                        
 
               
 
                                   
                             
                                 
                                 
                           
                                 
                        
                           
                       
                             
                           
                             
                         
                                   
                        
receivedsignificantattentionfromonlinemediasources,includingpresscoveragefromTriplePundit,
NPR,EVenthusiastblogs,andthefleetanddrugstoretradejournals(AppendixC‐2).Overthree
hundredusersvotedduringthecampaign,andsevenstores,includingthetopvotegettersinParkSlope
andHowardBeach,wonelectricvehicledeliveries.ThecampaignsuccessfullyincreasedawarenessofEV
investmentsinthecityandDuaneReadereceivedrecognitionforitsinvestments.
Figure4:BusShelterAdvertisementforMissionElectric
ThethirdandfinalcampaigninvolvedapartnershipwithHertzOnDemandandhelpedtotestthevalue
ofcrowd‐sourcing.Thiscampaign,whichendedinDecember2012,enabledNewYorkerstovoteon
wheretheywanttolocateelectriccarsharevehiclesofferedbyHertz.Uptothreegaragesthroughout
thecitycouldbeselectedtoreceiveEVsprovidedthattheyreceivedatleast100email‐affiliatedvotes.
Unfortunately,noneofthepotentialEVlocationsreachedthevotethresholdHertzrequired,delaying
theopportunitytotestthevalueofcrowdsourcing.Nevertheless,MissionElectricisanexampleofhow
atechnologyfocusedcampaigncanconversedirectlyandeasilyengagewithresidents.
Engagingthepublicthroughcrowd‐sourcinghasotherbenefitsaswell,includinggaugingdemandand
providingrecognitionforinvestorsingreentechnology.Anticipatingdemandforanemerging
technologylikeelectricvehiclescanbechallenging,especiallyonahyper‐locallevel.Forexample,in
2011theCityandColumbiaUniversityusedhybridownership,census,anddemographicdatato
determinewhichneighborhoodswerelikelytocontainearlyadopters;thissamecriteriaisusedby
nationalchargerproviderstodetermineinstallationlocations.Thoseproxiesareuseful,butincomplete.
Forexample,theydonotincludetravelpatterndatatoestimatevisitorusage.Inothercases,suchas
providingelectriccarshare,thereisevenlessdataforestimatingdemand.
9
 
 
                                 
                           
                               
                               
                             
                             
                                 
                           
                             
                                     
                      
                           
                               
                             
                             
                               
                           
           
                                     
                                     
                      
                         
                             
                                   
                           
                                       
                           
                
                             
                             
                               
                             
   
                                                            
   
   
Design History and Choices for Mission Electric
ThewebandsocialmediafirmPurposewasanoriginalcollaboratoronthedesignandstructureof
MissionElectric.ThesitewasconceivedasanoutgrowthofNYC.gov/driveelectric.Thatsiteprovides
informationaboutthetechnology,linkstochargingmapsandrequirementstoinstallahomecharger.It
usesarchetypalcharacterstudiesfromtheCity’sconsumerresearchstudytoshowthevarietyoftypes
andhowelectricvehiclesdoanddonotworkfortypicalNewYorkers(AppendixC‐3).
UsingstoriesbasedonthecircumstancesoftypicalEVearlyadoptersmakesinformationaboutchargers
andvehicleattributesmoreaccessible,butitstillpresupposesaconsumerwhoisalreadyfaralongthe
buyingprocess.Thosestoriesaremostusefulforsomeonealreadyseriouslyconsideringpurchasingan
electriccar.MissionElectricisdesignedtoallowwiderparticipationofEVsupportersandprospective
buyersbyallowingthemtoengagethroughvoting.Eveniftheyarenotreadytopurchaseavehiclethey
canstillparticipateandlearnmoreaboutEVsintheircity.
Creatingamoreengagingsiterequiredidentifyingthetargetaudiences,planningrealisticprojectsthat
peoplecouldvoteon,andcreatingawebsiteidentitythatencouragedparticipation.Tomeetthefirst
andsecondgoalsPurposeledaninternalandexternalideationsession.Thelargersessionincluded
representativesoftheNYCDoT,EmpireCleanCities,TheOfficeofLong‐TermPlanning&Sustainability,
theCityofBoston,andtheCityofPhiladelphia(AppendixC‐4).Participantswereprimedbeforehandto
considerEVactivityintheircommunities,socialengagementtheyfindappealing,andpotentialprojects
theycouldseethewebsitespearhead.
Scalability and Underlying Technology 
Oneinitialrequirementwastocreateadesignthatcouldbeusedbymultiplecities,inthiscaseNew
York,Boston,andPhiladelphia,butpotentiallyothersinthefuture.Thesiteisbuiltsothatitcanscale
uptomanycitieswithminimalextradesignandhostingcosts.
Theuser‐facingdesignusesWordpress,theweb’smostcommonblogandcontentmanagement
system.
9
TheunderlyingmapandvotingtoolsarenamedShareaboutsandbecausetheyareopen
sourceotherpartiescanrepurposethemfortheirownneeds.Thatcodecanbefoundatthewebsite
www.shareabouts.org.InadditiontoMissionElectric,ShareaboutshasbeenusedinPortlandandNew
Yorktoidentifybikesharelocations,andwasrecentlyusedtoprovidearealtimelistofSandycleanup
volunteeropportunities.
10
Featuresincludeaflexiblelayout,theabilitytoconfigureamapwith
boundariesandneighborhoodnames,andexportthedata.
Target Audiences 
Discussionssuggestedthatnotallthreecitiessharedthesameaudiences.Forexampleparticipantsfelt
thatBostonandPhiladelphiadrivershavemorepragmaticrelationshipswiththeircarswhileformany
NewYorkdrivers—atleastathirdofearlyadoptersasdefinedbytheCity’sconsumeradoptionstudy—
carsrepresentsomepartoftheiridentities.WiththosedifferencesinmindPurposeidentifiedseveral
targetaudiences:
9
http://techcrunch.com/2011/08/19/wordpress‐now‐powers‐22‐percent‐of‐new‐active‐websites‐in‐the‐us/
10
https://github.com/openplans/shareabouts/wiki/Projects‐that‐use‐Shareabouts
10
 
                 
                           
                           
       
                       
         
                       
             
                   
                         
         
                                 
                   
 
     
 
 
   
 
         
 
 
         
                 
                                 
                                 
                           
                                     
                                   
                                 
                                 
                       
•  EVclubs&enthusiasts ‐ motivatedbytheirpassionforEVs
•  EarlyandprospectiveEVbuyers ‐ motivatedbytheirdesiretohaveanurbanenvironmentin
which‘EVsmakesense,’i.e.theinfrastructurenecessarytomakeowninganelectricvehicle
convenient,affordable,andsustainable
•  Peopleinterestedinsustainabletransportationandurbansustainability–motivatedbytheir
passionforsustainabletransport/urbansustainability
•  Fleetmanagers ‐ motivatedbytheirdesireforgoodPR,economicincentives,increasedbrand
awareness&equity,potentialincreaseinsales
•  Bikers ‐ motivatedbytheirdesireforcleanairandsustainabletransportation
•  Peopleinterestedinopengovernment ‐ motivatedbytheirpassionforparticipatinginpublic
decision‐makingandtheircity’sgovernance
Thesiteuseditscontests,blogcontent,andsocialmediapostingstoappealtothoseaudiences.The
followingareemblematictweetsandtheaudiencestheyappealto:
EVEnthusiasts
OpenGovernmentSupporters
UrbanSustainabilityUsers,OpenGovernment
EVEnthusiasts,UrbanSustainabilitySupporters,
Supporters
Figure5:EmblematicMissionElectricTweets&TargetAudiences
TheMissionElectricnameandlogoweredesignedwithattentiontocorebrandattributesaswell.The
goalsweretomakethelogoapproachable,dynamic,andlocal.Theywerebuilttoavoidappearingtoo
policyoriented,irrelevant,orisolated.Purposepresentedthreevaluesforthesitetoembrace:
emphasisonpublicparticipation,potentialtoshapethecityinapositiveway,andtheabilitytomakean
impactquickly.Thelastvaluereflectsthefactthatelectricvehiclesaregainingmarketshareandnotjust
atechnologythatisperpetuallyoverthehorizon.Threefinalistnamesand18logodesignswerecreated
andinformallytestedatbothPurposeandOLTPSbeforechoosingthefinalnameandlogo.Forthose
alternativesandmoredetailonthebrandingprocesspleaseseeAppendixC‐5.
11
 
                               
                               
                           
                           
                                 
                               
                         
           
       
 
   
 
 
 
 
 
 
 
     
   
     
       
       
     
   
   
       
       
       
     
   
     
   
 
 
 
   
 
 
 
 
 
 
   
 
     
     
   
 
 
     
           
   
       
     
   
     
     
 
 
   
   
 
 
   
 
 
 
   
   
     
 
     
   
       
     
       
   
   
   
   
       
   
     
     
 
 
 
 
   
                                 
                               
                             
                       
                                                           
                                     
                         
Project Types 
Theideationresultedinmanypromisingproposals,includingthethreethatNewYorkCity(andBoston
inpart)carriedout:electrifiedevents,e‐truckchallenge,andchooseyourcarshare.Eachofthese
balancedachievabilityandengagement.Forexample,havingNewYorkersvoteonwhichCityfleet
shouldreceivenewelectricsedanshadhighachievabilitybutlowengagementvalue.Likewise,having
peoplevoteonchargershasbenefitsforEVSE
11
installersbyidentifyingdemand,butasacampaignit
appealsprimarilytoexistingEVdrivers.Thoughthecampaignhashighachievability,itwouldrisknot
generatingenoughengagement.Forthosereasonsthoseproposalswerenotfurtherdeveloped.Below
arechosenprojects’andtheirattributes:
Description ValueProposition TargetParticipants Partners
Electrified
events
People
collaboratively
decidewhichevents
shouldbe
‘electrified’withthe
presenceofanEV
PRopportunityforevent
producers;opportunityfor
electricasset
owners/brandsto
showcasethemandtrain
driverstodiscussthem
withthegeneralpublic
Eventattendees,EV
enthusiasts,people
interestedinsustainable
transportationand
urbanism
Event
producers;
EVasset
owners
E‐truck People Heightenedvisibilityand EVfleetbrand’sconsumers Brands
challenge collaboratively buzzforbrandswithEVsin andemployees,EV withEVs
decidewhich theirfleets enthusiasts,people intheir
neighborhoods interestedinsustainable fleets
shouldbeserviced transportationandurban
bytheelectric sustainability
trucksof
participating
companies
Electric
carshare
People
collaboratively
decidewhichcar‐
sharelocations
shouldofferEVs
PRandcustomer
engagementopportunity
forcar‐sharebrands,along
withgreaterawareness
andhigherutilizationof
winninglocations
Car‐shareconsumers,
partneringcar‐share
brand’semployees,
generalcar‐shareusers,EV
enthusiasts,people
interestedinsustainable
transportationandurban
sustainability
Car‐share
brands
TheChallenges of aPublic Private Partnership 
ThepromiseofMissionElectricispartlyincombiningthecredibilityofthepublicsectorwiththe
investmentpowerofprivateindustry.RaisingawarenessofprivateEVinvestmentsisgoodforboththe
City,whichwantstoencourageadoption,andalsothebusinessesthatwantcreditfortheir
environmentalcommitment.Eachpartnerweighsthesebenefitsagainstthereputationalriskworking
11
EVSEstandsforelectricvehiclesupplyequipment.EVSEsarecommonlyreferredtoaschargers.EVSEisamore
technicallyaccuratedescriptor,butforreadabilitythisreportusesthetwotermsinterchangeably.
12
 
                             
                               
                         
                               
                               
                                 
                               
                           
                                   
             
                           
                             
                       
                           
     
         
                   
                                     
                               
                                 
                           
                         
                             
   
                       
                                   
                 
 
                       
togethercreates.Businessesfearallowingthepublictoomuchsayinwhataretraditionallyinternal
decisionsliketruckroutesandcarshareplacements.Foritspart,thegovernmentfearsboth“playing
favorites”withprivatecompaniesandcreatingfalseexpectationswiththepublic.Unfortunately,those
concernscanlessentheattributesthatmakeanonlinevoteexcitingtothepublic.MissionElectric
surmountedthoseissues,butittookthecarefulselectionofpartnersandrestructuringofbothe‐truck
challengeandelectriccarshare.Onlyaselectfewpartnerswereabletoprovideacompellingcontest
forusersandmeetsocialequityandpolicyrequirementsofthegovernmentpartners.Forexample,with
theDuaneReadecampaign,somevehicleswerepre‐assignedtoneighborhoodswithhighasthmarates.
Whilethisensuredthatpolicygoalsweremet,itreducedthedynamismofthecontestbylimitingthe
availablenumberoflocationsupforvote.
RecreatingaMissionElectricstyleengagementrequiresmanypotentialpartnerssincesome,despitea
goodfaithinterest,willbeunabletomeettheprojectrequirements.Apublic‐privatepartnershipcan
increaseinvestmentandpublicacceptance,butitrequiresmeetingbothprivateoperational
requirementsandnon‐profitorgovernmentsocialstandards.Onlyasubsetofpartnershipscanmeet
thosedualneeds.
3.2MeasurementMetrics&CampaignResults
SeveraltoolsareusedtomeasureMissionElectric’sonlinereach:
GoogleanalyticstracksdetailsonMissionElectricsuchaswhattypeofdeviceauserisbrowsingfrom,if
theycamedirectly,viasearch,werereferredbysocialmedia,anotherwebsite,oremail,andwhat
regiontheywerefrom.Analyticsalsoshowshowlongavisitorstayedandwhatpagestheyvisited.
Bit.lyisaURLforwardingservice.Forexample,http://bit.ly/MPNlrywillgetredirectusersto
http://nyc.missionelectric.org.Bit.lyhastwofunctions:conservingspaceforTwitterposts,whichallowa
maximumof140characters,andtrackingspecificoutreach.MissionElectriccreatednewbit.lylinksfor
eachcampaign.
Facebookanalyticsprovidesengagementanddemographicdata.ItshowshowfrequentlyFacebook
linksareshared,howmuchthey’reliked,andtheirreach,orhowmanypeopleseeourcontentthrough
eitheradvertisingorthroughbeingsharedbyfriends’feeds.
Figure6:DemographicInformationonMissionElectricFacebookFriendsasof12/10/2012
13
 
                               
                               
                                  
              
                   
                     
                           
                          
                         
               
             
             
 
                             
                         
                                   
                                 
                                 
                      
                                 
                                 
 
                                 
                               
                                 
                           
                                     
                                     
       
                               
                               
                               
                                     
                             
                             
    
By every measure, the first campaign, the e‐truck challenge was the most successful. It received over
1,800sitevisits,300votes,andearnedmassmediaarticlesfromseveralsources,includingtriplepundit
andplugincars.com,bothofwhichrepresenttwoofthekeyaudiencesidentifiedintheCity’sEVstudy.
Componentsthatmadethecampaignsuccessfulincluded:
• Campaignpressevent/photo‐opwiththeCity’sDirectorofSustainability
• AcoordinatedsocialmediastrategywithDuaneReadeandMissionElectric
• Theuseofdonatedbusshelteradvertisingwithamarketvalueofover$200,000
• DuaneReadeinstorepromotion:Instoreradioandaisleadvertising (AppendixC‐6)
• DuaneReadeonlineadvertising(responsiblefor20percentoftraffictothecampaign)
• Physicaleventparticipation(SummerstreetsNYCtruckshowcase)
• Largegiveaway(agiftbasketworth$250)
• DuaneReadestoreemployeesengagedandvoting
DuaneReade’sconsiderablewebandstreet‐levelpresencehelpedtodrivethesuccessofthecampaign.
The company promoted the e‐truck campaign prominently on its homepage, generating over 300
referralsforthemonthitwasactive.Insocialmedia,thecompanyhasover57,000Facebookfriendsand
143,000Twitterfollowers,whichitalsoused.ThisrevealeditselfonAugust22,2012whennearlytwo
thirds of referral traffic came from social media during a day Duane Reade tweeted and posted on
Facebook.TheremaindercamedirectlyfromDuaneReade’swebsite(AppendixC‐7).
New York City also lent its social media support, tweeting from NYC.gov (with an audience of over
50,000), GreeNYC, 311, the New York City Mayor’s Office and Office of Social Media, and the Parks
Department.
On the other hand, sites with a more targeted, EV audience referred far fewer people despite their
alignmentwithMissionElectric.ForinstanceonOctober25,2012,theHertzcampaignlaunchedwithan
articleinGreencarreports.com.Thatarticleledtoonlyninepeopleloggingontothewebsitethatday.
Greencarreportshasasmalleroverallaudience(42,000Facebookfans,9,000Twitterfollowers),butnot
markedlyso.However,asanationalsiteitlikelyhasfarfewerNewYorkCityreaders.Thisindicatesthat
havingthesupportofapartnerwithlargelocalreachisimportant,eveniftheiraudienceisbroaderthan
theEVenthusiastcommunity.
TherewereseveralreasonsthattheHertzcampaigndidnotachievethemomentumthatDuaneReade
did. First, Hurricane Sandy caused a significant disruption. The City did not promote the campaign for
overthreeweeksasitssocialmediachannelsfocusedonstorm‐recoverytopics.Second,Hertzdidnot
advertiseorpromoteasheavily,eithertoitscustomersorthemedia.Thelackofaphysicalkickoffevent
alsolikelyreduced the press coveragepotential. Hertzalsorealized thatit picked several locations ill‐
suitedforelectricvehiclesandadjustedthem.Eachofthesefactorsdelayedpromotionanddampened
initialparticipation.
14
 
       
 
 
 
   
                   
                                 
                           
                                 
                                   
                           
                           
                             
                           
                                 
                  
  
                 
               
                   
                   
                 
             
             
             
               
                   
 
                                                            
                       
  
               
 
Hertz DuaneReade
Visitors 949 1775
Votes 130 301
Days 53 56
FacebookLikes 397 95
Figure7:KeyMetricsfromHertz&DuaneReadeCampaigns
Finally, the Hertz campaign was constructed as one that would launch in both Boston and New York.
Hertz and representatives from Boston were unable to find agreeable locations and were therefore
unabletocreateapartnerproject.Asaresult,thecampaignhadlowerthanexpectedorganicgrowth
andearnedmedia.Hertzrequiredthatasitehaveatleast100email‐affiliatedvotesforthecompanyto
guaranteeaddingavehicleandnoneofthelocationsmetthatthreshold(AppendixC‐8).
Surprisingly,thoughtherewerelessvotesandvisitorsduringtheHertzcampaign,MissionElectric’s
followingonFacebooksurgedduringthisperiod.Partlythroughjudicioususeofadvertising,thesocial
mediapostingsreachednearly25,000peopleandpostsfromNovember14
th
throughDecember7
th
,
2012,received142likes.ThisreflectsthatMissionElectriccanhaveasocialmediapresenceandimpact
evenintheabsenceofanactivewebsitemission.
3.3Communication
Mobile Interface 
One clear design limitation is the lack of mobile
interface.Approximately20percentofusersloggedin
usingamobiledevice.Facedwithaninterfacethatdid
not allow them to vote or easily navigate, nearly 80
percent of those users left within seconds. This most
significantly affected users on Twitter, who most
frequently visited from mobile devices. Mobile and
tablet computing is the fastest growing computing
segment.Tabletsaloneareexpectedtoexceedlaptop
sales by 2017.
12
Adding a mobile interface is a top
priority.
Figure8:ComparisonofMobile&PCSite
Engagement
12
QuarterlyMobilePCShipmentandForecastReport,NPDGroup.2q2012.
http://www.displaysearch.com/cps/rde/xchg/displaysearch/hs.xsl/quarterly_mobile_pc_shipment_and_forecast_r
eport.asp
15
 
 
               
                             
                                   
                               
                             
                       
   
                     
                               
                           
             
           
           
          
       
                 
              
                 
             
             
                 
                            
                                                           
   
Figure9:MissionElectricSourcesofNewUsers
Communication Channels  
ToreachitsaudienceMissionElectricprimarilyusedemail,Facebook,andTwitter.MissionElectricsent
out6emailblasts.Overall,allcampaignssawanaverageopenrateof35percent.Incomparison,the
averageopenratefornon‐profitsisaround20percent.
13
Thisrelativelyhighratereflectedjudicioususe
ofthetool,areceptiveaudience,andthesharingofrealnews.Thekickoff
emailsdidfarbetterthantheupdatesorsubsequentemailsurgingrecipients
tovote.
Facebook:Themostsuccessfulpostsusedstrongimages.Forinstance,over
8,000userssawtheposttotheright.Thepostwiththehighestreachwasalso
animage,thistimesubmittedbyaMissionElectricfollowerinEurope.Inthe
pictureweseeanexampleofEV
carshareinParis.Thisimage
drew208organicusers,withan
overallviralreachof6,692.
Overall,MissionElectric’sreach
washigherwhenpostswerepickedupbyorganizations
withlargevisibilitysuchasDuaneReade.
Twitter:Twitteranalyticsarehardertoquantify,butgood
measuresforviralityincludementions—thenumberof
timesthatothersusedtheTwitterhandle@MissionEV—
andretweets‐‐thenumberoftimesthatatweetwas
pickedupbyotherusers.Overall,MissionElectrichad107mentionsand60retweets.
13
http://mailchimp.com/resources/research/email‐marketing‐benchmarks‐by‐industry/
16
 
 
             
                               
                           
                               
 
                             
                           
                                   
                         
                             
                             
           
                               
                             
                             
                   
Figure10:EmailReachandAudienceReception
ThesestatisticsindicatethatMissionElectrichasastrongrelationshipwithitsaudience,butonethat
cannotbetakenforgranted.Emailswithlessactionableinformationreceivedlessattention.Growing
thisaudiencewouldhelpensureastablebaseofvotingforfuturecampaignsintheirarea.
Conclusion
MissionElectricpioneeredempoweringresidentsinNewYorkandBostonasayinelectricvehicle
infrastructure.Earlyadopterswanttoparticipateinacommunity,throughvotingorothermeans.
VotingisalsoavehicleforrecognitionfortheEVorEVinfrastructureproviders.However,votingisnot
withoutchallenges.Projectsmustlendthemselvestomap‐basedrepresentationandpartnershaveto
becomfortablewithrelinquishingsomedecisionmakingtothepublic.YetastheDuaneReade
campaigndemonstrates,asuccessfulprojectcreatesvisibilityandexcitementinawaythatatraditional
pressreleaseoreventwouldnot.
MissionElectricwouldlikelybenefitfromexpansionintoothercities.Scalewouldallowthesiteto
increasethefrequencyofcampaigns,audienceandoverallexcitement.Thecosts,intermsofadditional
hostingandlaborwouldbemodest.Regardless,keyEVstakeholdersshouldconsideralsocreatinga
local,consumer‐focusedchannelforelectricvehiclesintheircommunities.
17
 
     
 
                                         
                                     
                         
                               
                                   
                               
     
                               
                             
                             
       
                                     
                                     
                                 
                                 
                                 
                                   
                                   
         
                               
                                 
                                 
                                       
               
                               
                                 
                               
                                     
                           
                                   
                             
                                 
                       
         
IncreasingChargerAccess
AsofDecember2012NewYorkCityhasnearly100publiclevelIIchargers.ItdoesnotyethaveanyDC
fastchargersthoughtwoarecurrentlybeinginstalledaspartofataxipilot.Thankstograntsfromthe
NewYorkStateEnergyResearchandDevelopmentAuthority(NYSERDA)thatnumberwillgrow
significantly.TheCity,throughaNYSERDAgrantandinpartnershipwiththeNewYorkPowerAuthority
(NYPA),willinstall53chargersinpublicgaragesthatitalreadyowns.Thosechargers,andaneffortto
expandlevelIchargingdescribedonthefollowingpage,helpmeetdemandinareasunder‐servedby
theprivatesector.
ThissectiondescribesthreeotheropportunitiesevaluatedbytheCitytoexpandaccesstocharging:on
thestreetthroughafoodvendorelectrificationpilot,ingaragesthroughcreatingEVreadyparking
spaces,andonthegothroughfastcharging.Theseinitiativesreflectthespecificchallengesand
opportunitiesNewYorkfaces.
BuildingcodechangesthatrequireasubsetofparkingspacestobeEVreadyorhavechargershavethe
potentialtoincreasechargeraccessnowandinthefuture.ThisisapolicythatcitiessuchasVancouver
andLondonhaveembraced.Injustoneyearplusthetimeofconstructionbuildingcodescouldincrease
thenumberofEV‐readyspotsintheCitytwenty‐fold.Thoughthiswouldonlyaffectnew‐buildparkingit
wouldstillhavewidebenefitsthankstoNewYork’sdensity.Garagesarerarelyprivateandareinstead
usuallyopentothepublic.ThereforeanewgaragewithEVchargersincreasesEVbuyingpotentialforall
thosenearby.Anewparkinggaragewithchargersortheabilitytocheaplyinstallthemwouldbea
valuablepieceofneighborhoodinfrastructure.
Providingelectricitytofoodvendorsmaypavethewayforcurbsidecharging.Foodvendorshaveslightly
lowerpowerneedsthanEVs,aclearwillingnesstopay,andpredictableoperatingpatterns.Byhoninga
curbsideelectricityservicewiththissubsetofusersnow,theCitywilllearnhowtoprovideacost‐
effective,similarserviceforEVs.TheonlywaytheCitywillprovidecurbsidechargingatscaleisifitcan
findaprofitableorrevenueneutralbusinessmodel.
Fastchargingisanotherchargingmethodthatmayunlockdemand.Italleviatesrangeanxietyandmay
becomeawayforhighusagefleetssuchastaxistooperateelectricvehicles.Unfortunatelylandand
electricitycostslimitthebusinessmodelsthatmakeitwork.TheCityhasidentifiednearly500
propertiesitownsindesirablefastchargelocations.Thoughnotallofthesewillbesuitableforhostinga
fastcharger,theCityownsenoughpropertiestofindgeographicallyandoperationallyappropriatesites.
However,theCitybelievesthatitisnotprimarilypropertycostsbutelectricalonesthatarethekey
barriertoprovidingfastcharging.Demandcharges,whichpayforthegridrequirementsoffast
consumption,arethekeyeconomicproblem.Ithopestohelpdrivedownthosecostsbyworkingwith
stakeholderssuchaschargermanufacturers,buildingenergymanagementsystemproviders,ConEdison
andthePublicServiceCommission.
18
 
   
           
                                     
                               
                             
                                         
                                     
                                 
                                 
                               
                                       
       
                           
                               
                               
                                   
                                 
   
LevelICharging&GarageTraining
Beyondthethreeinitiativesabove,theCityalsoreachedouttoparkinggaragesandlotstoseeifthey
wouldprovidewall(orlevelI)chargingforelectricvehicles.Approximately30garagesintheBronx,
QueensandBrooklynnowofferoutletaccesstocustomerswithelectricvehicles.Wallcharging,or
usingacordtoplugintoastandardoutlet,isnotasfastorconvenientasusingadedicatedcharger.It
takesatleasttwiceaslongandrequiresavehicleownertousetheirowncord.Still,forplug‐in
hybridsorextendedrangeelectricsliketheVolt,itcanbesufficient.GeneralMotorshasfoundthat
over60%ofVoltownersuseanexistingstandardoutletathomeinsteadofinstallingadedicated
charger.Thosevehiclescanfullychargeovernightusingawalloutlet.Garagesthatofferthisservice
makeiteasierforNewYorkerstouseplug‐inhybridsanditisalsoasteptowardsthemofferingfaster
levelIIcharginglater.
Additionally,EmpireCleanCitiesandBeamChargingtrainedover250parkingattendantsin30
garageswithchargersandcreatedamanual(AppendixH)onhowtoproperlyusetheequipment.
GaragesprovidealynchpinofNewYorkCity’scharginginfrastructureandoftenitistheattendants,
notthedrivers,whowillplugthecarintothechargingequipment.Driversneedtobeconfidantthat
theirvehicleswillbereturnedwiththerangetheyexpect,lesttheyloseconfidenceinusinggarages
forcharging.
19
 
       
 
                                         
                               
                                 
                                         
                                 
                      
                                     
                           
                         
                                     
                                       
                               
                                     
                  
                                 
                                 
                                 
                          
      
  
 
  
         
                
           
         
 
                                 
                                   
4 ElectricVehicleBuildingCodes
4.1Overview
NewYorkisaCitybuiltonanticipatingthefuture.In1811,aplanwasdevelopedtooverlayastreetgrid
acrosstheagrarianandwildlandscapeofupperManhattan.Ourreservoirsandwatertunnels,begunin
themid‐19
th
century,arestillamarvelofengineeringandmakeupthelargestunfilteredurbanwater
systeminthecountry.Finally,injust25yearswecreatedthebulkofthesubwaysystemthatwerelyon
today. Preparing for electric vehicles does not require the same audacity, but it does call for similar
forethoughtinanticipatingtheinfrastructureneededasmorevehiclesrequirecharging.
Buildingnewparkingtobe“EVready”doesnotneedtobeexpensiveandiscertainlycheaperthanex
postfactoretrofitting.Whileaddingafewchargerscanoftenbeaccommodatedwithexisting
infrastructure,meetinganticipatedfutureadoptioncanbecomequiteexpensiveifnotinitiallyplanned
for.Manyofthosecostscanbeavoidedbyplanningforelectricvehiclesnow.Forexample,inasurface
lot,thecostoftrenchingandrepavingaparkinglottoaccommodatetheductforwiresisfarmorecostly
thanlayingthatductfromthebeginning.Inmostcircumstancesthecostofaddingtheelectrical
capacityandelectricalconduittoaparkingspotislessthan$100perspot,whichismodestinthe
contextofbuildingsthatoftencostmillionsofdollars.
Since2009LondonandVancouverhaveusedtheirbuildingcodestoprepareforEVadoption.Theyboth
require20percentofnewresidentialparkingtobebuilt“EVready”.Londongoesevenfarther,requiring
EVreadyspotsandchargersnotjustforresidentialbuildings,butforretailandworkplaceparkingas
well.Vancouver’scodeshavebeensosuccessfulthatitisconsideringexpandingthem.
London (Residential
/Workplace/Retail)
Vancouver
(Residential)
ChargersRequired(%) 20/20/10 ‐
“ChargerReady”SpotsRequired(%) 20/10/10 20
CombinedTotal(%) 40/30/20 20
YearIntroduced 2009 2009
Vancouver&London’sapproachmaybeapplicabletoNewYorkaswell.Despiteanoveralllossof
parking,citydevelopersstillbuildplentyofnewparkingeveryyear.Infact,startingin2009anaverage
20
 
                             
                                   
         
 
             
 
                                     
                                 
                                   
                       
                             
 
                               
                               
                                     
                         
                       
                           
                                 
           
                                                            
                                       
 
    
   
ofover10,000newspotshavebeenpermittedannually.
14
Thenewbuildparkingpermitsexhibit
surprisingdiversity.Itisbuiltinallfiveboroughs,pairedwithbuildingsofallsizes,inbothcommercial
andresidentialfacilities(AppendixD).
Figure11:NewPermittedParkingbyBorough
Background
Forlongtimegarageparkers,itissurprisingthatsomanynewspotsarebeingbuilt.Surfacelotsallover
thecityhavebeenclosedtomakewayfornewbuildings,causingtheoverallnumberofoff‐street
parkingspotstodecline.Yet,whilemanyparkinglotsarebeingbuilton,theedificesthatreplacethem
stillincludeparking.Developerscanbuildparkingwithoutnecessarilyreducingcommercialor
residentialspace.Parkinginabasementorsub‐basementleveldoesnotcountagainst“floorarea
maximums”.
15
Pastisnotnecessarilyprologue,butthemarketforthecontinuedbuildingofparkingshouldremain
robust.NewYorkhasgainednearly1millionpeoplesince1990.
16
PlaNYCforecastsevenmorenew
residents,withNewYorkgrowingto9millionpeopleby2030.Newhousingwillhavetobebuiltto
accommodatethosepeople.Thesteadinessofpastparkingconstructionsindicatesstabilityaswell;
from2009through2012parkingconstructionhasremainedremarkablyconstant.Thoughthe
DepartmentofCityPlanningisconsideringregulationstoreducerequiredparkingminimums,thereis
stillmarketdemandforcarownership.AslongasNewYorkcontinuestogrow,developerswillcontinue
buildingthousandsofnewparkingspaces.
14
Forlocationsthatrequirefourormorespots.ParkingbelowthatnumberisnotrecordedbytheDepartmentof
Buildings.
15
http://www.nyc.gov/html/dcp/html/zone/glossary.shtml#floor
16
http://www.census.gov
21
 
       
                               
                         
                                 
                               
                               
                           
 
                             
                               
                
 
                           
                                 
                               
                          
 
 
                                                           
   
                                 
       
     
                   
                                   
                               
                               
                    
                       
                                 
                           
                             
                                    
4.2CodeModels&Language
Likemostotherbuildingcodes,NewYorkCity’sisbasedontheInternationalCodeCouncilmodel
language.Thatmeansbuildingcodelanguagecanbesharedacrossthecountry.Unfortunately
VancouverbasesitscodeontheNationalBuildingCodeofCanada,makingitdifficulttoreplicatethis
codelanguageintheICCmodel.
17
However,thecode’srequirements,bothintermsofpercentageof
parkingimpacted,andtheconduitandelectricalpanelgoalsaretimetestedandtransferabletoother
modelcodes.Theywerepassedin2009andgovernmentexpertsconsiderthemwellreceived.
VancouverCodeLanguage:
Part13ofDivisionB:EnvironmentalProtectionRegardingMulti‐FamilyDwellings
•  13.2.1.1–ParkingStalls ‐ 20%oftheparkingstallsthatareforusebyownersoroccupiersof
dwellingunitsinamulti‐familybuildingthatincludesthreeormoredwellingunits,orinthemulti‐
familycomponentofamixedusebuildingthatincludesthreeormoredwellingunits,mustinclude
areceptacletoaccommodateusebyelectricvehiclechargingequipment.
•  13.2.1.2‐ ElectricalRoom‐Theelectricalroominamulti‐familybuilding,orinthemulti‐family
componentofamixedusebuilding,thatineithercaseincludesthreeormoredwellingunits,must
includesufficientspaceforthefutureinstallationofelectricalequipmentnecessarytoprovidea
receptacletoaccommodateusebyelectricchargingequipmentfor100%oftheparkingstallsthat
areforusebyownersoroccupiersofthebuildingoroftheresidentialcomponentofthebuilding.
Initialanalysissuggeststhattheseparkingrulescanbeincorporatedintosections406.1through406.5
ofChapter4oftheNewYorkCitybuildingcode.Thissection,“MotorVehicleRelatedOccupancies”,
coversstructuralrequirementsforgaragesandparkingfacilities.
Next Steps & Conclusion
Increasingaccesstochargingisaprerequisiteforlarge‐scaleelectricvehicleadoption.BuildingEV
readinessintonewbuildparkingmaystriketherightbalanceofcostsandbenefits,sincetheinstalled
electricalconduitallowsfortheaffordableinstallationofchargerswhentheyareneeded.NewYorkCity
isconsideringincorporatingEVparkinginitiativesintoitsGreenCodeTaskForceprocess.
18
17
http://www.bccodes.ca/vancouver‐bylaws.aspx?vid=QPLEGALEZE:bccodes_2012_view
18
TheGreenCodesTaskForce,aPlaNYCinitiative,proposeschangestoconstructioncodesandregulationsthat
supportgreenbuildingstrategies.
22
 
           
 
                                 
                                   
                             
                             
                                 
                                   
                                 
                       
                             
                             
                               
                         
 
 
               
                                                           
                 
                                   
 
 
 
 
 
 
     
 
   
   
5 CurbsideCharginginNewYorkCity
CurbsidechargingmaybecomeimportantinNewYorkCity.Ineachofthefiveboroughs,thepercentage
ofcarownersparkingonthestreetrangesfrom22toover54percent,apopulationthatmust
eventuallybeservedtomaximizeEVadoption.
19
However,thechallengeismatchingsupplyofcurbside
chargingwithdemandandtakingintoconsiderationthemanyothercompellingandcompetingusesfor
thecurb.CurrentlyinNewYork,garagechargingisstillnotfullyutilized.OtherNortheasterncitieswith
chargersinthepublicrightofwayhavespentthousandsofdollarsoninstallationandalsoseenlower
utilizationinthosespotsthaninadjacentparking.Thelowusageandhighcostofelectrifyingparking
spotsmakesitdifficultfortheCitytopursueintheshort‐term.
However,theCityisexploringwaystoprovidecurbsideelectricitynowthatwillmakecurbside
electrificationeasierlater,botheconomicallyandoperationally.ThemethodNewYorkislookingatis
providingelectricitythroughexistinglightpolesforfoodvendors.Thereare3,000foodtrucksandcarts
inNewYorkCity,manyofwhichusehighcost,highpollutiongenerators:
$‐
$0.20
$0.40
$0.60
$0.80
$1.00
EnergyCost
Cost($perkWh)
electricalgrid
highefficiency
generator
lowefficiency
generator
Figure12:CostsofGridandGeneratorPower
20
19
NewYorkCityElectricVehicleAdoptionStudy,February2010
20
AsestimatedbyOLTPSbasedongeneratorefficiencyandaverageNewYorkCityelectricityandgasolineprices
23
 
               
                                       
                             
                                   
                                   
                                     
                               
                             
       
         
     
     
     
         
       
           
    
       
         
       
       
       
       
 
     
         
       
       
           
     
   
Figure13:PollutionfromGridandGeneratorPower
NewYorkCitybenefitsinseveralwaysfromusingthismarketasaproxyforEVchargingandfocusingits
planningeffortsonfirstprovidingitwithcurbsideelectrification.First,theoutletsprovidedforfood
trucksareelectricallyverysimilartothoseforvehiclesandtheycanberetrofittedforeventualEVusage.
Theymaythenservedoubleduty,chargingfoodcartsinthedaytimeandvehiclesatnight.Second,it
givestheCityanopportunityforhandsonlearningonhowtoprovideelectricitytoprivateusersatthe
curbside.Becausefoodvendorsarearegulatedandlimitedgroupofcustomers,theCitycangain
expertiseforeventualcurbsidecharginginacontrolledway.Finally,becauseoftheirestablishedroutes
andhighcurrentfuel
costs,theyprovideamore
certainreturnon
investment(ROI).This
financialreturnwould
allowtheCitytomore
Pinkboxesrepresent
easilyexpandtheprogram
areaofcanvas
ifitchosetochargefor
theservice.
Inpursuingthisplanning,
theCityisworkingwith
manystakeholdersinthe
designofthispotential
pilot,includingtheNew
YorkCityParksand
Transportation
Departments,ConEdison,
andaproviderofcharging
forfoodvendors,Green
VendorsNYC.Itworked
Figure14:MapofFoodVendorCanvas
24
 
                               
                                   
             
                             
                               
                                 
                                 
                          
                               
                               
                               
                                 
                               
                                   
                      
                   
                 
                   
                   
                     
                     
              
                       
                   
                 
                       
                 
                         
     
                                   
                                 
                                   
                           
                                                           
                           
                             
                                   
     
         
         
withaconsultant,ClosedLoopAdvisors,whichanalyzedfoodcartandtruckenergyusagetodetermine
potentialmarketsize.Thatcompany’sreport,doneonbehalfofOLTPSaspartofthisEVplanninggrant,
includesanin‐depthlogisticalanalysis(AppendixA).
Foodtrucks&cartsareanincreasingpartofthestreetscape.Surveyingsuggeststhatapproximately
two‐ thirdsofthe3,000mobilefoodvendorsusegenerators,addingnoiseandpollutiontoouralready
loudandcongestedstreets.Toaddressthatissue,andtohelpunderstandhowtoonedayprovide
curbsidecharging,theCityisconsideringcreatingapilottoprovidefoodcarts&truckselectricity.Soon
severalvendorsmayhavetheoptionofusinggridpowerinsteadofgenerators.
Generatorsarenoisyandoftenasourceofcommunitycomplaints.Infact,accordingtoconsumergrade
decibelmeters,somecarts’generatorsareasloudaschainsaws.Beyondnoisethough,theyarealso
polluting.AccordingtoananalysisbyClosedLoopAdvisorsdonefortheMayor’sOfficeofLong‐term
Planning&Sustainability,generatorsproduce5timesmoreCO2thanthegridandwellover100times
moreNOx(whichcausessmog,lungdamage,andasthma).Vendorsdonotlikethegeneratorseither.
Theyrequirefrequentfillups,breakdown,andareexpensivetouse.Infact,at$1.15perkWh,
generatorpowercostsatleastfourtimesmorethangridpower.
TounderstandthemarketClosedLoopAdvisorsandNYCService
collaboratedonastrategicneighborhoodcanvas(Figure14).NYC
Serviceinternsvisitedsevenneighborhoodswithalargenumberof
foodmobilevendors.Theyquantifiedthenumberofvendorsusing
generatorsandthesizesofthosegenerators.Over67percentof
vendorsusegenerators,showingthatthereisasignificantmarketfor
providingelectricityforfoodcartsandtrucks.
ClosedLoopalsodidabottomupanalysisofseveraltrucksto
determinewhattypesofvendorswouldbelikelycandidatesfor
electrification.Sometrucks,predominatelyonesthatmakesoftserve
icecream,yogurtorice,requiretoomuchpowertouseexisting
electricalinfrastructure.Howeverthecanvassuggestedthatofthe
vendorsthatusegenerators,90percentareasizethatcouldbeserved
withgridpower.
TheCityisconsideringwhethertoimplementapilottoprovidepowertoseveralcartsandtrucks.The
pilotcouldworkbyutilizingexcesselectricalorconduitcapacityservingthecity’slightpoles.
21
Theunits
themselveswillbeonthelightpoles,adjacenttothem,orboth.
22
Theoutletswillbesecuredthrough
technologylikeRFIDenabledaccessthatalreadyexistsformarinaandelectricvehiclechargers.
21
Theexistingconduitmaybelargeenoughindiametertoaccommodateadditionalwiring.
22
AccordingtotheDepartmentofTransportationlightpoleinstallationwillincreasepolemaintenancecomplexity.
Aseparatepolemountmaybepricecomparable,butitincreasesstreetclutterandmayrequireprotectionfrom
potentialvehicularimpacts.
Figure15:PotentialUnitto
MountonaLightpole
25
 
                                       
               
                         
                             
                                 
                             
                                 
                             
                       
                         
                           
                         
                       
                           
                                   
                             
                           
                             
       
                               
                                   
                           
                         
                                     
                           
                         
                             
                             
                           
                                   
                             
                               
                    
Authorizeduserswillneedtotaptheunitwithanaccesscardforpowertoflow.Figure15showsan
imageoftheunitlikelytobetested.
Thepilotwillhelpanswerquestionsregardingvendorinterest,electricityusage,andpedestrian
compatibility.Itwillalsoprovideexperiencewithhardwareonthestreetthatwilllowerinstallation
costsiftheCitydoeseventuallydecidetoprovidecurbsidechargingforvehicles.Byworkingfirstwith
foodcartsandtrucksanimmediatepollutionproblemcanbefixedwhilealsogeneratingrevenue.
Thoughtheseunitsarebuiltjustforfoodvendors,futureonescouldservedoubleduty,providingpower
tobothvendorsandelectricvehicles.Throughbothlearningandfuturedual‐purposehardwareitpaves
thewayforafuturewhenvehiclescanchargeonthecurb.
Processofidentifyingfoodtrucks&cartsasameanstocurbsideelectrification
NewYorkCityconvenedwiththecitiesofSanFrancisco,Vancouver,Boston,PortlandOregon,
WashingtonD.C.,London,andPhiladelphiatodiscusstheircurbsidechargingstrategies.Italso
conferredwithitsDepartmentofTransportation,chargingcompanyproviders,andotherstakeholders
tounderstandthebarriersandpotentialofprovidingcurbsidechargers.Portlandhasbeenparticularly
successfulwithitsElectricAvenue,whichisnearthecentralbusinessdistrict,butNewYorkisina
uniquesituationbecauseofthehighdemandforparking.AccordingtotheCity’sDepartmentof
TransportationhighparkingutilizationmeansthatcreatingdedicatedEVparkingnowwouldlikelyresult
inhigheroverallcongestion,byincreasingtheamountofdoubleparkingandsearchingforavailable
parkingbyconventionalvehicles.
TheCityfirstconsideredpairingvehiclesthatofferguaranteedhighusagewithcurbsideelectricspots.It
approachedbothZipcarandHertzonDemand,twoofthebiggestcarsharecompaniesintheCity.Both
preferredusingtheirexistinggaragemodel.Hertzidentifiedthehighinstallationcostsofcurbside
chargersasasignificantbarrier.Indeed,interviewswithrepresentativesfromothercitiessuggested
installationcostscouldbethreetofivetimesgreaterthaninagarage.InNewYork,whichhasthe
highestconstructioncostsinthenation,thosedifferenceswouldlikelybeevengreater.Furthermore,
theadditionalconcernofvandalismorneglectaddedadditionalpotentialmaintenancecosts.Together
bothhighcostsanduncertaindemandoutweighthecurrentbenefits,especiallysincetheCity’s2010
studyconcludedthatitwouldnotinducedemandasmuchasincreasededucationandoutreach.
Ofthesolutionsconsideredforfurtheringcurbsidecharging,creatinganeighborhoodclusterofEV
charging,pairingwithacarsharefirm,andprovidingpowertomobilefoodvendors,thelastofferedthe
lowestcostsandhighestbenefits.Installationwouldbesimplerandeasier,utilizationwouldbehigher
sincecustomerusagewouldbemoreassured,andwillingnesstopaywouldbegreatersincefood
vendors’currentsourceofelectricityisexpensive,unpleasant,andunreliable.
26
 
                                   
   
     
   
 
   
   
   
    
   
   
                                 
 
                          
         
  
 
  
 
   
  
         
         
           
             
   
                       
                       
 
                                   
                               
                                     
                       
                           
                
   
EconomicanalysisbytheCitysuggeststhatprovidingpowerfromlightpolescouldhaveaslittleasan
18‐monthpayback:
RevenueSensitivityAnalysis
Scenario1: Scenario2: Scenario3:
BaseCase HigherCapital HigherCosts,
Costs LowerUsage
ScenarioVariables
Scenario1=expectedcosts,Scenario2= 2xCapEx,Scenario3= 2xCapEx,lessusageand
labor
CapitalExpenditures(CapEx) $ 800 $1,600 $1,600
Chargers/Employee(LaborCosts) 350 350 275
Annualelectricitycostincreases 3% 3% 4%
Cityshareofrevenue 70% 70% 50%
Hoursadayofusage 7 7 5
Results
IRR 845% 132% 10%
NPV $47,040 $42,207 $4,653
Figure16:RevenueProjectionsunderthreeScenariosEstimatingDifferentRevenueandOperating
Expenses
PursuingfoodvendorsisnotunlikeTesla’sstrategyoffirstproducingitsRoadster.Itfocusedfirstona
highmarginproductandofferedittoareceptive,relativelysmallaudience.Ituseditsnewfound
expertisetoreducecostsandthenofferasolutiontoalargerpartofthemarket.Therearemany
challengeswithcurbsidecharging,includinguncertaindemand,highcapitalcosts,andongoing
maintenance.Thispilotaimstoreduceinstallationcostsandprovidedatatobetterestimate
maintenanceandoperatingcostsforcurbsidecharginglater.
27
 
   
 
                                     
                                     
                                 
                          
                                 
                                   
                                   
                         
                                 
                           
                             
                               
                             
                       
                           
                               
                                 
                                   
                       
         
                                   
                               
                                 
                             
                             
                             
                              
         
                                         
                                 
                                     
                                 
                     
                                                           
                       
6 FastCharging
Thefollowingisatwo‐partanalysisoffastcharginginNewYorkCity.Incomparisontostandard6.6kW
levelIIACcharging,fastchargingrangesfrom25to90kW.Thisallowsmanyvehiclestonearlyor
completelyfillupin30minutesorless.Thetechnologyhasvaluetoconsumersforreducingrange
anxiety,butitmayhavevalueforheavilyusedcommercialvehiclesaswell.
Thefirstpartofthisanalysisincorporateslessonslearnedfromeffortstoinstallthreefastchargersthis
summeraspartofafleetproject,specificallyanelectrictaxipilot.Thelocationsbeingsoughtputa
premiumonusabilityfortaxis.Thoughthisanalysisisthemostlocalized,itmaystillbevaluablefor
otherregions.WhilesomechallengesareuniquetoManhattan,theeconomicchallengesencountered
maybedifferentonlyindegreeandnotinkindfromthosefacedelsewhereinthecountry.
Secondly,agroupofgovernmenttransportationexpertsidentifiedlocationsinthemetropolitanareato
placechargersprimarilyforpassengervehicles.Thegoalsguidingthisprocesswere:proximitytoboth
majortravelroutesandamenities,andnearbypropertyownedbykeystakeholders.Thefinalresultsare
regionallocationsidentifiedonmajorcorridorsandGISmapsshowingCityownedpropertieswithin½
mileofexitsonkeycityhighways(Figure21thoughFigure25).
Conveniencetotravelrouteshasobviousimport.Aninconvenientlyplacedchargerwillnotreassure
driverswithlowbatteriesorrangeanxiety.However,proximitytonearbyservicessuchascoffeeshops
matteraswell.EPRIstudiesshowthattherateoffastrechargeisnotlinear.Rechargingspeed
diminishesafterthefirstfifteenminutes.
23
Notalldriverswillwaitthefullthirtyminutestogetevery
kilowatt‐hour.Nevertheless,aquarterhourtotwenty‐minutewaitwithoutbathroomsornearby
amenitiesmaytestusers’patience.
Thefinalgoal,usingstakeholderpropertyorofferingitforafranchise,mayhelpquickenthesitingof
fastchargers.SomeprivatelandownershaveembracedthevalueofAClevelIIchargersingeneral.
Howevertheexperienceofattemptingtositefastchargersforthetaxipilotsuggeststhatfastchargers
createmoresignificantobjectionsfrombuildingowners,inpartbecauseofthegreaterelectricaland
spatialrequirementsforsuchchargers.Theunprovenvalueandgreaterdemandsoffastchargersmake
somebuildingownershesitanttopartneroninstallations.NewYorkCityhasnotonlyencountered
thoseconcernslocally,ithasalsoheardthemfromutilitiesandfastchargeproviderselsewhere.
6.1FastChargersforTaxiusage
Inthespringof2013,NewYorkCityplanstolaunchapilotofsixsingleshiftelectrictaxis.Globally,other
electrictaxiprojectsfarsurpassthisone’smodestscope,sixNissanLEAFstakingstreethailsforone
year.MexicoCityhasaplanfor100LEAFtaxis,whileBYDelectricsedanshavepliedthestreetsof
ShenzhenChinasinceDecemberof2011.Still,theprojectinNewYorkwilltestspecificlocallogistical
andeconomicchallenges.Fastchargingisintegraltotheproject’soutcome.
23
Halliwell,John.“ElectricTransportationInfrastructureActivities.”AdvancedEnergy2011.October2011.
28
 
                                       
                               
                             
                           
                           
                                   
                                     
                                     
                               
                           
                      
                                     
                                   
                                 
                                 
                           
                               
                               
                                 
                                     
                                   
                           
                             
                                                           
                   
                     
             
   
                 
5
NewYorkCitytaxisoperateanaverageof120milespershift,farbeyondtherangeofafullycharged
LEAFbattery.AnalysisbytheNYCMayor’sOfficeofLong‐TermPlanningsuggeststhatvehicleswillhave
tobechargedanaverageof1‐3timesperday(graphbelowandAppendixE‐1):
#
c 4
spring/fall
f a
3
summer
o h
r
f g
2
winter
a e
1
s s
t
0
5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60%
%ofbatteryatwhichdriverseeksafastcharge
Figure17:ChargesPerDayasaFunctionofwhenaDriverFastCharges
24
Thisrelianceonfastchargingmakestheconvenientplacementofchargersaparamountrequirement.
Thishasbenefitsfornon‐taxiusersaswell,sincetheirneedsaresimilar.Cabstravelthemostcongested
streetsintheCity.90percentoftripsoccurinManhattan.
25
Over7millionvehiclemilesaretravelledon
justlessthan24squaremiles.
26
Chargersplacedontheirbehalfwilllikelybeusefulforotherfleetsand
drivers,anassumptionthatwillbetestedasthetaxipilotbeginsthisspring.Regardless,understanding
howtoinstallchargersinthemostdemanding,congestedareamakesanysubsequentplacements
easierandmayalsoprovideamethodforreducingoperatingcosts.
Costsofrealestateandelectricitycreateobstaclesaswell.Fewotherpartsofthecountryplacesucha
premiumonrealestateandprovidesolittleparkingrelativetothepopulation.Theaveragecostofan
off‐streetparkingspotinMidtownisover$530permonth.Thehourlypriceoftenexceeds$15per
hour.
27
Thiscreatesalargeopportunitycostforgarageowners.Theindustryhasinstalledover92AC
levelIIchargersandseamlesslyintegratedthemintoitsoperations.Inundergroundgaragesthe
chargersarewallmountedandthespotsservebothelectricandconventionalvehicles.Incomparison,a
fastchargerrequiressignificantlymoreaccommodation.Ittakesupwardsofaquarterofaparkingspot,
anddoublethatifatransformerisneededtoincreasesuppliedvoltage.Consistentlyhighlevelsofusage
areneededtorecoverupfrontcostsandmakeupfortheopportunitycostsofdedicatingaspace.Infact,
asthefollowingsectionshows,itisnotnecessarilytheupfrontcosts,butrathertheongoingonesthat
makefastchargingsuchachallenge,namelyhighdemandcharges.Thoughtheseelectricitydemand
costsaregreatestinNewYorktheymaybeobstaclesinotherareasaswell.
24
analysisbytheNYCMayor'sOfficeofLong‐termPlanning
25
Schaller,Bruce.NewYorkCityTaxicabFactBook.March2006
26
NYMTC.CongestionManagementProcess.April20120
27
http://nyc.bestparking.com/index.php
29
 
           
                                   
                         
                                   
                                   
                                 
                  
 
                           
                               
                                 
                               
                             
                                   
                                 
                                   
                                     
                                   
                               
                         
                                   
                             
 
                               
                                   
                                                           
                       
         
   
   
6.2DemandChargesinNewYorkCity
NewYorkCity’shighdemandchargesstemfromtherealitiesofitsgrid.Its80,000milesofunderground
electriccablecomprisetheworld’slargestsubterraneandistributionsystem.
28
Demandchargespayfor
maintainingit.Theycovertheutility’sfixedcostsofprovidingagivenlevelofpowertoacommercial
customer.Thinkofacarasananalogytothedistributionsystem.Twocars—onemorecapablethanthe
other—bothmaybeabletotravel100miles.However,onlythemorecapablecarcouldspanthat
distanceataspeedof100milesperhour.
Figure18:IllustrationofhowDemandCanVaryfortheSameAmountofPower
29
Demandchargespayforthegridrequirementsoffastconsumption.Theyaremostcommonlypricedon
amonthlybasisbasedonthehighestamountofenergyused(asmeasuredinkilowatts).UnderCon
Edison’slargecommercialrate(S.C.9)thatdemandchargevariesbetween$17.50and$22.60perkW
dependingontheseasonandafacility’stotalpowerdraw.
30
Thathasprofoundimplicationsfor
appliancesthatintermittentlyuselargeamountsofpower.Inthecaseofa50kWfastcharger,demand
chargesandrelatedfeescanexceed$1,100permonth.
31
Torecoupthosecostsaproviderwouldhave
tochargepricesfarhigherthanhomecharging.At$12perfastcharge(a2‐5xpremiumoverhome
charging),itwouldtakeaprovider5.5chargesperdayjusttobreakevenwithrespecttothedemand
charges.Foramidtowngarageitwouldtakeover24chargespermonthtobreakevenwhenaccounting
fortheopportunitycostofparkingrevenue(AppendixE‐2).Neitherofthesecalculationsaccountforthe
upfrontcapitalexpenseofhardwareandinstallation.Withoutmitigatingdemandchargesfastcharging
cannotstandonitsownasabusiness.Absentexceptionalutilizationrates,thecostsaretoogreat.For
taxis,operatingcostspermilewouldlikelybehigherthantoday’smoreefficientgasolinepowered
vehicles.
ThisplanningforfastcharginginNewYorkCityilluminatesapotentialsolution.Fastchargingbecomes
muchmoreeconomicalifachargerdoesnotcreatenewdemand.Demandisafunctionofaproperty’s
28
Ascher,Kate.TheWorks:AnatomyofaCity.PenguinPress,2005
29
IllustrationCourtesyofThink‐Energy.net
30
http://www.coned.com/rates/elec.asp
31
Ibid.
30
 
                                   
                               
                                 
                                   
                         
 
                         
                                   
                                 
                               
                                   
                                 
                 
                                 
                                         
                                     
                               
                             
                         
                             
                               
                         
                                 
                                                            
                                       
     
                   
 
   
   
   
overallenergyprofile.Afastchargerhaslargeimpactsonafacilitythatuseslittleenergylike,for
example,aseparatelymeteredparkingfacility.Yetinlargebuildingsenergydemandfarexceedsthe50
kWloadofafastcharger.ManybuildingsinNewYorkCityhaveseveralmegawattsofdemand.
Frequentlythatdemandoccursforonlyafewhoursaday.ThisenergyprofilefromaHoustonoffice
building,thoughsmallerthanatypicalNewYorkCitybuilding,illustratesthepoint:
Demand
Chargeof
~71kW
sethere.
Figure19:HoustonOfficeBuildingEnergyProfilewithDemandChargeof~71kW
32
Otherthanweekdayafternoons,fastchargingwillnotaddtopeakload.Ofcourse,itonlytakesone
incidentofafastchargerusedduringapeakperiodtocreateadditionaldemandcharges.AppendixE‐3
showshowunmitigatedfastchargingincreasescostsforevenalargeenergyuser.Whilethelikelihood
ofchargingexactlyonapeakdecreaseasenergyusegrows,itisnotdefinitivelyeliminated.TheCity’s
experienceaskinggaragestoinstallfastchargersfortheelectrictaxipilotsuggeststhatfearofdemand
chargesreducesinterestinevenasubsidizedfastcharger.
Theidealsolutionistointegratewithabuildingthathasanadvancedenergymanagementsystem.The
fewtimesthatfastchargingdoesoccurduringapeak,thebuildingmaybeabletoturnoffafanor
pumpforthe20to30minutesthefastchargingistakingplace.Accordingtoabuildingspecialistand
severalenergymanagementsystem(EMS)firms,therearemanywaysabuildingcanreducedemandby
50kW.Infactmanyparticipateindemandresponse,wheretheydothatandmore.
Unfortunately,fewbuildingshaveEMS’ssophisticatedenoughtodetermineproximitytothebuilding’s
peakloadandshedloadautomatically.Thistechnology,whichwouldreduceoperatingcostsoffast
chargingtojustthemarginalcostofelectricity(~$.13/kWh),isuncommon.
33
Mostlackingistheability
toactivelymonitorandshedload.Buildingswithsophisticatedsystemsandoperationallysuitable
garagesarefewerstill.TheCitydirectlyreachedouttodozensofbuildings,eitherthroughthemanagers
32
Bryant,JohnA.Shorttermenergymonitoring:aroadtolongtermenergysavings?Facilities,Vol.20Iss:10,
pp.303–313
PricebasedonConEdisonSC9RateStructure
31
33
 
                             
                               
         
                                       
                         
                               
                           
                                 
                     
                             
                               
           
 
           
 
     
                                 
                             
                               
                           
                          
                                 
                                 
                                   
                               
                                 
                         
                             
                                     
                               
                                 
                             
                         
                                   
                       
                             
        
                                                           
                          
                   
 
ortheirdevelopers.Buildingenergymanagementsystemfirmshavescouredtheirclientlistsaswell.
Themarketisnotofferingawaytomitigatethedemandchargesthatfastchargingcreates.
6.3CitywidePlacementofFastChargers
Lessonsfromtryingtoplacechargersinthecoreofthecityinformandguidecreatingamasterplanfor
installingchargersmorebroadly.Usersneedconvenientlocations,andpropertyownersneeda
compellingbusinesscase.Forusers,conveniencehastobebalancedbythecostofcharging.Property
ownersneedconsistentlyhigh‐levelsofdemandtoensurethatrevenuewillexceedtheopportunity
costsofusingtherealestateforotherpurposes.Theserequirementssuggestthatideallocationswillbe
nearmajorarteriesorgateways,highinamenities,withavailableproperty.
Nationwide,fastchargingdeploymentseemstofolloweitherthisradialapproachoracorridorstrategy
alongspecificroutes.OregonStateandConnecticutarecreatingcorridors.InthecaseofConnecticut,it
isplacing10regionallydistributedfastchargersonhighwayreststopsthroughoutthestate.
34
Oregonis
electrifyingitsI‐5corridorandSolarCityhasdonethesamebetweenLosAngelesandSanFrancisco.
Meanwhile,eVgo,aninitiativeoftheelectricalutilityandgeneratingcorporationNRG,ispursuingthe
radialapproach.InitsmarketsinHoustonandDallasitseekstoprovidechargingwithinthe
metropolitanareas.Themodelsarenotmutuallyexclusiveandeachhasdiscretebenefits.Corridors
servelongdistancetravelers,whilemetropolitanareastrategiesmaybetteralleviate“rangeanxiety”.
Fastcharginginurbancentersmayevolvetoserveotherneeds.Forexample,fastchargingmaybecome
usefulforcommercialusersthatdonotwanttosizetheirbatteriesforrare,exceptionallyhighusage
days.Forthemfastchargingcanbeusefulasanoccasionalwaytoextendtheirvehiclesusability.Fast
chargestationspoweredbydistributednaturalgasgeneratorsmayalsobeawaytoensureEV
functionalityinablackout.Batteriesmayalsoimproveindurabilityandsizetothepointthatfast
chargingservesasprimarychargingforEVdriverswhoparkonthecurb.
Inthemeantime,astudybytheJapaneseutilityTEPCOillustratesthatfastcharging’spsychological
benefitsmaybejustassignificantastheirpracticalones.Priortotheinstallationoffastchargersinthe
TokyoareaEVdriverswouldlimittheirtraveltomaximizebatterycharge.Afterfastchargerinstallation,
EVmilestravelledincreasedsevenfold.
35
Thestudy’ssampleistoosmalltobeconclusive,butit
indicatesthatfastchargingmayhelpincreaseEVadoptionbyreducingrangeanxiety.CertainlyTesla
thinkssobasedonitsinvestmentinEastandWestCoastEVhighways.
Inordertobepreparedforfastchargeinstallation,theNewYorkCityMayor’sOffice,NewYorkCity
DepartmentofTransportation,andtheNewYorkMetropolitanTransportationCouncilworkedtogether
toidentifypotentialfastchargezones.First,theteamidentifiedseveralregionalareasthatare
promisingfastchargelocations.
34
April5
th
,2012ConversationwithWatsonCollins,BusinessDevelopmentManager,NortheastUtilities
35
TEPCOPresentation.TakafumiAnegawa.EV‐ChargingInfrastructureSummit.London12/1/2010.
http://www.ev‐charging‐infrastructure.com/media/downloads/inline/takafumi‐anegawa‐tepco‐9‐
10.1290788342.pdf
32
 
     
 
 
   
   
     
 
                 
       
   
     
       
 
 
   
     
     
 
   
 
 
                   
   
 
   
 
     
 
 
 
       
 
     
   
 
   
 
   
     
   
   
 
     
 
         
      
     
     
   
   
 
             
                                 
                                 
                           
       
                                   
                                 
                                   
                               
                           
                                
                                 
                                 
                                     
                                           
           
                                                           
                             
Location MajorTravel Distance DriverAmenities Available
Route fromCentral Property
Park(miles)
MetropolitanAreaHighwayRestStationswithinNewYorkState:
RocklandCounty Route87, 34 Yes Yes
RamapoExit
SuffolkCounty LongIsland 43 Some.Visitor Yes
Expressway information,
Eastbound, vendingmachines,
betweenExit bathrooms
51&52
MetropolitanAreaHighwayRestStationsoutsideofNewYorkState
CheesequakeTravel GardenState 42 Yes.Visitor NotNYCorNYS
Plaza Parkway information, owned
restaurants,
bathrooms
MajorTransportationHubs
RonkonkomaTrain LongIsland 51 Yes.Nearby Yes.Largeparking
Station Expressway, restaurants,cafes, structure
Exit60 andpublic
bathrooms
StewartAirport  Route87,Exit 65 Limited.Public Yes
17& Route bathroomsand
84Exit7B visitorinformation
Figure20:PotentialRegionalFastChargeLocations
Second,itidentifiedpropertiesthattheCityoritspartnerscouldleveragetoinstallfastchargers.The
CityandConEdisonalsoownpropertiestopotentiallysitefastchargerson.AppendixE‐4listsproperties
identifiedbyNewYorkCity’sDepartmentofCitywideAdministrativeServicesaselectricallyableto
accommodateafastcharger.
ThenumberofprivatefacilitiesnearmajorarteriesthatmayappealtoexistingorfutureEVdriversis
toolargetocount.However,asmentionedearlier,whilefastchargingmayhavegreatvalueinspurring
electricvehicleadoption,itmaynotstandonitsownasabusinesspropositiongivenitshighsupply
costsanduncertainmarketdemand.Yet,becausefastchargingmayhelpinduceEVdemandbyreducing
rangeanxiety,theuseofpublicpropertymayultimatelybenecessaryforinfrastructureinstallation.
BelowareboroughlevelmapsofCityownedpropertieswithin½mileofmajorhighwayexits.
36
Fastcharginghasvalueforvehiclestravellingmoredailymilesthanavehicle’sfullychargedrange.It
mayalsohavepsychologicalvaluefordriverswhodonotexceedthatrangebutworrytheymight.
Currentlythecostsofprovidingfastchargingalacarteareveryhigh.Theprivatesectormayfigureout
waystooffertheserviceaspartofalargerbundle,butifnotthebelowmapsmayhelptheCityprovide
locationsforfastchargingifnecessary.
36
CreatedbytheDepartmentofTransportationusingdatafromtheDepartmentofCityPlanning
33
 
 
                          Figure21:CityOwnedBronxPropertieswithin1/2MileofMajorTravelArteries
34
 
 
                          Figure22:CityOwnedBrooklynPropertieswithin1/2MileofMajorTravelArteries
35
 
 
                         
.
Figure23:CityOwnedManhattanPropertieswithin1/2MileofMajorTravelArteries
36
 
 
                         
   
Figure24:CityOwnedQueensPropertieswithin1/2MileofMajorTravelArteries
37
 
 
                           
   
Figure25:CityOwnedStatenIslandPropertieswithin1/2MileofMajorTravelArteries
38
 
     
 
                           
                           
                  
               
                 
               
               
               
             
               
             
               
               
             
             
         
   
               
           
               
           
                 
             
             
               
             
             
                 
               
               
             
             
                             
                       
                       
                             
                               
       
   
             
           
           
       
         
           
                   
             
         
     
 
             
         
         
       
         
         
           
             
             
          
           
               
           
          
ImprovingVehicleEconomics
Withthepartialexceptionoffastcharging,theprevioussectionfocusesprimarilyonthe
problemspersonaldriversface.Thisnextsection,whichlooksatthreemethodsforimproving
EVeconomics,hasbenefitsforcommercialcustomersaswell.
Thefirstanalysis,onEVcarsharecompatibility,
usesdatafromtheCity’spilotwithZipcarto
determinehowEVswouldfairunderrealworld
usage.Itshowsthatelectricvehiclesmeetthe
needsforthisparticularCityfleetwell,even
withhighutilization.Ifvehiclesareproperly
managedand/orpairedwithasmallnumberof
plug‐inhybrids,EVsrangedoesnotnecessarily
limittheiruse.Thisanalysismayhelpother
citiesastheyencouragecarsharecompaniesto
increasetheirEVcommitments.Withthistool
thecarsharecompaniesandstakeholderscan
transparentlyunderstandwhetherEVscan
operationallysucceed.
Timeofuseelectricityratesdonothelp
increaseutilization,butratherdecreasethe
costsofoperatinganelectricvehicle.NewYork
City’sstandardresidentialrateofapproximately
$.28akWhisoneofthenation’shighest.
However,itsoff‐peakratesarefarcheaper.
Allowingconsumersaccesstotheseratesis
goodfortheelectricitygridandEVadoption.
Therearetwoinitiativesoutlinedbelow;the
firsthelpsconsumersinstalla2
nd
electrical
meterintheirhomes.ThesecondisaConEd
pilotthatallowsasubmetertoseparately
measureanEV.Thislatterinitiativemayalso
haveapplicationsincommercialgaragesoreven
fleets.Thougheconomicpaybackisnotalways
thedeterminingfactorforconsumers,itismeaningful.EVsdonothavealong‐termfuture
withoutelectricity’spriceadvantageovergasoline.LocalstakeholderssupportforEVsaccessing
totimeofuseelectricitywillimprovethevaluepropositionforEVs.
CommercialCharging:Pricingfor
EnergyUsed
TheCityworkedwiththeNewYork
StatePublicServiceCommission(PSC)to
clarifyandimprovehowpubliccharging
ispriced.Regulationsprohibitingsub‐
meteringorelectricityresalecaused
EVSEproviderstoprovidechargingby
timeoratafixedprice,insteadofbythe
amountofenergyanEVconsumed.This
createduncertaintyforprovidersand
confusionforusers.
InMarch2012theCityspearheadeda
coalitionofEVSEmanufacturersand
chargingprovidersthatexplainedhow
theseruleswerecounterproductive.
Slowerchargingvehicles(3.3kW)
subsidizedfasterchargingones(6.6
kW).Thecoalitionproposednewrules
toallowelectricvehiclechargingtobe
pricedbasedontheamountofenergy
consumed. InDecemberthePSC
respondedwithbyallowingEVcharging
canbepricedbythekWh,enablingthe
privatesectortoprovidemorecharging
atratesclearertoconsumers.
Broadlyspeaking,vehicletogrid/vehicletobuildingtechnologyallowsthebatteriesinan
electricvehicletofunctionlikeatemporarygeneratorandsupplypower.InV2Gthepoweris
39
 
                               
                                 
                               
                           
                             
                               
                                     
                           
                               
   
                                 
                             
                           
       
   
                                                           
   
beingsuppliedbacktothelargerelectricalnetwork.InV2Bthepowerfromthevehiclesupplies
powertothelocalbuilding,eithertohelpreduceitselectricbillortoprovideemergencypower
duringanoutage.Ineithercase,thetechnologyallowsEVownerstoreducetheirelectricalcosts
andperhapsevengeneraterevenue.TheCitywasparticularlyinterestedbecauseithasthe
potentialtogrowitsEVfleetintothethousands.Italsoconsumesmassiveamountsof
electricity.In2011thecitygovernmentusedover4,300gigawatthoursofenergy.
37
Thehopeis
thattheCitycanbeanearlyadopterofV2G/V2Bandinsodoinghelpdevelopthemarket.The
initialeconomicandmarketanalysissuggeststhevehicletechnologyandregulationsarenotyet
readyforapilot.However,theCitycantakemodestactionstomakeitschargerinfrastructure
V2G/V2Bready.
ThesepiecesofanalysissuggesthowyoungtheEVmarketis.Therearemanystepsandactions
thatcanhelpmakeEVsmoreeconomicallyattractive.Asthevehiclescontinuetoimproveand
theunderstandingofhowtomaximizetheirvalueincreasestheywillbecomemoreattractive
relativetoconventionalvehicles.
37
http://nytelecom.vo.llnwd.net/o15/agencies/planyc2030/pdf/greenhousegas_2012.pdf
40
 
       
 
                                   
                           
                           
                             
                               
                             
                         
                           
                           
                                   
                               
                             
                             
                           
                               
                                   
     
                             
                             
                                 
                                     
                                 
                             
    
                                 
                             
                               
                                       
                               
                                     
                                   
                               
       
                               
                               
                           
7 ElectricVehicleCarShare
CarShareallowsadrivertorentavehiclebythehourbymakingareservationonlineand
tappingacardtoawindshield.Unliketraditionalcarrentalthesecarsaredistributed
throughoutcommunitiessothattheycanbeconvenientlyrentedforshorttrips.Companieslike
Zipcar,Hertz,andEnterpriseallofferthisserviceandtoutitsenvironmentalbenefits.Certainlyit
makesiteasierforresidentstoaccessacarwhenneededwithoutpurchasingone,whichlowers
upfrontcostsbutraisesmarginalones,thusencouragingpeopletosavemoneybydrivingless.
Byreducingownershipandpotentiallytrips,carsharehelpsreduceparkinganddriving
congestion.Thecompaniesalsotendtohavenewlowpolluting,highfuelefficiencyvehicles.
However,untilthispointcarsharecompanieshavebeencautiousaboutaddingelectricvehicles
totheirfleets.ThisisdespitethefactthatspreadingthehigherupfrontcostofanEVamong
manyusers,ascarsharedoes,improvestheeconomicsofEVownership.ThislackofEV
integrationisunfortunatesinceaddingEVsintocarsharewouldbothreducepollutionandhelp
exposeNewYorkerstoEVs.TobetterunderstandEVcompatibilitywithcarshareNewYork
City’sOfficeofLong‐TermPlanningandtheMayor’sOfficeofOperationsanalyzedtripdata
fromtheNewYorkCityDepartmentofTransportation’s(DoT)usageofcarshareforthefirst
quarterof2010andcreatedatoolthatcanbeusedtosimulateelectricvehicleusageforcar
sharetypescenarios.
Thefollowinganalysisistwo‐part.ThefirstpartexaminestheoverallcharacteristicsoftheDoT’s
vehicleusageandtheircompatibilitywithvarioustypesofelectricvehicles.Thisportionofthe
analysisisaper‐tripanalysisthatdoesnotaccountforhowstateofchargechangesoverthe
courseofaday.Still,itisusefulinshowingthepotentialbenefitsofelectricdrive.Itfindsthat
theNissanLEAFwouldhavemeet98percentofallindividualtripsonanelectricrangeand
providedmorethan5.3tonsofgreenhousegasemissionssavingsforthethreemonthsof
analyzeddata.
ThesecondexplainstheresultsofasimulatorthatNewYorkCitycreatedtotesthowelectric
vehicleswouldperformoverthecourseofaday.Specifically,ifvehicleswereperfectlymatched
toeachtrip,howmanytripscouldnotbetakenbecauseofinsufficientstateofcharge?
Dependingonthevehicleonlyanadditional4to5outofover580trips,orlessthan1percent,
wouldhavebeendisqualified.Secondly,whatwouldthebatterychargebeattheendofday?
Becausecarshareisalsousedbythepublic,thedrivabilityattheendofthebusinessdayis
important.InNewYorkthatistheprimeweekdaytimeforcarshare.Overathreemonthperiod
therewerebetween2‐12days,againdependingonvehicle,whenthreeormorecarshada
below15kWhcharge.
Thesimulatorhasseverallimitations.Thefirstlimitationisthatitmatchestripsexpostfacto
andmakesdecisionstomaximizeefficiencyacrosstheentirefleet.Byfailingtoaccountforthe
potentialEVdrivers’andfleetoperators’rangeanxietyitmakesbettermatchesthanpeople
41
 
                             
                                   
                           
                       
                       
                             
                           
            
 
 
                         
                         
                             
                               
                           
                           
   
                               
                             
   
                                   
                             
        
                         
               
                       
                  
   
                             
                                 
                               
                             
                               
     
                                                           
                             
             
wouldinrealworldsituations.Asecondlimitationisthatthesimulatormodelsahomogenous
fleetofonlyEVsratherthanonethathasbothEVandconventionalvehicles.Thisfactorleadsto
overestimatingthedifficultyofincorporatingEVsintoafleet.Inmostscenarios,longertrips
couldbetakenwithgasoline‐poweredvehicles,therebyoptimizingusagefortheelectrics.
Despitetheseimperfections,thesimulatorshowsthatthereissignificantpotentialto
incorporateEVsintothisparticularfleet.TheCity’sanalysiscanhelpprovethebenefitsof
electricvehicles.Furthermore,thesimulatorcanbeappliedtoothercities’orfleet’svehicle
usagedatatodetermineEVcompatibility.
Overview of Issue
ThisEVfleetsimulationprojectcontributedtowardstheCity’splansforelectricvehicle
implementationbydeterminingthefeasibilityandbenefitsofelectricvehiclesusingdatafrom
anexistingcarshareprogramthatisoperatedbytheCity’sDepartmentofTransportation(DoT).
DoTstartedapilotcarshareprogramwithZipcarin2010asaresponsetoneighborhood
concernsabouttheCity’suseofparkingindensecommercialandresidentialzones.The
programsoughttoreducethedepartment’sparkingfootprintaswellasimproveefficiencyand
reducecosts.
Thecarshareprogramprovidedmanybenefits.DoT’suseofcarsharereducedparkinginLower
Manhattanby14percentonweekdaysand68percentonweekends.Italsoreducedoverall
vehicleusage.
38
ItalsoprovidedtheCitywithawealthofdataontriptypeandvehicleusage.Thisanalysis
examinedthatdataandasked—ifthesesamecarshadbeenelectricvehicles,howwouldthey
haveperformed?Issuesincluded:
•  Couldbattery‐onlyelectricvehiclesmeettheneedsofindividualtripsandbecharged
sufficientlytomeetafulldayofuse?
•  Couldplug‐inhybridandextendedrangeelectrics,whichdonothaveoperational
constraints,deliversufficientgreenhousegasandfuelsavingbenefits?
TheData
Thecarshareprogramcaptureddataonthevehicleuseincludingthedriver,vehicle,departure,
return,totaltime,distanceandmanyothervariablesforeachtrip.(SeeAppendixG‐1forthefull
listoforiginalvariablesindata.)Theinitialstagesofthisanalysisdealtwith661complete
records,25vehicles,and18carmodels,themostpopularbeingtheNissanAltimaHybrid,
HondaCivic,HondaInsightHybrid,andtheToyotaPrius.(SeeAppendixG‐1forfulllistof
vehiclesandMPGs.)
38
NewYorkCityDepartmentofTransportation.NYCDOTCarSharePilotEvaluation:ResultsandNext
Steps.Mayor’sManagementCouncilBriefing.June2011
42
 
 
 
                                 
                                 
                                   
                               
                                 
 
 
               
 
     
     
   
   
   
     
     
                           
                             
                                 
                                     
 
 
      
     
     
       
       
           
                 
Basic Analysis and Results
Theprojectfocusedonseveralkeyfactorstodetermineifthedatafromthecarshareprogram
wouldmeetelectricvehicleneeds.Thefirstwastripdistances,akeyfactorinrelationtoelectric
range,whichrangedfrom1to128milespertrip.Theaveragedistanceforeachtripwas29.3
miles,whichwouldbewithinthetotaldrivingrangeofeveryEV,buttherewasconsiderable
variancewithinthedata,asevidencedbyastandarddeviationofover17miles(seeFigure26
below).
Mode
Median:25.8
Mean:29.3
>74
0
5
10
15
20
25
30
35
40
45
2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74
F
r
e
q
u
e
n
c
y

Miles
Figure26:HistogramofCarShareTripDistances
Vehicle ElectricRange
#Tripswithin
ElectricRange Percent
LEAF 70 646 98%
Volt 35 441 67%
PriusPlugIn 11 74 11%
Next,forthe
purposesofthe
analysis,three
electricvehicles
werechosen—the
Figure27:CarShareTripsMeetingElectricVehicleRequirements
2012modelsof
theChevyVolt,
NissanLEAF,andtheToyotaPriusPlug‐in.Thesethreevehicleswereusedthroughoutthe
analysistotestelectricvehicleperformance.Whentestingthedistanceofeachtripagainstan
electricvehicleonafullbatterycharge,itwasdeterminedthat98percentofthetripswould
havemettheLEAF’s70mileelectricrange,67percentofthetripsonaVolt,withanelectric
43
 
                                 
          
                               
                           
   
 
                                   
                                     
                                   
                                       
                           
 
                       
      
                                 
                                 
                                                           
                   
                         
                         
rangeof35miles,wouldhavebeenelectric‐only,and11percentonthePriuswouldhavemet
electric‐onlyrequirements(seeFigure27).
Thisanalysiswasonanindividualtripleveland,unlikelateranalysis,didnotincludethe
multipletripscenariosthatwouldreduceelectricvehicles’overallstateofchargeandthereby
theirrange.
0
20
40
60
80
100
Returns Departures
Figure28:TimeofCarShareDeparturesandReturnsinWallStreetZone
Tobetteranalyzethetimingoftrips,thedataintheWallStreet/TriBeCazonewasisolated,asit
hadthemostusagewith482outofthe661overalltrips.Itwasdeterminedthat87percentof
thecarsweretakenoutbefore12:30(SeeFigure29).Figure30plotsthepercentageofallthe
tripsinthedatasetthatwereinprogressfrom7amto7pm.Carusage,thenumberofvehicles
ontrips,peaksat12:30.Averagetriplengthwas4hoursand20minutes.
0%
2%
4%
6%
8%
10%
7
:
0
0

A
M
7
:
3
0

A
M
8
:
0
0

A
M
8
:
3
0

A
M
9
:
0
0

A
M
9
:
3
0

A
M
1
0
:
0
0

A
M
1
0
:
3
0

A
M
1
1
:
0
0

A
M
1
1
:
3
0

A
M
1
2
:
0
0

P
M
1
2
:
3
0

P
M
1
:
0
0

P
M
1
:
3
0

P
M
2
:
0
0

P
M
2
:
3
0

P
M
3
:
0
0

P
M
3
:
3
0

P
M
4
:
0
0

P
M
4
:
3
0

P
M
5
:
0
0

P
M
5
:
3
0

P
M
6
:
0
0

P
M
6
:
3
0

P
M
7
:
0
0

P
M

Figure29:TotalCarShareTripsbyTimeinWallStreetZone
GreenhouseGasBenefits
Thenextkeyfactorwasgreenhousegasemissionspertrip.Thiswasnotincludedintheoriginal
data,butisderivedfromeachvehicle’smakeandmodel.
39
Thiswasthenusedtocalculatethe
39
Vehicleswereassumedtobe2010modelyearvehicles.
44
 
     
           
     
       
     
         
       
         
       
       
           
     
       
         
         
         
                               
                       
                               
                              
                               
                           
                             
       
 
    
                               
                               
                               
                             
    
                               
                         
                               
                                                           
                                 
 
                             
                                 
                               
 
                             
   
 
     
 
 
 
 
                   
   
greenhousegasemissions
pertripusing19.35lbs.of
greenhousegasemissions
pergallon.
40
Thetotal
greenhousegasemissions
forall661tripsfrom
SeptembertoDecemberof
2010were10.5tons.Next,
todeterminesavingsfrom
usinganelectricvehicle,
eachtripwasrununderthe
threeelectricvehicle
scenarios(seeFigure30).
Forthegasback‐upelectric
Figure30:TotalEmissionsforElectricVehicleScenariosandCar
0
2,000
4,000
6,000
8,000
10,000
LEAF Volt PriusPlug Prius ExistingCar
In Hybrid ShareFleet
L
b
s

o
f

G
H
G

E
m
i
s
s
i
o
n
s

vehicles,thefirstmilesof
ShareProgram
thetripwerereplacedwith
thecar’selectricrange,withanemissionsfactorof.69lbsofgreenhousegasemissionsper
kilowatthour.
41
Therewereconsistentgreenhousegasemissionssavingsundereachelectric
vehiclescenariowiththeexceptionofone72miletripwherethegasPriusperformedbetter
thantheVolt.
42
ThelowestgreenhousegasemissionswereundertheNissanLEAF,witha
potential5.3tonsingreenhousegassavings,oralmosthalftheemissionsoftheexistingcar
sharefleet.
43
Thesenumbersaresignificantconsideringthatmostofthetripswerealready
takenwithhighefficiencycars.Onaveragealltheelectricvehiclesexaminedoutperformevena
conventionalPrius(50mpg).
Creating theModel
Fortheanalysis,amodelandsimulationwascreatedinordertotesttheperformanceof
potentialelectricvehiclesinamorerealisticsituationwherecarstookmultipletripsaday.The
modellimitedthenumberofvehicles,assignedspecifictripstoeachcar,andwillsimulatethe
vehicle’sperformanceasanelectricvehicleandprovideasummaryofthatperformanceona
dailybasis.
Fortheinitialpilot,ZipcarallocatedanexcessofvehiclestoDoT.Consequentlyvehicleshadlow
utilizationrates.Constrainingthenumberofvehiclesinthesimulationrevealswhethervehicles
willbeabletochargeenoughinbetweentripstomeetindividualrangeneeds.Identifyingthe
40
CityofNewYork,InventoryofNewYorkCityGreenhouseGasEmissions.Sept2010.Availableat
http://www.nyc.gov/html/om/pdf/2010/pr412‐10_report.pdf
41
CityofNewYork,InventoryofNewYorkCityGreenhouseGasEmissions.Sept2010.
42
WhenboththePriusandVoltareoperatingongasoline,theformerhasbetterefficiency.Consequently
fortripsaboveacertainlengththegasbasedefficiencybecomesmoreimpactful,tothePrius’s
advantage.
43
thisexcludesthe2percentoftripsthatdidnotmeettheelectricrange
45
 
                         
                           
                             
                             
                               
                                 
                             
                             
                      
 
 
                                 
                               
                               
                                  
 
 
             
                                 
                                   
     
   
   
 
 
   
     
   
   
 
     
   
   
   
   
 
     
         
     
   
     
   
                         
         
optimalnumberofvehiclesentailedestablishingasatisfactoryoutofstockrate.Specifically,
fromacostbenefitperspective,whatistheappropriatenumberofvehicles?Whilefifteen
vehicleswouldmeet100percentoftrips,thoselastmarginalvehicleswouldoftensitidle.
Furthermore,realusershavesomeelasticityofdemand.Someofthosemarginaltripscouldbe
rescheduledortakenusingotherformsoftransportation.Inthiscase,itwasdeterminedthat12
vehicles,whichwouldmeet97percentoftripsintheWallStreet/TriBeCa,strucktheright
balancebetweenuserneedsandcost.Thespecificanalyticalmethodscanbeexaminedinthe
mainspreadsheet,butentaileduseofseverallayersofCOUNTIFExcelfunctions,theSolvertool,
andconditionalformattingofcellsforgraphicalanalysis(seeFigure31).
Figure31:ScreenshotofExcelModelWhenNumberofTripsExceedsCarAvailability
However,thisonlyshowshowmanytripscouldbecompletedifstateofchargeandrangewere
notlimitations.Determiningthe‘stateofcharge’(SoC),orhowmuchchargeisavailableinthe
battery,overthecourseofthedayrequiresanalgorithmandscriptingto“stepthrough”each
timeperiodandassignavehicletoeachtrip.Figure32showsthelogicofthatalgorithm.
1)Fromthe
mastertable,
VisualBasic
extracts:
•vehicles
available&SoC
•trips&SoC
requested
2)Algorithm
matchestrips
tovehicles
3)Forused
vehicles,Visual
Basiccopies
followingdata
tomaster
table:
•SoC
•Vehicle
availability
•failedtrips(if
any)
4)VisualBasicmovesto
nexttimeperiod.
Unusedvehicles
continuechargeunless
battery@capacity
SimulationRepeatsfornexttimeperiod
Figure32:CarShareSimulationModelLogic
Thealgorithmemploysamatchthatoptimizesforthemostefficientuseofthevehicle.Italso
throwsouttripsthatcannotbetaken.Firstitmatchesthelongesttripwithavehiclethathas
46
 
                                 
                               
                               
                                 
                      
                         
                           
     
                         
                                 
                               
                       
 
 
 
 
 
 
 
           
       
     
               
                     
                                     
                                     
                             
       
                                     
                                     
                                 
       
                                                           
    
theminimumnecessarycharge.Ifnovehiclecanmatchthetrip,thetripisthrownoutand
recordedasa“failedtrip”.Thealgorithmcontinuesuntilallthetripsareaccountedfor,either
bybeingmatchedwithavailablecarsorbyfailing.AppendixG‐2includesanimageofthe
matchingtableanddescriptionsofitsfeatures.Tripscanfailforoneoftworeasons;eitherthere
aren’tenoughvehiclesavailableortheavailablevehicleshaveinsufficientSoC.
Asidefromnumberoftrips,vehicleattributesdeterminethatsuccessorfailure.Specifically:
efficiency,batterysize,andchargerate.Eachofthesedrawsfromaseparate,easily
customizablevehicletable.
44
Results & Implications 
Foursimulationswereperformed:Abaseline,withoutanyvehicleconstraintsandthenwith
threedifferenttypesofcars.Thebaselinemeasureshowmanytripsfailinthemodelbecauseof
alackofavailablevehicles.ThevehiclemodelstestedincludetheCODAsedan,theNissanLEAF
andtheFordFocusEV.Belowaretheresultsforeachvehicle:
Ford Nissan CODA
Baseline Focus LEAF sedan
FailedTrips
Days3ormore
vehicleshaveless
than15kWhSoC
8 12 12 13
0 2 7 2
Figure33:TableofCarSharTripFailuresbyEVType
TheoneanomalyintheresultsisthattheCODAhasonemorefailedtripthantheothertwo
EVs,eventhoughithasgreaterrange.ThisislikelybecausetheCODAwasabletotakealonger
tripthatmadetwosubsequenttripsimpossible,eitherbecauseofreducedrangeorbecauseof
lackofvehicleavailability.
ItalsoshowsthattheLEAFleavesthemostvehicleswithadepletedstateofchargeattheend
oftheday.Thisislikelyprimarilybecausethe2011modelistheonlyvehicleofthethreethat
chargesatjust3.3kW,thoughreducedoverallefficiencymayalsoplayapart.2012LEAFswill
support6.6kWcharging.
44
www.cleancars.gov
47
 
 
                           
                               
                                   
                                       
                           
     
                               
                               
                               
                             
                               
                                   
         
                                 
                                 
                        
                           
                                 
                                 
                                   
                       
                         
                             
17
19
21
23
25
27
29
31
33
9
/
2
0
/
1
0
9
/
2
7
/
1
0
1
0
/
4
/
1
0
1
0
/
1
1
/
1
0
1
0
/
1
8
/
1
0
1
0
/
2
5
/
1
0
1
1
/
1
/
1
0
1
1
/
8
/
1
0
1
1
/
1
5
/
1
0
1
1
/
2
2
/
1
0
1
1
/
2
9
/
1
0
1
2
/
6
/
1
0
1
2
/
1
3
/
1
0
1
2
/
2
0
/
1
0
1
2
/
2
7
/
1
0

k
W
h

Date
Focus
LEAF
CODA
Figure34:AverageStateofCharge@6:30PMunderThreeDifferentVehicleSimulations
Theseresultsareverypromising.Outof582totaltrips,only1percentwouldbedisqualified
duetoavehicle’sSoC.Thisisatworst5moretripsthanunderthebaselinescenario.Since
DoT’susageispartofalargercarshareprogramsufficientchargeattheendofthedayisalso
important.Astheabovegraphshows,averageendofdaychargeneverdroppedbelow
approximately80percent.
Thisindicatesthat,forthisparticularfleet,electricvehicleswouldmeettheneedsofitsdrivers
inacarshareprogramwithfewmodifications.Italsoshowsthatmodestchangescouldmake
electricvehiclesworkevenmoreseamlessly.Amixedfleet,whichisbeyondthescopeofthis
simulation,wouldallowconventionalorplug‐inelectricstobeusedforthelengthiesttrips.For
example,amixof10BEVsand2plug‐inhybrids,usedwithoptimalscheduling,wouldeliminate
tripsthatcouldnotbetakenbecauseofaBEVslimitedrange.Theadditionoffastchargingcould
alsofurtherimproveBEVperformance.
NewYorkCityisexpandingitsusageofcarandfleetsharing.Bothprogramsgeneratedatathat
canbeanalyzedusingthetoolcreatedforthisanalysis.Thetoolcanshowwhichfleetsare
compatiblewithelectricvehicles.Quantifieddatacanput“rangeanxiety”torest.
Ultimatelythisanalysisofcarsharemaybevaluableforseveralreasons.First,finer‐grained
analysisandrealworldcalibrationwillhelptheCitygaincomfortinelectrifyingmoreofitsfleet.
Second,itisfurtherevidencetohelppersuadecarsharecompaniestoaddEVstotheirfleets.
TheCitywillreachouttothosefirmsinthehopesthattheywillhelpimprovethefunctionality
anduser‐friendlinessofthecurrentsimulator.Finally,thisassessmentandinformationabout
electricvehicleperformancemayhaveconsiderablebenefitstoothercitiesacrossthecountry.
Theconclusionsfromthisanalysiscanhelpreducerangeanxietyforusersandfleetmanagers
48
 
                           
                       
                             
               
andhelppolicymakersunderstandthepotentialgreenhousegasemissionssavings.Ascarshare
programsandcost‐effectiveaccessoriesorsmartphonesthatcapturevehicledatabecome
moreprevalent,thistypeofanalysiscanbereplicatedacrossthecountryandcouldprovide
powerfulevidenceformakingEVimplementationdecisions.
49
 
         
 
                                   
                                 
                           
                               
                                 
                    
                           
                               
                                         
                               
                             
                 
                                 
                               
                               
                             
                           
                               
                             
                 
                                   
                                 
                               
                               
             
                                 
                             
                               
                             
          
     
                     
                                 
                                                           
    
                                   
8 TimeofUseEVMetering
8.1Overview
Ifyouareahomeownerwithadrivewayorprivategarage,NewYorkhasoneofthenation’s
easiestprocessesforinstallingacharger.Infact,achargeristreatedjustlikeanyotherelectrical
applianceandcanbeprovisionallypermittedandinstalledthesameday.Anelectricianmerely
needstoe‐fileforapermitwiththeDepartmentofBuildings.
45
Thechargercanthenbe
provisionallyinstalled,whichistosaythatitcanbeusedbythehomeownerwhileitawaits
inspectionandpermanentapprovalbyaDepartmentofBuildingsinspector.
Despitetheeaseofinstallingacharger,ownersstillhavechallengesaccessingthecheapest
electricityprices.Electricityhastraditionallybeensoldtoresidentialusersataflatrate.Thecost
ofakilowattisthesameat2pmintheafternoonasitisatmidnight,eventhoughthecostof
generatinganddistributingtheformerisfargreaterthanthelatter.ConEddoesmaketimeof
useratesavailable,wherepeakelectricitycostsmorethanoff‐peak,butthevastmajorityof
homeownerscontinuetousethetraditionalflatrate.
Thatflatratemaymakesenseforappliancessuchascableboxesthatdrawenergyregardlessof
thestateofthegridandcannoteasilyshiftconsumptiontolatenighthours.Otherappliances,
suchasdishwashersorclothesdryersmightbenefitfromoff‐peakrates.Yetofallthese,electric
vehiclesareanespeciallygoodfitforovernightcharging.First,theyarequintessentialsmartgrid
appliancesthatcanbeeasilyscheduledtoprioritizechargingoff‐peak.Thevehicleshavethis
featurebuiltin.Second,theyrequirelargeandregularamountsofenergy,afactthathas
implicationsbothforthegridandconsumers.Atthefastestresidentialchargingspeedstheycan
requireasmuchpowerasafullsingle‐familyhouse.
Itisinboththeconsumers&utility’sinterestforthevehicletochargeovernight.Onawholesale
basis,thedeliveryoflate‐nightpowercostsaslittleas4percentofthecostofdaytime
electricity.
46
Atthoseprices,drivinganEVcostslessthanhalfthatofahybrid.Furthermore,
directingacartochargeovernightiseasierthanhavingotherhomeappliancesbehavethesame
waysinceitdesignedforscheduledcharging.
Fortheutility,itmakessensetoshiftdemandtowhenpowerplantsanddistributionlinesare
underused.AccordingtoapastanalysisbyConEdison(includedintheCity’s2010market
researchstudy),today’sgridcanhandleasmuchas20percentEVpenetrationifchargingis
primarilyoff‐peak.Becausethewholesalecostisloweranditminimizesstressonthegrid,off‐
peakchargingshouldbeencouraged.
8.2AdditionalMeterVariance
Unfortunately,untilrecentlyCityregulationsimpededthisdesirablebehavior.Theyprohibited
theinstallationofa2
nd
meterinahome,aruleintendedtodiscourageillegalsubdividing.That
45
http://www.nyc.gov/html/dob/html/development/efiling_faq.shtml
46
Aconsumer’scostofelectricityincludesbothdeliveryandgeneration.Thelattervariesonadailybasis.
50
 
                       
                               
                                 
                             
                         
 
                                 
                                   
                             
                                     
                                 
                       
                           
                                 
                           
  
                             
                                 
                             
                                
 
 
 
  
               
                           
                               
mademutuallybeneficialovernightelectricityratesunavailabletohomeownersunlessthey
wantedtoshiftalltheirusagetotime‐of‐usepricing,adauntingoptionofuncertainvalue.To
addressthisissue,inthefallof2011theDepartmentofBuildings(DoB)hascreatedavariance
forelectricvehicleowners.WithproofofEVorchargerownership,DoBwillallowhomeowners
toinstalla2
nd
meterandmakeuseofthatcheaperovernightelectricity.
Customized Sub‐Meter
Meanwhile,ConEdispilotingtechnologythatcanmeasureahomeonaflatrateandanelectric
vehicleatatimeofuserate,withouttheneedforasecondmeter.Thismeterandsub‐meter
combinationhasallthebenefitsofa2
nd
meter,withpotentiallylowerinstallationandongoing
costs.A2
nd
meteronaToUratemakesovernightchargingcheaperthanusingaflatrate,butit
alsocreatesnewcoststhatreducesomeofthebenefit.Forexample,anelectricianmustdoan
installationthat’smorecomplicatedandtimeconsuming.AdditionallyConEdbillsallmeters,
evensecondmeters,afixedcustomerchargetocovermaintenanceandadministrativecosts.An
EVdedicatedsub‐metercanaccessToUrateswithoutthehardwarecostsofa2
nd
meterandis
thereforethebestavailablesolutionformakingchargingmoreaffordableandbetterforthe
grid.
ConEd’snewsub‐meterutilizestwopiecesoftechnology.Oneisameasuringdeviceonthe
circuitservingtheEVcharger.Theotherisa3Gcellularmodem.Themeterrecordsdatafrom
themeasuringdeviceviathecircuit’selectricalwiring.Thisdataisthentransmittedthroughthe
3Gcellularmodemtoaserver.Itallowsacustomertotracktheirvehicleenergyusage.
Figure35:ImageofToUSubMeterHardware
Con Edison’s EV Load 
Measuring Device used 
as part of its Timeof 
Use pilot. 
This measuring device 
allows a circuit’s 
energy load to be 
measured separately 
from the home or 
facility’s other
electricity 
consumption.
Thisgatewayandmorespecificmetering,especiallyifcoupledwithnewrates,allowscustomers
tomakesmarterenergydecisions.Customerswillhaverealtimedataonthecostsofcharging
51
 
                             
                   
theirvehiclesandwillbeabletorespondaccordingly.Thefollowingsection,writtenbyCon
Edison,describesthecompany’spilottoseparatelymeteranelectricvehicle.
52
 
 
 
               
 
                               
                                   
                             
                               
                           
                               
                     
                             
                             
                           
                           
    
                             
                                   
                               
                                 
                         
                                   
                   
                               
                               
                               
                             
                           
 
                   
                
                       
      
                 
                          
 
                                 
                                 
                                   
                                
8.3ConEdisonDescriptionofTimeofUsePilot
Overview
Becausetheelectricgridmustbedesignedandbuiltforpeakenergyconsumptiontoensurereliable
serviceoneventhehottestdaysoftheyear,manyofourassetsoperatewellbelowpeakdesign
thresholdsduringoff‐peakhours.Tomanageourgridmoreefficiently,wemustimplementstrategiesto
flattenourloaddurationcurve ‐‐ decreasingpeakloadandfillinginthevalleys.Bycouplingnewsmart
gridtechnologywithtime‐of‐use(TOU)ratestructures,wecanencouragecustomerstochargeelectric
vehicles(EVs)duringoff‐peaktimes.Thiswillhelpensurethatanynewdemandfromelectricvehicles
requiresaminimumofnewdistributioninfrastructureorpeakgenerationplants.
EVsintroducenewchallenges.Inthefuture,ifEVchargingoccurredprimarilyduringpeakhours,
increasedcapacityandinfrastructurecouldberequired.Similarly,ifEVchargerswerelocatedina
concentratedgeographicarea,additionalelectricfacilitiescouldberequired,aswell.Toaddressthese
challenges,itisimportanttoencouragechargingoptionsthatwouldutilizeelectricinfrastructureduring
off‐peakhours.
Whileenergyefficiencyanddemandresponsecanhelpwithpeakshaving,thepropermanagementof
futureEVloadcanprovideuswithanopportunityforbetterassetutilization.Ifwedonotmanage
chargingbehavior,futureEVloadcouldcontributeto“new”peaksthatrequiretheuseofpeak
generationplantsandaffectthelifeofourtransformersandfeedercables.ClusteringofEVchargingin
certainNewYorkCity(NYC)andWestchesterneighborhoodsandchargingpatternswhereeveryone
plugsinatthesametimecanbedetrimental.However,withnewtechnologyandTOUpricesignals,we
may achieveeffectivestaggered,off‐peakchargingforEVload.
Onetooltohelpinducemoreefficient,off‐peakchargingwouldbeameasuringdevicethatallows
customerstoelectTOUpricingfortheirEVchargingusage.Astrongpricedifferentialcouldencourage
off‐peakcharging.ConEdisonisimplementingapilottotesttheacceptanceofthistechnologyand
experimentalTOUpricingscenariosthatcouldloweracustomer’selectricbillforoff‐peakEVcharging
byupto55percentperkWhr,comparedtothestandardresidentialflatrate.
Background
ConEdison’sEVcustomerscurrentlyfallwithin4chargingcategories:
1) Residentialcustomerswhochargetheirvehiclesathome;
2) Residentialcustomersinmulti‐familydwellingswhochargetheirvehiclesinmonthlyparking
garagesandlots;
3) Commercialcustomerswhochargetheirownfleetvehicles;and
4) Visitors(transientcustomers)whochargetheirvehiclesindailyparkinggaragesandlots.
EachtypeofEVcustomerhasadifferentlevelofpricesensitivityandoperationalneeds.Ingeneral
though,itisbelievedthatresidentialcustomerswithdedicatedparkingaremostlikelytorespondtothe
off‐peakpricesignalsthatwilloptimizegridassetutilization.Theyarelikelytoparkthecarovernightin
onespot.LevelIIchargingcanfillalmostanyfullydepletedEVinanoff‐peakwindow.
53
 
 
 
                               
                           
            
                                 
                                   
                                     
                           
   
                                 
                               
                             
                                 
           
                                 
                           
                             
                               
                                   
                               
                       
                                 
                               
                                 
                               
                                   
                                 
       
                                     
                                 
           
       
                                   
                                 
                               
                                 
                                 
             
ConEdisonhasbeenworkingwithNYCgovernmentagenciesandtheNewYorkStatePublicService
Commission(PSC)togiveresidentialcustomersaccesstopossiblealternativeTOUrateoptions,but
therearetechnologicalhindrancestoovercome.
TOUratesforanentirehousebenefitcustomerswhocanreducetheirusageduringpeakhoursor
transfermoreoftheirloadstooff‐peakhourstotakeadvantageofloweroffpeakpricing.Thiscreates
toomuchdownsideriskforcustomerswhomaynotbeabletocontrolalloftheirpeakloads.In
comparison,electricvehiclechargingissimpletotimeshiftandrelativelyconvenienttoschedule
primarilyoff‐peak.
Untilthisyear,theNYCDepartmentofBuildings(DOB)prohibitedinstallingasecondmeterinasingle
familyhomeinordertodiscourageillegalsubletting.ProvidedthatahomeownercanproveEVor
chargerownership,thedepartmentnowpermits,atitsdiscretion,theinstallationofasecondmeter.
However,whileitallowsforthepossibilitytotakeadvantageofTOUrates,thesecondmeterintroduces
newfixedcoststothecustomer.
First,therearetheelectriciancosts.Anelectricianmayneedtodoconsiderablewiringatthecustomer’s
residencetoaccommodateasecondservice.Second,thecustomerwouldbebilledanadditional
monthly“CustomerCharge,”afixedchargethatappliesfordeliveryregardlessofhowmuchenergy
[kWhr]isused.TheseaddedexpensescanadverselyaffectanysavingsgainedbyTOUrates,particularly
fortheextendedrangeEVsthatrequireaminimalamountofenergytochargearelativelysmallbattery.
However,itmightmakesenseforfullyelectricvehicles,giventhelargerbatteryandgreaterelectricity
consumption.Regardless,itcouldsignificantlydiminishthepriceadvantageofchargingoff‐peak.
Inotherpartsofthecountry,suchasCalifornia,itiseconomicallyadvantageoustoinstallasecond
meterbecauseofthetiered‐ratestructure.AsecondmeterwithanEV‐TOUrateworksforcustomers
thatexceedtheirbaselineallotmentofenergyeverymonthwhileonthedomesticrate.Thecostof
electricityrisesasthecustomerusesmore.Theenergyusagefromcharginganelectricvehiclewould
likelyputacustomerintohigherpricedtiers,whereasusinganEV‐TOUratewithasecondmeterallows
customerstochargeatlowerratesduringoff‐peaknighttimehours.ConEdisondoesnotoffera
similarlytieredratestructure.
ConEdisonisnowworkingonsmartgridtechnologythatmayeliminatetheneedforasecondmeterto
takeadvantageofpossiblefutureTOUrates.Thismaymakeitlesscostlyandmoreattractivefor
customerstochargetheirvehiclesoff‐peak.
ResidentialEVPilotProgram
InJune2012,ConEdisoninitiatedaresidentialEVpilotprogramtotestthetechnologyandcustomer
interestinanenergygatewayandanenergymeasuringdevicecalledaloaddevicecontroller(DC)in
conjunctionwithastandardrevenuegrademeterinasystemthatiscapableofseparatelymeasuring
theEVenergyconsumptionfromthewholehouse.Thistechnologycouldcostthehomeownerupto50
percentlessthanhiringanelectrician.Themonthlyusagefeecouldlikelybelessthanthemonthly
CustomerChargeforasecondseparately‐meteredservice.
54
 
 
 
                               
                                   
                                 
      
                               
                                   
                               
                               
                             
                                   
                                 
   
                             
                           
                                 
           
                                     
                               
                                 
 
     
                                 
                                     
                 
           
                           
                     
                   
 
                              
             
                           
         
                                                           
                          
                                 
                               
   
 
TheDCcommunicatesoverahomeareanetwork(HAN)viaZigbee
47
protocoltotheenergygateway,
andthegatewaycommunicatestoadatacenterviaacellularmodemusinga3Gnetwork.Whilethe
initialpilothasthegatewayembeddedintothemeter,thenextgenerationwillsimplybehardwiredinto
thecustomer’shome.
Duringthepilot,customerscanaccessasecureonlineportalthroughanyweb‐enableddeviceandset
uptheirEVchargingprofiletofittheircharginghabitsandtakeadvantageofpossiblefutureTOUrates.
Thecustomeralsomaintainstheoptionofprogrammingthetimingofthechargingdirectlyfromtheir
vehicle.Throughthisportal,theymaymonitortheirEVenergyusageinnearreal‐time.Whilethe
customercontinuestoreceivetheirmonthlybillsbasedontheircurrentserviceclassificationandmeter
reads,theywillreceivea“shadowbill”.Thismeansthattheirregularelectricratewillremainineffect,
butConEdisonwillcalculateseveral“whatif”scenariosbasedonthedatacollectedandpossibleTOU
ratescenarios.
OfallthealternativesformeasuringtheenergyconsumptionoftheEV,aPSC‐approvedenergy
measuringdevicepairedwithanenergygateway,mayprovidetherightbalancebetweencost,
simplicityandscalability.Oneotheroptionistorequireasecondmeter,butaspreviouslyexplainedthis
introduceshighinstallationandongoingcosts.
AnotheroptionwouldbetoutilizethemeterwithintheEVSE
48
orchargeritself.EVSEsareanascent
productwithmanymakesandmodels.TheremayeventuallybeastandardbywhichEVSEscan
communicatedirectlytotheutility,butatthispointtheypresentadifficultandcostlybillingintegration
challenge.
OtherPotentialApplications
TheDCpairedwithanenergygatewayisaffordableandflexible.ItbenefitsnotonlyEVhomeowners,
butalsofleetsandEVownerswhoparkinmulti‐unitdwellings.Forexample,DCscanbeplacedonEV
chargersforfleetvehicles,allowingfleetmanagerstoeasily:
1) Billindividualdepartmentsforenergyconsumption;
2) Managethechargingtominimizeenergyuseanddemandchargesbystaggeringthecharging
duringoff‐peakhourswhenthefleetsareusuallyathomebase;
3) Ensurevehicleshaveenoughchargetocompletetheirnextshift.
Thesameconceptscanbeappliedtoparkinggaragesinmulti‐unitdwellings.Garageoperatorscould:
1) Billtenantsfortheirindividualenergyconsumption;
2) Managethechargingtominimizeenergyuseanddemandchargesbystaggeringthecharging
duringoff‐peakhours,wheneverpossible;
47
ZigBeeisacommunicationstandardoftenusedforindustrialandelectricalequipment.
48
Asnotedearlier,EVSEstandsforelectricvehiclesupplyequipment.EVSEsarecommonlyreferredtoas
chargers.WhileEVSEisamoretechnicallyaccuratedescriptor,forreadabilitypurposesthetwotermsare
usedinterchangeably.
55
 
 
 
                     
 
                  
                               
                                 
                                     
                             
                                       
                   
 
                                 
                                 
                  
                               
                               
                               
                             
 
                           
                               
                             
      
                             
                         
                                 
                               
      
                                 
                         
       
   
3) Ensurevehiclesarechargedintimefortheirownerstouse.
ThiswouldbeanalternativetechnologytosmartEVSEs.
TheDCcanevenmeasurethegenerationofelectricityfromrooftopsolarpanels.Onepilotparticipant
hasnetmeteringforarooftopphotovoltaic(PV)array.ConEdisoninstalledtwoDCs,onetomeasure
theenergyconsumedbytheEVandtheothertomeasuretheenergyproducedbythePVarray.The
customer’sgoalistohaveacarbon‐neutralmotorvehicle.Thistechnologywillprovidethiscustomer
withthedatatodetermineiftheenergyfromthesolarpanelsoffsetstheenergyusedbytheEV.Con
Edisondoesnotcurrentlyprovidethisinformationtothecustomer.
Challenges
ThemetersretrofittedwiththegatewayhavebeentestedandapprovedbythePSCasrevenuegrade.
TheenergymeasuringdeviceorDChasnotbeenapprovedforrevenuecollection,butcanstillprovide
theutility,aswellascustomers,withvaluableinformation.
TherearethreeobstaclestothistechnologyforTOUbilling.First,integratingthistechnologyintothe
existingbillingsystemmaybeachallenge.Second,theDCandthestand‐alonegatewayarenot
currentlyapprovedbythePSCforbilling.Finally,absentaPSC‐approvedbillabledevice,thereareno
establishedratestructurestoaccommodateasingle‐metercustomerhavingahybridflatandTOUrate.
Summary
Theenergymeasuringdeviceandgatewaytechnologyhavethepotentialtoprovideasimple,
economicalwayforConEdisoncustomerstotakeadvantageofpossiblefutureTOUrates.Wecan
eliminatetheneedforasecondmeterandminimizetheassociatedupfrontcustomerexpensesandon‐
goingmonthlyfees.
Thetechnologyallowsforthecollectionofintervaldatafromthecustomer’sEVcharging.Information
gatheredmaybehelpfulindevelopingprogramsthatinfluencecustomerbehaviors,encouragingthem
tochargetheirEVsduringoff‐peakhoursandstaggertheirchargingtimes.Itcanbenefitthecustomer
throughloweroff‐peakpricingandtheutilitybyflatteningoftheloaddurationcurveandachieving
greaterassetutilization.
ConEdison’sgoalistodemonstratethepotentialcostsavingstocustomersforasinglemeterversus
multiplemeters,possiblealternativeTOUratestructures,andinsightintocustomerbehavioralissues
associatedwithEVusage.
56
 
 
 
               
 
 
                                 
                               
                             
                               
                             
                                 
                             
                                   
     
 
                     
                                 
                         
                         
                             
                            
                                   
                           
                               
                                     
                                   
9 VehicletoGrid/VehicletoBuildingTechnology
9.1Overview
TheCityundertookthisanalysistoseeifvehicletogridorvehicletobuildingtechnology(V2G/V2B)
couldbetechnicallyviableintherelativenear‐termandincreasetheeconomicreturnoftheCity’s
expandingelectricvehiclefleet.With120highwayreadyelectrics,theCitycurrentlyhasthesecond
largestpublicsectorEVfleetinthenation,behindonlytheFederalgovernment.ChevroletVolts,Ford
TransitConnects,andNavistareStarsareusedacross12agencies,includingtheFireandPolice
Departments,Sanitation,andParks.WithsomanyEVs,theCityismorelikelythanmostotherindividual
ownerstohavetheabilitytoachievethenecessaryscaletoundertakeV2G/V2B.Furthermore,New
YorkCitypowerissecondonlytoHawaii’sinprice,increasingtherelativevalueofcostreductionsthat
V2Gmayprovide.
Figure36:ExampleofoneoftheCity'sfleetelectricvehicles
Inthecourseofresearchingthetopic,theCityundertookaliteraturesurveyandinterviewswithkey
utility,privatemarket,andregulatorystakeholders.ThoseincluderegulatorsattheNewYork
IndependentSystemOperator(NYISO),whichadministersNewYorkState’senergymarkets,andPJM,
whichadministersthetransmissiongridandmarketsinseveralotherstates.TheCityalsointerviewed
itselectricityprovider,theNewYorkPowerAuthorityanditsdistributionutility,ConEdison.
Asthefollowinganalysisshows,V2G/V2BtechnologyisnotviablefortheCityatthepresenttime.First
andforemost,thevehicletechnologyhasnotbeencommercialized.Withtheexceptionofsome
promisingpilotsithasnotbeenbroughttomarket.Second,evenifthetechnologywerereadily
available,thebusinesscasefortheCitywouldbetenuous.ThemajorityoftheCity’sfleetisinuse
duringtheafternoonwhenenergyuseinCityfacilitiesisatitspeakanddemandresponseorpeak
57
 
 
                             
                                 
                                 
                               
          
                           
                                 
                                
                             
                                 
       
     
                                     
                                   
                               
                           
                              
                           
                                   
               
                                     
                               
                               
                                 
                                   
                                 
       
                                 
                           
                   
                                                           
                                     
                                   
         
                          
                                
 
shavingwouldbemostvaluable.
49
Anotherpotentialrevenueopportunityistheprovisionofaservice
calledfrequencyregulation,whichhelpstomaintainthequalityofelectricityonthegridandismost
neededduringtheeveningwhentheCity’selectricvehiclesarelikelytoplugin.However,NewYork
City’sfleetdoesnotcurrentlyhaveenoughEVstomeettheminimumcapacityforsellingfrequency
regulationintheelectricitymarket.
Thoughtheshort‐termopportunitiesarelimited,theCitycanundertakesimple,“noregrets”measures
nowtoprepareforpotentialtechnologyinthefutureasitinstallschargers,specificallybyusingwider
gaugeconduit. Installinglargerconduitnowhasnegligiblecostbutwouldallowforwidergauge,higher
voltagewiringlater,whichwouldbetterenableV2G/V2Bservicesandpossiblyotherfutureadvancesin
EVtechnology.Thefollowingisanin‐depthanalysisofthestateofV2G/V2Btechnologyanditspotential
forthecityfleet.
50
9.2DescriptionofV2B/V2G
Withapotentialfleetofnearly5,000EVs,theCityisenticedbythepotentialtogainadditionalvalue
fromitsEVsthroughtheuseofvehicletobuilding(V2B)andvehicletogrid(V2G)technology.After
multiplediscussionswithexperts,itappearsthatbothV2BandV2Garetechnicallyfeasibleinpilot
operations.Thechallengehoweverremainsinbuildinganeffectiveandcommerciallyviablemodelfor
boththesetechnologies. Furthermore,neitherofthesetechnologieshasbeentestedonalargescale
andgapsarepresentregardingexistingstandardsoncommunicationandsafety.Inparticular,standards
governingreversepowerflowofEVbatteriestobuildingsandthegirdarenotyetavailableandwould
benecessarytoenableV2BandV2Gadoption.
ThegoalofV2BistogeneraterevenuebyallowingtheEVbatterytoreleasestoredenergyto“shave
off”peakdemandsinbuildingenergyuse.Offsettingpeakenergywouldhelptoreducecostlydemand
charges—orthepremiumthatabuildingpaysfortheguaranteeofconstantpowersupply.Accordingto
expertsinEVtechnology,EVs,withtheirpresentbatterycapacity,maynotbeidealforpowerdemands
thatextendforlonghourssincelongdischargeswouldimpacttheeffectiverangethatanEVdrivercan
usethevehicle.
51
Theycould,however,beusedtoprovidepowerforshorterperiodsoftimewithout
substantiallyimpactingtherange.
V2BtechnologycanbeadoptedbyNewYorkCityifsufficientaggregationorEVswithlargebattery
capacitiescanbepluggedintoshavepeakdemands.Thehurdlestoovercomeinclude:
1) netmeteringtechnologytomeasuretheamountofpowerprovided
49
Peakshavingisatermtodescribereducingpeakelectricityusage.Asexplainedinthefastchargesection,
electricityispartiallybilledbasedonthehighest15minutesofelectricityusage,soreducingpeakenergydemand
isacostsavingsstrategy.
50
SpecialthankstoconsultantJohnAshishGeorgewhohelpedauthorthisresearch.
51
Vehicle‐to‐gridpowerfundamentals:CalculatingcapacityandnetrevenuebyWillettKemptonandJasnaTomić 
http://ac.els‐cdn.com/S0378775305000352/1‐s2.0‐S0378775305000352‐
main.pdf?_tid=2562da1140caf6c7be47f4b5056f4d7d&acdnat=1336588812_0e191133d0eff22951d7495195aa06d
c
58
 
 
                      
                 
                                 
                                         
                           
                                 
                               
                             
                               
                               
                               
                           
                                 
                           
                                         
                             
                                       
                           
                             
                               
                               
                                       
                     
                             
                           
               
                                                           
                          
 
                           
 
2) sufficientpoweravailabilitytoaddressthedurationofpeakdemands,and
3) vehicleconnectivitycoincidentwithperiodsofpeakpowerdemand
ThegoalofV2GtechnologyistousetheEVbatterytoaccommodatedemandfluctuationsorhigh
frequencyinthegrid.Dependingontheneedsofthegrid,powermaybesentintooroutofanEV’s
battery.Typically,thereisapremiumassociatedwithprovidingtheseancillaryservices.EVbatteries
couldbesuitedtoprovidetheseservicesbecausetheyaretypicallyneededforveryshortperiodsof
timeandrequirefastresponses.Presentlythereisnolargescalecommercialprojectwhichcanprovide
informationonthecommercialfeasibilityofthistechnology.PJM,inconjunctionwiththeUniversityof
Delaware,isworkingonaresearchprojectthatwillprovidemoreinsightsintothecommercialfeasibility
ofthistechnology.Itcouldtaketwoormoreyearsbeforesufficientdatahasbeencollected.
AnotherconcernisthelackofstandardsforV2G.Thesesolutionscannotmovebeyondsmallpilots
withoutastandard.TheElectricVehiclesStandardsPanel(EVSP)oftheAmericanNationalStandards
Institute(ANSI)hasidentifiedagapinusingelectricvehiclesasasupplysourceintheirStandardization
RoadmapforElectricVehicles.Standardsforcommunicationandsafetyaspectsofthistechnologyhave
beenidentifiedasanear‐termprioritybythepanelwithatimelineof0to2yearstoaddressthisgap.
52
Interviewssuggestthatvehiclescanprovideancillaryservicestodaywithouthavingtofeedenergyback
tothegrid.Aslongastherateofchargecanbecontrolled,vehiclescanbeusedforloadcontrol,
frequencyregulationandsomeformsofspinningreserves.Theseserviceswouldrelyonenrolled
vehiclespredictablystoppingcharginginresponsetoprecisecommands.Ifthevehicleistoparticipate
inthe“down”aspectoffrequencyregulation,wiringamperageandbatterypoweroutputhastobe
increased.Thissuggeststhatbuildingchargerswithconduitsizedforlargergaugewiringisalow‐cost
stepNewYorkCitycantakenowtoprepareforV2G.Runninglargerconduitnowislowcostandmay
avoidexpensiveretrofittinglater,particularinoutdoorlocationsthatrequiretrenching.
AccordingtoastudybyNavigantConsultingregardingthetimelineforElectricVehiclebasedpower
supply,V2BtechnologywillprecedeV2Gtechnology.V2Bisexpectedtobecommerciallyavailable
before2020whileV2Gwouldfollowin2022.
53
52
STANDARDIZATIONROADMAPFORELECTRICVEHICLES ‐ PreparedbyEVSPofANSI
http://publicaa.ansi.org/sites/apdl/evsp/ANSI_EVSP_Roadmap_April_2012.pdf
53
PHEV/EVANDV2GIMPACTSANDVALUATIONSTUDYPresentedbyNavigantConsultingInc.
http://www.aps.com/_files/various/ResourceAlt/EV_Filing___Navigant_Study_‐_April_2010.pdf
59
 
 
                 
 
   
   
             
 
         
             
         
         
       
         
             
         
       
         
         
           
         
         
   
                         
       
 
             
         
     
         
         
                   
       
       
         
                       
 
           
 
         
           
         
       
         
         
     
           
     
           
 
         
     
           
 
         
         
 
       
         
 
           
     
ProjectedV2G/V2BTimelinebasedonInterviews&LiteratureSurveys
Pointsofcomparison V2B V2G
Timelineforcommercialfeasibility 3 ‐ 5years 5 ‐ 10years
Technologyfeasibility
Thetechnologycomponentsareready
buttheabsenceofstandards,lackof
vehicleswithreversepowerflow
capabilityandsufficientlevelsof
aggregationlimititsadoptioncurrently
Thetechnologycomponentsareready
buttheabsenceofstandards,lackof
vehicleswithreversepowerflow
capability,insufficientlevelsof
aggregationetclimititsadoption
currently.BasicV2Gthroughfrequency
regulationmaybepossibleifsufficient
aggregationisavailable.Technologyfor
basicfrequencyregulationisavailable
fromlimitedsuppliers
Potentialhurdlestocross SAEstandardsforReversePowerFlow SAEstandardsforReversePowerFlow
Aggregationnecessarytoprovide
sufficientpower
HighpenetrationofEVsinthecity's
fleet
Availabilityofhighpowerchargers
capableofreversepower
Verylargelevelsofaggregation
necessarytocompeteinNYISOmarkets
Availabilityofvehiclesduringpeak
demand
Availabilityofhighpowerchargers
capableofreversepowerflow
Availabilityofadvancedenergy
managementsystemsinbuildingswith
featureslikedemandresponseandnet
metering
PresenceofEVaggregatorsinthe
electricitymarkets
Islandingswitchestobuiltintobuilding
electricalsystems
Reducedbatterydeteriorationdueto
frequentcharge/dischargecyclesonthe
battery
Largebatterycapacitytoprovide
sustaineddischargeforpeakhours
SmartEVSEswithnetmetering
capability
Warrantyfrombatterymanufacturersto
covercharge/dischargecycles
Largebatterycapacitytorealizelarger
revenuesfromancillaryservices
Buildingswithwiringfor240V,80A
powerflow
Warrantyfrombatterymanufacturersto
covercharge/dischargecycles
Buildingswithwiringfor240V,80A
powerflow
Saturationofancillaryservicesmarket
couldreducethepricepremium
currentlyavailable
Technicalcomplexityincoordinating
supplyfromvehiclesthatare
geographicallydispersed
Clearunderstandingofcostvsbenefits
onalargescale
60
 
 
         
                                 
                             
                             
                 
   
                         
                               
                                 
                                   
 
                                     
                                 
                                   
       
 
                                         
                                     
                                     
                                     
                             
                      
 
                     
                                                           
                                     
                    
 
PotentialBenefitsspecifictoV2B
Reduced Demand and Capacity Charges 
IftheCity’sEVswereavailabletobepluggedinduringpeakperiodstheycouldtheoreticallyprovide
powertobuildingsandthereforereducedemandcharges.Thevehicleswouldneedtobeaggregated
closetothebuildingsthattheyprovidepowerto.Aggregationofvehiclesacrosswidelydispersed
parkinglotsmaynotcurrentlyworkforV2Btechnology.
DemandResponse
Thereareeconomicbenefitsassociatedwithpotentialparticipationindemandresponseprogramssuch
astheNYISOSCRprogramorConEdison’sDLRP.However,ultimately,suchparticipationwilllikelybe
limitedinthesamemanneraspeakshavingcapabilityduetotheoperationalcharacteristicsoftheCity’s
EVfleetandthefactthatDRprogramsaremostlikelytobecalleduponduringpeakperiods.
Outage Management
AnotherpotentialbenefitofV2BistheabilityofanEVtoactasanemergencybackupforcommercial
buildingsandfacilities.
54
Suchasystem,wherethevehicle’spowerisavailabletorunbasicoperationsin
ahouseorabuildingforashortperiodoftime,couldhelptoaidinemergencypreparedness.
BenefitsspecifictoV2G
Revenue from ancillary services
ThemarketforancillaryservicesisnotaslucrativeinNewYorkasitisinNewJersey,VirginiaandOhio,
whicharepartofthePJMmarket.AccordingtoatestofV2GsystemforenergyStorageandfrequency
regulationinthePJMterritory,theten‐yearpresentvalueofV2Grevenuesfora15KWEVisaround
$30,000.Anumberoffactorssuchasthetypeofservice,marketclearingpriceoftheserviceandthe
durationofservicewereconsideredinthecalculation.Thediagrambelowshowsthatrevenuesare
highestforthefrequencyregulationmarketandlowerforspinningreserves.
Figure37:GraphfromUniversityofDelawareStudyonPJMMarket
55
54
PHEVsasDynamicallyConfigurableDispersedEnergyStorageforV2BUsesintheSmartGridbyC.Pang,P.
Dutta,S.Kim,M.Kezunovic,andI.Damnjanovic
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5715981
61
 
 
                                 
                               
                               
                                   
                                     
                               
                               
                               
                                   
               
                                 
                               
                             
                                         
  
   
                             
    
   
                                   
                           
                                   
                                     
                                   
                                 
                                     
                                       
                       
 
   
                                 
                               
                                                                                                                                                                                               
                                 
                        
                  
 
                     
          
 
                 
   
ThesevalueschangedependingonthepricepremiumfortheseservicesinthemarketsthattheEV
participates.Theycoulddecreaseifalargenumberofvehiclesenterandsaturatethemarket.These
benefitswouldbesmallerinNewYorkCitywherethepremiumforregulationservicesandspinning
reservesismuchlowerthanthestudy’smarket.InNYISO,thepricesforregulationservicesinarecent
yearvariedbetween$7and$21perMWhintheEasterncorridoracrosstheDayAhead,RTCandReal
Timemarkets.For10minutespinningreserves,lastyear,thepricesvariedbetween$0.99and$12
acrossthesamemarkets.
56
Thedifferenceinpricesappearstobeseasonalwithpricesforboth
frequencyregulationandspinningreservesbeinghighestintheJuly.Thistrendiscommonacrossthe
dayahead,RTCandrealtimemarkets.ThelowestpricesareinthewintermonthswithFebruaryhaving
amongthelowestratesforthesesameservices.
Assuming16KWbatteriesthatparticipateinthemarketsfor365daysand24hours,thereturnsper
vehicleforfrequencyregulationvariesfrom$2,894to$8,682overa10‐yearperiodassuminga10
percenthurdlerate.Thesamecalculationforspinningreservesproducedreturnsrangingfrom$405to
$4,958.ItisclearthattheeconomicbenefitsfortheCity’sfleetarenotashighaspredictedinthePJM
market.
9.4InfrastructureConsiderations
AstheCityconsidersV2BandV2Gtechnologies,thereareseveralinfrastructurerequirementsthatit
mustconsider.
ForV2G
Networked & Vehicle Aware EVSEs 
Sincevehicleswillhavetobeconnectedintothegrid,EVSEchargersmustbeabletocontrolthe
charging/dischargingofthebattery.Sincebatteriescanwearoutwithrepeatedchargeanddischarge
cycles,itisessentialthatthisoperationisefficient.AccordingtoexpertsinV2Gtechnology,thedepthof
dischargeisacrucialelementindeterminingthelifeofabattery.Studieshavereportedthata3percent
cyclecanachieve10timesthelifetimekWhoutput.
57
Thesechargersneedtobeabletohandlethe
signalsfromtheISOortheaggregatorandchargeordischargethebatteryaccordingtothissignal.
Thesechargersmustalsobeequippedfortwowaypowerat80A.SincetheSAEJ1772standardforEV
charginghas240V,80AastheupperlimitforLevel2chargingitissuggestedthattheEVSEsinstalledor
attheveryleasttheirunderlyinginfrastructurebecapableofprovidingthispower.
58
Accordingto
engineersofEVSEchargers,thetypicalEVSEchargersareconfiguredfor30A,40A,70Aand80A.While
onlylargetruckstypicallyusechargersgreaterthan40Athemaximumamperageisincreasingforall
55
ATestofVehicle‐to‐Grid(V2G)forEnergyStorageandFrequencyRegulationinthePJMSystem ‐ Resultsfrom
anIndustry‐UniversityResearchPartnership ‐ WillettKempton, VictorUdo,KenHuber,KevinKomara,Steve
Letendre,ScottBaker,DougBrunner&NatPearre http://www.udel.edu/V2G/resources/test‐v2g‐in‐pjm‐
jan09.pdf
56
MarketOperation’sReport ‐ NYISO ‐ BusinessBusinessIssuesCommitteeMeetingIssuesCommitteeMeeting
May16,2012 http://www.nyiso.com/public/webdocs/committees/bic/meeting_materials/2012‐05‐
16/Market_Operations_Report.pdf
57
IBMSmartGridVisionandProjectsbyEleniPratsini
58
http://www.teslamotors.com/roadster/specs
62
 
 
                             
                             
                           
                                   
                                   
       
   
   
                                     
                               
                               
                                     
                              
         
                                   
                                   
                                   
                               
                           
                                 
      
                                   
                                   
                       
 
                               
                           
                                   
                             
                                     
                                                           
   
                  
                             
                       
        
                        
 
vehicles.PassengervehiclesliketheTeslaRoadsteralreadysupport70A.
59
Thesechargersalsoneedto
communicatewiththevehicle’son‐boardequipmenttodeterminetherightlevelofchargingforthe
vehicle.Theadoptionofstandardsforreversepowerflowregardingcommunicationandsafetywill
addresstheseneeds.WhileestimatingtheeconomicbenefitsofV2G,weusedavalueof$5,600asthe
costperchargerincludingthewiringcostasperastudyconductedbytheUnitedStatesPostalService
onelectrifyingitsfleet.
60
ForV2B
Demand Response systems with Netmetering capability
ToenableV2Btoaddressthepeakdemandsforabuilding,itisessentialthatthebuildingbeequipped
withanenergymanagementsystemthatincludesdemandresponsefacilities.Oncearequestissentto
thebuildingtoreduceitsconsumption,thebuilding’senergymanagementsystemcansendasignalto
theEVtoprovideV2Bpower.TheEVswillcontinuetodischargetheirbatteriesandanetmeterwill
monitortheamountofenergysuppliedsothattheEVownercanbecompensatedaccordingly.
CommonforV2BandV2G
Wiring 
TheCityneedstoplanfor80Acharging/dischargingfacilitiesifitistoprepareitsinfrastructurefor
futureV2BorV2Grequirements.SinceSAEJ1772allowsfor80ALevel2charging,thewiringandthe
breakersinthebuildingswouldneedtobecapableofcarryingthishighpower.Typicallytocarry80A
currentthroughawire,theyareratedfor100A.Boththesetechnologieswillalsorequiretransfer
switchestoensurethatsupplydirectionismaintained.Astechnologydevelops,hardwaremaybe
consolidatedsuchthattransferswitchattributeswillbeintegratedintotheEVSEandreducethecostfor
maintainingsupplydirection.
BecausethattechnologyisnotcommercializeditisnotyetpossiblefortheCitytoestimatethosecosts.
However,itissafetoassumethatwhileV2G/V2BcapabilitywillcostmorethanamerebasicEVSE
installation,somestudiessuggest,however,thatsuchextracostswillbeminimal.
61
9.5Standards
TheStandardizationRoadmapforElectricVehiclespublishedbytheEVSPhighlightssomeofthegapsin
thestandardsforthisindustry.TheprioritizationforgapsareNear‐Term(0‐2years),Mid‐Term(2‐
5years)andLong‐Term(5+years).
62
ThemostimportantgaprelatedtoV2Gistheuseofvehiclesas
electricalsupply.Thereporthighlightstheneedtocreatestandardsforcommunicationandsafetyfor
reversepowerflowinV2G,V2H,V2LandV2Vapplications.Thisishighlightedasagapthatwillrequire
59
http://www.teslamotors.com/roadster/specs
60
U.S.PostalService ‐ ElectrificationofDeliveryVehicleshttp://www.uspsoig.gov/FOIA_files/DA‐WP‐09‐001.pdf
61
U.S.DepartmentofEnergyVehicleTechnologiesProgram–AdvancedVehicleTestingActivity(Plug‐inHybrid
ElectricVehicleChargingInfrastructureReview)byKevinMorrow,DonaldKarner,JamesFrancfort
http://avt.inl.gov/pdf/phev/phevInfrastructureReport08.pdf
62
STANDARDIZATIONROADMAPFORELECTRICVEHICLES ‐ PreparedbyEVSPofANSI
http://publicaa.ansi.org/sites/apdl/evsp/ANSI_EVSP_Roadmap_April_2012.pdf
63
 
 
                                 
                             
                               
                                 
                                   
                              
         
                                   
                       
 
       
                         
                  
                                 
                             
         
 
                         
                               
                           
                            
         
                                       
                                 
                                 
                                       
                             
                               
                   
 
                                   
                         
                         
                             
                         
         
                                                           
                 
                           
 
   
revisingSAEJ2836/3,SAEJ2836/5,SAEJ2847/3andSAEJ2847/5standards.Thereportstatesthat
infrastructurecommunicationisnotanticipatedforV2H,V2LandV2Vapplicationsbutmayberequired
foradvancedV2GfunctionswhentheEVservesasaDistributedEnergyResource(DER).TheNEC
standardsareconsideredadequatefortheEVservingasastandbysystemoragridinteractivesystem
andthereportdoesnotanticipateanychangestothesestandards.Thisisagapthathasbeen
prioritizedasNear‐TermandwillrequireSAEandIEEEtoworktogethertocloseit.
9.6BatteryManufacturers&MarketOutlook
BatterytechnologyisthekeydriverofV2G/V2Bpotential.Thedepthofdischargeofabatteryhasa
bearingontheamountofenergyabatterycangeneratethroughitslifetime.
63
Asbatterytechnology
improvesanddeeperdischargescanbeaccomplishedwithminimalwear,thepotentialeconomic
benefitsofV2BandV2Garelikelytoincrease.
ImprovedbatterytechnologymayhelptofacilitatetheV2Gmarket,butitwillalsolikelycompetewith
it.NavigantConsultingestimatesthatstationarybatterypriceswillbebetween$150and$625within
thenext5to7years.
64
Atthoseprices,singlepurposebatterieswillbecost‐effectiveintheancillary
servicemarketandwouldofferacompetitivealternativetoV2G.Inthatsense,theV2G/V2Bmarket
maybeephemeral,eclipsedbycheapalways‐availablebatteries.ThisuncertaintysuggeststhattheCity
shouldapplyahighdiscountrateinconsideringanypotentialinvestmentsinthistechnology.
9.7Recommendations,NextSteps&Conclusion
AstheCitypreparesitselfforadoptingalargernumberofEVsintoitsfleet,thepotentialforV2Band
V2Gservicestoreducethetotalcostofownershipwillalsolikelyimprove.Ouranalysissuggeststhat
V2Bmaybemorefeasiblefromatechnicalstandpointbutlesssofromaneconomicstandpointsince
mostvehiclesarebeingusedduringthepeakperiodof2pmto7pm.Ontheotherhand,V2Gcouldoffer
greaterrevenuepotentialsinceancillaryservicesaretypicallyneededatnightwhentheCity’sfleet
vehiclesarenotinuse.Howeverthistechnologyisnotyetcommercialized.Giventhispredicament,the
CityhastwopotentialoptionstocontinueengagementwithV2B/V2G:
Adopt a PilotProgram 
TheCitycouldhelptoadvancethetechnologyofV2B/V2Gbypartneringwithanacademicinstitution
orautomobilecompanytoundertakearesearchpilotaimedatassessingtheinfrastructure
requirements,performance,andpotentialeconomicbenefitsofthistechnology.Suchapilotwould
affirmtheCity’scommitmenttocleanenergytechnologyandcouldbeundertakenthroughtheCity’s
MunicipalEntrepreneurialTestingSystems(METS)program,whichenablescompaniestobetatesttheir
clean‐techproductsinmunicipalfacilities.
65
63
IBMSmartGridVisionandProjectsbyEleniPratsini
64
PHEV/EVANDV2GIMPACTSANDVALUATIONSTUDYPresentedbyNavigantConsultingInc.
http://www.aps.com/_files/various/ResourceAlt/EV_Filing___Navigant_Study_‐_April_2010.pdf
65
http://www.nyc.gov/html/gbee/html/initiatives/mets.shtml
64
 
 
                   
                                 
                               
 
                             
                       
                               
                                 
                               
   
                           
                       
                               
                     
                             
                     
 
 
                                 
                                 
                                   
                           
                        
                         
                             
                               
                                 
           
                                     
             
                             
                         
 
UndertakingaV2B/V2Gpilotwouldlikelyinvolvethefollowingsteps:
a.  Issuea“requestforexpressionsofinterest”tosignaltoaggregatorsthattheCityiswillingto
beatechnicalpartner.FindanEVmanufacturerthatisseekingtotestV2B/V2G
technologies
b.  IncludeNYISOindiscussionsaboutcarryingoutapilotphasewithlimitedvehicles.Evena
simulationwouldrequireaccesstofrequencysignalsthatarenotpubliclyavailable
c.  EnsurethatthebuildingsandparkinglotsfortheEVsarecapableoftransmittinghighpower
at80A.Sincethestandardsaccommodateuntil80AitislikelythatEVsinthefuturemay
requirehighpowercharging.ThewiringandtheEVSEunitsmustbecapableofhandlingthis
highpower
d.  FindatechnicalpartnercapableoffurnishingsmartEVSEunitsthatcanmonitorthe
batteries’stateofcharge,chargingrate,netchargetransferredandvehicleauthentication.
Whilesomeofthesetopicsstillhavegapsinstandards,theEVSEsinstalledmustbecapable
ofcommunicationwiththevehicleandallowforreversepowerflow
e.  Ensure“buy‐in”offleetmanagerstotheprogramsothatthevehiclesarepluggedin
wheneverpossibleandsothatimpactsonoperationalneedsareunderstood
Adopt a “wait and prepare” approach
AccordingtoexpertsattheUniversityofDelaware,datacollectedinthenexttwoyearswillsignificantly
advanceunderstandingofthepotentialforcommercialV2G.TheCityofNewYorkcoulddecidetowait
fortheseresultsanddeterminewhetheritsfleetusageiscompatibleatalaterdate.Inthemeantime,
theCitycouldmakeitsEVinvestmentsforwardcompatiblebyundertakingsomesimple,inexpensive
stepswhilecontinuingtoinvestigatethetopicwithregulatorsandtechnologyexperts.
Toadoptthisapproach,theCitywouldneedtotakethefollowingsteps:
a.  EnsurethatthebuildingsandparkinglotsthatareretrofittedforEVsarecapableof
transmittinghighpowerat80A.Sincethestandardsaccommodateupto80Aitislikelythat
EVsinthefuturemayrequirehighpowercharging.Thewiringoratleastconduitmustbe
capableofhandlingthishighpower
SelectEVSEsandvehiclesthatarelikelytobeeasiertoretrofitforV2GpurposesbyhavinghigherAC
chargeratesandDCfastchargeconnectors
b.  TrackthedevelopmentofV2GtechnologyandrelevantregulationstoensurethattheCityis
wellpositionedtopursuethistechnologyinthefutureshouldacompellingopportunity
arise.
65
 
 
                           
                                   
         
   
Unfortunatelyneitherthevehicletechnologynorkeymarketplayerssuchasaggregatorshavematured
yet.Inthemeantime,buildingitsinfrastructuretobeV2G/V2BreadywillallowtheCitytobecomea
participantwhenthemarketdevelops.
66
 
 
 
 
 
                             
                               
                                     
                             
                           
       
                               
                               
                               
                             
                                   
                               
                         
                                   
                             
                                   
                               
                                 
                             
                                   
                                       
                                   
                                 
                                   
                 
                               
                             
                           
                           
                         
                               
   
                                   
                             
10 Conclusion
Overthepasttwoyears,NewYorkhasdeepenedpreviouselectricvehicleresearchandanalyzed
entirelynewfacetsofincreasingelectricvehicleadoption.IthasmadeprogressontheissuesNew
Yorkersface,buttheroadtowidespreadadoptionisstilllong.InordertohaveNewYorkfulfillits
potentialasanEVmarketleaderitmustcontinuetomakeprogressonincreasinginfrastructure,
improvingvehicleeconomics,andfurtheringeducation.ThesearepoliciesthattheCitycanimplement
onalocallevel.
IntermsofinfrastructuretheCityhasmadeprogressthroughthreemajorprojects.Ithasdeveloped
concreteplansforelectrifyingthecurb.Byfirstservingthesmallermorelucrativefoodvendormarket
firstitcancreateacost‐effectivemodelforcurbsidevehiclecharging.Toincreaseoff‐streetchargingit
hasexaminedthepossibilityofrequiringEVreadyspotsinnewparkingdevelopments.Byundertaking
changestothebuildingcodeithasthepotentialtoincreasethenumberofchargersandchargerready
locationsbyapproximately10,000spotsoverthenextfiveyears.Finally,ithasalsomappedpotential
fastchargelocationsandidentifiedthelocalbarrierstomakingsuchchargersprofitable.
TheCityalsoresearchedawidevarietyofprojectsthathavethepotentialtoimprovetheeconomicsof
electricvehiclesforconsumersandfleets.Decreasingthecostofelectricityisperhapsthemost
pressing.TheCityandConEdworkedtogethertoallowtheinstallationofa2
nd
electricitymeter,astop
gapmeasurethatallowsconsumerstoaccesscheapertimeofuseelectricity.MorepromisingisCon
Edison’spilotthatallowsEVstobebilledseparatelyusinganewsubmetertechnology.Thatallows
accesstothemoreaffordablerateswithlowerinstallationcostsandpotentiallyfewermonthlyfixed
costs.Electricvehiclesmayallowutilitiestoprovidesmartmeterstouserswhoareindeedeagertopay
forthemeterforthesavingsitcanprovide.Forfleets,theCity’sanalysisofitsowncarshareusage
showsthatpurebatteryelectricvehicleshavemorethanenoughrangetocoverevenfulldaysoffleet
usage.ThismayallowtheCitytoincorporatemorepurebatteryelectricvehicles,whichcanbecheaper
thantheplug‐inhybridsitpredominatelybuysnow.OtherfleetsandcitiescanusethetooltheCity
created,providedtheycapturebasicinformationonvehicleusage.
Toincreaseeducationandundertakepublicengagement,theCityputintopracticetheresultsfromits
previousconsumerresearchinthecreationoftheonlinesocialmediaplatformMissionElectric.That
project,whichreachedthousandsofNewYorkers,increasedlearningonwhattypesofcommunication
energizesanEV‐friendlyaudienceandalsowhattypesofprojectslendthemselvestocrowd‐sourcing.
Public‐privatepartnershipswithcompaniessuchasDuaneReadeandHertzbroughtadditionalattention
tolocalelectricvehicleinvestmentsandexpandedthetypesofprojectsMissionElectriccouldbringto
itsaudience.
Ofcourse,thereismuchworktobedone.MissionElectricwouldbenefitfromincreasedscale.Thesite
itselfwouldgeneratemoreenergyandprivateinvolvementifitfunctionedinmultiplecities.Meanwhile
67
 
 
                                 
                             
                                       
                              
                             
          
                                 
                                   
                           
                                   
        
                                       
                                 
                               
           
                             
                           
                           
                             
                     
thegrowthinFacebookfriendsandhighemailreadershipsuggeststhatthereisaneedforEV
knowledgecouchedinalocal,non‐technicalframe.IncorporatingEVsintocarshareremainsagoal,
bothtogreenthosefleetsandforthevalueexposuretoEVswouldhaveforNewYorkers.TheCityhas
manypotentialpilotprojectsbornefromthisyearofplanning. Thosewiththemostimmediate
potentialincludeafoodvendorelectrificationpilotandthepotentialintegrationofEVreadinessinto
theCity’sgreenbuildingcodes.
TheCityiscreatingsolutionsthatarepredominatelyborneoutofitslocalcontext.Forexample,the
availabilityofatestmarketofthousandsoffoodvendorscouldhelptoshapepoliciesandprogramsfor
curbsidecharging.Meanwhile,thelowercostofovernightelectricityprovidesanopportunitytoreduce
theoperatingcostsofEVssotheCityandConEdisonarepilotingmethodstoallowfordifferential
pricingonsinglemeters.
PlaNYCstandsasabackdropandanenablerformanyoftheseactions.TheCityhasagreencodestask
forceandaprocessforengagingdevelopersonenvironmentalpolicy.Itsownelectricvehiclefleetisan
outgrowthofPlaNYCgoalstoreducecitywidegreenhousegasemissions30percentby2030andCity
governmentemissions30percentby2017.
Thislocalstrengthsandcircumstanceshavebeenpairedwithinvaluablelessonsfromotherregionsand
cities.VancouverandPortlandhavehelpedshapeNewYork’spolicyonchargerinfrastructure.Boston
andPhiladelphiacollaboratedonthecreationofMissionElectric.TheUniversityofDelawareand
PhiladelphiaarepioneeringV2G/V2Banalysis.TheCityhopestobepartofacontinuedcollaboration
withothercitiesandNGOsthatseektoincreaseelectricvehicleadoption.
68
** !""#$%&'#(








"##$%&'($)

69


"##$%&'+ " *+,-# ./ 0&123#(
llgure 1: Lmlsslons by vehlcle 1ype from prevlous n?C Mayor's Cfflce Lv SLudy ...................................... 6
llgure 2: ALLlLudlnal SegmenLaLlon of n?C Lv 8uyers from prevlous n?C Mayor's Cfflce Lv SLudy ........... 6
llgure 3: LlecLrlc vehlcle Slgn ln CenLral Þark .............................................................................................. 7
llgure 4: 8us ShelLer AdverLlsemenL for Mlsslon LlecLrlc ............................................................................ 9
llgure 3: LmblemaLlc Mlsslon LlecLrlc 1weeLs & 1argeL Audlence ............................................................ 11
llgure 6: lnformaLlon on Mlsslon LlecLrlc lacebook lrlends ..................................................................... 13
llgure 7: key MeLrlcs from PerLz & uuane 8eade Campalgns ................................................................... 13
llgure 8: Comparlson of Moblle & ÞC SlLe LngagemenL ............................................................................ 13
llgure 9: Source of Mlsslon LlecLrlc new users. ......................................................................................... 16
llgure 10: Lmall 8each and Audlence 8ecepLlon ....................................................................................... 17
llgure 11: new ÞermlLLed Þarklng by 8orough .......................................................................................... 21
llgure 12: CosLs of Crld and CeneraLor Þower .......................................................................................... 23
llgure 13: ÞolluLlon from Crld and CeneraLor Þower ................................................................................ 24
llgure 14: Map of lood vendor Canvas ..................................................................................................... 24
llgure 13: ÞoLenLlal unlL Lo MounL on a LlghL pole .................................................................................... 23
llgure 16: 8evenue Þro[ecLlons under 3 ulfferenL 8evenue and CperaLlng Lxpense Scenarlos ................ 27
llgure 17: Charges Þer uay as a luncLlon of when a urlver lasL Charges .................................................. 29
llgure 18: lllusLraLlon of how uemand Can vary for Lhe Same AmounL of Þower .................................... 30
llgure 19: PousLon Cfflce 8ulldlng Lnergy Þroflle wlLh uemand Charge of ~71 kW ................................. 31
llgure 20: ÞoLenLlal 8eglonal lasL Charge LocaLlons ................................................................................. 33
llgure 21: ClLy Cwned 8ronx ÞroperLles wlLhln 1/2 Mlle of Ma[or 1ravel ArLerles ................................... 34
llgure 22: ClLy Cwned 8rooklyn ÞroperLles wlLhln 1/2 Mlle of Ma[or 1ravel ArLerles .............................. 33
llgure 23: ClLy Cwned ManhaLLan ÞroperLles wlLhln 1/2 Mlle of Ma[or 1ravel ArLerles ........................... 36
llgure 24: ClLy Cwned Cueens ÞroperLles wlLhln 1/2 Mlle of Ma[or 1ravel ArLerles ................................ 37
llgure 23: ClLy Cwned SLaLen lsland ÞroperLles wlLhln 1/2 Mlle of Ma[or 1ravel ArLerles ........................ 38
llgure 26: lrequency of ulsLance Þer 1rlp ................................................................................................. 43
llgure 27: Car Share 1rlps MeeLlng LlecLrlc vehlcle 8equlremenLs ........................................................... 43
llgure 29: 1oLal Car Share 1rlps by 1lme ln Wall SLreeL Zone .................................................................... 44
llgure 28: 1lme of Car Share ueparLures and 8eLurns ln Wall SLreeL Zone ............................................... 44
llgure 30: 1oLal Lmlsslons for LlecLrlc vehlcle Scenarlos and Car Share Þrogram ..................................... 43
llgure 32: Car Share SlmulaLlon Model Loglc ............................................................................................. 46
llgure 31: ScreenshoL of Lxcel Model When number of 1rlps Lxceeds Car AvallablllLy ............................ 46
llgure 33: Average SLaLe of Charge [ 6:30 ÞM under 1hree ulfferenL vehlcle SlmulaLlons ..................... 48
llgure 34: Lxample of one of Lhe ClLy's fleeL elecLrlc vehlcles ................................................................... 37
llgure 33: Craph from unlverslLy of uelaware SLudy on Þ!M MarkeL ....................................................... 61

70


"##$%&'+ , 4-.(#% 5.." !%6&(.3( 0..% 7#$%.3 !$+-8(&(

71





































Prepared for:
New York City Mayor!s Office of Long-term Planning & Sustainability
253 Broadway
New York, NY 10007
Energy Analysis of the Electrification of Food
Carts and Trucks in New York City
Prepared by:
Closed Loop Advisors
197 E. 4
th
St., Suite 5
New York, NY 10009
www.closedloopadvisors.com
Date: November 27, 2012


Table of Contents
#<%270-=% >7??*&( @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ A
B$0&.4720-.$ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ C
5*$=*,,-$' D%$4.&, 0. E*01%& )44-0-.$*+ F*0* @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ G
"##$%&'()*#+ ,)$*-./(0#+ .*- 10'2)-)3)45 66666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666 7
8(*-(*4# 6666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666 7
#$%&'( )$*+(,-, ./ >H%2-/-2 D%$4.&, @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ I
"##$%&'()*# 666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666 9
,)$*-./(0# 6666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666 9
10'2)-)3)45 666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666 :
;*0/45 <#.40 66666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666 ==
;>)*)%(># 66666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666 =?
J.++70-.$ )$*+(,-, @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ KA
@A? 66666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666 =B
CAD 66666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666 =E
F-,27,,-.$ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ KG
8))- F)/ G2)$42' 666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666 =7
H$440#'()*# F)/ 8$/'20/ H'$-5 6666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666 =7
@)*>3$#()* 66666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666 =I
)28$.:+%4'%?%$0, @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ KL
>.7&2%, @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ KI
)HH%$4-2%, @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ KM
"&&0*-(D " 666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666 ?J
"&&0*-(D , 6666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666 ?=


! #$%&'( )$*+(,-, ./ 01% #+%20&-/-2*0-.$ ./ 3..4 5*&0, *$4 6&728, -$ 9%: ;.&8 5-0(















































Executive Summary
The Mayor!s Office of Long Term Planning and Sustainability in the City of New York is
considering a pilot program to intermittently power food cart and truck generators from the
electrical grid instead of from gasoline. This report explores the feasibility of such a pilot
from the perspective of energy utilization of food cart and truck generators. This analysis is
the first step in assessing the feasibility of a pilot.
Gasoline-powered generators are inefficient compared to power from New York City!s
regional electrical grid, and therefore consume more fuel and emit more greenhouse gases
and other pollutants. The emissions of most concern are carbon dioxide (CO
2
) and nitrogen
oxide (NO
x
). While CO
2
is known as the most pervasive greenhouse gas, NO
x
penetrates
deep into the lung to damage lung tissue, reduce lung function in susceptible populations
(children, asthmatics, the elderly), worsen respiratory diseases, and aggravate existing
heart conditions, causing premature death in extreme cases.
Findings suggest that generators aboard food carts and trucks can be powered from the grid
with the exception of large generators (>7,000 watts). There is some gray area when it
comes to medium-to-large sized generators, which the Energy Analysis section of this report
covers in detail.
Two complementary studies were conducted to draw conclusions about generator energy
use. The first looked at manufacturers!generator specifications and fuel usage data from
several NYC mobile food vendors to assess their greenhouse gas impact and cost to
operate compared to the grid. The second study, done in partnership with the Mayor!s Office
and NYC Service, involved canvassing mobile food vendors in various neighborhoods in
three boroughs. This was necessary to achieve a better sense of the number of vendors
using generators and the distribution of generator sizes. The sample revealed that 9 out of
10 vendors operate a cart and that 61% percent use a generator.
While carts comprise the majority of vendors, trucks have been growing in popularity in the
past few years. Despite typically having larger generators than carts, we realized that a pilot
may include trucks and that it was critical to determine the cutoff point for generator size.
The benefit of pollution reduction is clear. According to calculations of energy usage, if all
mobile food vendors switched their source of generator power from gasoline to the grid, the
CO
2
emissions reduction would be equivalent to removing 2,000 to 3,500 cars from the road
for a year. This range was found by projecting the sample of vendors and generator sizes
(150) to the universe of all licensed vendors (3,000), accounting for high and low scenarios.
Similarly, the projected reduction in NO
x
emissions from switching vendors from generators
to the grid would be equal to removing 9,500 to 11,100 cars from the road for a year.
Lastly, a study of the economic implications of switching generators from gasoline to grid
power would yield annual fuel cost savings for the vendors we closely studied from $1,000
to $5,200. The potential economic and pollution-reduction benefits warrant exploring the
operational feasibility of a pilot that would leverage existing infrastructure to supply power.
!"#$%& (")*&+,+ -. /0# !*#1/$,.,1)/,-" -. 2--3 4)$/+ )"3 5$617+ ," 8#9 :-$7 4,/& ;















































Introduction
Based on data we collected, the majority of mobile food vendors in New York City operate
food carts and trucks that run gasoline generators to power electrical equipment (few run
diesel). These generators emit pollutants that affect the air quality of the immediate area,
add to the city!s greenhouse gas emissions, and impact quality of life by producing noise
pollution and unpleasant odors.
The purpose of this study is to allow New York City to do a preliminary evaluation of the
environmental and operational potential of providing grid power to some subsection of
mobile food vendors. Energy consumed by food cart and truck generators was compared
with the estimated power supply capabilities of an electrical outlet fed by the grid.
Inspiration to investigate powering generators from the electrical grid instead of gasoline or
diesel came from the sections of PlaNYC related to Air Quality and Climate Change. This
study and any tangible results it may inspire are not explicitly listed as PlaNYC goals, but
embody the spirit of the Plan.
Turning off generators located on or adjacent to busy sidewalks is similar to the idling goal
within the PlaNYC Air Quality chapter. It would reduce local pollution emitted close to where
people walk (and wait for food from street vendors). Powering these vendors from the grid
rather than gasoline would reduce air pollution 80-98% and eliminate the local emissions
where they operate.
Another concern was the need to provide infrastructure as cheaply as possible. Because
vendors are mobile by nature, the City does not want to create a stranded asset. One option
is to utilize existing wiring or conduit to light poles. In this scenario the outlet would either be
attached to the pole or a nearby "bollard" built exclusively for the outlet. Another option is to
create a new service. It is beyond the scope of this study to recommend which method to
pursue.
The basis for investigation was the per-unit (e.g. gallon, kilowatt hour (kWh)) analysis of
energy consumption from generator specifications and more importantly, from studying data
collected from four food vendors - Wafels & Dinges, The Cinnamon Snail, FoodFreaks!, and
Kelvin Natural Slush - that graciously volunteered for the study. Context about their
operations were gained through phone interviews and on-site visits. Lastly, it was necessary
to arrive at an apples-to-apples energy comparison of gasoline vs. grid power. This involved
calculating the amount of grid power (in kWh) needed to supply the equivalent amount of
electricity a gallon of gasoline would produce in a specific generator.
This report illustrates general insights gained from canvassing vendors, explains the
analysis of energy consumption, emissions and economics of the generators used by the
participating vendors, and concludes with a discussion and suggestions for further study.
Findings from this study are intended to inform the City!s decision-makers on the energy
constraints to consider when planning and launching a mobile food vendor electrification
pilot.
! #$%&'( )$*+(,-, ./ 01% #+%20&-/-2*0-.$ ./ 3..4 5*&0, *$4 6&728, -$ 9%: ;.&8 5-0(












































Canvassing Vendors to Gather Additional Data
Assumptions, Boundaries, and Methodology:
To inform decision-making, high-level information was sought about generator use by mobile
food vendors. Information from a sample of vendors provided context to support the energy
analysis of specific vendors, including an estimate of the number of vendors that operate
generators and among those, the distribution of generator size.
The question was posed of how to obtain this information. A survey was considered, but the
logistics of administering a survey that would yield reliable results proved challenging. After
thinking through the survey options another approach was chosen: to canvass vendors
instead. Interns working for the City visited various neighborhoods of known food cart and
truck vending and recorded observations about generators and visible electrical equipment.
Eleven neighborhoods were canvassed in Manhattan, Queens, and the Bronx. One hundred
fifty observations were recorded, equaling 5% of the universe of NYC!s 3,000 citywide and
borough-specific permitted mobile food vendors.
2
This canvassing study focused on geographic locations to capture the nomadic nature of
food carts and trucks. Trucks may vend from two or more locations throughout the day.
Carts are removed from place of business each day and reappear in the morning sometimes
at a new location. The self-reported location of food carts is largely unavailable making food
cart density in New York City very hard to predict.
Because canvassing every neighborhood in the five boroughs would be impractical, the
most effective approach was to target specific areas given the time and resources available.
Canvassers were sent to known areas of food cart concentration such as Midtown as well as
areas assumed to have less concentrated food cart spots like neighborhoods in Queens and
the Bronx.
Despite the geographic limits of the sample, the information gathered from the observations
in the neighborhoods canvassed seems broadly applicable to NYC. For example,
information collected about generator size is not affected by the location of the vendor.
Electricity use is consistent across vendors that sell similar foods and use comparable
cooking tools. While some vendors use more electricity for air conditioning, compressors,
lights, advertising and other non-cooking related uses, these vendors are outliers and some
of these heavy users are identified in our geographic sample.
Findings:
Setting out from downtown Manhattan, the City!s five interns went as far north as Arthur
Avenue in the Bronx and as far east as Queens Borough Hall. Given that geographic span,
canvassing was focused more in Manhattan where vendors are known to be concentrated.
The distribution of carts and trucks in our sample are mapped in Figure 1 on the next page.
2
While NYC grants 3,000 citywide and borough-specific mobile food vendor licenses, an unknown number of vendors operate illegally.
It was outside the scope of this project to determine if the vendors canvassed possessed up-to-date licenses.
!"#$%& (")*&+,+ -. /0# !*#1/$,.,1)/,-" -. 2--3 4)$/+ )"3 5$617+ ," 8#9 :-$7 4,/& ;







"#$%&' () "#$ %&'()&*+(&,- ,. /0)(' 0-% ()+/1' /0-20''$% &33+'()0($' (#$ /,-/$-()0(&,- ,. /0)('4
50)(&/+30)36 &- 7&%(,8- 70-#0((0- 9$0'( 0-% 8$'(: /,;5)&'&-< =>? ,. (#$ '0;53$@
"#$%&' *) A&'()&*+(&,- ,. ;,*&3$ 2$-%,)' 9*,(# /0)(' 0-% ()+/1': 8&(# ,) 8&(#,+( <$-$)0(,)' 8&(#&-
(#$ 0)$0 /0-20''$%@ BC? ,. 033 2$-%,)' &- (#$ '0;53$ #0% <$-$)0(,)'4 &-/3+%&-< D=? ,. /0)(' 0-% CEE?
,. ()+/1'@
Pink boxes represent area of canvass
9CFF:
9CG:
9>H:
9D=:
Pink boxes represent area of canvass
! #$%&'( )$*+(,-, ./ 01% #+%20&-/-2*0-.$ ./ 3..4 5*&0, *$4 6&728, -$ 9%: ;.&8 5-0(











































Canvassing was focused in Manhattan where vendors are known to be highly concentrated,
which explains the geographic distribution of the sample shown in Table 1. The greatest
number of observations was recorded in Midtown (east and west). The sample also
revealed that nearly 89% (133 of 150) of observed vendors were operating carts (Table 1).
The canvass study showed that of the 150 vendors observed, 58 did not have a generator
(the red bar in Figure 3). That results in 39% of vendors captured in the sample without
generators. The distribution of vendors with and without vendors is mapped in Figure 2 on
the previous page.
Given that 89% of the sample were vending from carts, it is no surprise that aside from not
having a generator, the smaller 2,000, 1,000 and 3,000-watt generators were the most
frequent size generators observed, respectively (Figure 3).
Considering that only 8 of 92 vendors with a generator from the 150-vendor sample have a
medium or large generator (from 4,500 watts and up), it is assumed that the vast majority of
vendors in the full universe would draw less than 40 amps from the grid and therefore be
eligible for a pilot or to participate in a grid energy program if a pilot were to be scaled.
!"#$% '( "#$# %&''(%$() #*&+$ ,(-)&./ )+.0-1 $2( %#-,#//
)*+,-% .( "#$# %&''(%$() #*&+$ ,(-)&./ #-) $2(0. 1(-(.#$&./ /03( )+.0-1 $2( %#-,#//
!"
$%
!&
"
' '
$
'
$
' ' '
!



#
$
!
!
!



%
$
!
!
!



&
$
!
!
!



&
$
%
'
!



(
$
!
!
!



(
$
'
!
!



)
$
!
!
!



)
$
'
!
!



*
$
!
!
!




#
%
$
'
!
!



#
&
$
!
!
!



+

,
-

.
/
0
1
,
2
3

4
5
6
7
8
/
1


9/0 5 25 : , 2 4 ; </ = ; 0>5 ?3@
A; 3 : 2; B C D, 0, - 4 5 67 8 /19/0 /25 : , 2 4 ; </
!"#$%& (")*&+,+ -. /0# !*#1/$,.,1)/,-" -. 2--3 4)$/+ )"3 5$617+ ," 8#9 :-$7 4,/& ;












































Energy Analysis of Specific Vendors
Assumptions:
A pilot would provide electrical power to the curb in select locations. Using existing
infrastructure such as light poles offers both opportunity and constraint. As alluded to in the
Introduction, the opportunity is to avoid the cost of installing infrastructure by leveraging
what already exists. The constraint is the amperage (amps) an electrical outlet would be
capable of supplying in relation to the amount of amps a generator requires.
If light poles were to be used, the City indicates a maximum of 40 amps would be available
at each point of grid plug-in. Exceeding 40 amps could be problematic for the vendor – they
could pop a circuit breaker during a lunch or dinner rush and lose customers due to resulting
delays in getting their electricity back up and running.
A good rule of thumb to follow is that the larger the generator, the more amps it!s capable of
supplying. Manufacturer specification sheets rate generator full load amp (FLA) levels by
generator size. Based on specifications, a 5,000-watt generator would be the safest cut-off
for generator size because its FLA is 41.7 (see the Methodology section for more details).
However, a combination of on-site visits and discussions about electrical equipment used by
vendors raised the possibility that generators larger than 5,000 watts operate below FLA.
This hypothesis led to the inclusion of two food trucks with generators of 6,500 and 7,000
watts to measure if their average amp consumption approached or exceeded the threshold.
Boundaries:
As an extension of the assumptions above, The Kelvin Natural Slush truck was excluded
from this study because their 13,500-watt generator and the equipment on the truck far
exceed the threshold of 40 amps. Vending frozen food requires more energy-intensive
equipment than any other food type. Kelvin requires a large generator to run condensers to
produce their flavored ice, an air conditioner to keep the inside of the vending area cool in
the summer, and additional equipment like freezers. They and other vendors selling similar
frozen treats are exceptions due to the nature of preparing and preserving the food they
vend.
Industrial electrical measurement devices were not used to inform this analysis. Such
devices have data loggers to capture actual electricity output from generators and would be
ideal to measure spikes in energy use, such as when equipment is turned on or during
different times of day like the lunch or dinner rush. However, several reasons drove the
decision against using such devices. First, most wiring setups observed during on-site visits
and through additional research locate the main outlet the generator plugs into behind the
generator. Complications arose because generators are typically placed inside a section of
a cart or truck large enough for just the generator. From a logistics standpoint, connecting a
measurement device would have been onerous, potentially time consuming, costly and
inconvenient for the vendor. Second, safety of handling higher voltage wires would require
the involvement of an electrician and associated cost. Lastly, a proper measurement device
would cost in the range of several thousand dollars, which exceeded this study!s budget.
! #$%&'( )$*+(,-, ./ 01% #+%20&-/-2*0-.$ ./ 3..4 5*&0, *$4 6&728, -$ 9%: ;.&8 5-0(

!"#$%& (")*&+,+ -. /0# !*#1/$,.,1)/,-" -. 2--3 4)$/+ )"3 5$617+ ," 8#9 :-$7 4,/& ;
















































Considering the analysis focused on electricity, equipment powered by propane gas was
excluded. Examples of such equipment include but are not limited to griddles, deep fryers
and coffee makers. The exclusion enables a pilot to be implemented at a minimum cost to
the vendors since they would not be required to replace or purchase new equipment.
The scope of this investigation did not include conducting a full economic analysis (the cost
of implementation are unknown at this stage) or determining the logistics of how to plug
generators into circuits (e.g. distance, tripping hazards, preventing unauthorized use).
Particulate matter (PM) was excluded, as most generators observed did not run on diesel.
Methodology:
A combination of inputs informed the energy analysis: on-site information gathering of the
energy profiles of equipment used by volunteering vendors, interviews with owners and
operators, an interview with one food truck builder, records of fuel consumption, generator
specification sheets, EPA regulations, The Inventory of New York City Greenhouse Gas
Emissions, and regional grid and gasoline prices.
Generator size and energy intensity of the electrical equipment they power varies depending
on food type and cart or truck size. A wide array of electrical equipment was observed on
the carts or trucks studied and through observations of other vendors. The most commonly
used equipment included lights, water pumps/heaters and refrigerators. Additional
equipment types regularly encountered were freezers, speakers and vents (passive vents
are another popular option). As noted with Kelvin, vendors of frozen treats (especially
unpackaged treats), require much more electricity than others.
An interview of Jay Celona, the Director of Engineering and Design at Custom Mobile Food
Equipment, helped inform this study!s early stages. Mr. Celona!s experience matching
generator size with electricity needs provided background information of how vendors outfit
their vehicles. Similarly, consultations with two electrical engineers validated early findings.
Generator size became the driver for choosing vendors to help with this study. Because
Honda was by far the most common make of generator encountered (see the Canvassing
section), specifications on Honda!s website were used to determine FLA and run load amps
(RLA) of generator sizes ranging from 2,000 to 6,500 watts. Both Wafels & Dinges and
FoodFreaks! operate Honda generators, so those specifications were used for the 6,500-
watt and 3,000-watt calculations and Cummins specifications were used for the 7,000-watt
generator used by the Cinnamon Snail.
Honda specifications were compared to those of other manufacturers as part of the process
for choosing a primary source for average generator performance (most manufacturers
produce equivalent sized generators up to 7,000 watts). Performance in terms of amps and
kWh were similar across manufacturers.
On-site visits were arranged during convenient times for vendors. These visits involved
inspecting generators, assessing onboard electrical equipment, reading faceplates of
electrical equipment, and interviewing operators about equipment usage (how often, hours
of operation, etc.) and generator maintenance schedule. The maintenance schedule

















































was discussed because regularly maintained equipment (oil and filter changes) operates
more efficiently.
Measuring actual energy usage began with asking owners or managers to save receipts
when filling up their generators. Some trucks have a shared fuel tank to operate both the
truck engine and the generator. In such instances, it!s necessary to isolate gasoline usage
to move the truck versus to power the generator. A start and end odometer reading were
taken to coincide with the period of receipt tracking to calculate average daily mileage.
Multiplying the vehicle!s estimated miles per gallon by the total miles travelled created an
estimate for the fuel used for travel that could be subtracted from the total. The remaining
usage was assumed to be for the generator.
Manufacturer specifications were used as the starting point to analyze generators of
participating vendors. Specifications such as tank size were combined with the number of
tank fill-ups, gallons purchased and both days and hours of operation. Other specifications
such as output in kW were employed to estimate the electricity or kWh equivalent produced
by each generator if it were to run on grid power rather than gasoline.
Figures from The Inventory of New York City Greenhouse Gas Emissions were used to
determine pollutants and greenhouse gas emissions for the different power sources (kWh
from the regional grid versus gasoline). NO
x
emissions were calculated by using the
emission profiles of the NYC region electricity providers. The analysis required a conversion
of energy used per day by the gasoline generators into an equivalent amount of kWh.
Generally accepted standards (e.g. The Inventory of New York City Greenhouse Gas
Emissions) allowed us to use pounds (lbs) of CO
2
per kWh to calculate the equivalent CO
2
emissions scenario if each volunteer vendor were to use grid-generated electricity instead of
gasoline to fuel their generators. Similarly, gallons actually consumed by the generators
studied and the lbs of CO
2
per gallon gasoline and diesel were used to calculate the
associated amount of CO
2
emissions for each vendor.
Data from the canvassing of vendors (see pages 5-7) were used to project emissions for the
universe of all mobile food vendors. It was estimated that roughly 1,700 - 2,000 of the 3,000
permitted vendors have generators. This range was calculated by multiplying the 61% of
vendors in the sample of 150 vendors that had generators by 3,000. A certain amount of
error was assumed, hence the range. The percentage of all vendors that operate carts was
assumed to vary from 85% to 93%, based on the proportion in the sample comprised of
carts (89% +/- 5% error). The median generator size for the sample set could be as much as
10% higher or lower than the entire population. To calculate emissions based on generator
size, manufacturer specifications for the generators in our sample were applied to the daily
duration of operation (8-13 hours based on information gathered from and about vendors).
Grid electricity emissions were subtracted from the equivalent gasoline-based emissions to
calculate emissions avoided (based on NYC!s Carbon Inventory). Lastly, data from
NYSERDA was employed for regional gasoline prices and data from U.S. Bureau of Labor
Statistics (BLS) was utilized for regional electricity prices. A 12-month average was applied
to pricing to account for market fluctuations.
!" $%&'() *%+,)-.- /0 12& $,&31'.0.3+1./% /0 4//5 6+'1- +%5 7'839- .% :&; </'9 6.1)














































Energy Usage:
During on-site visits to participating vendors, faceplate data from the electrical equipment
(freezers, refrigerators, lights, microwaves, etc.) was recorded. The sum of full load amps
for each piece of equipment was immediately identified to exceed the amp capacity of the
generator. This realization that some or all equipment ran at less than FLA led to the
analysis of actual fuel consumption to estimate the electricity needs of each generator on an
average day.
The simplest way to measure energy consumed by the generators studied was to have
each vendor collect fuel receipts over a minimum of two weeks. Knowing the number of
days in the period and the amount of fuel consumed enabled the calculation of average
gallons used per day. A schedule of vendors!daily operations was created relying first on
Facebook page updates and then using email if a question arose.
Contextual information such as average hours of operation per day and days per week were
applied to gallons per day to derive the equivalent kWh per day based on the energy
intensity of gasoline vs. the NY regional grid. Figure 4 below shows the equivalent kWh
used for the vendors studied. As expected, FoodFreaks!, with the smallest generator (3,000
watts) and least electrical equipment used the least electricity.
To put this in context, 32 kWh is enough to power an iPad for nearly 3 years.
1
The division of kWh by the average daily hours of operation provides an estimate for
average kilowatts, or kW. When converting kW into amps for the three vendors (applying the
proper current and voltage), the average amp draw from the largest generator (7,000 watts)
was estimated at 33. This suggests that generators larger than 5,000 watts may be able to
participate in a pilot or scaled program. Inclusion should be conditional upon the equipment
onboard and its use. Further study would be needed to make this determination.
!"#$%& () "#$%&$#'()*+ ,#+-. )* .#'# %)$$-%'-. /0)1 2-*.)0+
1
iPad energy usage is derived from an Electric Power Research Institute study that charged an iPad every other day for a year
!"#$%
'#("
!$#)*
!"!!
$"!!
%!"!!
%$"!!
&!"!!
&$"!!
'!"!!
'$"!!
+,-./01234 567 -829 :2; 90<
()*+,- . /012+-
344536+)7-8
9011):41 ;1)0,
!"#$%& (")*&+,+ -. /0# !*#1/$,.,1)/,-" -. 2--3 4)$/+ )"3 5$617+ ," 8#9 :-$7 4,/& ;;


























Economics:
Based on 12 months of utility and fuel prices (through June 2012), on a per-unit basis, a
gallon of gasoline or diesel is considerably more expensive than a kilowatt hour (kWh).
Since the generators studied and observed were almost entirely fueled by gasoline, this
section of the analysis was limited to comparing gasoline to kWh.
Equating gasoline to kWh is not a 1-to-1 comparison. As illustrated in Table 2 below,
depending on generator size (3,000, 6,500 and 7,000, respectively in the table), a gallon of
gasoline produces the same amount of energy as nearly 6 kWh of electricity.
When the cost of 1 gallon of gasoline is compared to the cost of its electricity unit-equivalent
of nearly 6 kWh, vendors could save almost 70% by switching to grid power instead of
gasoline (Table 2).
An estimation of the average daily, weekly, monthly, and annual savings for each vendor
was based on estimated hours of operations and days of operation per year. The projected
annual savings are listed in Table 3. These figures represent the best estimates given
accuracy of data available, particularly the hours of operation throughout the year. In
addition, the estimated savings do not account for any service charges the City could chose
to apply.
!"#$% '( "#$%&'( )#*)+*#,%-&( .#(/0 -& )-(,
#&#*1(%( #&0 0#,# )-**/),/0 23-4 $/&0-3(
!"#$% )( 5-(, #&#*1(%( -2 /6+%$#*/&, #4-+&,( -2 '#(-*%&/ #&0 789: ;3%)%&' 23-4 <=">?@A #&0 BC"C D+3/#+ -2
E#.-3 ",#,%(,%)(
! #$ %&'#()** +#,-
).)&')/'0 10- 2)''#3 #$
2)4#'&30
5#4* #$
).)&')/'0
%&'#()** +#,-4
10- 2)' 2)4#'&30
5#4* #$ 6 2)'
2)4#'&30
5#4* 4).&324
#$ 4(&*7+&32
$-#8 2)4#'&30
*# 2-&9 1#(0-
:##9:-0)%4; <=>? 6=6< @ ?=AA @ ABC
D)$0'4 E F&3204 <=GH 6=6I @ ?=AA @ A>C
5&33)8#3 J3)&' <=GH 6=6I @ ?=AA @ A>C
!""#$% '$()"*' *+),
-(.+ *$'-%)".
/--,/+.$0'1 23444 5
6$7.%' 8 9)"*.' :3;44 5
<)""$=-" >"$)% :3244 5
!" $%&'() *%+,)-.- /0 12& $,&31'.0.3+1./% /0 4//5 6+'1- +%5 7'839- .% :&; </'9 6.1)



























Pollution Analysis
On a per unit basis, running electrical equipment on grid power has significantly less
emissions than using either gasoline or diesel generators. This section compares CO
2
, and
NO
x
generated by the three different power sources on a per-unit and annualized basis. The
graphs illustrate the difference between sources and the benefits of running electrical
equipment from the grid vs. generators. Emission factors were sourced from The Inventory
of New York City Greenhouse Gas Emissions.
CO
2
:
Pounds of CO
2
emitted per-unit of fuel consumed was analyzed first in order to arrive at the
amount emitted by a specific vendor. Per-unit CO
2
emission figures for a gallon of gasoline
or diesel were applied to each vendor!s actual energy consumption and average daily hours
of operation (adjustments were made for generator efficiency). CO
2
was then calculated for
the amount of kWh required to supply the same amount of energy from the grid that the
participating vendors consumed when burning gasoline in their generators.
Figure 5 displays the annualized CO
2
emissions for the participating vendors. These
projected numbers are important to consider because they apply the average daily gallons
of gasoline consumed, and the diesel and kWh equivalents specifically calculated for each
vendor and their generator. Consumption is the driver of emissions. Figure 5 illustrates this
finding with the larger 7,000-watt generator of The Cinnamon Snail emitting less CO
2
than
the smaller 6,500-watt generator operated by Wafels & Dinges.
Under a pilot scenario, these yearly per-vendor projections would multiply depending on the
number of vendors and the size and usage of their generators.
!"#$%& () "#$%&'(&) *++,*- &./00/$+0 12 0$,#'&3 4*(* 5#$. .*+,5*'(,#&# 06&'/5/'*(/$+ 07&&(08
'$--&'(&) 5#$. 9&+)$#08 &+&#:2 '$+0,.6(/$+ '*-',-*(/$+0 *+) ;7& <+9&+($#2 $5 =&> ?$#@ A/(2
B#&&+7$,0& B*0C./00/$+0
"#$%&
'#()%
)#*""
'#'""
&*#")%
&$#('&
'#$&%
+)#+(*
&&#)&,
-
"*#***
,*#***
+*#***
&*#***
$*#***
.
/
0
1
2
3
4
1
4
2
5


6
7
8
9
/
4
:
0


;
4
0
8
0
/

.
/
0
1
2
3
4
1
4
2
5


6
7
8
9
/
4
:
0


;
4
0
8
0
/

.
/
0
1
2
3
4
1
4
2
5


6
7
8
9
/
4
:
0


;
4
0
8
0
/

<=, .>48849:8 ?/@8AB C03 D073 C03 E0:F93
G99FG307H8I
+#*** J7K 60:037293
J7L0/8 M ;4:N08
%#$** J7K 60:037293
OP0 <4::7>9: Q:74/
'#*** J7K 60:037293
!"#$%& (")*&+,+ -. /0# !*#1/$,.,1)/,-" -. 2--3 4)$/+ )"3 5$617+ ," 8#9 :-$7 4,/& ;<



























So what does this mean? If electricity replaced gasoline as the power source for generators
in all permitted generator-using food carts and trucks in New York City, between 8,000 tons
to 20,000 tons of annual CO
2
emissions could be avoided. The wide range was calculated
based on low and high projection scenarios based on the sample. Determining factors are
the actual number of generators and their size. The equivalents of avoided annual
emissions are stopping use of 40-100 railcars of coal, or taking 2,000 to 3,500 cars off the
road.
NO
x
:
Analysis of NO
x
emissions followed the same approach explained in the first paragraph of
the section on CO
2
.
Figure 6 displays the annualized NO
x
emissions per vendor, projected in the same
methodology as CO
2
. As with CO
2
consumption is the driver of NO
x
emissions. Figure 6
illustrates this finding with the larger 7,000-watt generator of The Cinnamon Snail emitting
less NO
x
than the smaller 6,500-watt generator operated by Wafels & Dinges.
According to the EPA, a typical passenger car emits 38.2 lbs. (or 17.3 kg) of NO
x
annually.
Thus we calculate that a 6,500 or 7,000-watt generator consuming energy near the levels of
Wafels & Dinges and The Cinnamon Snail emit approximately 7.5 cars worth of NO
x
annually.
Given the distribution of generator sizes uncovered in the canvass sample, the projection of
NO
x
reduction to the universe of permitted mobile food vendors assumed to use a generator
would yield the avoided emissions equivalent to taking between 9,500 and 11,100 cars off
the road for a year.
!"#$%& () "#$%&'(&) *++,*- &./00/$+0 12 0$,#'&3 4*(* 5#$. .*+,5*'(,#&# 06&'/5/'*(/$+ 07&&(08
'$--&'(&) 5#$. 9&+)$#08 &+&#:2 '$+0,.6(/$+ '*-',-*(/$+0 *+) ;7& <+9&+($#2 $5 =&> ?$#@ A/(2
B#&&+7$,0& B*0C./00/$+0
!"!!#$
&'()&*
#+(,''
!"!!$)
#&)(-,#
,,(!-)
!"!!$!
#)$(,&'
,-(#+&
!
'!(!!!
#!!(!!!
#'!(!!!
.
/
0
1
2
3
4
1
4
2
5


6
7
8
9
/
4
:
0

;
4
0
8
0
/

.
/
0
1
2
3
4
1
4
2
5


6
7
8
9
/
4
:
0

;
4
0
8
0
/

.
/
0
1
2
3
4
1
4
2
5


6
7
8
9
/
4
:
0

;
4
0
8
0
/

<=> .?48849:8 @A37?8B C03 D073 C03 E0:F93
G99FG307H8I
&(!!! J7K 60:037293
J7L0/8 M ;4:A08
-('!! J7K 60:037293
NO0 P4::7?9: Q:74/
+(!!! J7K 60:037293
!" $%&'() *%+,)-.- /0 12& $,&31'.0.3+1./% /0 4//5 6+'1- +%5 7'839- .% :&; </'9 6.1)












































Discussion
Food for Thought:
Considering most vendors operate food carts with small generators, the City should have
enough existing electrical capacity to provide grid power to most of these vendors.
Therefore, designing an electrification pilot project for just food carts would be the simplest
path forward, but would not be comprehensive. Trucks' needs may be harder to meet, but
for precisely that reason they offer the most potential. They are the biggest energy users,
and switching them to grid power would have the biggest benefits on a per-unit basis.
The calculations suggest that the trucks studied with 6,500- and 7,000-watt generators may
be capable of operating below the 40 amp cut-off criteria. Tis report illustrates that both
energy consumption and generator size should determine if a vendor makes the cut-off.
Power use surges that can occur when equipment is turned on could be tested in a pilot by
measuring actual, real-time power needs using an industrial grade energy measurement
and data logging device. If the City decides to pursue a pilot, it would afford a testing period
to determine how well trucks with different generator sizes and energy needs operate on
grid power to evaluate the options for including trucks should such an initiative be scaled-up.
A pilot should require zero modification for vendors, just a 3-phase extension cord. It should
also be made clear that electricity access is a benefit and not a right. Vendors that benefit
from grid power in the future should always be ready to use their generators in case an
outlet is unavailable.
The key challenges to execute a pilot or scale a program will be operational and economic.
Operational challenges are beyond the scope of this study. The potential economic
challenges we mention refer to the cost to set up and execute the pilot. The City is
investigating these costs.
Suggestions for Further Study:
Spending the past several months paying close attention to food carts and trucks whether
through study data, vendor social media feeds, or through observation, a number of issues
stood out that the City should contemplate when considering next steps.
The most critical next step is to map out the operational and logistical challenges, as well as
costs of planning and executing a pilot program. Special attention should be given to safety
and simplicity. Safety relates to multiple aspects of executing a pilot such as how
pedestrians will interact with infrastructure and power cords. Simplicity of pilot design and
execution is key to achieving a successful outcome. To ensure economic viability, design
should ensure a high utilization rate of any hardware that would need to be installed.
Logistics will require in-depth research, analysis and planning. While carts typically remain
in one location during the day, trucks move throughout the day. Trucks also tend to vend
from different neighborhoods throughout the week. Grid access points would have to be
located in areas with heavy foot traffic for both lunch and dinner. While carts may find such
!"#$%& (")*&+,+ -. /0# !*#1/$,.,1)/,-" -. 2--3 4)$/+ )"3 5$617+ ," 8#9 :-$7 4,/& ;<















































access highly attractive given their stationary nature, trucks may opt to participate part-time.
If grid access is placed strategically in busy areas, then perhaps a number of trucks could
share these access points on designated days. Furthermore, contention over food truck
parking would have to be factored into any pilot study involving trucks. In addition to the
challenges vendors described and Tweeted about in finding a large enough parking space,
they also vie with one another for prime vending spots.
Tim Rich, a researcher at Columbia University, conducted a study concurrent with ours that
examined the movement of food trucks. Food trucks are much more nomadic than carts,
moving from one to several times per day. Mr. Rich mapped the movement of a dozen
trucks by mining data from their Twitter feeds. One of his maps is in Appendix B.
Expanding the study of food truck movement and including feedback and context from the
vendors themselves could uncover helpful information derived from patterns in food truck
locations. The understandings gained from researching the conditions that dictate
movement and the temporary site selection process of food trucks could provide New York
City with actionable metrics to inform its pilot and better assess this increasingly popular
segment of mobile vendors.
Locating grid access points in prime vending locations makes sense because the vendors
are already there. A true test of any such pilot will be how grid access is granted. Will an
equitable process be instituted? How much input will be solicited from vendors? Vendors
who are granted access may be perceived by the public as “greener” than others, potentially
giving them an advantage in image and marketing. The process should be designed to be
as fair and transparent as possible.
Tracking vendor power use in terms of duration, quantity consumed and location will be an
essential component not only for billing vendors, but also for analyzing the interplay
between power supply and demand.
Our final suggestion is for the City to pursue a cost effective way to support the operational
feasibility study. This could be achieved by approaching relevant graduate programs (i.e.
civil or electrical engineering) at local universities to offer this as a capstone project. Most
graduate programs require some form of semester-long, challenging team project for degree
completion. New York offers a rich pool of talent that could provide such pro-bono service to
the City.
Conclusion:
The combination of in-depth analysis of energy usage along with results from a high-level,
broader canvass indicates the potential size for electrification is substantial. The analysis of
energy use and emissions demonstrate that per-unit pollution reductions would be
significant. Reducing local emissions in particular embodies the spirit of PlaNYC. For
vendors, the costs of gasoline are high and variable. Providing grid power would establish
more stable and attractive energy pricing for the vendors.
Electrification of food cars and trucks is an exciting opportunity for the City to engage small
businesses and offer them a way to operate in a more cost-effective and environmentally
responsible manner.
!" $%&'() *%+,)-.- /0 12& $,&31'.0.3+1./% /0 4//5 6+'1- +%5 7'839- .% :&; </'9 6.1)
























Acknowledgements
Many people graciously volunteered their time and expertise to make this study a reality. We
thank you.
Food vendors: Thomas DeGeest, Steve Lipschutz and the truck staff at Wafels & Dinges;
Alex at Kelvin Slush; John at FoodFreaks!; and Adam Sobel, Shawn and the rest of the crew
at The Cinnamon Snail.
Consultants: Ryan Meinke, independent senior sustainability consultant, for projecting CO
2
for the vendor universe; Tim Rich, M.A. for sharing his map of food truck movement based
on Twitter feeds.
Truck Expertise: Jay Celona, the Director of Engineering and Design from Custom Sales
and Service Inc.
Interns: Lauren Singer for creating the maps on page 11 and for helping design and test the
canvassing approach; and the canvassers Jonathan Aisenberg, Jack Oliphant, Taylor
Palmer, Tatiana Hyman, Rachel Adams.
Electrical engineers: Jochen Spengler and Reza Yazdani
!"#$%& (")*&+,+ -. /0# !*#1/$,.,1)/,-" -. 2--3 4)$/+ )"3 5$617+ ," 8#9 :-$7 4,/& ;<


































odelid=EU6500ISAN&modelid=EM5000ISAN
l >223cc)
Sources
Emissions:
Þlan?C, lnvenLory of new ?ork ClLy Creenhouse Cas Lmlsslons (SepL 2011)
http://nytelecom.vo.llnwd.net/o15/agencies/planyc2030/pdf/greenhousegas_2011.pdf
LnvlronmenLal ÞroLecLlon Agency
http://www.epa.gov/cleanenergy/energy-resources/refs.html
http://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100CZFN.PDF
http://www.epa.gov/oms/consumer/f00013.pdf
http://web.archive.org/web/20080716063437/http://www.epa.gov/air/urbanair/nox/noxfldr.pdf
Economic:
u.S. 8ureau of Labor SLaLlsLlcs, LlecLrlclLy prlces
http://www.bls.gov/ro2/avgengny.htm
n?SL8uA, Casollne prlces
http://www.nyserda.ny.gov/Page-Sections/Energy-Prices-Supplies-and-Weather-Data/Motor-
Gasoline/
n?SL8uA, ulesel Þrlces
http://www.nyserda.ny.gov/Page-Sections/Energy-Prices-Supplies-and-Weather-Data/On-
Highway-Diesel/

Generator Specifications:
Ponda
http://powerequipment.honda.com/generators/compare/?modelid=EU2000IKN&modelid=EU3000ISAN&m
Cummlns
http://www.cumminsonan.com/www/html/Common/pdf/specsheets/a-1443.pdf
Regulations:
LnvlronmenLal ÞroLecLlon Agency, 8egulaLlons for nonroad ulesel Lnglnes (kW < 8, hp < 11)
http://www.dieselnet.com/standards/us/nonroad.php
LnvlronmenLal ÞroLecLlon Agency, 8egulaLlons for nonroad Lnglnes (kW < 19, hp < 23) (Class l <223cc, Class l
http://www.epa.gov/ttn/atw/area/fr18ja08.pdf
http://www.gpo.gov/fdsys/pkg/FR-2008-10-08/pdf/E8-
21093.pdf
http://www.epa.gov/otaq/equip-ld.htm

Other:
LlecLrlc Þower 8esearch lnsLlLuLe, Charglng an lÞad for a year
hLLp://my.eprl.com/porLal/server.pL/gaLeway/Þ1A8CS_0_243332_317_203_776_43/hLLp°38/usp
alecp604°387087/publlshedconLenL/publlsh/eprl_calculaLes_annual_cosL_of_charglng_an_lpad_a
L__1_36_da_833261.hLml
n?C lood 1ruck MovemenL - 1wlLLer mapplng
* 8eporL belng compleLed wlLh expecLed 2012 submlsslon Lo Lhe Mayor's Cfflce of Lhe ClLy of new
?ork
!" $%&'() *%+,)-.- /0 12& $,&31'.0.3+1./% /0 4//5 6+'1- +%5 7'839- .% :&; </'9 6.1)












Appendices
Appendix A:
Emission tables comparing the three generators per unit, month and year
Appendix B:
Map of food truck movement
!"#$%& (")*&+,+ -. /0# !*#1/$,.,1)/,-" -. 2--3 4)$/+ )"3 5$617+ ," 8#9 :-$7 4,/& ;<






6/'7 8'*6 9.3 8:./;*)& !"
#
,-*..*/). 012.34 %
5/'6 7'*5 8.9 72./:*)& !"
#
,-*..*/). 01'2-.3 %
!""# !%&'() * +,--- .'// 0&1&%'/"%
2'3&4) 5 6710&) * 8,9-- .'// 0&1&%'/"%
:711';"1 <1'74 * =,--- .'// 0&1&%'/"%
!"#$% '( "#$%&'(&) *+, &-.//.$0 1.23#&/ 45 6&0)$# /$3#'&7 89(9 1#$- -90319'(3#&#
/:&'.1.'9(.$0 /;&&(/< '$==&'(&) 1#$- 6&0)$#/< '9='3=9(.$0/ 90) >;& ?06&0($#5 $1 @&A
B$#C *.(5 D#&&0;$3/& D9/E-.//.$0/
Appendix A: Comparison of the three generators studied with estimated per-
unit, monthly and annual emissions
Source unit
!"
#
%&' ()*+
!"#$%&'$'%( )*+ ,-..
0123"'4# 01""34 56-.7
8'#2#" 01""34 99-::
!"#$%&'$'%( )*+ ,-..
0123"'4# 01""34 56-.7
8'#2#" 01""34 99-::
!"#$%&'$'%( )*+ ,-..
0123"'4# 01""34 56-.7
8'#2#" 01""34 99-::
!"
#
,-*..*/). 012.34 %&' 5&)
Monthly Yearly
5;,-96 5<=.:
.=7-67 7<>6.
7=,-65 6<,55
.:9-.9 7<755
;<;:6-.: :,<56.
;<>99->, :=<>7:
.9>->; 7<=:.
;<9>5-.: ;6<;>,
;<7:=-56 ::<6:9
&' 5&)6/'7 8'*6 9.3 8:./;*)&
!""# !%&'() * +,--- .'// 0&1&%'/"%
2'3&4) 5 6710&) * 8,9-- .'// 0&1&%'/"%
:711';"1 <1'74 * =,--- .'// 0&1&%'/"%
!"
#
,-*..*/). 01'2-.3 %&' 4&) &' 4&)5/'6 7'*5 8.9 72./:*)&
Source unit !"
#
%&' ()*+ Monthly Yearly
!"#$%&'$'%( )*+ ,-,,,,,,./ ,-,,,59 ,-,,5;
0123"'4# 01""34 56-/, <=;:>-59 :9=<:6
8'#2#" 01""34 .-9, 5=6/.-;5 5.=/99
!"#$%&'$'%( )*+ ,-,,,,,,./ ,-,,,.> ,-,,;<
0123"'4# 01""34 55-:, 55=,9>-.< 5:<=>/5
8'#2#" 01""34 .-9, .=::/-9: //=,><
!"#$%&'$'%( )*+ ,-,,,,,,./ ,-,,,.9 ,-,,;,
0123"'4# 01""34 55-:, 5,=/5;-99 5<;=/:9
8'#2#" 01""34 .-9, .=5/5-55 />=5.:
!" $%&'() *%+,)-.- /0 12& $,&31'.0.3+1./% /0 4//5 6+'1- +%5 7'839- .% :&; </'9 6.1)

!"#$% )( "#$%&'(&) @+F &-.//.$0 1.23#&/ 45 6&0)$# /$3#'&7 89(9 1#$- -90319'(3#&#
/:&'.1.'9(.$0 /;&&(/< '$==&'(&) 1#$- 6&0)$#/< '9='3=9(.$0/ 90) >;& ?06&0($#5 $1 @&A
B$#C *.(5 D#&&0;$3/& D9/E-.//.$0/







Appendix B: Food trucks can have heavy migration patterns, requiring more
access points or more limited participation than carts. Figure 7 shows the
movement of 12 trucks based on two weeks of each vendors! Twitter feeds.
Truck Movement Diagram
0 0.250.5 1 1.5 2
Miles
Truck Connections
Twitter Targeted Food Trucks
Andy's_Italian_Ices
Big_Gay_Ice_Cream
FF_Grilled_Cheese
Gorilla_Cheese_NYC
Korilla_BBQ
Mexicue
NYC_Food_Truck_Assoc
Palenque
TheTreatsTruck
The_Cinnamon_Snail
The_Taco_Truck
WFC_Food_Trucks
!
!
!"#$%& (
"#$%&'( )*+ ,*&- ./0/1 .23 4'5'%26'7 8%#+ 9'57#%:; )<*66'% 8''7:

!"#$%& (")*&+,+ -. /0# !*#1/$,.,1)/,-" -. 2--3 4)$/+ )"3 5$617+ ," 8#9 :-$7 4,/& ;<




"##$%&'+ - 9&((&.$ :-#';3&' <#(.23'#(


!""#$%&= 4>? @3../ ./ 9&((&.$ :-#';3&' A2( BC#-;#3 !%6#3;&(#D#$;


93


!""#$%&= 4>E B#-#'; !3;&'-#( /3.D F2+$# <#+%# 4+D"+&1$

93

96



97


!""#$%&= 4>G B'3##$ BC.; ./ HI4J1.6K%3&6##-#';3&'


98



!""#$%&= 4>L 9&((&.$ :-#';3&' M$&;&+- 7&(&.$&$1
./'0'%12 3')'4%'%0 54/ 6'))'4% 72$(8/'(9 :8'2';$& $+1<#2$) 45 '%8$/1(8'3$ 1%& $%010'%0 #=>2'( (/4?&
)4=/('%0 )'8$)9
99
12/23/12
1










The Crisis
What is a 21
st
Century Movement?
A New Narrative
The Launch
The Campaigns
Organizational Structure
Movement Budget
Fundraising
Next Steps
Appendices



Table of
Contents











EV VISIONING
INNOVATIVE PUBLIC ENGAGEMENT ON ELECTRIC
VEHICLES IN PHILADELPHIA, BOSTON, AND NEW
YORK CITY
Clean Cities | NYC | BOS | PHL | PURPOSE | |
OpenPlans
February 10, 2012
Table of
Contents
3:30-3:40 Introductions
3:40-3:55 Goals & context
3:55-4:25 Strategic & logistical questions
4:25-5:05 Campaign ideation
5:05-5:25 Concept development
5:25-5:30 Wrap up
12/23/12
2
Table of
Contents The Crisis
What is a 21
st
Century Movement?
A New Narrative
The Launch
The Campaigns
Organizational Structure
Movement Budget
Fundraising
Next Steps
Appendices



6











Table of
Contents The Crisis
What is a 21
st
Century Movement?
A New Narrative
The Launch
The Campaigns
Organizational Structure
Movement Budget
Fundraising
Next Steps
Appendices



6












Table of
Contents
1
Introductions
Goals & context
Strategic & logistical questions
Campaign ideation
Concept development
Wrap up
3:30-3:40
3:40-3:55
3:55-4:25
4:25-5:05
5:05-5:25
5:25-5:30
Table of
Contents
2
Introductions
Goals & context
Strategic & logistical questions
Campaign ideation
Concept development
Wrap up
3:30-3:40
3:40-3:55
3:55-4:25
4:25-5:05
5:05-5:25
5:25-5:30
12/23/12
3




Goals for today
! Team building
! Project briefing
! Discuss strategic and logistical questions
! Identify 3 top campaign concepts
12/23/12
4
What are other EV Readiness initiatives doing?
12/23/12
5
12/23/12
6
12/23/12
7


What are the most innovative EV projects that
engage consumers?
12/23/12
8
12/23/12
9
12/23/12
10


What are the most inspiring, relevant public
engagement initiatives?
12/23/12
11
12/23/12
12
12/23/12
13
12/23/12
14
Table of
Contents The Crisis
What is a 21
st
Century Movement?
A New Narrative
The Launch
The Campaigns
Organizational Structure
Movement Budget
Fundraising
Next Steps
Appendices



6
Table of
Contents
3
Introductions
Goals & context
Strategic & logistical questions
Campaign ideation
Concept development
Wrap up
3:30-3:40
3:40-3:55
3:55-4:25
4:25-5:05
5:05-5:25
5:25-5:30
12/23/12
15
Project Strategy
1. What are your guardrails and constraints for the tone and transparency of this
campaign?

2. What are the goals of this project, beyond making the city more 'EV Ready'?

3. How would you measure the success of this project? More specifically, what are the
performance measures for your department? How will this project’s success be
assessed by stakeholders in your city?

4. How does this project fit in relation other initiatives (e.g. Bike Share)? Are there
opportunities to integrate efforts? How does this project fit the City’s thinking on a
more diverse portfolio of sustainable transportation options?
Project
Logistics
1. What resources and capacity does each city bring to this project?

2. What is the relationship between the site and the three different cities?
3. What staff will be maintaining the project throughout its development? What will
their roles be?
4. What are the options for “graceful exit scenarios” after the project duration has
finished? Would a new entity be created to host this campaign & community,
would an existing organization take on this responsibility, and/or other?
5. What are the potential staffing options for the future maintenance of this project?
For example, who could manage social media communications?

6. Is there an opportunity / appetite to create a community of interested citizens,
meaning that the project will have an email list for ongoing communication,
surveys, and announcements?
12/23/12
16
Campaign
Development
Campaign criteria:
What does a
successful campaign
look like?
MUST HAVE

1. Educate people about Evs
2. Feedback that people have been
heard
3. Artifact of peoples’ involvement
4. Sustained engagement
5. Credible theory of change
6. Cool factor
7. Easily shareable with other
people


NICE TO HAVE

1. Digitally interactive

2. Social
3. Build the list
4. Be in some way applicable to
other cities/modular
5. Engage other industries
6. Enable consumer activism
7. Rewarding other EV
supporters/users
8. Catalyze investment
Table of
Contents The Crisis
What is a 21
st
Century Movement?
A New Narrative
The Launch
The Campaigns
Organizational Structure
Movement Budget
Fundraising
Next Steps
Appendices



6
Table of
Contents
4
Introductions
Goals & context
Strategic & logistical questions
Campaign ideation
Concept development
Wrap up
3:30-3:40
3:40-3:55
3:55-4:25
4:25-5:05
5:05-5:25
5:25-5:30
12/23/12
17
First, let’s get our existing ideas out on the table.
34
! Early buyers
! City fleet representatives
! EV clubs
! GM, Tesla and Nissan dealers
! Museums
! Car-sharing programs
! Policy-makers in other
departments
! Food Truck operators
! Private fleet managers
! Local street artists
! Car rental services
! Straphangers
! Celebrities
! Race car drivers
! Taxi drivers
! Bikers
! Energy utilities
What if we had to partner with these stakeholders?
12/23/12
18
35
! What other decisions need to be made in the process of making our cities EV Ready,
such as the location of EV charge spots? Use these decisions as starting points for
ideation.

! What valuable resources do citizens have, like hyper-local knowledge and time? How
can they used within the context of campaigns?

! How can campaigns increase opportunities for citizens to test-drive EVs?

! How can citizens have an 'EV experience' without physically experiencing the car?

! How can campaigns go where people already are, or embed themselves into what
citizens already do?

! How can EV Readiness be integrated with a broader vision for sustainable mobility,
involving public transit, bikes, and other sustainable transportation options? How to
encourage efficient car usage vs. increased car usage?

! How can campaigns appeal to people who don't plan to buy a car, but are interested in
sustainability?
Thought starters
36
Can we create campaigns that also overcome EV Readiness barriers?

! Not enough cars in the pipeline, OEMs need
proof of future consumer demand

! How can we manage this as a multi-sector, city-
wide project?

! How can we bring down upfront costs for
consumers?

! Consumer hesitation at diving into a new
paradigm for mobility

! Red tape around infrastructure installation

! What if these cars exacerbate my peak load?

! Who will pay for infrastructure?
12/23/12
19
Table of
Contents The Crisis
What is a 21
st
Century Movement?
A New Narrative
The Launch
The Campaigns
Organizational Structure
Movement Budget
Fundraising
Next Steps
Appendices



6
Table of
Contents
5
Introductions
Goals & context
Strategic & logistical questions
Campaign ideation
Concept development
Wrap up
3:30-3:40
3:40-3:55
3:55-4:25
4:25-5:05
5:05-5:25
5:25-5:30
38
Concept
Development
Timeline:
What is its timeline and
duration? Can it connect
to already-existing events?
Participation:
Who is most likely to
participate and why?
Elevator pitch:
What does this campaign
do?
Theory of change:
How do participants
actions make their cities
‘EV Ready’?
Goal:
How does this campaign fit
with our campaign criteria?
12/23/12
20
Table of
Contents The Crisis
What is a 21
st
Century Movement?
A New Narrative
The Launch
The Campaigns
Organizational Structure
Movement Budget
Fundraising
Next Steps
Appendices



6
Table of
Contents
6
Introductions
Goals & context
Strategic & logistical questions
Campaign ideation
Concept development
Wrap up
3:30-3:40
3:40-3:55
3:55-4:25
4:25-5:05
5:05-5:25
5:25-5:30
Table of
Contents The Crisis
What is a 21
st
Century Movement?
A New Narrative
The Launch
The Campaigns
Organizational Structure
Movement Budget
Fundraising
Next Steps
Appendices



6
Table of
Contents
7
Introductions
Goals & context
Strategic & logistical questions
Campaign ideation
Concept development
Wrap up
3:30-3:40
3:40-3:55
3:55-4:25
4:25-5:05
5:05-5:25
5:25-5:30
12/23/12
21
Cheers!

"#$
!""#$%&' )*+ ,&--&.$ /0#123&1 435$%&$6 752&.$50#



!"#$% !'('#)
*$+# $%, -.$%,'%/


0120345 6 7$.89 :; <=>>
?$@"# AB !A%(#%()
Meeting Goals
Brand Architecture
Brand Attributes
Name Selection
Visual Branding




7##('%/ C/#%,$
!"#$% '( )'*+%*+, -%%+.*/ 0/%*1"
11
Meeting Goals
Brand Architecture
Brand Attributes
Name Selection
Visual Branding




4
-%%+.*/ 2'"$,
• Establish brand attributes
• Present name selection process and recommended name
• Review recommended visual branding
!"#$% '( )'*+%*+, -%%+.*/ 0/%*1"
22
Meeting Goals
22
Brand Architecture
ttributes
22
election
22
randing
22



6
23045 03)67!8)!938: !;% <'=>'*%*+, '( #?"*1.*/
Name

URL

Tag Line

Iconography
NAME
Tagline in seven words or less
http://url.org
Multiple components collectively communicate the brand

!"#$% '( )'*+%*+, -%%+.*/ 0/%*1"
33
Meeting Goals
33
rchitecture
33
Brand Attributes
election
33
randing
33



8
)'2% 32"*1 0++2.#4+%,
Friendly / Approachable
Techie
Participatory
Local
Trustworthy / Credible
Cool
Thriving / Dynamic
Human
9
!"#$% '()*+,
Irrelevant
Empty / static
Isolated / Disconnected
Clicktivism
Wonky
Sci-fi / Too futuristic
+#-./ 01 20$3/$3, 4//35$6 76/$%#
44
Meeting Goals
44
hitecture
44
ibutes
44
Name Selection
nding
44



11
!"#$ &'(#)*(
a) Core brand attributes (above)
b) Brand DON’Ts (above)
c) Value orientation
d) Word categories
12
+"*)$ ,-($.'"'(,.
The project has a pragmatic orientation towards clean and efficient
transportation, versus an ideological orientation towards “greenness.” When
sustainability and the environment are referred to, it’s within the context of
previously established goals, e.g. the carbon emissions reduction goals of
PlaNYC. We’re upgrading our transportation system with electric vehicles
because it’s the smart thing to do.
13
!"#$ &'()*"#+), -'..#)/+'()$0
Participatory
We
Us
Our
Open
Civic
Citizen
Community
Social
City
Streets
Blocks
Intersection
Green light
Infrastructure
Groundwork
Foundation
Neighborhood
Urban
City
Municipality
Action
Manifest
Actualize
Potential
Capacity
Capacitor
Frontier
Dynamo
Mission
Build
Electrify
14
1"2 3 4'5),
The City Electric

Street Potential

Mission Electric
15
!"# % &'()*
The City Electric – not contemporary enough

Street Potential

Mission Electric
16
!"# % &'()*
The City Electric – not contemporary enough

Street Potential – not straightforward, accessible enough

Mission Electric
17
!"# % &'()*
The City Electric – not contemporary enough

Street Potential – not straightforward, accessible enough

Mission Electric – the winner!
!'+,) "- ."&/)&/* 0))/1&2 32)&4'
55
Meeting Goals
55
Architecture & Objectives
55
Attributes
55
election
55
Visual Branding




!"# %&'())&*+,-.(*
9
1
/0-&#*,-.1& 2
9
2
!"#$%&'#()$ +
9
3
!"#$%&'#()$ ,
9
4

131
!""#$%&= 4>N :=+D"-#( ./ F2+$# <#+%# &$>(;.3# ,3+$%&$1





132
!""#$%&= 4>O <#/#33+- B.23'#( /.3 9&((&.$ :-#';3&'


!""#$%&= 4>P <#'.3% ./ 7.;#( /.3 Q#3;R 9&((&.$ :-#';3&' 4+D"+&1$
!"#$%&"' )*+,$-- *"%+. /+0&.%+,+1 *"%+.
2+,%3 4'&"' 567$,+ 29 16
2+,%3 488+, 9+.% 5&1+ 23 12
2+,%3 9&--&$:.;7,0 20 9
2+,%3 !"'0 <.-$'1 =&%> 14 9
2+,%3 ?&1%"@' A$.% 12 3
2+,%3 488+, A$.% 5&1+ 11 3
2+,%3 B,$:+,#> 11 4
2+,%3 B$,:+'% C&.%,&#% 10 4
D"%$- EFG HI


ulrecL
17°
u8 referral
28°
1wluer
39°
CLher
13°
?&..&"' A-+#%,&# J&.&%",. "' KLII

133
"##$%&'+ @ H#S I.3T 4&;8 H#S A2&-% @+3T&$1 !;;3&,2;#(

!""#$%&= F>? H#S @+3T&$1 B".;( @#3D&;;#% &$ H#S I.3T 4&;8
A*BCDDEFGBCD*CH


!""#$%&= F>E H#S A2&-% @+3T&$1 ,8 0+'&-&;8 *8"#

0
2000
4000
6000
8000
10000
12000
14000
2009 2010 2011 2012
SLaLen lsland
Cueens
Manhauan
8rooklyn
8ronx
average
!
#!
$!
%!
&!
'!
(!
)!
*!
+!
#!!
,-../01234 5/627/8934
:0-8;
:0--<4=8
>38?3@38
AB//86
CD3D/8 E64387
New Build Parking Facilities by Type

134

!""#$%&= F>G @+3T&$1 +( + /2$';&.$ ./ A2&-%&$1 B&R#

!
#
$!
$#
%!
%#
&!
&#
'()*+ '()),-.* /0*1020* 3455*6 78085* 96-0*:
!

#
$

%
&
'
(
)
*
+

,
-
&
.
/
0

-
/
'

1
2
3
2
2
2

0
4

5

%&'()*+ &0 & 67*.8#* #$ 97):;)*+ ,)</
/5:;0*

133
"##$%&'+ 7 0+(; 4C+31&$1 !$+-8(&(

!""#$%&= :>? !-1#,3+&' F#;#3D&$+;&.$ ./ *+=& 0+(; 4C+31&$1 H##%(
5+$."'$- /$'0+ A.%&:$%+.
70 wlnLer range (mlles)
90 summer range (mlles)
100 fall range (mlles)
M$.% =N$,0+ O D&:+ %" =N$,0+ $'1 =N$,0+ =N$,$#%+,&.%&#.
80° amounL of baLLery capaclLy afLer a fasL charge (lf baLLery lnlLlally below 30°)
100° amounL of baLLery capaclLy afLer a fasL charge (lf baLLery lnlLlally above 30°)
120 mlles per shlfL
30 Llme per fasL charge (mlnuLes)
10 Llme Lo geL Lo a fasL charger (mlnuLes)
40 LoLal fasL charglng Llme (mlnuLes)
C$%$ D$;-+ J$,&$;-+.
20° ° aL whlch drlver seeks fasL charge (varlable a)
70 range for daLa Lable (mlles)
PG range (afLer fasL charge, lf sLarLlng charglng above 30°)
QH range (afLer fasL charge)
R "S S$.% #N$,0+. '++1+1
! # $ !% &'()' *+(,-+ .!/% )'!+0-/
1#2 3. .!/% )'!+0-/
(. !456$
7869:6;79!< # 1;5=9!>:6<
1# 7869:6;79!<?5=9:6!
(. !@56$
7869:6;79!< # 1;:69!>:6<
1#7869:6;79!<?:69:6!



136
!""#$%&= :>E 0+(; 4C+31&$1 4.(; :(;&D+;#(

5&:8-&S&+1 C+:$'1 =N$,0+. 8+, M$.% =N$,0+,
n?ÞA ConLd
C+:$'1 =N$,0+. TU9V - Summer non-
Summer
Q $137.10 $108.10 $86.10
EG $314.20 $216.20 $172.20
EQ $471.30 $324.30 $238.30
IG $628.40 $432.40 $344.40
IQ $783.30 $340.30 $430.30
FG $942.60 $648.60 $316.60
FQ $1,099.70 $736.70 $602.70
WG $1,236.80 $864.80 $688.80
WQ $1,413.90 $972.90 $774.90
QG $1,371.00 $1,081.00 $861.00



$(200)
$(100)
$-
$100
$200
$300
$400
$300
0 4 8 12 16 20 24 28 32 36
?"'%N-> /+*+'7+ 8+, R "S M$.% =N$,0+.
LlecLrlc-only CosLs
LlecLrlc & Carage
CpporLunlLy CosLs
LlecLrlc-only, wlLhouL
uemand Charges

137
!""#$%&= :>G 4.$:% A2&-%&$1 0+(; 4C+31# !$+-8(&(
"#$ %&'()*+ ,-, .#-/ )*)0+/-/ &1 23-0,-*4/ 5-.# )..)%#$, %&''$6%-)0 4)6)4$/ .& ,$.$6'-*$ .#$
),,-.-&*)0 %&/. &1 )* 3*'-.-4).$, 1)/. %#)64$67 8. )//3'$/ .#). ) 1)/. %#)64$6 5-00 ),, 9: ;< .&
) 23-0,-*4=/ ,$')*,7 >&5$?$6@ .#$ 23-0,-*4/= %366$*. ,$')*, /344$/./ .#). .#$6$ -/ 6&&' .&
)%%&''&,).$ ) 1)/. %#)64$6 5-.#&3. -*%6$)/-*4 &?$6 0&), .#6&34# .#$ 3/$ &1 0&), /#$,,-*4 &6
6$,3%-*4 ) %#)64$6/ ,$')*, ,36-*4 ($); ($6-&,/7
),&0&'$- X&--
R "S
C$>. C$%+ =)Y5 C+:$'1 X&--
!"$1
M$#%",
29 2/17/2012 1301600 3330 $ 114,822.73 32
1/19/2012

30 9/16/2011 747200 1324 $ 73,632.60 68
8/17/2011


),&0&'$- Z FGGG [9N,. \ QG[9 1+:$'1
R "S
C$>. C$%+ =)Y5 C+:$'1 X&--
!"$1
M$#%",
29 2/17/2012 1304600 3380 $ 113,783.84 32
1/19/2012

30 9/16/2011 730200 1374 $ 73,380.82 66
8/17/2011



138
!""#$%&= :>L HI4 @3."#3;&#( ;C+; -#$% ;C#D(#-6#( ;. /+(; 'C+31&$1
I/4#$/8'$) J&$%8'5'$& >K 8L$ MN- @$#1/8<$%8 45 -'8K?'&$ "&<'%')8/18'3$ O$/3'($) 1) L13'%0
#48$%8'122K 21/0$ 241&) 1%& (4%3$%'$%8 84 '%%$/ (4/$ 8L4/4=0L51/$) P'Q$?')$R 8L$)$ 1/$ )#$('5'(
#/4#$/8'$) 8L18 L13$ 8L$ )#1($ 1%& $2$(8/'(12 (1#1('8K 8L18 2$%& 8L$<)$23$) 84 7S 51)8 (L1/0'%09

DSN¥ - 44]44A Garage (1-1103-44 and 1-1104-1)


DSN¥ -Manhattan 1 Garage (1-S9S-87)

139




N¥ÞD - Þ|er 76 1ow Þound (1-66S-10)



140
!""#$%&= :>U V+-T+,&-&;8J'.D !D#$&;8 F+;+ /.3 4.$:% W.S+$2(
B2,(;+;&.$
"#$ &6-4-*)0 -*.$*. 5)/ .& 3/$ 5)0;)2-0-.+ /%&6$/ .& 136.#$6 6$1-*$ (&.$*.-)0 1)/. %#)64$
0&%).-&*/7 8. .36*/ &3. .#$ 5)0;)2-0-.+ /%&6$/ 5$6$*=. 1-*$A46)-*$, $*&34# .& 6$10$%. .#$
)'$*-.-$/ ) 1)/. %#)64$ 3/$6 '-4#. %)6$ )2&3.7 >&5$?$6 1)/. %#)64$6/ /#&30, /.-00 2$ (0)%$,
5-.# )..$*.-&* .& )'$*-.-$/ /3%# )/ %&11$$ /#&(/ )*, /.&6$/7


4/15/12 Walk Score of 99 27th St Brooklyn NY 11232
1/3 www.walkscore.com/score/99-27th-st-brooklyn-ny-11232
20k Like
Get a Walk Score: Type a neighborhood, city or place Search Search
US New York New York Greenwood
Walk Score
80
Out of 100
Very Walkable
99 27th St Brooklyn NY 11232
Share
Overview More Amenities Your Commute Greenwood
0.01mi
0.06mi
0.05mi
0.04mi
0.18mi
0.37mi
0.81mi
0.34mi
0.46mi
0.46mi
Restaurants
Quik Stop Restauran
Coffee
Dunkin' Donuts
Groceries
Alekwan Court
Shopping
Leaders Inc
Schools
PS 172 Beacon Schoo
Parks
John D'Emic Senior
Books
Brooklyn Comics & M
Bars
Brooklyn Tiki Bar
Entertainment
Brooklyn Museum of
Banking
Ait Trimmings Inc
View more amenities

Excellent Transit
11 nearby routes: 6 bus, 5 rail, 0 other
Public Transportation Public Transportation
Transit Score:
®
80
.15 mi - D 6 Avenue Express .15 mi - N Broadway Express .15 mi - R Broadway Local
.14 mi - B63 5TH AVENUE .44 mi - B70 7TH & 8TH AVS - 39TH STR .59 mi - B35 CHURCH AV & 39TH STREET
Find Apartments in Greenwood, New York.
Search by Walk Score, commute time, or near transit.
Find Apartments in Greenwood, New York Find Apartments in Greenwood, New York
Greenwood, New York, NY Go
Calculates your score using walking routes.
Check out your new score, we'd love your feedback.
Street Smart Walk Score Street Smart Walk Score
Cities & Neighborhoods Apartments & Rentals Why It Matters
Street View...

141
"##$%&'+ T 423,(&%# 4C+31&$1 <#(.23'#(
!""#$%&= 0>? *#'C$.-.18 X";&.$( 0.2$% ,8 4&;8 /.3 423,(&%#
:-#';3&/&'+;&.$
,$24? 1/$ )#$('5'(18'4%) 45 31/'4=) (=/>)'&$ (L1/0$/ =%'8) 54=%& >K 8L$ -'8K 54/ 3$%&4/
$2$(8/'5'(18'4%
Vendor A Vendor 8 (Laton) Vendor C
Authent|cat|on
method
Cred|t card sw|pe ]
kIID
kIID (pre-f|||ed) Ce|| persona| ÞIN number
Automat|c shut
off
- No No, ab|||ty to add |ater
C|rcu|t breaker
|nc|uded |n un|t
¥es ¥es ¥es
Safety features GICI GICI GICI, |nterna| fuse
Commun|cat|on
type
Ce||u|ar or w|f| kIID key, dr|ve by meter
read|ng
ce||u|ar
Interna|
meter|ng
accuracy
- Ut|||ty grade Ut|||ty grade c|ass 2 m|n|mum
comp||ant
User |nterface - kIID key sw|pe to turn on
and off
Ce|| phone] web porta|
Ieatures - Lock|ng prov|s|on to prevent
cordset theft
Support hook to prevent
un|ntent|ona| unp|ug w|th
heav|er LV cordsets
-
D|mens|ons - 10"x10"x26" Approx|mate|y 6.S"x6.S"x3"
(f|na| |nsta||at|on
requ|rements w||| determ|ne
spec|f|c enc|osure used)
Þ|ug |ocat|on Iront S|des Lxterna|, p|aces at |nsta||
bu||d mater|a| Sta|n|ess stee| Þ|ast|c I|berg|ass NLMA4x
UL L|sted No UL° L|sted to UL for LV use Un|t: no, protect|on
components: ¥es
NLMA
cert|f|cat|on
- - NLMA4x enc|osure, p|ugs
dependent on |nsta||


142
!""#$%&= 0>E F#;+&-#% <#(2-;( /3.D 0..% *32'T Y 4+3; 4+$6+(



143
"##$%&'+ U 4+3 BC+3# !$+-8;&'(

!""#$%&= W>? M$/.3D+;&.$ /3.D X3&1&$+- Z&"'+3 F+;+

B)6-)20$/ 8*%03,$, 1&6 $)%# 6$/$6?).-&*7 C&0, 6&5/ ,$*&.$ ?)6-)20$/ .#). )6$ 3/$, -*
/-'30).-&*
VAkIA8LL 1¥ÞL CI VAkIA8LL
lu number
keservat|on ID Number
Anonymlzed name number
Start Date Date & 1|me
Start 1|me Date & 1|me
Lnd Date Date & 1|me
Lnd 1|me Date & 1|me
Cancel uaLe uaLe & 1lme
Swlped ln uaLe uaLe & 1lme
Swlped ln 1lme uaLe & 1lme
Swlped CuL uaLe uaLe & 1lme
Swlped CuL 1lme uaLe & 1lme
MlnuLes LaLe number
1ota| D|stance Number
1oLal Pours number
used Pours number
Cn Pours number
Cff Pours number
1oLal Charge number
LocaLlon name
vehlcle name
vehlcle Make name
vehlcle Model name
2one Name
CÞS Lnabled 8lnary

B$#-%0$/ -* D)6 E#)6$ F6&46)' 5-.# "#$-6 G-0$/ ($6 H)00&*
Manufacturer Mode|
MÞG
(comb|ned) MÞG (c|ty)
lord Lscape 23 21
Ponda lnslghL Pybrld 41 40
Ponda Clvlc Pybrld 42 40
Ponda Clvlc 29 23
Ponda C8-v 24 21
Mazda 3 23 22
Mazda 3 PaLchback 23 22

144
nlssan AlLlma Pybrld 34 33
nlssan SenLra 26 24
Sclon x8 24 22
Sclon xu 29 27
1oyoLa Þrlus 30 31
1oyoLa MaLrlx 22 20
1oyoLa Slenna 19 17
*Lxcludes vehlcles used less Lhan Lwo Llmes
Average mpg 29.30
ABB CD0/ !+- 8676 E3*-B/ .+3E '%%DF??&&&G.H-B-)3I3EJG03,?

143
!""#$%&' )*+ ,'-."/# 01 2-345&$6 !/607&35. 8704#99 : ;#9</39

AcLlve lormulas - vehlcles AcLlve lormulas - 8eservaLlons
vehlcle lu 8ooked? (0=n) Charge Avallable lndex 8eservaLlon lu Charge needed # of perlods
1 1 booked 1 364119209 4.288 11
2 0 18.71199991 2 363801092 10.208 10
3 0 23 3 0 0
4 0 23 4 0 0
3 0 23 3 0 0
6 0 23 6 0 0
7 1 booked 7 0 0
8 0 23 8 0 0
9 0 23 9 0 0
10 0 23 10 0 0
11 0 23 11 0 0
12 1 booked 12 0 0
13 0 0
14 0 0
13 0 0
16 0 0
17 0 0
18 0 0
vehlcle/1r
lp 8eservaLlon lu Charge needed
# of
perlods
checked
ouL
vehlcle
Charge
Avallable
Þrevlously
booked 8ow Car 1 2 3 4 3 6 7 8 9 10 11 12 Lllglble 1 2 3 4 3 6 7 8 9 10 11 12 Car 1rlp Lnd 1rlp SoC 8es LengLh8es lu
1 364119209 4.288 11 1 booked 363801092 64 1 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 1 -
2 363801092 10.208 10 0 18.712 364119209 63 2 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 1 -
3 0 0 0 23 0 66 3 18.7 13 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 1 2 3 -
4 0 0 0 23 0 67 4 18.7 13 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 1 7 3 -
3 0 0 0 23 0 68 3 18.7 13 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 1 3 1 3 2 12.8 10 363801092
6 0 0 0 23 0 69 6 18.7 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 1 1 6 1 18.7 11 364119209
7 0 0 1 booked 364094366 70 7 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 1 -
8 0 0 0 23 0 71 8 18.7 13 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 1 4 4 -
9 0 0 0 23 0 72 9 18.7 13 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 1 8 2 -
10 0 0 0 23 0 73 10 18.7 13 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 1 3 6 -
11 0 0 0 23 0 74 11 18.7 13 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 1 6 7 -
12 0 0 1 booked 363738224 73 12 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 1 -
8eservaLlon 1rlp: Cap Analysls (charge) 8ank Analysls MaLchlng 8esulLs
AcLlve lormulas - vehlcles AcLlve lormulas - 8eservaLlons
vehlcle lu 8ooked? (0=n) Charge Avallable lndex 8eservaLlon lu Charge needed # of perlods
1 1 booked 1 364119209 4.288 11
2 0 18.71199991 2 363801092 10.208 10
3 0 23 3 0 0
4 0 23 4 0 0
3 0 23 3 0 0
6 0 23 6 0 0
7 1 booked 7 0 0
8 0 23 8 0 0
9 0 23 9 0 0
10 0 23 10 0 0
11 0 23 11 0 0
12 1 booked 12 0 0
13 0 0
14 0 0
13 0 0
16 0 0
17 0 0
18 0 0
2 booklngs & Lhelr
requlremenLs
Avallable vehlcles & Lhelr sLaLe
of charge
AlgorlLhm maLches Lrlps Lo
vehlcles

"#$
!""#$%&' ) !"#$ &'#()*+) ,#(#)" -(#*+*+) .#+/#0
%&' ()**)+,-. /0-10* +02 34'05'6 78 9'0/ :&04.,-. 5) ';<*0,- 5) <04=,-. (03,*,58 /0-0.'42 0-6
055'-60-52 &)+ 5) 7'25 <4)>,6' 3&04.,-. 0-6 2'4>' '*'354,3 >'&,3*'2?




0S B0E Clean Cities Community Reauiness anu Planning foi Plug-in Electiic vehicles anu Chaiging
Infiastiuctuie".
BE-F0A-uuuu4S1.
"NYC Electiic vehicle Reauiness Pioject: 0nlocking 0iban Bemanu"

EVSE Garage Charging Training Manual:









Created by:

Beam Charging




Training Manual NYC Electiic vehicle Reauiness Pioject: 0nlocking 0iban Bemanu

ii

Disclaimers





















Training Manual NYC Electiic vehicle Reauiness Pioject: 0nlocking 0iban Bemanu

iii

Contents
1. Basic Administration and Record of Training………
2. Understanding Level I and Level II EVSEs………...
a. Level I versus Level II………………………...
b. Types of EVSEs……………………………….
c. Types of Plugs…………………………………
d. Types of Adaptors……………………………..
e. EVSE Examples……………………………….
3. EV Garage Parking Methodology………………......
a. EV Positioning………………………………..
b. EVSE Availability…………………………….
c. Make and Model of EV……………………….
d. Type of Garage Patron………………………...
4. EVSE Operation ……………………...……..............
a. EVSE Communication………………………..
b. EVSE Plug and EV Communication………….
5. Billing……………………………………………….
6. Charging an EV (Demonstration)….……………......
a. Standard EV Charging Instructions..………….
7. Safety when Charging……………………………….
a. Hazards………………………………………..
b. Power disconnects………………………….....
8. Trouble Shooting and Support………………………
a. Trouble Shooting………………………….......
b. Support………………………………………..
c. Additional Information………………………..





Training Manual NYC Electiic vehicle Reauiness Pioject: 0nlocking 0iban Bemanu

iv

Figures
Figure 1 J1772 Connector
Figure 2 ChAdeMO Connector
Figure 3 Tesla Universal Mobile Adaptor
Figure 4 Tesla Adaptor Options
Figure 5 Tesla J1772 Mobile Adaptor
Figure 6 SAE Charging Configurations and Ratings
Figure 7 Estimated EV Charge Times (Level II 240 VAC)
Figure 8 Figure 1 Level I Portable EVSE
Figure 9 Level II and Level II Dual EVSEs
Figure 10 Level III EVSEs
Figure 11 Location of Charging Receptacle on an EV
Figure 12 Burying the EV
Figure 13 EVSE Usage Report Information
Figure 14 EVSE Support Numbers
Figure 15 RFID Key Tag Example
Figure 16 RFID Card Example
Figure 17 Smart Chip "Proximity" Credit Card






Training Manual NYC Electiic vehicle Reauiness Pioject: 0nlocking 0iban Bemanu

v

Acronyms

EV Electric Vehicle – vehicles powered by battery energy storage system (Plug-in Hybrid and 100% battery powered)
available on-board the vehicle.

EVSE Electric Vehicle Supply Equipment – equipment that provides for the transfer of energy between the electric utility
power and the electric vehicle.

kW Kilowatts – a measurement of electric power. Used to denote the power an electrical circuit can deliver to a battery.

kWh Kilowatt Hours – a measurement of total electrical energy used over time. Used to denote the capacity of an EV
battery.

NEC National Electric Code – part of the National Fire Code series established by the National Fire Protection
Association (NFPA) as NFPA 70. The NEC codifies the requirements for safe electrical installations into a single,
standardized source.

NEMA National Electrical Manufacturers Association – develops standards for electrical products.

PHEV Plug-in Hybrid Electric Vehicle – vehicles utilizing a battery and an internal combustion engine (ICE) powered by
either gasoline or diesel fuel.

SAE Society of Automotive Engineers – standards development organization for the engineering of powered vehicles.

VAC Voltage Alternating Current.

VDC Voltage Direct Current













Training Manual NYC Electiic vehicle Reauiness Pioject: 0nlocking 0iban Bemanu

vi

1. Basic Administration
The objective of this section is to guide the trainer to record specific trainee and garage information that
is essential to good record keeping and aid in future training objectives. The trainer will record:
a. Trainee Information:

Date and time of training
Name of trainees
Names of managers
Names of employees not present, but employed on site
Attendant shift times

b. Garage information:

Garage address and contact information
Garage hours of operation
Garage capacity
Garage type
Outdoor lot
Single or multi-level covered lot
Basement
Size of garage or lot
Large (Over 300 spaces): Often allows for EVSE installation on main level
Medium (150-300)
Small (1-150): Often restricts EV movement after charging
Shape of garage or lot
a. Rectangle
b. Square
c. Irregular shape: Can restrict movement and make EVSE charging and
moving EV after charging difficult
Location of the EVSE in the garage
Proximity to Entrance/Exit: Good for attendants and users or future users to view
EVSE
Level
Proximity to Electrical Supply: Closer to the electrical panels or feeder allows for
easier installation and future additions
Traffic flow
Entrance traffic flow
Exit Traffic flow
Lanes of traffic in garage
a. Multiple: Allow for EVSE to be mounted in convenient locations near the
areas of traffic
b. Single: Can restrict movement and doesn’t allow for easy access to EVSE
near main traffic areas
Current parking plan of the garage

Training Manual NYC Electiic vehicle Reauiness Pioject: 0nlocking 0iban Bemanu

vii

Current Transients Parking spots: Many EV users are transients and space in the
current garage locations for transients has benefits of facilitating relocation and
movement of the EV during the day/night
Special Monthly Clients (front of the garage privileges)? : Many garages provide
special front of the garage privileges for monthly parkers who pay a premium.
These spaces are often great locations for transient EV drivers and EVSE
installation. It allows for viewing of the EVSE and ability to quickly swap out the
EV after the charging session is completed
2. Understanding Level I and Level II EVSEs
The objective of this section is to provide the garage attendant a general understanding of EVSE
technology and how it is deployed. The garage attendant should understand the different levels of
EVSE and how the differ in the delivery of electricity to an EV. The attendant will learn the various
ways an EV is connected to an EVSE and the associated plugs and adaptors required. They will be
trained on how long different models of EVs take to reach full charge. It will be explained on how
multiple manufacturers are building EVSEs and some of the differences between each.
Typical EVs have onboard chargers that delivery DC power to their motors. AC to DC current
conversation normally occurs at the onboard charger. Level I or Level II AC charging stations deliver
AC current to the EV on-board charger where it is converted to DC. In the case of DC or “fast chargers”
the conversion occurs off-board and DC power is delivered directly to the EV battery. DC charge times
are a great deal faster, but the cost of these DC chargers and deployment remains very high. An outline
of the differences types between Level I, Level II, and Level III, AC versus DC charging, and the
different types of typical EVSEs are listed below.

a. Level I, Level II, and Level III (DC) Charging Power:
Level I: Up to 20 kWh
Level II: Up to 80kWh
Level III: More than 80 kWh

b. Types of Chargers
Level I (AC)/Portable EVSE: This charger plugs into a standard 3-prong outlet. It is
typically used for in home use or emergency use while on road trips. They require a
dedicated branch circuit with NEMA 5-15R or 5-20R receptacle that delivers 120V AC at up to
16 Amps and approximately 1.92kW maximum. Connection to the EV is typically done
with the use of a J1772 plug (Fig X). Charging times for are typically very long (6-24
hours)
Level II AC EVSE: This chargers requires a dedicated branch circuit hardwired to a
permanently-mounted EVSE with that delivers 240VAC/Single Phase, 4-wire (2 Hot,
GND, Neutral), 40Amp Breaker up to 80 Amps and approximately 19.2kW maximum.
Charging times would typically range from 2-8 hours.
Level I, II, III DC EVSE: The standards for DC charging have yet to be finalized, but

Training Manual NYC Electiic vehicle Reauiness Pioject: 0nlocking 0iban Bemanu

viii

these EVSEs require between 208-600 VDC and provide an output of up to 200kWh.
A typical Level II DC charger requires 208-450 VDC and delivers up to 90 kWh of
power to an EV. The typically charging time is about 4miles/min or 10-60 minutes.
Multiple Head EVSE : Curently many multiple manufactures are offering Dual head
Level I/Level II (AC) EVSEs. These EVSEs allow for two vehicles to be charged
simultaneously. They are typically either a Level I and Level II combination EVSE or a
dual Level II EVSE.
c. Standard EVSE Plugs
SAE (Society of Automotive Engineers) J1772 plug: These plugs are the North
American Standard for Level I and Level II charging.

!"#$%& ' ()**' +,--&./,%

ChAdeMO: These Level III plugs are in the process of being standardized, but the most
common plug found currently in the US are based on the }EvS (}apan Electiic vehicle
Stanuaiu)

!"#$%& 0 +123&45 +,--&./,%

d. EVSE Plug adaptors: Almost of the US auto makers are current building EVs to receive the
standard J1772 plug. However, Tesla (and some earlier EVs built before 2011) utilizes its own
proprietary plug. In order for Tesla drivers to charge their EVs during road trips or at public
charging stations, they must use adaptors. The two adaptor types they provide are the
“Universal Mobile Adaptor” for emergency use, and the “J1772 Mobile Adaptor.” For use with
public EVSEs.

Training Manual NYC Electiic vehicle Reauiness Pioject: 0nlocking 0iban Bemanu

ix

Universal Mobile Adaptors (Emergency use)
Maximum Current: 40 Amp
Voltage: 120-240 VAC
Maximum Power: 9.6kWh
Cord Lengths: 18 feet

!"#$%& ' (&)*+ ,-".&%)+* /01"*& 23+450%


















Training Manual NYC Electiic vehicle Reauiness Pioject: 0nlocking 0iban Bemanu

x



Adaptor Outlet
Breaker
Rating
(Amps)
Charge
Time
(Hours)
NEMA 14-
50
(Included)

RVs
50 6
NEMA 6-50

electrical welders
50 6
NEMA 6-30
AC units,
commercial
equipment
30 10
NEMA 14-
30

new dryers
30 10
NEMA L14-
30

generators
30 10
NEMA 10-
30

old dryers
30 10
NEMA 6-20

motel AC units
20 14.5
NEMA 6-15

AC units
15 19

Training Manual NYC Electiic vehicle Reauiness Pioject: 0nlocking 0iban Bemanu

xi

NEMA 5-20

standard 3-prong,
higher current
20 37
NEMA 5-15

standard 3 prong
15 48

!"#$%& ' (&)*+ ,-+./0% 1./"02)

J1772 Mobile Adaptor (Use at Public J1772 EVSE locations)
Maximum Current: 70 Amp
Voltage: 120-240 VAC Single Phase
Maximum Power: 16.8kWh
Cord Lengths: 4 feet

!"#$%& 3 (&)*+ 45667 809"*& ,-+./0%


Training Manual NYC Electiic vehicle Reauiness Pioject: 0nlocking 0iban Bemanu

xii



!"#$%& ' ()* +,-%#".# +/.0"#$%-1"/.2 -.3 4-1".#2











Training Manual NYC Electiic vehicle Reauiness Pioject: 0nlocking 0iban Bemanu

xiii


Make Model
All Electric Range
(Miles)
Battery Capacity
(kWh)
Audi E-tron 154 53
BMW ActiveE 100 32
Fisker Karma 50 20
Ford Focus 100 23
GM Volt 40 16
Mitsubishi iMiEV 40 16
Nissan Leaf 100 24
Tesla
Roadster 220 56
Model S 160,230, 300 42, 65, 85

!"#$%& ' ()*"+,*&- (. /0,%#& 1"+&) 23&4&5 66 789 .:/;





e. EVSE Examples:

!"#$%& < 3&4&5 6 =>%*,?5& EVSE


Training Manual NYC Electiic vehicle Reauiness Pioject: 0nlocking 0iban Bemanu

xiv


Figure 10 Level II and Level II Dual EVSEs




Figure 11 Level III EVSEs



Training Manual NYC Electiic vehicle Reauiness Pioject: 0nlocking 0iban Bemanu

xv


3. EV Garage Parking Methodology
When parking an EV in an indoor, outdoor, multi-level, or basement lot, the parking methodology needs
to consider multiple factors.
a. EV Positioning: When deciding how to park the EV, an attendant must consider where on the
EV is the J1772 receptacle. A typical Level II EVSE has a 15-25 foot cord attached to the plug.
As described earlier, the Tesla comes with adaptors that will slightly increase that distance 4 feet
with the use of a J1772 Mobile Adaptor.


!"#$%& '( )*+,-"*. */ 01,%#".# 2&+&3-,+4& *. ,. 56

The EV should be parked to maximize the effective length of the EVSE cord and
potentially allow for another (or more) EV to connect without moving the first EV. This
is called “burying” the EV.


!"#$%& '7 8$%9".# -1& 56


Training Manual NYC Electiic vehicle Reauiness Pioject: 0nlocking 0iban Bemanu

xvi



The placement of the EV is determined not only of where the EVSE is located, or where on the EV does
the plug attach, but also:
What level of EVSE is available
What is the make and model of the EV
Type of garage patron
time of arrival
anticipated length of stay

b. EVSE Availability: Although Level II EVSE are most common in parking garages and lots, it
may not be available and a Level I may be the only EVSE connection option for charger an EV.
As outlined earlier a typical Level II charge can last between 2-8 hours, where a Level I charge
can take between 6-24 hours to fully charge and EV. The placement of the EV must consider
that the vehicle may need to remain in its location for at least 6 hours.

c. Make and Model of the EV: As listed earlier (!"#$%& ') different makes and models of EVs have
varying battery capacity. The attendant must be aware of the EV and its battery capacity prior to
deciding on where to place the EV to charge, or ask the driver what is the battery capacity of
their EV and its current charge level

d. Type of garage patron: A garage or parking will typically have three types of patrons

Transients (Commuters, tourists, other): Transients will normally arrive after 7am and
leave at different times of the day and usually by 5pm. They will park in the garage
between 1-4 hours. They should be parked in a flexible location in the vicinity of the
EVSE when possible. You can expect these users charge for an average of 2.5 hours.

Monthly parking patrons that occasionally leave and return to the garage: Occasional
users are similar to transients, but may be monthly garage users, but only use their
vehicles every once and awhile. These patrons may charge longer than a transient and
may require night time charging due to their driving habits. These patrons can normally
be parked in a more permanent location away from the EVSE after charging due to their
infrequent usage. Their average charging session will be greater than 2.5 hours typically
will need to be charged during night time hours.

Monthly parking patrons that leave and return to the garage daily: Daily patrons will
often leave sometime in the morning before 9 am and return by 5pm. These users will
usually require night time charging and therefore need to be parked in the vicinity of the
EVSE once they arrive when possible. Daily users may require more than 6 hours of
charging to reach a full EV charge. These patrons typically will need to be charged
during night time hours.


Training Manual NYC Electiic vehicle Reauiness Pioject: 0nlocking 0iban Bemanu

xvii



4. EVSE Operation

a. EVSE Communication: Typical for public use EVSE communicate either over a private or
public (with encryption) wireless or hard wired network. Many EVSEs can communicate
amongst themselves via a local network and report back to a central server or station via a
“gateway”. This gateway is the means of the EVSE to communicate with the outside world and
allow access to the EVSE for administrative, operational, or POS billing services. Coulomb
Technology EVSEs and their Chargepoint Network provides a national wide network that
utilizes existing cellular networks using either CDMA or GPRS technology.

b. EVSE Plug and EV Communication: Typical EVSE and the standard J1772 provide a means of
communicating with EV. This communication allows for the EVSE to acknowledge connection
to the EV and vice versa. Upon coupling with the EV, the EVSE can then deliver the power to
charge the battery and avoid a potentially dangerous situation where the plug is active and not
plugged into the EV. Once connected to the EV, the EVSE can record valuable information for
the consumer as well as the garage operators, EV service providers, and EVSE manufacturers:

EVSE Connected
Time and Duration of the charging session
Amount of power used
Green House Gas (GHG) savings
Type of connection (Level I, II, or III)
Address of the EVSE
Fees Charged (When applicable)

Station Start
Time
End
Time
Transaction Date Duration
(Hours)
Energy (kWh) GHG Savings
(kg)
LeveI Address Fees
($)

!"#$%& '( )*+) ,-.#& /&01%2 3451%6.2"14

5. Billing: EVSE are typical provisioned as free or pay stations and with the use of a manufacture or
service provider RFID card or key tag (Figure 15 & 16), or proximity credit card (Figure 17), a charging
session can be initiated. These EVSE have a Point of Sale (POS) server built into the EVSE. If a patron
does not have an RFID device or proximity credit card, they can call the manufacturer or service
provider support number and have a session started with confirming identity or providing a credit card
number.



Training Manual NYC Electiic vehicle Reauiness Pioject: 0nlocking 0iban Bemanu

xviii



Provider or Manufacturer Support Number Hours
Aerovirnment 1-888-833-2148 24/7
Beam Charging 1-888-758-4462 24/7
Clipper Creek 1-530-887-1674 8am-5pm PST
Coulomb Technologies 1-888-758-4389 24/7
Eaton 855-386-3873 TBD
Ecotality/Blink 1-888-998-2546 24/7
Leviton 1-877-338-7473 9am-6pm EST

!"#$%& '( )*+) +$,,-%. /$01&%2

!"#$%& '3 4!56 7&8 9:# );:0,<&


!"#$%& '= 4!56 >:%? );:0,<&


Training Manual NYC Electiic vehicle Reauiness Pioject: 0nlocking 0iban Bemanu

xix


!"#$%& '( )*+%, -."/ 01%23"*",40 -%&5", -+%5

6. Charging an EV (Demonstration): In a valet parking situation, there is a standard operating procedure
for garage attendants to follow. The actual operation may differ slightly for different locations, but the
basic order of events should be relatively the same.

a. Standard EV Garage Charging Instructions (Valet garage)

EV enters the garage

Ask the EV driver would like to be charged and if they have their charge card
If no, have them call the customer support numbers provided
If yes, continue to the next step

Park the EV at the EVSE, turn it off

Present the customer’s charge card, key fob, or smart credit card to the EVSE

Once approved, disconnect the J1772 plug from the EVSE and plug it into the EV
If the J1772 is not available, lift the door for the Level I socket
If a second J1772 is available, disconnect it from the EVSE and follow step “5”

Once charge complete or the customer wishes to depart, present the charge card to the
EVSE and confirm ending a session

Disconnect the J1772 from the EV and place back into the EVSE holster

7. Safety in Charging: The J1172 standard plug is designed with multiple levels of shock prevention.
The units are designed to work in an environment that contains dust, dirt, and even water. When not
plugged in to the EV, no voltage is delivered to the EV. The EV initiates the flow of electricity upon
coupling with the J1772 connector and ends the flow of electricity upon disconnection. If the connector
is inadvertently pulled from the EV during a session, it is designed to have the pins that are energized to
break away and a relay within the EVSE is designed to shut off power. In addition, the EV cannot be
started when the J1772 plug is attached.

It is important to understand that although EV charging and EVSE usage is safe, some basic safety
procedures should be adhered to. A clean and clear environment free of water, debris, and dirt can
prevent trips and falls, damage to the EVSE and plugs, and electrical shorts resulting in disruption in

Training Manual NYC Electiic vehicle Reauiness Pioject: 0nlocking 0iban Bemanu

xx

service. Cords and plugs should never be yanked, pulled, or dropped. Care should always be taken to
properly holster the charging plugs and never leaving excess cord coiled on the ground or draped on
another vehicle.

In the event of a problem or any unsafe situation, the EVSE electrical disconnect switch should be
placed in the off position, the garage manager and the EVSE service provider should be notified
immediately.

8. Trouble Shooting and Support: In the event that an EVSE is not working, some basic trouble shooting
should be done to rule out simple power source issues or operator error. In the event there is an issue
with the EVSE that needs the attention of the EVSE service provider, the attendants need to understand
where to find the phone numbers for the service and support.

a. Trouble Shooting: If an EVSE is not functioning and the proper charging procedures have been
adhered to, the first item to check is the power source.
The power should be checked from the EVSE back to the electrical panel. This would
require first checking the electrical disconnect switch next to the unit and then the garage
circuit breaker. All breakers should be in the “On” position. If either are not, the garage
manager and the EVSE service provider should be notified so a trained technician can
service the EV and investigate why the disconnect or breaker was in the “Off” position.
The EVSE cord (s) and plugs should be checked for damage. If the equipment is
damaged, then the unit electrical disconnect should be put into the off position and the
garage manager and the EVSE service provider should be notified immediately for
service.
The EVSE is designed and programmed to display notifications in the event of a
problem. These messages should be recorded by the parking attendant. The following
are examples of the notifications that an EVSE could display. Often the EVSE will
display the action to be taken. This action is to be noted, but in all cases, the EVSE
service provider should be notified so action can be taken to rectify any errors or and the
action to be taken:
“Error” (Multiple types)
i. Level I or Level II faults
ii. Other
Unit not provisioned: The EVSE is not programmed
“Restricted use”: The unit is restricting use to a customer
If the EVSE not responding to a card or key fob, first check if the card or key fob is a
“Chargepoint” or “Beam” credential, or a proximity smart credit card. If the customer
does not have one of these credentials, they can call customer service for support. If the
customer does have one of these credentials, but the EVSE is not responding, any error
message needs to be recorded and the EVSE service provider should be notified.


Training Manual NYC Electiic vehicle Reauiness Pioject: 0nlocking 0iban Bemanu

xxi

Note: During this section of training, some of the above scenarios should be demonstrated when
feasible

b. Support: Often a garage attendant will need support while trying to charge an EV charging
customer as due to unknown issue or error message displayed on the EVSE. Typically EVSE
instructions, technical, or customer support numbers are posted on the EVSE directly or on
signage posted by the EVSE service provider. If these numbers are not posted, the garage
manager should be notified. This signage and instructions are the first level of technical support
and can often solve any issues prior to calling your EVSE service provider. These signs may
have the following information:

Location of the EVSE in the garage or lot
Step-by-step charging instructions
Technical or customer support numbers

c. Additional information: It is important that garage attendants understand where customers can
find additional information pertaining to EVSE charging or EVSE general services. This can be
done by providing the customer access to material left behind or displayed by the EVSE service
provider. Some examples of this information are:

Pamphlets
Business cards
Garage Signage
Website Information
Phone Numbers




End of Section






Training Manual NYC Electiic vehicle Reauiness Pioject: 0nlocking 0iban Bemanu

xxii

Appendix

1. Example Field Training Sheet
2. ChargePoint Instructions (Coulomb, Siemens, Leviton, Only)





















Training Manual NYC Electiic vehicle Reauiness Pioject: 0nlocking 0iban Bemanu

xxiii

Field Training Sheet
!"#$% &'($ )#"*#%&'($ +','-.
&*"',$* /"($%0.1,$ 2%$("'3
4"*"5$ 6","5$*%0.1,$ 2%$("'3

0*17$*#8 /"($ 0*17$*#8 &87$ 91# : ;<<'=$ : >$- : ?1#$3
)'#$ @AA*$--B C'#8B
D'7

C1(7",8 /"($ E$F @AA*$--
)'#$ C1,#"=#
/"($%G("'3%0.1,$

?1H*- 1< ;7$*"#'1,
!$-=*'F$ #*"<<'=
<31I % 7"##$*,

&1#"3 2 1< 0"*J',5
)71#-

2 1< 0HF3'= %
0*'K"#$ 0"*J',5
)71#- @K"'3"F3$L
0HF3'= % 0*'K"#$
4"*"5$ !$-=*'7#'1,

@##$,A",# M%).'<# @##$,A",# N%).'<#
@##$,A",# O%).'<# @##$,A",# P%).'<#
@##$,A",# Q%).'<# @##$,A",# R%).'<#
!"#$%$%& /1#$-
4"*"5$ S,<1 =133$=#$A T%/
@##$,A",# ',<1 =133$=#$A T%/
9$K$3 S ",A 9$K$3 SS GU)G GV73"',$A T%/
C1,,$=#1*-%C1,,$=#'1,- GV73"',$A T%/
GU 0"*J',5 )#*"#$58 >$K'$I$A T%/
GU)G !"8 ",A /'5.# W-"5$ >$K'$I$A T%/
GU)G C1((H,'="#'1,%X'33',5 GV73"',$A T%/
6$",- 1< @=#'K"#'1, >$K'$I$A T%/
GU)G !$(1,-#*"#'1, C1(73$#$A T%/
GU)G ;7$*"#'1, )"<$#8 >$K'$I$A T%/
!$(1,-#*"#$A 01I$* ).H# 1<< T%/
>$K'$I$A S,-#*H=#'1,- T%/

CH-#1($*%&$=.,'="3 )H771*#
>$K'$I$A T%/

0.1,$ ,H(F$*- ",A )'5,"5$ >$K'$I$A T%/
&*"',',5 @'A-%0"(7.3$#- 9$<# X$.',A T%/

Training Manual NYC Electiic vehicle Reauiness Pioject: 0nlocking 0iban Bemanu

xxiv

!""#$#%&'( )%$*+






















Training Manual NYC Electiic vehicle Reauiness Pioject: 0nlocking 0iban Bemanu

xxv

Appendix 2
ChargePoint Instructions (Coulomb, Siemens, Leviton, Only)









Training Manual NYC Electiic vehicle Reauiness Pioject: 0nlocking 0iban Bemanu

xxvi









174
!""#$%&' ) !"#$%&" () *+$, - !"#$%&" () ./$&,$01 .2%31+)/0,

4"5 6)+3 7&"%(+$%$(8 92+3"(
ln 2007, Lhe lederal Lnergy 8egulaLory Commlsslon (lL8C) declded Lo reduce Lhe barrlers Lo
enLry for alLernaLlve power suppllers ln Lhe elecLrlclLy markeL. 1he n?lSC developed new markeL
rules and sofLware Lo allow a new class of resources called LlmlLed Lnergy SLorage 8esources
(LLS8) Lo parLlclpaLe ln Lhe operaLor's elecLrlclLy markeL. ÞLvs are expecLed Lo fall lnLo Lhls
caLegory of energy provlders as do oLher Lechnologles llke Compressed Alr Lnergy SLorage
(CALS) and flywheel sysLems.
LLS8s are Lyplcally boLh consumers and generaLors of elecLrlclLy. 1hey are capable of sLorlng
energy when Lhe load on Lhe sysLem ls low and dlspaLchlng lL back lnLo Lhe grld when Lhe load ls
hlgh. unllke oLher anclllary servlce provlders, LLS8 Lyplcally provlde energy for very shorL
duraLlon Lyplcally ln mlnuLes. Powever, ln new ?ork Lhe quallflcaLlon for regulaLlon servlces LhaL
offer capablllLy are based on Lhe maxlmum servlce LhaL can be susLalned for a mlnlmum of one
hour due Lo rellablllLy rules ln Lhe sLaLe. 1hls has been noLed as a llmlLlng facLor by cerLaln LLS8s
ln new ?ork.
1hese servlces wlll be compensaLed for Lhelr avallablllLy for a glven perlod as well as Lhe neL
power LhaL Lhey feed lnLo Lhe grld. 1he LoLal value of markeL-based regulaLlon servlces was $100
mllllon ln 2008.
63
LLS8s are a subseL of Lhls overall markeL.
9$, :(&20($% *+$,;<0("+2%($=" >2+ ?9:*<>@ >)0A)+($/B
Cne of Lhe early experlmenLs ln Lhe v2C space has been Lhe Mld ALlanLlc Crld-lnLeracLlve Car
(MAClC) ConsorLlum. 1he parLners ln Lhls consorLlum lnclude unlverslLy of uelaware, Þepco
Poldlngs lnc. (uelmarva Þower, ALlanLlc LlecLrlc, ÞLÞCC, eLc), ACuA, Þ!M lnLerconnecLlon, AC
Þropulslon and Comverge.
64
1he consorLlum also has 1esla moLors, Coogle.org and Lhe SLaLe of
uelaware as ºobservers" Lo Lhls experlmenL.
*2CA $0 A(20,2+,A D)+ !E*
As parL of lLs efforL Lo enable large scale lnLroducLlon of Lvs and esLabllsh Lhe Lv lndusLry, Lhe
Amerlcan naLlonal SLandards lnsLlLuLe (AnSl) released a SLandardlzaLlon 8oadmap for LlecLrlc
vehlcles Lhrough lLs LlecLrlc vehlcle SLandards Þanel.
63
1he goals of Lhe roadmap are:
1. ºlaclllLaLe Lhe developmenL of a comprehenslve, robusL, and sLreamllned sLandards and
conformance landscape"

63
1he prlces for regulaLlon servlces have dropped dramaLlcally slnce 2010, furLher decreaslng Lhe
poLenLlal of v2C.
64
vehlcle Lo Crld Þower (8rleflng for: lederal Lnergy 8egulaLory Commlsslon) by WllleLL kempLon
hLLp://ferc.gov/medla/news-releases/2007/2007-3/10-22-07-v2g.pdf
63
S1AnuA8ulZA1lCn 8CAuMAÞ lC8 LLLC18lC vLPlCLLS - Þrepared by LvSÞ of AnSl
hLLp://publlcaa.ansl.org/slLes/apdl/evsp/AnSl_LvSÞ_8oadmap_Aprll_2012.pdf

173
2. ºMaxlmlze Lhe coordlnaLlon and harmonlzaLlon of Lhe sLandards and conformance
envlronmenL domesLlcally and wlLh lnLernaLlonal parLners."
1he reporL assesses exlsLlng sLandards, codes and regulaLlons and ldenLlfles exlsLlng gaps along
wlLh poLenLlal recommendaLlons. lL covers Lhree large areas assoclaLed wlLh Lv sLandardlzaLlon
- vehlcle, lnfrasLrucLure and SupporL Servlces. Caps LhaL have been ldenLlfled are prlorlLlzed
dependlng on Lhe Llme needed Lo close or address Lhem.


176
!""#$%&' )*+ ,-./ 0#$#1&/ !$234.&. 5-%#3

Þro[ecL Lconomlcs
2012 2013 2014 2013 2016 2017
neL Þurchase cosL (120,770,000.00) - - - - -
vehlcle Þurchase cosL (148,640,000.00) - - - - -
1ax lncenLlves 27,870,000.00 - - - - -
CovernmenL lundlng - - - - - -
CperaLlng expense
Þro[ecLed fuel savlngs 12,094,393.41 14,713,088.64 14,713,088.64 14,713,088.64 14,713,088.64 14,713,088.64
MalnLenance cosL savlngs 2,229,600.00 2,229,600.00 2,229,600.00 2,229,600.00 2,229,600.00 2,229,600.00
8aLLery 8eplacemenL (89,184,000.00)
1ralnlng and conLlngencles (19,323,200.00) (19,323,200.00) (19,323,200.00) (19,323,200.00) (19,323,200.00) (19,323,200.00)
LlecLrlclLy cosLs (2,044,097.28) (2,486,983.02) (2,486,983.02) (2,486,983.02) (2,486,983.02) (2,486,983.02)
Charglng SLaLlons
lnsLallaLlon cosL (20,809,600.00) - - - - -
v2C 8evenue
lrequency regulaLlon 1,103,940.96 1,103,940.96 1,103,940.96 1,103,940.96 1,103,940.96 1,103,940.96
neL lncome (268,288,762.92) (3,761,333.42) (3,761,333.42) (3,761,333.42) (3,761,333.42) (92,943,333.42)

"##
!""#$%&' )*+ ,+-.,+/ 0#1#2#$3#4

"$ %&'( )(*(+,-. / 0(.&-1( 23 4,&5 6(-.73138&(* .229:;;<<<$9&'(,(*(+,-.$-3=;,(*(+,-.;>(.&-1(/
23/8,&5/2(-.73138&(*
?$ %&'( )(*(+,-. / @1(-2,&- 0(.&-1( A37*B=(, CB,>(D
.229:;;<<<$9&'(,(*(+,-.$-3=;,(*(+,-.;(1(-2,&-/>(.&-1(/-37*B=(,/*B,>(D
E$ %&'( )(*(+,-. / @F(-B2&>( CB==+,D / 0(.&-1( 23 4,&5 2(-.73138&(*
.229:;;<<<$9&'(,(*(+,-.$-3=;<3,59,(**;<9/-372(72;B913+5*;?G"";"";0?4/""/@F(-B2&>(/
CB==+,D$95H
I$ %&'( )(*(+,-. / J(+,1D "GGKGGG 0(.&-1(* 23 L( @7+L1(5 <&2. 0(.&-1( 23 4,&5 6(-.73138&(* LD ?G"#
.229:;;<<<$9&'(,(*(+,-.$-3=;7(<*,33=;7(+,1D/"GGGGG/>(.&-1(*/23/L(/(7+L1(5/<&2./>(.&-1(/
23/8,&5/2(-.73138&(*/LD/?G"#
M$ N$ C$ %3*2+1 C(,>&-( / @1(-2,&H&-+2&37 3H O(1&>(,D 0(.&-1(*
.229:;;<<<$B*9*3&8$83>;PQRSTH&1(*;OS/U%/GV/GG"$95H
W$ P@)A Q,5(, #MM P,(XB(7-D )(8B1+2&37 A3=9(7*+2&37 / JYRCQ %,393*+1
.229:;;<<<$7D&*3$-3=;9BL1&-;<(L53-*;-3==&22((*;L&-T=&<8;=((2&78T=+2(,&+1*;?G"?/G"/
"V;)(8TA3=9(7*+2&37$95H
#$ CS@ @1(-2,&- 0(.&-1( +75 %1B8 &7 ZDL,&5 @1(-2,&- 0(.&-1( A375B-2&>( A.+,8( A3B91(,
.229:;;*2+75+,5*$*+($3,8;["##?T?G"?G?;
\$ C6SJOS)OR]S6RQJ )QSO^S% PQ) @_@A6)RA 0@ZRA_@C / %,(9+,(5 LD @0C% 3H SJCR
.229:;;9BL1&-++$+7*&$3,8;*&2(*;+951;(>*9;SJCRT@0C%T)3+5=+9TS9,&1T?G"?$95H
V$ O(9+,2=(72 3H @7(,8D / Q7( ^&11&37 @1(-2,&- 0(.&-1(* `D ?G"M / P(L,B+,D ?G"" C2+2B* )(93,2
.229:;;(7(,8D$83>;*&2(*;9,35;H&1(*;(58;7(<*;53-B=(72*;"T^&11&37T@1(-2,&-T0(.&-1(T)(93,2TP&
7+1$95H
"G$ C(72(-.K R7- / %1B8/R7 ZDL,&5 @1(-2,&- 0(.&-1( 0+1B( %,393*&2&37 C2B5D
.229:;;&7H3$3,71$83>;*&2(*;9BL1&-+2&37*;H&1(*;%BL"G#\E$95Ha
""$ Z3< 23 `B&15 +7 @1(-2,&- A+, A.+,8&78 R7H,+*2,B-2B,(: C=+,2 4,&5*K P+*2 A.+,8&78 +75 N7&>(,*+1
S--(** C3B,-(: 4+* ?$G b.229:;;*$22;"?cNGd .229:;;8+*?$3,8;?GG\;G#;?I;.3</23/LB&15/+7/
(1(-2,&-/-+,/-.+,8&78/&7H,+*2,B-2B,(/*=+,2/8,&5*/H+*2/-.+,8&78/+75/B7&>(,*+1/+--(**;
"?$ `(D375 L+22(,&(*: S7 (F+=&7+2&37 3H 2.( L(7(H&2* +75 L+,,&(,* 23 91B8/&7 .DL,&5 (1(-2,&- >(.&-1(*
b%Z@0*d +75 + >(.&-1(/23/8,&5 b0?4d 2,+7*&2&37 LD `(7[+=&7 e$ C3>+-331
.229:;;<<<$*-&(7-(5&,(-2$-3=;*-&(7-(;+,2&-1(;9&&;CGEG"I?"MG\GGMVEI

"#$
"%& '()*+,(-./-01*2 3/4(1 567289(7.8,:; <8,+6,8.*70 +838+*.= 872 7(. 1(>(76( ?= @*,,(.. A(93./7
and Jasna Tomić http://ac.els-+27&+/9BCD%#$##E%DEDDD%EFB"-:F&D-CD%#$##E%DEDDD%EF-
98*7&325GH.*2IFEJF28""KD+85J+#?(K#5K?EDEJ5K2#2L8+278.I"%%JE$$$"FHD("M""%%2D(55FFM
E"2#KME"ME88DJ2+
"K& NOP': 8: Q=789*+8,,= </75*0618?,( Q*:3(1:(2 P7(10= C./180( 5/1 'FR S:(: *7 .)( C981. T1*2 ?=
<& N870U N& Q6..8U C& A*9U V& A(W67/>*+U 872 X& Q897Y87/>*+
)..3;BB*(((Z3,/1(&*(((&/10B:.893B:.893&Y:3G.3IL81769?(1IE#"EM$"
"E& [)( <8:)-R8+\ <81; V/7(.*W*70 P,(+.1*+ '()*+,(: - ]/1?(:
)..3;BB444&5/1?(:&+/9B:*.(:B(1*+80*(:BFD""BDJBFFB.)(-+8:)-?8+\-+81-9/7(.*W*70-(,(+.1*+-
>()*+,(:B
"J& ^(>>*70 63 .)( P,(+.1*+ <81 X726:.1= - R<RSCX_PCC )..3;BB444&?+?6:*7(::/7,*7(&+8B1(>>*70-
63-(,(+.1*+-+81-*726:.1=
"#& ]1(`6(7+= ^(06,8.*/7 V81\(.a: @*77*70 </9?*78.*/7; b/4-^*:\U O*0)-'8,6(
)..3;BB?,/0&+,(87.(+)*(:&+/9BFD""BDMBD"B51(`6(7+=-1(06,8.*/7-981\(.cPFc$DcMM:-4*77*70-
+/9?*78.*/7-,/4-1*:\-)*0)->8,6(B
"$& dZ:(7U e/77 872 A(77(.) C& A6187* fFDD$g [)( P81,= S&C& V81\(. 5/1 NOP':; d7.*+*38.*70
</7:69(1 d481(7(::U ^(+)810( N/.(7.*8,U Q(:*07 N1*/1*.*(: 872 P7(10= X938+.:& X7:.*.6.( /5
[187:3/1.8.*/7 C.62*(:U S7*>(1:*.= /5 <8,*5/17*8U Q8>*:U ^(:(81+) ^(3/1. S<Q-X[C-^^-D$-F
)..3;BB36?:&*.:&6+28>*:&(26B36?,*+8.*/7H2(.8*,&3)3G*2I""M"
"M& N/.(7.*8, X938+.: /5 N,60-*7 O=?1*2 P,(+.1*+ '()*+,(: /7 ^(0*/78, N/4(1 T(7(18.*/7
)..3;BB444&/17,&0/>B:+*B((:B(.:2B3(:B36?:BN6?#MFF&325
FD& '()*+,( ./ T1*2 N/4(1 fR1*(5*70 5/1; ](2(18, P7(10= ^(06,8./1= </99*::*/7g ?= @*,,(.. A(93./7
)..3;BB5(1+&0/>B9(2*8B7(4:-1(,(8:(:BFDD#BFDD#-%B"D-FF-D#->F0&325
F"& RSCX_PCC C[^d[PTXPC X_ d_<Xbbd^h CP^'X<P Vd^AP[C ?= d:\/ '6/1*7(7
)..3;BB444&/3.*98,3/4(1:=:.(9:&+/9B:.655B?6:*7(::H:.18.(0*(:H*7H87+*,,81=H:(1>*+(H981\(.:
&325
FF& d </7+(3.68, ]189(4/1\ 5/1 .)( '()*+,(-./-T1*2 f'FTg X93,(9(7.8.*/7 ?= <)1*:./3)( T6*,,( 872
T(/10( T1/:: )..3;BB(7(10=&(+(&*,,*7/*:&(26BT^iCCB383(1:BFDDM-
cFDdcFD+/7+(3.68,cFD5189(4/1\cFD5/1cFD.)(cFD>()*+,(-./-01*2cFD*93,(9(7.8.*/7&325
F%& T/>(179(7. ],((. - _(4 h/1\ <*.= d*9: ./ C8>( j#"V *7 ],((. </:.:
)..3;BB444&0/>(179(7.-5,((.&+/9B<)877(,BV8*7.(787+(B_(4:BC./1=BFD"DBD#B_(4-h/1\-<*.=-
d*9:-./-C8>(-#"V-*7-],((.-</:.:&8:3ZG31(:.*.*8,I"

179
24. 8ulldlng a buslness case for corporaLe fleeLs Lo adopL vehlcle-Lo-grld Lechnology (v2C) and
parLlclpaLe ln Lhe regulaLlon servlce markeL by ue los 8los vergara, Andres, nordsLrom, krlsLen L
hLLp://dspace.mlL.edu/handle/1721.1/68822
23. LlecLrlc vehlcles and Wholesale MarkeLs - naLlonal 1own MeeLlng on uemand 8esponse and
SmarL Crld - by ScoLL 8aker
hLLp://www.demandresponsesmarLgrld.org/8esources/uocumenLs/n1M°20ÞresenLaLlons/ScoL
L°208aker°20(Þ!M)°20-°20n1M°20A-2.pdf
26. n?lSC - luel ulverslLy ln Lhe new ?ork LlecLrlclLy MarkeL
hLLp://www.nylso.com/publlc/webdocs/newsroom/whlLe_papers/fuel_dlverslLy_11202008.pdf
27. www.fueleconomy.gov - Þlug-ln Pybrlds hLLp://www.fueleconomy.gov/feg/phevLech.shLml
28. LÞA - LlghL-uuLy AuLomoLlve 1echnology, Carbon uloxlde Lmlsslons, and luel Lconomy 1rends:
1973 1hrough 2011 hLLp://www.epa.gov/oms/cerL/mpg/feLrends/2012/420s12001a.pdf"
29. n?lSC - Lnergy SLorage ln Lhe new ?ork LlecLrlclLy MarkeLs
hLLp://www.nylso.com/publlc/webdocs/newsroom/whlLe_papers/Lnergy_SLorage_ln_Lhe_n?_
LlecLrlclLy_MarkeL_March2010.pdf
30. LlecLrlc 1ransporLaLlon Lnglneerlng CorporaLlon - LlecLrlc vehlcle Charglng lnfrasLrucLure
ueploymenL Culdellnes for Lhe Cregon l-3 MeLro Areas of ÞorLland, Salem, Corvallls and Lugene
hLLp://www.oregon.gov/CuC1/PW?/ClÞÞ/docs/LvueployCuldellnes3-1.pdf?ga=L
31. u.S. v2C lmpllcaLlons of varylng C2v Charglng kW Levels and 1lmes - ÞPLvs, L8Lvs & Lvs by
uanllo !. SanLlnl hLLp://www.vehlcleLogrld.ch/lmages/lCv2C_20111118_SanLlnl.pdf
32. "u.S. ueparLmenL of Lnergy vehlcle 1echnologles Þrogram - Advanced vehlcle 1esLlng AcLlvlLy
(Þlug-ln Pybrld LlecLrlc vehlcle Charglng lnfrasLrucLure 8evlew) by kevln Morrow, uonald
karner, !ames lrancforL
33. lor Coal ÞlanLs, a Came of Chlcken hLLp://green.blogs.nyLlmes.com/2011/08/13/for-coal-
planLs-a-game-of-chlcken/
34. MarkeL CperaLlon's 8eporL - n?lSC - 8uslness 8uslness lssues CommlLLee MeeLlng lssues
CommlLLee MeeLlng May 16, 2012
hLLp://www.nylso.com/publlc/webdocs/commlLLees/blc/meeLlng_maLerlals/2012-03-
16/MarkeL_CperaLlons_8eporL.pdf
33. ÞPLv/Lv Anu v2C lMÞAC1S Anu vALuA1lCn S1uu? ÞresenLed by navlganL ConsulLlng lnc.
hLLp://www.aps.com/_flles/varlous/8esourceAlL/Lv_llllng___navlganL_SLudy_-_Aprll_2010.pdf
36. A 1esL of vehlcle-Lo-Crld (v2C) for Lnergy SLorage and lrequency 8egulaLlon ln Lhe Þ!M SysLem
- 8esulLs from an lndusLry-unlverslLy 8esearch ÞarLnershlp - WllleLL kempLon, vlcLor udo, ken

180
Puber, kevln komara, SLeve LeLendre, ScoLL 8aker, uoug 8runner & naL Þearre
hLLp://www.udel.edu/v2C/resources/LesL-v2g-ln-p[m-[an09.pdf
37. Alr Lmlsslons lmpacLs of Þlug-ln Pybrld vehlcles ln MlnnesoLa's Þassenger lleeL by Lhe
MlnnesoLa ÞolluLlon ConLrol Agency
hLLp://www.pca.sLaLe.mn.us/lndex.php/componenL/opLlon,com_docman/Lask,doc_vlew/gld,92
42
38. hLLp://lnvesLors.beaconpower.com/secflllng.cfm?flllnglu=1104639-09-62491&Clk=1103343
39. l8M SmarLCrld vlslon and Þro[ecLs by Llenl ÞraLslnl
40. hLLp://www.LoyoLa.com/prlus-hybrld/
41. hLLp://www.ford.com/cars/focus/
42. hLLp://www.ford.com/suvs/escape/

Sponsor Documents

Or use your account on DocShare.tips

Hide

Forgot your password?

Or register your new account on DocShare.tips

Hide

Lost your password? Please enter your email address. You will receive a link to create a new password.

Back to log-in

Close