Wind Load Arched Roof

Published on February 2017 | Categories: Documents | Downloads: 87 | Comments: 0 | Views: 503
of 97
Download PDF   Embed   Report

Comments

Content

 

TM 5-809-IIAFMAN 5-809 -IIAFMAN 88-3 88 -3 Chap 1 C1 HEADQUARTERS DEPARTM ENTS DEPARTM ENTS O F THE ARM Y N D THE AIR FORCE Washington DC 1 August 1993

CHANGE No.

1

STRUCTURAL DESIGN CRITERIA LOADS T

-809-VAFM 88-3, Chap. 1,2 0 May 1992, is chang ed as follows:

Remov e old old pages and insert new pages as indicated indicated bel below. ow. New or changed ma terial is indic ated by by a v ertical bar in the margin of the page. 1

Remove P a p s

nsert P a p

i andi i

andi i

2-1

2

-1

File this this sh eet in front of the publication for refere nce purposes. The propon ent agency of of this pu blication blication is the Office of the C hief of of Engineers, United S tates Ar Army my.. Users ar e invited invited to send comments and suggested improvem improvem ents on DA DA Form 2028 Recommended Changes to Publications Publications and Blank Forms) to HQUS HQUSACE ACE,, CEMP-ET), WASH DC 20314-1000

By O rder of the Secretarie s of the Army and the Air Force: GORDON R. SULLIVAN SULLIVAN General United States Anny Chief of Staff MILTON H. HAMILTON Adri~inistralive ssistmt to tthe he Secretary of the Anny MERRILL A. McPEAK, General USAF Chief of Staff EDWAR D A. PARDINI, Colonel USAF Director of Inforination In forination Marlagentent

Distribution: Army: To be distributed Army: distributed in in acco rdance wit with DA Form 1 2-W E, Block Block Air Force: F

0728

equirem ents for TM 5-8095-809-1. 1.

 

  TM 5-809-II 5-809-IIAFMAN AFMAN 88 88.3 .3..

Chap

1

E DQU RTERS M NTS OF TH RMY HE IR FORCE

TECHNI TECH NICA CAL L MA N UA L NO 809 1 AIR FORCE M A N U A L No 8.3. C h a p t e r 1

20

ay 1992

STRUCTURAL DESIGN CRITERIA LOADS CHAPTER

GENERAL

. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .

Purpose Scope References Basis for Design lassification of Structures Structures Application of Design Load Criteria Metal Build ing Systems Systems Build ing Categories for Wind an d Snow Snow Loads ind. Snow. and F rost Depth Data Data Design Examples

1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 ............................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7. 4

........................... .................................

.

CHAPTER2

. . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . .

8

1 . 9

10

COMBINATION OF LOADS eneral

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. . . . 2

. . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ................3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Com for Class Structures) Structur es) Com bined bined Loads Loads for Class A B (Bridge-type IBuildina-Woe IBuildina-Woe Structur Structures) es) and Class C (Special Structures) Structures) Load Reduction (Rescinded) CHAPTER 3

DEAD LOADS

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I.

eneral Supplementary Design Dead Loads CHAPTER 4

................................

2 2

L M O A DS

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. .................................4 2

General Supplementary Design Live Loads CHAPTER 5

WIND LOADS

................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.

eneral Supplementary Requirements CHAPTER 6

.

5

SNOW LOADS

................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 . .........................................

General efinitions upplementary Requirements ain.on-Snow Loads CHAPTER 7

6 4

OTHER LOADS

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..2 ..................................... 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 .4 .

Earthquake Loads Foun dation Loads and Earth Earth Pressures Fluid Pressures and Forces hermalForces Friction Forces Shrinkage Relaxa tion of Initial Forces last Loading Nuclear Weapon Effects Effects

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7. 8

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..9 Sway Load on Spectator Siands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 APPROVED APPROVE D FOR FOR PUBLIC PUB LIC RELEASE DISTRIBUTIO DISTR IBUTION N IS UNUMITED

This manual SupsrssdesTM SupsrssdesTM 5 809.11APM

8

3.

Chap

1 dated 28 March 1986

Change

1

i

 

TM 5 809 IIA IIAFM FMAN AN 88.3 88.3..

CHAPTER CHAP TER 7

Chap

.

OTHER LOADS Impact Due to Berthing Vibrations . . . . . . . .

CHAPTER 8

Paragraph

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..12.

LOADS FOR SPECIAL STRUCTURES Crane Runways Trackage. and Support Waterfront S tructures tructures . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 .............................. 82 8

. . . .. .. .. .. .. .. .. .. .. .. .. .. .. ................. .. .. .. .. .. .. .. .. .. .. .. .. ..45.

ntenna ntenn a Fabric Supports and Transmission Line Structures Structures Tension Structures Turbine Generator Foundations

APPENDIX APPENDI APPE NDIX X APPENDIX APPENDI X APPENDI APPE NDIX X APPENDI APPE NDIX X APPENDIX APPENDI X APPENDI APPE NDIX X APPENDK APPEN DK

A B C D E F G H

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WIND SNOW AND FROST DATA DA TAFO FORT RTHE HE UNITED STATES . . . . . . . . . . . . . . . . . . . . WIND. SNOW AND FROST DATA OUTSIDE OUTS IDE THE UNITED STATES FROST PENETRATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DESIGN EXAMPLES FOR LOAD COMBINATION COM BINATIONS S .......................... DESIGN EXAMPLES FOR LIVE LOADS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DESIGN EXAMPLES FOR WIND LOADS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DESIGN EXAMPLES FOR SNOW LOADS

.................

...............................

LIST OF FIGURES Fi Figu gure re 5 1 61

.................

81

Dl

E.1 F.1   F2   F3  

 

1 G.2

 

G.3

 

04

Wind Force Coefficients or Open Sheds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . alanced and Unba lanced Snow Snow Loads for for Mu ltiple Folde d Plate Roofs . . . . . . . . . . . . . . ce Load on Antenna Supports and Transmission Line Structures Design depth of building foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Design Example Example for Load Com binations Design Example for Live Live Loads cces ~ible ~ibleRoof Roof Truss Design Desig n Example for li ve Loads Loads oof Live Live Load . . . . . . . . . . . . . . . . . . . . . . . . . . . Design Example for Live Loads -Cra ne Runway esign Example for Live Loads wo-w ay Concrete Floor Slab . . . . . . . . . . . . . . . . . . esign Exam ple for Live Loads ne-w ay Concre te Floor Slab . . . . . . . . . . . . . . . . . . Design Example for Live Loads . ontinuous Beam . . . . . . . . . . . . . . . . . . . . . . . . . Desian Desia n Examole for live Loads olumn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . De Dessd Example for Wind Loa ds- Industrial Building . . . . . . . . . . . . . . . . . . . . . . . Des ~gn xample for W.nd W.nd Loads Loads ndus tr~a l uilding uilding W th Irregular Plan Plan Con figuration Design Example for Wind Loads Loads hree-Story Building (Height Less Than or Equal to 60 Feet)

G5   Gb G.7 .8. .9   H.1 H.2   H.3   H4  

...........................

. . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . .

Design Exarnp le for Wind Loads ive-Story Build ing (Heiaht Greater than 60 Feetl Design Example for W nd Loads rched Roof . . . . . . . . . . . . . . . . . . . . . . . . . . . De sgn Example tor Wmd Loads onoslope Roof Subjected to Wlnd Force . . . . . . . . . . . Des an Examp le for Wind Loads onoslope roof Subiected to Wind Pressur Pressure e . . . . . . . . . . ~ e s i g n x a m p l eor eor Win Wind d Load Loadss Cir Circul cular ar ~ a n k n Buiiding Roof Design Example for Wind Loads Loads russed russed Tower Tower on Building roof Des ign Exa mp le for Snow Loa ds able Roof . . . . . . . . . . . . . . . . . . . . . . . . . . . . Design Example for Snow Loads ultiple Gable Roof Design Example for Snow Loads . rched Roof . . . . . . . . . . . . . . . . . . . . . . . . . . . Design Exam ple for Snow Loads ean-to roof

................. .................

...........................

LIST OF T BLES Table 3-1 3-2 4-1 2

 

 

. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . ..............................

Unit We ights Design Dead Loads . . . . . . . . . . . . Minim um Uniform Live Load Requirements

.............................

Minim um Uniform Live Loads for Storage Storage Warehouses

.......................

A-I 51 GI

Dl

E-1 F-1

Gl

H.1

TM

5 - 8 0 9 - II II AF M AN 8 8 - 3 Chap. 1

CHAPTER COMBINATION COMBINATI ON OF LOADS 2-1. General The fol followi lowing ng criteria stipulate combinations of of loads to be considered in the design design of of structures and foundations. Combined loads produc e the most unfavorable effect on foundations, structural members, and connections. Accordingly the designer wil willl select the appro priate combined loads that create the most unfavorable affect when one or m ore of the contributing contributing loads are present.

specified in ACI 318. However, for earthquak e loading on concrete stru ctures, use the load combinations speci specified fied in in I M 5-809-101AFM 5-809-101AFM 8 8-3, Chap. 13. For timber wnstruction, use use the load combinations in the American Institut Institutee of Timbe r Constru ction (AITC ) Timber Constru ction

2-3 . Combine Combined d lloads oads for class B (building-type

Manua Manual l . allowable As a clarificati clari fication onw ofllthe 7requirem ent5 note that allowabl e stresses notASCE be incre ased for wind, win d, snow, or earthqu ake loads when used in conjunc tion with the ASC E oad comb inations for allowable stres s design. design. The increase is already considered in the combinations indicated in ASCE 7 The load comb ination ination factor for dea d load and one transien t load (e. (e.g. wind load) is 1.0 for allowable stres s design. design. The refo re, no increa se in allowallowable stress is permitted for dead load an d one transient load. However, the load combination factor is less than one for d ead load combined with with two or more transient loads. Whe n designing designing for wind wind uplift and overturning due to loads such as wind wind and sei seismic, smic, the minimum minimum inlieu of maximum maximum as sume d dea d loadings should be used in the load combinations.

structures) and and c lass C (sp ecial structures)

2-4. Load reduction (Rescinded)

2-2. Combine Combined d loads for class A (bridge-type structures) Th e design provisions of the America n Association of of State Highway Highway and Tra nsportation Official Officialss (AASHTO ) and the American Railway Engineering Association (AR EA ) will will be u sed for class A structures.

The combined loads for class B andclass Cstructureswill be as specified in ASC E with the foll following owing exceptions. For concrete construction, use the load combinations

Change 1

 

I

2-1

ARMY TM 5-809-1 ARMY 5-809 -1 AIR FOR AIR FORCE CE AFM 8888-3 3 CHAP. 1

TECHNICAL TECHNI CAL MANUAL

STRUCTURAL D ESIGN CRITERIA DESIGN CRITERIA LOADS

APPROVED FOR PUBLIC RELEASE DISTRIBUTION DISTRIBUTION S UNLIMITED

DEPARTMENTS DEPART MENTS OF THE ARMY AND AND THE TH E AIR AIR FORCE

 

REPRODUCTION AUTHORIZATION RESTRICTlONS

Thism anua l has bee n prepared by or for for the Government and is public property property and not subject to copy right. Reprin ts or rep ublications of this ma nual should include a credit substan tially tially as follows: follows: 'Joint 'Joint Departments o off the Army and Air Air Force , TM 5-809-1IAFM 88-3, Chapte r 1, Structural Design Criteria Criteria Loads, 2 May 1992.

 

* TM 5 809 IIAFM 88.3.

HEADQUARTERS DEPARTMENTS O F THE ARMY A N D TH E A AIR IR FORCE WushBtglor~ C 20 May 1992 1992

TECHNICAL MA NUAL TECHNICAL No . 809 1 AIR FORCE MANUAL No . 88.3, Chapter 1

.

STRUCTURAL STRUCT URAL DESIG DESIGN N CRITERIA LOADS I'antpplt CHAPTER 1

GENERAL Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..1. Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..3. 14 asis for D esign lassification of Structure s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5 Application of Design Load Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Metal Building Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Building Catego riesfor Wind and Snow Loads . . . . . . . . . . . . . . . . . . . . . . . . . .8 ..9 ind. Sno w. and Frost Dep th Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . Design Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

CHAPTER 2

COMBINATION OF LOADS General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Combined Loads for Class A (Bridge-type Structures) . . . . . . . . . . . . Combined Loads for Class B (B uild ins. -tv ~e tructures) tructures) . and class c (special structures) . . . . . . . . . . . . . . . . . . . . . . . . Load Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CHAPTER 3

. . . .

. . . . . . . . .1. . . . . . . . . . .2 . . . . . . . 2.3 . . . . . . . . .4

DEAD LOADS

. eneral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.1 Supplementary Design Dead Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 CHAPTER 4

LIVE LOADS eneral . . . . . . . . . . . . . . Supplementary Design Live Loads

CHAPTER 5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

WIND LOADS eneral

CHAPTER 6

CHAPTER 7

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5.1 ..

Supplementary Requirements SNOW LOADS

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..2

General . . . . . . . . . . . . Definitions . . . . . . . . . . Supplementary Requirements Rain-on-Snow Rainon-Snow Load s . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -4.

OTHER LOADS Earthquake Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1. Foundation Loads and Earth Pressures Pressures . . . . . . . . . . . . . . . . . . . . . . . . . . . ..2. Fluid Pressures and Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3. Thermal Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..4 . Friction Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -5 . Shrinkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-6 . elaxation of Initial Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7 Blast Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -8. uclear Wea pon Effe cts . . . . Sway Load on Spectator Stands

. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. ..7..10 .9. .

APPROVED FOR PUBIJ C REI. REI.&AS &ASI< I< I)ISTRII% IITION This manual supersedes TM 5 8 0 9 l i M M 88 774 718

 

D

92

-

1

Chap . 1

3

Chap

I d a f d 28 March I98

S

NI.IMII'III)

TM 5 809 l/AFM l/A FM 88.3 88.3.. Chap 1 1 ;~nspnq~h CHAPTER 7

OTHER LOADS Impact Due to Berthing Vibrations . . . . . . .

CHAPTER 8 .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..12

LOADS FOR SPECIAL STRUCTURES Crane Runways. Trackage. . . . and . . .Support . . . . . .. . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. ....12 Waterfront Structures Antenna Suppons and Transmission Line Structures Structures . . . . . . . . . . . . . . . . . . . . . . .3 Tension Tensi on Fabric Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-4. Turbine Generator Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..5 . REFERENCES .......................... WIND. SNOWAND FROST DATA FOR THE UNITED STATES . . . WIND. SNO W AND FROST DATA OUTSIDE THE UNITED STATES STATES FROST PENETRATION . . . . . . . . . . . . . . . . . . . . . . . . DESIGN EXAMPLES FOR FOR LOAD COMBINATIONS . . . . . . . . . DESIGN EXAMPLES FORLIVE LOADS DESIGN EXAMPLES FOR WIND LOADS . . . . . . . . . . . . . . DESIGN EXAMPLES FOR SNOW LOADS . . . . . . . . . . . . . .

APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX

LIST OF FIGURES Figu re 51 61

.

 

Wind Force Coefficientsfor Coefficientsfor Open Sheds . . . . . . . . . . . . . . . . . . . . . . . . . . . . Balanced and Unbalanced Snow Loads for for Multiple Folded Plate Roofs . . . . . . . . . . . Ice Load on Antenna Antenna Supports and Transmission Line Line Structures . . . . . . . . . . . . . . Design depth of building founda tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Design Example for Load Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . Design Examp le for Live Loads Accessible Roof Truss . . . . . . . . . . . . . . . . . . . . Design Example for Live Loads Roof Live Load . . . . . . . . . . . . . . . . . . . . . . . . Design Exam ple for Live Loads Crane Runway . . . . . . . . . . . . . . . . . . . . . . . . Design Example for Live Live Loads Two.W Two.Way ay Conc rete Floor Slab . . . . . . . . . . . . . . . . Design Example for Live Loads Loads One-way Concrete Floor Floor Slab . . . . . . . . . . . . . . . . Design Example ffor or Live Loads Continuous Beam Beam . . . . . . . . . . . . . . . . . . . . . . Design Example for live Loads Column . . . . . . . . . . . . . . . . . . . . . . . . . . . . Design Example for for Wind Loads Industrial Building . . . . . . . . . . . . . . . . . . . . . Design Example for Wind Loads Industrial Building With Irregular Plan Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Design Example for Wind Loads ThreeThree-Story Story Building (Height Less Than or E qual to 60 Feet) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Design for Wind Loads. .Five-Story . . . . . .Building .......................... (Height Example Greater than Feet) Design Example for for Wind Loads Arched Roof Roof . . . . . . . . . . . . . . . . . . . . . . . . . Design Example for Wind Loads Monoslope Roof Subjected to Wind Force . . . . . . . . Design Example for Wind Loads Monoslope roof Subjected to Wind Pressure . . . . . . . Design Example for Wind Loads Circular Tank Tank on B uilding Roof . . . . . . . . . . . . . . . Design Example for Wind Loads Trussed Trussed Tower on B uilding roof . . . . . . . . . . . . . . Design Example for Snow Loads Gable Roof . . . . . . . . . . . . . . . . . . . . . . . . . Design Example for Snow Loads Multiple Gable Gable Roof . . . . . . . . . . . . . . . . . . . . Design Example for Snow Loads Arched Roof . . . . . . . . . . . . . . . . . . . . . . . . Design Example for Snow Loads - Lean-to roof . . . . . . . . . . . . . . . . . . . . . . . . .

LIST OF T BLES Table 3-1 33-2 2 41 4-2

 

Unit Weigh ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Design Dead Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Minimum Unif Uniform orm Li Live ve Load Requirements Requirements . . . . . . . . . . . . . . . . . . . . . . . . Minimu m Uniform Live Loads for Storage Storage Warehouses . . . . . . . . . . . . . . . . . .

TM 5 809 1/AFM 88-3

CHAPTER

hap

1

1

GENERAL 1-1. Purpose This manual provides provides the stru ctural criteria for for loads to bc used in the design design and construction of of buildings buildings and other structures for the Army and the Air Force.

1-2. Scope Load criteria presented in this manual apply to designs for new military constru ction an d for modifications ooff existing buildings and other structures for the Army and the Air Force. Engin eering judgment must be used in calculating design loads. loads. The de ad loads specifi specified ed herein herein ar e for guidance only. only. T he designer must detcrm ine and all allow ow for the actual dead loads in in the structure. Th e li live ve,, wind, and snow loadings loadings specified specified herein ar e minimums. Th e design er sh o u l d d et erm i n e i f sp eci al l o ad i n g s m u st b e considered.

the above two categories, including storage tanks, cable guyed and supported structures, tension fabric structures, floating structures, and others designated as special structures in specific design manuals for these types of of structures . Class C also also covers temporary constru ction such as shoring, falsework, falsework, formwork, etc..

1-6. Application of design load criteria

Appe ndix A contains a list of references used in this this docu ment.

The design load criteria for the above defined classes of structure s wil willl be based on th e fol followi lowing ng sources. a. Class Struc Structures tures.. For Class A structures the provisions of the Am erican A ssociation of Sta le Highway and Transportation Officials (AASHTO) and American Railway Rail way Engineering Asso Associat ciation ion (AR EA ) design standar ds wil willl he used. and C b . Classes B and C Slructures. For Classes structures the applicable provisions of this manual wil willl be used. Mos t of of the crileria presen ted in this m an u al i s fo r Cl ass B (b u i l d i n g - t y p e) st ru ct u res. Selected provisions for some Class C structures (including tension fabric structures) are included i n Chapte r 8.

1-4. Bas is for design

1-7. Metal building systems

Except as modified herein, all design load criteria except seismicc are based on the requirements in ASC E 7. A SCE seismi 7 must be obtained and used in conjunction with this manual. Seismi Seismicc loads are covered in TM 5-809-1 5-809-101AFM 01AFM 88-3 Chap. 13.

These a re bui buildin ldings gs which which are supplied as a complete complete building unit. unit. They are to be the product of one metal metal building supplier . As discussed below, below, Meta l Building Building Systems may be either S tand ard M etal Building Sys Systems tems or Speciall Pu rpose Metal Building Specia Building Syste Systems. ms. a. Stattdard Metal Building Systems. Standard Metal Building Systems are Metal Building Systems that are designed in acc ord anc e wit withh Low Rise Building Systems Manual by the Metal Building Building Manufacturers Associa Associa-tion (MB MA ). Th ese buildings typicall typicallyy have an cav e h ei g h t eq u al t o o r l ess t h an 20 feet, or have r ig i g id i d f r a m e s p a n s l e ssss t h a n o r e q u a l t o 8 fect . However, a s discussed below, M etal B uilding Sys Systems tems m may ay b e c o n s i d e r e d S p e c i a l P u r p o s e M e t a l B u il i l d in in g Systems due to factors other than size. Typical examples examples o f S t a n d a r d M e t a l B u i l d i n g S y s ttee m s i n c lluu d e warehouses, pump houses, and servicing facilities. Load combinations and procedures for developing the design loads for Standard Mclal Building Systems will follow the criteria iinn the MBM A publication Low Ris Risee Meta l Buildin Buildingg Systcms Manual . The followi following ng data will be used in developing design loads for Standard Meta l B uilding Systems: Systems: I) Dead loads, floor live loads, basic wind speeds, and grou nd snow lloads oads wi will ll be in in accorda nce wit withh the

1-3. References

1-5. Classification of structures Th e design design load criteria in this manual is present presented ed for thre e classes of struct ure s as follows: follows: a . C l a s s A Bridge-Type Structures). C l a s s A structures are those to which standard specifications for bridge-type bridge-type structures ar e applicabl applicable. e. Included are bridges, trestles, viaducts (railway, highway, and pedestrian), and their components (beams, girders, columns, tension members, trusses, floors, bearings), certain weight-handling equipment, and piers carrying moving loads, as delineated in specific design manuals for these types of structures. b . Clas s B Building-T ype Slruclures Slruclures). ). C l a s s B structures are those to which standard specifications for building-type structures ar e applicable. Typical ex am p l es o f Cl ass B st ru ct u res are ad m i n i st rat i o n buildings, warehouses, andSlruclures). com missaries. C Special Class C covers c . Class special structures not readily classified in either of

 

CH PTER DE D LO DS

3 1. General Except as modified herein, the criteria for dead loads wi will ll be as specified in in ASC E 7. 3 2. Supplementary design

section of ASCE 7. Unit weights are given in table 3 1. Design dead loads for assembled elements ooff construction are given given in table 3-2. Th e dead loadings for rei reinforced nforced hollow holl ow masonry uni unitt construction should be based on the 5 809 3lAFM

dead loads

Design dead loads presented in this manual wi willl supplement the design dead loads tabulated in the commentary

Table 3-1. Unit weights1 Material

Metals, alloys, ores: Aluminum, cast, hammered Gold, cast, hamm ered Gold, bars, stacked Gold, coin in bags Iron, spiegeleisen Iron, ferrosilicon Iron ore, hematit Iron ore, hematite in bank Iron ore, hematite loose Iron ore, limonite Iron ore, magnetite Iron slag Magn esium, alloys Manganese Manganese ore, pyrolusite Mercury Monel meta Nicke Platinum, Plati num, cast, hamm ered Silver, cast, hamm ered Silver bars, stackcd Silver coin coin in bag s Timber, US . seasoned: Mo isture con tent by weight weight:: (Seasoned timber, 15 o 20 green timber, timber, u p to 50 ) Cedar, white, red Chestnut Cypress Elm white Hickory Locust Maple, hard

 

3.

weights given given in TM the dead loads 88-3,inChapter In case of a conflic conflict t between this manual and ASCE 7, the higher value should be used unless the designer has information or guidance.

Table 3

4-inch clay brick, hi h absorption 4-inch clay brick, medium absorption 4-inch clay brick, low absorption 4-inch sand-lime brick 8-inch clay clay brick, high high absorptin absorpti n 8-inch clay clay brick, brick, medium absorption absor ption 8-inch clay clay brick, low absorption absorpti on &inc &inch h s a nd -l ie bri brick ck 12 112-i 112-inch nchclay brick, high absorpt abs orption ion 12 112-in 112-inch chclay brick, medium absorpti absorption on 12 ID-inch ID-i nch ccla la;; brick, low low absorpt abs orption ion 12 112-inch 112-inch sand-lime brick 12 112-i 112-inch nchcon concret cretee brick, heavy heavy aggregate ag gregate 12 112112-inc inch h concrete concre te brick, light aggregate aggreg ate 17-inch clay brick, high absorp ab sorption tion 17-inch 17-in ch clay clay brick, medium absorption absorpt ion 17-inch clay brick, low absorption absorp tion 17-inch sand-lime sand-li me brick 17-inch 17-in ch concrete brick, heavy heavy aggregate 17-inch 17-in ch concrete brick, light light aggregate 22-inch clay brick, high absorption 22-inch 22-in ch clay brick, brick, medium absorption absorpt ion 22-inch clay brick, low absorption 22-inch 22-in ch sand-lime brick 22-inch 22-in ch concrete conc rete brick, heavy heavy aggregate 22-inch 22-in ch concrete brick, light aggregate 4-inch brick, Cinch load-bea l oad-bearing ring structural structur al clay tile backing 4-inch brick, 8-inch load-bearing structural structur al clay tile backing 8-inch brick, brick, 4-inch load-bearing structural clay tile backing 8-inch load-bearing structural clay ti tile le 12-inch 12-in ch load-bearing load-bearin gstructural structur al clay tile 2-inch furring tile, one side si de of of masonry wall, add to above figures

3-inch clay tile 4-inch clay tile 6-inch clay tile inch clay tile 10-inch clay clay tile 2-inch facing tile 4-inch 4-inch fac facing ing tile 6-inch facing tile 2-inch gypsum block 3-inch gypsum block 4-inch gypsum block

 

2.

esign

ead

~oads'

Table 3-2. Desi Design gn Dead ~o ad s (co (conti ntinued nued))

5-inch gypsum block 6-inch gypsum block 2-inch solid solid plaster Cinch solid plaster Cinch hollow hollow plaster Glass block masonry: Cinch glass-block glass-block wall wallss and partiti p artitions ons Asbestos hard board corrugated), corrug ated), per 11Ci 11Cinch nch of thickness Stone, Cinch Split furri furring ng til tile: e:

oof and

all Coverings

Cold applied sheet membrane membrane and a nd stone ballast Corrugated iron Decking non wood) per inch of thickness: Concrete plank Poured gypsum gypsum Vermiculite concrete Glass: Single streng th Doublestrength strength Plate, wired or sstructu tructural, ral, 118-inc 118-inch h Insulating, double 11 1188-in inch chplates wlair space sp ace Insulating, double 11 1144-inc inch h plates wlair space Insulation, per inch of thickness: Expanded polystyrene polystyrene Extruded Extrude d polystyrene Loose Urethane Cork Batts and blankets Insulating concrete Marble, interior, per inch Metal deck 22 gauge)

 

see mfr. 2

Table 3 Roof and

all Coverinns

2. Design Dead

~ o a d s (conti (continued nued))

(Conr d)

Plastic acrylic 114-inch Porcelain enamel on sheet steel Stucco 718-inch Terra cotta tile

his table supplements the dead loads tabulat tabulated ed in ASCE 7. For reinforced hollow masonry unit construction constr uction thc dead loadings should be based b ased on tthe he weights given given in TM 5 809 3lAFM 88-3 Chapter 3. For masonry masonry constr construction uction add 5 psi for each face plastered.

 

TM 5-809-1IAFM 88-3

Chap. 1

CHAPTER 4 LIVE LOADS 4 1. General Except a s modified herein, the criteria for live live loads will will be as specifie specifiedd in ASCE 7.

4-2. Supplementary design live loads Th e followin followingg live live load requirements will will supplem ent the liv livee load criteria in ASCE 7: a. Minimum De Desi sign gn Live Loads. Minimum uniformly uniformly distributed live live loads a re given in table 4-1. Uniform live loads for stora ge warehouses a re given in table 4-2. In case of a conflict between the live live loads in this manual and ASCE 7 the higher value should be used un less the designer has other information or guidance. b. Provision ProvisionforParh forParh tions. In buildings buildings where partitions partitions are subject to rearrangement, the following equivalent load may be used as a suggested minimum load: Pa rti tio n We igh t (pound per li lineal neal f w t o f partitio partition) n)

F pivalent Un ifo rm Lo ad (pounds per square foot)

20 Use actual concentrated linear load

Note that the above loads may be smaller than the act u al l o a d s f o r o n e- way jjoo i sstt sy st em s w h e r e t h e partition runs parallel to the joist. joist. When designing designing these floor systems, the designer must considcr the actual weight. of the partition directly over the joist. Some distribution of partition loadings to adjacent floor joists or beams may be appropriate when the floor construction is a concrete slab.

 

c. Conce ntrated Live Loa ds. Th e fol followi lowing ng concentra ted loads must be cons idered in addition to the dead loads: I) Accessible, open-web steel joists supporting roofs over manufacturing, commercial storage and warehousing, and commercial garage floors will be designed to support the uniformly distributed live load prescribed prescri bed in ASCE 7 in addition to a concentrated live load of of 800 pounds. For all other occupancies, a load of 200 pounds will will be used instead ooff 800 pounds. Th e concentrated live load will be placed at any singlc panel point on the bottom chord, and will be located so as to produce the maximum stress in the mem ber. 2 ) As a clarification of th e ASCE 7 requirements, accessible roof trusscs or othcr primary roof-supporting mem bers wil will be dcsign cd to sup port the concentratcd livc livc load prescribed in ASCE 7 in addition addition to the dead load and the uniformly distrib utcd roof livc livc load. (3) Mem bers such as floor decking, roof deckingand rafters will be designed to support the uniformly distributcd live live loads prcscribcd in ASCE 7 or a concentrated live load of 200 pounds, whichcvcr whichcvcr produces the greater stress. Th e concen trated li livc vc load wi willl be assumed to be uniformly unifor mly distri distributed buted over a 12- by U-inch square areaand wi will ll be located so as to produce the m aximum st stress ress iinn the member. (4) Boiler rooms will be designed to support the uniformly distributcd livc loads prescribed in ASCE 7 or a 3000 pound conccntrated livc load, whichever produccs the greater strcss. strcss. Thc concentrated liv livee load will be applied over an area of 2 5 feet square (6.25 sq ft) (in arcas outside the limits of the boilers) and will be located so as to produce the maximum stress. live loads d Impact Loa ds on Escalalors. Escalator live will will be inc rease d by 15percent for impact.

TM 5-809-l/A 5-809-l/AFM FM 88-3

Chap 1 Table 4-7. Minimum Uniform Live Load ~equirements

Occupancy or Use

Live Load psfl

Bag Bag storag storagee Barber shop Battery charging room Car wash rooms Canteens, Canteen s, general area Canteens, Cantee ns, general area Catwalks, Catwalk s, Marine Chapels: Aisles, corridors, and lobbie Balconies Fixed Fix ed seats Offices and miscellaneous rooms Day rooms Drawing Drum fillings Drum washing File rooms (drawing (dra wing files) Galleys: Dishwashing rooms (mechanical) Provisi Prov ision on storage (not refrigerate refr igerated) d) Galley Preparation room: Meat Vegetable Garbage storage rooms Genera Gen erator tor roo m Guard hou house se Hangars Latrines Linen storage Lobbies, vestibules and large waiting rooms Locker rooms Lounges, Lounge s, day room rooms, s, small recre recreation ation are areas as Mechanical Mechani cal equipment rooms (general) Mechanical Mechani cal room (air conditioning) Mechanical Mechani cal telephon telephonee and radio equipment rooms Mess halls Post offices: General area Work rooms Power plants Promenade roof Pump houses Rcreation rooms

4 2  

7

See ~ootnote 7

TM 5 809 1/AFM 88-3

Table 4-1. Mi Mini nimum mum Unifo Uniform rm Live Live Loa Load d ~ e ~ u ir e m e n ts continu continued) ed)

ive

Occupancy or

Use

(Cont d)

Receiving rooms radio) radi o) including roo rooff areas are as supporting antennas and electronic equip equipment ment Refrigeration storage rooms: Dairy Meat Vegetables Rubbish storage rooms Scrub decks Shops: Aircraft utility Assembly and repair Blacksmith Bombsight Carpenter Drum repair Electrical Engine overhaul Heavy materials assembly Light materials assembly Machine Mold loft Plate except storage areas) Public works: First floor Sheet metal Shipfitters Structural Upper floors floors Schools shops) Sidewalks Sidewa lks not subject to trucking Showers and washrooms Store Sto re houses: Ammunition one story) Dry provisions Fuse and detona detonator tor one story) High explosives one story) Inert materials materials one story) Light tools Paint and oil one story) Pipe and metals one story) story) Pyrotechnics one story) Smalll arms one story) Smal

 

Load fpsfl

hap

1

TM 5-809-IIAFM 88-3

Chap 1

Table 4-1. Minimum Unifor Uniform m Li Live ve Load ~eq uirem ents (continued)

ive

Occupancy or Use (Cont d)

Load PS~)

Subsistence buildings Torpedo one sto story) ry) Tailor shop Telephone exchange rooms rooms at locations subject to earth tremors, tremors, gunn ery practice or other conditions causing unusual vibrations Terminal equipment buildings all areas othe r than stairs, ttoilets, oilets, and washrooms) is table supplemen ts the live loads tabu lated in ASCE 7.

he designer must de termin e the wheel loads of of aircraft and im pact factors.

 

15

TM 5-809-1/ 5-809-1/AFM AFM 88-3

Table 4

2.

Minimum Uniform Uniform Live Loads for Storage warehouses Weigl~lper Cubic foot of Space lb)

Height of Pile Ifl

Weigltl per Sq. FI 4 Floor lb )

Building Buildi ng materials: Asbestos Bricks building Bricks fire clay clay Cement portland Gypsum Lime and plaster Tiles Woods bulk

5 45

3 27

75 72

to 1

5

45 5

432

to 63

3

53

265

5

3

45

27

Alum pearl in barrels Bleaching powder in hogsheads

33

198

31

1 2

Blue vitriol in bar barrels rels Glycerine in cases Linseed oil oil in barrels Linseed oil in iron drums Logwood extra extract ct in boxes Rosin in barrels Shellac gum Soaps Soda ash in hogsheads Soda caustic in iron drums Soda silicate in barrels Sulphuric Sulphu ric acid Toilet articles Varnishes

45 52

226 312

36 45

216

7

35

Drugs paints oil:

White lead pastc in cans White lead dry Red lead and litharge dry

18

48

288

38

228

5

3

62

167

88

294

53 6

1

35

21

55

33

174

86

132

61 4 8 495

Dry goods co cotto tton n wool: wool:

 

Burlap in bales Carpets and rugs Coir yarn in bales Cotton in bales American Cotton Cott on in bales foreign Cotton bleached goods in cases Cotton flannel in cases Cotton sheeting in cases Cotton yarn yarn in cases

43

258

3

18

25

2

Excelsior compressed

22

152

33

264

3

24

4

32 8

12 3

224 96 184

Chap 1

TM 5-809-IIAFM 88-3 Chap. 1

Table 4 2. Minimum Uniform Live Loads for for Storage warehouses wa rehouses1 1 (continued (continued))

Material Materi al (Cont d)

Weightper Cubic Foot of Space (lb)

Height of Pile .

Hemp, Italian, compressed Hemp, Manila, compressed Jute, compressed Linen damask, in cases Linen goods, in cases Linen towels, in cases Silk and silk goods Sisal, compressed Tow, compressed Wool, in bales, compressed Wool, in bales, not compressed Wool, worsteds, in cases

ft)

.

Weigh Wei ghtt pe perr Sq FI. i~f Floor fib

176 240 328 250 240 240 360 168 232 104 216

Groceries wines iquors:

Beans, in bags Beverages Canned goods, in cases Cereals Cocoa Coffee,, roasted, Coffee roaste d, in bags bags Coffee,, green, in bags Coffee Dates, in cases Figs, in cases Flour, in in barrels Fruits, fresh Meat and meat products

320 320 348 360 280 264 312 330 370 200 280 270

Mil Milk, k, condensed Molasses, in barrels Rice, Ric e, in bags Sal soda, in in barrels barre ls Salt, in bags Soap powder, in cases Starch, in barrels Sugar, in in barrel barre l Sugar, in cases Tea, in chests Wines and liquors, in barrels

300 240 348 230 350 304 150 215 306 200 228

Hardware:

Automobile parts Chain Cutlery Door checks

 

320 600 360 270

TM 5-809-1IAFM 88-3 Chap 1 Table 4

2.

Minimum Uniform Live Loads for Storage warehouses

Material lcont d)

Weight per Qtbic Foot of Space (lb)

Height of Pile

fi)

Electri cal goods and Electrical machinery Hinges Locks, n cases, packed Machinery, Machine ry, light light Plumbing fxtures Plumbing supplies Sash fasteners Screws Shafting Shafti ng steel Sheet tin, in boxes Tools,, small, metal Tools Wire cables, on reels 425

Wire, insulated copper, in coils Wire, galvanized iron, in coils Wire, magnet, on spools Miscellaneous: Automobile tires Automobiles, uncrated uncrate d Books (solidly packed) Furniture Glass and chinaware, n crates Hides and leather, in bales Leather and leather goods Paper, newspaper, and strawboards Paper, writing writing and calendared Rope, in coils Rubber, crude Tobacco, hales his table supplements the li live ve loads tabulated tabula ted in ASCE 7. Tabulat ed live Tabulated live loads are for stack storage stora ge wareho warehouses. uses. For rack storage st orage warehouses, the designer must consider the higher concentrate concentrated d loads fr from om the racks.

 

(continued)

Weight per Sq

Ft

Floor Vb)

TM 5-809-11AFM 88-3

hap 1

CHAPTER

Wl N D LOADS 5 1. General Except a s modified herein the criteria for wind loads will will be as specified specified in ASC E 7. 5 2.

Supplementary requirements

The following requirements supplement or modify the criteria for wind loads given given in AS CE 7 a Basi Basicc W n d Spe Speed ed Site-specific wind data for major cities and installations in the United States and

outside the United Sta tes are tabulated in appendices B and C respectively. Note that this data wi will ll he used in lieu of the wind dat a tabula ted iinn ASCE 7. For locations not tabulated in Appendices B or C the basic wind speed in in ASCE 7 may be used. b Wirtd Pressures on Open Sheds The wind force coefficient for open sheds is given iinn figure 5 1. c Minintum Design Wind Pressures on Interior Partitions T h e m i n i m u m d e s i g n w i n d p r e s s u r e o n interior partitions shall be five psf normal to the partition and its suppo rting parts; ii.e .e.. studs.

/L=0.20

FORCE COEFFICIENTS, C f FOR ARCHED ROOFS ON OPEN S H E D S

Q ,

:

90 IND

loO* WIND

F

F :

FORCE COEFFICIENTS. C FOR GABLE ROOFS ON OPEN SHEDS

Figure 5

1.

Wn df or ce coe coeffi fficci ccintt nttsfor sforopen open sheds

 

TM 5-809-1IAFM 88-3

Chap 1

6 4. Rain on snow load s

The recommendations for establishing the magnitude of rain on snow surcharge loads contained contained n SCE 7 stand

 

ard and commentary will bc considcrcd in structural desien. ~

TM 5-809-IIAFM 88-3 Chap 1

CHAPTER 7 OTHER LOADS 7 1. Earthquake loads Criteria for dcveloping dcveloping earthq uake loads for buildings buildings and other structur es are presen ted in TM 5-809-10lAFM 5-809-10lAFM 88-3, Chap . 13, and T M 5-809-10-1 5-809-10-11AFM 1AFM 88-3 Chap. 13, Sec. A.

c Piping To accommodate changes in length due to t h erm al v ari at i o n s, p i p es freq u en t l y are h el d at a singlee ppoint singl oint.. If the pipes ar e he held ld at more than than one point, thermal forces must be included in the design of suppor t framing.

7 2. Foundation load s and earth pressures

7 5. Friction forces

Standards for determining foundation loads, earth pressures, and foundation displacement and settlement are contained in TM 5-818-1 5-818-11AFM 1AFM 88-3, 88-3, Chap. 7; NAVFAC DM-7. DM7.01 01 and N AVF AC DM-7.02.

a Sliding Plalcs Use 10 pcrccnt of the dead loa react i o n s fo r cl ean b ro n ze o r co p p er-al l o y sl i d i v : plates in new condition. Consul Consultt manufacturer frr special systems. b Rockers or Rollers U s e 3 percent of the dea.' load reactions when employing unobstructed rockers rollers. c Foundations on Earill Criteria for foundations on ear th ar e contained in N AVFAC DM-7. DM-7.01 01.. d Olher Bearings Use the Standard Handbook fo forr Mech anical Engineers for coeffi coefficients cients of fricti friction. on. Base the forces on de ad load reactions plus any appli applicable cable

7 3. Fluid pressures and forces Consider the followin followingg fluid fluid pressures and forces in structural design: a Hydrostatic Pressur Pressuree Use the hydrostatic pressure criteria criteria in NAVFA C DM-7.02. For structurcs loaded with buoyant forces, the following additional resistance t o gflotation u i d a n c eshould w i ll wi ll not b e ubes eused d : Aunless d h c s ithe o n designcr knows that the buoyant forces will be short term and the adhesion wil willl not be los lostt du e to c reep. b Wave and Currenl Forces Wave forcc criteria ar e described in MIL-HDBK-102511, MIL-HDBK-102514, NAVFA C DM-25.05, and M IL-HDBK-1025 IL-HDBK-1025lG. lG.

7-4.

Thermal forces

7 6. Shrinkage Investigate arches, liuted-fied spans, indeterminatc and similar structu res for strcsses induced by shrinkage and rib shortening.

7 7. Relaxation of initial forces

Provide for stresses or expansiodcontraction resulting from variatio variations ns in temperatur e. On cable struct structures, ures, consider changes in cable sag and tension. Determine the rises and falls in the temperature for the Iocalitics in which structures ar e built. built. Establish these rises and ffall allss

Cable structures, fabric structurcs, etc. are inst install alled ed under initial tension which tend s to slackenwith time. Thiscffcct should be considered by handling the resulting stresses or providing the means to readjust the tension.

from assumed temperatures at times of erection. Consider the lags between air tem perature s and interior tempe ratures of massive massive concrete memb ers or structures. a Temperatur Temperaturee Ranges Refer to the AASHT O design standard for the ranges of temperature for exterior, exposed elements. Thermal ExpansionIContraction in Building b Systems T h e d e s i g n o f f r a m i n g w iitt h iinn e n c l o s e d buildings seldom need consider the forces or expans i o n l c o n t r a c t i o n r e s u l t i n g f r o m a v a r i a t i o n in in temper ature of more than 30 degrees to 40 degrees. Thc effects of of such forces o r expansionlcontraction expansionlcontraction often are neglected in the design of buildings having plan dimensions of 250 feet or less, although movements of 114 to 318 inch can develop and may be important for

7 8. Blast loading

buildings constructed with long bearing walls parallel to direction of movement.

 

long-time live load reactions.

See T M 5-1300lAFM 5-1300lAFM 88-22 and TM 5-855-1. 5-855-1.

7 9. Nuclear weapon weapon effects effects See T M 5-858 5-858 Series. Series.

7 1 0. Sway load on spectator spectator stands Provide for a lateral load effcct equal to 24 pounds pcr linear foot of seating applied in a direction parallel to each row of seats and 10 pounds per linear foot of seating applied in a direction perpendicular to the row of seat s. A p p l y t h ese t w o co m p o n en t s o f sw ay l o ad simultaneously. The sway load on spectator stands is

TM 5-809-1IAFM 88-3

Chap 1

considered to be concurrent with a wind load generated by a wind velocity equal to one-half the velocity of the design wind load, but not more than 50 miles per hour.

7 11. Impact due to berthing See MIL-HDBK-102511 for evaluation of of lateral an d longitudinal forces due to berthing.

7 12. Vibrations Vibrations are induced in structures by reciprocating and Vibrations rotating equipment, rapid application and subsequent rcmoval of of a load, or by by other mean s. Vibrations take place in flexural, extensional, or torsional modes, or any combination of the three.

 

a Resonance Resonance occurs when the frequency of an applied dynamic load coincides with a natural frequency of of the supporting structure. In this conditi condition, on, vibration deflectio ns increase progressively to dangerous propo rtions. Prevent resonance by insuring in the design that thc natural frequency of a structure an d the frequen frequency cy of load application d o not coincide. For the reaction of b Foundafion Considerafions different types of soils to vibratory loading and the determination of the natural frequency ooff th e foundationsoil soil system see TM 5-818-1IAFM 5-818-1IAFM 88-3 Chap.7; NAVF AC DM-7.0 DM-7 .011 and N AVFA C DM-7.02. c. Collateral Reading For further information on vibratory loading, see Vibration Problems in Engineering a n d D y n a m i c s o f F r a m e d S tr tr u c t u r e s by Timoshenko, S.

TM

CHAPTER

5 809 1IAFM 88-3 hap.

8

LOADS OR SPECIAL STRUCTUR ES and supports 8-1. Crane run wa ys trackage, and Loadc riteriaforcr anc runwa runway>, y>, racka age, andsupports arc discuss ed in ANSI M H 27.1, ASMF: R30. R30.2, 2, ASM E B30.11, B30.11, ASME B30.17, and Crane Manufacturers Association of America (CM AA ) No. 70 and No. 774. 4.

8-2. Waterfront structures Load criteria for piers, piers, wharves, and waterfront structures are discussed in detail in MIL-HDBK-102511, MILHDBK-10,2514, NAVFAC DM-25.05, and MIL-HDBK102516.

8-3. Antenna supports and transmission line structures Consider the following loads in the design of antenna suppor ts and trans transmissi mission on line struct structures: ures: a. Dead Load. b

c. Live WindLoad Load.on Stoinvays artd Walkways. figuree 8 1 to determine the thickness thickness d . Ice Load. Use figur of ice covering on guys, condu ctors insulation, and framing suppor ts. Consult cognizant field agenc ies for determ ining the ice load in locations that may have severe icing conditions, tion s, such as coastal and waterfront ar eas that a re subject t o h eav y sea sp ray o r h i g h l o cal p reci p i t at i o n . o r mountainous area s that are subject to in-cl in-cloud oud icing. icing. e. Thermal Changes. Consider changes in guy or cable sag or both due to tem perature changes. f Pretension Forces. Consider pretension forces in guys and wires as p er MIL-HDBK-100213. g. Brokzn Wir es. Design support structures to resi st t h e d y n am i c effect s an d u n b al an ced p u l l o r t o r s i o n r e s u l t i n g f r o m a b r o k e n g uuyy . S u p p o r t structures should also be designed to survive broken transmission wires. h. Erection Erection Loa ds. Temporary erection loads are important in the design of antenna supports and transmissi trans mission on line structures. structures. S ee the Electronic Industries Association Associat ion (E IA) publication EIA-222-D for fur ther information on load criteria for steel antenna towers and antenna supporting structures. For further information information on design loads on transmission lines, rcfer to the American Society of Civil Engineers (ASCE) publication "Guidelines "Guidel ines for Transmissi Transmission on Line S tructural Loading" Loading"..

8 4. Tensio Tension n fabric structures Design cr iter iaw itte n specifi specificall callyy for ttensio ensionn fab ricstructures does not exist, at present. Due to the complicated geometry of tension fabric structures, engineering judg-

 

ment must be used in dctcrmining the design wind and snow loadings on these type structures. ASC E 7 criteria on wind and snow loadings may may he used onl onlyy i the geometry is similar to tthat hat co vered in the criteria. criteria. Refe r to t h e N at i o n al Bu i l d i n g Co d e o f Can ad a fo r fu rt h er information on load forore, geometrical shapes covered in ASCE Furtherm wind-tunnel test tests, s,not as 7. criteria discussed in ASCE 7 may bc used in determining thc designn wind or snow loadings desig loadings on unusual gc gcomet omet c shapes. As discussed earlier, the init initial ial tension tension tension fabric fabric structures ma mayy slacken slacken wit withh time. TI ,;, effect must be considered in dcsign.

generator foundations 8-5. Turbine generator Con sider the following loads in dcsign of turbine gene rator foundations. a. Verlical Loads. For component weights of the turbine generator and distribution of these weights, refer to the manufacturer's machine outline drawings. In m acrease c h i n e s mwach i t hi nsep cl oc dads s u 2p5 t op ercen a n d ti nfo c lru di m i npgact 1 , 8fo 0 0r revolutions per minute (rpm) and 50 pcrccnt for those with higher speeds. Consider additional loads (such as auxiliary equipment, pipes, and valvcs) supported by the foundations. b Steam CondenserLoad. Determ ine the condenser or vacuum load from the meth od of mounting the condenser. c. Tor que Lo Loads. ads. Tor que loads loads are produced by magnetic reactions of electric motors and generators w h i ch ch t en d t o ret a rd ro t at i o n . U se fi fivv e ttii m eess tthh e normal tor que in the design design of the supporting mcmbers. For turbine generators, normal torquc ma mayy be computed by the following equation : To rq ue (ft lb)

7,040 7,040 (kw) I rpm

(eq 8-1)

d. Horizontal Horizontal Loa ds otl Supp on Frurnbl Frurnblg. g. I ) Long itudinal Force. Assum e a longitudi longitudinal nal force of 20 to 50 percent of the machine weight applied at the shaft centerline. 2) Transverse Force. Assume a transverse transverse forcc at each bent of 20 to 50 percent of the machine weight suppor ted bbyy the bent and applied at the machine centerline. 3) Longit Longitudinal udinal and Transvcrsc Forces. Do not a s s u m e l o n g i t u d in in a l a n d t r a n s v e r s e i o r c e s a c t simultaneously. e. Horizonta l Forces Within Slruclur Slruclure. e. Assume h o ri zo n t al fo rce s t o b e eq u al i n m ag n i t u d e t o tthh e v ert i cal l o ad s o f t h e g en erat o r st at o r an d t u rb i n e exhaust hood a s given on the manufacturer's machine outline drawings. Apply these forces at the top flange

TM 5 809 1IAFM 88-3, Chap 1 of the supporting girders; assume the forces to be equal and opposite.

f External Piping Make provisions to withstand loads from pipe thrusts relief relief valves and the weig weight ht of piping and fittings.

LO DING DISTRICT

OF ICE tm 1

HE VY MEDIUM LIGHT

NONE

b) THICKNESS OF ICE COVERING

a) GEOGR PHIC DISTRIBUTION

Figure 8 1. Ice load on antenna support and transmission line structures

 

TM 5-809-1/AFM 88-3 Chap

PPENDIX REFERENCES

Government Pub lications lications epariment of

efense

Steel Structures

MIL-HDBK-100213

Piers and Wharves Seawalls Bulkheads and Quaywalls General C riteria for Waterfront Construction eparlmenls of the Amy Navy and

ir

Force

TM 5-809 5-809-31 -31 AFM 88-3 Chap. 3

Mason ry Structural Dcsign for Buildings

TM 5-809 5-809-101 -101 AFM 88-3 Chap. 13

Seismic Design for Buildings

TM 5-809 5-809-10-1 -10-111 AFM 88-3 Chap.13 Sec.A

Seismic Design G uidelines for Essential Buildings Buildings

TM 5-818-11 AFM 88-3 Chap. 7

Soils and Geology: P roce dures for for Fou ndatio n Designs of Buildin Buil dings gs and O ther S tructures Arctic and Sub-Arctic Construction Calculation Mcthods for Determination of Depth of Freeze and T haw in Soils Fundam entals ooff Protective Desi Design gn for Conventional Conventional Wea pons

TM 5-858 Series

T M 5-1 5-13001 3001 AFM 88-22 88-22

 

Designing Facilities to Resist Nuclear Weapons Effects to Resist the Effects of Accidental E xplosions

Structures

AVFAC DM-7.01

Soil Mecha nics

AVFAC DM-7.02

Foundations Foundati ons and Earth Structures

NAVFAC DM-25.05

Ferry Terminals and Small Craft Berthing Facilities

NAVFAC DM-38.01

Weight-Handling Weight-Handli ng Equipm ent

TM 5-809-IIAFM 88-3 Chap. 1 Nnngovernrnent Publications AmericanAssociation ofStateH ighwa yand Tr Transport ansportation ation Official Officialss AA SH TO ), 444North Capitolstreet NW, Washington, DC 2000 200011

Stan dard S pecifications pecifications for Highway Bridges (1989) American Concrete Concrete Insti Institute tute AC I), Box 19150, Red ford Station, Detroit, Michigan 4821 482199

ACI 318-89

Building Cod e Requirements for Reinforced Concrctc Building (1989)

American NationalStandards Insti Institute tute AN SI) , 1430 Broadway, New York, NY 10018

ANSI MH 27.1

Specifications for Underhung Cranes and Monrail Systems (1981)

American Institute Institute o Timber Constru Constructi ction on AIT C), 333 West Ham pton, En glcwood, Colorado 80110

Timber Construction Manual (1985) American Sociely of Civil Engineer Engineerss ASC E), 345 East 47th Street, Ncw York, NY 10017

A S CE

7 88

Minimum Design Loads for Buildings Buildings and Oth er Slructures (1990) ASC E Publ Publication ication Guidelines for Transmission Line Structural Loading (1984)

American Sociely Sociely ooff Mech Mechanical anical En@nee En@neers rs ASM E), 345 East 47th Strcct, New York, NY 10017

Overhead and Gantry Crancs Crancs (Top Runn ing Br Bridgc, idgc, Singlc, or Multiple G irder, To p Run ning Trolley Hoist) (1990) AS ME B30.11

Monorails Monorai ls and U ndcrhun g Crancs (1988) Ovcrhcad and Gantry Cranes (T op Run ning Bridgc Bridgc,, Singlc Girder, Underhu ng Hoist) (1985) Singlc (1985)

Americat Ameri cattt Railway Railway Engineeri EngineeringAssoci ngAssocialio,~ alio,~ A R M ) , 000 L Strcct NW., Washington, D C 20036

Manual for Railway Railway Engineering, Volumcs I and

(1989)

200066 Electronicc Industries Electroni Industries Assoc ialion ETA), 2001 Eye Street NW., Washington, D C 2000 Structural Standard s for Steel Structural Steel Antenna Towers and Anlcnna Suppo rting Structures (1986) Metal Building Manufacturers Manufacturers Assoc iation

M B M j 1230 Kcith B uilding, Cleveland, Oh io 44 4411 15

Low Risc Building Systems Man ual (19 (1986, 86, wit withh 1990

supplement)

 

TM 5-809-1/AFM 88-3 Chap 1 NaiionalResearch Council of Canada, Ottawa , Ontario, Canada

National Building Cod e of Canada (1990) BuildingFoundation Desi Building Design gn Han dbook K . Labs, J Carmody, R. Sterling, L. Shen, Y. Huang, D . Parker, Oak Ridg e National Lab Rep ort ORNL/Sub/ -7214311 (May 1988

York StandardHan dbook forMechani forMechanica1 ca1 Engineer Engineers, s, McGraw-Hill Book Co ., New York, New York 8th Edition, 1978. Mbration Problems in Engir Engirteering teering ,S Timoshenko, D . Van Nostrand Co., Inc., New York, New York 1 2 4th Edition, 1974.

 

TM 5-809-1IAFM 88-3

ocation KENTUCKY Fort Campbell Fort Knox Lexington Louisville LOUISIANA Barksdale AFB Barksdale Fort Polk Lake Charles Louisiana Louisi ana AAP New Orleans Shreveport MAINE Bangor Brunswick Loring AFB Portland Winter Harbor MARYL A ND Aberdeen Proving G d Andrews AFB Annapolis Baltimore Fort Detrick Fort Meade Fort Ritchie Lexington Lexingt on Pa rk MASSACHUSETTS Boston Fort Devens L.G. Hanscom Field Field Otis AFB Springfield Westover AFB MICHIGAN Detroit Kincheloe Kinchel oe AFB Sawyerr AFB K.I. Sawye Selfridg Self ridgee A FB Wurtsmithh AFB Wurtsmit

 

Groun d Snow Snow ~ o a d ~ psf)

Frost penetrationa in)

Basic Wind Speedb mph)

Chap 1

TM 5-809-IIAFM 88-3 Chap 1 Ground Snow hadb psf)

ocation MINNESOTA Duluth Minneapolis MISSISSIPPI Bilold Columbus AFB Jackson Keeslerr AFB Keesle Gulfport Meridian Mississippi Missi ssippi AAP MISSOURI Fort Leonard Wood Kansas City Lake City Cit AAP r AFB Richar Richards dsyGebau St. Louis Whitcman Whit cman AFB MONTANA Helena Malmstrom AFB Missoula NEBRASKA Cornhusker Hastings

P

Lincoln Olfutt AF B Omaha NEVADA Carson City Fallon Hawthorne Las Vegas Reno Stead AFB NE NEW W HA M PSHIR E Hanover Pease AFB Portsmouth

 

Frost Penetrationa in)

Basic Wind Speeda hph)

TM 5-809-1/AFM 88-3 Chap 1

Location

Grou nd Snow ~ o a d ~ P~O

Frost P e n etratio na 4

NEW JERSEY Atlantic Cit Cityy Bayonne Cape May Fort Monmouth McGuire AFB Picatinny Arsenal NEW MEXICO Albuquerque Cannon AFB Holloman AFB Kirtland AFB Sacramento PK Wh ite Sands MR NEW YORK Albany Buffalo Fort Drum Griffis AFB New York City Niagara Falls IAP Plattsburg AFB Stewart AFB, Newburgh Newburgh Syracuse Watewliet West Point Mil Res NORTH CAROLINA F or or t B r a g Charlotte Cherry Point Camp Lejeune Cape H atteras Greensboro Pope AFB Seymour Johnson Sunnyy Point Ocean Term Sunn Wington N O RTH D A K O TA Bismarck Fargo Grand Forks AFB Minot FB

 

8

8 4

8

Not Available

Basic Wind Spced mh)

TM 5-809-l/AFM 88-3 Chap 1 Ground Snow ~ o a d ~

ocation

so

VERMONT Bennington Burlington Montpelier St. Alban s VIRGINIA For t Belvoir Fort Eustis Fort Myer Langle Lang leyy AFB Ham pton Norfolk PetersburglFort Lee Quantico Radford P Richmond Virginia Beach C oast Yorktown WASHINGTON Bremerton Fairchil Fair childd AFBISpokane Fort ewis Larson AFB Moses Lake McChord FB Pasco Seattle Tacoma Walla Walla Yakima WASHINGTON Bolling AFB Bolling Fort McNair Walterr Reed Walte

D C

MC

WEST VIRGINIA Charleston Sugar Grove WISCONSIN Badger AAP Fort McCoy Green Bay Madison Milwaukee

 

Frost Penetrationa in)

Basic Wind Speedb ~ P W

TM 5 809 11AFM

Grou nd Snow Ground ~ o a d ~ ~fs)

Lo Loca cati tion on WISCONSIN

Frost Penetrationa in in))

88-3

hap

1

Basic Wind spe edb mp mph) h)

continued)

Osceola

55

135

8

WYOMING Cheyenne Yellowstone

a

Frost penetra pen etration tion values will will be used to establish establi sh minimum design design depth of building fou foundatio ndations ns below finish finish grade. These values are based on the deepest, i s worst case, frost pcnctra pcn ctration tionss aw away ay from from buildings and m may ay be reduc reduced ed for foundation design according accordi ng to information information in Appendix D. D. 50 year mean recurrenc recurrencee interval, Determin e all Determine all snow loads ba based sed on tabulated tabula ted ground snow load. However, However, based on local pract practice, ice, the final final design snow load ca cannot nnot be less than 30 psf. Determin e aall Determine ll snow loads based on tabulated tabul ated ground snow load. Howev However, er, based on local practi practice, ce, tthe he final desi design gn snow load ca cannot nnot be less th than an 25 psf.

 

TM 5-809-11AFM 88-3

ocation

Chap 1 Ground Sno Snow w Loadb PS~

Frost penetrationa in)

Basic Wind speedb mph)

ATLANTIC ATLANTI C OCEAN AREA Ascension Islan d Ascension Azores Lajes Field Bermuda CARIBBEAN CARIBB EAN SEA Bahama Islands Eleuthera Island Gran d Bahama Isle Grand Tu rk Island Great Em ma Isla Island nd Cuba Guantanamo NAS Leeward Leewa rd island s Antigua Island Puerto Rico Boringuen Field Ramey FB and Aguada San Juan Sabana Seca Vieques Island Rooseveltt Road s Roosevel Trinidad Island Port of Spain Trinidad NS

Not Available 8

100 1

120 120

CENTRAL AMERICA Canal Zone Albrook AFB Balboa coc o Solo Colon Cristobal France AFB EUROPE England Birmingham London Mildenhall B Plymouth Sculthorpe B Southport South Shields Spurnn Head Spur

 

T M 5 8 0 9 l / A F M 88-3

Chap

1

Location

Ground Snow Snow hadb PS~)

Frost Penetrationa in)

EUROPE continued) France Nancy ParisReBourget Rennes Vichy Germany Bremen Munich-Reim Rhein-Main B Stuttgart AB Greece Athens Souda Bay Iceland Keflavik Thorshofn Northern sites sites Italy Aviano Avia no AB Brindisi

La Maddalena

Sigonella-Catania Northern Ireland Londond erry, Ulster Scotland Aberdeen Edinburgh Edzell Glasgow/Renfrew Airfield Lerwick, Shetland Islands Prestwick Stornoway

3 3

Not Available 1

5

Not Availabl Availablee Not Available

4

36 May be permafrost 8 6

Not Available Not Available

Thurso Spain Madrid Rota San Pablo Zaragoza NORTH AMERICA Canada Argentia NAS, Newfoundland Churchill, Manitoba Cold Lake, Alberta

 

Permafrost 72

Basic Wind Speeda mph)

TM 5-809-1/AFM 88-3

Chap 1

ocation

Ground Snow Loadb

Frost Penetrationa (in)

Basic Wind s pe e db (mph)

NORTH AMERICA (continued) Edmonton, Alberta E. Harmon AFB Newfoundland Fort William, Ontario Frobisher, N W T Goose Airport, Newfoundland Ottawa, Ontario St. John s, Newfoundland Toronto, Ontario Winnipeg, Manitoba Greenland Narsarssuak Narsar ssuak AB Simiutak Simiut ak AB Sondrestrom B Thule AB

6 6 6

Permafrost 6

48 36

36

6

60 60 Permafrost Permafrost

PACIFI PAC IFIC C O C E AN AR E A Australia H.E. Holt, NW Cape Caroline Islands Koror, Palau Islands Ponape Island Johnston Kwajalein Kwajale in Island Mariana Islands Agana, Guam Andersen AFB, Guam Saipan Tinian Marcus Island Midway Island Okinawa Kadena AB Naha AB Philippine Islands FB

Clark Point Sangley

 

TM 5-809-1IAFM 88-3 Chap 1

Location PACIFIC OCEA N AR EA

Groun d Snow ~ o a d ~ Pf)

Frost p e n e tr a t io n a in)

Basic Wind ~ ~ c c d ~ mph)

cont contin inued) ued)

Subic Bay Samoa slands

Apia, Upolu Island Tutuila, Tutuila Island Volcano slands

Iwo Jima AB Wake

a

sland

Frost penetra tion values will will be used t o establish minimum design depth of building foundatio ns below fini finish sh grade. Thes e valu values es ar e based on the deepest, i.e. worst case, frost frost penetrations awa awayy from buildi buildings ngs and may be reduced lor foundation design according to infor information mation in Appendix D. interval erval.. 50 year mean rec urrence int

 

TM 5-809-1IAFM 88-3 Chap

PPENDIX

D

FROST PENETR TION

D 1. Frost penetration The depth to which which frost penetrates penetra tes at a site depends on the climate, clim ate, the type of soil, the moisture moi sture in the soil and the surface surf ace ccover over e.g., pavement kept clear c lear of snow vs vs.. snowcovered turf tu rf). ). If the suppo supporting rting soil soil is is warmed warmed by heat

pene trat ion expected in each area. Most build penetrat building ing foundations can be at a shallower depth without suffering frost action. However, other considerations besides frost penetration may affect foundation depth, such as erosion potential or moisture desiccation). For interior footings, which under service conditions

from a building, building, frost penetr penetration ation is reduced reduc ed considerably. The values in appendices and C represe represent nt the dcpth of frost penetration penetr ation to be ex expected pected if if the ground is bare of vegetation and snow cover, the soil is non-frost susceptibl e NFS), well-drained well-drain ed i.e., i.e., dry) sand or gravel, and no building heat is available. Thus, these values repr represen esentt the deepest i.e., worst case) frost

are not normally susceptible to frost, the potential effects of of frost heave during construction should be considered. Design values for heated heated and unheated buildings buildin gs may may be obtained obtaine d by reducing redu cing the values in in appendices and C accordin according g to figure D-1. For buildings heated only infrequently, the curve in figure D-1 for unheated buildings should be used. The curves curves

FROST PENETRATION 50

FROM

INCHES) 1

APPENDIX B OR 150

Figure D 1 . Desig Desigrl rl de plh of buildin g folrnda tion.

 

TM 5 809 1IAFM

88-3

hap

1

200

figure D-l were established with an appreciation for the variability of soil and the understanding that some portions of the building may abut snow-covered turf while other portions abut paved areas kept clear of snow. n

D 2.

xample

What mini minimum mum de pth is need ed for footings of of a hospital and an unheated vehicle storage building to be built in Bangor, Maine, to protect them from frost action? Solution: Th e tabulate d frost frost penetra tion value value for Bangor, Maine, is 9 inches (appendix B). B). Using the heated curve in figure D-I, footings for the hospital should be located 4 feet below the surface to protect curve, e, them from frost action. Using the un he ate d curv footings for the unheated garage should be located 6 feet below below th e surface.

D 3. Additional information Add itional information o n which mo re ref refin ined ed estimates of frost penetration can be made, based on site-specific climaticinformation, the typeof ground cover and soil conditions diti ons is contained in TM 5 852 6.

D 4. Frost protection Foundations should be placed at or below the depths calculated above. Th e foundation may may be placed at a shallower depth than calculated above i protected from frost action by insulation on the cold side. For m ore information on foundation insulation, insulation, see Building Foundation Design Handbo ok by Oa k Rid ge National Laboratory.

 

TM 5-809-1/AFM 88-3 Chap 1

APPENDIX E

DESIGN EXAMPLES FOR FOR LOAD COMBINATIONS

Figure E

I.

Design eramp le for load com binaliorts

 

TM 5-809-l/AFM 88-3 Chap 1

APPENDIX F

DESIGN EXAMPLES FOR Ll LlVE VE LOADS F 1. Purpose and scope

F 2. Abbreviations

Th is appe ndix contains illustrative examples using using the live live load criteria given in ASCE 7 88.

The following abbreviations are used in the example problems: a . Eq. Equation b. Para. Paragraph

G

ACCESSIBLE ROOF TRUSS WlTH DEAD AND LlVE LOADS SHOWN BELOW.

m

ASSUME THE TRUSS WILL CARRY A CONCENTRATED LOAD OF OF 2 0 0 0 L BS AT ANY OF THE PANEL POI POINTS NTS IN THE LOWER CHORD CONSISTENT WlTH PARAGRAPH 4 3 1 IN A S C E

7 88..

1.50 1.50

3.00

3.0 0

3.00

1.50 1.50

LlVE L0AD.L

0.75

1.50 1.50

1.50 1.50

1.50 1.50

0.75

DEAD L0 AD .D

t

A

LzlQzN1 AINTENANCE SHOPF

L

4

5-

2

20'

15 SH SHOW OWN N IT

PRNEL POINT H FOR ILLUSTRRTION ONLY

EXPOSED ROOF TRUSS

PROBLEM: DETERMINE THE MAXIMUM FORCES FOR ONE POSSIBLE LOAD COMBINATION ON THE EXPOSED ROOF TRUSS.

SOLUTION:

FORCE

*

I

FOR ELICH ELICH ME MEMBER MBER SELEC T ONE FORCE ONLY FROM EITHE R COLUMN O,F OR H LINO LINO COMBINE WITH ( OI L1 TO OBTRIN MAXIMUM FORCE.

Figure F-I.Desi Design gn example for live load s acc ess ible roof tmss .

FI

 

TM 5-809-1IAFM 88-3

Chap 1

GIVEN

INTERIOR ROOF TRUSS SHOWN BELOW.

PROBLEM:

DETERMINE THE MINIMU MINIMUM M

RO ROOF OF LIVE LOA D ON A PAN EL POINT.

PLAN

ELEVATION

INTERIOR

SOLUTION:

TRUSS

REDUCED LIV E LOAD LOAD,L, ,L, L ,=20R,

R ? 12

E0.2

WHERE A, =ZOx6O=lZOO F T ~ SINCE A,

)

600 FT2

PARA.4- I-

R, ~ 0 . 6 F=3 SI NCE F t 4 R =1.0 L,= 20

0.6

1.0= 1.0=12 12 PS F

E0.2.

LOAD ON PANEL POINT P.12

20

7. 5= 18 00

L B S SAY

1.8

REFERENC RENCE: E: ASCE 7 - 8 8 * REFE

Figure F 2. Des Desiqr iqrtt euarnpl euarnplee for live live loa ds ro of live load lo ad .

 

TM 5-809-1/A 5-809-1/AFM FM 88-3

Chap 1

GIVEN:

25 FT. CRANE RU UN N W A Y G IIR R DE DE R S U P P O R T I N G A 3 0 T O N C APAC ITY BR ID GE C R AN E SH OWN BELOW.

PROBLEM:

FIND THE DESIGN LO AD S FOR THE RUNWAY GIRD GIRDER. ER.

RUNWAY GIRDER

-

12

-

TRUCK WHEELS

TROLLEY WT.=II.GK LIFTED L O A D : ~ O O ~ CRANE WT.=30.0

RUNWAY GiRD GiRDER ER RIDGE CRANE ELEVATION

TR U C K WH EELS ACING IS A CONSERVATIV ION FOR INITIAL CALCULATlONS.POSlTl0N OF TROLLEY IS N E X T TO GIRDER FOR M A X WHEEL LOAD ON GIRDER.) RUNWAY GIRDER

BR ID GE C R AN E TR U C K WH EELS BRIDGE CRANE PLAN

Figure F 3. Design evanlple for live loa ds - cm nc runway.

 

TM 5-809-I/AFM 88-3

Chap 1

lleef I of 2

SOLUTION: VERTICAL LOAD FROM E A C H TRUCK W H E C L i/216O + 11.6 1 i / 2 x 30)=43.1 2 5 PERCFNT IMPAC I10c

PARA

4.7.3.

54 1

LATERAL LOAD FROM E A C H TRUCK WHEEL 1/4 0.20(60 ll. 6 ) = 3 . b K

PA R A 4 . 1 . 3 .

LONG. LOAD FROM FROM EACH TRUCK WI-IECL 1/2 x 0.10(60 11.6 - 1/2 X 3 0 )

PARA.

4.7.3.

~4.3 HFFt UCNCE:

ASCE 7 8 8

1

511' C.G

3.6

WHEEL

LOAD

54.1

3.6 WHEEL

*

ILOAD

I

VERTICftL

3.6K

LATERAL

LOCATION FOR MAXIMUM MOMENT

54.1' 3.6'

%

VERTICAL LATERAL

LOCATION FOR MAXIMUM SIICAR

ALL LOADS APPLIED

A T

Figure Figu re F-3. Design eua rnpk for live loadr

TOP

OF

CRANE

HAIL.

crane runway.

Sheet 2

o

2)

 

TM 5-8095-809-1/A 1/AFM FM 88-3 88 -3 Chap

GIVEN:

PAR TIA L SECO SECOND ND FLOOR FRAMIN G PLA N OF A TW TWO O STORY STORY DORMITORY I S SHOW SHOWN N BELOW BELOW..

PROBLEM: PROB LEM:

DETERMINE THE REDUCED REDUCED UNIFORM DESIGN LI VE LOAD.

t

DORMITORY IPARTITIONEDI

I

I

I

,

SECOND FLOOR FRAMING PLAN

L=L, (0.25+15/- 6,) WHER WHERE E Lo ~ 4 0 SF

.

A , ~ 1 x 2 4 0=480 FT2 ~ = 4 0 ( 0 . 2 5 + 1 5 / ~ ) = 3 7 . 4 PSF

CHECK

L

?

37.4

EO.. T A B L E C3 PARA.4.8.I. EO.1.

0.50L PSF>(O.S

.

4 0 x 2 0 P S F ) O.K. EFERENCE: ASCE 7 - 8 8

Figu Figure re F 4. D e s ip crumple for for live lloads oads - two way cor~cretefloorlab. cor~cretefloorlab.

 

TM 5 809 1IAFM 88-3

hap

1

GIVE GIVEN: N:

PAR TIA L

FLOOR FRAMING P L A N OF AN OFFICE IS

PROBLEM:: PROBLEM

DETERMINE THE UNFACT ORED UNIFORM AND CONCE NTRATED

5 0 PS SF F ON ON I F T ST TR R IP IP

1 FT

SHOWN BELOW

LIVE LOADS

STR IP DISTRIBUTED

ON

r

r

L

P A RT I A L F L OOR F RA M I NG P L A N

Figure Figure F-5. Design eram ple for live load s

one-way concrete floor stab.

Sheet

of 2 )

 

TM 5 809 1/AFM 88-3

hap.

1

SOLUTION: UNIF O RM LIVE LO AD 5 0 LB/FT

O N I F T ST RIP

TABLE 2.

I

(TYPO)

POSITION FOR MAXIMUM POSITIVE MOMENT

CONCENTRATED LIVE LOAD 2000 i

TABLE 3

DISTRI BUTED OVER 2.5 x2.5 x2.5

PARA.4.3

2000/ 2.5

2.5)=320 2.5)=320 S F

R

320 L B / F T

ON A ONE F T ST RIP

1

P O S I T I O N OR MAXIMUM POSITIVE MOMENT

POSITION FOR MAXIMLJM SHEAR

*REFERENCE: ASCE 7 - 8 8

igure F

5. Design exa mple

 

TM 5-809-IIAFM 5-809 -IIAFM 88-3

Chap 1

for live loads - one-way cotrcretef cotrcretefloorslab. loorslab.

Sheet 2 of 2)

( T YP.)

GIVEN:

PROBLEM:

A PARTIAL FLOOR FRAMING PLAN OF A LIBRARY READING ROOM IS SHOWN BELOW.

DETERMINE (A)RED UCED Ll VE LOAD,L,AND LOAD,L,AND

(B)LOA DING

FOR THE MAXIMUM AND MINIMUM LlVE LOAD MOMENT AT MIDPOINT OF SPAN BC AND THE MAXIMUM NEGATIVE MOMENT AT SUPPORT B OF THE CONTINUOUS BEAM.

e

30

- -

20

ONTINUOUS BEAM

25

CONCRETE JOIST CONSTRUCTION .

PARTIAL FLOOR FRAMING PLAN

Figrtre F-6. Desi Design gn era r?lplefor ive loads corttLt~~ouscarlt. c arlt.

Sheet

of 3

 

TM 5-809-11AFM 88-3 Chap 1

SOLUTION: A.REDUCED LIVE LOAD L=L0(0.25+15/- ) WHERE L 0 = 6 0 PSF BEAM

A 6

BEAM BC BEAM BEAM CD

A

, = 2 x TRIBUTARY AREA 12 30 7=1020 FT

A,=2 A ,=2

2 0 x 17. 2 5 x 17.

6 8 0 FT 850 F T ~

~,~60 0.25+15/7/1020)=43.2 SF ~ , ~ 6 0 ( 0 . 2 5 + 1 5 / ~ 0 4) 9 . 5PSF 5 PSF L C d 6 0 ( 0 . 2 5 + 1 5 / ~ ) 45.9 PSF CHECK L>_0.50LO 4 3 . 2 > 1 0 . 5 0 ~ 6 0 = 3 0 P S F ) O.K.

ALL REFERENCES IN THIS EXAMPLE ARE

Figure F

6.D e sig n

 

TM 5-809-1IAFM 5-809-1IAFM 88-3

Chap 1

m n p k ive loads

corttir~rro~~s eam.

TO

ASCE 7 - 8 8

Slleer 2 of 3 )

REMOVE L I VE L OAD F ROM SEL ECT ED SPANS T O PRODUCE UNF AVORABL E EF F ECT .

LOADING

FOR

LOADIN G FOR

MAXIMUM

PARA.4 6

MOMENT

MINIMUM MOME NT

@

MIDPOINT OF SPA N BC

MIDPOINT

OF SPA14 BC

NOTE: THIS IS ALS O THE LO ADING FOR THE MAXIMUM POSITIVE MOMENTS IN SPANS A0 AND CD.

Figure F-6. Design eram ple live load. - cortlb cortlbtrro~i trro~iss eam.

(siteel 3 1 3 )

 

TM 5 809 1/AFM

88-3

hap 1

GIVEN:

TYPI CAL FLOOR FRAMIN FRAMING G PL AN OF A THREE STORY

PROBLEM: -

ADMINISTRATIVE BUILDING SHOWN BELOW.

DETERMINE THE FLOOR LIVE LOAD ON COLUM DETERMINE COLUMN N 82 LOCATED ON THE FIRST FLOOR. RIBUTARY

AREA.A

TYPICAL FLOOR FRAMING PLAN

+ l 5 A , WHERE L ,=50 PSF

LZ L ,(0.25

E0 l

TABLE

2

A, =4A+FOR 2ND AND 3RD FLOOR = 4 ( 2 x 20 x 2 5 )

A

A , = 4 0 0 0 SO FT ~ = 5 0 ( 0 . 2 5 + 1 5 / ~ 0 ) = 2 4 . 4 PSF CHECK L 20.41, 24.4 PSF>(0.4

x

50.20

PSFI O.K.

FLOOR LIVE LOAD ON COLU COLUMN MN 8 2 24.4(2

x 2 0 x 25):24.4 REFERENCE ASCE 7-88

Figure F

7.

Design example for live loa ds - col~ot~rt

 

TM 5-809-1IAFM 88-3 Chap 1

APPENDIX G DESIGN EXAMPLES FOR WlND LOADS

scope G 1. Purpose and scope

Eq Equation b Para Para~ravh c Fig Figure d . Tab Table e. U N O Unless noted otherwise

a.

.

This appendix appendi x contains llustrative llustra tive examplesusing the wi wind nd load criteria cri teria given given in ASCE 7 88.

G 2. Abbreviations The following abbreviations are used problems:

C

in

the example

ONE STORY INDUSTRIAL BUILDING SHOWN BELOW.

LOCATI0N:HUNTSVILLE.AL WlND EXPOSURE CATEGORY C

Figure G I. Design erample for wind loads -industrial building.

 

TM 5-809-1/AFM 88-3 Chap 1

Sheet

of 11

PROBLEM:

DETERMINE THE FOLLOWING RESULTING FROM

WIND.

A. EXTERNAL PRESSURE ON THE BUILDING. B. SHEAR F ORC ES ON WALLS . C. MAX IMUM

PRE SS UR E O ON N ROOF TRUSS. TRUSS...

D. PRESSURE ON DOOR. E. LO AD

ON GIRT.

F. MAXIMUM

ASSUME

TENSION O ON N WALL

DOORS

ON

FAST ENE R.

FRONT

DETERMINING THE MAXIMUM

WALL

ARE

DEFINITION

OF

IN

WIND PRESSURE ON

THE ROOF TRUSS. SEE COMMENTARY FOR

OPEN

IN ASCE

7-88

OPENINGS.

ndus usttrial rial b u i l d igure G I . Design example for wind load s - ind

Sl~eet ooff 11

 

TM 5-809-l/AFM 88-3 Chap 1

SOLUTION: A.EXTER NAL WINO PRESSU RE ON ON THE BUILDING (I)p=qG,C ,-q ,(GC ) NOTE: NEGLEC T INTER NAL PRESSURE TERM -q ,

TABLE 4

(GC, (GC,,,)

WHEN ONLY EXTERNAL PRESSURES ARE CONSIDERED. z ~ ~ f q,-0.00256K WHERE Kz=0.84 AT Z.18 K -0 0.. 88 88 AT h --2 21 1=1.00 V = 7 0 MPH q ,=0.00256~0.8411.0~70f~10.5SF

E0.3

TABLE 6 TABLE 6 TABLE 6 APPENDIX B (THIS MANUAL.)

q,=0.00256x0.88(1.0x70~~ll.0 PSF TABLE 8

(2)WIND NORMAL TO RIDGE

ELEMENT

WINDWARD WALL LEEWARD WALL WINDWARD ROOF LEEWARD ROOF SIDE WALL

CP

0.8 -0.5 -0.3 -0.1 -0.7

p=qG,Cp.PSF

CONDITION

10.5x1.29x0.8=+10.8 11.0~1.29xf-0.51:-7.I 11.0x1.29x(-0.31~-4.3 11.0x1.29xf-0.71s-9.9 11.Ox1.29xf-0.1):-9.9

L/B=20/75=0.3 h/L;21/20=1. 8 =31

FIC.2 FlG 2

NOTE: ALL REFERENCES IN THIS EXAM PLE ARE TO ASCE 7 - 8 8 U.N.O.

EX TE RN AL WIND WIND PRESSURE.p.ON

BUILDING

WIND NORMAL TO RIDGE

Figure G 1. Desi Design gn era mple for wind lo ads

 

TM 5-809-1IAFM 88-3 Chap 1

-

industrial btiildirtg.

Sheet 3 of 11

3)WIND PARALLEL WITH RIDGE

ELEMENT WINDWARD WALL LEEWARD WALL ROOF SIDE WALL

P

0.8 -0.2 -0.7 -0.7

p qG L p . P S F

CONDITION

10.5~1.29x0.8-+l0.8 11.0~1.29x -0.2)~-2.8 11.0~1.29~~-0.7~--9.9 11.Ox1.29x -0.7)~-9.9

.

B/L=75/20=3.8 h/L=21/20=l.I

U S E 0/L FOR L / B AND h / B FOR h L AS SHOWN IN FIG.2.WHEN WlND DIRECTION IS PARALLEL WITH RIDGE.

EX TE RN AL WlND WlND PRESSURE. PRESSURE.p.ON p.ON

BUILDING

WlND PARALLEL TO RIDGE

Figure G-I. Desi Design gn example for wind loads

industrial industrial building. building.

Sheet

of 11

 

T

5 809 1/AFM 88-3

Chap 1

B.WIND SHEAR FORCES ON WALLS 0)FORCE.F.ON

ONE END WALL

A

75

ND WALLS

END WALL 2F =F,F,

SIN SI N

SIDE WALL +F +F,, SIN

WHFRE F =10.8 x

7

F, SIN F, SIN

tF, 2

9~7290 B

~ 4 . 3 15

3 / 4 3

264

=I935 LB 8 ~ 9 . 9 7 5 h/

/

@?

~44 55 B F =7.1.75.

9. 4793

LO

2F.7290-1935+4455+4793

F z 7 3 0 1 L B S A Y 7.3

(211017CF,F,ON ONE SlDr WALL

ESISTANCE SIDE WALLS

Y

TWO

SIDE WALL 2F:F,+

END

WALL

F

WHERE F, ~ 1 0 . 8 20 x 1272592 L R F   2.8 20 x I ? = 6 7 2 H 2F-35921672

F 4 6 3 2 LB SAY 1.6

Figure G

1.

Design example for wind loads - indust industria riall build in~: Sheet 5

 

TM 5-809-1IAFM 88-3

Chap

of 11

I

C. C.MAX MAX WIN IND D PRE SSURE ON ROO ROOF F TR US S (WI (WIND ND PA RA LL EL WIT WITH H RIDGE) EXT. PRESSURE

/INTERNAL

PRESSURE

I)p=q, G C -q, (GCpJ

q, G, C ,=-9.9

TABLE 4

PSF

SEE A1 A131 31 OF THIS EXAM PLE

(3 )l NT ER NA L PRESSURE,q, GC,, q h =ll.O

PSF

SEE All1 OF THIS EXAMPLE

SINCLFOR OPENINGS. 48

-l0

A ND ND 1 0

=38

,lo

SEE SKETCH OF

<20

INDUSTRIAL BLDG.

SELECT GCpI=+0.75. OR -0.25

TABLE

AS SU ME WORST CASE. OPENINGS ON WIN WINDWAR DWARD D WALL ARE OPEN. OTHER WALL OPENINGS ARE CLOSED. ACCORDI ACCORDINGLY NGLY IN TERNAL PRE SSURE I S P O SI SI T IIV V E . S E L E C T GC q, GC ,=11.0x 0.75~+8. 3

= +0 + 0 . 75 75 .

PSF

TABLE

8.3

PSF

MAXIM UM PRESSURE.p.ON PRESSURE.p.ON

Figure G I. Design example

or

wind loadr

ROOF TRUS S

industri industrial al building.

Sheet 6 of 11)

 

TM 5-809-1/AFM 5-809-1/AFM 88-3 88- 3 Chap 1

WORST C A S E . OPENINGS ON D.PRESSURE ON DOOR AS SU ME WORST REAR WALL ARE OPEN. ALL OTHER OPENINGS ARE CLOSED.)

IIWIDTH

FOR ZONE@

THE SMALLER OF O.IOLxW=O. O.IOL xW=O.lx20 lx20 FT =2 FT

0.4h

~ 0 . 4 ~ 2 T.8.4 1

FT

BUT NOT LESS THAN THE LARGER OF 0.04L=0.04x20=0.8 FT OR 3 FT -GOVERNS

Figure G-I. Design example for wind loads - industrial building.

 

TM 5 809 11AFM 88-3

hap

1

FIG

Slteet 7 of 11)

ZONE@

(Z)PRESSURE,p,ON

p=q , (GC, (GC,))-q, q, (GC ,) WHER WHERE E ~11 .0 PSF

-1.5 11.15

SEE A ( l 1 OF THIS EXAMPLE

.*

A=10x10=100 F T GC (FlG.31

TABLE 4

GC (TAB. 91 +0.75 -0.25

p(PSF) I

1110 (-1. (-1.51-11. 51-11.Ox0.75 Ox0.75=-24. =-24.8 8 ~11.0~1.15-11.0 (-0.25)=+15.4

DIRECTION I

I

OUTWARD INWARD

*AS SUM ES DOOR DOOR IS STRENGTHE D IN BOTH DIREC DIRECTIONS TIONS.. FOR ONE DIRECTION A:IOx10/3 =33 FT .SEE PARA.6.2 PARA.6.2

(3)PRESSURE.p.ON

ZONE@

p=q, lGC,)-q,lGC,) WHERE WHE RE

,=11.0

PSF

A = 100 FT

.

GC (FIG.3) 1.25

*115

G C or

plPSFl

(TAB.91 10.75 -0.25

DIRECTION

1.0 (-1.25)-11.0xO.75=-22.0 I.Ox1.lS-11.0 (-0.25)=+15.4

OUTWARD INWARD

24.8 P S F

I

DOOR

OUTWARD WI WIND ND PRE SSUR E.p. ON

Figure

G I.

INWARD CORNER DOOR

esign erample for wind loads - irtdtrs~rial ddirg.

Sheet

of 11

 

TM 5-809-1IAFM 88-3 Chap 1

€ .L .L O OA AD ON G GII R T N O T E : A S S U M E W O R S T C A S E F O R I N T E R N A L PRESSURE COEFFICIENTS.)

I)PRESSURE.p,ON

ZONE TABLE 4

p = q , G C , -q, G C , ) W H E R E q, =ll.O PSF

SEE AX OF

THIS EXAMPLE

A=6x15=90 FT GC p lFIG.3)

 TAB.91

-1.50 11.20

+0.75 -0.25

GC, GC,

P IP S F)

110 -1.501-1.501-11.0~0. 11.0~0.75~-24.8 75~-24.8 11.Ox1.2-11.0 I-0.?5)=+16.0

Figure G-I. Design exantpie exantpie for wind load s - i~ldtis lrial tiilding.

 

TM 5-809-1/AFM 88-3

Chap 1

DIRECTION OUTWARD INWARD

Sltcet 9 of 11

2)PRESSURE,p,ON Z O N E

@

p=q GCp)-qh GCpi)

WHERE

q

TABLE

=11.0 PSF

SEE A l l 1 OF THIS EXAMPLE

1.30

t0.75 -0.25

+1.20

OUTWARD INWARD

11.0 -1 .30) .3 0)-ll. -ll. O x0 .75= .7 5= -2 2.6 11.Ox1.2-11.0 -0.25)=+16.0

ZONE

@

ZONE

@

24.8x6=148.8 L B / F T

16.0x6=96.0 ZONE

@

ZONE

LB/FT

@

OUTWARD

INWARD LOAD ON G I R T

Figure

G 1.

Desigrt erample for w i r~ r~ d o a d - induslrial building. building.

Sheet 10 of 11

 

TM 5-809-1/AFM 5-809-1/AFM 88-3 Chap 1

F.MAXIMUM F.MAXI MUM

TENSION ON ON WALL FASTEN ER

FASTENERS ARE IN MAXIMUM TENSION WHEN NEGATIVE EXTERNAL PRESSURE SUCTION) IS CREATED CREATED IN ZONE @ DTRIBUTAHY AREA.A LENGTH OF AREA=6 FT WIDTH OF AREA=8 IN

BUT SHOULD NOT BE LESS THAN 1/3 THE LENGTH OF AREA OR 2 FT. ACCORDINGLY A=6x2=12 FT E.P.OEI ZONE@ GC. -q,IGCp,I PSF W H E R E qh:ll.O

ARLE

p=q

SEE A111 1

WORST CASE

A212 F T GC

NEGATIVE

TM 5 809 1IAFM 88-3

hap

1

EUhMI L

GCPI

EXT PRESSURES

-

-

3lTE NSIO N FORCE.T.ON FORCE.T.ON FASTE NER T=29.7x6x8/12=118.8 LB

 

1HlS

RESSURE L IN IEKN

L

GIVEN

I NDUST RI AL BLDG W I T H I RREG ULAR PLAN CONFIGURATION. THE S A AM ME BUILDING IN EXAMPLE

EXPANDED AS

PROBLEM:

SHOWN

IN

FIGUR

G 1

IS

BFLOW.

DETERM INE THE FOLLOWING RES ULT ING FROM WIND. WIND.

EXTERN AL

PRESSURE ON THE BUIL DING

ELMAXIMUM PRESSURE ON ROOF TRUSS C.PRESSURE

ON DOOR

D.LOA0 ON GIRT E.MAXIMUM E.MAXI MUM

TENSION O ON N WALL FAST ENE R

F.SHCAR FORCES ON WALLS

EXIST. BUILDING

IL

5

_ILJ

I NDUST RI AL BI JI LDI NG

Figurc G-2.

esign euainple for wind loads - irtd~istrial riil riildir dirtg tg wil willt lt irregularpl irregularplan an c orf ipr atio rt. euainplefor

Slteel 1

o

4)

 

TM 5-809-1/AFM 88-3

Chap 1

SOLUTION: A. EXTERNAL PRESSURE ON BUILDING. €3 MAXIMUM PRESSURE ON ROOF TRUSS. C. PRESSURE ON DO DOOR OR.. D. LO AD ON GIRT GIRT.. E. MAX TENSION ON WALL FASTENER.

SAME AS EXAMPLE G-I. SAME AS EX AM PL E G-I. G-I. SAM E AS EX AM PL E G-I. G-I. SAME AS EXA MP LE GG-I. SAME A S EXAMPLE G-I.

GOSHEAR FORCES ON W A L I ~ S APPROXIMATE)

brmb:8 7.1

SEE DESIGN E X A M P L E G - O R PRESSURES WIND PRESSURE ON WALLS AND R O O IN PSF

WIND EQ

10.8

7.1 .

EXTERNAL PRESSURE

Figure

G 2.

Design Desi gn erarnplefor wind loads - ir irtd tdnst nstnal nal bnildi~tg il ilhh irr e~p lur pla~ ortfig~rulio~t. t Sl~eel

 

TM 5-809-1/AFM 88-3

Chap. 1

o

4

ON EXISTING WALL AB AND FROM LOAD ON EXISTING BLDG. Fz

2

A

-

RESULTING

CD

/ SHEAR

F3

, --s-

__E

, _

y

F4

D

C

Lq

.. . /

RESISTANCE BY EXISTING SIDE WALLS

)

~~

0

S I N O = ~ / ~ ~

SECTION A-A EXISTING BUILDING 2FA, =2Fc,=F, -F, SI SIN N B+F, SI SIN N B+ B+F, F,

FA,= F,,=(F, -F, -F, SINB SINB+F, +F, SINO+ SINO+F, F, ) / 2 W H E R E F I 31 310. 0.8 8 x 20 1212592 L B

27@ =I29 LB

F2SIN6=(4.3

10

F, SINB=9.9[(10+20)1/2 =891 LB =891 F4=2.8 x 20 9

504

x

 

Y2)3/fl4

2fi13/m

LB

FA ~ 1 5 9 2 - 1 2 9 + 8 9 1 + - 5 0 4 ) / 2 ~ 1 9 ?LB,SAY 9

1.9

I

FLD IoqK

F i p e G-2. Desi Design gn era mp le for wind loads

-

itldirsfrialbui itldirsfrial buildi lding ng wit with h irrc ~rla rpla n ortfifirrrafio~l. Slteet

o/ 4 )

 

TM 5 809 1/AFM

88-3

hap

2.SHEAR ON NE NEW W WAL L EF AND EXIST ING WALL CD RESULTING FROM LOAD ON NEW BLDG.

NEW BUILDING 2Frrz2Fco=F, -F2 SINB+ SINB+F, F, SINB+F. F,,= F,,=WH WHER ERE: E:F, F,,= ,=(F (F,, -F, SINR SINR+F, +F, SI NB iF , ) / 2 F =10.8 55 9 k5 3 46 LB F, SINB=(4.3. 5 5 /fl=1419 LBS F,SlNe=(9.9 55 2 p /fi=-3267 LBS F, ~ 7 . 1 ~ 5 5 9 ~ 3 5 1 5LBS 5LBS

m

F ~ ( 5346- 1419+ 3267+ 3515) /2= 5354LBS SAY 5.4 Fc,.5.4 3.TOT AL SHEAR FORCE ON EXISTING WALL CD FROM WIND LOAD ON EXISTING AND NEW BUILDIPIG. TOTAL Fc,-1.9s+5.4' EXISTING

-7.3

7

SHEAR FORCE ON WALLS

Figure G 2. Desigt erarnple for wind loads

 

TM 5-809-11A 5-809-11AFM FM 88-3

Chap 1

indusfrial brr brril ildi dirlg rlg with irregnlarplan cortfigrraliorl.

Sheel 4 of 4

GIVEN: GIVE N:

THREE STOR Y BUILDING h

60- <FT

SHO SHOWN WN BELOW.

PROBLEM:

THE MAI N WlND WlND FORCE RESISTING SYS TE M OF THE THREE STORY ADMINISTRATIVE BUILDING SHOWN BELOW IS TO BE DESIGNED.DETERMINE THE DESIGN WlND PRESSURES ON THE BUILDING.

MISSISSIPPI ARM ARMY Y AMMUNITION PLAN T MS. WlND EXPOSURE CATEGORY C BUILDING CATEGORY I

ELEVATION

FLOOR PLA N

ADMINISTRATIVE

Figure

G 3.

Design examplefor examplefor wind loa ds

BLDG.

three-story three-story building Iteigltf ess fltan or equal to

6

eet).

Slteet

of 3 )

 

TM 5-809-l/AFM 88-3

Chap 1

SOLUTION:

DESIGN WIND WIND PRE SSU RE ON BUILDING (\)WINDWARD WALL C - q (GC,,) NOTE: NEGLECT NEGLECT INTERNA L PRESSURE TERM - q WHEN ONLY EXTERNAL PRESSURES ARE CONSIDERED.

TABLE

~ 41

(GC,,)

WHERE q z = 0 . 0 0 2 5 6 K Z 1 ~ )

E0.3

1=1.05 V=lOO MPH q =0 .0 02 56 KZ (1.05

4

TABLE 5 APPENDIX

100f

B

(THIS M A N U A L )

E0.3

=28.22KZ G,=1.23

AT

h.42

C ,=0.8

TABLE

I

FIG.2

* ALL REFERENCES IN THIS EXAMPLE ARE TO ASCE 7 - 8 8 U.RI.0

PRESSURE ON WINGWARD WALL,p

Figure G 3. Design example for for wind load s - three-st three-story ory building height less tl tlta tart rt or equal lo 6 Ofe et).

 

TM 5-809-1IAFM 88-3

Chap. 1

Slzeel 2 o f 3 )

2)LEEWARD WALL ~ 4 z , CP -q G C p , ) NOTE: NEGLECT INTERNAL PRESSURE T R M -q; GC,,) WHEN ONLY EXTERNAL PRESSURES ARE CONSIDERED. WHERE

q

G

~ 3 0 . 2 PSF A T h = Z = 4 Z 1

x

TABLE A B O V E TABLE A B O V E

1 23

C ,I-0.5 0.5 WH WHEN EN

p=30.2

T ABLE

L /B =l)

1.23 1.23 x-0.5.-18.6

FIG.2

PS PSF F

EL.42.0 EL.35.0 EL.2I.0 18.6 PSF

EL.7.0 ilL.O.0

DESIGN W I N D P R E S S U R E O N BUILDING

Figure G-3. Design erample for for wind loads

- three-story building height less than or equal to

6

eet).

Sheet 3 o 3

 

TM 5-809-l/AFM 5-809 -l/AFM 88-3 Chap. 1

G

PROBLEM:

FIVE STORY BUILDI BUILDING, NG, h > 6 0 FT. SHOW SHOWN N BELO BELOW. W.

DETERMINE THE DESIGN WIND PRESSURE ON THE FILLER WALL ON THE FIFTH FLOOR OF THE FlVE STORY ADMINISTRATION BUILDING SHOWN BELOW. LOCATION: HOMESTEA0,FL EL.

14

WlND EXPOSURE CATEGORY BUILDING CATEGORY

EL. 4 6

EL. 18

G20 140 ELEVATION

PLAN 7ONE ZONE

@

ASSUME VERTICAL REINFORCEMENT.THS INFORMATION IS NEEDED TO DETERMINE TRIBUTARY

Figure G 4. Design erarnplefor wind loads - five-s five-sfoty foty buil building ding I~ ci gl ~f realcr 1ha116 eel).

 

TM 5-809-1/AFM 88-3

Chap 1

Shccl I oJ 3

SOLUTION: DETERMINE WIDTH, a

*ALL REFERENCES IN THIS EXAMPLE ARE TO ASCE 7-88 U.N.O.

SELECT SMALLER 0. 05 x4 0= 2 FT

OV ERNS

0 . 5 ~ 7 4 ~ 3 7T 7T

FG.4r NOTATIONS

DESIGN WIN WIND PRESSURE,p,ON PRESSURE,p,ON

FI LL ER WALL

pz q GC ,)- q, GC,i) C,i) q z=0.00256Kz (IV)

TABLE 4

Eo.3

WHERE Kz=0.71 AT Z= 66 F T 1=1.05 V110 MP H

TABLE

q ,=0.00256x0.71 1.05x1l0f~24.2 P S F

E0.3

q =0.00256Kh ( I V ) ~

~0.3

WHER WH ERE E K, K,=0 =0.7 .75 5

AT h = 7 4 F T

q h = 0 . 0 0 2 5 6 ~ 0 . 7 5 l . 0 5 ~ l l ~ ~ ~ 2S5F. 6

ZONE 6 A.12 x 1 2 / 3 = 4 8 F T

TABLE 5 APPENDIX B

THIS MANUAL

TA B LE 6

~a.3

PARA.6.2

GC ,=+1.00,-1.80

FIC.4

GC,,=+-0.25

TABLE

p=24.2 +1.00)-24.2 -0.25)

TABLE 4

zt30.3 PSF

p=25.6 -1.80)-24.2 +0.25)

TABLE 4

=-52.1 PSF

Figure

G 4.

Design eranzple for wind lo ads -jive-story briildi briilditig tig heightgreater tlian 60 eet).

Sheet

o

3

 

TM 5 809 1IAFM 88-3

Chap 1

ZONE 5 A=12x12/3=48 FT

PARA.6.2

GC

=+l.00,-1.10

FG.4

GC

:;t_0.25

TABLE 9

p=24.2[1.00- -0.25)1=30.3

PSF p=25.6[ 1.10 0.251= 34.6 S F

TABLE

TABLE 4

30.3 PSF

INWARD

34.6

PSF OUTWARD DESIGN WIND PRESSURE ON FILLER WALL

Figure G 4. D e s ip craritp craritplc lc fo forr wind load s - jiv ee-slo slo y b uildi ng Itciglt Itciglttt grealcr llt lltart art 6 eet).

 

TM 5-809-1/AFM 88-3 Chap 1

Shcel 3 of 3

GIVEN: GIV EN:

ARCHED ROOF SHOWN SHOWN BELOW .

PROBLE M:

DETERM INE THE DESIGN WIND PRESSIJRE ON

i iL A R C H E D

ROOF SHOWN BELOW FOR THE MAIN WIND-FOF?CC RESlSrlNG SYSTEM.

WlND

LOC ATI0 N:RO BNS AFB AFB GA. GA. WIND EXPOSURE CATEGORY C BUILDING CATEGORY

Figure G-5. Design r.m~irplcor wind loads

rciled

rooj:

Slrcct

o

3

 

TM 5-809-1/AF 5-809-1/AFM M 88-3 Chap 1

*NOTE: ALL REFERTNCES IN T H I S EXAMPLk A l \ t T O A S C E 7-88 I1.N-0.

DESIGN WIND PRESSURE p qh G h C p - q h

TABLE 4.

I)

N0TE:NEGLECT INTERNAL PRESSURE TERM - q GC,,) WHEN ONLY EXTERNAL PRESSURES ARE CONSIDERED. WHERE q ,=0.00256K,(IV)' K,=1.02 WHERE 1 35 1=1.07 V = 7 5 MPH q , = 0 . 0 0 2 5 6 x .02(1.07 ~ 1 6 . 8 PSF G ,=1.25 A T h.35 FT RISE,r=50/200=0.25

€0.3

FT

75)

THEREFORE 0 25 .3 WINDWARD OUARTER,C, C ,:(Im5r-0.31=(1.5 0.25-0.3) =+0.075 A L S O C ,=(6r-2.1)=(6

0.25-2.1)

TABLE TABLE APPENDIX €0 3

TABLE 8

TABLE 10

TABLE 10 TABLE I0

=-0.6 CENTER IiALF,C, C ,I(-0.7-r)=-0.7-0.25=-0.95

T A B L E 10

LEEWARD QUARTER,C, C P=-0.5

Figire

T A B L E 10

G 5.

 

TM 5 809 1/AFM 88-3

hap

1

esig esigrl rl exam ple for w bld loa ds - arched roo

(Sl~eet of 3

B

DESIGN

WlND

PRESSURE-WINDWARD

QUARTER T

P=16.8~1.25x O.O75= I~6 PSF P=16.8x1.25~-0.6:-12.6

PSF

BLE

TABLE

DESIGN WIND PRESSURE-CENTER HALF P=l6.8x1.25x-0.95:-20.0 DESIGN

WIND

PRESSURE-LEEINARD

TABLE

QUARTER

P =16.8x1.25~-0.5O=-IO.5

TABLE

20.0 PSF

20.0

PSF

DESIGN PRESSURE ON ARCHED ROOF

Figure G-5. Design example for wind loads - arclt arclted ed rooj

Slteet 3 of 3)

 

TM 5-809-1/AFM 88-3 Chap 1

GIVEN:

MONOSLOPE ROOF SUBJECTED TO FORCE F SHOWN BELOW.

PROBLE M:

AN OPEN SIDED ST RUC TU RE SHOW SHOWN N BELOW IS BEING DESIGNED AS PART OF AN OPEN STO RAG E FA CIL ITY . FOR DESIGNING DESIGNING THE ROOF COMPO NENTS DETERM INE

LOCATI0N:HICKMAN

Wl WlND ND FORCE F

AFB HONOLULU HONOLULU HAWAII

WIND EXPOSURE CATEGORY D

X

BLJILDING CATEGORY I

OPEN SIDED STRUCTURE

igure G-6. Design example or wind loads - ntor~oslope ntor~oslopeoof oof subjected to wind force.

 

TM 5-809-IIAFM 88-3 Chap

Skeet

of 2

SOLUTION: WlND FORCE ON ROOF

F = q z Gz C A WHERE q = 0 . 0 0 2 5 6 K 2 I V ) ~ K, 11.24

AT

h=17 6

T A B L E 4~

EQ.3

FT

TABLE

1=1.00

V.80 MPH q =0.00256 l.24(1.00

x

TABLE 5 APPENDIX B (THIS MANUAL)

80)~

tQ 3

~ 2 0 . 3 PSF G, =l.l4 A T h=17.6 F T

TABLE 8

B/L=40/20=2.0 8

TABLE NOTE 2

=15 0O

U S E I ~ + I O = ~ ~ ~ W OASE R S T C ,=I.I

X/L=0.4 X=0.4L=004(20)=8.0 FT A ,=4 0 2 0/ CO S 15 15''=8 =828 28..2 F=20.3~1.14~1.1~828~2~2I~I

SF TABLE 4

IF WlND IS BLOWING FROM L E F T F = + 2 1 . 1 K ~ sS H O W N IF WlND IIS S B BL LOW OWIING FR FROM OM R RIIGHT ~ = - 2 1 . 1 ~ AND X IS MEASURED 8 FT FROM THE RIGHT EDGE *ALL REFERENCES ARE T O ASCE 1 - 8 8 U. U.N N.O.

Figure

G 6.

esign esign aa m pl e for wind load s

mon oslope roof roof subjected to wind wind force. force.

Sl~ect of 2 )

 

TM 5-809-1/AFM 88-3 Chap 1

GIVEN: GIV EN:

MONOS LOPE ROOF SU BJ EC TE D TO WIND PRESS URE.

PROBLEM: TR AN SL AT E TH E Wl WlN ND FOR FORCE CE F lN

EX AM PL E G-6

INTO WlND WlND PRESS URE p.

WlND PRESSURE Fi Figur guree G -7 . Design ewample ewample fo forr wind loa loads ds - monoslope roof roof subjected subjected to windpr esstue.

 

TM 5 809 1IAFM 88-3

Chap

1

Sheel 1 of 3 )

EQUIVALENT FORCE NORMAL TO ROOF -LB/FT EQ.1 )/2

P2 (L/COS 8

+1/2

P, (L /C OS 9 )= F/B

EOUIVALENT MOMENT ABOUT POINT A -LB E0.2 1/ F (L/COS 8 [L /( 3 COS 9 I+ 1/2

F (L/COS 8 [2L/(3 COS 8 l = ( F / B I ( X / C O S 8

)

SOLVING SOLVIN G EQ. EQ.1 1 AND 2

TH

FOLLOWING VALUES WERE OBTAINED FROM EXAMPILE G-6. F=21,100 LB L=20 FT 8.40 FT X=8 FT 8 =15O

USING THE FORMULAS

P = ( 2 F COS

/BL) (2-3 X/L )

P = C ( ~ X ~ I , I O oOs I ~ ~ ) ~ O X ~ O ) I ~ ~ - ~ X ~ S / F? O ) I = ~ O . ~ P, z ( 2 F COS / B L ) ( 3 X / L - I ) P, =C(2x21,100 COS 15 )/(40x20)1C(3x8/20)-11=10.2 PSF

Figure G 7. Design eramplefor wind loads - monoslope roofsubjected to windpressure.

Sheet 2 of 3)

 

TM 5 809 l/AFM

88-3 hap

1

40.8 PSF

WIN

F ROM L E F T

W IN IN

FRO M

RIGHT

WlND PRESSURE p

Figure G-7. Design exatnple for wind loa ds - monoslope roof subjecled lo wirtdpressure.

 

TM 5-809-11AFM 88-3

Chap 1

Sheel 3 oJ 3 )

GIVEN: GIV EN:

CIRC ULA R TAN K ON BUILDIN G ROOF SHO SHOWN WN BELOW.

PROBLE M:

DETERM INE THE WIND LO AD ON CIRCULAR WATER TANK BELOW. THE TANK IS LO CA TE D ON THE RO ROOF OF OF MUL TIST ORY HOSPITAL. HEIGHT, h=lO F T DIAMETER, d=IO FT LOCATION: FORT LEWIS,WA. WlND EXPOSURE CATEGORY C BUILDING CATEGORY

/

ll

d=IO

DI METER PL

N VIEW

CIRCULAR WATER TANK

Figure

G 8.

esign erample for wind load s - circula circularr tank on building building roo f.

Sheet

of 2 )

 

TM 5-809-1/AFM 8888-3 3 Chap 1

SOLUTION: WIND PRESSURE F=qzG,C, A WHERE q z 0 . 0 0 2 5 6 K~

T ABLE 4

lVf

E0.3

Z=110' 1=1.07 V.75 MPH K

,=1.42

WHEKE Z= Z=11 110 0 FT

,=(0.00256)i1.42)(1.07~75)~ q,=23.4 PSF G 1.15 WHER WHERE E h-120 F T d6=10423.4.48.4>2.5

TABLE 5 APPENDIX t (THIS MANUAL) TABLE

TAELE 8

TABLE

h/d=l/l=l C ,=0.5 A

=10'x10'=100 FT

F = 2 3 ..4 4 ~ 1 ..1 15~0 0.. 5 5~ ~100 0= =134 45 5 R 1.3~

TABLE. 4

*ALL REFERENCES ARE TO ASCE 7 - 8 8 U.N.O.

Figure G-8. Desigu example for win windd loa ds - circul circular ar llank ank on b~iildirtg b~iildirtgoo5 oo5

 

TM 5 809 11AFM 88-3

hap

1

Slreet 2

o

2)

GIVEN: GIV EN:

THE TRIA NGU LAR

ST EE L TOWER TOWER SHOWN SHOWN BELOW

IS LOCATED ON THE ROOF OF A MULTISTORY BUILDING. PROBLEM: DETERMINE THE WIND LOAD ON THE TOWER. LOCATI0N:FO RT WORTH WORTH TEXAS TEXAS WIND EXPOSURE CATEGORY BUILDING CATEGORY

TRIANGULAR STEEL TOWER

igure

G 9.

esignn erotnple for witldloads - lnrss cd tower or blrildirtg esig blrildirtg roof :

(Slzcet

of 3

 

TM 5-809-1IAFM 88-3 Chap 1

SOLUTION: OLID A R E A PANEL

8

GROSS

AREA,

F T ~

o

2.19

6.00

0.366

3.65

18.00

0.202

4.16

30.00

0.139

4.06

42.00

0.097

TABLE

F=q , G h C f A WHERE q

q

FT

A

,

0.00256KZ 1 ~ ) ~ 110 V=70 MPH 0 . 0 0 2 5 6 ( 1 . 0 ~ 7 0 f ~2 ~2 . 5 4 ~ ~ G,=l.l9 WHEN h.74

*ALL REFERENCES IN THIS EXAMPLE

4

E0.3 TABLE 5 APPENDIX B (THIS MANUAL1 E0.3

TABLE 8

ARE

TO

ASCE 7-88 LJ.N.0.

FORCE COEFFICIENT,C, C

ty(3.7-4.5%) C ,,=(3.7-4.5~0.366)=2.05

TABLE

C,,= 3.7-4.5~0.202)=2.79

C,,(3.7-4.5~0.I39)=3.07 C,,=(3.7-4.5x0.097)=3.26

Figure G-9. Desi Design gn cr a~ np le for ind loads

 

TM 5-809-11AFM 88-3

Chap 1

tnr tnrsse ssedd lower

11

brrildi~tgroof. Slrect 2 of 3)

5

W IN IN D

LO

Figure G-9. Design erontp lc for wind loads

DS

ON

TR USSE D

TOWER

tnrsscd tower on brrild brrildirrgro irrgroof. of.

Sheet 3 of 3 )

 

TM 5 809 11AFM

PPENDIX

H

DESIGN EXAMPLES FOR SNOW LO DS H 1. Purpose and scope This appendix contains illustrative examples using the snow load cr iteria given in ASCE 7 88.

a. Eq

Equation Paragraph c. Fig Figure d UNO Unless noted otherwise b Para

88-3

hap

1

H 2. Abbreviations The following abbreviations are used in the example problems: GIVEN:

T HE DORM I T ORY S HOW N B E L OW SEVERAL NEARBY PINE TREES.

PROBLEM:

DETERMINE

THE

BALA NCED

AND

IS

SITED

A M ONG

UNBAL ANCE D

S NO NO W

LOADS.

COM P OS I T I ON SHINGLE L OCA T I 0 N: W E S T OV E R

AFB.MA.

BUILDING

I

CATEGORY

HEATED STRUCTURE

=ARCTAN 8A2.34 S O L U T IO IO N :

FLAT

ROOF

S NO NO W

LO AD

D? =O.7C,C+lpP WHERE Ce=l.O C+=l.O

E 0 . 5 ~

1=1.0

00:30 p,=0.7 ( S I NCE

I

PSF 1.0 x 1.0 30=21.0 PSF 1.0 >IS .MIN.SNOW L O A D DOES N O T

SLOP ED

R RO OOF

0.

=c,

D

=0.9 x

WHERE

S NO NO W

TABLE

In

TABLE

19

T

2

BLE

E0.5a

APPLY)

PARA 7 1 4

LO AD

P

C

-0.9

COMMENTARY

21.0=1 21.0=18.9 8.9

UNBALANC EO

SECTlON

PSF

S SN N OW OW

E0.6

LO AD

SINCE 15O< 9 < T o 0 . UNB A L A NCE D CONDI T I ON APPLIES 1 . 5 ~ C~, =( =(1. 1.5 5 18 .9)/1.0=28 .3 PSF

~ 1 0

28.3

.dkBEm

PSF

IND

BALANCED .ALL

ROOF S N NOW OW L O A D REFERENCES ARE TO ASCE

UNBALANCED

7-88

U.N.O.

Figure H I. Desi Design gn example example forsnow loads gable roof.

 

TM 5-809-l/AFM 88-3 Chap 1

G I V E N:

.

APPENDIX (THIS M I N U A L I

SH O ''U UN BELOW IS THE M U L T I P L E G A B L E W A R E H O U S E SH L O C A T E D I N A W IN IN D Y F I E L D W I T H A FEW B I R C H T R E E S

9

7

PLANTED NEARBY. PROB LEM:

DETERMINE

THE ROOF SN NO OW

LOAD S.

LOCATION:ANCHORAGE.ALASKA OCCUPANCY CATEGORY I ROUGH SURFACE

7

=ARCTAN 4/12-18

UNHEATED

J

+ A LL LL . R E F E R E N C E S IN IN T H IIS S EXA MP LE ARE TO ASCE 7-88 U.N.O.

S O L U T IO IO N :

FL AT

ROOF SN NO OW

LOA D

pi - 0 . 6 C e CIp WHERE

EO Sb

C ~ 0. 9

T A B L F I8

C, ~ 1 . 2

1.1.0 65 P S I -

p P

' ~ 0 . 6 0.9 (SINCE )IS N O T A PPl Y )

1.2

.MIN.

9

TABLE

1

APPENDIX

R

I11111 M A N U A L ]

1.0 h5 =4 2.7 PS F SNOW LOAD DOES

S L O P E D R O O F SN SN O OW W

lABL1.

FO.ib r hnh.i.i.4

LOA D

P :C

P W H ER E C,:I.OO

P s -1 .0 .0 0

42 .2- 42 .2

[ 'S 'S F

 

TM 5-803-1/AFM 88-3 88-3

UNBALANCED SNOW LOAD

Chap

RIDGE 0.56 =0.5x42.2 =Zl.I PSF VALLEY

JP, /C =13x42.21/0.9 ~ 140. 7 P S F SNOW DENSITY 0.13165 +14=22.4

PCF

SNOW HEIGHT ABOVE RIDGE 21.2/22.4=1.0 FT. CHECK SNOW HEIGHT ABOVE VALLEY 140.7/22.4=6.3>5.O+l.O=6.0 USE 6 0 FT. HEIGHT [SAME ELEVATION AS SNOW ABOVE RIDGE1 VAL LEY 6

FT.xZ2.4

PCFzI34.4

PS

UNBALANCED SNOW LOAD ON LEEWARD SLOPE .5 .5P, P,

/Ce =11.5x42.2 1/0.9=70.3

PSF

42.2

FlC 6 I ITHIS M A N U A L

PSF

lllllllllI1lllll

BALANCED

134.4 PSF 2.1 PSF UNBALANCED

WIND .

ROOF SNOW LOAD

Figure H

2.

Design eranlple for

 

TM 5-809-1lAFM 88-3

hap. 1

snow

loads - mulf iple gable roof.

Sk e e f 2 of 2 )

GIVEN: GIVEN:

THE THE ATER SHOWN SHOWN BELOW HAS A CIRCULAR ARCHED ROOFJT IS SITED IN A WINDY AREA WITH A FEW NEARBY CONIFEROUS TREES . IT IS THE TALLEST STRUCTURE IN A RECREATION COMPLEX.

PROBLEM:

DETERMINE THE BALA NCE D AND UNBA LAN CED SN SNOW OW OADS.

CONCRETE CIRCULAR ARCH WITH INSULATION AND BUILT UP ROOFING

TANGENT TO E A V E S

LOCATI0N:CHICAGO.ILL

HEATED

BUILDING CATEGORY II

L

I 80' =ARCTAN 5/40=21°

.ALL SOLUTION: SOLUTI ON:

REFEREN CES ARE TO ASC E 7 - 8 8 U.N.O.

F LA T ROOF ROOF SNOW SNOW LOAD E 0 . 5 ~ TABLE I8 TABLE 19

I=l. pp $5

P,=0.7 (SINCE

x

0.9 10   1.lX25~17.3 PSF >lO ,MIN pf DOES NOT APPLY)

TA BLE BLE 20 APPENDIX B <THIS MANUAL PARA.7.3.4

SLOPED ROOF SNOW LOAD

P  C P, WHERE C 210 P, ~1 0 7.3=17.3

PSF

HOWEVER,USE 2 5 PSF FOR THE BALANCED LOAD PER FOOTNOTE d OF APPENDIX 8 (THIS MANUAL)

Figure H-3. Design exantple for snow loads

arched roof:

Sheet

o

2

 

TM 5 809 IIAFM

UNUG LAllCE D SNOW LOAD

88-3

hap

1

SlN Ct EOU IVAI ENT SLOPL.H SLOPL.H.IS .IS 10 :

8

21

60

UNBALANCED CONDITION APPLIES 5lNCE SLOPE AT EAVCS (@)=41° LJSE CASE I LOAD AT CROWN* 17.3 .3= = 8.7 8.7 PSF 0.5P, ~ 0 . 5 17

r 1c. 1c.10 10

LOAD AT 3O0POINT ( 3 0 F T FROM CROWN) 5 C ;2 7.31/0.9~30.4 PSF

GEOMETRY

FlG.10

LOAD AT EAVES *

*NOTE THA T 17 17..3 PSF. NOT 2 5 PSF. IS USED IN THE LJNRALANCED SNOW LOAD CALCULATIONS.

rz

25 PSF

BA BAL L ANCEn

UNBA LANC ED

DESIGN SNOW ILOAU

Figure H-3.

 

TM 5-809-IIAF 5-809-IIAFM M 88-3, 88-3, Chap 1

esign example for snow loads

arcl~ed oof.

Sheet 2 of 2)

GIVEN

A LEAN-TO SHOWN BELOW IS ADDED TO THE THEATER IN DESIGN EXAMPLE H-3. DETERMINE DETERM INE S SNO NOW W LOAD ON THE ROOF OF THE LEAN -TO ,

THEATER

s FLAT ROOF SNOW LOAO 0, =0.7C. C 1 WHERE C.=0.9 c =1.2 1O p =25 PSF P ~0 7 0.9 12

E0 50 TABLE

s

TABLE 19 T BLE

 

1.0

x

25XJ.9

20

PSF

CHECK MINIMUM pf WHERE 8 05 WH WHE EN p g > 2 0 PSF. PSF. MI MINI NIMU MUM M 0 =201=20x1.0=20.0 =201=20x1.0=20.0 PSF SINCE 18.9 PSF(2O.O PSF(2 O.O PSF. USE 20.0 PS NOTE: AT THlS POINT DO NOT USE THE 2 5 PS F MINIMUM MINIMUM PER FOOTNOTE d' OF APPENDIX B OF THlS MANUAL . COMPARE THE 25 PSF MINIMUM TO THE COMBINE0 LOAO AFTER IT IS CALCULATED. SLOP ED ROOF SN SNOW OW LO AD

Pa C.Pr WHERE p.= =II..O O

C

1.0 20. 0=2 0.0

PSF

OKIFT ON LEAN-TO

Figure H-4. Design example for snow loads - lean-to roof .

Sheet

o

2)

 

TM 5-809-l/AFM 88-3 Chap 1

DRIFT SNOW LOAD r:0.13~25+14=17 PCF h, h,=P =P ,/~2 0/17 =1.2 FT h = 6 -h -h ~ 6 - 1 . 2 = 4 . 8 F T h, /h ,:4.8/1.2=4.0>0.2

THEREFORE CONSIDER DRIFT LOAD 1,=80 FT. h ~ 3 . 0 T. P,=h

,~ 3. 0x1 7~ 51 .0 PS SF F

WIDTH OF DRlFl

SLIDING SNOW LOAD

PARA 7 9

17. 17.

ASSUME THIS HAL F SLIDES OFF AND 5 0% IS CAilGHT ON THE LEAN-TO ROOF. THEATER ROOF ROOF (SE E DESIGN

EXAMPLE H-3) SLIDING SNOW LOAD UNlFORMlLY DISTRIBUTF ON LEAN-TO ROOF. (0. 50

17.3 17.3 x40)/18=19.2

BALANCED LOAD

20.0

PSF

PSF

r

51.0 PSF DRIFT LOAD I

SLIDING SLIDIN G LOA D

19.2 PSF 90.2

PSF

L  

COMBINED LOAD*

.NOTE: .NOTE: IF THE COMBI COMBINED NED LOAD WERE WERE LE SS THAN 2 5 PSF, IT WOULD BE INCREASED TO 5 PSF IN ACCORDANCE WITH FOOTNOTE d OF APPENDIX 8. SN SNOW OW LOA D ON ON LE AN- TO

igure H-4. Desi Design gn eram ple fo forr snow loa ds - lean-to roof.

Sheet 2 of 2 )

 

TM 5-809-1/AFM 88-3 Chap 1

The proponent agency of this pub lication is the Office of the the Chief of Eng ineers, United Sta tes Army. User s are invited to send commen ts and suggested improvem ents on DA Form 2028 2028 Recommended Changes to to Publications Publications and Blank Forms) to HQUSACE, CEMP-ET), WASH DC 20314-1000. By Order of the Sec retaries of the Army and the A: r Force:

GOR DON R. SULLIVAN SULLIVAN Generall United Genera United States States A m y

Chief of Sraf

Official: 9i&%

MI L T ON H. HAMILTON Administrative Administrat ive Assistant to the Se Secr cret etcu cuyy of the A m y

M E R R I L L A McPEAK General United States Air Force Force Chief of Staff

Official: E D W A R D A PARDINI Colonel United States Air Force Director of Infomation Management

Distribution: A m y : T o be distributed in accordance with DA Form Air Force:

12 WE.

Block 0728 requir requirements ements lor TM

5 809 1.

Sponsor Documents

Or use your account on DocShare.tips

Hide

Forgot your password?

Or register your new account on DocShare.tips

Hide

Lost your password? Please enter your email address. You will receive a link to create a new password.

Back to log-in

Close